Sample records for antimalarial drug quality

  1. Antimalarial drug quality in Africa.

    PubMed

    Amin, A A; Kokwaro, G O

    2007-10-01

    There are several reports of sub-standard and counterfeit antimalarial drugs circulating in the markets of developing countries; we aimed to review the literature for the African continent. A search was conducted in PubMed in English using the medical subject headings (MeSH) terms: 'Antimalarials/analysis'[MeSH] OR 'Antimalarials/standards'[MeSH] AND 'Africa'[MeSH]' to include articles published up to and including 26 February 2007. Data were augmented with reports on the quality of antimalarial drugs in Africa obtained from colleagues in the World Health Organization. We summarized the data under the following themes: content and dissolution; relative bioavailability of antimalarial products; antimalarial stability and shelf life; general tests on pharmaceutical dosage forms; and the presence of degradation or unidentifiable impurities in formulations. The search yielded 21 relevant peer-reviewed articles and three reports on the quality of antimalarial drugs in Africa. The literature was varied in the quality and breadth of data presented, with most bioavailability studies poorly designed and executed. The review highlights the common finding in drug quality studies that (i) most antimalarial products pass the basic tests for pharmaceutical dosage forms, such as the uniformity of weight for tablets, (ii) most antimalarial drugs pass the content test and (iii) in vitro product dissolution is the main problem area where most drugs fail to meet required pharmacopoeial specifications, especially with regard to sulfadoxine-pyrimethamine products. In addition, there are worryingly high quality failure rates for artemisinin monotherapies such as dihydroartemisinin (DHA); for instance all five DHA sampled products in one study in Nairobi, Kenya, were reported to have failed the requisite tests. There is an urgent need to strengthen pharmaceutical management systems such as post-marketing surveillance and the broader health systems in Africa to ensure populations in the

  2. ANTIMALARIAL DRUG QUALITY IN AFRICA

    PubMed Central

    Amin, AA; Kokwaro, GO

    2009-01-01

    Background and objective There are several reports of sub-standard and counterfeit antimalarial drugs circulating in the markets of developing countries; we aimed to review the literature for the African continent. Methods A search was conducted in PubMED in English using the medical subject headings (MeSH) terms: “Antimalarials/analysis”[MeSH] OR “Antimalarials/standards”[MeSH] AND “Africa”[MeSH]” to include articles published up to and including 26/02/07. Data were augmented with reports on the quality of antimalarial drugs in Africa obtained from colleagues in the World Health Organization. We summarised the data under the following themes: content and dissolution; relative bioavalability of antimalarial products; antimalarial stability and shelf life; general tests on pharmaceutical dosage forms; and the presence of degradation or unidentifiable impurities in formulations. Results and discussion The search yielded 21 relevant peer-reviewed articles and three reports on the quality of antimalarial drugs in Africa. The literature was varied in the quality and breadth of data presented, with most bioavailability studies poorly designed and executed. The review highlights the common finding in drug quality studies that 1) most antimalarial products pass the basic tests for pharmaceutical dosage forms, such as the uniformity of weight for tablets 2) most antimalarial drugs pass the content test 3) in vitro product dissolution is the main problem area where most drugs fail to meet required pharmacopoeial specifications, especially with regard to sulfadoxine-pyrimethamine products. In addition, there are worryingly high quality failure rates for artemisinin monotherapies such as dihydroartemisin (DHA); for instance all five DHA sampled products in one study in Nairobi, Kenya, were reported to have failed the requisite tests. Conclusions There is an urgent need to strengthen pharmaceutical management systems such as post-marketing surveillance and the

  3. Strengthening of national capacity in implementation of antimalarial drug quality assurance in Thailand.

    PubMed

    Vijaykadga, Saowanit; Cholpol, Sawat; Sitthimongkol, Saipin; Pawaphutanan, Anusorn; Pinyoratanachot, Arunya; Rojanawatsirivet, Chaiporn; Kovithvattanapong, Rojana; Thimasarn, Krongthong

    2006-01-01

    Substandard and counterfeit pharmaceutical products, including antimalarial drugs, appear to be widespread internationally and affect both the developing and developed countries. The aim of the study was to investigate the quality of antimalarial drugs, ie, artesunate (ART), chloroquine (CHL), mefloquine (MEF), quinine (QUI), sulfadoxine/pyrimethamine (S/P) and tetracycline (TT) obtained from the government sector and private pharmacies in 4 Thai provinces: Mae Hong Son, Kanchanaburi, Ranong, and Chanthaburi. Three hundred sixty-nine samples of 6 antimalarial drugs from 27 government hospitals, 27 malaria clinics, and 53 drugstores, were collected. Drug quality was assessed by simple disintegration test and semi-quantitative thin-layer chromatography in each province; 10% passed, 100% failed and doubtful samples were sent to be verified by high performance liquid chromatography (HPLC) at the Thai National Drug Analysis Laboratory, (NL). Fifteen point four percent of ART, 11.1% of CHL and 29.4% of QUI were substandard. Based on the finding, drug regulatory authorities in the country took appropriate action against violators to ensure that antimalarial drugs consumed by malaria patients are of good quality.

  4. Quality Testing of Artemisinin-Based Antimalarial Drugs in Myanmar.

    PubMed

    Guo, Suqin; Kyaw, Myat Phone; He, Lishan; Min, Myo; Ning, Xiangxue; Zhang, Wei; Wang, Baomin; Cui, Liwang

    2017-10-01

    Artemisinin-based combination therapies are the frontline treatment of Plasmodium falciparum malaria. The circulation of falsified and substandard artemisinin-based antimalarials in Southeast Asia has been a major predicament for the malaria elimination campaign. To provide an update of this situation, we purchased 153 artemisinin-containing antimalarials, as convenience samples, in private drug stores from different regions of Myanmar. The quality of these drugs in terms of their artemisinin derivative content was tested using specific dipsticks for these artemisinin derivatives, as point-of-care devices. A subset of these samples was further tested by high-performance liquid chromatography (HPLC). This survey identified that > 35% of the collected drugs were oral artesunate and artemether monotherapies. When tested with the dipsticks, all but one sample passed the assays, indicating that the detected artemisinin derivative content corresponded approximately to the labeled contents. However, one artesunate injection sample was found to contain no active ingredient at all by the dipstick assay and subsequent HPLC analysis. The continued circulation of oral monotherapies and the description, for the first time, of falsified parenteral artesunate provides a worrisome picture of the antimalarial drug quality in Myanmar during the malaria elimination phase, a situation that deserves more oversight from regulatory authorities.

  5. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa.

    PubMed

    Nayyar, Gaurvika M L; Breman, Joel G; Newton, Paul N; Herrington, James

    2012-06-01

    Poor-quality antimalarial drugs lead to drug resistance and inadequate treatment, which pose an urgent threat to vulnerable populations and jeopardise progress and investments in combating malaria. Emergence of artemisinin resistance or tolerance in Plasmodium falciparum on the Thailand-Cambodia border makes protection of the effectiveness of the drug supply imperative. We reviewed published and unpublished studies reporting chemical analyses and assessments of packaging of antimalarial drugs. Of 1437 samples of drugs in five classes from seven countries in southeast Asia, 497 (35%) failed chemical analysis, 423 (46%) of 919 failed packaging analysis, and 450 (36%) of 1260 were classified as falsified. In 21 surveys of drugs from six classes from 21 countries in sub-Saharan Africa, 796 (35%) of 2297 failed chemical analysis, 28 (36%) of 77 failed packaging analysis, and 79 (20%) of 389 were classified as falsified. Data were insufficient to identify the frequency of substandard (products resulting from poor manufacturing) antimalarial drugs, and packaging analysis data were scarce. Concurrent interventions and a multifaceted approach are needed to define and eliminate criminal production, distribution, and poor manufacturing of antimalarial drugs. Empowering of national medicine regulatory authorities to protect the global drug supply is more important than ever. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The quality of antimalarials available in Yemen

    PubMed Central

    Abdo-Rabbo, Ahmed; Bassili, Amal; Atta, Hoda

    2005-01-01

    Background Malaria has always been a major public health problem in Yemen. Several studies in developing countries have demonstrated ineffective and poor quality drugs including antimalarials. Therefore, quality assessment of antimalarial drugs is of crucial importance. This study aimed to assess the quality of antimalarials (chloroquine and sulfadoxine/pyrimethamine) available in Yemen and to determine whether the quality of these products was related to the level of the distribution chain at which the samples were collected or related to the manufacturers. Methods Four samples from each antimalarial product were collected from each of the various levels of the distribution chain. One sample was kept with the research team. Two were tested at Sana'a and Aden Drug Quality Control Laboratories. The fourth was sent to the Centre for Quality Assurance of Medicines in Potchefstroom, South Africa, for analysis. Quality indicators measured were the content of the active ingredient and dissolution rate (for tablets only) in comparison to standard specifications for these products in the relevant pharmacopoeia. Results The results identified several problems of sub-standard products within the drug distribution chain. They included high and low failures in ingredient content for chloroquine tablets and chloroquine syrup. There was some dissolution failure for chloroquine tablets, and high sulfadoxine/pyrimethamine tablets dissolution failures. Failures with the dissolution of the pyrimethamine were found at most of the collection points. No clear relationship neither between the quality products and the level of the distribution chain, nor between locally manufactured and imported products was observed. Conclusion There are sub-standard antimalarial products circulating within the drug distribution chains in the country, which will have serious implications on the reduced therapeutic effectiveness and on the development of drug resistance. This appears to be due to non

  7. Antimalarial Drug: From its Development to Deface.

    PubMed

    Barik, Tapan Kumar

    2015-01-01

    Wiping out malaria is now the global concern as about three billion people are at risk of malaria infection globally. Despite of extensive research in the field of vaccine development for malaria, till now, no effective vaccine is available for use and hence only antimalarial drugs remain our best hope for both treatment and prevention of malaria. However, emergence and spread of drug resistance has been a major obstacle for the success of malaria elimination globally. This review will summarize the information related to antimalarial drugs, drug development strategies, drug delivery through nanoparticles, few current issues like adverse side effects of most antimalarial drugs, non availability of drugs in the market and use of fake/poor quality drugs that are hurdles to malaria control. As we don't have any other option in the present scenario, we have to take care of the existing tools and make them available to almost all malaria affected area.

  8. Substandard anti-malarial drugs in Burkina Faso

    PubMed Central

    Tipke, Maike; Diallo, Salou; Coulibaly, Boubacar; Störzinger, Dominic; Hoppe-Tichy, Torsten; Sie, Ali; Müller, Olaf

    2008-01-01

    Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers) and illicit (market and street vendors, shops) sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50%) chloroquine, 10/77 (13%) pyrimethamine-sulphadoxine, 9/77 (12%) quinine, 6/77 (8%) amodiaquine, 9/77 (12%) artesunate, and 4/77 (5%) artemether-lumefantrine. 32/77 (42%) drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6%) and 27/30 (90.0%) samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the now wider available

  9. Access to artemisinin-based combination therapies and other anti-malarial drugs in Kinshasa.

    PubMed

    Nkoli Mandoko, P; Sinou, V; Moke Mbongi, D; Ngoyi Mumba, D; Kahunu Mesia, G; Losimba Likwela, J; Bi Shamamba Karhemere, S; Muepu Tshilolo, L; Tamfum Muyembe, J-J; Parzy, D

    2018-06-01

    Artemisinin-based combination therapies have been available since 2005 in the Democratic Republic of the Congo to treat malaria and to overcome the challenge of anti-malarial drug resistance as well as to improve access to effective treatments. The private sector is the primary distribution source for anti-malarial drugs and thus, has a key position among the supply chain actors for a rational and proper use of anti-malarial drugs. We aimed to assess access to nationally recommended anti-malarial drugs in private sector pharmacies of the capital-city of Kinshasa. We performed a cross-sectional survey of 404 pharmacies. Anti-malarial drugs were stocked in all surveyed pharmacies. Non-artemisinin-based anti-malarial therapies such as quinine or sulfadoxine-pyrimethamine, were the most frequently stocked drugs (93.8% of pharmacies). Artemisinin-based combination therapies were stocked in 88% of pharmacies. Artemether-lumefantrine combinations were the most frequently dispensed drugs (93% of pharmacies), but less than 3% were quality-assured products. Other non-officially recommended artemisinin-based therapies including oral monotherapies were widely available. Artemisinin-based combination therapies were widely available in the private pharmacies of Kinshasa. However, the private sector does not guarantee the use of nationally recommended anti-malarial drugs nor does it give priority to quality-assured anti-malarial drugs. These practices contribute to the risk of emergence and spread of resistance to anti-malarial drugs and to increasing treatment costs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Use of refractometry and colorimetry as field methods to rapidly assess antimalarial drug quality.

    PubMed

    Green, Michael D; Nettey, Henry; Villalva Rojas, Ofelia; Pamanivong, Chansapha; Khounsaknalath, Lamphet; Grande Ortiz, Miguel; Newton, Paul N; Fernández, Facundo M; Vongsack, Latsamy; Manolin, Ot

    2007-01-04

    The proliferation of counterfeit and poor-quality drugs is a major public health problem; especially in developing countries lacking adequate resources to effectively monitor their prevalence. Simple and affordable field methods provide a practical means of rapidly monitoring drug quality in circumstances where more advanced techniques are not available. Therefore, we have evaluated refractometry, colorimetry and a technique combining both processes as simple and accurate field assays to rapidly test the quality of the commonly available antimalarial drugs; artesunate, chloroquine, quinine, and sulfadoxine. Method bias, sensitivity, specificity and accuracy relative to high-performance liquid chromatographic (HPLC) analysis of drugs collected in the Lao PDR were assessed for each technique. The HPLC method for each drug was evaluated in terms of assay variability and accuracy. The accuracy of the combined method ranged from 0.96 to 1.00 for artesunate tablets, chloroquine injectables, quinine capsules, and sulfadoxine tablets while the accuracy was 0.78 for enterically coated chloroquine tablets. These techniques provide a generally accurate, yet simple and affordable means to assess drug quality in resource-poor settings.

  11. [Resistance to the antimalarial drugs].

    PubMed

    Venanzi, E; López-Vélez, R

    2016-09-01

    Malaria is one of the most widespread infectious diseases around the world with 214 million cases and 438,000 deaths in 2015. In the early twentieth century it was described for the first time the resistance to quinine and, since then, drug resistance to antimalarial drugs has spread up to represent a global challenge in the fight and control of malaria. Understanding the mechanisms, geography and monitoring tools that we can act against resistance to antimalarial drugs is critical to prevent its expansion.

  12. Substandard Antimalarials Available in Afghanistan: A Case for Assessing the Quality of Drugs in Resource Poor Settings

    PubMed Central

    Lalani, Mirza; Kaur, Harparkash; Mohammed, Nader; Mailk, Naiela; van Wyk, Albert; Jan, Sakhi; Kakar, Rishtya Meena; Mojadidi, Mohammed Khalid; Leslie, Toby

    2015-01-01

    Good-quality antimalarials are crucial for the effective treatment and control of malaria. A total of 7,740 individual and packaged tablets, ampoules, and syrups were obtained from 60 randomly selected public (N = 35) and private outlets (N = 25) in Afghanistan. Of these, 134 samples were screened using the Global Pharma Health Fund (GPHF) MiniLab® in Kabul with 33/126 (26%) samples failing the MiniLab® disintegration test. The quality of a subsample (N = 37) of cholorquine, quinine, and sulfadoxine/pyrimethamine tablets was assessed by in vitro dissolution testing following U.S. Pharmacopeia (USP) monographs at a bioanalytical laboratory in London, United Kingdom. Overall, 12/32 (32%) samples of sulfadoxine/pyrimethamine and quinine were found not to comply with the USP tolerance limits. Substandard antimalarials were available in Afghanistan demonstrating that continuous monitoring of drug quality is warranted. However, in Afghanistan as in many low-income countries, capacity to determine and monitor drug quality using methods such as dissolution testing needs to be established to empower national authorities to take appropriate action in setting up legislation and regulation. PMID:25897070

  13. Antimalarial drug policy in India: past, present & future.

    PubMed

    Anvikar, Anupkumar R; Arora, Usha; Sonal, G S; Mishra, Neelima; Shahi, Bharatendu; Savargaonkar, Deepali; Kumar, Navin; Shah, Naman K; Valecha, Neena

    2014-02-01

    The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17 th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions.

  14. Falsified antimalarials: a minireview.

    PubMed

    Chaccour, Carlos; Kaur, Harparkash; Del Pozo, Jose Luis

    2015-04-01

    Malaria is a curable disease, provided timely access to efficacious drugs is sought. Poor quality and, in particular, falsified antimalarial drugs harm the population of malaria endemic areas; they put lives in peril, cause economic losses to patients, families, industry, and generally undermine the trust in health systems. The extent of the problem is not easily assessed, and although a prevalence of up to 35% of poor-quality antimalarials has been reported, this number should be interpreted with caution given the heterogeneity of methods used to measure it. The trade in falsified antimalarials can be curtailed by putting in place drug quality surveillance, better legislation and improving the access and affordability of these essential drugs.

  15. Terahertz absorption spectra of commonly used antimalarial drugs

    NASA Astrophysics Data System (ADS)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-06-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  16. Terahertz absorption spectra of commonly used antimalarial drugs

    NASA Astrophysics Data System (ADS)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-03-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  17. A nationwide survey of the quality of antimalarials in retail outlets in Tanzania.

    PubMed

    Kaur, Harparkash; Goodman, Catherine; Thompson, Eloise; Thompson, Katy-Anne; Masanja, Irene; Kachur, S Patrick; Abdulla, Salim

    2008-01-01

    Retail pharmaceutical products are commonly used to treat fever and malaria in sub-Saharan African countries. Small scale studies have suggested that poor quality antimalarials are widespread throughout the region, but nationwide data are not available that could lead to generalizable conclusions about the extent to which poor quality drugs are available in African communities. This study aimed to assess the quality of antimalarials available from retail outlets across mainland Tanzania. We systematically purchased samples of oral antimalarial tablets from retail outlets across 21 districts in mainland Tanzania in 2005. A total of 1080 antimalarial formulations were collected including 679 antifol antimalarial samples (394 sulfadoxine/pyrimethamine and 285 sulfamethoxypyrazine/pyrimethamine), 260 amodiaquine samples, 63 quinine samples, and 51 artemisinin derivative samples. A systematic subsample of 304 products was assessed for quality by laboratory based analysis to determine the amount of the active ingredient and dissolution profile by following the published United States Pharmacopoeia (USP) monogram for the particular tablet being tested. Products for which a published analytical monogram did not exist were assessed on amount of active ingredient alone. Overall 38 or 12.2% of the samples were found to be of poor quality. Of the antifolate antimalarial drugs tested 13.4% were found to be of poor quality by dissolution and content analysis using high-performance liquid chromatography (HPLC). Nearly one quarter (23.8%) of quinine tablets did not comply within the tolerance limits of the dissolution and quantification analysis. Quality of amodiaquine drugs was relatively better but still unacceptable as 7.5% did not comply within the tolerance limits of the dissolution analysis. Formulations of the artemisinin derivatives all contained the stated amount of active ingredient when analysed using HPLC alone. Substandard antimalarial formulations were widely

  18. A Nationwide Survey of the Quality of Antimalarials in Retail Outlets in Tanzania

    PubMed Central

    Kaur, Harparkash; Goodman, Catherine; Thompson, Eloise; Thompson, Katy-Anne; Masanja, Irene; Kachur, S. Patrick; Abdulla, Salim

    2008-01-01

    Introduction Retail pharmaceutical products are commonly used to treat fever and malaria in sub-Saharan African countries. Small scale studies have suggested that poor quality antimalarials are widespread throughout the region, but nationwide data are not available that could lead to generalizable conclusions about the extent to which poor quality drugs are available in African communities. This study aimed to assess the quality of antimalarials available from retail outlets across mainland Tanzania. Methods and Findings We systematically purchased samples of oral antimalarial tablets from retail outlets across 21 districts in mainland Tanzania in 2005. A total of 1080 antimalarial formulations were collected including 679 antifol antimalarial samples (394 sulfadoxine/pyrimethamine and 285 sulfamethoxypyrazine/pyrimethamine), 260 amodiaquine samples, 63 quinine samples, and 51 artemisinin derivative samples. A systematic subsample of 304 products was assessed for quality by laboratory based analysis to determine the amount of the active ingredient and dissolution profile by following the published United States Pharmacopoeia (USP) monogram for the particular tablet being tested. Products for which a published analytical monogram did not exist were assessed on amount of active ingredient alone. Overall 38 or 12.2% of the samples were found to be of poor quality. Of the antifolate antimalarial drugs tested 13.4% were found to be of poor quality by dissolution and content analysis using high-performance liquid chromatography (HPLC). Nearly one quarter (23.8%) of quinine tablets did not comply within the tolerance limits of the dissolution and quantification analysis. Quality of amodiaquine drugs was relatively better but still unacceptable as 7.5% did not comply within the tolerance limits of the dissolution analysis. Formulations of the artemisinin derivatives all contained the stated amount of active ingredient when analysed using HPLC alone. Conclusions Substandard

  19. Brands, costs and registration status of antimalarial drugs in the Kenyan retail sector

    PubMed Central

    Amin, Abdinasir A; Snow, Robert W

    2005-01-01

    Background Although an important source of treatment for fevers, little is known about the structure of the retail sector in Africa with regard to antimalarial drugs. This study aimed to assess the range, costs, sources and registration of antimalarial drugs in the Kenyan retail sector. Methods In 2002, antimalarial drug registration and trade prices were established by triangulating national registration lists, government gazettes and trade price indices. Data on registration status and trade prices were compared with similar data generated through a retail audit undertaken among 880 randomly sampled retailers in four districts of Kenya. Results Two hundred and eighteen antimalarial drugs were in circulation in Kenya in 2002. These included 65 "sulfur"-pyrimethamine (sulfadoxine-pyrimethamine and sulfalene-pyrimethamine (SP), the first-line recommended drug in 2002) and 33 amodiaquine (AQ, the second-line recommended drug) preparations. Only half of SP and AQ products were registered with the Pharmacy and Poisons Board. Of SP and AQ brands at district level, 40% and 44% were officially within legal registration requirements. 29% of retailers at district level stocked SP and 95% stocked AQ. The retail price of adult doses of SP and AQ were on average 0.38 and 0.76 US dollars, 100% and 347% higher than trade prices from manufacturers and importers. Artemether-lumefantrine, the newly announced first-line recommended antimalarial drug in 2004, was found in less than 1% of all retail outlets at a median cost of 7.6 US dollars. Conclusion There is a need to ensure that all antimalarial drugs are registered with the Pharmacy and Poisons Board to facilitate a more stringent post-marketing surveillance system to ensure drugs are safe and of good quality post-registration. PMID:16042815

  20. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    PubMed Central

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  1. Drug Discovery and Development of Antimalarial Agents: Recent Advances.

    PubMed

    Thota, Sreekanth; Yerra, Rajeshwar

    2016-01-01

    Malaria, a deadly infectious parasitic disease, is a major issue of public health in the world today and already produces serious economic constraints in the endemic countries. Most of the malarial infections and deaths are due to Plasmodium falciparum and Plasmodium vivax species. The recent emergence of resistance necessitates the search for new antimalarial drugs, which overcome the resistance and act through new mechanisms. Although much effort has been directed towards the discovery of novel antimalarial drugs. 4-anilino quinolone triazines as potent antimalarial agents, their in silico modelling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors has been reported. This review is primarily focused on the drug discovery of the recent advances in the development of antimalarial agents and their mechanism of action.

  2. Benefits of a Pharmacology Antimalarial Reference Standard and Proficiency Testing Program Provided by the Worldwide Antimalarial Resistance Network (WWARN)

    PubMed Central

    Lourens, Chris; Lindegardh, Niklas; Barnes, Karen I.; Guerin, Philippe J.; Sibley, Carol H.; White, Nicholas J.

    2014-01-01

    Comprehensive assessment of antimalarial drug resistance should include measurements of antimalarial blood or plasma concentrations in clinical trials and in individual assessments of treatment failure so that true resistance can be differentiated from inadequate drug exposure. Pharmacometric modeling is necessary to assess pharmacokinetic-pharmacodynamic relationships in different populations to optimize dosing. To accomplish both effectively and to allow comparison of data from different laboratories, it is essential that drug concentration measurement is accurate. Proficiency testing (PT) of laboratory procedures is necessary for verification of assay results. Within the Worldwide Antimalarial Resistance Network (WWARN), the goal of the quality assurance/quality control (QA/QC) program is to facilitate and sustain high-quality antimalarial assays. The QA/QC program consists of an international PT program for pharmacology laboratories and a reference material (RM) program for the provision of antimalarial drug standards, metabolites, and internal standards for laboratory use. The RM program currently distributes accurately weighed quantities of antimalarial drug standards, metabolites, and internal standards to 44 pharmacology, in vitro, and drug quality testing laboratories. The pharmacology PT program has sent samples to eight laboratories in four rounds of testing. WWARN technical experts have provided advice for correcting identified problems to improve performance of subsequent analysis and ultimately improved the quality of data. Many participants have demonstrated substantial improvements over subsequent rounds of PT. The WWARN QA/QC program has improved the quality and value of antimalarial drug measurement in laboratories globally. It is a model that has potential to be applied to strengthening laboratories more widely and improving the therapeutics of other infectious diseases. PMID:24777099

  3. Quality of antimalarial drugs and antibiotics in Papua New Guinea: a survey of the health facility supply chain.

    PubMed

    Hetzel, Manuel W; Page-Sharp, Madhu; Bala, Nancy; Pulford, Justin; Betuela, Inoni; Davis, Timothy M E; Lavu, Evelyn K

    2014-01-01

    Poor-quality life-saving medicines are a major public health threat, particularly in settings with a weak regulatory environment. Insufficient amounts of active pharmaceutical ingredients (API) endanger patient safety and may contribute to the development of drug resistance. In the case of malaria, concerns relate to implications for the efficacy of artemisinin-based combination therapies (ACT). In Papua New Guinea (PNG), Plasmodium falciparum and P. vivax are both endemic and health facilities are the main source of treatment. ACT has been introduced as first-line treatment but other drugs, such as primaquine for the treatment of P. vivax hypnozoites, are widely available. This study investigated the quality of antimalarial drugs and selected antibiotics at all levels of the health facility supply chain in PNG. Medicines were obtained from randomly sampled health facilities and selected warehouses and hospitals across PNG and analysed for API content using validated high performance liquid chromatography (HPLC). Of 360 tablet/capsule samples from 60 providers, 9.7% (95% CI 6.9, 13.3) contained less, and 0.6% more, API than pharmacopoeial reference ranges, including 29/37 (78.4%) primaquine, 3/70 (4.3%) amodiaquine, and one sample each of quinine, artemether, sulphadoxine-pyrimethamine and amoxicillin. According to the package label, 86.5% of poor-quality samples originated from India. Poor-quality medicines were found in 48.3% of providers at all levels of the supply chain. Drug quality was unrelated to storage conditions. This study documents the presence of poor-quality medicines, particularly primaquine, throughout PNG. Primaquine is the only available transmission-blocking antimalarial, likely to become important to prevent the spread of artemisinin-resistant P. falciparum and eliminating P. vivax hypnozoites. The availability of poor-quality medicines reflects the lack of adequate quality control and regulatory mechanisms. Measures to stop the availability of

  4. Quality of Antimalarial Drugs and Antibiotics in Papua New Guinea: A Survey of the Health Facility Supply Chain

    PubMed Central

    Hetzel, Manuel W.; Page-Sharp, Madhu; Bala, Nancy; Pulford, Justin; Betuela, Inoni; Davis, Timothy M. E.; Lavu, Evelyn K.

    2014-01-01

    Background Poor-quality life-saving medicines are a major public health threat, particularly in settings with a weak regulatory environment. Insufficient amounts of active pharmaceutical ingredients (API) endanger patient safety and may contribute to the development of drug resistance. In the case of malaria, concerns relate to implications for the efficacy of artemisinin-based combination therapies (ACT). In Papua New Guinea (PNG), Plasmodium falciparum and P. vivax are both endemic and health facilities are the main source of treatment. ACT has been introduced as first-line treatment but other drugs, such as primaquine for the treatment of P. vivax hypnozoites, are widely available. This study investigated the quality of antimalarial drugs and selected antibiotics at all levels of the health facility supply chain in PNG. Methods and Findings Medicines were obtained from randomly sampled health facilities and selected warehouses and hospitals across PNG and analysed for API content using validated high performance liquid chromatography (HPLC). Of 360 tablet/capsule samples from 60 providers, 9.7% (95% CI 6.9, 13.3) contained less, and 0.6% more, API than pharmacopoeial reference ranges, including 29/37 (78.4%) primaquine, 3/70 (4.3%) amodiaquine, and one sample each of quinine, artemether, sulphadoxine-pyrimethamine and amoxicillin. According to the package label, 86.5% of poor-quality samples originated from India. Poor-quality medicines were found in 48.3% of providers at all levels of the supply chain. Drug quality was unrelated to storage conditions. Conclusions This study documents the presence of poor-quality medicines, particularly primaquine, throughout PNG. Primaquine is the only available transmission-blocking antimalarial, likely to become important to prevent the spread of artemisinin-resistant P. falciparum and eliminating P. vivax hypnozoites. The availability of poor-quality medicines reflects the lack of adequate quality control and regulatory

  5. Pricing, distribution, and use of antimalarial drugs.

    PubMed Central

    Foster, S. D.

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much as half of antimalarials distributed in many developing countries. Use of antimalarials through the health services is often poor; drug shortages are common and overprescription and overuse of injections are significant problems. Anxiety over drug costs may prevent patients from getting the necessary treatment for malaria, especially because of the seasonal appearance of this disease when people's cash reserves are very low. The high costs may lead them to unofficial sources, which will sell a single tablet instead of a complete course of treatment, and subsequently to increased, often irrational demand for more drugs and more injections. Increasingly people are resorting to self-medication for malaria, which may cause delays in seeking proper treatment in cases of failure, especially in areas where chloroquine resistance has increased rapidly. Self-medication is now widespread, and measures to restrict the illicit sale of drugs have been unsuccessful. The "unofficial" channels thus represent an unacknowledged extension of the health services in many countries; suggestions are advanced to encourage better self-medication by increasing the knowledge base among the population at large (mothers, schoolchildren, market sellers, and shopkeepers), with an emphasis on correct dosing and on the importance of seeking further treatment without delay, if necessary. PMID:1893512

  6. Counterfeit and Substandard Antimalarial Drugs

    MedlinePlus

    ... Insecticide-Treated Nets (ITNs) Intermittent Preventive Treatment of Malaria in Pregnanct Women (IPTp) Indoor Residual Spraying (IRS) Vector Control Antimalarials to Reduce Transmission Vaccines Microscopy Rapid Diagnostic Tests Drug Resistance Counterfeit and ...

  7. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya.

    PubMed

    Rusk, Andria; Smith, Nathan; Menya, Diana; Obala, Andrew; Simiyu, Chrispinus; Khwa-Otsyula, Barasa; O'Meara, Wendy

    2012-08-06

    Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Most of the medicine retailers surveyed (65%) were able to identify artemether-lumefantrine (AL) as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could not is still too high. Furthermore, knowing the MOH recommended

  8. The Tragedy Caused by Fake Antimalarial Drugs

    PubMed Central

    Ambroise-Thomas, Pierre

    2012-01-01

    Counterfeit antimalarials (mainly artemisinin derivatives) is a crucial health problem in developing countries, particularly in Africa. The illegal production, sale and distribution of fake drugs is a huge market evaluated to several billion of dollars and represents more than 50% of the pharmaceutical market in several African countries. Fake drugs have led to a very great number of deaths from untreated malaria or fatality provoked by toxic ingredients. These fake medicines increase the risk of artemisinin resistance developed by the use of sub therapeutic dosages of antimalarials. Tackling this criminal traffic is the objective of an international program created by WHO and involves the international police and custom organizations like INTERPOL. Several very important and encouraging results have been obtained, but the problem will be completely solved if genuine antimalarials, free-of-charge, are handed-over to populations in sub Sahara African countries. PMID:22708042

  9. Determinants of price setting decisions on anti-malarial drugs at retail shops in Cambodia.

    PubMed

    Patouillard, Edith; Hanson, Kara; Kleinschmidt, Immo; Palafox, Benjamin; Tougher, Sarah; Pok, Sochea; O'Connell, Kate; Goodman, Catherine

    2015-05-30

    In many low-income countries, the private commercial sector plays an important role in the provision of malaria treatment. However, the quality of care it provides is often poor, with artemisinin combination therapy (ACT) generally being too costly for consumers. Decreasing ACT prices is critical for improving private sector treatment outcomes and reducing the spread of artemisinin resistance. Yet limited evidence exists on the factors influencing retailers' pricing decisions. This study investigates the determinants of price mark-ups on anti-malarial drugs in retail outlets in Cambodia. Taking an economics perspective, the study tests the hypothesis that the structure of the anti-malarial market determines the way providers set their prices. Providers facing weak competition are hypothesized to apply high mark-ups and set prices above the competitive level. To analyse the relationship between market competition and provider pricing, the study used cross-sectional data from retail outlets selling anti-malarial drugs, including outlet characteristics data (e.g. outlet type, anti-malarial sales volumes), range of anti-malarial drugs stocked (e.g. dosage form, brand status) and purchase and selling prices. Market concentration, a measure of the level of market competition, was estimated using sales volume data. Market accessibility was defined based on travel time to the closest main commercial area. Percent mark-ups were calculated using price data. The relationship between mark-ups and market concentration was explored using regression analysis. The anti-malarial market was on average highly concentrated, suggesting weak competition. Higher concentration was positively associated with higher mark-ups in moderately accessible markets only, with no significant relationship or a negative relationship in other markets. Other determinants of pricing included anti-malarial brand status and generic type, with higher mark-ups on cheaper products. The results indicate that

  10. From crystal to compound: structure-based antimalarial drug discovery.

    PubMed

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  11. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    PubMed Central

    2012-01-01

    Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65%) were able to identify artemether-lumefantrine (AL) as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could not is still too high

  12. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    PubMed Central

    2011-01-01

    Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems. PMID:22152094

  13. Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum

    PubMed Central

    Langer, Christine; Goodman, Christopher D.; McFadden, Geoffrey I.

    2013-01-01

    Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials. PMID:23318799

  14. Antimalarial drug discovery: screening of Brazilian medicinal plants and purified compounds.

    PubMed

    Krettli, Antoniana Ursine

    2009-02-01

    Malaria is the most important parasitic disease and its control depends on specific chemotherapy, now complicated by Plasmodium falciparum that has become resistant to most commonly available antimalarials. Treatment of the disease requires quinine or drug combinations of artemisinin derivatives and other antimalarials. Further drug resistance is expected. New active compounds need to be discovered. To find new antimalarials from medicinal and randomly collected plants, crude extracts are screened against P. falciparum in cultures and in malaria animal models, following bioassays of purified fractions, and cytotoxicity tests. For antimalarial research, screening medicinal plants is more efficient than screening randomly chosen plants. Biomonitored fractionation allows selection of new active molecules identified as potential antimalarials in multidisciplinary projects in Brazil; no new molecule is available for human testing. The advantages of projects based on ethnopharmacology are discussed.

  15. The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials

    PubMed Central

    Vallières, Cindy

    2017-01-01

    ABSTRACT To cope with growing resistance to current antimalarials, new drugs with novel modes of action are urgently needed. Molecules targeting protein synthesis appear to be promising candidates. We identified a compound (MMV665909) from the Medicines for Malaria Venture (MMV) Malaria Box of candidate antimalarials that could produce synergistic growth inhibition with the aminoglycoside antibiotic paromomycin, suggesting a possible action of the compound in mRNA mistranslation. This mechanism of action was substantiated with a Saccharomyces cerevisiae model using available reporters of mistranslation and other genetic tools. Mistranslation induced by MMV665909 was oxygen dependent, suggesting a role for reactive oxygen species (ROS). Overexpression of Rli1 (a ROS-sensitive, conserved FeS protein essential in mRNA translation) rescued inhibition by MMV665909, consistent with the drug's action on translation fidelity being mediated through Rli1. The MMV drug also synergized with major quinoline-derived antimalarials which can perturb amino acid availability or promote ROS stress: chloroquine, amodiaquine, and primaquine. The data collectively suggest translation fidelity as a novel target of antimalarial action and support MMV665909 as a promising drug candidate. PMID:28652237

  16. Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape.

    PubMed

    Nsanzabana, Christian; Djalle, Djibrine; Guérin, Philippe J; Ménard, Didier; González, Iveth J

    2018-02-08

    To limit the spread and impact of anti-malarial drug resistance and react accordingly, surveillance systems able to detect and track in real-time its emergence and spread need to be strengthened or in some places established. Currently, surveillance of anti-malarial drug resistance is done by any of three approaches: (1) in vivo studies to assess the efficacy of drugs in patients; (2) in vitro/ex vivo studies to evaluate parasite susceptibility to the drugs; and/or (3) molecular assays to detect validated gene mutations and/or gene copy number changes that are associated with drug resistance. These methods are complementary, as they evaluate different aspects of resistance; however, standardization of methods, especially for in vitro/ex vivo and molecular techniques, is lacking. The World Health Organization has developed a standard protocol for evaluating the efficacy of anti-malarial drugs, which is used by National Malaria Control Programmes to conduct their therapeutic efficacy studies. Regional networks, such as the East African Network for Monitoring Antimalarial Treatment and the Amazon Network for the Surveillance of Antimalarial Drug Resistance, have been set up to strengthen regional capacities for monitoring anti-malarial drug resistance. The Worldwide Antimalarial Resistance Network has been established to collate and provide global spatial and temporal trends information on the efficacy of anti-malarial drugs and resistance. While exchange of information across endemic countries is essential for monitoring anti-malarial resistance, sustainable funding for the surveillance and networking activities remains challenging. The technology landscape for molecular assays is progressing quite rapidly, and easy-to-use and affordable new techniques are becoming available. They also offer the advantage of high throughput analysis from a simple blood spots obtained from a finger prick. New technologies combined with the strengthening of national reference

  17. [Cytochrome P-450 and the response to antimalarial drugs].

    PubMed

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other

  18. Simple Field Assays to Check Quality of Current Artemisinin-Based Antimalarial Combination Formulations

    PubMed Central

    Ioset, Jean-Robert; Kaur, Harparkash

    2009-01-01

    Introduction Malaria continues to be one of the major public health problems in Africa, Asia and Latin America. Artemisinin derivatives (ARTs; artesunate, artemether, and dihydroartemisinin) derived from the herb, Artemisia annua, are the most effective antimalarial drugs available providing rapid cures. The World Health Organisation (WHO) has recommended that all antimalarials must be combined with an artemisinin component (artemisinin-based combination therapy; ACT) for use as first line treatment against malaria. This class of drugs is now first-line policy in most malaria-endemic countries. Reports of ad hoc surveys from South East Asia show that up to 50% of the artesunate currently sold is counterfeit. Drug quality is rarely assessed in resource poor countries in part due to lack of dedicated laboratory facilities which are expensive to build, equip and maintain. With a view to address this unmet need we developed two novel colour reaction assays that can be used in the field to check the quality of ARTs. Methods and Findings Our assays utilise thin layer chromatography silica gel sheets and 2, 4 dinitrophenylhydrazine or 4-Benzoylamino-2, 5-dimethoxybenzenediazonium chloride hemi (zinc chloride) salt as the reagents showing a pink or blue product respectively only in the presence ARTs. We are able to detect as low as 10% of ARTs in ACTs (WINTHROP - artesunate/amodiaquine, Coartem®-artemether/lumefantrine and Duocortexcin - dihydroartemisinin/piperaquine). The assays have been validated extensively by testing eighty readily accessible and widely used drugs in malaria endemic countries. None of the other antimalarial drugs or a range of commonly used excipients, antiretroviral drugs or other frequently used drugs from the WHO essential drugs list such as analgesics or antibiotics are detected with our assays. Conclusions Our two independent assays requiring no specialist training are specific, simple to use, rapid, robust, reproducible, inexpensive and, have

  19. Therapeutic Responses to Different Antimalarial Drugs in Vivax Malaria

    PubMed Central

    Pukrittayakamee, Sasithon; Chantra, Arun; Simpson, Julie A.; Vanijanonta, Sirivan; Clemens, Ralf; Looareesuwan, Sornchai; White, Nicholas J.

    2000-01-01

    The therapeutic responses to the eight most widely used antimalarial drugs were assessed in 207 adult patients with Plasmodium vivax malaria. This parasite does not cause marked sequestration, so parasite clearance can be used as a direct measure of antimalarial activity. The activities of these drugs in descending order were artesunate, artemether, chloroquine, mefloquine, quinine, halofantrine, primaquine, and pyrimethamine-sulfadoxine (PS). Therapeutic responses to PS were poor; parasitemias did not clear in 5 of the 12 PS-treated patients, whereas all the other patients made an initial recovery. Of 166 patients monitored for ≥28 days, 35% had reappearance of vivax malaria 11 to 65 days later and 7% developed falciparum malaria 5 to 21 days after the start of treatment. There were no significant differences in the times taken for vivax malaria reappearance among the different groups except for those given mefloquine and chloroquine, in which all vivax malaria reappearances developed >28 days after treatment, suggesting suppression of the first relapse by these slowly eliminated drugs. There was no evidence of chloroquine resistance. The antimalarial drugs vary considerably in their intrinsic activities and stage specificities of action. PMID:10817728

  20. Paper Test Cards for Presumptive Testing of Very Low Quality Antimalarial Medications

    PubMed Central

    Weaver, Abigail A.; Lieberman, Marya

    2015-01-01

    Carrying out chemical analysis of antimalarials to detect low-quality medications before they reach a patient is a costly venture. Here, we show that a library of chemical color tests embedded on a paper card can presumptively identify formulations corresponding to very low quality antimalarial drugs. The presence or absence of chloroquine (CQ), doxycycline (DOX), quinine, sulfadoxine, pyrimethamine, and primaquine antimalarial medications, in addition to fillers used in low-quality pharmaceuticals, are indicated by patterns of colors that are generated on the test cards. Test card sensitivity for detection of these pure components ranges from 90% to 100% with no false positives in the absence of pharmaceutical. The color intensities from reactions characteristic of CQ or DOX allowed visual detection of formulations of these medications cut with 60% or 100% filler, although samples cut with 30% filler could not be reliably detected colorimetrically. However, the addition of unexpected fillers, even in 30% quantities, or substitute pharmaceuticals, could sometimes be detected by other color reactions on the test cards. Tests are simple and inexpensive enough to be carried out in clinics, pharmacies, and ports of entry and could provide a screening method to presumptively indicate very low quality medicines throughout the supply chain. PMID:25897064

  1. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development.

    PubMed

    Beutler, Ernest; Duparc, Stephan

    2007-10-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is relatively common in populations exposed to malaria. This deficiency appears to provide some protection from this infection, but it can also cause hemolysis after administration of some antimalarial drugs, especially primaquine. The risk of drug-induced G6PD deficiency-related hemolysis depends on a number of factors including the G6PD variant, the drug and drug dosage schedule, patient status, and disease factors. Although a great deal is known about the molecular biology of G6PD, determining the potential for drug-induced hemolysis in the clinical setting is still challenging. This report discusses the potential strategies for assessing drug-induced G6PD deficiency-related hemolytic risk preclinically and in early clinical trials. Additionally, the issues important for conducting larger clinical trials in populations in which G6PD deficiency is prevalent are examined, with a particular focus on antimalarial drug development.

  2. Anti-malarial drug quality in Lagos and Accra - a comparison of various quality assessments

    PubMed Central

    2010-01-01

    Background Two major cities in West Africa, Accra, the capital of Ghana, and Lagos, the largest city of Nigeria, have significant problems with substandard pharmaceuticals. Both have actively combated the problem in recent years, particularly by screening products on the market using the Global Pharma Health Fund e.V. Minilab® protocol. Random sampling of medicines from the two cities at least twice over the past 30 months allows a tentative assessment of whether improvements in drug quality have occurred. Since intelligence provided by investigators indicates that some counterfeit producers may be adapting products to pass Minilab tests, the results are compared with those from a Raman spectrometer and discrepancies are discussed. Methods Between mid-2007 and early-2010, samples of anti-malarial drugs were bought covertly from pharmacies in Lagos on three different occasions (October 2007, December 2008, February 2010), and from pharmacies in Accra on two different occasions (October 2007, February 2010). All samples were tested using the Minilab® protocol, which includes disintegration and active ingredient assays as well as visual inspection, and most samples were also tested by Raman spectrometry. Results In Lagos, the failure rate in the 2010 sampling fell to 29% of the 2007 finding using the Minilab® protocol, 53% using Raman spectrometry, and 46% using visual inspection. In Accra, the failure rate in the 2010 sampling fell to 54% of the 2007 finding using the Minilab® protocol, 72% using Raman spectrometry, and 90% using visual inspection. Conclusions The evidence presented shows that drug quality is probably improving in both cities, especially Lagos, since major reductions of failure rates over time occur with all means of assessment. Many more samples failed when examined by Raman spectrometry than by Minilab® protocol. The discrepancy is most likely caused by the two techniques measuring different aspects of the medication and hence the discrepancy

  3. Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations

    PubMed Central

    Matthews, Holly; Deakin, Jon; Rajab, May; Idris-Usman, Maryam

    2017-01-01

    The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26–32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product. PMID:28257497

  4. Modulating effects of plasma containing anti-malarial antibodies on in vitro anti-malarial drug susceptibility in Plasmodium falciparum.

    PubMed

    Monatrakul, Preeyaporn; Mungthin, Mathirut; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Wilairatana, Polrat; White, Nicholas J; Chotivanich, Kesinee

    2010-11-16

    The efficacy of anti-malarial drugs is determined by the level of parasite susceptibility, anti-malarial drug bioavailability and pharmacokinetics, and host factors including immunity. Host immunity improves the in vivo therapeutic efficacy of anti-malarial drugs, but the mechanism and magnitude of this effect has not been characterized. This study characterized the effects of 'immune' plasma to Plasmodium falciparumon the in vitro susceptibility of P. falciparum to anti-malarial drugs. Titres of antibodies against blood stage antigens (mainly the ring-infected erythrocyte surface antigen [RESA]) were measured in plasma samples obtained from Thai patients with acute falciparum malaria. 'Immune' plasma was selected and its effects on in vitro parasite growth and multiplication of the Thai P. falciparum laboratory strain TM267 were assessed by light microscopy. The in vitro susceptibility to quinine and artesunate was then determined in the presence and absence of 'immune' plasma using the 3H-hypoxanthine uptake inhibition method. Drug susceptibility was expressed as the concentrations causing 50% and 90% inhibition (IC50 and IC90), of 3H-hypoxanthine uptake. Incubation with 'immune' plasma reduced parasite maturation and decreased parasite multiplication in a dose dependent manner. 3H-hypoxanthine incorporation after incubation with 'immune' plasma was decreased significantly compared to controls (median [range]; 181.5 [0 to 3,269] cpm versus 1,222.5 [388 to 5,932] cpm) (p= 0.001). As a result 'immune' plasma reduced apparent susceptibility to quinine substantially; median (range) IC50 6.4 (0.5 to 23.8) ng/ml versus 221.5 (174.4 to 250.4) ng/ml (p = 0.02), and also had a borderline effect on artesunate susceptibility; IC50 0.2 (0.02 to 0.3) ng/ml versus 0.8 (0.2 to 2.3) ng/ml (p = 0.08). Effects were greatest at low concentrations, changing the shape of the concentration-effect relationship. IC90 values were not significantly affected; median (range) IC90 448.0 (65

  5. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  6. Estimated Under-Five Deaths Associated with Poor-Quality Antimalarials in Sub-Saharan Africa

    PubMed Central

    Renschler, John P.; Walters, Kelsey M.; Newton, Paul N.; Laxminarayan, Ramanan

    2015-01-01

    Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577–154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81–4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068

  7. A qualitative assessment of the challenges of WHO prequalification for anti-malarial drugs in China.

    PubMed

    Huang, Yangmu; Pan, Ke; Peng, Danlu; Stergachis, Andy

    2018-04-03

    While China is a major manufacturer of artemisinin and its derivatives, it lags as a global leader in terms of the total export value of anti-malarial drugs as finished pharmaceutical products ready for marketing and use by patients. This may be due to the limited number of World Health Organization (WHO) prequalified anti-malarial drugs from China. Understanding the reasons for the slow progress of WHO prequalification (PQ) in China can help improve the current situation and may lead to greater efforts in malaria eradication by Chinese manufacturers. In-depth interviews were conducted in China between November 2014 and December 2016. A total of 26 key informants from central government agencies, pharmaceutical companies, universities, and research institutes were interviewed, all of which had current or previous experience overseeing or implementing anti-malarial research and development in China. Chinese anti-malarial drugs that lack WHO PQ are mainly exported for use in the African private market. High upfront costs with unpredictable benefits, as well as limited information and limited technical support on WHO PQ, were reported as the main barriers to obtain WHO PQ for anti-malarial drugs by respondents from Chinese pharmaceutical companies. Potential incentives identified by respondents included tax relief, human resource training and consultation, as well as other incentives related to drug approval, such as China's Fast Track Channel. Government support, as well as innovative incentives and collaboration mechanisms are needed for further adoption of WHO PQ for anti-malarial drugs in China.

  8. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine.

    PubMed

    Olafson, Katy N; Ketchum, Megan A; Rimer, Jeffrey D; Vekilov, Peter G

    2015-04-21

    Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.

  9. Are we doing enough to prevent poor-quality antimalarial medicines in the developing world?

    PubMed

    Walker, Erin J; Peterson, Gregory M; Grech, James; Paragalli, Evie; Thomas, Jackson

    2018-05-15

    improvement in the delivery of high-quality antimalarials to those who need them; however, there is still an urgent need for a collective response by the international community, political leaders, regulatory bodies, and pharmaceutical companies. This should include political commitment for enhanced research and development funding, such as for new innovative track-and-trace field devices, and international efforts to strengthen and harmonise drug regulation practices.

  10. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations.

    PubMed

    Jin, Xiannu; Luong, Thu-Lan; Reese, Necole; Gaona, Heather; Collazo-Velez, Vanessa; Vuong, Chau; Potter, Brittney; Sousa, Jason C; Olmeda, Raul; Li, Qigui; Xie, Lisa; Zhang, Jing; Zhang, Ping; Reichard, Greg; Melendez, Victor; Marcsisin, Sean R; Pybus, Brandon S

    2014-01-01

    Malaria is a major health concern and affects over 300million people a year. Accordingly, there is an urgent need for new efficacious anti-malarial drugs. A major challenge in developing new anti-malarial drugs is to design active molecules that have preferable drug-like characteristics. These "drug-like" characteristics include physiochemical properties that affect drug absorption, distribution, metabolism, and excretion (ADME). Compounds with poor ADME profiles will likely fail in vivo due to poor pharmacokinetics and/or other drug delivery related issues. There have been numerous assays developed in order to pre-screen compounds that would likely fail in further development due to poor absorption properties including PAMPA, Caco-2, and MDCK permeability assays. The use of cell-based permeability assays such as Caco-2 and MDCK serve as surrogate indicators of drug absorption and transport, with the two approaches often used interchangeably. We sought to evaluate both approaches in support of anti-malarial drug development. Accordingly, a comparison of both assays was conducted utilizing apparent permeability coefficient (Papp) values determined from liquid chromatography/tandem mass spectrometry (LC-MS) analyses. Both Caco-2 and MDCK permeability assays produced similar Papp results for potential anti-malarial compounds with low and medium permeability. Differences were observed for compounds with high permeability and compounds that were P-gp substrates. Additionally, the utility of MDCK-MDR1 permeability measurements was demonstrated in probing the role of P-glycoprotein transport in Primaquine-Chloroquine drug-drug interactions in comparison with in vivo pharmacokinetic changes. This study provides an in-depth comparison of the Caco-2 and MDCK-MDR1 cell based permeability assays and illustrates the utility of cell-based permeability assays in anti-malarial drug screening/development in regard to understanding transporter mediated changes in drug absorption

  11. Antimalarial natural products drug discovery in Panama.

    PubMed

    Calderón, Angela I; Simithy-Williams, Johayra; Gupta, Mahabir P

    2012-01-01

    Malaria is still a major public health problem. The biodiversity of the tropics is extremely rich and represents an invaluable source of novel bioactive molecules. For screening of this diversity more sensitive and economical in vitro methods are needed, Flora of Panama has been studied based on ethnomedical uses for discovering antimalarial compounds. This review aims to provide an overview of in vitro screening methodologies for antimalarial drug discovery and to present results of this effort in Panama during the last quarter century. A literature search in SciFinder and PubMed and original publications of Panamanian scientists was performed to gather all the information on antimalarial drug discovery from the Panamanian flora and in vitro screening methods. A variety of colorimetric, staining, fluorometric, and mass spectrometry and radioactivity-based methods have been provided. The advantages and limitations of these methods are also discussed. Plants used in ethnomedicine for symptoms of malaria by three native Panamanian groups of Amerindians, Kuna, Ngöbe Buglé and Teribes are provided. Seven most active plants with IC(50) values < 10 μg/mL were identified Talisia nervosa Radlk. (Sapindaceae), Topobea parasitica Aubl.(Melastomataceae), Monochaetum myrtoideum Naudin (Melastomataceae), Bourreria spathulata (Miers) Hemsl.(Boraginaceae), Polygonum acuminatum Kunth (Polygonaceae), Clematis campestris A. St.-Hil. (Ranunculaceae) and Terminalia triflora (Griseb.) Lillo (Combretaceae). Thirty bioactive compounds belonging to a variety of chemical classes such as spermine and isoquinoline alkaloids, glycosylflavones, phenylethanoid glycosides, ecdysteroids, quercetin arabinofuranosides, clerodane-type diterpenoids, sipandinolid, galloylquercetin derivatives, gallates, oleamide and mangiferin derivatives.

  12. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN)

    PubMed Central

    2010-01-01

    Background The Worldwide Antimalarial Resistance Network (WWARN) is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC) programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM) in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor quality reference standards

  13. Comparison of antimalarial activity of Artemisia turanica extract with current drugs in vivo.

    PubMed

    Taherkhani, Mahboubeh; Rustaiyan, Abdolhossein; Nahrevanian, Hossein; Naeimi, Sabah; Taherkhani, Tofigh

    2013-03-01

    The purpose of this study was to compare antimalarial activity of Artemisia turanica Krasch as Iranian flora with current antimalarial drugs against Plasmodium berghei in vivo in mice. Air-dried aerial parts of Iranian flora A. turanica were collected from Khorasan, northeastern Iran, extracted with Et2O/MeOH/Petrol and defatted. Toxicity of herbal extracts was assessed on male NMRI mice, and their antimalarial efficacy was compared with antimalarial drugs [artemether, chloroquine and sulfadoxinepyrimethamine (Fansidar)] on infected P. berghei animals. All the groups were investigated for parasitaemia, body weight, hepatomegaly, splenomegaly and anemia. The significance of differences was determined by Analysis of Variances (ANOVA) and Student's t-test using Graph Pad Prism software. The inhibitory effects of A. turanica extract on early decline of P. berghei parasitaemia highlights its antimalarial activity, however, this effect no longer can be observed in the late infection. This may be due to the metabolic process of A. turanica crude extract by mice and reduction of its concentration in the body. Crude extract of A. turanica represented its antisymptomatic effects by stabilization of body, liver and spleen weights. This study confirmed antimalarial effects of A. turanica extracts against murine malaria in vivo during early infection, however, there are more benefits on pathophysiological symptoms by this medication.

  14. Identification of inhibitors for putative malaria drug targets amongst novel antimalarial compounds

    PubMed Central

    Crowther, Gregory J.; Napuli, Alberto J.; Gilligan, James H.; Gagaring, Kerstin; Borboa, Rachel; Francek, Carolyn; Chen, Zhong; Dagostino, Eleanor F.; Stockmyer, Justin B.; Wang, Yu; Rodenbough, Philip P.; Castaneda, Lisa J.; Leibly, David J.; Bhandari, Janhavi; Gelb, Michael H.; Brinker, Achim; Engels, Ingo; Taylor, Jennifer; Chatterjee, Arnab K.; Fantauzzi, Pascal; Glynne, Richard J.; Van Voorhis, Wesley C.; Kuhen, Kelli L.

    2011-01-01

    The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for P. falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5,655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC50 values below 1.25 μM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5′-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology. PMID:20813141

  15. Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds.

    PubMed

    Crowther, Gregory J; Napuli, Alberto J; Gilligan, James H; Gagaring, Kerstin; Borboa, Rachel; Francek, Carolyn; Chen, Zhong; Dagostino, Eleanor F; Stockmyer, Justin B; Wang, Yu; Rodenbough, Philip P; Castaneda, Lisa J; Leibly, David J; Bhandari, Janhavi; Gelb, Michael H; Brinker, Achim; Engels, Ingo H; Taylor, Jennifer; Chatterjee, Arnab K; Fantauzzi, Pascal; Glynne, Richard J; Van Voorhis, Wesley C; Kuhen, Kelli L

    2011-01-01

    The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25μM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Mind the gaps - the epidemiology of poor-quality anti-malarials in the malarious world - analysis of the WorldWide Antimalarial Resistance Network database

    PubMed Central

    2014-01-01

    Background Poor quality medicines threaten the lives of millions of patients and are alarmingly common in many parts of the world. Nevertheless, the global extent of the problem remains unknown. Accurate estimates of the epidemiology of poor quality medicines are sparse and are influenced by sampling methodology and diverse chemical analysis techniques. In order to understand the existing data, the Antimalarial Quality Scientific Group at WWARN built a comprehensive, open-access, global database and linked Antimalarial Quality Surveyor, an online visualization tool. Analysis of the database is described here, the limitations of the studies and data reported, and their public health implications discussed. Methods The database collates customized summaries of 251 published anti-malarial quality reports in English, French and Spanish by time and location since 1946. It also includes information on assays to determine quality, sampling and medicine regulation. Results No publicly available reports for 60.6% (63) of the 104 malaria-endemic countries were found. Out of 9,348 anti-malarials sampled, 30.1% (2,813) failed chemical/packaging quality tests with 39.3% classified as falsified, 2.3% as substandard and 58.3% as poor quality without evidence available to categorize them as either substandard or falsified. Only 32.3% of the reports explicitly described their definitions of medicine quality and just 9.1% (855) of the samples collected in 4.6% (six) surveys were conducted using random sampling techniques. Packaging analysis was only described in 21.5% of publications and up to twenty wrong active ingredients were found in falsified anti-malarials. Conclusions There are severe neglected problems with anti-malarial quality but there are important caveats to accurately estimate the prevalence and distribution of poor quality anti-malarials. The lack of reports in many malaria-endemic areas, inadequate sampling techniques and inadequate chemical analytical methods and

  17. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors

    NASA Astrophysics Data System (ADS)

    Urbán, Patricia; Estelrich, Joan; Adeva, Alberto; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-12-01

    Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with

  18. Fake antimalarials in Southeast Asia are a major impediment to malaria control: multinational cross-sectional survey on the prevalence of fake antimalarials.

    PubMed

    Dondorp, A M; Newton, P N; Mayxay, M; Van Damme, W; Smithuis, F M; Yeung, S; Petit, A; Lynam, A J; Johnson, A; Hien, T T; McGready, R; Farrar, J J; Looareesuwan, S; Day, N P J; Green, M D; White, N J

    2004-12-01

    To assess the prevalence of counterfeit antimalarial drugs in Southeast (SE) Asia. Cross-sectional survey. Pharmacies and shops selling antimalarial drugs in Myanmar (Burma), Lao PDR, Vietnam, Cambodia and Thailand. Proportion of artemisinin derivatives or mefloquine containing drugs of substandard quality. Of the 188 tablet packs purchased which were labelled as 'artesunate' 53% did not contain any artesunate. All counterfeit artesunate tablets were labelled as manufactured by 'Guilin Pharma', and refinements of the fake blisterpacks made them often hard to distinguish from their genuine counterparts. No other artemisinin derivatives were found to be counterfeited. Of the 44 mefloquine samples, 9% contained <10% of the expected amount of active ingredient. An alarmingly high proportion of antimalarial drugs bought in pharmacies and shops in mainland SE Asia are counterfeit, and the problem has increased significantly compared with our previous survey in 1999-2000. This is a serious threat to public health in the region.

  19. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance.

    PubMed

    von Seidlein, Lorenz; Dondorp, Arjen

    2015-06-01

    The emergence and spread of antimalarial resistance has been a major liability for malaria control. The spread of chloroquine-resistant Plasmodium falciparum strains had catastrophic consequences for people in malaria-endemic regions, particularly in sub-Saharan Africa. The recent emergence of artemisinin-resistant P. falciparum strains is of highest concern. Current efforts to contain artemisinin resistance have yet to show success. In the absence of more promising plans, it has been suggested to eliminate falciparum malaria from foci of artemisinin resistance using a multipronged approach, including mass drug administrations. The use of mass drug administrations is controversial as it increases drug pressure. Based on current knowledge it is difficult to conceptualize how targeted malaria elimination could contribute to artemisinin resistance, provided a full treatment course is ensured.

  20. Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts In Vitro Antimalarial Activity.

    PubMed

    Giannangelo, Carlo; Stingelin, Lukas; Yang, Tuo; Tilley, Leann; Charman, Susan A; Creek, Darren J

    2018-03-01

    The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia. Copyright © 2018 American Society for Microbiology.

  1. Model System to Define Pharmacokinetic Requirements for Antimalarial Drug Efficacy

    PubMed Central

    Bakshi, Rahul P.; Nenortas, Elizabeth; Tripathi, Abhai K.; Sullivan, David J.; Shapiro, Theresa A.

    2013-01-01

    Malaria presents a tremendous public health burden and new therapies are needed. Massive compound libraries screened against Plasmodium falciparum have yielded thousands of lead compounds, resulting in an acute need for rational criteria to select the best candidates for development. We reasoned that, akin to antibacterials, antimalarials might have an essential pharmacokinetic requirement for efficacy: action governed either by total exposure or peak concentration (AUC/CMAX), or by duration above a defined minimum concentration (Time above Minimum Inhibitory Concentration, TMIC). We devised an in vitro system for P. falciparum, capable of mimicking the dynamic fluctuations of a drug in vivo. Utilizing this apparatus, we find that chloroquine is TMIC-dependent while the efficacy of artemisinin is driven by CMAX. The latter was confirmed in a mouse model of malaria. These characteristics can explain the clinical success of two antimalarial drugs with widely different kinetics in humans. Chloroquine, which persists for weeks, is ideally suited for its TMIC mechanism, whereas great efficacy despite short exposure (t1/2 in blood 3 h or less) is attained by CMAX-driven artemisinins. This validated preclinical model system can be used to select those antimalarial lead compounds whose CMAX or TMIC requirement for efficacy match pharmacokinetics obtained in vivo. The apparatus can also be used to explore the kinetic-dependence of other pharmacodynamic endpoints in parasites. PMID:24089407

  2. Rational quality assessment procedure for less-investigated herbal medicines: Case of a Congolese antimalarial drug with an analytical report.

    PubMed

    Tshitenge, Dieudonné Tshitenge; Ioset, Karine Ndjoko; Lami, José Nzunzu; Ndelo-di-Phanzu, Josaphat; Mufusama, Jean-Pierre Koy Sita; Bringmann, Gerhard

    2016-04-01

    Herbal medicines are the most globally used type of medical drugs. Their high cultural acceptability is due to the experienced safety and efficiency over centuries of use. Many of them are still phytochemically less-investigated, and are used without standardization or quality control. Choosing SIROP KILMA, an authorized Congolese antimalarial phytomedicine, as a model case, our study describes an interdisciplinary approach for a rational quality assessment of herbal drugs in general. It combines an authentication step of the herbal remedy prior to any fingerprinting, the isolation of the major constituents, the development and validation of an HPLC-DAD analytical method with internal markers, and the application of the method to several batches of the herbal medicine (here KILMA) thus permitting the establishment of a quantitative fingerprint. From the constitutive plants of KILMA, acteoside, isoacteoside, stachannin A, and pectolinarigenin-7-O-glucoside were isolated, and acteoside was used as the prime marker for the validation of an analytical method. This study contributes to the efforts of the WHO for the establishment of standards enabling the analytical evaluation of herbal materials. Moreover, the paper describes the first phytochemical and analytical report on a marketed Congolese phytomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of anti-malarial drugs on the electrocardiographic QT interval modelled in the isolated perfused guinea pig heart system

    PubMed Central

    2010-01-01

    Background Concern over the potential cardiotoxicity of anti-malarial drugs inducing a prolonged electrocardiographic QT interval has resulted in the almost complete withdrawal from the market of one anti-malarial drug - halofantrine. The effects on the QT interval of four anti-malarial drugs were examined, using the guinea pig heart. Methods The guinea pig heart was isolated, mounted on a Langendorff apparatus, and was then perfused with pyruvate-added Klebs-Henseleit solutions containing graded concentrations of the four agents such as quinidine (0.15 - 1.2 μM), quinine (0.3 - 2.4 μM), halofantrine (0.1 - 2.0 μM) and mefloquine (0.1 - 2.0 μM). The heart rate-corrected QaTc intervals were measured to evaluate drug-induced QT prolongation effects. Results Quinidine, quinine, and halofantrine prolonged the QaTc interval in a dose-dependent manner, whereas no such effect was found with mefloquine. The EC50 values for the QaTc prolongation effects, the concentration that gives a half-maximum effect, were quinidine < quinine ≈ halofantrine. Conclusions In this study, an isolated, perfused guinea pig heart system was constructed to assess the cardiotoxic potential of anti-malarial drugs. This isolated perfused guinea pig heart system could be used to test newly developed anti-malarial drugs for their inherent QT lengthening potential. More information is required on the potential variation in unbound drug concentrations in humans, and their role in cardiotoxicity. PMID:21067575

  4. Progressing the global antimalarial portfolio: finding drugs which target multiple Plasmodium life stages.

    PubMed

    Smith, Paul W; Diagana, Thierry T; Yeung, Bryan K S

    2014-01-01

    The number of novel antimalarial candidates entering preclinical development has seen an increase over the last several years. Most of these drug candidates were originally identified as hits coming from screening large chemical libraries specifically targeting the asexual blood stages of Plasmodium falciparum. Indeed, a large proportion of the current antimalarial arsenal has mainly targeted the asexual blood stage which is responsible for clinical symptoms of the disease. However, as part of the eradication agenda and to address resistance, any next-generation antimalarial should have additional activity on at least one other parasite life stage, i.e. gametocytocidal and/or tissue schizonticidal activity. We have applied this approach by screening compounds with intrinsic activity on asexual blood stages in assays against sexual and liver stages and identified two new antimalarial chemotypes with activity on multiple parasite life stages. This strategy can be expanded to identify other chemical classes of molecules with similar activity profiles for the next generation antimalarials. The following review summarizes the discovery of the spiroindolones and imidazolopiperazine classes of antimalarials developed by the NGBS consortium (Novartis Institute for Tropical Diseases, Genomic Institute of the Novartis Research Foundation, Biomedical Primate Research Center, and the Swiss Tropical and Public Health Institute) currently in clinical trials.

  5. Discovery of Antimalarial Drugs from Streptomycetes Metabolites Using a Metabolomic Approach

    PubMed Central

    Baba, Mohd Shukri

    2017-01-01

    Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging “omics” technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS), Gas Chromatography-Mass Spectrophotometry (GC-MS), and Nuclear Magnetic Resonance (1H-NMR) spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia. PMID:29123551

  6. Transport and pharmacodynamics of albitiazolium, an antimalarial drug candidate

    PubMed Central

    Wein, S; Maynadier, M; Bordat, Y; Perez, J; Maheshwari, S; Bette-Bobillo, P; Tran Van Ba, C; Penarete-Vargas, D; Fraisse, L; Cerdan, R; Vial, H

    2012-01-01

    BACKGROUND AND PURPOSE Choline analogues, a new type of antimalarials, exert potent in vitro and in vivo antimalarial activity. This has given rise to albitiazolium, which is currently in phase II clinical trials to cure severe malaria. Here we dissected its mechanism of action step by step from choline entry into the infected erythrocyte to its effect on phosphatidylcholine (PC) biosynthesis. EXPERIMENTAL APPROACH We biochemically unravelled the transport and enzymatic steps that mediate de novo synthesis of PC and elucidated how albitiazolium enters the intracellular parasites and affects the PC biosynthesis. KEY RESULTS Choline entry into Plasmodium falciparum-infected erythrocytes is achieved both by the remnant erythrocyte choline carrier and by parasite-induced new permeability pathways (NPP), while parasite entry involves a poly-specific cation transporter. Albitiazolium specifically prevented choline incorporation into its end-product PC, and its antimalarial activity was strongly antagonized by choline. Albitiazolium entered the infected erythrocyte mainly via a furosemide-sensitive NPP and was transported into the parasite by a poly-specific cation carrier. Albitiazolium competitively inhibited choline entry via the parasite-derived cation transporter and also, at a much higher concentration, affected each of the three enzymes conducting de novo synthesis of PC. CONCLUSIONS AND IMPLICATIONS Inhibition of choline entry into the parasite appears to be the primary mechanism by which albitiazolium exerts its potent antimalarial effect. However, the pharmacological response to albitiazolium involves molecular interactions with different steps of the de novo PC biosynthesis pathway, which would help to delay the development of resistance to this drug. PMID:22471905

  7. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  8. Impact of prepackaging antimalarial drugs on cost to patients and compliance with treatment.

    PubMed Central

    Yeboah-Antwi, K.; Gyapong, J. O.; Asare, I. K.; Barnish, G.; Evans, D. B.; Adjei, S.

    2001-01-01

    OBJECTIVE: To examine the extent to which district health teams could reduce the burden of malaria, a continuing major cause of mortality and morbidity, in a situation where severe resource constraints existed and integrated care was provided. METHODS: Antimalarial drugs were prepackaged into unit doses in an attempt to improve compliance with full courses of chemotherapy. FINDINGS: Compliance improved by approximately 20% in both adults and children. There were 50% reductions in cost to patients, waiting time at dispensaries and drug wastage at facilities. The intervention, which tended to improve both case and drug management at facilities, was well accepted by health staff and did not involve them in additional working time. CONCLUSION: The prepackaging of antimalarials at the district level offers the prospect of improved compliance and a reduction in the spread of resistance. PMID:11417034

  9. Exploring the role of socioeconomic factors in the development and spread of anti-malarial drug resistance: a qualitative study.

    PubMed

    Anyanwu, Philip Emeka; Fulton, John; Evans, Etta; Paget, Timothy

    2017-05-18

    Malaria remains a global health issue with the burden unevenly distributed to the disadvantage of the developing countries of the world. Poverty contributes to the malaria burden as it has the ability to affect integral aspects of malaria control. There have been renewed efforts in the global malaria control, resulting in reductions in the global malaria burden over the last decade. However, the development of resistance to artemisinin-based combination therapy threatens the sustainability of the present success in malaria control. Anti-malarial drug use practices/behaviours remain very important drivers of drug resistance. This study adopted a social epidemiological stance in exploring the underlying socioeconomic factors that determine drug use behaviours promoting anti-malarial drug resistance. A qualitative approach, involving the use of interviews, was used in this inquiry to explore the existing anti-malarial drug use practices in the Nigerian population; and the different socioeconomic factors influencing the behaviours. The significant malaria treatment behaviours influenced by socioeconomic factors in this study were the practice of 'mixing' drugs for malaria treatment, presumptive treatment, sharing of malaria treatment course, and the use of anti-malaria monotherapies. All the rural dwellers in this study reported they have mixed drugs for malaria treatment. When symptoms were experienced, socio-economic factors, like type of settlement, income level and occupation, tended to determine the treatment behaviour and, therefore, informed and determined the experience of the illness. Social and economic contexts can influence behaviours as they contribute in shaping norms and in creating opportunities that promote certain behaviours. As shown in this study, income level and type of settlement, as structural factors, affect the decision on where to seek malaria treatment and whether or not a malaria diagnostic test will be used prior to treatment. One of the

  10. A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery

    PubMed Central

    Jiménez-Díaz, María Belén; Viera, Sara; Ibáñez, Javier; Mulet, Teresa; Magán-Marchal, Noemí; Garuti, Helen; Gómez, Vanessa; Cortés-Gil, Lorena; Martínez, Antonio; Ferrer, Santiago; Fraile, María Teresa; Calderón, Félix; Fernández, Esther; Shultz, Leonard D.; Leroy, Didier; Wilson, David M.; García-Bustos, José Francisco; Gamo, Francisco Javier; Angulo-Barturen, Iñigo

    2013-01-01

    The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task

  11. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads.

    PubMed

    Jain, Jagrati; Jain, Surendra K; Walker, Larry A; Tekwani, Babu L

    2017-06-02

    inhibitors shall provide better understanding regarding the importance of E3 ligase functions in the malaria parasite as a potential new antimalarial drug target and a new class of antimalarial drug leads.

  12. Plants as antimalarial agents in Sub-Saharan Africa.

    PubMed

    Chinsembu, Kazhila C

    2015-12-01

    Although the burden of malaria is decreasing, parasite resistance to current antimalarial drugs and resistance to insecticides by vector mosquitoes threaten the prospects of malaria elimination in endemic areas. Corollary, there is a scientific departure to discover new antimalarial agents from nature. Because the two antimalarial drugs quinine and artemisinin were discovered through improved understanding of the indigenous knowledge of plants, bioprospecting Sub-Saharan Africa's enormous plant biodiversity may be a source of new and better drugs to treat malaria. This review analyses the medicinal plants used to manage malaria in Sub-Saharan Africa. Chemical compounds with antiplasmodial activity are described. In the Sub-Saharan African countries cited in this review, hundreds of plants are used as antimalarial remedies. While the number of plant species is not exhaustive, plants used in more than one country probably indicate better antimalarial efficacy and safety. The antiplasmodial data suggest an opportunity for inventing new antimalarial drugs from Sub-Saharan-African flora. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quality of the antimalarial medicine artemether - lumefantrine in eight cities of the Democratic Republic of the Congo.

    PubMed

    Mufusama, Jean-Pierre; Ioset, Karine Ndjoko; Feineis, Doris; Hoellein, Ludwig; Holzgrabe, Ulrike; Bringmann, Gerhard

    2018-06-12

    In the context of post-marketing surveillance supporting public-health authorities to take evidence-based decisions to fight the spread of poor-quality medicines, the quality of antimalarial artemether-lumefantrine (AL) medicines was assessed in the Democratic Republic of the Congo (DRC). A total of 150 samples of AL containing products was collected from private pharmaceutical outlets in eight main cities: Goma, Kikwit, Kinshasa, Kisangani, Lubumbashi, Matadi, Mbandaka, and Mbuji-Mayi. All drug samples were successively analyzed by visual inspection, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) following The International Pharmacopoeia. Out of the 150 collected drug samples, three (2%) failed the visual inspection as they had shelf lives different from those of other samples with the same brand name. Four samples (2.7%) did not pass the TLC test as they contained only one or even none of the two declared active pharmaceutical ingredients (APIs). HPLC assays showed that 46 (30.7%) samples had artemether contents below 90% and 17 (11.3%) above 110% of the content claimed on the label. For lumefantrine, 32 (21.7%) samples had contents below 90%, and eight (5.3%) had contents above 110%. This survey in DRC gives evidence that poor-quality antimalarial medicines are widely present. Based on three detection techniques, the study shows the necessity to equip developing countries with modern techniques such as HPLC, which, if combined with affordable techniques like TLC, could provide a pertinent analytical strategy to combat drug counterfeiting and poor manufacturing. This article is protected by copyright. All rights reserved.

  14. Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance

    PubMed Central

    Veiga, Maria Isabel; Ferreira, Pedro Eduardo; Jörnhagen, Louise; Malmberg, Maja; Kone, Aminatou; Schmidt, Berit Aydin; Petzold, Max; Björkman, Anders; Nosten, Francois; Gil, Jose Pedro

    2011-01-01

    Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions. PMID:21633513

  15. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance.

    PubMed

    Veiga, Maria Isabel; Ferreira, Pedro Eduardo; Jörnhagen, Louise; Malmberg, Maja; Kone, Aminatou; Schmidt, Berit Aydin; Petzold, Max; Björkman, Anders; Nosten, Francois; Gil, Jose Pedro

    2011-01-01

    Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.

  16. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    NASA Astrophysics Data System (ADS)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  17. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities.

    PubMed

    Han, Yingshan; Mesplède, Thibault; Xu, Hongtao; Quan, Yudong; Wainberg, Mark A

    2018-05-01

    Zika virus (ZIKV) outbreak has emerged as a global health threat, particularly in tropical areas, over the past few years. No antiviral therapy or vaccine is available at present. For these reasons, repurposing clinically approved drugs against ZIKV infection may provide rapid and cost-effective global health benefits. Here, we explored this strategy and screened eight FDA-approved drugs for antiviral activity against ZIKV using a cell-based assay. Our results show that the antimalarial drug amodiaquine has anti-ZIKV activity with EC 50 at low micromolar concentrations in cell culture. We further characterized amodiaquine antiviral activity against ZIKV and found that it targets early events of the viral replication cycle. Altogether, our results suggest that amodiaquine may be efficacious for the treatment of ZIKV infection. © 2018 Wiley Periodicals, Inc.

  18. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    PubMed

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Collaborative Health and Enforcement Operations on the Quality of Antimalarials and Antibiotics in Southeast Asia

    PubMed Central

    Yong, Yuk Lin; Plançon, Aline; Lau, Yen Hui; Hostetler, Dana M.; Fernández, Facundo M.; Green, Michael D.; Sounvoravong, Sourisak; Nara, Suon; Boravann, Mam; Dumrong, Thitikornkovit; Bangsawan, Nurjaya; Low, Min Yong; Lim, Chin-Chin; Ai, Ruth Lee Choo; Newton, Paul N.

    2015-01-01

    Counterfeit (or falsified) and substandard medicines pose a major public health risk. We describe the findings of Operation Storm I and II conducted in 2008–2009 to combat counterfeit medicines through partnership between national customs, Drug Regulatory Agencies (DRAs), and police in Cambodia, Indonesia, Laos, Myanmar, Singapore, Thailand, and Vietnam. Samples were obtained from seizures and market surveillance by national DRAs. Laboratory analysis using spectroscopic and chromatographic techniques and examination of packaging were performed. Ninety-three suspect antibiotics and 95 antimalarial samples were collected. Of the 93 antibiotics, 29 (31%) had % active pharmaceutical ingredient content (%API) < 85% or > 115% (including one counterfeit). Of the 95 antimalarials, 30 (32%) had %API < 85 > 115% API (including one counterfeit). A significant minority of samples, antimalarials (13%) and antibiotics (15%), were collected in plastic bags with minimal or no labeling. Of 20 ampicillin samples, 13 (65%) contained < 85% API (with one counterfeit containing additional amoxicillin). Of 34 oral artesunate samples, 7 (21%) contained %API out of the 85–115% range. Coordinated and synergistic partnership adopted by the participating countries, International Criminal Police Organization (INTERPOL), World Health Organization (WHO), and laboratories facilitated a platform for discussions and intelligence sharing, helping to improve each participating country's capacity to combat poor-quality medicines. PMID:25897069

  20. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.

    PubMed

    Pérez, Bianca C; Teixeira, Cátia; Albuquerque, Inês S; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Prudêncio, Miguel; Gomes, Paula

    2013-01-24

    The control of malaria is challenged by drug resistance, and new antimalarial drugs are needed. New drug discovery efforts include consideration of hybrid compounds as potential multitarget antimalarials. Previous work from our group has demonstrated that hybrid structures resulting from cinnamic acid conjugation with heterocyclic moieties from well-known antimalarials present improved antimalarial activity. Now, we report the synthesis and SAR analysis of an expanded series of cinnamic acid derivatives displaying remarkably high activities against both blood- and liver-stage malaria parasites. Two compounds judged most promising, based on their in vitro activity and druglikeness according to the Lipinski rules and Veber filter, were active in vivo against blood-stage rodent malaria parasites. Therefore, the compounds reported represent a new entry as promising dual-stage antimalarial leads.

  1. Interventions to improve the use of antimalarials in south-east Asia: an overview.

    PubMed Central

    Gomes, M.; Wayling, S.; Pang, L.

    1998-01-01

    There are few drugs for malaria, and those which are available for use are subject to rapid development of resistance. Curiously, little effort has been made to improve drug use in malaria-endemic countries and to assess the benefits of such improvements. Advances can be made in public understanding of the value of ingesting a full regimen of antimalarials, in order to achieve complete cure, and in improving simple technologies (blister packaging) to achieve the same result. Better efforts can be made to reduce the availability of fake or substandard drugs in the marketplace. In this article, we describe the outcome of a concerted effort to improve drug compliance and drug quality in an area of multidrug resistance for malaria. These research efforts, guided by the Task Force for Improved Use of Antimalarials, characterized the problems in drug compliance in South-East Asia, and developed interventions to improve drug use in the various countries. Interventions involved drug packaging, public information campaigns, and assessments of drug quality. Results show that blister packaging worked best to improve drug compliance and that the increased cost of packaged medication did not limit its use. Drug quality was a major problem in unregulated countries and should be improved. PMID:9763718

  2. Interventions to improve the use of antimalarials in south-east Asia: an overview.

    PubMed

    Gomes, M; Wayling, S; Pang, L

    1998-01-01

    There are few drugs for malaria, and those which are available for use are subject to rapid development of resistance. Curiously, little effort has been made to improve drug use in malaria-endemic countries and to assess the benefits of such improvements. Advances can be made in public understanding of the value of ingesting a full regimen of antimalarials, in order to achieve complete cure, and in improving simple technologies (blister packaging) to achieve the same result. Better efforts can be made to reduce the availability of fake or substandard drugs in the marketplace. In this article, we describe the outcome of a concerted effort to improve drug compliance and drug quality in an area of multidrug resistance for malaria. These research efforts, guided by the Task Force for Improved Use of Antimalarials, characterized the problems in drug compliance in South-East Asia, and developed interventions to improve drug use in the various countries. Interventions involved drug packaging, public information campaigns, and assessments of drug quality. Results show that blister packaging worked best to improve drug compliance and that the increased cost of packaged medication did not limit its use. Drug quality was a major problem in unregulated countries and should be improved.

  3. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic

    PubMed Central

    Blasco, Benjamin; Leroy, Didier; Fidock, David A

    2017-01-01

    The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria. PMID:28777791

  4. Quality of Artemisinin-Containing Antimalarials in Tanzania's Private Sector—Results from a Nationally Representative Outlet Survey

    PubMed Central

    2015-01-01

    Ensuring that artemisinin-containing antimalarials (ACAs) are of good quality is a key component of effective malaria treatment. There are concerns that a high proportion of ACAs are falsified or substandard, though estimates are rarely based on representative data. During a nationally representative survey in Tanzania, ACAs were purchased from private retail drug outlets, and the active pharmaceutical ingredient (API) was measured. All 1,737 ACAs contained the labeled artemisinin derivative, with 4.1% being outside the 85–115% artemisinin API range defined as acceptable quality. World Health Organization (WHO) prequalified drugs had 0.1 times the odds of being poor quality compared with non-prequalified ACAs for the artemisinin component. When partner components of combination therapies were also considered, 12.1% were outside the acceptable API range, and WHO prequalified ACAs had 0.04 times the odds of being poor quality. Although the prevalence of poor quality ACAs was lower than reported elsewhere, the minority of samples found to be substandard is a cause for concern. Improvements in quality could be achieved by increasing the predominance of WHO prequalified products in the market. Continued monitoring of quality standards is essential. PMID:25897065

  5. Stated preferences for anti-malarial drug characteristics in Zomba, a malaria endemic area of Malawi

    PubMed Central

    2014-01-01

    Background The evidence on determinants of individuals’ choices for anti-malarial drug treatments is scarce. This study sought to measure the strength of preference for adult antimalarial drug treatment attributes of heads of urban, rural and peri-urban households in a resource-limited malaria-endemic area of sub-Saharan Africa. Methods Discrete choice experiments were conducted with 508 heads of household interviewed face-to-face for a household population survey of health-seeking behavior in Zomba District, Malawi. The interviews were held in Chichewa and the choice experiment questions were presented with cartoon aids. The anti-malarial drug attributes included in the stated preference experiment were: speed of fever resolution, side effects (pruritus) risk, protection (duration of prophylactic effect), price, duration of treatment course and recommendation by a health professional. Sixteen treatment profiles from a fractional factorial design by orthogonal array were paired into choice scenarios, and scenarios were randomly assigned to participants so that each participant was presented with a series of eight pairwise choice scenarios. Respondents had the option to state indifference between the two profiles or decline to choose. Data were analysed in a mixed logit model, with normally distributed coefficients for all six attributes. Results The sex ratio was balanced in urban areas, whereas 63% of participants in rural areas were male. The proportion of individuals with no education was considerably higher in the rural group (25%) than in the urban (5%) and peri-urban (6%) groups. All attributes investigated had the expected influence, and traded-off in most respondents’ choices. There were heterogeneous effects of price, pruritus risk, treatment recommendation by a professional, and duration of prophylaxis across respondents, only partly explained by their differences in education, household per capita expenditure, sex and age. Individuals´ demand

  6. Innovative high-performance liquid chromatography method development for the screening of 19 antimalarial drugs based on a generic approach, using design of experiments, independent component analysis and design space.

    PubMed

    Debrus, B; Lebrun, P; Kindenge, J Mbinze; Lecomte, F; Ceccato, A; Caliaro, G; Mbay, J Mavar Tayey; Boulanger, B; Marini, R D; Rozet, E; Hubert, Ph

    2011-08-05

    An innovative methodology based on design of experiments (DoE), independent component analysis (ICA) and design space (DS) was developed in previous works and was tested out with a mixture of 19 antimalarial drugs. This global LC method development methodology (i.e. DoE-ICA-DS) was used to optimize the separation of 19 antimalarial drugs to obtain a screening method. DoE-ICA-DS methodology is fully compliant with the current trend of quality by design. DoE was used to define the set of experiments to model the retention times at the beginning, the apex and the end of each peak. Furthermore, ICA was used to numerically separate coeluting peaks and estimate their unbiased retention times. Gradient time, temperature and pH were selected as the factors of a full factorial design. These retention times were modelled by stepwise multiple linear regressions. A recently introduced critical quality attribute, namely the separation criterion (S), was also used to assess the quality of separations rather than using the resolution. Furthermore, the resulting mathematical models were also studied from a chromatographic point of view to understand and investigate the chromatographic behaviour of each compound. Good adequacies were found between the mathematical models and the expected chromatographic behaviours predicted by chromatographic theory. Finally, focusing at quality risk management, the DS was computed as the multidimensional subspace where the probability for the separation criterion to lie in acceptance limits was higher than a defined quality level. The DS was computed propagating the prediction error from the modelled responses to the quality criterion using Monte Carlo simulations. DoE-ICA-DS allowed encountering optimal operating conditions to obtain a robust screening method for the 19 considered antimalarial drugs in the framework of the fight against counterfeit medicines. Moreover and only on the basis of the same data set, a dedicated method for the

  7. CRIMALDDI: a co-ordinated, rational, and integrated effort to set logical priorities in anti-malarial drug discovery initiatives

    PubMed Central

    2010-01-01

    Despite increasing efforts and support for anti-malarial drug R&D, globally anti-malarial drug discovery and development remains largely uncoordinated and fragmented. The current window of opportunity for large scale funding of R&D into malaria is likely to narrow in the coming decade due to a contraction in available resources caused by the current economic difficulties and new priorities (e.g. climate change). It is, therefore, essential that stakeholders are given well-articulated action plans and priorities to guide judgments on where resources can be best targeted. The CRIMALDDI Consortium (a European Union funded initiative) has been set up to develop, through a process of stakeholder and expert consultations, such priorities and recommendations to address them. It is hoped that the recommendations will help to guide the priorities of the European anti-malarial research as well as the wider global discovery agenda in the coming decade. PMID:20626844

  8. Social and cultural complexities of anti-malarial drug circulation: an ethnographic investigation in three rural remote communes of Cambodia.

    PubMed

    Res, Phasy

    2017-10-25

    Anti-malarial medicine has a central role in malaria case management in Cambodia. It is, therefore, essential to study how anti-malarial drugs are distributed and consumed. This study aims to understand the socio-cultural complexity of anti-malarial drugs provision and usage practices. Semi-structured interviews and observation were conducted in Cambodia at the communal, provincial, and national levels from January 2014 to January 2015. Health ministers, non-governmental officers, anti-malarial medicines distributors, village malaria volunteers and malaria patients were interviewed. The findings show that artemisinin-based combination therapy (ACT) flows into unregulated outlets, and was sold without any diagnostic tests. Affordable Medicines Facility for malaria scheme (AMFm) cannot drive ineffective anti-malarial medicines out of the market because ACT is still more expensive due to price absortion by private and public providers. Malaria patients might not consume ACT because of patients' notions of 'Korp', and pharmaceutical and parasitic familiarity. The findings reflect that neither public nor private institutions have the capacity and resources to control the flow of ACT from going into the unlicensed sector. They do not have the ability to ensure that ACT is consumed after a positive rapid diagnostic test. With a weak regulation system and ailing public health infrastructure, pharmaceutical-neoliberal mechanism like AMFm is not an effective means to eradicate any forms of malaria. Therefore, horizontal programmes, such as public health infrastructure improvement, and population participation must be implemented. Ethnical responsibilities of medical practitioners must be enforced and be included into the national curriculum. The awareness of drug resistance must be implemented at all levels.

  9. QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors.

    PubMed

    Hou, X; Chen, X; Zhang, M; Yan, A

    2016-01-01

    Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) <0.32 on training sets and <0.37 on test sets, respectively. The study indicated that the hydrogen bonding ability, atom polarizabilities and ring complexity are predominant factors for inhibitors' antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.

  10. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei

    PubMed Central

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa

    2015-01-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca2+, and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527

  11. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    PubMed

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    PubMed

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Quality of Artemisinin-Containing Antimalarials in Tanzania's Private Sector--Results from a Nationally Representative Outlet Survey.

    PubMed

    Act Consortium Drug Quality Project Team And The Impact Study Team

    2015-06-01

    Ensuring that artemisinin-containing antimalarials (ACAs) are of good quality is a key component of effective malaria treatment. There are concerns that a high proportion of ACAs are falsified or substandard, though estimates are rarely based on representative data. During a nationally representative survey in Tanzania, ACAs were purchased from private retail drug outlets, and the active pharmaceutical ingredient (API) was measured. All 1,737 ACAs contained the labeled artemisinin derivative, with 4.1% being outside the 85-115% artemisinin API range defined as acceptable quality. World Health Organization (WHO) prequalified drugs had 0.1 times the odds of being poor quality compared with non-prequalified ACAs for the artemisinin component. When partner components of combination therapies were also considered, 12.1% were outside the acceptable API range, and WHO prequalified ACAs had 0.04 times the odds of being poor quality. Although the prevalence of poor quality ACAs was lower than reported elsewhere, the minority of samples found to be substandard is a cause for concern. Improvements in quality could be achieved by increasing the predominance of WHO prequalified products in the market. Continued monitoring of quality standards is essential. © The American Society of Tropical Medicine and Hygiene.

  14. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  15. Formation of the diuretic chlorazanil from the antimalarial drug proguanil--implications for sports drug testing.

    PubMed

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Tretzel, Laura; Bailloux, Isabelle; Buisson, Corinne; Lasne, Francoise; Schaefer, Maximilian S; Kienbaum, Peter; Mueller-Stoever, Irmela; Schänzer, Wilhelm

    2015-11-10

    Chlorazanil (Ordipan, N-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine) is a diuretic agent and as such prohibited in sport according to the regulations of the World Anti-Doping Agency (WADA). Despite its introduction into clinical practice in the late 1950s, the worldwide very first two adverse analytical findings were registered only in 2014, being motive for an in-depth investigation of these cases. Both individuals denied the intake of the drug; however, the athletes did declare the use of the antimalarial prophylactic agent proguanil due to temporary residences in African countries. A structural similarity between chlorazanil and proguanil is given but no direct metabolic relation has been reported in the scientific literature. Moreover, chlorazanil has not been confirmed as a drug impurity of proguanil. Proguanil however is metabolized in humans to N-(4-chlorophenyl)-biguanide, which represents a chemical precursor in the synthesis of chlorazanil. In the presence of formic acid, formaldehyde, or formic acid esters, N-(4-chlorophenyl)-biguanide converts to chlorazanil. In order to probe for potential sources of the chlorazanil detected in the doping control samples, drug formulations containing proguanil and urine samples of individuals using proguanil as antimalarial drug were subjected to liquid chromatography-high resolution/high accuracy mass spectrometry. In addition, in vitro simulations with 4-chlorophenyl-biguanide and respective reactants were conducted in urine and resulting specimens analyzed for the presence of chlorazanil. While no chlorazanil was found in drug formulations, the urine samples of 2 out of 4 proguanil users returned findings for chlorazanil at low ng/mL levels, similar to the adverse analytical findings in the doping control samples. Further, in the presence of formaldehyde, formic acid and related esters, 4-chlorophenyl-biguanide was found to produce chlorazanil in human urine, suggesting that the detection of the obsolete diuretic

  16. Recent developments in naturally derived antimalarials: cryptolepine analogues.

    PubMed

    Wright, Colin W

    2007-06-01

    Increasing resistance of Plasmodium falciparum to commonly used antimalarial drugs has made the need for new agents increasingly urgent. In this paper, the potential of cryptolepine, an alkaloid from the West African shrub Cryptolepis sanguinolenta, as a lead towards new antimalarial agents is discussed. Several cryptolepine analogues have been synthesized that have promising in-vitro and in-vivo antimalarial activity. Studies on the antimalarial modes of action of these analogues indicate that they may have different or additional modes of action to the parent compound. Elucidation of the mode of action may facilitate the development of more potent antimalarial cryptolepine analogues.

  17. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials.

    PubMed

    Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula

    2015-08-01

    In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    PubMed

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The ACTwatch project: methods to describe anti-malarial markets in seven countries.

    PubMed

    Shewchuk, Tanya; O'Connell, Kathryn A; Goodman, Catherine; Hanson, Kara; Chapman, Steven; Chavasse, Desmond

    2011-10-31

    Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012.ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate findings widely for decision

  20. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    PubMed Central

    2011-01-01

    Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate

  1. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    NASA Astrophysics Data System (ADS)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  2. High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine

    PubMed Central

    Telang, Nakul S; Kong, Caleb J; Verghese, Jenson; Gilliland III, Stanley E; Ahmad, Saeed; Dominey, Raymond N

    2018-01-01

    Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API’s) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria. PMID:29623120

  3. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    PubMed Central

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  4. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    PubMed

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  5. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial.

    PubMed

    Kikuchi, Haruhisa; Horoiwa, Seiko; Kasahara, Ryota; Hariguchi, Norimitsu; Matsumoto, Makoto; Oshima, Yoshiteru

    2014-04-09

    Febrifugine, a quinazoline alkaloid isolated from Dichroa febrifuga roots, shows powerful antimalarial activity against Plasmodium falciparum. Although the use of ferifugine as an antimalarial drug has been precluded because of its severe side effects, its potent antimalarial activity has stimulated medicinal chemists to pursue its derivatives instead, which may provide valuable leads for novel antimalarial drugs. In the present study, we synthesized new derivatives of febrifugine and evaluated their in vitro and in vivo antimalarial activities to develop antimalarials that are more effective and safer. As a result, we proposed tetrahydroquinazoline-type derivative as a safe and effective antimalarial candidate. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. A SYBR Green 1-based in vitro test of susceptibility of Ghanaian Plasmodium falciparum clinical isolates to a panel of anti-malarial drugs.

    PubMed

    Quashie, Neils B; Duah, Nancy O; Abuaku, Benjamin; Quaye, Lydia; Ayanful-Torgby, Ruth; Akwoviah, George A; Kweku, Margaret; Johnson, Jacob D; Lucchi, Naomi W; Udhayakumar, Venkatachalam; Duplessis, Christopher; Kronmann, Karl C; Koram, Kwadwo A

    2013-12-17

    Based on report of declining efficacy of chloroquine, Ghana shifted to the use of artemisinin-based combination therapy (ACT) in 2005 as the first-line anti-malarial drug. Since then, there has not been any major evaluation of the efficacy of anti-malarial drugs in Ghana in vitro. The sensitivity of Ghanaian Plasmodium falciparum isolates to anti-malarial drugs was, therefore, assessed and the data compared with that obtained prior to the change in the malaria treatment policy. A SYBR Green 1 fluorescent-based in vitro drug sensitivity assay was used to assess the susceptibility of clinical isolates of P. falciparum to a panel of 12 anti-malarial drugs in three distinct eco-epidemiological zones in Ghana. The isolates were obtained from children visiting health facilities in sentinel sites located in Hohoe, Navrongo and Cape Coast municipalities. The concentration of anti-malarial drug inhibiting parasite growth by 50% (IC50) for each drug was estimated using the online program, ICEstimator. Pooled results from all the sentinel sites indicated geometric mean IC50 values of 1.60, 3.80, 4.00, 4.56, 5.20, 6.11, 10.12, 28.32, 31.56, 93.60, 107.20, and 8952.50 nM for atovaquone, artesunate, dihydroartemisin, artemether, lumefantrine, amodiaquine, mefloquine, piperaquine, chloroquine, tafenoquine, quinine, and doxycycline, respectively. With reference to the literature threshold value indicative of resistance, the parasites showed resistance to all the test drugs except the artemisinin derivatives, atovaquone and to a lesser extent, lumefantrine. There was nearly a two-fold decrease in the IC50 value determined for chloroquine in this study compared to that determined in 2004 (57.56 nM). This observation is important, since it suggests a significant improvement in the efficacy of chloroquine, probably as a direct consequence of reduced drug pressure after cessation of its use. Compared to that measured prior to the change in treatment policy, significant elevation of

  7. [Elimination in South-East Asia? The role of antimalarial drugs].

    PubMed

    Nosten, François

    2016-03-01

    Artemisinin resistance in P. falciparum is spreading in South East Asia and threatens the recent progresses made in the fight against malaria. A race against time has started to eliminate P.falciparum in this region before it becomes resistant to all available treatments. Antimalarials have a central role in the current elimination programme in eastern Burma on the border with Thailand. The combination of artemether and lumefantrine is used in association with primaquine for the early treatment of clinical cases. The slowly eliminated dihydro-artemisinin and piperaquine is the drug of choice in mass drug administration in the foci of high prevalence of sub-microscopic and asymptomatic infections. Initial results after 18 months of activities are promising: the participation of the population was excellent and there was a sharp reduction of P.falciparum incidence without evidence of worsening resistance.

  8. Combating poor-quality anti-malarial medicines: a call to action.

    PubMed

    Bassat, Quique; Tanner, Marcel; Guerin, Philippe J; Stricker, Kirstin; Hamed, Kamal

    2016-06-01

    The circulation of poor-quality medicines continues to undermine the fight against many life-threatening diseases. Anti-malarial medicines appear to have been particularly compromised and present a major public health threat in malaria-endemic countries, negatively affecting individuals and their communities. Concerted collaborative efforts are required from global, regional and national organizations, involving the public and private sectors, to address the problem. While many initiatives are underway, a number of unmet needs deserve urgent and increased multisector attention. At the global level, there is a need for an international public health legal framework or treaty on poor-quality medicines, with statutes suitable for integration into national laws. In addition, increased international efforts are required to strengthen the governance of global supply chains and enhance cooperation between national medicine regulation authorities and law enforcement bodies. Increased investment is needed in innovative technologies that will enable healthcare teams to detect poor-quality medicines at all levels of the supply chain. At the regional level, a number of initiatives would be beneficial-key areas are standardization, simplification, and reciprocal recognition of registration processes and development of quality control capacity in regional centres of excellence that are better aligned with public health needs; improved surveillance methods and creation of a framework for compulsory and transparent reporting of poor-quality medicines; additional support for national medicine regulation authorities and other national partner authorities; and an increase in support for regional laboratories to boost their capabilities in detecting poor-quality medicines. It is vital that all stakeholders involved in efforts against poor-quality anti-malarial medicines extend and strengthen their actions in these critical areas and thus effectively support global health development

  9. Microfluidic cell-phoresis enabling high-throughput analysis of red blood cell deformability and biophysical screening of antimalarial drugs.

    PubMed

    Santoso, Aline T; Deng, Xiaoyan; Lee, Jeong-Hyun; Matthews, Kerryn; Duffy, Simon P; Islamzada, Emel; McFaul, Sarah M; Myrand-Lapierre, Marie-Eve; Ma, Hongshen

    2015-12-07

    Changes in red blood cell (RBC) deformability are associated with the pathology of many diseases and could potentially be used to evaluate disease status and treatment efficacy. We developed a simple, sensitive, and multiplexed RBC deformability assay based on the spatial dispersion of single cells in structured microchannels. This mechanism is analogous to gel electrophoresis, but instead of transporting molecules through nano-structured material to measure their length, RBCs are transported through micro-structured material to measure their deformability. After transport, the spatial distribution of cells provides a readout similar to intensity bands in gel electrophoresis, enabling simultaneous measurement on multiple samples. We used this approach to study the biophysical signatures of falciparum malaria, for which we demonstrate label-free and calibration-free detection of ring-stage infection, as well as in vitro assessment of antimalarial drug efficacy. We show that clinical antimalarial drugs universally reduce the deformability of RBCs infected by Plasmodium falciparum and that recently discovered PfATP4 inhibitors, known to induce host-mediated parasite clearance, display a distinct biophysical signature. Our process captures key advantages from gel electrophoresis, including image-based readout and multiplexing, to provide a functional screen for new antimalarials and adjunctive agents.

  10. Imported malaria in Finland 1995 to 2008: an overview of surveillance, travel trends, and antimalarial drug sales.

    PubMed

    Guedes, Sandra; Siikamäki, Heli; Kantele, Anu; Lyytikäinen, Outi

    2010-01-01

    To improve pre-travel advice, we analyzed nationwide population-based surveillance data on malaria cases reported to the National Infectious Disease Register of Finland (population 5.3 million) during 1995 to 2008 and related it to data on traveling and antimalarial drug sales. Surveillance data comprised information on malaria cases reported to the National Infectious Disease Register during 1995 to 2008. Traveling data were obtained from Statistics Finland (SF) and the Association of Finnish Travel Agents (AFTA). SF data included information on overnight leisure trips to malaria-endemic countries during 2000 to 2008. AFTA data included annual number of organized trips during 1999 to 2007. Quarterly numbers of antimalarial drug sales were obtained from the Finnish Medicines Agency. Descriptive and time series analyses were performed. A total of 484 malaria cases (average annual incidence 0.7/100,000 population) were reported; 283 patients were Finnish- and 201 foreign-born. In all, 15% of all cases were children; 72% foreign- and 28% Finnish-born. Malaria infections were mostly acquired in Africa (76%). Among foreign-born cases, 89% of the infections were acquired in the region of birth. The most common species were Plasmodium falciparum (61%) and Plasmodium vivax (22%). Although traveling to malaria-endemic areas increased, no increase occurred in malaria cases, and a decreasing trend was present in antimalarial drug sales. Traveling to malaria-endemic countries and drug sales followed the same seasonal pattern, with peaks in the first and last quarter of the year. More efforts should be focused on disseminating pre-travel advice to immigrants planning to visit friends and relatives and travelers on self-organized trips. © 2010 International Society of Travel Medicine.

  11. How Patients Take Malaria Treatment: A Systematic Review of the Literature on Adherence to Antimalarial Drugs

    PubMed Central

    Bruxvoort, Katia; Goodman, Catherine; Kachur, S. Patrick; Schellenberg, David

    2014-01-01

    Background High levels of patient adherence to antimalarial treatment are important in ensuring drug effectiveness. To achieve this goal, it is important to understand levels of patient adherence, and the range of study designs and methodological challenges involved in measuring adherence and interpreting results. Since antimalarial adherence was reviewed in 2004, there has been a major expansion in the use of artemisinin-based combination therapies (ACTs) in the public sector, as well as initiatives to make them more widely accessible through community health workers and private retailers. These changes and the large number of recent adherence studies raise the need for an updated review on this topic. Objective We conducted a systematic review of studies reporting quantitative results on patient adherence to antimalarials obtained for treatment. Results The 55 studies identified reported extensive variation in patient adherence to antimalarials, with many studies reporting very high adherence (90–100%) and others finding adherence of less than 50%. We identified five overarching approaches to assessing adherence based on the definition of adherence and the methods used to measure it. Overall, there was no clear pattern in adherence results by approach. However, adherence tended to be higher among studies where informed consent was collected at the time of obtaining the drug, where patient consultations were directly observed by research staff, and where a diagnostic test was obtained. Conclusion Variations in reported adherence may reflect factors related to patient characteristics and the nature of their consultation with the provider, as well as methodological variations such as interaction between the research team and patients before and during the treatment. Future studies can benefit from an awareness of the impact of study procedures on adherence outcomes, and the identification of improved measurement methods less dependent on self-report. PMID:24465418

  12. How patients take malaria treatment: a systematic review of the literature on adherence to antimalarial drugs.

    PubMed

    Bruxvoort, Katia; Goodman, Catherine; Kachur, S Patrick; Schellenberg, David

    2014-01-01

    High levels of patient adherence to antimalarial treatment are important in ensuring drug effectiveness. To achieve this goal, it is important to understand levels of patient adherence, and the range of study designs and methodological challenges involved in measuring adherence and interpreting results. Since antimalarial adherence was reviewed in 2004, there has been a major expansion in the use of artemisinin-based combination therapies (ACTs) in the public sector, as well as initiatives to make them more widely accessible through community health workers and private retailers. These changes and the large number of recent adherence studies raise the need for an updated review on this topic. We conducted a systematic review of studies reporting quantitative results on patient adherence to antimalarials obtained for treatment. The 55 studies identified reported extensive variation in patient adherence to antimalarials, with many studies reporting very high adherence (90-100%) and others finding adherence of less than 50%. We identified five overarching approaches to assessing adherence based on the definition of adherence and the methods used to measure it. Overall, there was no clear pattern in adherence results by approach. However, adherence tended to be higher among studies where informed consent was collected at the time of obtaining the drug, where patient consultations were directly observed by research staff, and where a diagnostic test was obtained. Variations in reported adherence may reflect factors related to patient characteristics and the nature of their consultation with the provider, as well as methodological variations such as interaction between the research team and patients before and during the treatment. Future studies can benefit from an awareness of the impact of study procedures on adherence outcomes, and the identification of improved measurement methods less dependent on self-report.

  13. Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    PubMed Central

    Whitty, Christopher JM; Chandler, Clare; Ansah, Evelyn; Leslie, Toby; Staedke, Sarah G

    2008-01-01

    Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT) as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities. PMID:19091041

  14. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    PubMed

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  15. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    PubMed Central

    2012-01-01

    Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector) and unlicensed facilities (informal sector) is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58%) anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30) and 11% (5/47) respectively. A higher proportion of medicines sampled from the private sector 34% (11/32) failed quality control tests versus 16% (7/45) in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86%) were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to significant problems with

  16. An empirical review of antimalarial quality field surveys: the importance of characterising outcomes.

    PubMed

    Grech, James; Robertson, James; Thomas, Jackson; Cooper, Gabrielle; Naunton, Mark; Kelly, Tamsin

    2018-01-05

    For decades, thousands of people have been dying from malaria infections because of poor-quality medicines (PQMs). While numerous efforts have been initiated to reduce their presence, PQMs are still risking the lives of those seeking treatment. This review addresses the importance of characterising results of antimalarial medicine field surveys based upon the agreement of clearly defined definitions. Medicines found to be of poor quality can be falsified or counterfeit, substandard or degraded. The distinction between these categories is important as each category requires a different countermeasure. To observe the current trends in the reporting of field surveys, a systematic literature search of six academic databases resulted in the quantitative analysis of 61 full-text journal articles. Information including sample size, sampling method, geographical regions, analytical techniques, and characterisation conclusions was observed for each. The lack of an accepted uniform reporting system has resulted in varying, incomplete reports, which may not include important information that helps form effective countermeasures. The programmes influencing medicine quality such as prequalification, procurement services, awareness and education can be supported with the information derived from characterised results. The implementation of checklists such as the Medicine Quality Assessment Reporting Guidelines will further strengthen the battle against poor-quality antimalarials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chitosan-based nanocarriers for antimalarials

    NASA Astrophysics Data System (ADS)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  18. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    PubMed

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  19. Antimalarial compounds in Phase II clinical development.

    PubMed

    Held, Jana; Jeyaraj, Sankarganesh; Kreidenweiss, Andrea

    2015-03-01

    Malaria is a major health problem in endemic countries and chemotherapy remains the most important tool in combating it. Treatment options are limited and essentially rely on a single drug class - the artemisinins. Efforts are ongoing to restrict the evolving threat of artemisinin resistance but declining sensitivity has been reported. Fueled by the ambitious aim of malaria eradication, novel antimalarial compounds, with improved properties, are now in the progressive phase of drug development. Herein, the authors describe antimalarial compounds currently in Phase II clinical development and present the results of these investigations. Thanks to recent efforts, a number of promising antimalarial compounds are now in the pipeline. First safety data have been generated for all of these candidates, although their efficacy as antimalarials is still unclear for most of them. Of particular note are KAE609, KAF156 and DSM265, which are of chemical scaffolds new to malaria chemotherapy and would truly diversify antimalarial options. Apart from SAR97276, which also has a novel chemical scaffold that has had its development stopped, all other compounds in the pipeline belong to already known substance classes, which have been chemically modified. At this moment in time, there is not one standout compound that will revolutionize malaria treatment but several compounds that will add to its control in the future.

  20. Malaria Related Perceptions, Care Seeking after Onset of Fever and Anti-Malarial Drug Use in Malaria Endemic Settings of Southwest Ethiopia

    PubMed Central

    Birhanu, Zewdie; Abebe, Lakew; Sudhakar, Morankar; Dissanayake, Gunawardena; Yihdego, Yemane Ye-ebiyo; Alemayehu, Guda; Yewhalaw, Delenasaw

    2016-01-01

    Background Prompt care seeking and appropriate use of anti-malarial drugs are critical components of malaria prevention and control. This study assessed malaria related perceptions, care seeking behavior and anti-malarial drug use in malaria endemic settings of Ethiopia. Methods Data were generated from a community based cross-sectional study conducted among 798 households during January 2014 as part of a larger household behavioral study in three malaria endemic districts of Jimma Zone, Southwest Ethiopia. Both quantitative and qualitative data were collected and analyzed using SPSS 17.0 and STATA 12.0. Results In this study, only 76.1% of the respondents associated malaria to mosquito bite, and incorrect beliefs and perceptions were noted. Despite moderate level of knowledge (estimated mean = 62.2, Std Err = 0.7, 95% CI: 60.6–63.8%), quite high favorable attitude (overall estimated mean = 91.5, Std Err = 0.6, 95% CI: 90.1–92.9%) were recorded towards malaria preventive measures. The mean attitude score for prompt care seeking, appropriate use of anti-malarial drugs, LLIN use and Indoor Residual Spray acceptance was 98.5 (Std Err = 0.4, 95% CI:97.5–99.4), 92.7 (Std Err = 0.6 95% CI:91.5–93.9), 88.8 (Std Err = 0.5, 95% CI:85.5–92.1) and 86.5 (Std Err = 1.2, 95% CI: 83.9–89.1), respectively. The prevalence of fever was 2.9% (116/4107) and of the study participants with fever, 71.9% (95% CI: 65.5–78.3%) sought care and all of them consulted formal health care system. However, only 17 (19.8%) sought care within 24 hours after onset of fever. The frequency of care seeking was higher (77.8%, n = 21/27) and more prompt (28.6%, 6/21) for children under five as compared to old age groups despite it was not statistically significant (p > 0.05). However, higher median time of seeking first care was observed among Muslims and people who did not attend school (p < 0.05). Of those who used anti-malarial drugs, 9.1% indicated that they used it inappropriately

  1. Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin.

    PubMed

    Park, Gab-Man; Park, Hyun; Oh, Sangtae; Lee, Seokjoon

    2017-12-01

    We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.

  2. Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents.

    PubMed

    Zhu, Shuren; Zhang, Quan; Gudise, Chandrashekar; Wei, Lai; Smith, Erika; Zeng, Yuling

    2009-07-01

    Febrifugine is an alkaloid isolated from Dichroa febrifuga Lour as the active component against Plasmodium falciparum. Adverse side effects have precluded febrifugine as a potential clinical drug. In this study novel febrifugine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. Synthesized compounds were evaluated for acute toxicity and in vitro and in vivo antimalarial efficacy. Some compounds are much less toxic than the natural product febrifugine and existing antimalarial drug chloroquine and are expected to possess wide therapeutic windows. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.

  3. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents.

    PubMed

    de Souza, Nicolli Bellotti; Carmo, Arturene M L; Lagatta, Davi C; Alves, Márcio José Martins; Fontes, Ana Paula Soares; Coimbra, Elaine Soares; da Silva, Adilson David; Abramo, Clarice

    2011-07-01

    The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of β-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    PubMed

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Antimalarial Activity of Plant Metabolites.

    PubMed

    Pan, Wen-Hui; Xu, Xin-Ya; Shi, Ni; Tsang, Siu Wai; Zhang, Hong-Jie

    2018-05-06

    Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum . As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  6. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts

    PubMed Central

    2014-01-01

    Background The resistance of human malaria parasites to anti-malarial compounds has become considerable concern, particularly in view of the shortage of novel classes of anti-malarial drugs. One way to prevent resistance is by using new compounds that are not based on existing synthetic antimicrobial agents. Results Sensitivity of 100 Plasmodium falciparum isolates to chloroquine, quinine, amodiaquine, mefloquine, sulphadoxine/pyrimethamine, artemisinin, Momordica charantia (‘Ejirin’) Diospyros monbuttensis (‘Egun eja’) and Morinda lucida (‘Oruwo’) was determined using the in vitro microtest (Mark III) technique to determine the IC50 of the drugs. All the isolates tested were sensitive to quinine, mefloquine and artesunate. Fifty-one percent of the isolates were resistant to chloroquine, 13% to amodiaquine and 5% to sulphadoxine/pyrimethamine. Highest resistance to chloroquine (68.9%) was recorded among isolates from Yewa zone while highest resistance to amodiaquine (30%) was observed in Ijebu zone. Highest resistance to sulphadoxine/pyrimethamine was recorded in Yewa and Egba zones, respectively. A positive correlation was observed between the responses to artemisinin and mefloquine (P<0.05), artemisinin and quinine (P<0.05) and quinine and mefloquine (P<0.05). A negative correlation was observed between the responses to chloroquine and mefloquine (P>0.05). Highest anti-plasmodial activity was obtained with the ethanolic extract of D. monbuttensis (IC50 = 3.2nM) while the lowest was obtained from M. lucida (IC50 =25nM). Conclusions Natural products isolated from plants used in traditional medicine, which have potent anti-plasmodial action in vitro, represent potential sources of new anti-malarial drugs. PMID:24555525

  7. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts.

    PubMed

    Olasehinde, Grace I; Ojurongbe, Olusola; Adeyeba, Adegboyega O; Fagade, Obasola E; Valecha, Neena; Ayanda, Isaac O; Ajayi, Adesola A; Egwari, Louis O

    2014-02-20

    The resistance of human malaria parasites to anti-malarial compounds has become considerable concern, particularly in view of the shortage of novel classes of anti-malarial drugs. One way to prevent resistance is by using new compounds that are not based on existing synthetic antimicrobial agents. Sensitivity of 100 Plasmodium falciparum isolates to chloroquine, quinine, amodiaquine, mefloquine, sulphadoxine/pyrimethamine, artemisinin, Momordica charantia ('Ejirin') Diospyros monbuttensis ('Egun eja') and Morinda lucida ('Oruwo') was determined using the in vitro microtest (Mark III) technique to determine the IC50 of the drugs. All the isolates tested were sensitive to quinine, mefloquine and artesunate. Fifty-one percent of the isolates were resistant to chloroquine, 13% to amodiaquine and 5% to sulphadoxine/pyrimethamine. Highest resistance to chloroquine (68.9%) was recorded among isolates from Yewa zone while highest resistance to amodiaquine (30%) was observed in Ijebu zone. Highest resistance to sulphadoxine/pyrimethamine was recorded in Yewa and Egba zones, respectively. A positive correlation was observed between the responses to artemisinin and mefloquine (P<0.05), artemisinin and quinine (P<0.05) and quinine and mefloquine (P<0.05). A negative correlation was observed between the responses to chloroquine and mefloquine (P>0.05). Highest anti-plasmodial activity was obtained with the ethanolic extract of D. monbuttensis (IC50 = 3.2 nM) while the lowest was obtained from M. lucida (IC50 = 25 nM). Natural products isolated from plants used in traditional medicine, which have potent anti-plasmodial action in vitro, represent potential sources of new anti-malarial drugs.

  8. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio.

    PubMed

    Chaparro, María Jesús; Calderón, Félix; Castañeda, Pablo; Fernández-Alvaro, Elena; Gabarró, Raquel; Gamo, Francisco Javier; Gómez-Lorenzo, María G; Martín, Julio; Fernández, Esther

    2018-04-13

    Malaria remains a major global health problem. In 2015 alone, more than 200 million cases of malaria were reported, and more than 400,000 deaths occurred. Since 2010, emerging resistance to current front-line ACTs (artemisinin combination therapies) has been detected in endemic countries. Therefore, there is an urgency for new therapies based on novel modes of action, able to relieve symptoms as fast as the artemisinins and/or block malaria transmission. During the past few years, the antimalarial community has focused their efforts on phenotypic screening as a pragmatic approach to identify new hits. Optimization efforts on several chemical series have been successful, and clinical candidates have been identified. In addition, recent advances in genetics and proteomics have led to the target deconvolution of phenotypic clinical candidates. New mechanisms of action will also be critical to overcome resistance and reduce attrition. Therefore, a complementary strategy focused on identifying well-validated targets to start hit identification programs is essential to reinforce the clinical pipeline. Leveraging published data, we have assessed the status quo of the current antimalarial target portfolio with a focus on the blood stage clinical disease. From an extensive list of reported Plasmodium targets, we have defined triage criteria. These criteria consider genetic, pharmacological, and chemical validation, as well as tractability/doability, and safety implications. These criteria have provided a quantitative score that has led us to prioritize those targets with the highest probability to deliver successful and differentiated new drugs.

  9. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents.

    PubMed

    Meyers, Marvin J; Anderson, Elizabeth J; McNitt, Sarah A; Krenning, Thomas M; Singh, Megh; Xu, Jing; Zeng, Wentian; Qin, Limei; Xu, Wanwan; Zhao, Siting; Qin, Li; Eickhoff, Christopher S; Oliva, Jonathan; Campbell, Mary A; Arnett, Stacy D; Prinsen, Michael J; Griggs, David W; Ruminski, Peter G; Goldberg, Daniel E; Ding, Ke; Liu, Xiaorong; Tu, Zhengchao; Tortorella, Micky D; Sverdrup, Francis M; Chen, Xiaoping

    2015-08-15

    Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease β-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 μM and 0.099 μM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ferroquine and its derivatives: new generation of antimalarial agents.

    PubMed

    Wani, Waseem A; Jameel, Ehtesham; Baig, Umair; Mumtazuddin, Syed; Hun, Lee Ting

    2015-08-28

    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs.

    PubMed

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F; Christoffels, Alan

    2016-01-29

    A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that

  12. A lactate dehydrogenase ELISA-based assay for the in vitro determination of Plasmodium berghei sensitivity to anti-malarial drugs.

    PubMed

    Orjuela-Sánchez, Pamela; Duggan, Erika; Nolan, John; Frangos, John A; Carvalho, Leonardo Jm

    2012-11-05

    Plasmodium berghei rodent malaria is a well-known model for the investigation of anti-malarial drug efficacy in vivo. However, the availability of drug in vitro assays in P. berghei is reduced when compared with the spectrum of techniques existing for Plasmodium falciparum. New alternatives to the current manual or automated methods described for P. berghei are attractive. The present study reports a new ELISA drug in vitro assay for P. berghei using two monoclonal antibodies against the parasite lactate dehydrogenase (pLDH). This procedure includes a short-in vitro culture, the purification of schizonts and the further generation of synchronized mice infections. Early stages of the parasite are then incubated against different concentrations of anti-malarial drugs using micro-plates. The novelty of this procedure in P. berghei relies on the quantification of the drug activity derived from the amount of pLDH estimated by an ELISA assay using two monoclonal antibodies: 14C1 and 19G7. The IC₅₀s obtained through the ELISA assay were compared with those from the micro-test. The initial parameters of the synchronized samples used in the in vitro assays were a parasitaemia of 0.5% and haematocrit of 1%, with an incubation period of 22 hours at 36.5°C. pLDH detection using a 14C1 coating at 10 μg/ml and 19G7 at 2.5 × 10⁻³ μg/ml provided good readouts of optical densities with low background in negative controls and specific detection levels for all parasite stages. IC₅₀s values derived from the ELISA assay for artesunate, chloroquine, amodiaquine and quinine were: 15, 7, 2, and 144 nM, respectively. When artesunate and chloroquine IC₅₀s were evaluated using the micro-test similar values were obtained. This ELISA-based in vitro drug assay is easy to implement, fast, and avoids the use radioisotopes or expensive equipment. The utility of this simple assay for screening anti-malarial drug activity against P. berghei in vitro is demonstrated.

  13. Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties.

    PubMed

    Urgin, Karène; Jida, Mouhamad; Ehrhardt, Katharina; Müller, Tobias; Lanzer, Michael; Maes, Louis; Elhabiri, Mourad; Davioud-Charvet, Elisabeth

    2017-01-19

    With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N -arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal - N (Me)₂ or - N (Et)₂ in different positions ( ortho , meta and para) on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N -arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para -position of the substituent remains the most favourable position on the benzyl chain and the carbamate - N HBoc was found active both in vitro (42 nM versus 29 nM for plasmodione) and in vivo in Plasmodium berghei -infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.

  14. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review.

    PubMed

    Parhizgar, Arezoo Rafiee; Tahghighi, Azar

    2017-03-01

    Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold.

  15. Availability and quality of anti-malarials among private sector outlets in Myanmar in 2012: results from a large, community-based, cross-sectional survey before a large-scale intervention.

    PubMed

    Khin, Hnin Su Su; Chen, Ingrid; White, Chris; Sudhinaraset, May; McFarland, Willi; Littrell, Megan; Montagu, Dominic; Aung, Tin

    2015-07-14

    Global malaria control efforts are threatened by the spread and emergence of artemisinin-resistant Plasmodium falciparum parasites. In 2012, the widespread sale of partial courses of artemisinin-based monotherapy was suspected to take place in the highly accessed, weakly regulated private sector in Myanmar, posing potentially major threats to drug resistance. This study investigated the presence of artemisinin-based monotherapies in the Myanmar private sector, particularly as partial courses of therapy, to inform the targeting of future interventions to stop artemisinin resistance. A large cross-sectional survey comprised of a screening questionnaire was conducted across 26 townships in Myanmar between March and May, 2012. For outlets that stocked anti-malarials at the time of survey, a stock audit was conducted, and for outlets that stocked anti-malarials within 3 months of the survey, a provider survey was conducted. A total of 3,658 outlets were screened, 83% were retailers (pharmacies, itinerant drug vendors and general retailers) and 17% were healthcare providers (private facilities and health workers). Of the 3,658 outlets screened, 1,359 outlets (32%) stocked at least one anti-malarial at the time of study. Oral artemisinin-based monotherapy comprised of 33% of self-reported anti-malarials dispensing volumes found. The vast majority of artemisinin-based monotherapy was sold by retailers, where 63% confirmed that they sold partial courses of therapy by cutting blister packets. Very few retailers (5%) had malaria rapid diagnostic tests available, and quality-assured artemisinin-based combination therapy was virtually nonexistent among retailers. Informal private pharmacies, itinerant drug vendors and general retailers should be targeted for interventions to improve malaria treatment practices in Myanmar, particularly those that threaten the emergence and spread of artemisinin resistance.

  16. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria

    PubMed Central

    2011-01-01

    Quinine remains an important anti-malarial drug almost 400 years after its effectiveness was first documented. However, its continued use is challenged by its poor tolerability, poor compliance with complex dosing regimens, and the availability of more efficacious anti-malarial drugs. This article reviews the historical role of quinine, considers its current usage and provides insight into its appropriate future use in the treatment of malaria. In light of recent research findings intravenous artesunate should be the first-line drug for severe malaria, with quinine as an alternative. The role of rectal quinine as pre-referral treatment for severe malaria has not been fully explored, but it remains a promising intervention. In pregnancy, quinine continues to play a critical role in the management of malaria, especially in the first trimester, and it will remain a mainstay of treatment until safer alternatives become available. For uncomplicated malaria, artemisinin-based combination therapy (ACT) offers a better option than quinine though the difficulty of maintaining a steady supply of ACT in resource-limited settings renders the rapid withdrawal of quinine for uncomplicated malaria cases risky. The best approach would be to identify solutions to ACT stock-outs, maintain quinine in case of ACT stock-outs, and evaluate strategies for improving quinine treatment outcomes by combining it with antibiotics. In HIV and TB infected populations, concerns about potential interactions between quinine and antiretroviral and anti-tuberculosis drugs exist, and these will need further research and pharmacovigilance. PMID:21609473

  17. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A cross-sectional study of the availability and price of anti-malarial medicines and malaria rapid diagnostic tests in private sector retail drug outlets in rural Western Kenya, 2013.

    PubMed

    Kioko, Urbanus; Riley, Christina; Dellicour, Stephanie; Were, Vincent; Ouma, Peter; Gutman, Julie; Kariuki, Simon; Omar, Ahmeddin; Desai, Meghna; Buff, Ann M

    2016-07-12

    Although anti-malarial medicines are free in Kenyan public health facilities, patients often seek treatment from private sector retail drug outlets. In mid-2010, the Affordable Medicines Facility-malaria (AMFm) was introduced to make quality-assured artemisinin-based combination therapy (ACT) accessible and affordable in private and public sectors. Private sector retail drug outlets stocking anti-malarial medications within a surveillance area of approximately 220,000 people in a malaria perennial high-transmission area in rural western Kenya were identified via a census in September 2013. A cross-sectional study was conducted in September-October 2013 to determine availability and price of anti-malarial medicines and malaria rapid diagnostic tests (RDTs) in drug outlets. A standardized questionnaire was administered to collect drug outlet and personnel characteristics and availability and price of anti-malarials and RDTs. Of 181 drug outlets identified, 179 (99 %) participated in the survey. Thirteen percent were registered pharmacies, 25 % informal drug shops, 46 % general shops, 13 % homesteads and 2 % other. One hundred sixty-five (92 %) had at least one ACT type: 162 (91 %) had recommended first-line artemether-lumefantrine (AL), 22 (12 %) had recommended second-line dihydroartemisinin-piperaquine (DHA-PPQ), 85 (48 %) had sulfadoxine-pyrimethamine (SP), 60 (34 %) had any quinine (QN) formulation, and 14 (8 %) had amodiaquine (AQ) monotherapy. The mean price (range) of an adult treatment course for AL was $1.01 ($0.35-4.71); DHA-PPQ was $4.39 ($0.71-7.06); QN tablets were $2.24 ($0.12-4.71); SP was $0.62 ($0.24-2.35); AQ monotherapy was $0.42 ($0.24-1.06). The mean AL price with or without the AMFm logo did not differ significantly ($1.01 and 1.07, respectively; p = 0.45). Only 17 (10 %) drug outlets had RDTs; 149 (84 %) never stocked RDTs. The mean RDT price was $0.92 ($0.24-2.35). Most outlets never stocked RDTs; therefore, testing prior to

  19. Synthesis and evaluation of antimalarial properties of novel 4-aminoquinoline hybrid compounds.

    PubMed

    Fisher, Gillian M; Tanpure, Rajendra P; Douchez, Antoine; Andrews, Katherine T; Poulsen, Sally-Ann

    2014-10-01

    Pharmacophore hybridization has recently been employed in the search for antimalarial lead compounds. This approach chemically links two pharmacophores, each with their own antimalarial activity and ideally with different modes of action, into a single hybrid molecule with the goal to improve therapeutic properties. In this paper, we report the synthesis of novel 7-chloro-4-aminoquinoline/primary sulfonamide hybrid compounds. The chlorinated 4-aminoquinoline scaffold is the core structure of chloroquine, an established antimalarial drug, while the primary sulfonamide functional group has a proven track record of efficacy and safety in many clinically used drugs and was recently shown to exhibit some antimalarial activity. The activity of the hybrid compounds was determined against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains. While the hybrid compounds had lower antimalarial activity when compared to chloroquine, they demonstrated a number of interesting structure-activity relationship (SAR) trends including the potential to overcome the resistance profile of chloroquine. © 2014 John Wiley & Sons A/S.

  20. Capacity Development through the US President's Malaria Initiative-Supported Antimalarial Resistance Monitoring in Africa Network.

    PubMed

    Halsey, Eric S; Venkatesan, Meera; Plucinski, Mateusz M; Talundzic, Eldin; Lucchi, Naomi W; Zhou, Zhiyong; Mandara, Celine I; Moonga, Hawela; Hamainza, Busiku; Beavogui, Abdoul Habib; Kariuki, Simon; Samuels, Aaron M; Steinhardt, Laura C; Mathanga, Don P; Gutman, Julie; Denon, Yves Eric; Uwimana, Aline; Assefa, Ashenafi; Hwang, Jimee; Shi, Ya Ping; Dimbu, Pedro Rafael; Koita, Ousmane; Ishengoma, Deus S; Ndiaye, Daouda; Udhayakumar, Venkatachalam

    2017-12-01

    Antimalarial drug resistance is an evolving global health security threat to malaria control. Early detection of Plasmodium falciparum resistance through therapeutic efficacy studies and associated genetic analyses may facilitate timely implementation of intervention strategies. The US President's Malaria Initiative-supported Antimalarial Resistance Monitoring in Africa Network has assisted numerous laboratories in partner countries in acquiring the knowledge and capability to independently monitor for molecular markers of antimalarial drug resistance.

  1. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites.

    PubMed

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A; Sinden, Robert E; Leroy, Didier

    2012-02-01

    Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.

  2. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

    PubMed Central

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

    2012-01-01

    Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID

  3. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    NASA Astrophysics Data System (ADS)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  4. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    PubMed

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  5. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach.

    PubMed

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna

    2013-01-01

    Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64) and leupeptin respectively were retrieved from protein data bank (PDB) and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in case of falcipain-III, 15 designed leupeptin analogues having

  6. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    PubMed

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors.

    PubMed

    Kato, Nobutaka; Comer, Eamon; Sakata-Kato, Tomoyo; Sharma, Arvind; Sharma, Manmohan; Maetani, Micah; Bastien, Jessica; Brancucci, Nicolas M; Bittker, Joshua A; Corey, Victoria; Clarke, David; Derbyshire, Emily R; Dornan, Gillian L; Duffy, Sandra; Eckley, Sean; Itoe, Maurice A; Koolen, Karin M J; Lewis, Timothy A; Lui, Ping S; Lukens, Amanda K; Lund, Emily; March, Sandra; Meibalan, Elamaran; Meier, Bennett C; McPhail, Jacob A; Mitasev, Branko; Moss, Eli L; Sayes, Morgane; Van Gessel, Yvonne; Wawer, Mathias J; Yoshinaga, Takashi; Zeeman, Anne-Marie; Avery, Vicky M; Bhatia, Sangeeta N; Burke, John E; Catteruccia, Flaminia; Clardy, Jon C; Clemons, Paul A; Dechering, Koen J; Duvall, Jeremy R; Foley, Michael A; Gusovsky, Fabian; Kocken, Clemens H M; Marti, Matthias; Morningstar, Marshall L; Munoz, Benito; Neafsey, Daniel E; Sharma, Amit; Winzeler, Elizabeth A; Wirth, Dyann F; Scherer, Christina A; Schreiber, Stuart L

    2016-10-20

    Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.

  8. In Vitro Susceptibility of Plasmodium vivax to Antimalarials in Colombia

    PubMed Central

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia

    2014-01-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P < 0.001). The IC50s of CQ and AS were higher in the isolates from mature Tfz (CQ, 39.3 nM versus 17 nM; AS, 1.4 nM versus 0.3 nM), and 10% of the isolates showed lower susceptibilities to one of the antimalarial drugs, 13.3% to two antimalarial drugs, and 3.3% to more than three antimalarial drugs. It should be highlighted that despite the extensive use of chloroquine in Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia. PMID:25114141

  9. Novel series of 1,2,4-trioxane derivatives as antimalarial agents.

    PubMed

    Rudrapal, Mithun; Chetia, Dipak; Singh, Vineeta

    2017-12-01

    Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC 50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski's rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.

  10. Antimalarial activity of methanolic leaf extract of Piper betle L.

    PubMed

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05) schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  11. A small-fish model for behavioral-toxicological screening of new antimalarial drugs: a comparison between erythro- and threo-mefloquine.

    PubMed

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2015-04-02

    New antimalarial drugs need to be developed because over time resistance against the existing drugs develops. Furthermore, some of the drugs have severe side effects. Here we describe a behavioral small-fish model for early detection of neurotoxic effects of new drugs. As case example we compare the effects of two mefloquine diastereomers on the behavior of goldfish using an automated 3D tracking system. In a preliminary experiment, the overall toxic effects in terms of motor and respiratory impairments were determined during a 3-hour exposure to the drugs at relatively high doses (21.5 and 43 mgL). In the second experiment, behavioral testing was performed 24 h after a 3.5-h drug exposure to a low dose (14.25 mgL) of either drug. For the two high doses, erythro-mefloquine resulted in severe motor problems and respiratory problems occurred. In goldfish treated with threo-mefloquine, at 43 mgL the motor/respiratory impairments were less severe and at 21.5 mgL no such problems were observed. For the lower dose (14.25 mgL), erythro-mefloquine reduced locomotion. There was also a tendency for increased freezing, and the preference for quadrant two of the observation container was increased. No behavioral effects of threo-mefloquine were found. The results demonstrate that in goldfish exposed to the drugs dissolved in the water, threo-mefloquine has less severe toxic effects as compared to erythro-mefloquine. These findings are consistent with other studies and support the usefulness of the small-fish model for predicting adverse effects of new antimalarial drugs during the initial phases of drug development.

  12. Retail supply of malaria-related drugs in rural Tanzania: risks and opportunities.

    PubMed

    Goodman, Catherine; Kachur, S Patrick; Abdulla, Salim; Mwageni, Eleuther; Nyoni, Joyce; Schellenberg, Joanna A; Mills, Anne; Bloland, Peter

    2004-06-01

    To characterize availability of fever and malaria medicines within the retail sector in rural Tanzania, assess the likely public health implications, and identify opportunities for policy interventions to increase the coverage of effective treatment. A census of retailers selling drugs was undertaken in the areas under demographic surveillance in four Tanzanian districts, using a structured questionnaire. Drugs were stocked by two types of retailer: a large number of general retailers (n = 675) and a relatively small number of drug shops (n = 43). Almost all outlets stocked antipyretics/painkillers. One-third of general retailers stocking drugs had antimalarials, usually chloroquine alone. Almost all drug shops stocked antimalarials (98%): nearly all had chloroquine, 42% stocked quinine, 37% sulphadoxine-pyrimethamine and 30% amodiaquine. A large number of antimalarial brands were available. Population ratios indicate the relative accessibility of retail drug providers compared with health facilities. Drug shop staff generally travelled long distances to buy from drugs wholesalers or pharmacies. General retailers bought mainly from local general wholesalers, with a few general wholesalers accounting for a high proportion of all sources cited. Drugs were widely available from a large number of retail outlets. Potential negative implications include provision of ineffective drugs, confusion over brand names, uncontrolled use of antimalarials, and the availability of components of potential combination therapy regimens as monotherapies. On the other hand, this active and highly accessible retail market provides opportunities for improving the coverage of effective antimalarial treatment. Interventions targeted at all drug retailers are likely to be costly to deliver and difficult to sustain, but two promising points for targeted intervention are drug shops and selected general wholesalers. Retail quality may also be improved through consumer education, and

  13. QSAR modeling and chemical space analysis of antimalarial compounds

    NASA Astrophysics Data System (ADS)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  14. QSAR modeling and chemical space analysis of antimalarial compounds.

    PubMed

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including ~3000 molecules tested in one or several of 17 anti-Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  15. Malaria overdiagnosis and subsequent overconsumption of antimalarial drugs in Angola: Consequences and effects on human health.

    PubMed

    Manguin, Sylvie; Foumane, Vincent; Besnard, Patrick; Fortes, Filomeno; Carnevale, Pierre

    2017-07-01

    Microscopic blood smear examinations done in health centers of Angola demonstrated a large overdiagnosis of malaria cases with an average rate of errors as high as 85%. Overall 83% of patients who received Coartem ® had an inappropriate treatment. Overestimated malaria diagnosis was noticed even when specific symptoms were part of the clinical observation, antimalarial treatments being subsequently given. Then, malaria overdiagnosis has three main consequences, (i) the lack of data reliability is of great concern, impeding epidemiological records and evaluation of the actual influence of operations as scheduled by the National Malaria Control Programme; (ii) the large misuse of antimalarial drug can increase the selective pressure for resistant strain and can make a false consideration of drug resistant P. falciparum crisis; and (iii) the need of strengthening national health centers in term of human, with training in microscopy, and equipment resources to improve malaria diagnosis with a large scale use of rapid diagnostic tests associated with thick blood smears, backed up by a "quality control" developed by the national health authorities. Monitoring of malaria cases was done in three Angolan health centers of Alto Liro (Lobito town) and neighbor villages of Cambambi and Asseque (Benguéla Province) to evaluate the real burden of malaria. Carriers of Plasmodium among patients of newly-borne to 14 years old, with or without fever, were analyzed and compared to presumptive malaria cases diagnosed in these health centers. Presumptive malaria cases were diagnosed six times more than the positive thick blood smears done on the same children. In Alto Liro health center, the percentage of diagnosis error reached 98%, while in Cambambi and Asseque it was of 79% and 78% respectively. The percentage of confirmed malaria cases was significantly higher during the dry (20.2%) than the rainy (13.2%) season. These observations in three peripheral health centers confirmed what

  16. Comparative Study of Antimalarial and Other Drugs on G6PD Deficient Red Cells.

    DTIC Science & Technology

    33063 (1600 mg x day for 6 days) and WR 30090 (690 mg x day for 3- 6 days) demonstrated that these drugs were not hemolytic for G6PD deficient red cells...The studies concerning the effects of DFD on G6PD deficient red cells of the A- and B- variants were completed during the course of this contract...DFD is especially hemolytic even at low single dosages for G6PD deficient red cells of the B- type. The investigations on the new antimalarials WR

  17. Artemisinin combination therapies price disparity between government and private health sectors and its implication on antimalarial drug consumption pattern in Morogoro Urban District, Tanzania

    PubMed Central

    2012-01-01

    Background Universal access to effective treatments is a goal of the Roll Back Malaria Partnership. However, despite official commitments and substantial increases in financing, this objective remains elusive, as development assistance continue to be routed largely through government channels, leaving the much needed highly effective treatments inaccessible or unaffordable to those seeking services in the private sector. Methods To quantify the effect of price disparity between the government and private health systems, this study have audited 92 government and private Drug Selling Units (DSUs) in Morogoro urban district in Tanzania to determine the levels, trend and consumption pattern of antimalarial drugs in the two health systems. A combination of observation, interviews and questionnaire administered to the service providers of the randomly selected DSUs were used to collect data. Results ALU was the most selling antimalarial drug in the government health system at a subsidized price of 300 TShs (0.18 US$). By contrast, ALU that was available in the private sector (coartem) was being sold at a price of about 10,000 TShs (5.9 US$), the price that was by far unaffordable, prompting people to resort to cheap but failed drugs. As a result, metakelfin (the phased out drug) was the most selling drug in the private health system at a price ranging from 500 to 2,000 TShs (0.29–1.18 US$). Conclusions In order for the prompt diagnosis and treatment with effective drugs intervention to have big impact on malaria in mostly low socioeconomic malaria-endemic areas of Africa, inequities in affordability and access to effective treatment must be eliminated. For this to be ensued, subsidized drugs should be made available in both government and private health sectors to promote a universal access to effective safe and affordable life saving antimalarial drugs. PMID:22455367

  18. Artemisinin combination therapies price disparity between government and private health sectors and its implication on antimalarial drug consumption pattern in Morogoro Urban District, Tanzania.

    PubMed

    Malisa, Allen Lewis; Kiriba, Deodatus

    2012-03-28

    Universal access to effective treatments is a goal of the Roll Back Malaria Partnership. However, despite official commitments and substantial increases in financing, this objective remains elusive, as development assistance continue to be routed largely through government channels, leaving the much needed highly effective treatments inaccessible or unaffordable to those seeking services in the private sector. To quantify the effect of price disparity between the government and private health systems, this study have audited 92 government and private Drug Selling Units (DSUs) in Morogoro urban district in Tanzania to determine the levels, trend and consumption pattern of antimalarial drugs in the two health systems. A combination of observation, interviews and questionnaire administered to the service providers of the randomly selected DSUs were used to collect data. ALU was the most selling antimalarial drug in the government health system at a subsidized price of 300 TShs (0.18 US$). By contrast, ALU that was available in the private sector (coartem) was being sold at a price of about 10,000 TShs (5.9 US$), the price that was by far unaffordable, prompting people to resort to cheap but failed drugs. As a result, metakelfin (the phased out drug) was the most selling drug in the private health system at a price ranging from 500 to 2,000 TShs (0.29-1.18 US$). In order for the prompt diagnosis and treatment with effective drugs intervention to have big impact on malaria in mostly low socioeconomic malaria-endemic areas of Africa, inequities in affordability and access to effective treatment must be eliminated. For this to be ensued, subsidized drugs should be made available in both government and private health sectors to promote a universal access to effective safe and affordable life saving antimalarial drugs.

  19. Lead Optimization of 3-Carboxyl-4(1H)-Quinolones to Deliver Orally Bioavailable Antimalarials

    PubMed Central

    Zhang, Yiqun; Clark, Julie A; Connelly, Michele C.; Zhu, Fangyi; Min, Jaeki; Guiguemde, W. Armand; Pradhan, Anupam; Iyer, Lalitha; Furimsky, Anna; Gow, Jason; Parman, Toufan; El Mazouni, Farah; Phillips, Margaret A.; Kyle, Dennis E.; Mirsalis, Jon; Guy, R. Kiplin

    2012-01-01

    Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multi-drug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization. PMID:22435599

  20. Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against Plasmodium falciparum.

    PubMed

    Parquet, Véronique; Henry, Maud; Wurtz, Nathalie; Dormoi, Jerome; Briolant, Sébastien; Gil, Marine; Baret, Eric; Amalvict, Rémy; Rogier, Christophe; Pradines, Bruno

    2010-05-25

    Quinine (QN) remains the first line anti-malarial drug for the treatment of complicated malaria in Europe and Africa. The emergence of QN resistance has been documented. QN resistance is not yet a significant problem, but there is an urgent need to discover partners for use in combination with QN. The aim of the study was to assess the in vitro potentiating effects of atorvastatin (AVA), a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, in combination with QN against Plasmodium falciparum and to evaluate whether the effects of AVA could be associated with gene copy number or mutations in genes involved in QN resistance, such as pfcrt, pfmdr1, pfmrp and pfnhe. The susceptibilities to combination of AVA with QN were assessed against 21 parasite strains using the in vitro isotopic microtest. Genotypes and gene copy number were assessed for pfcrt, pfmdr1, pfmdr2, pfmrp genes. In addition, the number of DNNND, DDNHNDNHNN repeats in pfnhe-1 ms4760 and the ms4760 profile were determined for each strains of P. falciparum. AVA demonstrated synergistic effects in combination with QN against 21 P. falciparum strains. The QN IC50 was reduced by 5% (0% to 15%; 95%CI: 1%-8%), 10% (3% to 23%; 95%CI: 7%-14%) and 22% (14% to 40%; 95%CI: 19%-25%) in presence of AVA at concentrations of 0.1, 0.5 and 1.0 microM, respectively. These reductions were all significant (p < 0.009). The reduction in the QN IC50 in presence of AVA was not significantly correlated with the QN IC50 (r = 0.22, P = 0.3288) or the AVA IC50 (r = 0.03, P = 0.8946). The synergistic effect of AVA in combination with QN was not significantly associated with polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe-1 genes that could be involved in QN resistance. The synergistic effect of AVA on QN responses was not significantly associated with pfmdr1 copy number (P = 0.0428). The synergistic effect of AVA in combination with QN was found to be unrelated to mutations occurring in transport protein genes

  1. Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against Plasmodium falciparum

    PubMed Central

    2010-01-01

    Background Quinine (QN) remains the first line anti-malarial drug for the treatment of complicated malaria in Europe and Africa. The emergence of QN resistance has been documented. QN resistance is not yet a significant problem, but there is an urgent need to discover partners for use in combination with QN. The aim of the study was to assess the in vitro potentiating effects of atorvastatin (AVA), a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, in combination with QN against Plasmodium falciparum and to evaluate whether the effects of AVA could be associated with gene copy number or mutations in genes involved in QN resistance, such as pfcrt, pfmdr1, pfmrp and pfnhe. Methods The susceptibilities to combination of AVA with QN were assessed against 21 parasite strains using the in vitro isotopic microtest. Genotypes and gene copy number were assessed for pfcrt, pfmdr1, pfmdr2, pfmrp genes. In addition, the number of DNNND, DDNHNDNHNN repeats in pfnhe-1 ms4760 and the ms4760 profile were determined for each strains of P. falciparum. Results AVA demonstrated synergistic effects in combination with QN against 21 P. falciparum strains. The QN IC50 was reduced by 5% (0% to 15%; 95%CI: 1%-8%), 10% (3% to 23%; 95%CI: 7%-14%) and 22% (14% to 40%; 95%CI: 19%-25%) in presence of AVA at concentrations of 0.1, 0.5 and 1.0 μM, respectively. These reductions were all significant (p < 0.009). The reduction in the QN IC50 in presence of AVA was not significantly correlated with the QN IC50 (r = 0.22, P = 0.3288) or the AVA IC50 (r = 0.03, P = 0.8946). The synergistic effect of AVA in combination with QN was not significantly associated with polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe-1 genes that could be involved in QN resistance. The synergistic effect of AVA on QN responses was not significantly associated with pfmdr1 copy number (P = 0.0428). Conclusion The synergistic effect of AVA in combination with QN was found to be unrelated to mutations

  2. The D113N mutation in the RING E3 ubiquitin protein ligase gene is not associated with ex vivo susceptibility to common anti-malarial drugs in African Plasmodium falciparum isolates.

    PubMed

    Gendrot, Mathieu; Foguim, Francis Tsombeng; Robert, Marie Gladys; Amalvict, Rémy; Mosnier, Joel; Benoit, Nicolas; Madamet, Marylin; Pradines, Bruno

    2018-03-12

    Plasmodium falciparum resistance to artemisinin-based combination therapy has emerged and spread in Southeast Asia. In areas where artemisinin resistance is emerging, the efficacy of combination is now based on partner drugs. In this context, the identification of novel markers of resistance is essential to monitor the emergence and spread of resistance to these partner drugs. The ubiquitylation pathway could be a possible target for anti-malarial compounds and might be involved in resistance. Polymorphisms in the E3 ubiquitin-protein ligase (PF3D7_0627300) gene could be associated with decreased in vitro susceptibility to anti-malarial drugs. Plasmodium falciparum isolates were collected from patients hospitalized in France with imported malaria from a malaria-endemic country from January 2015 to December 2016 and, more particularly, from African French-speaking countries. In total, 215 isolates were successfully sequenced for the E3 ubiquitin-protein ligase gene and assessed for ex vivo susceptibility to anti-malarial drugs. The D113N mutation in the RING E3 ubiquitin-protein ligase gene was present in 147 out of the 215 samples (68.4%). The IC 50 values for the ten anti-malarial drugs were not significantly different between the wild-type and mutant parasites (p values between 0.225 and 0.933). There was no significant difference in terms of the percentage of parasites with decreased susceptibility between the D113 wild-type and the 133N mutated P. falciparum strains (p values between 0.541 and 1). The present data confirmed the absence of the association between polymorphisms in the RING E3 ubiquitin-protein ligase gene and the ex vivo susceptibility to common anti-malarial drugs in African P. falciparum isolates.

  3. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold

    PubMed Central

    Rudrapal, Mithun; Chetia, Dipak

    2016-01-01

    Malaria disease continues to be a major health problem worldwide due to the emergence of multidrug-resistant strains of Plasmodium falciparum. In recent days, artemisinin (ART)-based drugs and combination therapies remain the drugs of choice for resistant P. falciparum malaria. However, resistance to ART-based drugs has begun to appear in some parts of the world. Endoperoxide compounds (natural/semisynthetic/synthetic) representing a huge number of antimalarial agents possess a wide structural diversity with a desired antimalarial effectiveness against resistant P. falciparum malaria. The 1,2,4-trioxane ring system lacking the lactone ring that constitutes the most important endoperoxide structural scaffold is believed to be the key pharmacophoric moiety and is primarily responsible for the pharmacodynamic potential of endoperoxide-based antimalarials. Due to this reason, research into endoperoxide, particularly 1,2,4-trioxane-, 1,2,4-trioxolane- and 1,2,4,5-teraoxane-based scaffolds, has gained significant interest in recent years for developing antimalarial drugs against resistant malaria. In this paper, a comprehensive effort has been made to review the development of endoperoxide antimalarials from traditional antimalarial leads (natural/semisynthetic) and structural diversity of endoperoxide molecules derived from 1,2,4-trioxane-, 1,2,4-trioxolane- and 1,2,4,5-teraoxane-based structural scaffolds, including their chimeric (hybrid) molecules, which are newer and potent antimalarial agents. PMID:27843298

  4. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    PubMed Central

    2011-01-01

    Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT). The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85%) and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%), drug stores (14%), mobile providers (4%) and grocery stores (2%). Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61%) and private (42%) sectors. Conclusions While data on the anti-malarial market shows

  5. An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake.

    PubMed

    Sharma, Paresh; Wollenberg, Kurt; Sellers, Morgan; Zainabadi, Kayvan; Galinsky, Kevin; Moss, Eli; Nguitragool, Wang; Neafsey, Daniel; Desai, Sanjay A

    2013-07-05

    Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.

  6. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs.

    PubMed

    McCarthy, James S; Sekuloski, Silvana; Griffin, Paul M; Elliott, Suzanne; Douglas, Nanette; Peatey, Chris; Rockett, Rebecca; O'Rourke, Peter; Marquart, Louise; Hermsen, Cornelius; Duparc, Stephan; Möhrle, Jörg; Trenholme, Katharine R; Humberstone, Andrew J

    2011-01-01

    Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP). The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection. A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L) or atovaquone-proguanil (A/P). In the first cohort (n = 6) where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6). In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7) The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01). This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials. ClinicalTrials.gov NCT01055002.

  7. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeokjun; Ha, Young-Ran; Lee, Sang Joon

    2015-11-01

    Malaria parasites induce morphological, biochemical, and mechanical changes in red blood cells (RBCs). Mechanical variations are closely related to the deformability of individual RBCs. The deformation of various RBCs, including healthy and malaria-infected RBCs (iRBCs), can be directly observed through quantitative phase imaging (QPI). The effects of chloroquine treatment on the mechanical property variation of iRBCs were investigated using time-resolved holographic QPI of single live cells on a millisecond time scale. The deformabilities of healthy RBCs, iRBCs, and drug-treated iRBCs were compared, and the effect of chloroquine on iRBC restoration was experimentally examined. The present results are beneficial to elucidate the dynamic characteristics of iRBCs and the effect of the antimalarial drug on iRBCs.

  8. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug.

    PubMed

    Byeon, Hyeokjun; Ha, Young-Ran; Lee, Sang Joon

    2015-11-01

    Malaria parasites induce morphological, biochemical, and mechanical changes in red blood cells (RBCs). Mechanical variations are closely related to the deformability of individual RBCs. The deformation of various RBCs, including healthy and malaria-infected RBCs (iRBCs), can be directly observed through quantitative phase imaging (QPI). The effects of chloroquine treatment on the mechanical property variation of iRBCs were investigated using time-resolved holographic QPI of single live cells on a millisecond time scale. The deformabilities of healthy RBCs, iRBCs, and drug-treated iRBCs were compared, and the effect of chloroquine on iRBC restoration was experimentally examined. The present results are beneficial to elucidate the dynamic characteristics of iRBCs and the effect of the antimalarial drug on iRBCs.

  9. QSAR models for anti-malarial activity of 4-aminoquinolines.

    PubMed

    Masand, Vijay H; Toropov, Andrey A; Toropova, Alla P; Mahajan, Devidas T

    2014-03-01

    In the present study, predictive quantitative structure - activity relationship (QSAR) models for anti-malarial activity of 4-aminoquinolines have been developed. CORAL, which is freely available on internet (http://www.insilico.eu/coral), has been used as a tool of QSAR analysis to establish statistically robust QSAR model of anti-malarial activity of 4-aminoquinolines. Six random splits into the visible sub-system of the training and invisible subsystem of validation were examined. Statistical qualities for these splits vary, but in all these cases, statistical quality of prediction for anti-malarial activity was quite good. The optimal SMILES-based descriptor was used to derive the single descriptor based QSAR model for a data set of 112 aminoquinolones. All the splits had r(2)> 0.85 and r(2)> 0.78 for subtraining and validation sets, respectively. The three parametric multilinear regression (MLR) QSAR model has Q(2) = 0.83, R(2) = 0.84 and F = 190.39. The anti-malarial activity has strong correlation with presence/absence of nitrogen and oxygen at a topological distance of six.

  10. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread.

    PubMed

    Klein, E Y

    2013-04-01

    The emergence of resistance to former first-line antimalarial drugs has been an unmitigated disaster. In recent years, artemisinin class drugs have become standard and they are considered an essential tool for helping to eradicate the disease. However, their ability to reduce morbidity and mortality and to slow transmission requires the maintenance of effectiveness. Recently, an artemisinin delayed-clearance phenotype was described. This is believed to be the precursor to resistance and threatens local elimination and global eradication plans. Understanding how resistance emerges and spreads is important for developing strategies to contain its spread. Resistance is the result of two processes: (i) drug selection of resistant parasites; and (ii) the spread of resistance. In this review, we examine the factors that lead to both drug selection and the spread of resistance. We then examine strategies for controlling the spread of resistance, pointing out the complexities and deficiencies in predicting how resistance will spread. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. Screening of a library of traditional Chinese medicines to identify anti-malarial compounds and extracts.

    PubMed

    Nonaka, Motohiro; Murata, Yuho; Takano, Ryo; Han, Yongmei; Bin Kabir, Md Hazzaz; Kato, Kentaro

    2018-06-25

    Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC 50 ) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC 50  < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC 50  < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC 50 values of the compounds were comparable to that of chloroquine

  12. Blocking Plasmodium falciparum Malaria Transmission with Drugs: The Gametocytocidal and Sporontocidal Properties of Current and Prospective Antimalarials

    PubMed Central

    Kiszewski, Anthony E.

    2011-01-01

    Drugs that kill or inhibit the sexual stages of Plasmodium could potentially amplify or synergize the impact of other interventions by blocking transmission to mosquitoes. Primaquine and other 8-aminoquinolines have long offered such potential, but safety and other concerns have limited their use. Although transmission-blocking properties are not often a priority of drug discovery efforts, a number of interesting gametocytocidal and/or sporontocidal drug candidates have emerged in recent years. Some still bear significant technical and safety concerns, while others have passed clinical trials and are on the verge of entering the antimalarial armamentarium. Recent advances in our knowledge of gametocyte differentiation, gametogenesis and sporogony have also led to the identification of a large array of potential new targets for drugs that might interfere with malaria transmission. This review examines the properties of existing and prospective drugs, mechanisms of action, counter-indications and their potential role in regional malaria elimination efforts.

  13. New developments in anti-malarial target candidate and product profiles.

    PubMed

    Burrows, Jeremy N; Duparc, Stephan; Gutteridge, Winston E; Hooft van Huijsduijnen, Rob; Kaszubska, Wiweka; Macintyre, Fiona; Mazzuri, Sébastien; Möhrle, Jörg J; Wells, Timothy N C

    2017-01-13

    A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.

  14. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics.

    PubMed

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. G-Quadruplex DNA Motifs in the Malaria Parasite Plasmodium falciparum and Their Potential as Novel Antimalarial Drug Targets.

    PubMed

    Harris, Lynne M; Monsell, Katelyn R; Noulin, Florian; Famodimu, M Toyin; Smargiasso, Nicolas; Damblon, Christian; Horrocks, Paul; Merrick, Catherine J

    2018-03-01

    G-quadruplexes are DNA or RNA secondary structures that can be formed from guanine-rich nucleic acids. These four-stranded structures, composed of stacked quartets of guanine bases, can be highly stable and have been demonstrated to occur in vivo in the DNA of human cells and other systems, where they play important biological roles, influencing processes such as telomere maintenance, DNA replication and transcription, or, in the case of RNA G-quadruplexes, RNA translation and processing. We report for the first time that DNA G-quadruplexes can be detected in the nuclei of the malaria parasite Plasmodium falciparum , which has one of the most A/T-biased genomes sequenced and therefore possesses few guanine-rich sequences with the potential to form G-quadruplexes. We show that despite this paucity of putative G-quadruplex-forming sequences, P. falciparum parasites are sensitive to several G-quadruplex-stabilizing drugs, including quarfloxin, which previously reached phase 2 clinical trials as an anticancer drug. Quarfloxin has a rapid initial rate of kill and is active against ring stages as well as replicative stages of intraerythrocytic development. We show that several G-quadruplex-stabilizing drugs, including quarfloxin, can suppress the transcription of a G-quadruplex-containing reporter gene in P. falciparum but that quarfloxin does not appear to disrupt the transcription of rRNAs, which was proposed as its mode of action in both human cells and trypanosomes. These data suggest that quarfloxin has potential for repositioning as an antimalarial with a novel mode of action. Furthermore, G-quadruplex biology in P. falciparum may present a target for development of other new antimalarial drugs. Copyright © 2018 American Society for Microbiology.

  16. Artemisinin anti-malarial drugs in China

    PubMed Central

    Guo, Zongru

    2016-01-01

    Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the “whole nation” system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. PMID:27006895

  17. Potentiation of antimalarial activity of arteether in combination with Vetiver root extract.

    PubMed

    Dhawan, Sangeeta; Gunjan, Sarika; Pal, Anirban; Tripathi, Renu

    2016-05-01

    In malaria, development of resistance towards artemisinin derivatives has urged the need for new drugs or new drug combinations to tackle the drug resistant malaria. We studied the fresh root extract of Vetiver zizanioides (Linn.) Nash (VET) with a CDRI-CIMAP antimalarial α/β arteether (ART) together for their antimalarial potential. Our results showed additive to synergistic antimalarial activity of VET and ART with sum fractional inhibitory concentrations Σ FICs 1.02 ± 0.24 and 1.12 ± 0.32 for chloroquine sensitive (CQS) and chloroquine resistant (CQR) strain of Plasmodium falciparum (William H. Welch), respectively. Further, these combinations were explored against multidrug resistant rodent malaria parasite i.e. P. yoelii nigeriensis. Analysis of in vivo interaction of ART and VET showed that 10 mg/kg x 5 days of ART with 1000 mg/kg of VET x 5 days cured 100% mice infected with MDR parasite, while the same dose of ART could produce only up to 30% cure and VET fraction was not curative at all. Synergism/additiveness, found between VET and ART is reported for the first time. The curative dose of ART in the combination was reduced to its one fourth, and thus limits the side effects, if any. Although antimalarial potential of ART was enhanced by VET, action mechanism of later needs to be elucidated in detail.

  18. Hollow Fiber Methodology for Pharmacokinetic/Pharmacodynamic Studies of Antimalarial Compounds

    PubMed Central

    Caton, Emily; Nenortas, Elizabeth; Bakshi, Rahul P.; Shapiro, Theresa A.

    2016-01-01

    Knowledge of pharmacokinetic/pharmacodynamic (PK/PD) relationships can enhance the speed and economy of drug development by enabling informed and rational decisions at every step, from lead selection to clinical dosing. For anti-infective agents in particular, dynamic in vitro hollow fiber cartridge experiments permit exquisite control of kinetic parameters and the study of their consequent impact on pharmacodynamic efficacy. Such information is of great interest for the cost-restricted but much-needed development of new antimalarial drugs, especially since major human pathogen Plasmodium falciparum can be cultivated in vitro but is not readily available in animal models. This protocol describes the materials and procedures for determining the PK/PD relationships of antimalarial compounds. PMID:26995353

  19. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract

    PubMed Central

    Ajaiyeoba, E. O.; Ogbole, O. O.; Abiodun, O. O.; Ashidi, J. S.; Houghton, P. J.; Wright, C. W.

    2013-01-01

    Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1) in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM) and could be a lead for anti-malarial drug discovery. PMID:23970954

  20. The role of antimalarial agents in the treatment of SLE and lupus nephritis.

    PubMed

    Lee, Senq-J; Silverman, Earl; Bargman, Joanne M

    2011-10-18

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that affects various organs. Lupus nephritis is one of the most common, and most important, serious manifestations of SLE. Antimalarial agents are part of the immunomodulatory regimen used to treat patients with SLE; however, their role in the treatment of patients with lupus nephritis in particular is less well recognized, especially by nephrologists. Not all antimalarial agents have been used in the treatment of lupus; this Review will focus on studies using chloroquine and hydroxychloroquine. In addition, this Review will briefly describe the history of antimalarial drug use in patients with SLE, the theorized mechanisms of action of the agents chloroquine and hydroxychloroquine, their efficacy in patients with SLE and those with lupus nephritis, their use in pregnancy, and potential adverse effects. The Review will also cover the latest recommendations regarding monitoring for hydroxychloroquine-associated or chloroquine-associated retinopathy. Overall, antimalarial drugs have numerous beneficial effects in patients with SLE and lupus nephritis, and have a good safety profile.

  1. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology

    PubMed Central

    2010-01-01

    restricted availability of anti-malarial drugs or other medicines in rural or under-resourced areas. PMID:20979633

  2. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology.

    PubMed

    Barrington, Jim; Wereko-Brobby, Olympia; Ward, Peter; Mwafongo, Winfred; Kungulwe, Seif

    2010-10-27

    Maintaining adequate supplies of anti-malarial medicines at the health facility level in rural sub-Saharan Africa is a major barrier to effective management of the disease. Lack of visibility of anti-malarial stock levels at the health facility level is an important contributor to this problem. A 21-week pilot study, 'SMS for Life', was undertaken during 2009-2010 in three districts of rural Tanzania, involving 129 health facilities. Undertaken through a collaborative partnership of public and private institutions, SMS for Life used mobile telephones, SMS messages and electronic mapping technology to facilitate provision of comprehensive and accurate stock counts from all health facilities to each district management team on a weekly basis. The system covered stocks of the four different dosage packs of artemether-lumefantrine (AL) and quinine injectable. Stock count data was provided in 95% of cases, on average. A high response rate (≥ 93%) was maintained throughout the pilot. The error rate for composition of SMS responses averaged 7.5% throughout the study; almost all errors were corrected and messages re-sent. Data accuracy, based on surveillance visits to health facilities, was 94%. District stock reports were accessed on average once a day. The proportion of health facilities with no stock of one or more anti-malarial medicine (i.e. any of the four dosages of AL or quinine injectable) fell from 78% at week 1 to 26% at week 21. In Lindi Rural district, stock-outs were eliminated by week 8 with virtually no stock-outs thereafter. During the study, AL stocks increased by 64% and quinine stock increased 36% across the three districts. The SMS for Life pilot provided visibility of anti-malarial stock levels to support more efficient stock management using simple and widely available SMS technology, via a public-private partnership model that worked highly effectively. The SMS for Life system has the potential to alleviate restricted availability of anti-malarial

  3. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives.

    PubMed

    Vijayaraghavan, Shilpa; Mahajan, Supriya

    2017-04-15

    A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC 50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A novel multiple-stage antimalarial agent that inhibits protein synthesis.

    PubMed

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C S; Norcross, Neil R; Grimaldi, Raffaella; Otto, Thomas D; Proto, William R; Blagborough, Andrew M; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M; Abraham, Tara S; Almeida, Mariana J; Pradhan, Anupam; Porzelle, Achim; Luksch, Torsten; Martínez, María Santos; Luksch, Torsten; Bolscher, Judith M; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M; Churcher, Tom S; Sala, Katarzyna A; Zakutansky, Sara E; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M; Sauerwein, Robert W; Dechering, Koen J; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G; Leroy, Didier; Siegl, Peter; Delves, Michael J; Kyle, Dennis E; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N; Sinden, Robert E; Winzeler, Elizabeth A; Charman, Susan A; Bebrevska, Lidiya; Gray, David W; Campbell, Simon; Fairlamb, Alan H; Willis, Paul A; Rayner, Julian C; Fidock, David A; Read, Kevin D; Gilbert, Ian H

    2015-06-18

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  5. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NASA Astrophysics Data System (ADS)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  6. Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins.

    PubMed

    Németh, Krisztina; Tárkányi, Gábor; Varga, Erzsébet; Imre, Tímea; Mizsei, Réka; Iványi, Róbert; Visy, Júlia; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Simonyi, Miklós

    2011-02-20

    Capillary electrophoresis (CE) methods for chiral resolution of five antimalarial drugs (primaquine, tafenoquine, mefloquine, chloroquine and quinacrine) were developed by using a wide selection of neutral and anionic cyclodextrin (CD) derivatives. The use of sulfobutyl-β-CD and carboxymethyl-β-CD (CMBCD) resulted in good resolution of quinacrine and tafenoquine, respectively. New results are presented for resolutions of chloroquine and mefloquine. Application of carboxyalkyl- and sulfobutyl-CD derivatives provided improved resolution for primaquine. The impurity in primaquine sample detected by CE was identified as quinocide by MS and NMR. CMBCD provided not only the best separation of primaquine from quinocide but also the simultaneous complete resolution of both compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Antimalarials and the fight against malaria in Brazil.

    PubMed

    Carmargo, Luiz Ma; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia Rs

    2009-08-01

    Malaria, known as the "fevers," has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named "Jesuits' powder." Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira-Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.

  8. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production

    PubMed Central

    Pulice, Giuseppe; Pelaz, Soraya; Matías-Hernández, Luis

    2016-01-01

    Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further

  9. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites

    PubMed Central

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H.; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael

    2016-01-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers—a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum. We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. PMID:27297478

  10. Tafenoquine: a promising new antimalarial agent.

    PubMed

    Crockett, Maryanne; Kain, Kevin C

    2007-05-01

    Malaria remains an important cause of global morbidity and mortality. As antimalarial drug resistance escalates, new safe and effective medications are necessary to prevent and treat malarial infection. Tafenoquine is an 8-aminoquinoline antimalarial that is presently under development. It has a long half-life of approximately 14 days and is generally safe and well tolerated, although it cannot be used in pregnant women and individuals who are deficient in the enzyme glucose-6-phosphate dehydrogenase. In well-designed studies, tafenoquine was highly effective in both the radical cure of relapsing malaria and causal prophylaxis of Plasmodium vivax and P. falciparum infections with protective efficacies of > or = 90%. Given its causal activity and safety profile, tafenoquine represents a potentially exciting alternative to standard agents for the prevention and radical cure of malaria.

  11. Quinine conjugates and quinine analogues as potential antimalarial agents.

    PubMed

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-05

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Are Antimalarial Hybrid Molecules a Close Reality or a Distant Dream?

    PubMed

    Agarwal, Drishti; Gupta, Rinkoo D; Awasthi, Satish K

    2017-05-01

    Emergence of drug-resistant Plasmodium falciparum strains has led to a situation of haste in the scientific and pharmaceutical communities. Hence, all their efforts are redirected toward finding alternative chemotherapeutic agents that are capable of combating multidrug-resistant parasite strains. In light of this situation, scientists have come up with the concept of hybridization of two or more active pharmacophores into a single chemical entity, resulting in "antimalarial hybrids." The approach has been applied widely for generation of lead compounds against deadly diseases such as cancer and AIDS, with a proven potential for use as novel drugs, but is comparatively new in the sphere of antimalarial drug discovery. A sudden surge has been evidenced in the number of studies on the design and synthesis of hybrids for treating malaria and may be regarded as proof of their potential advantages over artemisinin-based combination therapy (ACT). However, it is evident from recent studies that most of the potential advantages of antimalarial hybrids, such as lower toxicity, better pharmacokinetics, and easier formulation, have yet to be realized. A number of questions left unaddressed at present need to be answered before this approach can progress to the late stages of clinical development and prove their worth in the clinic. To the best of our knowledge, this compilation is the first attempt to shed light on the shortcomings that are surfacing as more and more studies on molecular hybridization of the active pharmacophores of known antimalarials are being published. Copyright © 2017 American Society for Microbiology.

  13. Are Antimalarial Hybrid Molecules a Close Reality or a Distant Dream?

    PubMed Central

    Agarwal, Drishti; Gupta, Rinkoo D.

    2017-01-01

    ABSTRACT Emergence of drug-resistant Plasmodium falciparum strains has led to a situation of haste in the scientific and pharmaceutical communities. Hence, all their efforts are redirected toward finding alternative chemotherapeutic agents that are capable of combating multidrug-resistant parasite strains. In light of this situation, scientists have come up with the concept of hybridization of two or more active pharmacophores into a single chemical entity, resulting in “antimalarial hybrids.” The approach has been applied widely for generation of lead compounds against deadly diseases such as cancer and AIDS, with a proven potential for use as novel drugs, but is comparatively new in the sphere of antimalarial drug discovery. A sudden surge has been evidenced in the number of studies on the design and synthesis of hybrids for treating malaria and may be regarded as proof of their potential advantages over artemisinin-based combination therapy (ACT). However, it is evident from recent studies that most of the potential advantages of antimalarial hybrids, such as lower toxicity, better pharmacokinetics, and easier formulation, have yet to be realized. A number of questions left unaddressed at present need to be answered before this approach can progress to the late stages of clinical development and prove their worth in the clinic. To the best of our knowledge, this compilation is the first attempt to shed light on the shortcomings that are surfacing as more and more studies on molecular hybridization of the active pharmacophores of known antimalarials are being published. PMID:28289029

  14. Antimalarials inhibit hematin crystallization by unique drug–surface site interactions

    PubMed Central

    Olafson, Katy N.; Nguyen, Tam Q.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2017-01-01

    In malaria pathophysiology, divergent hypotheses on the inhibition of hematin crystallization posit that drugs act either by the sequestration of soluble hematin or their interaction with crystal surfaces. We use physiologically relevant, time-resolved in situ surface observations and show that quinoline antimalarials inhibit β-hematin crystal surfaces by three distinct modes of action: step pinning, kink blocking, and step bunch induction. Detailed experimental evidence of kink blocking validates classical theory and demonstrates that this mechanism is not the most effective inhibition pathway. Quinolines also form various complexes with soluble hematin, but complexation is insufficient to suppress heme detoxification and is a poor indicator of drug specificity. Collectively, our findings reveal the significance of drug–crystal interactions and open avenues for rationally designing antimalarial compounds. PMID:28559329

  15. Antimalarial plants of northeast India: An overview.

    PubMed

    Shankar, Rama; Deb, Sourabh; Sharma, B K

    2012-01-01

    The need for an alternative drug for malaria initiated intensive efforts for developing new antimalarials from indigenous plants. The information from different tribal communities of northeast India along with research papers, including books, journals and documents of different universities and institutes of northeast India was collected for information on botanical therapies and plant species used for malaria. Sixty-eight plant species belonging to 33 families are used by the people of northeast India for the treatment of malaria. Six plant species, namely, Alstonia scholaris, Coptis teeta, Crotolaria occulta, Ocimum sanctum, Polygala persicariaefolia, Vitex peduncularis, have been reported by more than one worker from different parts of northeast India. The species reported to be used for the treatment of malaria were either found around the vicinity of their habitation or in the forest area of northeast India. The most frequently used plant parts were leaves (33%), roots (31%), and bark and whole plant (12%). The present study has compiled and enlisted the antimalarial plants of northeast India, which would help future workers to find out the suitable antimalarial plants by thorough study.

  16. Lead optimization of 3-carboxyl-4(1H)-quinolones to deliver orally bioavailable antimalarials.

    PubMed

    Zhang, Yiqun; Clark, Julie A; Connelly, Michele C; Zhu, Fangyi; Min, Jaeki; Guiguemde, W Armand; Pradhan, Anupam; Iyer, Lalitha; Furimsky, Anna; Gow, Jason; Parman, Toufan; El Mazouni, Farah; Phillips, Margaret A; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin

    2012-05-10

    Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization.

  17. Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance.

    PubMed

    Amolegbe, Saliu Alao; Hirano, Yui; Adebayo, Joseph Oluwatope; Ademowo, Olusegun George; Balogun, Elizabeth Abidemi; Obaleye, Joshua Ayoola; Krettli, Antoniana Ursine; Yu, Chengzhong; Hayami, Shinya

    2018-02-15

    The use of nanocarriers in drug delivery is a breakeven research and has received a clarion call in biomedicine globally. Herein, two newly nano-biomaterials: MCM-41 encapsulated quinine (MCM-41 ⊃ QN) (1) and 3-phenylpropyl silane functionalized MCM-41 loaded QN (pMCM-41 ⊃ QN) (2) were synthesized and well characterized. 1 and 2 along with our two already reported nano-antimalarial drugs (MCM-41 ⊃ ATS) (3) and 3-aminopropyl silane functionalized MCM-41 contained ATS (aMCM-41 ⊃ ATS) (4) were screened in vitro for their activity against P. falciparium W2 strain, cytotoxicity against BGM cells and in vivo for their activity against Plasmodium bergheiNK65. 1 has the highest antimalarial activity in vivo against P. berghei NK65, (ED 50 : < 0.0625 mg/kg body weight) and higher mean survival time compared to the other nano biomaterials or unencapsulated drugs at doses higher than 0.0625 mg/kg body weight. This encapsulation strategy of MCM-41 ⊃ QN (1) stands very useful and effective in delivering the drug to the target cells compared to other delivery systems and therefore, this encapsulated drug may be considered for rational drug design.

  18. Quality of artemisinin-based combination formulations for malaria treatment: prevalence and risk factors for poor quality medicines in public facilities and private sector drug outlets in Enugu, Nigeria.

    PubMed

    Kaur, Harparkash; Allan, Elizabeth Louise; Mamadu, Ibrahim; Hall, Zoe; Ibe, Ogochukwu; El Sherbiny, Mohamed; van Wyk, Albert; Yeung, Shunmay; Swamidoss, Isabel; Green, Michael D; Dwivedi, Prabha; Culzoni, Maria Julia; Clarke, Siân; Schellenberg, David; Fernández, Facundo M; Onwujekwe, Obinna

    2015-01-01

    Artemisinin-based combination therapies are recommended by the World Health Organisation (WHO) as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296) of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artemisinin-containing antimalarials (ACAs) in Enugu metropolis, Nigeria, and compared the resulting quality estimates. ACAs were purchased using three sampling approaches--convenience, mystery clients and overt, within a defined area and sampling frame in Enugu metropolis. The active pharmaceutical ingredients were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results were expressed as percentage of APIs stated on the packaging and used to categorise each sample as acceptable quality, substandard, degraded, or falsified. Content analysis of 3024 samples purchased from 421 outlets using convenience (n=200), mystery (n=1,919) and overt (n=905) approaches, showed overall 90.8% ACAs to be of acceptable quality, 6.8% substandard, 1.3% degraded and 1.2% falsified. Convenience sampling yielded a significantly higher prevalence of poor quality ACAs, but was not evident by the mystery and overt sampling strategies both of which yielded results that were comparable between each other. Artesunate (n=135; 4 falsified) and dihydroartemisinin (n=14) monotherapy tablets, not recommended by WHO, were also identified. Randomised sampling identified fewer falsified ACAs than previously reported by convenience approaches. Our findings emphasise the need for specific consideration to be given to sampling frame and sampling approach if representative information on drug quality is to be obtained.

  19. Major Reduction in Anti-Malarial Drug Consumption in Senegal after Nation-Wide Introduction of Malaria Rapid Diagnostic Tests

    PubMed Central

    Thiam, Sylla; Thior, Moussa; Faye, Babacar; Ndiop, Médoune; Diouf, Mamadou Lamine; Diouf, Mame Birame; Diallo, Ibrahima; Fall, Fatou Ba; Ndiaye, Jean Louis; Albertini, Audrey; Lee, Evan; Jorgensen, Pernille; Gaye, Oumar; Bell, David

    2011-01-01

    Background While WHO recently recommended universal parasitological confirmation of suspected malaria prior to treatment, debate has continued as to whether wide-scale use of rapid diagnostic tests (RDTs) can achieve this goal. Adherence of health service personnel to RDT results has been poor in some settings, with little impact on anti-malarial drug consumption. The Senegal national malaria control programme introduced universal parasite-based diagnosis using malaria RDTs from late 2007 in all public health facilities. This paper assesses the impact of this programme on anti-malarial drug consumption and disease reporting. Methods and Findings Nationally-collated programme data from 2007 to 2009 including malaria diagnostic outcomes, prescription of artemisinin-based combination therapy (ACT) and consumption of RDTs in public health facilities, were reviewed and compared. Against a marked seasonal variation in all-cause out-patient visits, non-malarial fever and confirmed malaria, parasite-based diagnosis increased nationally from 3.9% of reported malaria-like febrile illness to 86.0% over a 3 year period. The prescription of ACT dropped throughout this period from 72.9% of malaria-like febrile illness to 31.5%, reaching close equivalence to confirmed malaria (29.9% of 584873 suspect fever cases). An estimated 516576 courses of inappropriate ACT prescription were averted. Conclusions The data indicate high adherence of anti-malarial prescribing practice to RDT results after an initial run-in period. The large reduction in ACT consumption enabled by the move from symptom-based to parasite-based diagnosis demonstrates that effective roll-out and use of malaria RDTs is achievable on a national scale through well planned and structured implementation. While more detailed information on management of parasite-negative cases is required at point of care level to assess overall cost-benefits to the health sector, considerable cost-savings were achieved in ACT

  20. Malaria healthcare policy change in Kenya: implications on sales and marketing of antimalarials.

    PubMed

    Ngure, Peter K; Nyaoke, Lorraine; Minja, David

    2012-03-01

    Malaria healthcare policy change in Kenya aimed at improving the control of malaria but faced a number of challenges in implementation related to marketing of the drugs. This research investigated the effect of the change of the national malaria policy on drug sales and strategic marketing responses of antimalarial pharmaceutical companies in Kenya. A descriptive cross-sectional design was employed to describe the existing state of antimalarials market in Kenya after the change of the malaria healthcare policy. Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recorded a 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by all the companies. Further, SPs (which had been replaced as first-line therapy for malaria) registered good sales. In most cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs and generic antimalarial medicines exceeded that of Coartem® for most distributors. The most common change made to marketing strategies by distributors (62.5%) was to increase imports of antimalarials. A total of 40% of the manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the fact that continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence of malaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensure drugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the national guidelines.

  1. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action.

    PubMed

    Sanz, Laura M; Crespo, Benigno; De-Cózar, Cristina; Ding, Xavier C; Llergo, Jose L; Burrows, Jeremy N; García-Bustos, Jose F; Gamo, Francisco-Javier

    2012-01-01

    Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria.

  2. P. falciparum In Vitro Killing Rates Allow to Discriminate between Different Antimalarial Mode-of-Action

    PubMed Central

    Sanz, Laura M.; Crespo, Benigno; De-Cózar, Cristina; Ding, Xavier C.; Llergo, Jose L.; Burrows, Jeremy N.; García-Bustos, Jose F.; Gamo, Francisco-Javier

    2012-01-01

    Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria. PMID:22383983

  3. Spatial distribution and cluster analysis of retail drug shop characteristics and antimalarial behaviors as reported by private medicine retailers in western Kenya: informing future interventions.

    PubMed

    Rusk, Andria; Highfield, Linda; Wilkerson, J Michael; Harrell, Melissa; Obala, Andrew; Amick, Benjamin

    2016-02-19

    Efforts to improve malaria case management in sub-Saharan Africa have shifted focus to private antimalarial retailers to increase access to appropriate treatment. Demands to decrease intervention cost while increasing efficacy requires interventions tailored to geographic regions with demonstrated need. Cluster analysis presents an opportunity to meet this demand, but has not been applied to the retail sector or antimalarial retailer behaviors. This research conducted cluster analysis on medicine retailer behaviors in Kenya, to improve malaria case management and inform future interventions. Ninety-seven surveys were collected from medicine retailers working in the Webuye Health and Demographic Surveillance Site. Survey items included retailer training, education, antimalarial drug knowledge, recommending behavior, sales, and shop characteristics, and were analyzed using Kulldorff's spatial scan statistic. The Bernoulli purely spatial model for binomial data was used, comparing cases to controls. Statistical significance of found clusters was tested with a likelihood ratio test, using the null hypothesis of no clustering, and a p value based on 999 Monte Carlo simulations. The null hypothesis was rejected with p values of 0.05 or less. A statistically significant cluster of fewer than expected pharmacy-trained retailers was found (RR = .09, p = .001) when compared to the expected random distribution. Drug recommending behavior also yielded a statistically significant cluster, with fewer than expected retailers recommending the correct antimalarial medication to adults (RR = .018, p = .01), and fewer than expected shops selling that medication more often than outdated antimalarials when compared to random distribution (RR = 0.23, p = .007). All three of these clusters were co-located, overlapping in the northwest of the study area. Spatial clustering was found in the data. A concerning amount of correlation was found in one specific region in the study area where

  4. Appropriateness of malaria diagnosis and treatment for fever episodes according to patient history and anti-malarial blood measurement: a cross-sectional survey from Tanzania.

    PubMed

    Gallay, Joanna; Mosha, Dominic; Lutahakana, Erick; Mazuguni, Festo; Zuakulu, Martin; Decosterd, Laurent Arthur; Genton, Blaise; Pothin, Emilie

    2018-05-21

    Monitoring the impact of case management strategies at large scale is essential to evaluate the public health benefit they confer. The use of methodologies relying on objective and standardized endpoints, such as drug levels in the blood, should be encouraged. Population drug use, diagnosis and treatment appropriateness in case of fever according to patient history and anti-malarials blood concentration was evaluated. A cross-sectional survey took place between May and August 2015 in three regions of Tanzania with different levels of malaria endemicity. Interviews were conducted and blood samples were collected by dried blood spots through household surveys for further anti-malarial measurements. Appropriate testing when individuals attended care was defined as a patient with history of fever being tested for malaria and appropriate treatment as (i) having anti-malarial in the blood if the test result was positive (ii) having anti-malarial in the blood if the person was not tested, and (iii) no anti-malarial in the blood when the test result was negative. Amongst 6391 participants included in the anti-malarial analysis, 20.8% (1330/6391) had anti-malarial drug detected in the blood. Only 28.0% (372/1330) of the individuals with anti-malarials in their blood reported the use of anti-malarials within the previous month. Amongst all participants, 16.0% (1021/6391) reported having had a fever in the previous 2 weeks and 37.5% of them (383/1021) had detectable levels of anti-malarials in the blood. Of the individuals who sought care in health facilities, 69.4% (172/248) were tested and 52.0% (129/248) appropriately treated. When other providers were sought, 6% (23/382) of the persons were appropriately tested and 44.2% (169/382) appropriately treated. Overall, the proportion of individuals treated was larger than that being tested [47.3% (298/630) treated, 31.0% (195/630) tested]. This study showed high prevalence of circulating anti-malarial drug in the sampled

  5. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites.

    PubMed

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael; Davioud-Charvet, Elisabeth

    2016-09-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. A combination of new screening assays for prioritization of transmission-blocking antimalarials reveals distinct dynamics of marketed and experimental drugs.

    PubMed

    Bolscher, J M; Koolen, K M J; van Gemert, G J; van de Vegte-Bolmer, M G; Bousema, T; Leroy, D; Sauerwein, R W; Dechering, K J

    2015-05-01

    The development of drugs to reduce malaria transmission is an important part of malaria eradication plans. We set out to develop and validate a combination of new screening assays for prioritization of transmission-blocking molecules. We developed high-throughput assays for screening compounds against gametocytes, the parasite stages responsible for onward transmission to mosquitoes. An existing gametocyte parasitic lactate dehydrogenase (pLDH) assay was adapted for use in 384-well plates, and a novel homogeneous immunoassay to monitor the functional transition of female gametocytes into gametes was developed. A collection of 48 marketed and experimental antimalarials was screened and subsequently tested for impact on sporogony in Anopheles mosquitoes, to directly quantify the transmission-blocking properties of antimalarials in relation to their effects on gametocyte pLDH activity or gametogenesis. The novel screening assays revealed distinct stage-specific kinetics and dynamics of drug effects. Peroxides showed the most potent transmission-blocking effects, with an intermediate speed of action and IC50 values that were 20-40-fold higher than the IC50s against the asexual stages causing clinical malaria. Finally, the novel synthetic peroxide OZ439 appeared to be a promising drug candidate as it exerted gametocytocidal and transmission-blocking effects at clinically relevant concentrations. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Synthesis and antimalarial evaluation of prodrugs of novel fosmidomycin analogues.

    PubMed

    Faísca Phillips, Ana Maria; Nogueira, Fátima; Murtinheira, Fernanda; Barros, Maria Teresa

    2015-01-01

    The continuous development of drug resistance by Plasmodium falciparum, the agent responsible for the most severe forms of malaria, creates the need for the development of novel drugs to fight this disease. Fosmidomycin is an effective antimalarial and potent antibiotic, known to act by inhibiting the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), essential for the synthesis of isoprenoids in eubacteria and plasmodia, but not in humans. In this study, novel constrained cyclic prodrug analogues of fosmidomycin were synthesized. One, in which the hydroxamate function is incorporated into a six-membered ring, was found have higher antimalarial activity than fosmidomycin against the chloroquine and mefloquine resistant P. falciparum Dd2 strain. In addition, it showed very low cytotoxicity against cultured human cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Drug targets for resistant malaria: Historic to future perspectives.

    PubMed

    Kumar, Sahil; Bhardwaj, T R; Prasad, D N; Singh, Rajesh K

    2018-05-11

    New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. New concepts in antimalarial use and mode of action in dermatology.

    PubMed

    Kalia, Sunil; Dutz, Jan P

    2007-01-01

    Although chloroquine, hydroxychloroquine and quinacrine were originally developed for the treatment of malaria, these medications have been used to treat skin disease for over 50 years. Recent clinical data have confirmed the usefulness of these medications for the treatment of lupus erythematosus. Current research has further enhanced our understanding of the pharmacologic mechanisms of action of these drugs involving inhibition of endosomal toll-like receptor (TLR) signaling limiting B cell and dendritic cell activation. With this understanding, the use of these medications in dermatology is broadening. This article highlights the different antimalarials used within dermatology through their pharmacologic properties and mechanism of action, as well as indicating their clinical uses. In addition, contraindications, adverse effects, and possible drug interactions of antimalarials are reviewed.

  10. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    PubMed Central

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  11. Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals.

    PubMed

    Shibi, Indira G; Aswathy, Lilly; Jisha, Radhakrishnan S; Masand, Vijay H; Gajbhiye, Jayant M

    2016-01-01

    Malaria parasites show resistance to most of the antimalarial drugs and hence developing antimalarials which can act on multitargets rather than a single target will be a promising strategy of drug design. Here we report a new approach by which virtual screening of 292 unique phytochemicals present in 72 traditionally important herbs is used for finding out inhibitors of plasmepsin-2 and falcipain-2 for antimalarial activity against P. falciparum. Initial screenings of the selected molecules by Random Forest algorithm model of Weka using the bioassay datasets AID 504850 and AID 2302 screened 120 out of the total 292 phytochemicals to be active against the targets. Toxtree scan cautioned 21 compounds to be either carcinogenic or mutagenic and were thus removed for further analysis. Out of the remaining 99 compounds, only 46 compounds offered drug-likeness as per the 'rule of five' criteria. Out of ten antimalarial drug targets, only two target proteins such as 3BPF and 3PNR of falcipain-2 and 1PFZ and 2BJU of plasmepsin-2 are selected as targets. The potential binding of the selected 46 compounds to the active sites of these four targets was analyzed using MOE software. The docked conformations and the interactions with the binding pocket residues of the target proteins were understood by 'Ligplot' analysis. It has been found that 8 compounds are dual inhibitors of falcipain-2 and plasmepsin-2, with the best binding energies. Compound 117 (6aR, 12aS)-12a-Hydroxy-9-methoxy-2,3-dimethylenedioxy-8-prenylrotenone (Usaratenoid C) present in the plant Millettia usaramensis showed maximum molecular docking score.

  12. Development of a New Generation of 4-Aminoquinoline Antimalarial Compounds Using Predictive Pharmacokinetic and Toxicology Models

    PubMed Central

    Ray, Sunetra; Madrid, Peter B.; Catz, Paul; LeValley, Susanna E.; Furniss, Michael J.; Rausch, Linda L.; Guy, R. Kiplin; DeRisi, Joseph L.; Iyer, Lalitha V.; Green, Carol E.; Mirsalis, Jon C.

    2010-01-01

    Among the known antimalarial drugs, chloroquine (CQ) and other 4-aminoquinolines have shown high potency and good bioavailability, yet complications associated with drug resistance necessitate the discovery of effective new antimalarial agents. ADMETa prediction studies were employed to evaluate a library of new molecules based on the 4-aminoquinolone-related structure of CQ. Extensive in vitro screening and in vivo pharmacokinetic studies in mice helped to identify two lead molecules, 18 and 4, with promising in vitro therapeutic efficacy, improved ADMET properties, low risk for drug-drug interactions, and desirable pharmacokinetic profiles. Both 18 and 4 are highly potent antimalarial compounds, with IC50 values = 5.6 nM and 17.3 nM, respectively, against the W2 (CQ-resistant) strain of Plasmodium falciparum (IC50 for CQ = 382 nM). When tested in mice, these compounds were found to have biological half-lives and plasma exposure values similar to or higher than those of CQ; they are therefore desirable candidates to pursue in future clinical trials. PMID:20361799

  13. Design, Synthesis and Testing of Metabolically-Stable Antimalarial Compounds

    DTIC Science & Technology

    2008-05-01

    resistant to chloroquine . Developed during World War II, this once was the drug of choice to battle malaria across the globe. Physicians have been forced...compound obtained from the Chinese licorice root, was shown to have antimalarial properties. Synthetic analogues have subsequently been produced and

  14. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review.

    PubMed

    Memvanga, Patrick B; Tona, Gaston L; Mesia, Gauthier K; Lusakibanza, Mariano M; Cimanga, Richard K

    2015-07-01

    Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials

  15. Drug and Vaccine evaluation in the Human Aotus Plasmodium falciparum Model

    DTIC Science & Technology

    2011-05-01

    and phenyl ring systems is anticipated to yield a valuable new antimalarial drug (33). The antimalarial activity and pharmacology of a series of...remains essentially unchanged since 1976, viz. to ascertain the antimalarial activity of drugs against P. falciparum and P. vivax in Aotus. The...Present data on the evaluation of potential antimalarial activity of drugs in the pre-clinical model of Aotus l. lemurinus (Panamanian night

  16. Quality of Artemisinin-Based Combination Formulations for Malaria Treatment: Prevalence and Risk Factors for Poor Quality Medicines in Public Facilities and Private Sector Drug Outlets in Enugu, Nigeria

    PubMed Central

    Kaur, Harparkash; Allan, Elizabeth Louise; Mamadu, Ibrahim; Hall, Zoe; Ibe, Ogochukwu; El Sherbiny, Mohamed; van Wyk, Albert; Yeung, Shunmay; Swamidoss, Isabel; Green, Michael D.; Dwivedi, Prabha; Culzoni, Maria Julia; Clarke, Siân; Schellenberg, David; Fernández, Facundo M.; Onwujekwe, Obinna

    2015-01-01

    Background Artemisinin-based combination therapies are recommended by the World Health Organisation (WHO) as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296) of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artemisinin-containing antimalarials (ACAs) in Enugu metropolis, Nigeria, and compared the resulting quality estimates. Methods ACAs were purchased using three sampling approaches - convenience, mystery clients and overt, within a defined area and sampling frame in Enugu metropolis. The active pharmaceutical ingredients were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results were expressed as percentage of APIs stated on the packaging and used to categorise each sample as acceptable quality, substandard, degraded, or falsified. Results Content analysis of 3024 samples purchased from 421 outlets using convenience (n=200), mystery (n=1,919) and overt (n=905) approaches, showed overall 90.8% ACAs to be of acceptable quality, 6.8% substandard, 1.3% degraded and 1.2% falsified. Convenience sampling yielded a significantly higher prevalence of poor quality ACAs, but was not evident by the mystery and overt sampling strategies both of which yielded results that were comparable between each other. Artesunate (n=135; 4 falsified) and dihydroartemisinin (n=14) monotherapy tablets, not recommended by WHO, were also identified. Conclusion Randomised sampling identified fewer falsified ACAs than previously reported by convenience approaches. Our findings emphasise the need for specific consideration to be given to sampling frame and sampling approach if representative information on drug quality is to be obtained

  17. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    PubMed Central

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  18. Malaria medicines to address drug resistance and support malaria elimination efforts.

    PubMed

    Achan, Jane; Mwesigwa, Julia; Edwin, Chinagozi Precious; D'alessandro, Umberto

    2018-01-01

    Antimalarial drugs are essential weapons to fight malaria and have been used effectively since the 17 th century. However, P.falciparum resistance has been reported to almost all available antimalarial drugs, including artemisinin derivatives, raising concerns that this could jeopardize malaria elimination. Areas covered: In this article, we present a historical perspective of antimalarial drug resistance, review current evidence of resistance to available antimalarial drugs and discuss possible mitigating strategies to address this challenge. Expert commentary: The historical approach to drug resistance has been to change the national treatment policy to an alternative treatment. However, alternatives to artemisinin-based combination treatment are currently extremely limited. Innovative approaches utilizing available schizonticidal drugs such as triple combination therapies or multiple first line treatments could delay the emergence and spread of drug resistance. Transmission blocking drugs like primaquine may play a key role if given to a substantial proportion of malaria infected persons. Deploying antimalarial medicines in mass drug administration or mass screening and treatment campaigns could also contribute to containment efforts by eliminating resistant parasites in some settings. Ultimately, response to drug resistance should also include further investment in the development of new antimalarial drugs.

  19. Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp3)-H Arylation.

    PubMed

    Maetani, Micah; Zoller, Jochen; Melillo, Bruno; Verho, Oscar; Kato, Nobutaka; Pu, Jun; Comer, Eamon; Schreiber, Stuart L

    2017-08-16

    The development of new antimalarial therapeutics is necessary to address the increasing resistance to current drugs. Bicyclic azetidines targeting Plasmodium falciparum phenylalanyl-tRNA synthetase comprise one promising new class of antimalarials, especially due to their activities against three stages of the parasite's life cycle, but a lengthy synthetic route to these compounds may affect the feasibility of delivering new therapeutic agents within the cost constraints of antimalarial drugs. Here, we report an efficient synthesis of antimalarial compound BRD3914 (EC 50 = 15 nM) that hinges on a Pd-catalyzed, directed C(sp 3 )-H arylation of azetidines at the C3 position. This newly developed protocol exhibits a broad substrate scope and provides access to valuable, stereochemically defined building blocks. BRD3914 was evaluated in P. falciparum-infected mice, providing a cure after four oral doses.

  20. Cyquant cell proliferation assay as a fluorescence-based method for in vitro screening of antimalarial activity.

    PubMed

    Sriwilaijaroen, Nongluk; Kelly, Jane Xu; Riscoe, Michael; Wilairat, Prapon

    2004-12-01

    The appearance of drug resistant parasites and the absence of an effective vaccine have resulted in the need for new effective antimalarial drugs. Consequently, a convenient method for in vitro screening of large numbers of antimalarial drug candidates has become apparent. The CyQUANT cell proliferation assay is a highly sensitive fluorescence-based method for quantitation of cell number by measuring the strong fluorescence produced when green GR dye binds to nucleic acids. We have applied the CyQUANT assay method to evaluate the growth of Plasmodium falciparum D6 strain in culture. The GR-nucleic acid fluorescence linearly correlated with percent parasitemia at both 0.75 or 1 percent hematocrit with the same correlation coefficient of r2 = 0.99. The sensitivity of P. falciparum D6 strain to chloroquine and to 3,6-bis-omega-diethylaminoamyloxyxanthone, a novel antimalarial, determined by the CyQUANT assay were comparable to those obtained by the traditional [3H]-ethanolamine assay: IC50 value of chloroquine was 54 nM and 51 nM by the CyQUANT and [3H]-ethanolamine assay, respectively; IC50 value for 3,6-bis-omega-diethylaminoamyloxyxanthone was 254 nM and 223 nM by the CyQUANT and [3H]-ethanolamine assay, respectively. This procedure requires no radioisotope, uses simple equipment, and is an easy and convenient procedure, with no washing and harvesting steps. Moreover, all procedures can be set up continuously and thus, the CyQUANT assay is suitable in automatic high through-put drug screening of antimalarial drugs.

  1. Are patent medicine vendors effective agents in malaria control? Using lot quality assurance sampling to assess quality of practice in Jigawa, Nigeria.

    PubMed

    Berendes, Sima; Adeyemi, Olusegun; Oladele, Edward Adekola; Oresanya, Olusola Bukola; Okoh, Festus; Valadez, Joseph J

    2012-01-01

    Patent medicine vendors (PMV) provide antimalarial treatment and care throughout Sub-Saharan Africa, and can play an important role in the fight against malaria. Their close-to-client infrastructure could enable lifesaving artemisinin-based combination therapy (ACT) to reach patients in time. However, systematic assessments of drug sellers' performance quality are crucial if their role is to be managed within the health system. Lot quality assurance sampling (LQAS) could be an efficient method to monitor and evaluate PMV practice, but has so far never been used for this purpose. In support of the Nigeria Malaria Booster Program we assessed PMV practices in three Senatorial Districts (SDs) of Jigawa, Nigeria. A two-stage LQAS assessed whether at least 80% of PMV stores in SDs used national treatment guidelines. Acceptable sampling errors were set in consultation with government officials (alpha and beta <0.10). The hypergeometric formula determined sample sizes and cut-off values for SDs. A structured assessment tool identified high and low performing SDs for quality of care indicators. Drug vendors performed poorly in all SDs of Jigawa for all indicators. For example, all SDs failed for stocking and selling first-line antimalarials. PMV sold no longer recommended antimalarials, such as Chloroquine, Sulfadoxine-Pyrimethamine and oral Artesunate monotherapy. Most PMV were ignorant of and lacked training about new treatment guidelines that had endorsed ACTs as first-line treatment for uncomplicated malaria. There is urgent need to regularly monitor and improve the availability and quality of malaria treatment provided by medicine sellers in Nigeria; the irrational use of antimalarials in the ACT era revealed in this study bears a high risk of economic loss, death and development of drug resistance. LQAS has been shown to be a suitable method for monitoring malaria-related indicators among PMV, and should be applied in Nigeria and elsewhere to improve service delivery.

  2. Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum

    PubMed Central

    Tiffert, Teresa; Ginsburg, Hagai; Krugliak, Miriam; Elford, Barry C.; Lew, Virgilio L.

    2000-01-01

    The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC50), assessed by parasite incorporation of [3H]hypoxanthine, were between 0.2 and 1.1 μM. CLT concentrations of 2 μM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (≈48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 μM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria. PMID:10618418

  3. A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic beta-sulfonyl-endoperoxides.

    PubMed

    Bachi, Mario D; Korshin, Edward E; Hoos, Roland; Szpilman, Alex M; Ploypradith, Poonsakdi; Xie, Suji; Shapiro, Theresa A; Posner, Gary H

    2003-06-05

    The syntheses and in vitro antimalarial screening of 50 bridged, bicyclic endoperoxides of types 9-13 are reported. In contrast to antimalarial trioxanes of the artemisinin family, but like yingzhaosu A and arteflene, the peroxide function of compounds 9-13 is contained in a 2,3-dioxabicyclo[3.3.1]nonane system 6. Peroxides 9 and 10 (R(1) = OH) are readily available through a multicomponent, sequential, free-radical reaction involving thiol-monoterpenes co-oxygenation (a TOCO reaction). beta-Sulfenyl peroxides 9 and 10 (R(1) = OH) are converted into beta-sulfinyl and beta-sulfonyl peroxides of types 11-13 by controlled S-oxidation and manipulation of the tert-hydroxyl group through acylation, alkylation, or dehydration followed by selective hydrogenation. Ten enantiopure beta-sulfonyl peroxides of types 12 and 13 exhibit in vitro antimalarial activity comparable to that of artemisinin (IC(50) = 6-24 nM against Plasmodium falciparum NF54). In vivo testing of a few selected peroxides against Plasmodium berghei N indicates that the antimalarial efficacies of beta-sulfonyl peroxides 39a, 46a, 46b, and 50a are comparable to those of some of the best antimalarial drugs and are higher than artemisinin against chloroquine-resistant Plasmodium yoelii ssp. NS. In view of the nontoxicity of beta-sulfonyl peroxides 39a, 46a, and 46b in mice, at high dosing, these compounds are regarded as promising antimalarial drug candidates.

  4. Using genetic methods to define the targets of compounds with antimalarial activity

    PubMed Central

    Flannery, Erika L.; Fidock, David A.; Winzeler, Elizabeth A.

    2013-01-01

    Although phenotypic cellular screening has been used to drive antimalarial drug discovery in recent years, in some cases target-based drug discovery remains more attractive. This is especially true when appropriate high-throughput cellular assays are lacking, as is the case for drug discovery efforts that aim to provide a replacement for primaquine (4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine), the only drug that can block Plasmodium transmission to Anopheles mosquitoes and eliminate liver-stage hypnozoites. At present, however, there are no known chemically validated parasite protein targets that are important in all Plasmodium parasite developmental stages and that can be used in traditional biochemical compound screens. We propose that a plethora of novel, chemically validated, cross-stage antimalarial targets still remain to be discovered from the ~5,500 proteins encoded by the Plasmodium genomes. Here we discuss how in vitro evolution of drug-resistant strains of Plasmodium falciparum and subsequent whole-genome analysis can be used to find the targets of some of the many compounds discovered in whole-cell phenotypic screens. PMID:23927658

  5. Basigin is a druggable target for host-oriented antimalarial interventions

    PubMed Central

    Zenonos, Zenon A.; Dummler, Sara K.; Müller-Sienerth, Nicole; Chen, Jianzhu; Preiser, Peter R.; Rayner, Julian C.

    2015-01-01

    Plasmodium falciparum is the parasite responsible for the most lethal form of malaria, an infectious disease that causes a large proportion of childhood deaths and poses a significant barrier to socioeconomic development in many countries. Although antimalarial drugs exist, the repeated emergence and spread of drug-resistant parasites limit their useful lifespan. An alternative strategy that could limit the evolution of drug-resistant parasites is to target host factors that are essential and universally required for parasite growth. Host-targeted therapeutics have been successfully applied in other infectious diseases but have never been attempted for malaria. Here, we report the development of a recombinant chimeric antibody (Ab-1) against basigin, an erythrocyte receptor necessary for parasite invasion as a putative antimalarial therapeutic. Ab-1 inhibited the PfRH5-basigin interaction and potently blocked erythrocyte invasion by all parasite strains tested. Importantly, Ab-1 rapidly cleared an established P. falciparum blood-stage infection with no overt toxicity in an in vivo infection model. Collectively, our data demonstrate that antibodies or other therapeutics targeting host basigin could be an effective treatment for patients infected with multi-drug resistant P. falciparum. PMID:26195724

  6. Monitoring antimalarial drug efficacy in the Greater Mekong Subregion: an overview of in vivo results from 2008 to 2010.

    PubMed

    Bustos, Maria D; Wongsrichanalai, Chansuda; Delacollette, Charles; Burkholder, Brent

    2013-01-01

    In vivo Therapeutic Efficacy Studies (TES) have been routinely conducted in the Greater Mekong Subregion (GMS) for decades. Results from the last 10 years have contributed to update national antimalarial drug policies, to identify hotspots of multi-drug resistance and from 2008 onwards, to stimulate ambitious multi-country programs and innovative research projects to contain and eliminate artemisinin resistant Plasmodium falciparum strains in the subregion. This paper describes the results of TES of first-line antimalarials in six countries of the GMS from 2008-2010 using the WHO in vivo standard protocol. A total of 91 studies were conducted at 32 sentinel sites testing dihydroartemisinin-piperaquine (DHA-PIP), artesunate+mefloquine (A+M), and artemether-lumefantrine (AL) against P. falciparum malaria, as well as chloroquine and DHA-PIP against P vivax. Overall, artemisinin-based combination therapies (ACTs) remained efficacious against falciparum malaria with some exceptions. The 42-day adequate clinical and parasitological response (ACPR) for DHA-PIP dropped significantly to 73% (95% CI 53-87) in 2010 in the same hotspot area of western Cambodia known to harbor artemisinin resistant P. falciparum strains. Because P falciparum sensitivity to artemisinin is a major concern, especially on the Cambodia-Thailand border, attempts were also made to strengthen the monitoring of parasite clearance time elsewhere in the region and globally. The proportion of patients still blood-smear positive on Day 3 above 10% is considered a proxy indicator to strongly suspect the appearance of falciparum resistance to artesunate. This has led to substantial extra measures to confirm the suspicion and eventually set up interventions to eliminate artemisinin resistant parasites. Notably, increasing proportions (>10%) of Day 3 positives among falciparum malaria patients treated with DHA-PIP have been observed in western Cambodia, Myanmar, Viet Nam and China from 2008. Percent Day 3

  7. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  8. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    NASA Astrophysics Data System (ADS)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  9. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs.

    PubMed

    O'Neill, Paul M; Ward, Stephen A; Berry, Neil G; Jeyadevan, J Prince; Biagini, Giancarlo A; Asadollaly, Egbaleh; Park, B Kevin; Bray, Patrick G

    2006-01-01

    A broad overview is presented describing the current knowledge and the ongoing research concerning the 4-aminoquinolines (4AQ) as chemotherapeutic antimalarial agents. Included are discussions of mechanism of action, structure activity relationships (SAR), chemistry, metabolism and toxicity and parasite resistance mechanisms. In discussions of SAR, particular emphasis has been given to activity versus chloroquine resistant strains of Plasmodium falciparum. Promising new lead compounds undergoing development are described and an overview of physicochemical properties of chloroquine and amodiaquine analogues is also included.

  10. In vitro antimalarial studies of novel artemisinin biotransformed products and its derivatives.

    PubMed

    Gaur, Rashmi; Darokar, Mahendra P; Ajayakumar, P V; Shukla, Ram Sajiwan; Bhakuni, Rajendra Singh

    2014-11-01

    Biotransformation of antimalarial drug artemisinin by fungi Rhizopus stolonifer afforded three sesquiterpenoid derivatives. The transformed products were 1α-hydroxyartemisinin (3), 3.0%, a new compound, 10β-hydroxyartemisinin, 54.5% (4) and deoxyartemisinin (2) in 9% yield. The fungus expressed high-metabolism activity (66.5%). The chemical structures of the compounds were elucidated by 1D, 2D NMR spectrometry and mass spectral data. The major compound 10β-hydroxyartemisinin (4) was chemically converted to five new derivatives 5-9. All the compounds 3-9 were subjected for in vitro anti-malarial activity. 10β-Hydroxy-12β-arteether (8), IC50 at 18.29nM was found to be 10 times better active than its precursor 4 (184.56nM) and equipotent antimalarial with natural drug artemisinin whereas the α-derivative 9 is 3 times better than 4 under in vitro conditions. Therefore, the major biotransformation product 4 can be exploited for further modification into new clinically potent molecules. The results show the versatility of microbial-catalyzed biotransformations leading to the introduction of a hydroxyl group at tertiary position in artemisinin in derivative (3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa.

    PubMed

    Kayano, Ana Carolina A V; Lopes, Stefanie C P; Bueno, Fernanda G; Cabral, Elaine C; Souza-Neiras, Wanessa C; Yamauchi, Lucy M; Foglio, Mary A; Eberlin, Marcos N; Mello, João Carlos P; Costa, Fabio T M

    2011-05-02

    To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Crude extract (CE) was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7) and -resistant (S20) strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. At non-toxic concentrations, the 100% ethanolic (F4) and 50% methanolic (F5) fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  12. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    PubMed Central

    2011-01-01

    Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE) was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7) and -resistant (S20) strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4) and 50% methanolic (F5) fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4. PMID:21535894

  13. Optimization of 2-Anilino 4-Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity.

    PubMed

    Gilson, Paul R; Tan, Cyrus; Jarman, Kate E; Lowes, Kym N; Curtis, Joan M; Nguyen, William; Di Rago, Adrian E; Bullen, Hayley E; Prinz, Boris; Duffy, Sandra; Baell, Jonathan B; Hutton, Craig A; Jousset Subroux, Helene; Crabb, Brendan S; Avery, Vicky M; Cowman, Alan F; Sleebs, Brad E

    2017-02-09

    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against P. falciparum parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved in vitro metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of P. falciparum and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden.

  14. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches

    PubMed Central

    Ekland, Eric H.; Schneider, Jessica; Fidock, David A.

    2011-01-01

    Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for “delayed death” compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC50 in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.—Ekland, E. H., Schneider, J., Fidock, D. A. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. PMID:21746861

  15. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay.

    PubMed

    Gopalan, Rajendran C; Emerce, Esra; Wright, Colin W; Karahalil, Bensu; Karakaya, Ali E; Anderson, Diana

    2011-12-15

    Malaria is a mosquito-borne infectious disease caused by the genus Plasmodium. It causes one million deaths per year in African children under the age of 5 years. There is an increasing development of resistance of malarial parasites to chloroquine and other currently used anti-malarial drugs. Some plant products such as the indoloquinoline alkaloid cryptolepine have been shown to have potent activity against P. falciparum in vitro. On account of its toxicity, cryptolepine is not suitable for use as an antimalarial drug but a number of analogues of cryptolepine have been synthesised in an attempt to find compounds that have reduced cytotoxicity and these have been investigated in the present study in human sperm and lymphocytes using the Comet assay. The results suggest that cryptolepine and the analogues cause DNA damage in lymphocytes, but appear to have no effect on human sperm at the assessed doses. In the context of antimalarial drug development, the data suggest that all cryptolepine compounds and in particular 2,7-dibromocryptolepine cause DNA damage and therefore may not be suitable for pre clinical development as antimalarial agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Antimalarial activity of the terpene nerolidol.

    PubMed

    Saito, Alexandre Y; Marin Rodriguez, Adriana A; Menchaca Vega, Danielle S; Sussmann, Rodrigo A C; Kimura, Emília A; Katzin, Alejandro M

    2016-12-01

    Malaria, an infectious disease that kills more than 438,000 people per year worldwide, is a major public health problem. The emergence of strains resistant to conventional therapeutic agents necessitates the discovery of new drugs. We previously demonstrated that various substances, including terpenes, have antimalarial activity in vitro and in vivo. Nerolidol is a sesquiterpene present as an essential oil in several plants that is used in scented products and has been approved by the US Food and Drug Administration as a food-flavouring agent. In this study, the antimalarial activity of nerolidol was investigated in a mouse model of malaria. Mice were infected with Plasmodium berghei ANKA and were treated with 1000 mg/kg/dose nerolidol in two doses delivered by the oral or inhalation route. In mice treated with nerolidol, parasitaemia was inhibited by >99% (oral) and >80% (inhalation) until 14 days after infection (P <0.0001). On Day 30 post-infection, the survival rate of orally treated mice was 90% compared with 16% in controls (P <0.0001). In contrast, inhalation-treated mice showed a survival rate of 50% vs. 42% in controls (P > 0.05). The toxicity of nerolidol administered by either route was not significant, whilst genotoxicity was observed only at the highest dose tested. These results indicate that combined use of nerolidol and other drugs targeting different points of the same isoprenoid pathway may be an effective treatment for malaria. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

    PubMed

    Wicht, Kathryn J; Combrinck, Jill M; Smith, Peter J; Egan, Timothy J

    2015-08-15

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones

    PubMed Central

    Sarkar, Souvik; Siddiqui, Asim A.; Saha, Shubhra J.; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S.; Nag, Shiladitya; Adhikari, Susanta

    2016-01-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  19. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday

    2016-07-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a luminescent reaction and novel microfluidic technology.

    PubMed

    Ho, Nga T; Desai, Darash; Zaman, Muhammad H

    2015-06-01

    Globally, it is estimated that about 10-30% of pharmaceuticals are of poor quality. Poor-quality drugs lead to long-term drug resistance, create morbidity, and strain the financial structure of the health system. The current technologies for substandard drug detection either are too expensive for low-resource regions or only provide qualitative results. To address the current limitations with point-of-care technologies, we have developed an affordable and robust assay to quantify the amount of active pharmaceutical ingredients (APIs) to test product quality. Our novel assay consists of two parts: detection reagent (probe) and a microfluidic testing platform. As antimalarials are of high importance in the global fight against malaria and are often substandard, they are chosen as the model to validate our assay. As a proof-of-concept, we have tested the assay with artesunate pure and substandard samples (Arsuamoon tablets) from Africa and compared with the conventional 96-well plate with spectrophotometer to demonstrate the quantitative efficacy and performance of our system. © The American Society of Tropical Medicine and Hygiene.

  1. Alternatives to currently used antimalarial drugs: in search of a magic bullet.

    PubMed

    Bhagavathula, Akshaya Srikanth; Elnour, Asim Ahmed; Shehab, Abdulla

    2016-11-04

    Malaria is a major cause of morbidity and mortality in many African countries and parts of Asia and South America. Novel approaches to combating the disease have emerged in recent years and several drug candidates are now being tested clinically. However, it is long before these novel drugs can hit the market, especially due to a scarcity of safety and efficacy data.To reduce the malaria burden, the Medicines for Malaria Venture (MMV) was established in 1999 to develop novel medicines through industry and academic partners' collaboration. However, no reviews were focused following various preclinical and clinical studies published since the MMV initiation (2000) to till date.We identify promising approaches in the global portfolio of antimalarial medicines, and highlight challenges and patient specific concerns of these novel molecules. We discuss different clinical studies focusing on the evaluation of novel drugs against malaria in different human trials over the past five years.The drugs KAE609 and DDD107498 are still being evaluated in Phase I trials and preclinical developmental studies. Both the safety and efficacy of novel compounds such as KAF156 and DSM265 need to be assessed further, especially for use in pregnant women. Synthetic non-artemisinin ozonides such as OZ277 raised concerns in terms of its insufficient efficacy against high parasitic loads. Aminoquinoline-based scaffolds such as ferroquine are promising but should be combined with good partner drugs for enhanced efficacy. AQ-13 induced electrocardiac events, which led to prolonged QTc intervals. Tafenoquine, the only new anti-relapse scaffold for patients with a glucose-6-phosphate dehydrogenase deficiency, has raised significant concerns due to its hemolytic activity. Other compounds, including methylene blue (potential transmission blocker) and fosmidomycin (DXP reductoisomerase inhibitor), are available but cannot be used in children.At this stage, we are unable to identify a single magic

  2. Susceptibility of human Plasmodium knowlesi infections to anti-malarials

    PubMed Central

    2013-01-01

    Background Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed. Methods Here the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax. Results Plasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine. Conclusions Taken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken. PMID:24245918

  3. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum.

    PubMed

    Bagavan, Asokan; Rahuman, Abdul Abdul; Kaushik, Naveen Kumar; Sahal, Dinkar

    2011-01-01

    Malaria is a major global public health problem, and the alarming spread of drug resistance and limited number of effective drugs now available underline how important it is to discover new antimalarial compounds. In the present study, ten plants were extracted with ethyl acetate and methanol and tested for their antimalarial activity against chloroquine (CQ)-sensitive (3D7) and CQ-resistant (Dd2 and INDO) strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green assay. Plant extracts showed moderate to good antiparasitic effects. Promising antiplasmodial activity was found in the extracts from two plants, Phyllanthus emblica leaf 50% inhibitory concentration (IC₅₀) 3D7: 7.25 μg/mL (ethyl acetate extract), 3.125 μg/mL (methanol extract), and Syzygium aromaticum flower bud, IC₅₀ 3D7:13 μg/mL, (ethyl acetate extract) and 6.25 μg/mL (methanol extract). Moderate activity (30-75 μg/mL) was found in the ethyl acetate and methanol extracts of Abrus precatorius (seed) and Gloriosa superba (leaf); leaf ethyl acetate extracts of Annona squamosa and flower of Musa paradisiaca. The above mentioned plant extracts were also found to be active against CQ-resistant strains (Dd2 and INDO). Cytotoxicity study with P. emblica leaf and S. aromaticum flower bud, extracts showed good therapeutic indices. These results demonstrate that leaf ethyl acetate and methanol extracts of P. emblica and flower bud extract of S. aromaticum may serve as antimalarial agents even in their crude form. The isolation of compounds from P. emblica and S. aromaticum seems to be of special interest for further antimalarial studies.

  4. New molecular settings to support in vivo anti-malarial assays.

    PubMed

    Bahamontes-Rosa, Noemí; Alejandre, Ane Rodriguez; Gomez, Vanesa; Viera, Sara; Gomez-Lorenzo, María G; Sanz-Alonso, Laura María; Mendoza-Losana, Alfonso

    2016-03-08

    Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.

  5. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del.

    PubMed

    Sadiq, Muhammad Bilal; Tharaphan, Pattamon; Chotivanich, Kesinee; Tarning, Joel; Anal, Anil Kumar

    2017-07-18

    The emergence of drug resistant malaria is threatening our ability to treat and control malaria in the Southeast Asian region. There is an urgent need to develop novel and chemically diverse antimalarial drugs. This study aimed at evaluating the antimalarial and antioxidant potentials of Acacia nilotica plant extracts. The antioxidant activities of leaves, pods and bark extracts were determined by standard antioxidant assays; reducing power capacity, % lipid peroxidation inhibition and ferric reducing antioxidant power assay. The antimalarial activities of plant extracts against Plasmodium falciparum parasites were determined by the 48 h schizont maturation inhibition assay. Further confirmation of schizonticide activity of extracts was made by extending the incubation period up to 96 h after removing the plant extract residues from parasites culture. Inhibition assays were analyzed by dose-response modelling. In all antioxidant assays, leaves of A. nilotica showed higher antioxidant activity than pods and bark. Antimalarial IC 50 values of leaves, pods and bark extracts were 1.29, 4.16 and 4.28 μg/ml respectively, in the 48 h maturation assay. The IC 50 values determined for leaves, pods and bark extracts were 3.72, 5.41 and 5.32 μg/ml respectively, after 96 h of incubation. All extracts inhibited the development of mature schizont, indicating schizonticide activity against P. falciparum. A. nilotica extracts showed promising antimalarial and antioxidant effects. However, further investigation is needed to isolate and identify the active components responsible for the antimalarial and antioxidant effects.

  6. Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents.

    PubMed

    Thompson, Mark J; Louth, Jennifer C; Little, Susan M; Jackson, Matthew P; Boursereau, Yohan; Chen, Beining; Coldham, Iain

    2012-04-01

    Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-β-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-β-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues.

    PubMed

    Cunico, Wilson; Cechinel, Cleber A; Bonacorso, Helio G; Martins, Marcos A P; Zanatta, Nilo; de Souza, Marcus V N; Freitas, Isabela O; Soares, Rodrigo P P; Krettli, Antoniana U

    2006-02-01

    The antimalarial activity of chloroquine-pyrazole analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]hypoxanthine in comparison to controls with no drugs. All but one of the eight (4,5-dihydropyrazol-1-yl) chloroquine 2 derivatives tested showed a significant activity in vitro, thus, are a promising new class of antimalarials. The three most active ones were also tested in vivo against Plasmodium berghei in mice. However, the (pyrazol-1-yl) chloroquine 3 derivatives were mostly inactive, suggesting that the aromatic functionality of the pyrazole ring was critical.

  8. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    PubMed Central

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  9. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents.

    PubMed

    Devender, Nalmala; Gunjan, Sarika; Chhabra, Stuti; Singh, Kartikey; Pasam, Venkata Reddy; Shukla, Sanjeev K; Sharma, Abhisheak; Jaiswal, Swati; Singh, Sunil Kumar; Kumar, Yogesh; Lal, Jawahar; Trivedi, Arun Kumar; Tripathi, Renu; Tripathi, Rama Pati

    2016-02-15

    In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Are Patent Medicine Vendors Effective Agents in Malaria Control? Using Lot Quality Assurance Sampling to Assess Quality of Practice in Jigawa, Nigeria

    PubMed Central

    Berendes, Sima; Adeyemi, Olusegun; Oladele, Edward Adekola; Oresanya, Olusola Bukola; Okoh, Festus; Valadez, Joseph J.

    2012-01-01

    Background Patent medicine vendors (PMV) provide antimalarial treatment and care throughout Sub-Saharan Africa, and can play an important role in the fight against malaria. Their close-to-client infrastructure could enable lifesaving artemisinin-based combination therapy (ACT) to reach patients in time. However, systematic assessments of drug sellers’ performance quality are crucial if their role is to be managed within the health system. Lot quality assurance sampling (LQAS) could be an efficient method to monitor and evaluate PMV practice, but has so far never been used for this purpose. Methods In support of the Nigeria Malaria Booster Program we assessed PMV practices in three Senatorial Districts (SDs) of Jigawa, Nigeria. A two-stage LQAS assessed whether at least 80% of PMV stores in SDs used national treatment guidelines. Acceptable sampling errors were set in consultation with government officials (alpha and beta <0.10). The hypergeometric formula determined sample sizes and cut-off values for SDs. A structured assessment tool identified high and low performing SDs for quality of care indicators. Findings Drug vendors performed poorly in all SDs of Jigawa for all indicators. For example, all SDs failed for stocking and selling first-line antimalarials. PMV sold no longer recommended antimalarials, such as Chloroquine, Sulfadoxine-Pyrimethamine and oral Artesunate monotherapy. Most PMV were ignorant of and lacked training about new treatment guidelines that had endorsed ACTs as first-line treatment for uncomplicated malaria. Conclusion There is urgent need to regularly monitor and improve the availability and quality of malaria treatment provided by medicine sellers in Nigeria; the irrational use of antimalarials in the ACT era revealed in this study bears a high risk of economic loss, death and development of drug resistance. LQAS has been shown to be a suitable method for monitoring malaria-related indicators among PMV, and should be applied in Nigeria

  11. Structure-activity relationships of the antimalarial agent artemisinin. 8. design, synthesis, and CoMFA studies toward the development of artemisinin-based drugs against leishmaniasis and malaria.

    PubMed

    Avery, Mitchell A; Muraleedharan, Kannoth M; Desai, Prashant V; Bandyopadhyaya, Achintya K; Furtado, Marise M; Tekwani, Babu L

    2003-09-25

    Artemisinin (1) and its analogues have been well studied for their antimalarial activity. Here we present the antimalarial activity of some novel C-9-modified artemisinin analogues synthesized using artemisitene as the key intermediate. Further, antileishmanial activity of more than 70 artemisinin derivatives against Leishmania donovani promastigotes is described for the first time. A comprehensive structure-activity relationship study using CoMFA is discussed. These analogues exhibited leishmanicidal activity in micromolar concentrations, and the overall activity profile appears to be similar to that against malaria. Substitution at the C-9beta position was shown to improve the activity in both cases. The 10-deoxo derivatives showed better activity compared to the corresponding lactones. In general, compounds with C-9alpha substitution exhibited lower antimalarial as well as antileishmanial activities compared to the corresponding C-9beta analogues. The importance of the peroxide group for the observed activity of these analogues against leishmania was evident from the fact that 1-deoxyartemisinin analogues did not exhibit antileishmanial activity. The study suggests the possibility of developing artemisinin analogues as potential drug candidates against both malaria and leishmaniasis.

  12. Malaria drug resistance: new observations and developments

    PubMed Central

    Sá, Juliana M.; Chong, Jason L.; Wellems, Thomas E.

    2012-01-01

    Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia. PMID:22023447

  13. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs.

    PubMed

    Helgren, Travis R; Sciotti, Richard J; Lee, Patricia; Duffy, Sandra; Avery, Vicky M; Igbinoba, Osayawemwen; Akoto, Matthew; Hagen, Timothy J

    2015-01-15

    A series of novel aminoalkylated quercetin analogs, prepared via the Mannich reaction of various primary and secondary amines with formaldehyde, were tested for antimalarial activity. The compounds were screened against three drug resistant malarial strains (D6, C235 and W2) and were found to exhibit sub-micromolar activity across all three strains (0.065-13.0μM). The structure-activity relationship determined from the antimalarial activity data suggests the inclusion of phenethyl amine sidechains on the quercetin scaffolding is necessary for potent activity. Additionally, the most active compounds ((5) and (6)) were tested for both early and late stage anti-gametocytocidal activity. Finally, the antimalarial activity data were utilized to construct comparative molecular field analysis (CoMFA) models to be used for further compound refinement. Copyright © 2014 Elqsevier Ltd. All rights reserved.

  14. Decreased availability of antimalarials in the private sector following the policy change from chloroquine to sulphadoxine-pyrimethamine in the Kilombero Valley, Tanzania

    PubMed Central

    Hetzel, Manuel W; Msechu, June J; Goodman, Catherine; Lengeler, Christian; Obrist, Brigit; Kachur, S Patrick; Makemba, Ahmed; Nathan, Rose; Schulze, Alexander; Mshinda, Hassan

    2006-01-01

    Background Malaria control strategies emphasize the need for prompt and effective treatment of malaria episodes. To increase treatment efficacy, Tanzania changed its first-line treatment from chloroquine to sulphadoxine-pyrimethamine (SP) in 2001. The effect of this policy change on the availability of antimalarials was studied in rural south-eastern Tanzania. Methods In 2001 and 2004, the study area was searched for commercial outlets selling drugs and their stocks were recorded. Household information was obtained from the local Demographic Surveillance System. Results From 2001 to 2004, the number of general shops stocking drugs increased by 15% and the number of drug stores nearly doubled. However, the proportion of general shops stocking antimalarials dropped markedly, resulting in an almost 50% decrease of antimalarial selling outlets. This led to more households being located farther from a treatment source. In 2004, five out of 25 studied villages with a total population of 13,506 (18%) had neither a health facility, nor a shop as source of malaria treatment. Conclusion While the change to SP resulted in a higher treatment efficacy, it also led to a decreased antimalarial availability in the study area. Although there was no apparent impact on overall antimalarial use, the decline in access may have disproportionately affected the poorest and most remote groups. In view of the imminent policy change to artemisinin-based combination therapy these issues need to be addressed urgently if the benefits of this new class of antimalarials are to be extended to the whole population. PMID:17105662

  15. Antimalarial drug susceptibility and point mutations associated with drug resistance in 248 Plasmodium falciparum isolates imported from Comoros to Marseille, France in 2004 2006.

    PubMed

    Parola, Philippe; Pradines, Bruno; Simon, Fabrice; Carlotti, Marie-Paule; Minodier, Philippe; Ranjeva, Marie-Pierre; Badiaga, Sékéné; Bertaux, Lionel; Delmont, Jean; Morillon, Marc; Silai, Ramatou; Brouqui, Philippe; Parzy, Daniel

    2007-09-01

    A total of 248 Plasmodium falciparum isolates were sampled in travelers with malaria who came to Marseille, France from Comoros to investigate in vitro activities of antimalarial drugs and molecular markers of drug resistance. Of the 248 isolates, 126 were maintained in culture. Of these, 53% were resistant to chloroquine, and 3% had reduced susceptibility to quinine, mefloquine, and atovaquone; 1% had reduced susceptibility to halofantrine and dihydroartemisinin; 7% had reduced susceptibility to monodesethylamodiaquine; 37% had reduced susceptibility to cycloguanil; and none had reduced susceptibility to lumefantrine. Resistance-associated point mutations were screened in 207 isolates. No mutations in the cytochrome b gene were found. Of the 207 isolates, 119 (58%) had a mutation in the P. falciparum dihydrofolate reductase (Pfdhfr) gene at codon 108, 6 (5%) had mutations in both Pfdhfr codon 108 and the P. falciparum dihydropteroate synthase codon 437, and 115 (56%) had the chloroquine resistance-associated K76T mutation in the P. falciparum chloroquine resistance transporter gene. This study represents a unique opportunity to improve surveillance of P. falciparum drug resistance in Comoros with consequences for treatment and chemoprophylaxis guidelines.

  16. Hydroxyethylamine Based Phthalimides as New Class of Plasmepsin Hits: Design, Synthesis and Antimalarial Evaluation

    PubMed Central

    Singh, Anil K.; Rathore, Sumit; Tang, Yan; Goldfarb, Nathan E.; Dunn, Ben M.; Rajendran, Vinoth; Ghosh, Prahlad C.; Singh, Neelu; Latha, N.; Singh, Brajendra K.; Rawat, Manmeet; Rathi, Brijesh

    2015-01-01

    A novel class of phthalimides functionalized with privileged scaffolds was designed, synthesized and evaluated as potential inhibitors of plasmepsin 2 (Ki: 0.99 ± 0.1 μM for 6u) and plasmepsin 4 (Ki: 3.3 ± 0.3 μM for 6t), enzymes found in the digestive vacuole of the plasmodium parasite and considered as crucial drug targets. Three compounds were identified as potential candidates for further development. The listed compounds were also assayed for their antimalarial efficacy against chloroquine (CQ) sensitive strain (3D7) of Plasmodium falciparum. Assay of twenty seven hydroxyethylamine derivatives revealed four (5e, 6j, 6o and 6s) as strongly active, which were further evaluated against CQ resistant strain (7GB) of P. falciparum. Compound 5e possessing the piperidinopiperidine moiety exhibited promising antimalarial activity with an IC50 of 1.16 ± 0.04 μM. Further, compounds 5e, 6j, 6o and 6s exhibited low cytotoxic effect on MCF-7 cell line. Compound 6s possessing C 2 symmetry was identified as the least cytotoxic with significant antimalarial activity (IC50: 1.30 ± 0.03 μM). The combined presence of hydroxyethylamine and cyclic amines (piperazines and piperidines) was observed as crucial for the activity. The current studies suggest that hydroxyethylamine based molecules act as potent antimalarial agent and may be helpful in drug development. PMID:26502278

  17. Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity.

    PubMed

    Ke, Hangjun; Morrisey, Joanne M; Qu, Shiwei; Chantarasriwong, Oraphin; Mather, Michael W; Theodorakis, Emmanuel A; Vaidya, Akhil B

    2017-01-01

    Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents. Copyright © 2016 American Society for Microbiology.

  18. Back to the Future: Lessons Learned in Modern Target-based and Whole-Cell Lead Optimization of Antimalarials

    PubMed Central

    Chatterjee, Arnab K; Yeung, Bryan KS

    2012-01-01

    Antimalarial drug discovery has historically benefited from the whole-cell (phenotypic) screening approach to identify lead molecules in the search for new drugs. However over the past two decades there has been a shift in the pharmaceutical industry to move away from whole-cell screening to target-based approaches. As part of a Wellcome Trust and Medicines for Malaria Venture (MMV) funded consortium to discover new blood-stage antimalarials, we used both approaches to identify new antimalarial chemotypes, two of which have progressed beyond the lead optimization phase and display excellent in vivo efficacy in mice. These two advanced series were identified through a cell-based optimization devoid of target information and in this review we summarize the advantages of this approach versus a target-based optimization. Although the each lead optimization required slightly different medicinal chemistry strategies, we observed some common issues across the different the scaffolds which could be applied to other cell based lead optimization programs. PMID:22242845

  19. Computational studies of new potential antimalarial compounds Stereoelectronic complementarity with the receptor

    NASA Astrophysics Data System (ADS)

    Portela, César; Afonso, Carlos M. M.; Pinto, Madalena M. M.; João Ramos, Maria

    2003-09-01

    One of the most important pharmacological mechanisms of antimalarial action is the inhibition of the aggregation of hematin into hemozoin. We present a group of new potential antimalarial molecules for which we have performed a DFT study of their stereoelectronic properties. Additionally, the same calculations were carried out for the two putative drug receptors involved in the referred activity, i.e., hematin μ-oxo dimer and hemozoin. A complementarity between the structural and electronic profiles of the planned molecules and the receptors can be observed. A docking study of the new compounds in relation to the two putative receptors is also presented, providing a correlation with the defined electrostatic complementarity.

  20. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    PubMed

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets

    PubMed Central

    Akala, Hoseah M.; Macharia, Rosaline W.; Juma, Dennis W.; Cheruiyot, Agnes C.; Andagalu, Ben; Brown, Mathew L.; El-Shemy, Hany A.; Nyanjom, Steven G.

    2017-01-01

    Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens. PMID:29088219

  2. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    PubMed Central

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  3. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    PubMed

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  4. New Potential Antimalarial Agents: Design, Synthesis and Biological Evaluation of Some Novel Quinoline Derivatives as Antimalarial Agents.

    PubMed

    Radini, Ibrahim Ali M; Elsheikh, Tarek M Y; El-Telbani, Emad M; Khidre, Rizk E

    2016-07-14

    A novel series of dihydropyrimidines (DHPMs) 4a-j; 2-oxopyran-3-carboxylate 7a,b; 1-amino-1,2-dihydropyridine-3-carboxylate 8; and 1,3,4-oxadiazole derivatives 12 with quinolinyl residues have been synthesized in fairly good yields. The structure of the newly synthesized compounds was elucidated on the basis of analytical and spectral analyses. In vitro antimalarial evaluation of the synthesized quinoline derivatives against Plasmodium falciparum revealed them to possess moderate to high antimalarial activities, with IC50 values ranging from 0.014-5.87 μg/mL. Compounds 4b,g,i and 12 showed excellent antimalarial activity against to Plasmodium falciparum compared with the antimalarial agent chloroquine (CQ).

  5. 2,3,8-Trisubstituted Quinolines with Antimalarial Activity.

    PubMed

    Martinez, Pablo D G; Krake, Susann H; Poggi, Maitia L; Campbell, Simon F; Willis, Paul A; Dias, Luiz C

    2018-01-01

    Combination therapy drugs are considered a fundamental way to control malaria as it mimimizes the risk of emergence of resistance to the individual partner drugs. Consequently, this type of therapy constitutes a driving force for the discovery of new drugs with different modes of action, since this will provide options for combining different drugs to achieve the optimum antimalarial treatment. In this context, a 2,3,8-trisubstitued quinoline compound was found in a high throughput screen (HTS) to show an excellent inhibition of P. falciparum NF54 (IC50 = 22 nM) and low cytotoxicity. We performed a detailed evaluation of the substituents to improve the metabolic stability and solubility liabilities of the original hit and identified derivatives with enhanced physicochemical and/or PK properties and that maintained biological activity. However the high potency was not retained on testing against drug resistant plasmodium strains.

  6. Deconstructing Quinoline-Class Antimalarials to Identify Fundamental Physicochemical Properties of Beta-Hematin Crystal Growth Inhibitors.

    PubMed

    Olafson, Katy N; Nguyen, Tam Q; Vekilov, Peter G; Rimer, Jeffrey D

    2017-10-04

    A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paeshuyse, Jan; Coelmont, Lotte; Vliegen, Inge

    2006-09-15

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC{sub 5}) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 {+-} 21 {mu}M. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivatesmore » the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 {mu}M) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.« less

  8. Drug Development Against Parasitic Diseases: Synthesis of the Antimalarial Agent Qinghaosu and Analogs.

    DTIC Science & Technology

    A stereoselective total synthesis of (+)- artemisinin has been improved from 18 steps to 13 steps with a resultant 12-fold increase in the overall...yield. A new class of tricyclic analogs of artemisinin has been discovered that possess good in vitro antimalarial activity. U.S. and foreign patents

  9. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    PubMed Central

    Mishra, Kirti; Dash, Aditya P; Swain, Bijay K; Dey, Nrisingha

    2009-01-01

    Background Herbal extracts of Andrographis paniculata (AP) and Hedyotis corymbosa (HC) are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50) of AP (7.2 μg/ml) was found better than HC (10.8 μg/ml). Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC) and their individual synergism with curcumin (AP+CUR, HC+CUR) were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs. PMID:19216765

  10. Decreasing Efficacy of Antimalarial Combination Therapy in Uganda Explained by Decreasing Host Immunity Rather than Increasing Drug Resistance

    PubMed Central

    Greenhouse, Bryan; Slater, Madeline; Njama-Meya, Denise; Nzarubara, Bridget; Maiteki-Sebuguzi, Catherine; Clark, Tamara D.; Staedke, Sarah G.; Kamya, Moses R.; Hubbard, Alan; Rosenthal, Philip J.; Dorsey, Grant

    2009-01-01

    Background Improved control efforts are reducing the burden of malaria in Africa, but may result in decreased antimalarial immunity. Methods A cohort of 129 children aged 1–10 years in Kampala, Uganda were treated with amodiaquine+sulfadoxine-pyrimethamine for 396 episodes of uncomplicated malaria over a 29 month period as part of a longitudinal clinical trial. Results The risk of treatment failure increased over the course of the study from 5% to 21% (HR=2.4/yr, 95%CI=1.3–4.3). Parasite genetic polymorphisms were associated with an increased risk of failure, but their prevalence did not change over time. Three markers of antimalarial immunity were associated with a decreased risk of treatment failure: increased age (HR=0.5/5yrs, 95%CI=0.2–1.2), living in an area of higher malaria incidence (HR=0.26, 95%CI=0.11–0.64), and recent asymptomatic parasitemia (HR=0.06, 95%CI=0.01–0.36). In multivariate analysis, adjustment for recent asymptomatic parasitemia, but not parasite polymorphisms, removed the association between calendar time and the risk of treatment failure (HR=1.5/yr, 95%CI=0.7–3.4), suggesting that worsening treatment efficacy was best explained by decreasing host immunity. Conclusion Declining immunity in our study population appeared to be the primary factor underlying decreased efficacy of amodiaquine+sulfadoxine-pyrimethamine. With improved malaria control efforts, decreasing immunity may unmask resistance to partially efficacious drugs. PMID:19199542

  11. High Accumulation and In Vivo Recycling of the New Antimalarial Albitiazolium Lead to Rapid Parasite Death.

    PubMed

    Wein, Sharon; Taudon, Nicolas; Maynadier, Marjorie; Tran Van Ba, Christophe; Margout, Delphine; Bordat, Yann; Fraisse, Laurent; Wengelnik, Kai; Cerdan, Rachel; Bressolle-Gomeni, Françoise; Vial, Henri J

    2017-08-01

    Albitiazolium is the lead compound of bisthiazolium choline analogues and exerts powerful in vitro and in vivo antimalarial activities. Here we provide new insight into the fate of albitiazolium in vivo in mice and how it exerts its pharmacological activity. We show that the drug exhibits rapid and potent activity and has very favorable pharmacokinetic and pharmacodynamic properties. Pharmacokinetic studies in Plasmodium vinckei -infected mice indicated that albitiazolium rapidly and specifically accumulates to a great extent (cellular accumulation ratio, >150) in infected erythrocytes. Unexpectedly, plasma concentrations and the area under concentration-time curves increased by 15% and 69% when mice were infected at 0.9% and 8.9% parasitemia, respectively. Albitiazolium that had accumulated in infected erythrocytes and in the spleen was released into the plasma, where it was then available for another round of pharmacological activity. This recycling of the accumulated drug, after the rupture of the infected erythrocytes, likely extends its pharmacological effect. We also established a new viability assay in the P. vinckei -infected mouse model to discriminate between fast- and slow-acting antimalarials. We found that albitiazolium impaired parasite viability in less than 6 and 3 h at the ring and late stages, respectively, while parasite morphology was affected more belatedly. This highlights that viability and morphology are two parameters that can be differentially affected by a drug treatment, an element that should be taken into account when screening new antimalarial drugs. Copyright © 2017 American Society for Microbiology.

  12. Insights into the Role of Heme in the Mechanism of Action of Antimalarials

    PubMed Central

    Combrinck, Jill M.; Mabotha, Tebogo E.; Ncokazi, Kanyile K.; Ambele, Melvin A.; Taylor, Dale; Smith, Peter J.; Hoppe, Heinrich C.; Egan, Timothy J.

    2012-01-01

    Using cell fractionation and measurement of Fe(III)heme-pyridine, the antimalarial chloroquine (CQ) has been shown to cause a dose-dependent decrease in hemozoin and concomitant increase in toxic “free” heme in cultured Plasmodium falciparum that is directly correlated with parasite survival. Transmission electron microscopy techniques have further shown that heme is redistributed from the parasite digestive vacuole to the cytoplasm and that CQ disrupts hemozoin crystal growth, resulting in mosaic boundaries in the crystals formed in the parasite. Extension of the cell fractionation study to other drugs has shown that artesunate, amodiaquine, lumefantrine, mefloquine and quinine, all clinically important antimalarials, also inhibit hemozoin formation in the parasite cell, while the antifolate pyrimethamine and its combination with sulfadoxine do not. This study finally provides direct evidence in support of the hemozoin inhibition hypothesis for the mechanism of action of CQ and shows that other quinoline and related antimalarials inhibit cellular hemozoin formation. PMID:23043646

  13. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds

    PubMed Central

    2014-01-01

    Background Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. Methods In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. Results NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. Conclusions The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns. PMID

  14. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds.

    PubMed

    Marcsisin, Sean R; Sousa, Jason C; Reichard, Gregory A; Caridha, Diana; Zeng, Qiang; Roncal, Norma; McNulty, Ronan; Careagabarja, Julio; Sciotti, Richard J; Bennett, Jason W; Zottig, Victor E; Deye, Gregory; Li, Qigui; Read, Lisa; Hickman, Mark; Dhammika Nanayakkara, N P; Walker, Larry A; Smith, Bryan; Melendez, Victor; Pybus, Brandon S

    2014-01-03

    Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.

  15. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon.

    PubMed

    Lima, Renata B S; Rocha e Silva, Luiz F; Melo, Marcia R S; Costa, Jaqueline S; Picanço, Neila S; Lima, Emerson S; Vasconcellos, Marne C; Boleti, Ana Paula A; Santos, Jakeline M P; Amorim, Rodrigo C N; Chaves, Francisco C M; Coutinho, Julia P; Tadei, Wanderli P; Krettli, Antoniana U; Pohlit, Adrian M

    2015-12-18

    The anti-malarials quinine and artemisinin were isolated from traditionally used plants (Cinchona spp. and Artemisia annua, respectively). The synthetic quinoline anti-malarials (e.g. chloroquine) and semi-synthetic artemisinin derivatives (e.g. artesunate) were developed based on these natural products. Malaria is endemic to the Amazon region where Plasmodium falciparum and Plasmodium vivax drug-resistance is of concern. There is an urgent need for new anti-malarials. Traditionally used Amazonian plants may provide new treatments for drug-resistant P. vivax and P. falciparum. Herein, the in vitro and in vivo antiplasmodial activity and cytotoxicity of medicinal plant extracts were investigated. Sixty-nine extracts from 11 plant species were prepared and screened for in vitro activity against P. falciparum K1 strain and for cytotoxicity against human fibroblasts and two melanoma cell lines. Median inhibitory concentrations (IC50) were established against chloroquine-resistant P. falciparum W2 clone using monoclonal anti-HRPII (histidine-rich protein II) antibodies in an enzyme-linked immunosorbent assay. Extracts were evaluated for toxicity against murine macrophages (IC50) and selectivity indices (SI) were determined. Three extracts were also evaluated orally in Plasmodium berghei-infected mice. High in vitro antiplasmodial activity (IC50 = 6.4-9.9 µg/mL) was observed for Andropogon leucostachyus aerial part methanol extracts, Croton cajucara red variety leaf chloroform extracts, Miconia nervosa leaf methanol extracts, and Xylopia amazonica leaf chloroform and branch ethanol extracts. Paullinia cupana branch chloroform extracts and Croton cajucara red variety leaf ethanol extracts were toxic to fibroblasts and or melanoma cells. Xylopia amazonica branch ethanol extracts and Zanthoxylum djalma-batistae branch chloroform extracts were toxic to macrophages (IC50 = 6.9 and 24.7 µg/mL, respectively). Andropogon leucostachyus extracts were the most selective (SI >28

  16. Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin.

    PubMed

    Phukon, Pinkee; Radhapyari, Keisham; Konwar, Bolin Kumar; Khan, Raju

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate-gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate-gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01-0.08μg mL(-1)) with sensitivity of 0.26μAμg mL(-1). The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035μg mL(-1) and 0.0036μg mL(-1) in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment of Markers of Antimalarial Drug Resistance in Plasmodium falciparum Isolates from Pregnant Women in Lagos, Nigeria.

    PubMed

    Agomo, Chimere Obiora; Oyibo, Wellington Aghoghovwia; Sutherland, Colin; Hallet, Rachael; Oguike, Mary

    2016-01-01

    The use of antimalarial drugs for prevention and treatment is a major strategy in the prevention of malaria in pregnancy. Although sulphadoxine-pyrimethamine (SP) is currently recommended for intermittent preventive treatment of malaria during pregnancy in Nigeria, previously used drugs for prophylaxis such as chloroquine (CQ) and pyrimethamine are accessible as they are purchased over the counter. This study describes the markers of absence or presence of resistance to quinoline (Pfcrt and Pfmdr 1) and type 1 antifolate antimalarial medicines (Pfdhfr). Plasmodium falciparum-positive dried blood spots from pregnant women attending antenatal clinics for the first time during current pregnancy were investigated for the presence of mutations at codons 72-76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene by real time polymerase chain reaction (PCR) using haplotype-specific probes. PCR followed by sequence analysis was used to identify mutations at codons 86, 184, 1034, 1042 and 1246 of P. falciparum multi-drug resistance-1 (Pfmdr1) gene; and codons 16, 50, 51, 59, 108, 140 and 164 of Pfdhfr gene. Two haplotypes of Pfcrt (n = 54) were observed: CVMNK 13(24.2%) and CVIET 41 (75.9%) of the samples. The SVMNT haplotype was absent in this population. The Pfmdr1 (n = 28) haplotypes were NYSND 15(53.6%), YYSND 5(17.9%), NFSND 6(21.4%) and YFSND 2(7.1%). The Pfdhfr (n = 15) were ACNCSVI 4(26.7%), and ACICNSVI 1(6.7%) and ACIRNVI 10 (66.7%). The rate of occurrence of Pfcrt 76T, Pfdhfr108N, Pfmdr186Y and 184F were 75.9%, 73.3%, 25% and 28.1% respectively. The Pfmdr1 86Y was associated with low parasitaemia (median = 71 parasites/μl, P = 0.024) while Pfcrt 76T was associated with young maternal age (mean 24.1 ± 4.5 years; P = 0.006). The median parasitaemia were similar (P>0.05) in wild and mutant strains of Pfcrt 76, Pfmdr1 184 and Pfdhfr 108. There was no association between gravidity or gestational age of the women and presence of mutations in the

  18. Assessment of Markers of Antimalarial Drug Resistance in Plasmodium falciparum Isolates from Pregnant Women in Lagos, Nigeria

    PubMed Central

    Agomo, Chimere Obiora; Oyibo, Wellington Aghoghovwia; Sutherland, Colin; Hallet, Rachael; Oguike, Mary

    2016-01-01

    Background The use of antimalarial drugs for prevention and treatment is a major strategy in the prevention of malaria in pregnancy. Although sulphadoxine-pyrimethamine (SP) is currently recommended for intermittent preventive treatment of malaria during pregnancy in Nigeria, previously used drugs for prophylaxis such as chloroquine (CQ) and pyrimethamine are accessible as they are purchased over the counter. This study describes the markers of absence or presence of resistance to quinoline (Pfcrt and Pfmdr 1) and type 1 antifolate antimalarial medicines (Pfdhfr). Methods Plasmodium falciparum-positive dried blood spots from pregnant women attending antenatal clinics for the first time during current pregnancy were investigated for the presence of mutations at codons 72–76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene by real time polymerase chain reaction (PCR) using haplotype-specific probes. PCR followed by sequence analysis was used to identify mutations at codons 86, 184, 1034, 1042 and 1246 of P. falciparum multi-drug resistance-1 (Pfmdr1) gene; and codons 16, 50, 51, 59, 108, 140 and 164 of Pfdhfr gene. Results Two haplotypes of Pfcrt (n = 54) were observed: CVMNK 13(24.2%) and CVIET 41 (75.9%) of the samples. The SVMNT haplotype was absent in this population. The Pfmdr1 (n = 28) haplotypes were NYSND 15(53.6%), YYSND 5(17.9%), NFSND 6(21.4%) and YFSND 2(7.1%). The Pfdhfr (n = 15) were ACNCSVI 4(26.7%), and ACICNSVI 1(6.7%) and ACIRNVI 10 (66.7%). The rate of occurrence of Pfcrt 76T, Pfdhfr108N, Pfmdr186Yand184F were 75.9%, 73.3%, 25% and 28.1% respectively. The Pfmdr1 86Y was associated with low parasitaemia (median = 71 parasites/μl, P = 0.024) while Pfcrt 76T was associated with young maternal age (mean 24.1 ± 4.5 years; P = 0.006). The median parasitaemia were similar (P>0.05) in wild and mutant strains of Pfcrt 76, Pfmdr1 184 and Pfdhfr 108. There was no association between gravidity or gestational age of the women and

  19. Evolutionary ARMS Race: Antimalarial Resistance Molecular Surveillance.

    PubMed

    Prosser, Christiane; Meyer, Wieland; Ellis, John; Lee, Rogan

    2018-04-01

    Molecular surveillance of antimalarial drug resistance markers has become an important part of resistance detection and containment. In the current climate of multidrug resistance, including resistance to the global front-line drug artemisinin, there is a consensus to upscale molecular surveillance. The most salient limitation to current surveillance efforts is that skill and infrastructure requirements preclude many regions. This includes sub-Saharan Africa, where Plasmodium falciparum is responsible for most of the global malaria disease burden. New molecular and data technologies have emerged with an emphasis on accessibility. These may allow surveillance to be conducted in broad settings where it is most needed, including at the primary healthcare level in endemic countries, and extending to the village health worker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. High content live cell imaging for the discovery of new antimalarial marine natural products

    PubMed Central

    2012-01-01

    Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291

  1. High content live cell imaging for the discovery of new antimalarial marine natural products.

    PubMed

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  2. Significant Divergence in Sensitivity to Antimalarial Drugs between Neighboring Plasmodium falciparum Populations along the Eastern Border of Myanmar

    PubMed Central

    Zeng, Weilin; Bai, Yao; Wang, Meilian; Wang, Zenglei; Deng, Shuang; Ruan, Yonghua; Feng, Shi; Yang, Zhaoqing

    2016-01-01

    ABSTRACT Malaria parasites in different areas where malaria is endemic display different levels of resistance to antimalarial drugs as the result of varied drug use histories. To provide updated knowledge of drug sensitivities during the malaria elimination phase in Southeast Asia, an epicenter of multidrug resistance, we determined in vitro susceptibilities of culture-adapted Plasmodium falciparum isolates from two eastern border regions (Wa and Kachin) of Myanmar to 10 drugs. Despite their close proximity, the Kachin parasites displayed higher 50% inhibitory concentrations than the Wa parasites to chloroquine, piperaquine, naphthoquine, mefloquine, quinine, pyrimethamine, pyronaridine, lumefantrine, and dihydroartemisinin. Genotyping of genes associated with drug resistance also showed significant differences in the prevalence rates of mutant alleles between the two regions. Particularly, major pfdhfr mutations mediating pyrimethamine resistance and the pfdhps A437G mutation had significantly higher frequencies in the Kachin parasites (P < 0.005). Moreover, when pfdhfr and pfdhps were considered together, the wild-type allele was found only in the Wa samples (22.6%). In addition, the pfmdr1 Y184F mutation reached 38.7% in the Kachin parasites, compared to 9.7% in the Wa parasites, whereas N86Y was only detected in the Wa parasites, at 22.6%. Furthermore, the F446I mutation and all mutations in the propeller domain of the PfK13 gene were significantly more frequent in the Kachin parasites. Collectively, this work demonstrates that even in spatially closely separated regions, parasites can exhibit drastic differences in drug sensitivities and genetic makeups underlying drug resistance, which may reflect regionally different drug histories and genetic drift of these isolated parasite populations. PMID:27919892

  3. Synthesis and evaluation of 7-substituted 4-aminoquinoline analogues for antimalarial activity.

    PubMed

    Hwang, Jong Yeon; Kawasuji, Takashi; Lowes, David J; Clark, Julie A; Connelly, Michele C; Zhu, Fangyi; Guiguemde, W Armand; Sigal, Martina S; Wilson, Emily B; Derisi, Joseph L; Guy, R Kiplin

    2011-10-27

    We previously reported that substituted 4-aminoquinolines with a phenyl ether substituent at the 7-position of the quinoline ring and the capability of intramolecular hydrogen bonding between the protonated amine on the side chain and a hydrogen bond acceptor on the amine's alkyl substituents exhibited potent antimalarial activity against the multidrug resistant strain P. falciparum W2. We employed a parallel synthetic method to generate diaryl ether, biaryl, and alkylaryl 4-aminoquinoline analogues in the background of a limited number of side chain variations that had previously afforded potent 4-aminoquinolines. All subsets were evaluated for their antimalarial activity against the chloroquine-sensitive strain 3D7 and the chloroquine-resistant K1 strain as well as for cytotoxicity against mammalian cell lines. While all three arrays showed good antimalarial activity, only the biaryl-containing subset showed consistently good potency against the drug-resistant K1 strain and good selectivity with regard to mammalian cytotoxicity. Overall, our data indicate that the biaryl-containing series contains promising candidates for further study.

  4. Plasmodium falciparum in vitro continuous culture conditions: A comparison of parasite susceptibility and tolerance to anti-malarial drugs throughout the asexual intra-erythrocytic life cycle.

    PubMed

    Duffy, Sandra; Avery, Vicky M

    2017-12-01

    The continuous culture of Plasmodium falciparum is often seen as a means to an end, that end being to probe the biology of the parasite in question, and ultimately for many in the malaria drug discovery arena, to identify means of killing the parasite in order to treat malaria. In vitro continuous culture of Plasmodium falciparum is a fundamental requirement when undertaking malaria research where the primary objectives utilise viable parasites of a desired lifecycle stage. This investigation, and resulting data, compared the impact culturing Plasmodium falciparum long term (4 months) in different environmental conditions had on experimental outcomes and thus conclusions. The example presented here focused specifically on the effect culture conditions had on the in vitro tolerance of Plasmodium falciparum to standard anti-malarial drugs, including artemisinin and lumefantrine. Historical data from an independent experiment for 3D7-ALB (5% O 2 ) was also compared with that obtained from this study. We concluded that parasites cultured for several months in media supplemented with a serum substitute such as Albumax II ® or within hyperoxic conditions (21% O 2 ), demonstrate highly variable responses to artemisinin and lumefantrine but not all anti-malarial drugs, when compared to those cultured in human serum in combination with Albumax II ® under normoxic conditions (5% O 2 ) for the parasite. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch.

    PubMed

    Asnaashari, Solmaz; Heshmati Afshar, Fariba; Ebrahimi, Atefeh; Bamdad Moghadam, Sedigheh; Delazar, Abbas

    2015-01-01

    The risk of drug resistance and the use of medicinal plants in malaria prevention and treatment have led to the search for new antimalarial compounds with natural origin. In the current study, six extracts with different polarity from aerial parts and rhizomes of Eremostachys macrophylla Montbr. & Auch., were screened for their antimalarial properties by cell-free β-hematin formation assay. Dichloromethane (DCM) extracts of both parts of plant showed significant antimalarial activities with IC50 values of 0.797 ± 0.016 mg/mL in aerial parts and 0.324 ± 0.039 mg/mL in rhizomes compared to positive control (Chloroquine, IC50 = 0.014 ± 0.003 mg/mL, IC90 = 0.163 ± 0.004 mg/mL). Bioactivity-guided fractionation of the most potent part (DCM extract of rhizomes) by vacuum liquid chromatography (VLC) afforded seven fractions. Sixty percent ethyl acetate/n-hexane fraction showed considerable antimalarial activity with IC50 value of 0.047 ± 0.0003 mg/mL. From 6 extracts with different polarity of E. macrophylla,s aerial parts and rhizomes, the DCM extract of both parts were the most active extract in this assay. The preliminary phytochemical study on the VLC fractions of the most potent part persuades us to focus on purifying the active components of these extracts and to conduct further investigation towards in vivo evaluation.

  6. Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria

    PubMed Central

    Biagini, Giancarlo A.; Fisher, Nicholas; Shone, Alison E.; Mubaraki, Murad A.; Srivastava, Abhishek; Hill, Alisdair; Antoine, Thomas; Warman, Ashley J.; Davies, Jill; Pidathala, Chandrakala; Amewu, Richard K.; Leung, Suet C.; Sharma, Raman; Gibbons, Peter; Hong, David W.; Pacorel, Bénédicte; Lawrenson, Alexandre S.; Charoensutthivarakul, Sitthivut; Taylor, Lee; Berger, Olivier; Mbekeani, Alison; Stocks, Paul A.; Nixon, Gemma L.; Chadwick, James; Hemingway, Janet; Delves, Michael J.; Sinden, Robert E.; Zeeman, Anne-Marie; Kocken, Clemens H. M.; Berry, Neil G.; O’Neill, Paul M.; Ward, Stephen A.

    2012-01-01

    There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc1. Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria. PMID:22566611

  7. Anti-malarial property of steroidal alkaloid conessine isolated from the bark of Holarrhena antidysenterica.

    PubMed

    Dua, Virendra K; Verma, Gaurav; Singh, Bikram; Rajan, Aswathy; Bagai, Upma; Agarwal, Dau Dayal; Gupta, N C; Kumar, Sandeep; Rastogi, Ayushi

    2013-06-10

    In the face of chronic and emerging resistance of parasites to currently available drugs and constant need for new anti-malarials, natural plant products have been the bastion of anti-malarials for thousands of years. Moreover natural plant products and their derivatives have traditionally been a common source of drugs, and represent more than 30% of the current pharmaceutical market. The present study shows evaluation of anti-malarial effects of compound conessine isolated from plant Holarrhena antidysenterica frequently used against malaria in the Garhwal region of north-west Himalaya. In vitro anti-plasmodial activity of compound was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined compound were determined on L-6 cells of rat skeletal muscle myoblast. The four-day test for anti-malarial activity against a chloroquine-sensitive Plasmodium berghei NK65 strain in BALB/c mice was used for monitoring in vivo activity of compound. In liver and kidney function test, the activity of alkaline phosphatase (ALP) was examined by p-NPP method, bilirubin by Jendrassik and Grof method. The urea percentage was determined by modified Berthelot method and creatinine by alkaline picrate method in serum of mice using ENZOPAK/CHEMPAK reagent kits. Compound conessine showed in vitro anti-plasmodial activity with its IC₅₀ value 1.9 μg/ml and 1.3 μg/ml using schizont maturation and pLDH assay respectively. The compound showed cytotoxity IC₅₀= 14 μg/ml against L6 cells of rat skeletal muscle myoblast. The isolated compound from plant H. antidysenterica significantly reduced parasitaemia (at 10 mg/kg exhibited 88.95% parasite inhibition) in P. berghei-infected mice. Due to slightly toxic nature (cytotoxicity = 14), biochemical analysis (liver and kidney function test) of the serum from mice after administration of conessine were also observed. The present investigation demonstrates that the compound

  8. Antimalarial Activity of the Chemical Constituents of the Leaf Latex of Aloe pulcherrima Gilbert and Sebsebe.

    PubMed

    Teka, Tekleab; Bisrat, Daniel; Yeshak, Mariamawit Yonathan; Asres, Kaleab

    2016-10-28

    Malaria is one of the three major global public health threats due to a wide spread resistance of the parasites to the standard antimalarial drugs. Considering this growing problem, the ethnomedicinal approach in the search for new antimalarial drugs from plant sources has proven to be more effective and inexpensive. The leaves of Aloe pulcherrima Gilbert and Sebsebe, an endemic Ethiopian plant, are locally used for the treatment of malaria and other infectious diseases. Application of the leaf latex of A. pulcherrima on preparative silica gel TLC led to the isolation of two C -glycosylated anthrones, identified as nataloin ( 1 ) and 7-hydroxyaloin ( 2 ) by spectroscopic techniques (UV, IR, ¹H- and 13 C-NMR, HR-ESIMS). Both the latex and isolated compounds displayed antimalarial activity in a dose-independent manner using a four-day suppressive test, with the highest percent suppression of 56.2% achieved at 200 mg/kg/day for 2 . The results indicate that both the leaf latex of A. pulcherrima and its two major constituents are endowed with antiplasmodial activities, which support the traditional use of the leaves of the plant for the treatment of malaria.

  9. Malaria research and its influence on anti-malarial drug policy in Malawi: a case study.

    PubMed

    Mwendera, Chikondi; de Jager, Christiaan; Longwe, Herbert; Phiri, Kamija; Hongoro, Charles; Mutero, Clifford M

    2016-06-01

    In 1993, Malawi changed its first-line anti-malarial treatment for uncomplicated malaria from chloroquine to sulfadoxine-pyrimethamine (SP), and in 2007, it changed from SP to lumefantrine-artemether. The change in 1993 raised concerns about whether it had occurred timely and whether it had potentially led to early development of Plasmodium falciparum resistance to SP. This case study examined evidence from Malawi in order to assess if the policy changes were justifiable and supported by evidence. A systematic review of documents and published evidence between 1984 and 1993, when chloroquine was the first-line drug, and 1994 and 2007, when SP was the first-line drug, was conducted herein. The review was accompanied with key informant interviews. A total of 1287 publications related to malaria drug policy changes in sub-Saharan Africa were identified. Using the inclusion criteria, four articles from 1984 to 1993 and eight articles from 1994 to 2007 were reviewed. Between 1984 and 1993, three studies reported on chloroquine poor efficacy prompting policy change according to WHO's recommendation. From 1994 to 2007, four studies conducted in the early years of policy change reported a high SP efficacy of above 80%, retaining it as a first-line drug. Unpublished sentinel site studies between 2005 and 2007 showed a reduced efficacy of SP, influencing policy change to lumefantrine-artemether. The views of key informants indicate that the switch from chloroquine to SP was justified based on local evidence despite unavailability of WHO's policy recommendations, while the switch to lumefantrine-artemether was uncomplicated as the country was following the recommendations from WHO. Ample evidence from Malawi influenced and justified the policy changes. Therefore, locally generated evidence is vital for decision making during policy change.

  10. Clinical development of new prophylactic antimalarial drugs after the 5th Amendment to the Declaration of Helsinki

    PubMed Central

    Dow, Geoffrey S; Magill, Alan J; Ohrt, Colin

    2008-01-01

    Malaria is of continuing concern in nonimmune traveling populations. Traditionally, antimalarial drugs have been developed as agents for dual indications (treatment and prophylaxis). However, since 2000, when the 5th Amendment to the Declaration of Helsinki (DH2000) was adopted, development of new malaria prophylaxis drugs in this manner has ceased. As a consequence, there may not be any new drugs licensed for this indication in the foreseeable future. Major pharmaceutical companies have interpreted DH2000 to mean that the traditional development paradigm may be considered unethical because of doubt over the likelihood of benefit to endemic populations participating in clinical studies, the use of placebo, and the sustainability of post-trial access to study medications. In this article, we explore the basis of these concerns and suggest that the traditional development paradigm remains ethical under certain circumstances. We also consider alternative approaches that may be more attractive to sponsors as they either do not use placebo, or utilize populations in endemic countries who may unambiguously benefit. These approaches represent the way forward in the future, but are at present unproven in clinical practice, and face numerous regulatory, logistical and technical challenges. Consequently, in the short term, we argue that the traditional clinical development paradigm remains the most feasible approach and is ethical and consistent with the spirit of DH2000 under the appropriate circumstances. PMID:19209263

  11. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle.

    PubMed

    Roberts, Bracken F; Zheng, Yongsheng; Cleaveleand, Jacob; Lee, Sukjun; Lee, Eunyoung; Ayong, Lawrence; Yuan, Yu; Chakrabarti, Debopam

    2017-04-01

    Drugs against malaria are losing their effectiveness because of emerging drug resistance. This underscores the need for novel therapeutic options for malaria with mechanism of actions distinct from current antimalarials. To identify novel pharmacophores against malaria we have screened compounds containing structural features of natural products that are pharmacologically relevant. This screening has identified a 4-nitro styrylquinoline (SQ) compound with submicromolar antiplasmodial activity and excellent selectivity. SQ exhibits a cellular action distinct from current antimalarials, acting early on malaria parasite's intraerythrocytic life cycle including merozoite invasion. The compound is a fast-acting parasitocidal agent and also exhibits curative property in the rodent malaria model when administered orally. In this report, we describe the synthesis, preliminary structure-function analysis, and the parasite developmental stage specific action of the SQ scaffold. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence.

    PubMed

    Karunamoorthi, Kaliyaperumal

    2014-06-02

    The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change. Further, responsible stakeholders in

  13. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence

    PubMed Central

    2014-01-01

    Background The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. Methods A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Results Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Conclusion Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change

  14. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    PubMed

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents.

  15. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin.

    PubMed

    Elf, S; Lin, R; Xia, S; Pan, Y; Shan, C; Wu, S; Lonial, S; Gaddh, M; Arellano, M L; Khoury, H J; Khuri, F R; Lee, B H; Boggon, T J; Fan, J; Chen, J

    2017-01-12

    The oxidative pentose phosphate pathway (PPP) is crucial for cancer cell metabolism and tumor growth. We recently reported that targeting a key oxidative PPP enzyme, 6-phosphogluconate dehydrogenase (6PGD), using our novel small-molecule 6PGD inhibitors Physcion and its derivative S3, shows anticancer effects. Notably, humans with genetic deficiency of either 6PGD or another oxidative PPP enzyme, glucose-6-phosphate dehydrogenase, exhibit non-immune hemolytic anemia upon exposure to aspirin and various antimalarial drugs. Inspired by these clinical observations, we examined the anticancer potential of combined treatment with 6PGD inhibitors and antimalarial drugs. We found that stable knockdown of 6PGD sensitizes leukemia cells to antimalarial agent dihydroartemisinin (DHA). Combined treatment with DHA and Physcion activates AMP-activated protein kinase, leading to synergistic inhibition of human leukemia cell viability. Moreover, our combined therapy synergistically attenuates tumor growth in xenograft nude mice injected with human K562 leukemia cells and cell viability of primary leukemia cells from human patients, but shows minimal toxicity to normal hematopoietic cells in mice as well as red blood cells and mononucleocytes from healthy human donors. Our findings reveal the potential for combined therapy using optimized doses of Physcion and DHA as a novel antileukemia treatment without inducing hemolysis.

  16. Surveillance of Travellers: An Additional Tool for Tracking Antimalarial Drug Resistance in Endemic Countries

    PubMed Central

    Gharbi, Myriam; Flegg, Jennifer A.; Pradines, Bruno; Berenger, Ako; Ndiaye, Magatte; Djimdé, Abdoulaye A.; Roper, Cally; Hubert, Véronique; Kendjo, Eric; Venkatesan, Meera; Brasseur, Philippe; Gaye, Oumar; Offianan, André T.; Penali, Louis; Le Bras, Jacques; Guérin, Philippe J.; Study, Members of the French National Reference Center for Imported Malaria

    2013-01-01

    Introduction There are growing concerns about the emergence of resistance to artemisinin-based combination therapies (ACTs). Since the widespread adoption of ACTs, there has been a decrease in the systematic surveillance of antimalarial drug resistance in many malaria-endemic countries. The aim of this work was to test whether data on travellers returning from Africa with malaria could serve as an additional surveillance system of local information sources for the emergence of drug resistance in endemic-countries. Methodology Data were collected from travellers with symptomatic Plasmodium falciparum malaria returning from Senegal (n = 1,993), Mali (n = 2,372), Cote d’Ivoire (n = 4,778) or Cameroon (n = 3,272) and recorded in the French Malaria Reference Centre during the period 1996–2011. Temporal trends of the proportion of parasite isolates that carried the mutant genotype, pfcrt 76T, a marker of resistance to chloroquine (CQ) and pfdhfr 108N, a marker of resistance to pyrimethamine, were compared for travellers and within-country surveys that were identified through a literature review in PubMed. The in vitro response to CQ was also compared between these two groups for parasites from Senegal. Results The trends in the proportion of parasites that carried pfcrt 76T, and pfdhfr 108N, were compared for parasites from travellers and patients within-country using the slopes of the curves over time; no significant differences in the trends were found for any of the 4 countries. These results were supported by in vitro analysis of parasites from the field in Senegal and travellers returning to France, where the trends were also not significantly different. Conclusion The results have not shown different trends in resistance between parasites derived from travellers or from parasites within-country. This work highlights the value of an international database of drug responses in travellers as an additional tool to assess the emergence of drug

  17. Surveillance of travellers: an additional tool for tracking antimalarial drug resistance in endemic countries.

    PubMed

    Gharbi, Myriam; Flegg, Jennifer A; Pradines, Bruno; Berenger, Ako; Ndiaye, Magatte; Djimdé, Abdoulaye A; Roper, Cally; Hubert, Véronique; Kendjo, Eric; Venkatesan, Meera; Brasseur, Philippe; Gaye, Oumar; Offianan, André T; Penali, Louis; Le Bras, Jacques; Guérin, Philippe J

    2013-01-01

    There are growing concerns about the emergence of resistance to artemisinin-based combination therapies (ACTs). Since the widespread adoption of ACTs, there has been a decrease in the systematic surveillance of antimalarial drug resistance in many malaria-endemic countries. The aim of this work was to test whether data on travellers returning from Africa with malaria could serve as an additional surveillance system of local information sources for the emergence of drug resistance in endemic-countries. Data were collected from travellers with symptomatic Plasmodium falciparum malaria returning from Senegal (n = 1,993), Mali (n = 2,372), Cote d'Ivoire (n = 4,778) or Cameroon (n = 3,272) and recorded in the French Malaria Reference Centre during the period 1996-2011. Temporal trends of the proportion of parasite isolates that carried the mutant genotype, pfcrt 76T, a marker of resistance to chloroquine (CQ) and pfdhfr 108N, a marker of resistance to pyrimethamine, were compared for travellers and within-country surveys that were identified through a literature review in PubMed. The in vitro response to CQ was also compared between these two groups for parasites from Senegal. The trends in the proportion of parasites that carried pfcrt 76T, and pfdhfr 108N, were compared for parasites from travellers and patients within-country using the slopes of the curves over time; no significant differences in the trends were found for any of the 4 countries. These results were supported by in vitro analysis of parasites from the field in Senegal and travellers returning to France, where the trends were also not significantly different. The results have not shown different trends in resistance between parasites derived from travellers or from parasites within-country. This work highlights the value of an international database of drug responses in travellers as an additional tool to assess the emergence of drug resistance in endemic areas where information is limited.

  18. Antimalarial pyrido[1,2-a]benzimidazoles.

    PubMed

    Ndakala, Albert J; Gessner, Richard K; Gitari, Patricia W; October, Natasha; White, Karen L; Hudson, Alan; Fakorede, Foluke; Shackleford, David M; Kaiser, Marcel; Yeates, Clive; Charman, Susan A; Chibale, Kelly

    2011-07-14

    A novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 μM v 0.17 μM); potency was retained against a range of drug-sensitive and drug-resistant strains, with negligible cytotoxicity against the mammalian (L-6) cell line (selectivity index of >600). 4c and several close analogues (as HCl or mesylate salts) showed significant efficacy in P. berghei infected mice following both intraperitoneal (ip) and oral (po) administration, with >90% inhibition of parasitemia, accompanied by an increase in the mean survival time (MSD). The pyrido[1,2-a]benzimidazoles appeared to be relatively slow acting in vivo compared to chloroquine, and metabolic stability of the alkylamino side chain was identified as a key issue in influencing in vivo activity.

  19. Microbial burden of some herbal antimalarials marketed at Elele, Rivers State.

    PubMed

    Tatfeng, Y M; Olama, E H; Ojo, T O

    2009-12-30

    Herbal antimalarials still remain an alternative to our traditional communities who can not afford orthodox antimalarials. This study was aimed at investigating the microbial quality of six herbal antimalarials using standard microbiological methods. Of the six preparations analyzed, "schnapps", palm wine and water were the media of preparation; the water base preparations recorded higher microbial load. The mean microbial load was 159.5 × 10(5) cfu/ml and 217.4 × 10(2)cfu/ml in water and alcohol base preparations respectively. The microbial profile of the preparations showed that the schnapps base preparations were predominantly contaminated with Bacillus sp (Aerobic spore bearers) and Mucor spp. The palm wine preparation harboured Bacillus sp, yeasts and Mucor spp while the water base preparations had several isolates such as Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli 0157H7, Proteus mirabilis, Enterococcus feacalis, Serratia marcensces, Staph. aureus, Bacillus spp and Mucor spp. Conclusively, this study underlines the public health importance of these preparations given the high burden of such human pathogen as Ecoli O157H7, Ps aeruginosa, Stahp aureus, etc. in the preparations.

  20. Antimalarial plants used by indigenous people of the Upper Rio Negro in Amazonas, Brazil.

    PubMed

    Kffuri, Carolina Weber; Lopes, Moisés Ahkʉtó; Ming, Lin Chau; Odonne, Guillaume; Kinupp, Valdely Ferreira

    2016-02-03

    This is the first intercultural report of antimalarial plants in this region. The aim of this study was to document the medicinal plants used against malaria by indigenous people in the Upper Rio Negro region and to review the literature on antimalarial activity and traditional use of the cited species. Participant observation, semi-structured interviews, and ethnobotanical walks were conducted with 89 informants in five indigenous communities between April 2010 and November 2013 to obtain information on the use of medicinal plants against malaria. We reviewed academic databases for papers published in scientific journals up to January 2014 in order to find works on ethnopharmacology, ethnobotany, and antimalarial activity of the species cited. Forty-six plant species belonging to 24 families are mentioned. Fabaceae (17.4%), Arecaceae (13.0%) and Euphorbiaceae (6.5%) account together for 36.9% of these species. Only seven plant species showed a relatively high consensus. Among the plant parts, barks (34.0%) and roots (28.0%) were the most widely used. Of the 46 species cited, 18 (39.1%) have already been studied for their antimalarial properties according to the literature, and 26 species (56.5%) have no laboratory essays on antimalarial activity. Local traditional knowledge of the use of antimalarials is still widespread in indigenous communities of the Upper Rio Negro, where 46 plants species used against malaria were recorded. Our studies highlight promising new plants for future studies: Glycidendron amazonicum, Heteropsis tenuispadix, Monopteryx uaucu, Phenakospermum guianensis, Pouteria ucuqui, Sagotia brachysepala and notably Aspidosperma schultesii, Ampelozizyphus amazonicus, Euterpe catinga, E. precatoria, Physalis angulata, Cocos nucifera and Swartzia argentea with high-use consensus. Experimental validation of these remedies may help in developing new drugs for malaria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Prevalence of Plasmodium falciparum Molecular Markers of Antimalarial Drug Resistance in a Residual Malaria Focus Area in Sabah, Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Abdullah, Noor Rain; Sastu, Umi Rubiah; Imwong, Mallika; Muniandy, Prem Kumar; Saat, Muhammad Nor Farhan; Muhammad, Amirrudin; Jelip, Jenarun; Tikuson, Moizin; Yusof, Norsalleh; Rundi, Christina; Mudin, Rose Nani; Syed Mohamed, Ami Fazlin

    2016-01-01

    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control. PMID:27788228

  2. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity.

    PubMed

    Levatić, Jurica; Pavić, Kristina; Perković, Ivana; Uzelac, Lidija; Ester, Katja; Kralj, Marijeta; Kaiser, Marcel; Rottmann, Matthias; Supek, Fran; Zorc, Branka

    2018-02-25

    Primaquine (PQ) is a commonly used drug that can prevent the transmission of Plasmodium falciparum malaria, however toxicity limits its use. We prepared five groups of PQ derivatives: amides 1a-k, ureas 2a-k, semicarbazides 3a,b, acylsemicarbazides 4a-k and bis-ureas 5a-v, and evaluated them for antimalarial activity in vitro against the erythrocytic stage of P. falciparum NF54. Particular substituents, such as trityl (in 2j and 5r) and methoxybenzhydryl (in 3b and 5v) were associated with a favorable cytotoxicity-to-activity ratio. To systematically link structural features of PQ derivatives to antiplasmodial activity, we performed a quantitative structure-activity relationship (QSAR) study using the Support Vector Machines machine learning method. This yielded a highly accurate statistical model (R 2  = 0.776 in cross-validation), which was used to prioritize novel candidate compounds. Seven novel PQ-ureidoamides 10a-g were synthesized and evaluated for activity, highlighting the benzhydryl ureidoamides 10e and 10f derived from p-chlorophenylglycine. Further experiments on human cell lines revealed that 10e and 10f are an order of magnitude less toxic than PQ in vitro while having antimalarial activity indistinguishable from PQ. The toxicity profile of novel compounds 10 toward human cells was particularly favorable when the glucose-6-phosphate dehydrogenase (G6PD) was inhibited, while toxicity of PQ was exacerbated by G6PD inhibition. Our work therefore highlights promising lead compounds for the development of effective antimalarial drugs that may also be safer for G6PD-deficient patients. In addition, we provide computational inferences of antimalarial activity and cytotoxicity for thousands of PQ-like molecular structures. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Synthesis and in vivo antimalarial activity of novel naphthoquine derivatives with linear/cyclic structured pendants.

    PubMed

    Tang, Ling; Bei, Zhuchun; Song, Yabin; Xu, Likun; Wang, Hong; Zhang, Dongna; Dou, Yuanyuan; Lv, Kai; Wang, Hongquan

    2017-07-01

    Naphthoquine (NQ) was discovered by our institute as an antimalarial candidate in 1980s, and currently employed as an artemisinin-based combination therapy partner drug. Resistance to NQ was found in mouse model in laboratory, and might emerge in future as widely used. We herein report the design and synthesis of NQ derivatives by replacing t-butyl moiety with linear/cyclic structured pendants. All the target compounds 6a-l and intermediates 5a-h were tested for their in vivo antimalarial activity against Plasmodium berghei K173 strain in mice. Compounds 6a and 6j were found to have a comparable or slightly more potent activity (the 50% effective dose [ED 50 ], which is required to decrease parasitemia by 50%: 0.38-0.43 mg/kg) than NQ (ED 50 : 0.48 mg/kg). The newly designed compounds 6a and 6j might be promising antimalarial candidates for further research.

  4. Ex Vivo Susceptibility of Plasmodium falciparum to Antimalarial Drugs in Western, Northern, and Eastern Cambodia, 2011-2012: Association with Molecular Markers

    PubMed Central

    Lim, Pharath; Dek, Dalin; Try, Vorleak; Eastman, Richard T.; Chy, Sophy; Sreng, Sokunthea; Suon, Seila; Mao, Sivanna; Sopha, Chantha; Sam, Baramey; Ashley, Elizabeth A.; Miotto, Olivo; Dondorp, Arjen M.; White, Nicholas J.; Su, Xin-zhuan; Char, Meng Chuor; Anderson, Jennifer M.; Amaratunga, Chanaki; Menard, Didier

    2013-01-01

    In 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance. To monitor for resistance to PPQ and other antimalarials, we measured drug susceptibilities for parasites collected in 2011 and 2012 from Pursat, Preah Vihear, and Ratanakiri, in western, northern, and eastern Cambodia, respectively. Using a SYBR green I fluorescence assay, we calculated the ex vivo 50% inhibitory concentrations (IC50s) of 310 parasites to six antimalarials: chloroquine (CQ), mefloquine (MQ), quinine (QN), PPQ, artesunate (ATS), and DHA. Geometric mean IC50s (GMIC50s) for all drugs (except PPQ) were significantly higher in Pursat and Preah Vihear than in Ratanakiri (P ≤ 0.001). An increased copy number of P. falciparum mdr1 (pfmdr1), an MQ resistance marker, was more prevalent in Pursat and Preah Vihear than in Ratanakiri and was associated with higher GMIC50s for MQ, QN, ATS, and DHA. An increased copy number of a chromosome 5 region (X5r), a candidate PPQ resistance marker, was detected in Pursat but was not associated with reduced susceptibility to PPQ. The ex vivo IC50 and pfmdr1 copy number are important tools in the surveillance of multidrug-resistant (MDR) parasites in Cambodia. While MDR P. falciparum is prevalent in western and northern Cambodia, there is no evidence for PPQ resistance, suggesting that DHA-PPQ treatment failures result mainly from ART resistance. PMID:23939897

  5. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials.

    PubMed

    Grimberg, Brian T; Jaworska, Maria M; Hough, Lindsay B; Zimmerman, Peter A; Phillips, James G

    2009-09-15

    A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.

  6. Response of patent medicine vendors in rural areas of Lagos state Nigeria to antimalarial policy change.

    PubMed

    Oyeyemi, Abisoye; Ogunnowo, Babatunde; Odukoya, Oluwakemi

    2015-06-01

    Patent medicine vendors (PMVs) play an important role in the treatment of malaria, especially in the rural areas. Nigeria recently changed her antimalarial treatment policy from chloroquine to artemisinin-based combination therapy (ACT). To determine the response of PMVs to the new policy. A baseline study was conducted in two local government areas (LGAs) of Lagos state Nigeria as the first phase in an intervention study aimed at improving the malarial treatment practices of PMVs in rural Lagos. A mixed method design involving a questionnaire survey of 180 PMVs and four key informant interviews were used. An antimalarial drug (AMD) audit was also performed. More than 80% of respondents were aware of the policy change in malaria treatment, but only 23.9% sold an ACT for the last case of malaria treated in an under five child. The main determining factor of the particular AMD sold was PMV's personal choice (70.6%). About half (58.9%) of the shops stocked ACTs, the newly recommended antimalarials. The high awareness of the policy change did not translate to a commensurate increase in the sale of the new drugs. Factors beyond the PMVs need to be addressed for a successful adoption of the new policy.

  7. Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.

    PubMed

    Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart

    2011-02-28

    Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.

  8. Antimalarial Activity of Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase Enzyme Selected by Docking Studies

    PubMed Central

    Penna-Coutinho, Julia; Cortopassi, Wilian Augusto; Oliveira, Aline Alves; França, Tanos Celmar Costa; Krettli, Antoniana Ursine

    2011-01-01

    The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use. PMID:21779323

  9. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    PubMed

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O'Connell, Kathryn A; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources. The structure

  10. Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin.

    PubMed

    Kiani, Bushra Hafeez; Suberu, John; Mirza, Bushra

    2016-05-04

    Malaria is causing more than half of a million deaths and 214 million clinical cases annually. Despite tremendous efforts for the control of malaria, the global morbidity and mortality have not been significantly changed in the last 50 years. Artemisinin, extracted from the medicinal plant Artemisia sp. is an effective anti-malarial drug. In 2015, elucidation of the effectiveness of artemisinin as a potent anti-malarial drug was acknowledged with a Nobel prize. Owing to the tight market and low yield of artemisinin, an economical way to increase its production is to increase its content in Artemisia sp. through different biotechnological approaches including genetic transformation. Artemisia annua and Artemisia dubia were transformed with rol ABC genes through Agrobacterium tumefacienes and Agrobacterium rhizogenes methods. The artemisinin content was analysed and compared between transformed and untransformed plants with the help of LC-MS/MS. Expression of key genes [Cytochrome P450 (CYP71AV1), aldehyde dehydrogenase 1 (ALDH1), amorpha-4, 11 diene synthase (ADS)] in the biosynthetic pathway of artemisinin and gene for trichome development and sesquiterpenoid biosynthetic (TFAR1) were measured using Quantitative real time PCR (qRT-PCR). Trichome density was analysed using confocal microscope. Artemisinin content was significantly increased in transformed material of both Artemisia species when compared to un-transformed plants. The artemisinin content within leaves of transformed lines was increased by a factor of nine, indicating that the plant is capable of synthesizing much higher amounts than has been achieved so far through traditional breeding. Expression of all artemisinin biosynthesis genes was significantly increased, although variation between the genes was observed. CYP71AV1 and ALDH1 expression levels were higher than that of ADS. Levels of the TFAR1 expression were also increased in all transgenic lines. Trichome density was also significantly

  11. Proposal for a new therapy for drug-resistant malaria using Plasmodium synthetic lethality inference.

    PubMed

    Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun

    2013-12-01

    Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.

  12. A phylogenetic road map to antimalarial Artemisia species.

    PubMed

    Pellicer, Jaume; Saslis-Lagoudakis, C Haris; Carrió, Esperança; Ernst, Madeleine; Garnatje, Teresa; Grace, Olwen M; Gras, Airy; Mumbrú, Màrius; Vallès, Joan; Vitales, Daniel; Rønsted, Nina

    2018-06-21

    The discovery of the antimalarial agent artemisinin is considered one of the most significant success stories of ethnopharmacological research in recent times. The isolation of artemisinin was inspired by the use of Artemisia annua in traditional Chinese medicine (TCM) and was awarded a Nobel Prize in 2015. Antimalarial activity has since been demonstrated for a range of other Artemisia species, suggesting that the genus could provide alternative sources of antimalarial treatments. Given the stunning diversity of the genus (c. 500 species), a prioritisation of taxa to be investigated for their likely antimalarial properties is required. Here we use a phylogenetic approach to explore the potential for identifying species more likely to possess antimalarial properties. Ethnobotanical data from literature reports is recorded for 117 species. Subsequent phylogenetically informed analysis was used to identify lineages in which there is an overrepresentation of species used to treat malarial symptoms, and which could therefore be high priority for further investigation of antimalarial activity. We show that these lineages indeed include several species with documented antimalarial activity. To further inform our approach, we use LC-MS/MS analysis to explore artemisinin content in fifteen species from both highlighted and not highlighted lineages. We detected artemisinin in nine species, in eight of them for the first time, doubling the number of Artemisia taxa known to content this molecule. Our findings indicate that artemisinin may be widespread across the genus, providing an accessible local resource outside the distribution area of Artemisia annua. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.

    PubMed

    Marrero-Ponce, Yovani; Iyarreta-Veitía, Maité; Montero-Torres, Alina; Romero-Zaldivar, Carlos; Brandt, Carlos A; Avila, Priscilla E; Kirchgatter, Karin; Machado, Yanetsy

    2005-01-01

    Malaria has been one of the most significant public health problems for centuries. It affects many tropical and subtropical regions of the world. The increasing resistance of Plasmodium spp. to existing therapies has heightened alarms about malaria in the international health community. Nowadays, there is a pressing need for identifying and developing new drug-based antimalarial therapies. In an effort to overcome this problem, the main purpose of this study is to develop simple linear discriminant-based quantitative structure-activity relationship (QSAR) models for the classification and prediction of antimalarial activity using some of the TOMOCOMD-CARDD (TOpological MOlecular COMputer Design-Computer Aided "Rational" Drug Design) fingerprints, so as to enable computational screening from virtual combinatorial datasets. In this sense, a database of 1562 organic chemicals having great structural variability, 597 of them antimalarial agents and 965 compounds having other clinical uses, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. Afterward, two linear classification functions were derived in order to discriminate between antimalarial and nonantimalarial compounds. The models (including nonstochastic and stochastic indices) correctly classify more than 93% of the compound set, in both training and external prediction datasets. They showed high Matthews' correlation coefficients, 0.889 and 0.866 for the training set and 0.855 and 0.857 for the test one. The models' predictivity was also assessed and validated by the random removal of 10% of the compounds to form a new test set, for which predictions were made using the models. The overall means of the correct classification for this process (leave group 10% full-out cross validation) using the equations with nonstochastic

  14. Nicotinamide inhibits the growth of P. falciparum and enhances the antimalarial effect of artemisinin, chloroquine and pyrimethamine.

    PubMed

    Tcherniuk, Sergey O; Chesnokova, Olga; Oleinikov, Irina V; Oleinikov, Andrew V

    2017-09-01

    Nicotinamide (vitamin B3) - is a water soluble amide derivative of nicotinic acid, which has been used at high doses for a variety of therapeutic applications. However, its antimalarial effect has not been intensively explored. In this work we analysed the effect of nicotinamide alone and in combination with artemisinin, chloroquine andpyrimethamine on the growth of blood stages of P. falciparum. Our results demonstrate that nicotinamide effectively inhibits the growth of blood stage parasites with IC 50 of 6.9±0.1mM and 2.2±0.3mM for CS2 and 3G8 strains, respectively. The combination of nicotinamide with artemisinin, chloroquine and pyrimethamine demonstrated synergistic effects at IC 10-90%. Treatment of uninfected red blood cells with high dose of nicotinamide (60mM) did not provoke the significant LDH release, demonstrating its non-toxicity for erythrocytes. Nicotinamide acts below the level of tolerance and reduces the effective concentration of anti-malarial drugs due to synergism. These in vitro results suggest that nicotinamide might be useful not only as a vitamin supplement but also as an enhancer of the anti-parasitic effect of common antimalarial drugs including artemisinin, chloroquine and pyrimethamine. Published by Elsevier B.V.

  15. Ethnobotanical perspective of antimalarial plants: traditional knowledge based study.

    PubMed

    Qayum, Abdul; Arya, Rakesh; Lynn, Andrew M

    2016-02-04

    Considering the demand of antimalarial plants it has become essential to find and locate them for their optimal extraction. The work aims to find plants with antimalarial activities which were used by the local people; to raise the value of traditional knowledge system (TKS) prevalent in the study region; to compile characteristics of local plants used in malaria treatment (referred as antimalarial plants) and to have its spatial distribution analysis to establish a concept of geographical health. Antimalarial plants are listed based on literature survey and field data collected during rainy season, from 85 respondents comprised of different ethnic groups. Ethno-medicinal utilities of plants was extracted; botanical name, family, local name, part used, folklore, geographical location and image of plants were recorded after cross validating with existing literatures. The interview was trifurcated in field, Vaidya/Hakims and house to house. Graphical analysis was done for major plants families, plant part used, response of people and patients and folklore. Mathematical analysis was done for interviewee's response, methods of plant identification and people's preferences of TKS through three plant indices. Fifty-one plants belonging to 27 families were reported with its geographical attributes. It is found plant root (31.75 %) is used mostly for malaria treatment and administration mode is decoction (41.2 %) mainly. The study area has dominance of plants of family Fabaceae (7), Asteraceae (4), Acanthaceae (4) and Amaranthaceae (4). Most popular plants found are Adhatoda vasica, Cassia fistula and Swertia chirata while  % usage of TKS is 82.0 % for malaria cure. The research findings can be used by both scientific community and common rural people for bio-discovery of these natural resources sustainably. The former can extract the tables to obtain a suitable plant towards finding a suitable lead molecule in a drug discovery project; while the latter can meet their

  16. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview.

    PubMed

    Fan, Yi-Lei; Cheng, Xiang-Wei; Wu, Jian-Bing; Liu, Min; Zhang, Feng-Zhi; Xu, Zhi; Feng, Lian-Shun

    2018-02-25

    Malaria remains one of the most deadly infectious diseases globally. Considering the growing spread of resistance, development of new and effective antimalarials remains an urgent priority. Quinolones, which are emerged as one of the most important class of antibiotics in the treatment of various bacterial infections, showed potential in vitro antiplasmodial and in vivo antimalarial activities, making them promising candidates for the chemoprophylaxis and treatment of malaria. This review presents the current progresses and applications of quinolone-based derivatives as potential antimalarials to pave the way for the development of new antimalarials. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi.

    PubMed

    Amuasi, John H; Diap, Graciela; Blay-Nguah, Samuel; Boakye, Isaac; Karikari, Patrick E; Dismas, Baza; Karenzo, Jeanne; Nsabiyumva, Lievin; Louie, Karly S; Kiechel, Jean-René

    2011-02-10

    Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ) as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO) retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO), a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO) medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment) of AS-AQ, quinine and other anti-malarials were calculated. Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9%) compared to public (4.2%) and NGO (0%) outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu) for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu). Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu), private and NGO sectors (both US$1.61 or 2,000 FBu). Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors, whereas, it was equivalent to 1.5 days worth

  18. Access to artemisinin-combination therapy (ACT) and other anti-malarials: national policy and markets in Sierra Leone.

    PubMed

    Amuasi, John H; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days' worth of wages in both the public and private sectors.

  19. A pilot study on quality of artesunate and amodiaquine tablets used in the fishing community of Tema, Ghana

    PubMed Central

    2013-01-01

    Background The ineffectiveness of artesunate and amodiaquine tablets in malaria treatment remains a health burden to WHO and governments of malaria-endemic countries, including Ghana. The proliferation of illegitimate anti-malarial drugs and its use by patients is of primary concern to international and local drug regulatory agencies because such drugs are known to contribute to the development of the malaria-resistant parasites in humans. No data exist on quality of these drugs in the fishing village communities in Ghana although the villagers are likely users of such drugs. A pilot study on the quality of anti-malarial tablets in circulation during the major fishing season at a malarious fishing village located along the coast of Tema in southern Ghana was determined. Methods Blisterpacks of anti-malarial tablets were randomly sampled. The International Pharmacopoeia and Global Pharma Health Fund Minilab protocols were used to assess the quality of anti-malarial tablets per blisterpacks allegedly manufactured by Guilin Pharmaceutical Co Ltd, China (GPCL) and Letap Pharmaceuticals Ltd, Ghana (LPL) and sold in chemical sales outlets at Kpone-on–Sea. Ferric chloride and cobaltous thiocyanate tests confirmed the presence of active ingredients in the tablets. A confirmatory test for the active ingredient was achieved with artesunate (ICRS1409) and amodiaquine (ICRS0209) reference standards. A high performance liquid chromatography analysis confirmed the amount of artesunate found in tablets. Results Based on the International Pharmacopoeia acceptable range of 96/98 to 102% for genuine artesunate per tablet, 10% [relative standard deviation (RSD): 3.2%] of field-selected artesunate blisterpack per tablets manufactured by GPCL, and 50% (RSD: 5.1%) of a similar package per tablet by LPL, passed the titrimetric test. However, 100% (RSD: 2.2%) of amodiaquine blisterpack per tablet by GPCL were found to be within the International Pharmacopeia acceptable range of 90 to

  20. Quinoline hybrids and their antiplasmodial and antimalarial activities.

    PubMed

    Hu, Yuan-Qiang; Gao, Chuan; Zhang, Shu; Xu, Lei; Xu, Zhi; Feng, Lian-Shun; Wu, Xiang; Zhao, Feng

    2017-10-20

    Malaria, in particular infection with P. falciparum (the most lethal of the human malaria parasite species, responsible for nearly one million deaths every year), is one of the most devastating and common infectious disease throughout the world. Beginning with quinine, quinoline containing compounds have long been used in clinical treatment of malaria and remained the mainstays of chemotherapy against malaria. The emergence of P. falciparum strains resistant to almost all antimalarials prompted medicinal chemists and biologists to study their effective replacement with an alternative mechanism of action and new molecules. Combination with variety of quinolines and other active moieties may increase the antiplasmodial and antimalarial activities and reduce the side effects. Thus, hybridization is a very attractive strategy to develop novel antimalarials. This review aims to summarize the recent advances towards the discovery of antiplasmodial and antimalarial hybrids including quinoline skeleton to provide an insight for rational designs of more active and less toxic quinoline hybrids antimalarials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. The impact of rapid malaria diagnostic tests upon anti-malarial sales in community pharmacies in Gwagwalada, Nigeria.

    PubMed

    Ikwuobe, John O; Faragher, Brian E; Alawode, Gafar; Lalloo, David G

    2013-10-30

    Rapid diagnostics tests for malaria (RDT) have become established as a practical solution to the challenges of parasitological confirmation of malaria before treatment in the public sector. However, little is known of their impact in private health sector facilities, such as pharmacies and drug shops. This study aimed to assess the incidence of malaria among unwell patients seeking anti-malarial treatment in two community pharmacies in Nigeria and measure the impact RDTs have on anti-malarial sales. This was a comparison study of two pharmacies located in the suburbs of Gwagwalada, in the Federal Capital Territory of Nigeria, between May and July 2012. In the intervention arm, patients seeking to purchase anti-malarials had an RDT performed before treatment while the control pharmacy continued normal routine practice. A total of 1,226 participants were enrolled into the study. The incidence of malaria in the intervention arm (n = 619) was 13.6% and adolescent participants had a statistically significant higher incidence (26.0%) compared to adults (11.9%) (P = 0.001). A history of fever in the last 48 hours was associated with a statistically significant higher incidence of malaria (28.3%) (P < 0.001). Having a RDT test reduced the chance of purchasing an anti-malarial by 42% (95% CI: 38%-46%) compared to not having a test. 51.6% (276) of the study participants with a RDT negative result still purchased anti-malarials, especially if anti-malarials had been recommended by a health professional (58.9%) compared to self-referral (44.2%) (P = 0.001). Patients with RDT negative results were also more likely to purchase an anti-malarial if there was a reported malaria positive laboratory test prior to presentation (66.2%; P = 0.007), a history of fever in the last 48 hours (60.5%; P = 0.027), and primary school education or less (69.4%; P = 0.009). After adjusting for age group and gender differences, having at least a secondary school education reduced the chance of

  2. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum.

    PubMed

    Qidwai, Tabish; Yadav, Dharmendra K; Khan, Feroz; Dhawan, Sangeeta; Bhakuni, R S

    2012-01-01

    This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.

  3. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    PubMed

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries.

    PubMed

    O'Connell, Kathryn A; Gatakaa, Hellen; Poyer, Stephen; Njogu, Julius; Evance, Illah; Munroe, Erik; Solomon, Tsione; Goodman, Catherine; Hanson, Kara; Zinsou, Cyprien; Akulayi, Louis; Raharinjatovo, Jacky; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Adjibabi, Chérifatou Bello; Agbango, Jean Angbalu; Ramarosandratana, Benjamin Fanomezana; Coker, Babajide; Rubahika, Denis; Hamainza, Busiku; Chapman, Steven; Shewchuk, Tanya; Chavasse, Desmond

    2011-10-31

    Artemisinin-based combination therapy (ACT) is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia. Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets) as compared to first-line quality-assured ACT (< 25%). In the public/not-for-profit sector, first-line quality-assured ACT was available for free in all countries except Benin and the DRC (US$1.29 [Inter Quartile Range (IQR): $1.29-$1.29] and $0.52[IQR: $0.00-$1.29] per adult equivalent dose respectively). In the private sector, first-line quality-assured ACT was 5-24 times more expensive than non-artemisinin therapies. The exception was Madagascar where, due to national social marketing of subsidized ACT, the price of first-line quality-assured ACT ($0.14 [IQR: $0.10, $0.57]) was significantly lower than the most popular treatment (chloroquine, $0.36 [IQR: $0.36, $0.36]). Quality-assured ACT accounted for less than 25% of total anti-malarial volumes; private-sector quality-assured ACT volumes represented less than 6% of the total market share. Most anti-malarials were

  5. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    PubMed Central

    2011-01-01

    Background Artemisinin-based combination therapy (ACT) is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets) as compared to first-line quality-assured ACT (< 25%). In the public/not-for-profit sector, first-line quality-assured ACT was available for free in all countries except Benin and the DRC (US$1.29 [Inter Quartile Range (IQR): $1.29-$1.29] and $0.52[IQR: $0.00-$1.29] per adult equivalent dose respectively). In the private sector, first-line quality-assured ACT was 5-24 times more expensive than non-artemisinin therapies. The exception was Madagascar where, due to national social marketing of subsidized ACT, the price of first-line quality-assured ACT ($0.14 [IQR: $0.10, $0.57]) was significantly lower than the most popular treatment (chloroquine, $0.36 [IQR: $0.36, $0.36]). Quality-assured ACT accounted for less than 25% of total anti-malarial volumes; private-sector quality-assured ACT volumes represented less than 6% of the total market share

  6. [Comparative observation on inhibition of hemozoin formation and their in vitro and in vivo anti-schistosome activity displayed by 7 antimalarial drugs].

    PubMed

    Xue, Jian; Jiang, Bin; Liu, Cong-Shan; Sun, Jun; Xiao, Shu-Hua

    2013-06-01

    To observe and compare the inhibition of hemozoin formation and the in vitro as well as in vivo antischistosomal activity induced by seven antimalarial drugs. Inhibition of hemozoin formation displayed by chloroquine phosphate, quinine hydrochloride, quinidine, mefloquine hydrochloride, pyronaridine phosphate and lumefantrine at 25 micromol/L, and artemether at 100 micromol/L was performed by assay of inhibition of beta-hematin formation in 1 mol/L sodium acetate buffers containing hematin with various pH of 4.0, 4.2, 4.4, 4.6, 4.8, and 5.0. In in vitro antischistosomal study, the medium of RPMI 1640 supplemented by 10% calf serum was used to maintain the adult Schistosoma japonicum, and the 50% and 95% lethal concentrations (LC50 and LC95) to kill the adult worms of each drug were then determined. Meanwhile, the interaction of quinine, pyronaridine and chloroquine combined with hemin against adult schistosomes was also undertaken. As to in vivo test, the efficacy of seven antimalarial drugs administered orally or intraperitoneally to mice infected with adult schistosomes was observed. In the acidic acetate-hematin solution, 25 micromol/L pyronaridine showed significant inhibition of beta-hematin formation at pH 4.4-5.0 with inhibition rates of 81.3%-97.0%. At pH 4.6, the inhibition rates of beta-hematin formation in acetate-hematin solution induced by mefloquine, chloroquine or quinine at concentration of 25 beta mol/L were 79.7%, 72.8% or 65.8%, respectively, and the beta-hematin formation was continually inhibited by these 3 antimalarial drugs at pH 4.8 and 5.0 with inhibition rates of 83.1%-90.6%, 41.9%-49.0% or 53.2-62.0%. The inhibition rates of beta-hematin formation at pH 4.6 and 4.8-5.0 induced by lumefantrine 25 micromol/L were 74.3% and 40.4%-40.5%, respectively. While under the same concentration of quinidine, 53.4% and 50.9% inhibition rates of beta-hematin formation were observed at pH 4.8 and 5.0. As to artemether, higher concentration of 100

  7. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    PubMed

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria. Georg Thieme Verlag KG Stuttgart · New York.

  8. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains.

    PubMed

    Kondaparla, Srinivasarao; Soni, Awakash; Manhas, Ashan; Srivastava, Kumkum; Puri, Sunil K; Katti, S B

    2017-02-01

    In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Understanding Private Sector Antimalarial Distribution Chains: A Cross-Sectional Mixed Methods Study in Six Malaria-Endemic Countries

    PubMed Central

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O’Connell, Kathryn A.; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Background Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). Methods and Findings We conducted nationally representative surveys of antimalarial wholesalers during 2009–2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4–6 steps between manufacturer and retailer; however, most likely pass through 2–3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important

  10. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants.

    PubMed

    de Andrade-Neto, Valter F; Pohlit, Adrian M; Pinto, Ana Cristina S; Silva, Ellen Cristina C; Nogueira, Karla L; Melo, Márcia R S; Henrique, Marycleuma C; Amorim, Rodrigo C N; Silva, Luis Francisco R; Costa, Mônica R F; Nunomura, Rita C S; Nunomura, Sergio M; Alecrim, Wilson D; Alecrim, M das Graças C; Chaves, F Célio M; Vieira, Pedro Paulo R

    2007-06-01

    In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  11. International drug price comparisons: quality assessment.

    PubMed

    Machado, Márcio; O'Brodovich, Ryan; Krahn, Murray; Einarson, Thomas R

    2011-01-01

    To quantitatively summarize results (i.e., prices and affordability) reported from international drug price comparison studies and assess their methodological quality. A systematic search of the most relevant databases-Medline, Embase, International Pharmaceutical Abstracts (IPA), and Scopus, from their inception to May 2009-was conducted to identify original research comparing international drug prices. International drug price information was extracted and recorded from accepted papers. Affordability was reported as drug prices adjusted for income. Study quality was assessed using six criteria: use of similar countries, use of a representative sample of drugs, selection of specific types of prices, identification of drug packaging, different weights on price indices, and the type of currency conversion used. Of the 1 828 studies identified, 21 were included. Only one study adequately addressed all quality issues. A large variation in study quality was observed due to the many methods used to conduct the drug price comparisons, such as different indices, economic parameters, price types, basket of drugs, and more. Thus, the quality of published studies was considered poor. Results varied across studies, but generally, higher income countries had higher drug prices. However, after adjusting drug prices for affordability, higher income countries had more affordable prices than lower income countries. Differences between drug prices and affordability in different countries were found. Low income countries reported less affordability of drugs, leaving room for potential problems with drug access, and consequently, a negative impact on health. The quality of the literature on this topic needs improvement.

  12. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide.

    PubMed

    Ugwu, D I; Okoro, U C; Ukoha, P O; Okafor, S; Ibezim, A; Kumar, N M

    2017-07-28

    Sulphonamides and carboxamides have shown large number of pharmacological properties against different types of diseases among which is malaria. Twenty four new carboxamide derivatives bearing benzenesulphonamoyl alkanamides were synthesized and investigated for their in silico and in vitro antimalarial and antioxidant properties. The substituted benzenesulphonyl chlorides (1a-c) were treated with various amino acids (2a-h) to obtain the benzenesulphonamoyl alkanamides (3a-x) which were subsequently treated with benzoyl chloride to obtain the N-benzoylated derivatives (5a-f, i-n and q-v). Further reactions of the N-benzoylated derivatives or proline derivatives with 4-aminoacetophenone (6) using boric acid as a catalyst gave the sulphonamide carboxamide derivatives (7a-x) in excellent yields. The in vitro antimalarial studies showed that all synthesized compounds had antimalarial property. Compound 7k, 7c, 7l, 7s, and 7j had mean MIC value of 0.02, 0.03, 0.05, 0.06 and 0.08 μM respectively comparable with chloroquine 0.06 μM. Compound 7c was the most potent antioxidant agent with IC 50 value of 0.045 mM comparable with 0.34 mM for ascorbic acid. In addition to the successful synthesis of the target molecules using boric acid catalysis, the compounds were found to have antimalarial and antioxidant activities comparable with known antimalarial and antioxidant drugs. The class of compounds reported herein have the potential of reducing oxidative stress arising from malaria parasite and chemotherapeutic agent used in the treatment of malaria. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Drugs in Development for Malaria.

    PubMed

    Ashley, Elizabeth A; Phyo, Aung Pyae

    2018-05-25

    The last two decades have seen a surge in antimalarial drug development with product development partnerships taking a leading role. Resistance of Plasmodium falciparum to the artemisinin derivatives, piperaquine and mefloquine in Southeast Asia means new antimalarials are needed with some urgency. There are at least 13 agents in clinical development. Most of these are blood schizonticides for the treatment of uncomplicated falciparum malaria, under evaluation either singly or as part of two-drug combinations. Leading candidates progressing through the pipeline are artefenomel-ferroquine and lumefantrine-KAF156, both in Phase 2b. Treatment of severe malaria continues to rely on two parenteral drugs with ancient forebears: artesunate and quinine, with sevuparin being evaluated as an adjuvant therapy. Tafenoquine is under review by stringent regulatory authorities for approval as a single-dose treatment for Plasmodium vivax relapse prevention. This represents an advance over standard 14-day primaquine regimens; however, the risk of acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency remains. For disease prevention, several of the newer agents show potential but are unlikely to be recommended for use in the main target groups of pregnant women and young children for some years. Latest predictions are that the malaria burden will continue to be high in the coming decades. This fact, coupled with the repeated loss of antimalarials to resistance, indicates that new antimalarials will be needed for years to come. Failure of the artemisinin-based combinations in Southeast Asia has stimulated a reappraisal of current approaches to combination therapy for malaria with incorporation of three or more drugs in a single treatment under consideration.

  14. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    PubMed

    Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A

    2014-01-01

    With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  15. In Vivo Antimalarial Activity of the Solvent Fractions of Fruit Rind and Root of Carica papaya Linn (Caricaceae) against Plasmodium berghei in Mice

    PubMed Central

    Kebebe, Dereje; Mulisa, Eshetu; Gashe, Fanta

    2017-01-01

    Background Currently, antimalarial drug resistance poses a serious challenge. This stresses the need for newer antimalarial compounds. Carica papaya is used traditionally and showed in vitro antimalarial activity. This study attempted to evaluate in vivo antimalarial activity of C. papaya in mice. Methods In vivo antimalarial activity of solvent fractions of the plant was carried out against early P. berghei infection in mice. Parasitemia, temperature, PCV, and body weight of mice were recorded. Windows SPSS version 16 (one-way ANOVA followed by Tukey's post hoc test) was used for data analysis. Results The pet ether and chloroform fractions of C. papaya fruit rind and root produced a significant (p < 0.001) chemosuppressive effect. A maximum parasite suppression of 61.78% was produced by pet ether fraction of C. papaya fruit rind in the highest dose (400 mg/kg/day). Only 400 mg/kg/day dose of chloroform fraction of C. papaya root exhibited a parasite suppression effect (48.11%). But, methanol fraction of the plant parts produced less chemosuppressive effect. Conclusion Pet ether fraction of C. papaya fruit rind had the highest antimalarial activity and could be a potential source of lead compound. Further study should be done to show the chemical and metabolomic profile of active ingredients. PMID:29391947

  16. Time Course of the Changes in Novel Trioxane Antimalarial 99/411 Pharmacokinetics upon Antiepileptic Drugs Co-Administration in SD Rats.

    PubMed

    Singh, Yeshwant; Kushwaha, Hari Narayan; Misra, Anamika; Hidau, Mahendra Kumar; Singh, Shio Kumar

    2014-01-01

    Objective. The study aimed to evaluate the influences of coadministration of antiepileptic drugs (AEDs) on an antimalarial candidate 99/411 pharmacokinetic (PK) profile. Method. For this, single oral dose PK drug interaction studies were conducted between 99/411 and FDA approved AEDs, namely, Phenytoin (PHT), Carbamazepine (CBZ), and Gabapentin (GB) in both male and female SD rats, to assess the coadministered and intersexual influences on 99/411 PK profile. Results. Studies revealed that there were no significant alterations in the PK profile of 99/411 upon PHT and CBZ coadministration in both male and female rats, while systemic exposure of 99/411 was significantly increased by about 80% in female rats upon GB coadministration. In terms of AUC, there was an increase from 2471 ± 586 to 4560 ± 1396 ng·h/mL. Overall, it was concluded that simultaneous administration of AEDs with 99/411 excludes the requirements for dose adjustment, additional therapeutic monitoring, contraindication to concomitant use, and/or other measures to mitigate risk, except for GB coadministration in females. These findings are further helpful to predict such interactions in humans, when potentially applied through proper allometric scaling to extrapolate the data.

  17. Synthesis and antimalarial evaluation of novel isocryptolepine derivatives.

    PubMed

    Whittell, Louise R; Batty, Kevin T; Wong, Rina P M; Bolitho, Erin M; Fox, Simon A; Davis, Timothy M E; Murray, Paul E

    2011-12-15

    A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.

    PubMed

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-11-04

    Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 microg mL(-1) in shake-flask cultures and 1 g L(-1) in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast

  19. The impact of rapid malaria diagnostic tests upon anti-malarial sales in community pharmacies in Gwagwalada, Nigeria

    PubMed Central

    2013-01-01

    Background Rapid diagnostics tests for malaria (RDT) have become established as a practical solution to the challenges of parasitological confirmation of malaria before treatment in the public sector. However, little is known of their impact in private health sector facilities, such as pharmacies and drug shops. This study aimed to assess the incidence of malaria among unwell patients seeking anti-malarial treatment in two community pharmacies in Nigeria and measure the impact RDTs have on anti-malarial sales. Methods This was a comparison study of two pharmacies located in the suburbs of Gwagwalada, in the Federal Capital Territory of Nigeria, between May and July 2012. In the intervention arm, patients seeking to purchase anti-malarials had an RDT performed before treatment while the control pharmacy continued normal routine practice. Results A total of 1,226 participants were enrolled into the study. The incidence of malaria in the intervention arm (n = 619) was 13.6% and adolescent participants had a statistically significant higher incidence (26.0%) compared to adults (11.9%) (P = 0.001). A history of fever in the last 48 hours was associated with a statistically significant higher incidence of malaria (28.3%) (P < 0.001). Having a RDT test reduced the chance of purchasing an anti-malarial by 42% (95% CI: 38%-46%) compared to not having a test. 51.6% (276) of the study participants with a RDT negative result still purchased anti-malarials, especially if anti-malarials had been recommended by a health professional (58.9%) compared to self-referral (44.2%) (P = 0.001). Patients with RDT negative results were also more likely to purchase an anti-malarial if there was a reported malaria positive laboratory test prior to presentation (66.2%; P = 0.007), a history of fever in the last 48 hours (60.5%; P = 0.027), and primary school education or less (69.4%; P = 0.009). After adjusting for age group and gender differences, having at

  20. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action.

    PubMed

    Singh, Shiv Vardan; Manhas, Ashan; Kumar, Yogesh; Mishra, Sonali; Shanker, Karuna; Khan, Feroz; Srivastava, Kumkum; Pal, Anirban

    2017-05-01

    A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC 50 values <10μg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC 50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  2. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.

    PubMed

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.

  3. Exploring the antimalarial potential of whole Cymbopogon citratus plant therapy.

    PubMed

    Chukwuocha, Uchechukwu M; Fernández-Rivera, Omar; Legorreta-Herrera, Martha

    2016-12-04

    Cymbopogon citratus (lemon grass) has been used in traditional medicine as an herbal infusion to treat fever and malaria. Generally, whole plant extracts possess higher biological activity than purified compounds. However, the antimalarial activity of the whole C. citratus plant has not been experimentally tested. To evaluate the antimalarial activity of an herbal infusion and the whole Cymbopogon citratus plant in two experimental models of malaria. The plant was dried for 10 days at room temperature and was then milled and passed through brass sieves to obtain a powder, which was administered to CBA/Ca mice with a patent Plasmodium chabaudi AS or P. berghei ANKA infection. We analysed the effects of two different doses (1600 and 3200mg/kg) compared with those of the herbal infusion and chloroquine, used as a positive control. We also assessed the prophylactic antimalarial activities of the whole C. citratus plant and the combination of the whole plant and chloroquine. The C. citratus whole plant exhibited prolonged antimalarial activity against both P. chabaudi AS and P. berghei ANKA. The low dose of the whole C. citratus plant displayed higher antimalarial activity than the high dose against P. berghei ANKA. As a prophylactic treatment, the whole plant exhibited higher antimalarial activity than either the herbal infusion or chloroquine. In addition, the combination of the whole C. citratus plant and chloroquine displayed higher activity than chloroquine alone against P. berghei ANKA patent infection. We demonstrated the antimalarial activity of the whole C. citratus plant in two experimental models. The whole C. citratus plant elicited higher anti-malarial activity than the herbal infusion or chloroquine when used as a prophylactic treatment. The antimalarial activity of the whole C. citratus plant supports continued efforts towards developing whole plant therapies for the management of malaria and other infectious diseases prevalent in resource

  4. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    PubMed

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  5. In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India.

    PubMed

    Bhat, G P; Surolia, N

    2001-10-01

    In an attempt to search for new antimalarial drugs, we studied plants used by traditional healers of southwest India to treat malaria. Aqueous and organic solvent extracts obtained from specific parts of the plants Swertia chirata, Carica papaya, and Citrus sinensis were tested on malaria strain Plasmodium falciparum FCK 2 in vitro. The temperatures of extraction were the same as that used by the traditional healers in their plant preparations. Visual evaluation of the antimalarial activity of the plant extracts on thin blood smears was followed by quantification of the activity by use of [35S]-methionine incorporation into parasite proteins to determine the value that inhibits 50% (IC50). Among the 3 plants tested, 2 had significant inhibitory effect on P. falciparum in vitro.

  6. Drugs for preventing malaria in pregnant women.

    PubMed

    Garner, P; Gülmezoglu, A M

    2006-10-18

    Malaria contributes to maternal illness and anaemia in pregnancy, especially in first-time mothers, and can harm the mother and the baby. Drugs given routinely to prevent or mitigate the effects of malaria during pregnancy are often recommended. To assess drugs given to prevent malaria infection and its consequences in pregnant women living in malarial areas. This includes prophylaxis and intermittent preventive treatment (IPT). We searched the Cochrane Infectious Diseases Group Specialized Register (March 2006), CENTRAL (The Cochrane Library 2006, Issue 1), MEDLINE (1966 to March 2006), EMBASE (1974 to March 2006), LILACS (1982 to March 2006), and reference lists. We also contacted researchers working in the field. Randomized and quasi-randomized controlled trials comparing antimalarial drugs given regularly with no antimalarial drugs for preventing malaria in pregnant women living in malaria-endemic areas. Both authors extracted data and assessed methodological quality. Dichotomous variables were combined using relative risks (RR) and weighted mean differences (WMD) for mean values, both with 95% confidence intervals (CI). Sixteen trials (12,638 participants) met the inclusion criteria; two used adequate methods to conceal allocation. Antimalarials reduced antenatal parasitaemia when given to all pregnant women (RR 0.53, 95% CI 0.33 to 0.86; 328 participants, 2 trials), placental malaria (RR 0.34, 95% CI 0.26 to 0.45; 1236 participants, 3 trials), but no effect was detected with perinatal deaths (2890 participants, 4 trials). In women in their first or second pregnancy, antimalarial drugs reduced severe antenatal anaemia (RR 0.62, 95% CI 0.50 to 0.78; 2809 participants, 1 prophylaxis and 2 IPT trials), antenatal parasitaemia (RR 0.27, 95% CI 0.17 to 0.44, random-effects model; 2906 participants, 6 trials), and perinatal deaths (RR 0.73, 95% CI 0.53 to 0.99; 1986 participants, 2 prophylaxis and 1 IPT trial; mean birthweight was higher (WMD 126.70 g, 95% CI 88

  7. An Alternative Paradigm for the Role of Antimalarial Plants in Africa

    PubMed Central

    Maranz, Steven

    2012-01-01

    Most investigations into the antimalarial activity of African plants are centered on finding an indigenous equivalent to artemisinin, the compound from which current frontline antimalarial drugs are synthesized. As a consequence, the standard practice in ethnopharmacological research is to use in vitro assays to identify compounds that inhibit parasites at nanomolar concentrations. This approach fails to take into consideration the high probability of acquisition of resistance to parasiticidal compounds since parasite populations are placed under direct selection for genetic that confers a survival advantage. Bearing in mind Africa's long exposure to malaria and extensive ethnobotanical experimentation with both therapies and diet, it is more likely that compounds not readily overcome by Plasmodium parasites would have been retained in the pharmacopeia and cuisine. Such compounds are characterized by acting primarily on the host rather than directly targeting the parasite and thus cannot be adequately explored in vitro. If Africa's long history with malaria has in fact produced effective plant therapies, their scientific elucidation will require a major emphasis on in vivo investigation. PMID:22593717

  8. Finding parasites and finding challenges: improved diagnostic access and trends in reported malaria and anti-malarial drug use in Livingstone district, Zambia

    PubMed Central

    2012-01-01

    Background Understanding the impact of malaria rapid diagnostic test (RDT) use on management of acute febrile disease at a community level, and on the consumption of anti-malarial medicines, is critical to the planning and success of scale-up to universal parasite-based diagnosis by health systems in malaria-endemic countries. Methods A retrospective study of district-wide community-level RDT introduction was conducted in Livingstone District, Zambia, to assess the impact of this programmed on malaria reporting, incidence of mortality and on district anti-malarial consumption. Results Reported malaria declined from 12,186 cases in the quarter prior to RDT introduction in 2007 to an average of 12.25 confirmed and 294 unconfirmed malaria cases per quarter over the year to September 2009. Reported malaria-like fever also declined, with only 4,381 RDTs being consumed per quarter over the same year. Reported malaria mortality declined to zero in the year to September 2009, and all-cause mortality declined. Consumption of artemisinin-based combination therapy (ACT) dropped dramatically, but remained above reported malaria, declining from 12,550 courses dispensed by the district office in the quarter prior to RDT implementation to an average of 822 per quarter over the last year. Quinine consumption in health centres also declined, with the district office ceasing to supply due to low usage, but requests for sulphadoxine-pyrimethamine (SP) rose to well above previous levels, suggesting substitution of ACT with this drug in RDT-negative cases. Conclusions RDT introduction led to a large decline in reported malaria cases and in ACT consumption in Livingstone district. Reported malaria mortality declined to zero, indicating safety of the new diagnostic regime, although adherence and/or use of RDTs was still incomplete. However, a deficiency is apparent in management of non-malarial fever, with inappropriate use of a low-cost single dose drug, SP, replacing ACT. While large

  9. The antimalarial drug primaquine targets Fe-S cluster proteins and yeast respiratory growth.

    PubMed

    Lalève, Anaïs; Vallières, Cindy; Golinelli-Cohen, Marie-Pierre; Bouton, Cécile; Song, Zehua; Pawlik, Grzegorz; Tindall, Sarah M; Avery, Simon V; Clain, Jérôme; Meunier, Brigitte

    2016-04-01

    Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase severely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding mitochondrial enzymes involved in the response to oxidative stress. This indicated that ROS produced by respiratory activity had a key role in primaquine-induced growth defect. We observed that Δsod2 cells treated with primaquine displayed a severely decreased activity of aconitase that contains a Fe-S cluster notoriously sensitive to oxidative damage. We also showed that in vitro exposure to primaquine impaired the activity of purified aconitase and accelerated the turnover of the Fe-S cluster of the essential protein Rli1. It is suggested that ROS-labile Fe-S groups are the primary targets of primaquine. Aconitase activity is known to be essential at certain life-cycle stages of the malaria parasite. Thus primaquine-induced damage of its labile Fe-S cluster - and of other ROS-sensitive enzymes - could inhibit parasite development. Copyright © 2015. Published by Elsevier B.V.

  10. Optimizing the HRP-2 In Vitro Malaria Drug Susceptibility Assay Using a Reference Clone to Improve Comparisons of Plasmodium falciparum Field Isolates

    DTIC Science & Technology

    2012-09-13

    6. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution...vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother 2007, 51:1172–1178. 12. Akala HM, Eyase FL...Cheruiyot AC, Omondi AA, Ogutu BR, Waters NC, Johnson JD, Polhemus ME, Schnabel DC, Walsh DS: Antimalarial drug sensitivity profile of western Kenya

  11. Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil.

    PubMed

    Andrade-Neto, Valter F; Brandão, Maria G L; Oliveira, Francielda Q; Casali, Vicente W D; Njaine, Brian; Zalis, Mariano G; Oliveira, Luciana A; Krettli, Antoniana U

    2004-08-01

    Bidens pilosa (Asteraceae), a medicinal plant used worldwide, has antimalarial activity as shown in previous work. This study tested ethanol extracts from wild plants collected in three different regions of Brazil and from plants cultivated in various soil conditions. The extracts were active in mice infected with P. berghei: doses of < or =500 mg/kg administered by oral route reduced malaria parasitaemia and mouse mortality; higher doses were found to be less effective. Tested in vitro against three P. falciparum isolates, two chloroquine resistant and one mefloquine resistant, the plants cultivated under standard conditions, and in humus enriched soil, were active; but the wild plants were the most active. Analysis using thin layer chromatography demonstrated the presence of flavonoids (compounds considered responsible for the antimalarial activity) in all plants tested, even though at different profiles. Because B. pilosa is proven to be active against P. falciparum drug-resistant parasites in vitro, and in rodent malaria in vivo, it is a good candidate for pre-clinical tests as a phytotherapeutic agent or for chemical isolation of the active compounds with the aim of finding new antimalarial drugs. Copyright (c) 2004 John Wiley & Sons, Ltd.

  12. Increasing Access to Subsidized Artemisinin-based Combination Therapy through Accredited Drug Dispensing Outlets in Tanzania

    PubMed Central

    2011-01-01

    Morogoro Rural. Conclusions The intervention increased access to affordable ACTs for underserved populations. Indications are that antimalarial monotherapies are being "crowded out" of the market. Importantly, the transition to ACTs has been accomplished in an environment where the safety and efficacy of the drugs and the quality of services are being monitored and regulated. This paper presents a description of the pilot program implementation, results of the program evaluation, and a discussion of the challenges and recommendations that will be used to guide rollout of subsidized ACT in ADDOs in the rest of Tanzania and possibly in other countries. PMID:21658259

  13. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    PubMed

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation.

    PubMed

    Dandekar, Prajakta P; Jain, Ratnesh; Patil, Sushant; Dhumal, Rohit; Tiwari, Dinesh; Sharma, Shobhona; Vanage, Geeta; Patravale, Vandana

    2010-12-01

    The present investigation involved preparation of hydrogel nanoparticles using a combination of hydroxyl propyl methyl cellulose and polyvinyl pyrrolidone. The objective was to exploit the size and hydrophilic nature of the formulated nanocarriers to enhance absorption and prolong the rapid clearance of curcumin due to possible evasion of the reticulo-endothelial system. Reproducible nanoparticles of size around 100 nm, a fairly narrow distribution and encapsulation efficiency of 72%, were produced by the solvent emulsion-evaporation technique. This optimized system was further subjected to freeze-drying. The freeze-dried product was readily reconstituted with distilled water. The reconstituted product exhibited a size and distribution similar to that before freeze-drying, drug content of greater than 99% and presence of amorphous drug when analyzed by differential scanning calorimetry (DSC) which may result in possible improved absorption of curcumin. In vivo anti-malarial studies revealed significant superior action of nanoparticles over curcumin control suggesting the possibility of the formulation being employed as an adjunct anti-malarial therapy along with the standard therapy. Acute and subacute toxicity studies confirmed the oral safety of the formulation. A battery of genotoxicity studies was conducted to evaluate the nongenotoxic potential of the developed formulation thus indicating the possibility of the formulation being employed for prolonged duration. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Economic implications of resistance to antimalarial drugs.

    PubMed

    Phillips, M; Phillips-Howard, P A

    1996-09-01

    The widespread evolution of drug resistance in malarial parasites has seriously hampered efforts to control this debilitating disease. Chloroquine, the mainstay of malaria treatment for many decades, is now proving largely ineffective in many parts of the world, particularly against the most severe form of malaria--falciparum. Alternative drugs have been developed, but they are frequently less safe and are all between 50 and 700% more expensive than chloroquine. Choice of drug clearly has important budgetary implications and national malaria control programmes need to weigh up the costs and benefits in deciding whether to change to more effective but more expensive drugs. The growth in drug resistance also has implications for the choice of diagnostic tool. Clinical diagnosis of malaria is relatively cheap, but less specific than some technological approaches. As more expensive drugs are employed, the cost of wasted treatment on suspected cases who do not in fact have malaria rises and the more worthwhile it becomes to invest in more specific diagnostic techniques. This paper presents an economic framework for analysing the various malaria drug and diagnostic tool options available. It discusses the nature of the key factors that need to be considered when making choices of malaria treatment (including treatment costs, drug resistance, the costs of treatment failure and compliance) and diagnosis (including diagnosis cost and accuracy, and the often overlooked costs associated with delayed treatment), and uses some simple equations to illustrate the impact of these on the relative cost effectiveness of the alternatives being considered. On the basis of some simplifying assumptions and illustrative calculations, it appears that in many countries more effective drugs and more specific and rapid diagnostic approaches will be worth adopting even although they imply additional expense.

  16. High School Students Are a Target Group for Fight against Self-Medication with Antimalarial Drugs: A Pilot Study in University of Kinshasa, Democratic Republic of Congo.

    PubMed

    Kabongo Kamitalu, Ramsès; Aloni, Michel Ntetani

    2016-01-01

    Aim. To assess the self-medication against malaria infection in population of Congolese students in Kinshasa, Democratic Republic of Congo (DRC). Methods. A cross-sectional study was carried out in University of Kinshasa, Kinshasa, Democratic Republic of Congo. Medical records of all students with malaria admitted to Centre de Santé Universitaire of University of Kinshasa from January 1, 2008, to April 30, 2008, were reviewed retrospectively. Results. The median age of the patients was 25.4 years (range: from 18 to 36 years). The majority of them were male (67.9%). Artemisinin-based combination treatments (ACTs) was the most used self-prescribed antimalarial drugs. However, self-medication was associated with the ingestion of quinine in 19.9% of cases. No case of ingestion of artesunate/artemether in monotherapy was found. All the medicines taken were registered in DRC. In this series, self-prescribed antimalarial was very irrational in terms of dose and duration of treatment. Conclusion. This paper highlights self-medication by a group who should be aware of malaria treatment protocols. The level of self-prescribing quinine is relatively high among students and is disturbing for a molecule reserved for severe disease in Congolese health care policy in management of malaria.

  17. Differences in malaria care seeking and dispensing outcomes for adults and children attending drug vendors in Nasarawa, Nigeria.

    PubMed

    Liu, Jenny; Isiguzo, Chinwoke; Sieverding, Maia

    2015-08-01

    To characterise the differences in care seeking behaviour and dispensing outcomes between adults and children purchasing drugs for malaria at retail shops in Nigeria. In Nasarawa State, retail drug shops were enumerated and a subset of those stocking antimalarials were selected as study sites and surveyed. Customers exiting shops after purchasing antimalarial drugs were surveyed and tested with a malaria rapid diagnostic test. Sick adults and caregivers accompanying sick children were eligible, but individuals purchasing drugs for a sick person that was not present were excluded. Multivariate regression analysis was used to identify the correlates of care seeking and the quality of interaction at the shop. Of 737 participants, 80% were adults and 20% were children (under age 18). Caregivers of sick children were more likely to obtain a prescription prior to attending a drug retailer than adults seeking care for themselves and waited a shorter time before seeking care. Caregivers of sick children were also more likely than sick adults to have been asked about symptoms by the retailer, to have been given an examination, and to have purchased an ACT. Fewer than half of respondents had purchased an ACT. Only 14% of adults, but 27% of children were RDT-positive; RDT-positive children were more likely to have had an ACT purchased for them than RDT-positive adults. Children with suspected malaria tend to receive better care at drug retailers than adults. The degree of overtreatment and prevalence of dispensing non-recommended antimalarials emphasise the need for routine diagnosis before treatment to properly treat both malaria and non-malaria illnesses. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  18. Differences in malaria care seeking and dispensing outcomes for adults and children attending drug vendors in Nasarawa, Nigeria

    PubMed Central

    Liu, Jenny; Isiguzo, Chinwoke; Sieverding, Maia

    2015-01-01

    Objectives To characterise the differences in care seeking behaviour and dispensing outcomes between adults and children purchasing drugs for malaria at retail shops in Nigeria. Methods In Nasarawa State, retail drug shops were enumerated and a subset of those stocking antimalarials were selected as study sites and surveyed. Customers exiting shops after purchasing antimalarial drugs were surveyed and tested with a malaria rapid diagnostic test. Sick adults and caregivers accompanying sick children were eligible, but individuals purchasing drugs for a sick person that was not present were excluded. Multivariate regression analysis was used to identify the correlates of care seeking and the quality of interaction at the shop. Results Of 737 participants, 80% were adults and 20% were children (under age 18). Caregivers of sick children were more likely to obtain a prescription prior to attending a drug retailer than adults seeking care for themselves and waited a shorter time before seeking care. Caregivers of sick children were also more likely than sick adults to have been asked about symptoms by the retailer, to have been given an examination, and to have purchased an ACT. Fewer than half of respondents had purchased an ACT. Only 14% of adults, but 27% of children were RDT-positive; RDT-positive children were more likely to have had an ACT purchased for them than RDT-positive adults. Conclusions Children with suspected malaria tend to receive better care at drug retailers than adults. The degree of overtreatment and prevalence of dispensing non-recommended antimalarials emphasise the need for routine diagnosis before treatment to properly treat both malaria and non-malaria illnesses. PMID:25877471

  19. Research influence on antimalarial drug policy change in Tanzania: case study of replacing chloroquine with sulfadoxine-pyrimethamine as the first-line drug

    PubMed Central

    Mubyazi, Godfrey M; Gonzalez-Block, Miguel A

    2005-01-01

    Introduction Research is an essential tool in facing the challenges of scaling up interventions and improving access to services. As in many other countries, the translation of research evidence into drug policy action in Tanzania is often constrained by poor communication between researchers and policy decision-makers, individual perceptions or attitudes towards the drug and hesitation by some policy decision-makers to approve change when they anticipate possible undesirable repercussions should the policy change as proposed. Internationally, literature on the role of researchers on national antimalarial drug policy change is limited. Objectives To describe the (a) role of researchers in producing evidence that influenced the Tanzanian government replace chloroquine (CQ) with sulfadoxine-pyrimethamine (SP) as the first-line drug and the challenges faced in convincing policy-makers, general practitioners, pharmaceutical industry and the general public on the need for change (b) challenges ahead before a new drug combination treatment policy is introduced in Tanzania. Methods In-depth interviews were held with national-level policy-makers, malaria control programme managers, pharmaceutical officers, general medical practitioners, medical research library and publications officers, university academicians, heads of medical research institutions and district and regional medical officers. Additional data were obtained through a review of malaria drug policy documents and participant observations were also done. Results In year 2001, the Tanzanian Government officially changed its malaria treatment policy guidelines whereby CQ – the first-line drug for a long time was replaced with SP. This policy decision was supported by research evidence indicating parasite resistance to CQ and clinical CQ treatment failure rates to have reached intolerable levels as compared to SP and amodiaquine (AQ). Research also indicated that since SP was also facing rising resistance trend

  20. Design, synthesis and antimalarial screening of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS.

    PubMed

    Sahu, Supriya; Ghosh, Surajit Kumar; Kalita, Junmoni; Dutta, Mayurakhi; Bhat, Hans Raj

    2016-04-01

    Existing antifolate antimalarial drugs have shown resistance due to the mutations at some amino acid positions of Plasmodium falciparum DHFR-TS. In the present study, to overcome this resistance, a new series of hybrid 4-aminoquinoline-triazine derivatives were designed and docked into the active site of Pf-DHFR-TS (PDB i.d. 1J3K) using validated CDOCKER protocol. Binding energy was calculated by applying CHARMm forcefield. Binding energy and the pattern of interaction of the docked compounds were analysed. Fifteen compounds were selected for synthesis based on their binding energy values and docking poses. Synthesized compounds were characterised by FTIR, (1)H NMR, (13)C NMR, mass spectroscopy and were screened for antimalarial activity against 3D7 strain of Plasmodium falciparum. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Augmentation of the Differentiation Response to Antitumor Antimalarials

    DTIC Science & Technology

    2004-07-01

    Release; Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) We have shown that the quinoline antimalarials chloroquine (CQ) and hydroxychloroquine (HCQ...Introduction: Preliminary studies showed that two of the quinoline antimalarials, chloroquine (CQ) and hydroxychloroquine (HCQ), displayed selective... hydroxychloroquine upon pretreatment with ATRA or Aza on tumor cell survival (Figures 1 and 2, respectively). Clonogenic survival of MDA-MB-231 cells exposed to

  2. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine.

    PubMed

    Pybus, Brandon S; Sousa, Jason C; Jin, Xiannu; Ferguson, James A; Christian, Robert E; Barnhart, Rebecca; Vuong, Chau; Sciotti, Richard J; Reichard, Gregory A; Kozar, Michael P; Walker, Larry A; Ohrt, Colin; Melendez, Victor

    2012-08-02

    The 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ's haemotoxic and anti-malarial properties are not fully understood. In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. Relative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.

  3. Drug Evaluation in the Plasmodium Falciparum - Aotus Model

    DTIC Science & Technology

    1986-10-01

    blood schizonticidal/curative activity of experimental antimalarial drugs. WR 245082, an acridineainine, at similar doses cured infections of chloroquine ...Guinea - Chesson strain). The curative activity of WR 245082, an acridineamine, for chloroquine - sensitive and chloroquine -resistant strains of P...antimalarial activity of two analogues of the amino acid histidine was assessed against infections of the Uganda Palo Alto strain. WR 251853, 2-fluoro-l

  4. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.

    PubMed

    Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula

    2017-09-01

    Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice.

    PubMed

    Muluye, Abrham Belachew; Melese, Eshetie; Adinew, Getnet Mequanint

    2015-10-15

    Resistances to currently available drugs and insecticides, significant drug toxicities and costs and lack of vaccines currently complicated the treatment of malaria. A continued search for safe, effective and affordable plant-based antimalarial agents thus becomes crucial and vital in the face of these difficulties. The aim of the study was to evaluate the antimalarial activity of 80 % methanolic extract of the seeds of Brassica nigra against Plasmodium berghei infection in mice. Chloroquine sensitive Plasmodium berghei (ANKA strain) was used to test the antimalarial activity of the extract. In suppressive and prophylactic models, Swiss albino male mice were randomly grouped into five groups of five mice each. Group I mice were treated with the vehicle, group II, III and IV were treated with 100, 200, and 400 mg/kg of the extract, respectively and the last group (V) mice were treated with chloroquine (10 mg/kg). The level of parasitemia, survival time and variation in weight of mice were used to determine the antimalarial activity of the extract. Chemosuppressive activities produced by the extract of the seeds of Brassica nigra were 21.88, 50.00 (P < 0.01) and 53.13 % (P < 0.01), while the chemoprophylactic activities were 17.42, 21.21 and 53.79 % (P < 0.05) at 100, 200 and 400 mg/kg of the extract, respectively as compared to the negative control. Mice treated with 200 and 400 mg/kg extract were significantly (P < 0.05) lived longer and gained weight as compared to negative control in 4-day suppressive test. From this study, it can be concluded that the seed extract of Brassica nigra showed good chemosuppressive and moderate chemoprophylactic activities and the plant may contain biologically active principles which are relevant in the treatment and prophylaxis of malaria, thus supporting further studies of the plant for its active components.

  6. A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds.

    PubMed

    Bajsa, Joanna; Singh, Kshipra; Nanayakkara, Dhammika; Duke, Stephen Oscar; Rimando, Agnes Mamaril; Evidente, Antonio; Tekwani, Babu Lal

    2007-09-01

    The apicomplexan parasites pathogens such as Plasmodium spp. possess an apicoplast, a plastid organelle similar to those of plants. The apicoplast has some essential plant-like metabolic pathways and processes, making these parasites susceptible to inhibitors of these functions. The main objective of this paper is to determine if phytotoxins with plastid target sites are more likely to be good antiplasmodial compounds than are those with other modes of action. The antiplasmodial activities of some compounds with established phytotoxic action were determined in vitro on a chloroquine (CQ) sensitive (D6, Sierra Leone) strain of Plasmodium falciparum. In this study, we provide in vitro activities of almost 50 such compounds, as well as a few phytoalexins against P. falciparum. Endothall, anisomycin, and cerulenin had sufficient antiplasmodial action to be considered as new lead antimalarial structures. Some derivatives of fusicoccin possessed markedly improved antiplasmodial action than the parent compound. Our results suggest that phytotoxins with plastid targets may not necessarily be better antiplasmodials than those that act at other molecular sites. The herbicides, phytotoxins and the phytoalexins reported here with significant antiplasmodial activity may be useful probes for identification of new antimalarial drug targets and may also be used as new lead structures for new antiplasmodial drug discovery.

  7. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats.

    PubMed

    Bielitza, Max; Belorgey, Didier; Ehrhardt, Katharina; Johann, Laure; Lanfranchi, Don Antoine; Gallo, Valentina; Schwarzer, Evelin; Mohring, Franziska; Jortzik, Esther; Williams, David L; Becker, Katja; Arese, Paolo; Elhabiri, Mourad; Davioud-Charvet, Elisabeth

    2015-05-20

    Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure-activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations.

  8. Antimalarial activity of plumbagin in vitro and in animal models.

    PubMed

    Sumsakul, Wiriyaporn; Plengsuriyakarn, Tullayakorn; Chaijaroenkul, Wanna; Viyanant, Vithoon; Karbwang, Juntra; Na-Bangchang, Kesara

    2014-01-12

    Plumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). This compound has been shown to exhibit a wide spectrum of biological and pharmacological activities. The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice. In vitro antimalarial activity of plumbagin against K1 and 3D7 Plasmodium falciparum clones were assessed using SYBR Green I based assay. In vivo antimalarial activity was investigated in Plasmodium berghei-infected mouse model (a 4-day suppressive test). Plumbagin exhibited promising antimalarial activity with in vitro IC50 (concentration that inhibits parasite growth to 50%) against 3D7 chloroquine-sensitive P. falciparum and K1 chloroquine-resistant P. falciparum clones of 580 (270-640) and 370 (270-490) nM, respectively. Toxicity testing indicated relatively low toxicity at the dose levels up to 100 (single oral dose) and 25 (daily doses for 14 days) mg/kg body weight for acute and subacute toxicity, respectively. Chloroquine exhibited the most potent antimalarial activity in mice infected with P. berghei ANKA strain with respect to its activity on the reduction of parasitaemia on day 4 and the prolongation of survival time. Plumbagin at the dose of 25 mg/kg body weight given for 4 days was safe and produced weak antimalarial activity. Chemical derivatization of the parent compound or preparation of modified formulation is required to improve its systemic bioavailability.

  9. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids

    PubMed Central

    2013-01-01

    Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from “very active” to “weakly active”. However, only the compounds which showed anti-malarial activities from “very active” to “moderately active” are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria. PMID:24330395

  10. Mechanism-based design of parasite-targeted artemisinin derivatives: synthesis and antimalarial activity of new diamine containing analogues.

    PubMed

    Hindley, Stephen; Ward, Stephen A; Storr, Richard C; Searle, Natalie L; Bray, Patrick G; Park, B Kevin; Davies, Jill; O'Neill, Paul M

    2002-02-28

    The potent antimalarial activity of chloroquine against chloroquine-sensitive strains can be attributed, in part, to its high accumulation in the acidic environment of the heme-rich parasite food vacuole. A key component of this intraparasitic chloroquine accumulation mechanism is a weak base "ion-trapping" effect whereupon the basic drug is concentrated in the acidic food vacuole in its membrane-impermeable diprotonated form. By the incorporation of amino functionality into target artemisinin analogues, we hoped to prepare a new series of analogues that, by virtue of increased accumulation into the ferrous-rich vacuole, would display enhanced antimalarial potency. The initial part of the project focused on the preparation of piperazine-linked analogues (series 1 (7-16)). Antimalarial evaluation of these derivatives demonstrated potent activity versus both chloroquine-sensitive and chloroquine-resistant parasites. On the basis of these observations, we then set about preparing a series of C-10 carba-linked amino derivatives. Optimization of the key synthetic step using a newly developed coupling protocol provided a key intermediate, allyldeoxoartemisinin (17) in 90% yield. Further elaboration, in three steps, provided nine target C-10 carba analogues (series 2 (21-29)) in good overall yields. Antimalarial assessment demonstrated that these compounds were 4-fold more potent than artemisinin and about twice as active as artemether in vitro versus chloroquine-resistant parasites. On the basis of the products obtained from biomimetic Fe(II) degradation of the C-10 carba analogue (23), we propose that these analogues may have a mode of action subtly different from that of the parent drug artemisinin (series 1 (7-16)) and other C-10 ether derivatives such as artemether. Preliminary in vivo testing by the WHO demonstrated that four of these compounds are active orally at doses of less than 10 mg/kg. Since these analogues are available as water-soluble salts and cannot

  11. Cell-based medicinal chemistry optimization of high-throughput screening (HTS) hits for orally active antimalarials. Part 1: challenges in potency and absorption, distribution, metabolism, excretion/pharmacokinetics (ADME/PK).

    PubMed

    Chatterjee, Arnab K

    2013-10-24

    Malaria represents a significant health issue, and novel and effective drugs are needed to address parasite resistance that has emerged to the current drug arsenal. Antimalarial drug discovery has historically benefited from a whole-cell (phenotypic) screening approach to identify lead molecules. This approach has been utilized by several groups to optimize weakly active antimalarial pharmacophores, such as the quinolone scaffold, to yield potent and highly efficacious compounds that are now poised to enter clinical trials. More recently, GNF/Novartis, GSK, and others have employed the same approach in high-throughput screening (HTS) of large compound libraries to find novel scaffolds that have also been optimized to clinical candidates by GNF/Novartis. This perspective outlines some of the inherent challenges in cell-based medicinal chemistry optimization, including optimization of oral exposure and hERG activity.

  12. Antimalarial drugs for rheumatoid disease during pregnancy.

    PubMed Central

    Koren, G.

    1999-01-01

    QUESTION: One of my patients, who has rheumatoid arthritis, has just found out she is pregnant. She is being treated with hydroxychloroquine. I could not find anything about the safety of this drug during pregnancy. ANSWER: Most of the literature on this drug relates to prophylaxis for malaria. Much lower doses than those used for rheumatic diseases are given with no adverse fetal effects. Several studies on use of the drug for rheumatic diseases during pregnancy also failed to show adverse fetal effects, although, in most cases, only first-trimester exposure was reported. PMID:10626050

  13. The application of physiologically based pharmacokinetic modelling to assess the impact of antiretroviral-mediated drug-drug interactions on piperaquine antimalarial therapy during pregnancy.

    PubMed

    Olafuyi, Olusola; Coleman, Michael; Badhan, Raj K S

    2017-11-01

    Antimalarial therapy during pregnancy poses important safety concerns due to potential teratogenicity and maternal physiological and biochemical changes during gestation. Piperaquine (PQ) has gained interest for use in pregnancy in response to increasing resistance towards sulfadoxine-pyrimethamine in sub-Saharan Africa. Coinfection with HIV is common in many developing countries, however, little is known about the impact of antiretroviral (ARV) mediated drug-drug interaction (DDI) on piperaquine pharmacokinetics during pregnancy. This study applied mechanistic pharmacokinetic modelling to predict pharmacokinetics in non-pregnant and pregnant patients, which was validated in distinct customised population groups from Thailand, Sudan and Papua New Guinea. In each population group, no significant differences in day 7 concentrations were observed during different gestational weeks (GW) (weeks 10-40), supporting the notion that piperaquine is safe throughout pregnancy with consistent pharmacokinetics, although possible teratogenicity may limit this. Antiretroviral-mediated DDIs (efavirenz and ritonavir) had moderate effects on piperaquine during different gestational weeks with a predicted AUC ratio in the range 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir, respectively, over GW 10-40, with a reduction in circulating human serum albumin significantly reducing the number of subjects attaining the day 7 (post-dose) therapeutic efficacy concentrations under both efavirenz and ritonavir DDIs. This present model successfully mechanistically predicted the pharmacokinetics of piperaquine in pregnancy to be unchanged with respect to non-pregnant women, in the light of factors such as malaria/HIV co-infection. However, antiretroviral-mediated DDIs could significantly alter piperaquine pharmacokinetics. Further model refinement will include collation of relevant physiological and biochemical alterations common to HIV/malaria patients. Copyright © 2017 John Wiley & Sons

  14. An Artesunate-Containing Antimalarial Treatment Regimen Did Not Suppress Cytomegalovirus Viremia

    PubMed Central

    Gantt, Soren; Huang, Meei-Li; Magaret, Amalia; Bunts, Lisa; Selke, Stacy; Wald, Anna; Rosenthal, Philip J.; Dorsey, Grant; Casper, Corey

    2014-01-01

    Background Additional drugs are needed for the treatment of cytomegalovirus (CMV) infection. Artesunate is an antimalarial drug that has activity against CMV in vitro and in a rodent model. Only a small number of case reports are available describing the clinical effects of artesunate on CMV infection, and these yielded inconsistent results. Objective To evaluate the effect of artesunate on CMV infection, using blood samples collected from children who participated in malaria treatment trials. Study design Quantitative CMV DNA PCR was performed on dried blood spots collected from 494 Ugandan children, who were randomized either to artesunate plus amodiaquine or sulfadoxine-pyrimethamine plus amodiaquine for acute malaria infection. Poisson regression was used to compare treatment regimens with respect to the change in the frequency and quantity of CMV detected that occurred before and after treatment. Results CMV was detected in 11.4% of children immediately prior to treatment and 10.7% 3 days later (p=0.70). The average quantity of CMV was 0.30 log10 copies per million cells higher on day 3 than at treatment initiation (95% CI 0.01 to 0.58, p=0.041). There was no measurable difference in either the frequency or quantity of CMV detected in blood between children randomized to the two treatment arms. Conclusions A standard 3-day artesunate-containing antimalarial regimen had no detectable effect on CMV viremia in children with malaria. Longer treatment courses and/or higher doses of artesunate than those routinely used for malaria may be required for effective treatment of CMV infection. PMID:23827788

  15. Natural cocoa as diet-mediated antimalarial prophylaxis.

    PubMed

    Addai, F K

    2010-05-01

    The Maya of Central America are credited with the first consumption of cocoa and maintaining its ancient Olmec name kakawa translated in English as "God Food", in recognition of its multiple health benefits. The legend of cocoa is receiving renewed attention in recent years, on account of epidemiological and scientific studies that support its cardiovascular health benefits. Increasing numbers of scientific reports corroborating cocoa's antiquated reputation as health food persuaded this author to promote regular consumption of cocoa in Ghana since 2004. Cocoa is readily available in Ghana; the country is the second largest producer accounting for 14% of the world's output. Numerous anecdotal reports of reduced episodic malaria in people who daily drink natural unsweetened cocoa beverage prompted a search for scientific mechanisms that possibly account for cocoa's antimalarial effects. This paper presents the outcome as a hypothesis. Internet search for literature on effects of cocoa's ingredients on malaria parasites and illness using a variety of search tools. Evidential literature suggests five mechanisms that possibly underpin cocoa's anecdotal antimalarial effects. (i) Increased availability of antioxidants in plasma, (ii) membrane effects in general and erythrocyte membrane in particular, (iii) increased plasma levels of nitric oxide, (iv) antimalarial activity of cocoa flavanoids and their derivatives, and (v) boosted immune system mediated by components of cocoa including cocoa butter, polyphenols, magnesium, and zinc. A hypothesis is formulated that cocoa offers a diet-mediated antimalarial prophylaxis; and an additional novel tool in the fight against the legendary scourge.

  16. Pharmacological effects of primaquine ureas and semicarbazides on the central nervous system in mice and antimalarial activity in vitro.

    PubMed

    Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka

    2016-02-01

    New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  17. Perceptions of drug color among drug sellers and consumers in rural southwestern Nigeria.

    PubMed

    Brieger, William R; Salami, Kabiru K; Oshiname, Frederick O

    2007-09-01

    Color is commonly used for branding and coding consumer products including medications. People associate certain colors in tablets and capsules with the effect of the drug and the illness for which it is meant. Color coding was introduced in age-specific prepacked antimalarial drugs for preschool aged children in Nigeria by the National Malaria Control Committee. Yellow was designated for the younger ages and blue for the older. The National Malaria Control Committee did not perform market research to learn how their color codes would be perceived by consumers. The study aimed at determining perceptions of both consumers and sellers of medicines at the community level to learn about color likes and dislikes that might influence acceptance of new color-coded child prepacks of antimalarial drugs. Qualitative methods were used to determine perceptions of drug colors. A series of focus group interviews were conducted with male and female community members, and in-depth interviews were held with medicine sellers in the Igbo-Ora community in southwestern Nigeria. Respondents clearly associated medicines with their effects and purpose, for example white drugs for pain relief, red for building blood, blue to aid sleep, and yellow for malaria treatment. Medicine vendors had a low opinion of white colored medicines, but community members were ultimately more concerned about efficacy. The perceived association between yellow and malaria, because of local symptom perceptions of eyes turning yellowish during malaria, yielded a favorable response when consumers were shown the yellow prepacks. The response to blue was noncommittal but consumers indicated that if they were properly educated on the efficacy and function of the new drugs they would likely buy them. Community members will accept yellow as an antimalarial drug but health education will be needed for promoting the idea of blue for malaria and the notion of age-specific packets. Therefore, the strong medicine vendor

  18. Unit-dose packaged drugs for treating malaria.

    PubMed

    Orton, L; Barnish, G

    2005-04-18

    Unit-dose packaging of antimalarial drugs may improve malaria cure by making it easier for patients to take their treatment correctly. To summarize the effects of unit-dose packaged treatment on cure and treatment adherence in people with uncomplicated malaria. We searched the Cochrane Infectious Diseases Group Specialized Register (November 2004), CENTRAL (The Cochrane Library Issue 4, 2004), MEDLINE (1966 to November 2004), EMBASE (1980 to November 2004), LILACS (November 2004), conference proceedings, and reference lists of articles. We also contacted pharmaceutical companies, organizations, and researchers in the field. Randomized controlled trials (RCTs), cluster-RCTs, quasi-RCTs, and controlled before-and-after studies of unit-dose packaged drugs for treating uncomplicated malaria. We independently assessed study eligibility and methodological quality, and extracted data for an intention to treat analysis, where possible. We combined binary data using relative risk (RR) and the fixed-effect model, and presented them with 95% confidence intervals (CI). We attempted to contact study authors for additional information. Three quasi-RCTs (895 participants) and one cluster-RCT (6 health facilities) met the inclusion criteria. Trials were of poor methodological quality, and none adequately assessed treatment failure. Unit-dose packaged drugs (in conjunction with prescriber training and patient information) appeared to be associated with higher participant-reported treatment adherence in all trials.A meta-analysis of two trials (596 participants) showed that participant-reported treatment adherence was higher with blister-packed tablets compared with tablets in paper envelopes (RR 1.18, 1.12 to 1.25). Two trials using tablets in sectioned polythene bags as the intervention also noted an increase in participant-reported treatment adherence: the cluster-RCT (6 clusters) compared it with tablets in paper envelopes, and the other trial compared it with syrup in bottles

  19. Operational strategies of anti-malarial drug campaigns for malaria elimination in Zambia's southern province: a simulation study.

    PubMed

    Stuckey, Erin M; Miller, John M; Littrell, Megan; Chitnis, Nakul; Steketee, Rick

    2016-03-09

    Malaria elimination requires reducing both the potential of mosquitoes to transmit parasites to humans and humans to transmit parasites to mosquitoes. To achieve this goal in Southern province, Zambia a mass test and treat (MTAT) campaign was conducted from 2011-2013 to complement high coverage of long-lasting insecticide-treated nets (LLIN). To identify factors likely to increase campaign effectiveness, a modelling approach was applied to investigate the simulated effect of alternative operational strategies for parasite clearance in southern province. OpenMalaria, a discrete-time, individual-based stochastic model of malaria, was parameterized for the study area to simulate anti-malarial drug administration for interruption of transmission. Simulations were run for scenarios with a range of artemisinin-combination therapies, proportion of the population reached by the campaign, targeted age groups, time between campaign rounds, Plasmodium falciparum test protocols, and the addition of drugs aimed at preventing onward transmission. A sensitivity analysis was conducted to assess uncertainty of simulation results. Scenarios were evaluated based on the reduction in all-age parasite prevalence during the peak transmission month one year following the campaign, compared to the currently-implemented strategy of MTAT 19 % population coverage at pilot and 40 % coverage during the first year of implementation in the presence of 56 % LLIN use and 18 % indoor residual spray coverage. Simulation results suggest the most important determinant of success in reducing prevalence is the population coverage achieved in the campaign, which would require more than 1 year of campaign implementation for elimination. The inclusion of single low-dose primaquine, which acts as a gametocytocide, or ivermectin, which acts as an endectocide, to the drug regimen did not further reduce parasite prevalence one year following the campaign compared to the currently-implemented strategy

  20. Choosing a Drug to Prevent Malaria

    MedlinePlus

    ... Insecticide-Treated Nets (ITNs) Intermittent Preventive Treatment of Malaria in Pregnanct Women (IPTp) Indoor Residual Spraying (IRS) Vector Control Antimalarials to Reduce Transmission Vaccines Microscopy Rapid Diagnostic Tests Drug Resistance Counterfeit and ...

  1. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite’s Chloroquine Resistance Transporter

    PubMed Central

    Baker, Eileen S.; Webster, Michael W.; Lehane, Adele M.; Shafik, Sarah H.; Martin, Rowena E.

    2016-01-01

    Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite

  2. Anti-malarial market and policy surveys in sub-Saharan Africa.

    PubMed

    Diap, Graciela; Amuasi, John; Boakye, Isaac; Sevcsik, Ann-Marie; Pecoul, Bernard

    2010-04-23

    At a recent meeting (Sept 18, 2009) in which reasons for the limited access to artemisinin-based combination therapy (ACT) in sub-Saharan Africa were discussed, policy and market surveys on anti-malarial drug availability and accessibility in Burundi and Sierra Leone were presented in a highly interactive brainstorming session among key stakeholders across private, public, and not-for-profit sectors. The surveys, the conduct of which directly involved the national malaria control programme managers of the two countries, provides the groundwork for evidence-based policy implementation. The results of the surveys could be extrapolated to other countries with similar socio-demographic and malaria profiles. The meeting resulted in recommendations on key actions to be taken at the global, national, and community level for better ACT accessibility. At the global level, both public and private sectors have actions to take to strengthen policies that lead to the replacement of loose blister packs with fixed-dose ACT products, develop strategies to ban inappropriate anti-malarials and regulate those bans, and facilitate technology and knowledge transfer to scale up production of fixed-dose ACT products, which should be readily available and affordable to those patients who are in the greatest need of these medicines. At the national level, policies that regulate the anti-malarial medicines market should be enacted and enforced. The public sector, including funding donors, should participate in ensuring that the private sector is engaged in the ACT implementation process. Research similar to the surveys discussed is important for other countries to develop and evaluate the right incentives at a local level. At the community level, community outreach and education about appropriate preventive and treatment measures must continue and be strengthened, with service delivery systems developed within both public and private sectors, among other measures, to decrease access to

  3. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes.

    PubMed

    Goodman, Christopher D; Siregar, Josephine E; Mollard, Vanessa; Vega-Rodríguez, Joel; Syafruddin, Din; Matsuoka, Hiroyuki; Matsuzaki, Motomichi; Toyama, Tomoko; Sturm, Angelika; Cozijnsen, Anton; Jacobs-Lorena, Marcelo; Kita, Kiyoshi; Marzuki, Sangkot; McFadden, Geoffrey I

    2016-04-15

    Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control. Copyright © 2016, American Association for the Advancement of Science.

  4. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial.

    PubMed

    Phyo, Aung Pyae; Jittamala, Podjanee; Nosten, François H; Pukrittayakamee, Sasithon; Imwong, Mallika; White, Nicholas J; Duparc, Stephan; Macintyre, Fiona; Baker, Mark; Möhrle, Jörg J

    2016-01-01

    Artefenomel (OZ439) is a novel synthetic trioxolane with improved pharmacokinetic properties compared with other antimalarial drugs with the artemisinin pharmacophore. Artefenomel has been generally well tolerated in volunteers at doses up to 1600 mg and is being developed as a partner drug in an antimalarial combination treatment. We investigated the efficacy, tolerability, and pharmacokinetics of artefenomel at different doses in patients with Plasmodium falciparum or Plasmodium vivax malaria. This phase 2a exploratory, open-label trial was done at the Hospital for Tropical Diseases, Bangkok, and the Shoklo Malaria Research Unit in Thailand. Adult patients with acute, uncomplicated P falciparum or P vivax malaria received artefenomel in a single oral dose (200 mg, 400 mg, 800 mg, or 1200 mg). The first cohort received 800 mg. Testing of a new dose of artefenomel in a patient cohort was decided on after safety and efficacy assessment of the preceding cohort. The primary endpoint was the natural log parasite reduction per 24 h. Definitive oral treatment was given at 36 h. This trial is registered with ClinicalTrials.gov, number NCT01213966. Between Oct 24, 2010, and May 25, 2012, 82 patients were enrolled (20 in each of the 200 mg, 400 mg, and 800 mg cohorts, and 21 in the 1200 mg cohort). One patient withdrew consent (before the administration of artefenomel) but there were no further dropouts. The parasite reduction rates per 24 h ranged from 0·90 to 1·88 for P falciparum, and 2·09 to 2·53 for P vivax. All doses were equally effective in both P falciparum and P vivax malaria, with median parasite clearance half-lives of 4·1 h (range 1·3-6·7) to 5·6 h (2·0-8·5) for P falciparum and 2·3 h (1·2-3·9) to 3·2 h (0·9-15·0) for P vivax. Maximum plasma concentrations, dose-proportional to 800 mg, occurred at 4 h (median). The estimated elimination half-life was 46-62 h. No serious drug-related adverse effects were reported; other adverse effects were

  5. Fitness costs of resistance to antimalarial drugs.

    PubMed

    Felger, Ingrid; Beck, Hans-Peter

    2008-08-01

    It has been recently reported that the prevalence of mutations associated with chloroquine resistance declined during the dry season. Fitness costs of drug resistance were suggested to be responsible for reduced survival of mutant parasites, and only parasites surviving chronic infections were transmitted at the onset of the rainy season. This implies that during seasonal transmission, significant changes can occur in allele frequency over the course of months, rather than years. The practical consequences of these findings for monitoring dynamics of drug-resistance markers are: (i) in areas of seasonal transmission, the sampling date matters; (ii) fluctuations in mutation frequencies might be explained by seasonality; and (iii) a much-awaited experimental determination of fitness costs of drug resistance becomes within reach.

  6. The mechanism of antimalarial action of the ruthenium(II)-chloroquine complex [RuCl(2)(CQ)] (2).

    PubMed

    Martínez, Alberto; Rajapakse, Chandima S K; Naoulou, Becky; Kopkalli, Yasemin; Davenport, Lesley; Sánchez-Delgado, Roberto A

    2008-06-01

    The mechanism of antimalarial action of the ruthenium-chloroquine complex [RuCl(2)(CQ)](2) (1), previously shown by us to be active in vitro against CQ-resistant strains of Plasmodium falciparum and in vivo against P. berghei, has been investigated. The complex is rapidly hydrolyzed in aqueous solution to [RuCl(OH(2))(3)(CQ)](2)[Cl](2), which is probably the active species. This compound binds to hematin in solution and inhibits aggregation to beta-hematin at pH approximately 5 to a slightly lower extent than chloroquine diphosphate; more importantly, the heme aggregation inhibition activity of complex 1 is significantly higher than that of CQ when measured at the interface of n-octanol-aqueous acetate buffer mixtures under acidic conditions modeling the food vacuole of the parasite. Partition coefficient measurements confirmed that complex 1 is considerably more lipophilic than CQ in n-octanol-water mixtures at pH approximately 5. This suggests that the principal target of complex 1 is the heme aggregation process, which has recently been reported to be fast and spontaneous at or near water-lipid interfaces. The enhanced antimalarial activity of complex 1 is thus probably due to a higher effective concentration of the drug at or near the interface compared with that of CQ, which accumulates strongly in the aqueous regions of the vacuole under those conditions. Furthermore, the activity of complex 1 against CQ-resistant strains of P. falciparum is probably related to its greater lipophilicity, in line with previous reports indicating a lowered ability of the mutated transmembrane transporter PfCRT to promote the efflux of highly lipophilic drugs. The metal complex also interacts with DNA by intercalation, to a comparable extent and in a similar manner to uncomplexed CQ and therefore DNA binding does not appear to be an important part of the mechanism of antimalarial action in this case.

  7. Low Prevalence of Substandard and Falsified Antimalarial and Antibiotic Medicines in Public and Faith-Based Health Facilities of Southern Malawi

    PubMed Central

    Khuluza, Felix; Kigera, Stephen; Heide, Lutz

    2017-01-01

    Substandard and falsified antimalarial and antibiotic medicines represent a serious problem for public health, especially in low- and middle-income countries. However, information on the prevalence of poor-quality medicines is limited. In the present study, samples of six antimalarial and six antibiotic medicines were collected from 31 health facilities and drug outlets in southern Malawi. Random sampling was used in the selection of health facilities. For sample collection, an overt approach was used in licensed facilities, and a mystery shopper approach in nonlicensed outlets. One hundred and fifty-five samples were analyzed by visual and physical examination and by rapid prescreening tests, that is, disintegration testing and thin-layer chromatography using the GPHF-Minilab. Fifty-six of the samples were analyzed according to pharmacopeial monographs in a World Health Organization-prequalified quality control laboratory. Seven out-of-specification medicines were identified. One sample was classified as falsified, lacking the declared active ingredients, and containing other active ingredients instead. Three samples were classified as substandard with extreme deviations from the pharmacopeial standards, and three further samples as substandard with nonextreme deviations. Of the substandard medicines, three failed in dissolution testing, two in the assay for the content of the active pharmaceutical ingredient, and one failed in both dissolution testing and assay. Six of the seven out-of-specification medicines were from private facilities. Only one out-of-specification medicine was found within the samples from public and faith-based health facilities. Although the observed presence of substandard and falsified medicines in Malawi requires action, their low prevalence in public and faith-based health facilities is encouraging. PMID:28219993

  8. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).

    PubMed

    Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L

    2017-04-13

    Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pK a and lower log D 7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D 7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

  9. Metallocene Antimalarials: The Continuing Quest

    PubMed Central

    Blackie, Margaret A. L.; Chibale, Kelly

    2008-01-01

    Over the last decade, a significant body of research has been developed around the inclusion of a metallocene moiety into known antimalarial compounds. Ferroquine is the most successful of these compounds. Herein, we describe our contribution to metallocene antimalarials. Our approach has sought to introduce diversity sites in the side chain of ferroquine in order to develop a series of ferroquine derivatives. The replacement of the ferrocenyl moiety with ruthenocene has given rise to ruthenoquine and a modest series of analogues. The reaction of ferroquine and selected analogues with Au(PPh3)NO3, Au(C6F5)(tht), and [Rh(COD)Cl2] has resulted in a series of heterobimetallic derivatives. In all cases, compounds have been evaluated for in vitro antiplasmodial activity in both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Preliminary structure-activity relationships have been delineated. PMID:18274662

  10. Synthesis and Screening of New Antimalarial Drugs

    DTIC Science & Technology

    1987-10-30

    correlate well with the known pIharmacokinetics of thie drug. 3. fhe blood schizonticidal properties of chloroquine (active at 3 mg/kg/day x 7 days) were...Reference drug chloroquine has shown consistently curative action at 3 mg/kg (base) x 7 days. No escalation of chloroquine curative dose has been...from patent infection has been used from time to time for standardization of blood schizontocidal test using chloroquine diphosphate as the reference

  11. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues.

    PubMed

    Pérez, Bianca C; Fernandes, Iva; Mateus, Nuno; Teixeira, Cátia; Gomes, Paula

    2013-12-15

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Terbinafine-induced lichenoid drug eruption.

    PubMed

    Zheng, Yue; Zhang, Jie; Chen, Haiyan; Lai, Wei; Maibach, Howard I

    2017-03-01

    Drug-induced lichen planus has been induced by antibiotics, anticonvulsants, antidiabetics, antimalarials, antitubercular drugs, antihypertensives, psychiatric drugs, chemotherapeutic agents, diuretic, heavy metals, NSAIDs, etc. Terbinafine, an antifungal agent, is widely used for dermatophyte infections and onychomycosis. Cutaneous adverse effects of terbinafine are rarely reported. Here, we report a case of terbinafine-induced lichenoid drug eruption in a 22-year-old who presented with generalized lichenoid eruption 2 weeks after terbinafine initiation of. The body and lip cleared completely after 8 weeks of drug withdrawal; nail change cleared after 12 weeks.

  13. Donor support for quality assurance and pharmacovigilance of anti-malarials in malaria-endemic countries.

    PubMed

    Kovacs, Stephanie D; Mills, Brianna M; Stergachis, Andy

    2017-07-11

    Malaria control efforts have been strengthened by funding from donor groups and government agencies. The Global Fund to Fight AIDS, Tuberculosis and the Malaria (Global Fund), the US President's Malaria Initiative (PMI) account for the majority of donor support for malaria control and prevention efforts. Pharmacovigilance (PV), which encompasses all activities relating to the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problem, is a necessary part of efforts to reduce drug resistance and improve treatment outcomes. This paper reports on an analysis of PV plans in the Global Fund and PMI and World Bank's grants for malaria prevention and control. All active malaria grants as of September 2015 funded by the Global Fund and World Bank, and fiscal year 2015 and 2016 PMI Malaria Operational Plans (MOP) were identified. The total amount awarded for PV-related activities and drug quality assurance was abstracted. A Key-Word-in-Context (KWIC) analysis was conducted for the content of each grant. Specific search terms consisted of pharmacovigilance, pregn*, registry, safety, adverse drug, mass drug administration, primaquine, counterfeit, sub-standard, and falsified. Grants that mentioned PV activities identified in the KWIC search, listed PV in their budgets, or included the keywords: counterfeit, sub-standard, falsified, mass drug administration, or adverse event were thematically coded using Dedoose software version 7.0. The search identified 159 active malaria grants including 107 Global Fund grants, 39 fiscal year 2015 and 2016 PMI grants and 13 World Bank grants. These grants were primarily awarded to low-income countries (57.2%) and in sub-Saharan Africa (SSA) (70.4%). Thirty-seven (23.3%) grants included a budget line for PV- or drug quality assurance-related activities, including 21 PMI grants and 16 Global Fund grants. Only 23 (14.5%) grants directly mentioned PV. The primary focus area was improving drug

  14. A new protoberberine alkaloid from Meconopsis simplicifolia (D. Don) Walpers with potent antimalarial activity against a multidrug resistant Plasmodium falciparum strain.

    PubMed

    Wangchuk, Phurpa; Phurpa, Wangchuk; Keller, Paul A; Pyne, Stephen G; Lie, Wilford; Willis, Anthony C; Rattanajak, Roonglawan; Kamchonwongpaisan, Sumalee

    2013-12-12

    The aerial components of Meconopsis simplicifolia (D. Don) Walpers are indicated in Bhutanese traditional medicine for treating malaria, coughs and colds, and the infections of the liver, lung and blood. This study is to validate the ethnopharmacological uses of this plant and also identify potent antimalarial drug leads through bioassays of its crude extracts and phytochemical constituents. Meconopsis simplicifolia (D. Don) Walpers was collected from Bhutan and its crude MeOH extract was subjected to acid-base fractionation. Through repeated extractions, separations and spectroscopic analysis, the alkaloids obtained were identified and tested for their antimalarial and cytotoxicity activities. Phytochemical studies resulted in the isolation of one new protoberberine type alkaloid which we named as simplicifolianine and five known alkaloids: protopine, norsanguinarine, dihydrosanguinarine, 6-methoxydihydrosanguinarine and oxysanguinarine. Among the five of the alkaloids tested, simplicifolianine showed the most potent antiplasmodial activities against the Plasmodium falciparum strains, TM4/8.2 (chloroquine-antifolate sensitive strain) and K1CB1 (multidrug resistant strain) with IC50 values of 0.78 μg/mL and 1.29 μg/mL, respectively. The compounds tested did not show any significant cytotoxicity activities against human oral carcinoma KB cells and normal Vero cells of African kidney epithelial cells. This study validated the traditional uses of the plant for the treatment of malaria and identified a new alkaloid, simplicifolianine as a potential antimalarial drug lead. © 2013 Published by Elsevier Ireland Ltd.

  15. Risk of drug resistance in Plasmodium falciparum malaria therapy-a systematic review and meta-analysis.

    PubMed

    Zhou, Li-Juan; Xia, Jing; Wei, Hai-Xia; Liu, Xiao-Jun; Peng, Hong-Juan

    2017-02-01

    Plasmodium falciparum is responsible for the vast majority of the morbidity and mortality associated with malaria infection globally. Although a number of studies have reported the emergence of drug resistance in different therapies for P. falciparum infection, the degree of the drug resistance in different antimalarials is still unclear. This research investigated the risk of drug resistance in the therapies with different medications based on meta-analyses. Relevant original randomized control trials (RCTs) were searched in all available electronic databases. Pooled relative risks (RRs) with 95% confidence intervals (95% CIs) were used to evaluate the risk of drug resistance resulting from different treatments. Seventy-eight studies were included in the meta-analysis to compare drug resistance in the treatment of P. falciparum infections and yielded the following results: chloroquine (CQ) > sulfadoxine-pyrimethamine (SP) (RR = 3.67, p < 0.001 ), mefloquine (MQ) < SP (RR = 0.26, p < 0.001), artesunate + sulfadoxine-pyrimethamine (AS + SP) > artemether + lumefantrine (AL) (RR = 2.94, p < 0.001), dihydroartemisinin + piperaquine (DHA + PQ) < AL (RR = 0.7, p < 0.05), and non-artemisinin-based combination therapies (NACTs) > artemisinin-based combination therapies (ACTs) (RR = 1.93, p < 0.001); no significant difference was found in amodiaquine (AQ) vs. SP, AS + AQ vs. AS + SP, AS + AQ vs. AL, or AS + MQ vs. AL. These results presented a global view for the current status of antimalarial drug resistance and provided a guidance for choice of antimalarials for efficient treatment and prolonging the life span of the current effective antimalarial drugs.

  16. Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana Moens ex Trimen.

    PubMed

    Park, Byeoung-Soo; Kim, Dae-Young; Rosenthal, Philip J; Huh, Sun-Chul; Lee, Belinda J; Park, Eun -u; Kim, Sung-Min; Kim, Jang-Eok; Kim, Mi-Hee; Huh, Tae-Lin; Choi, Young-Jae; Suh, Ki-Hyung; Choi, Won-Sik; Lee, Sung-Eun

    2002-05-20

    In the course of attempts to develop antimalarial drugs, we have designed and synthesized a series of quinoline alkaloide derivatives. Three of them, N-(4-methoxy-3,5-di-tert-butylbenzyl)cinchonidinium bromide (OSL-5), O-benzyl-N-(3,5-di-tert-butyl-4-methoxybenzyl)cinchonidinium bromide (OSL-7), and N-(3,5-di-tert-butyl-4-methoxybenzyl)quininium bromide (OSL-14) show potent activity against Plasmodium falciparum.

  17. Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Frosch, Torsten; Popp, Jürgen

    2010-07-01

    The structure of the antimalarial drug halofantrine is analyzed by means of density functional theory (DFT) calculations, IR, and Raman spectroscopy. Strong, selective enhancements of the Raman bands of halofantrine at 1621 and 1590 cm-1 are discovered by means of UV resonance Raman spectroscopy with excitation wavelength λexc=244 nm. These signal enhancements can be exploited for a localization of small concentrations of halofantrine in a biological environment. The Raman spectrum of halofantrine is calculated by means of DFT calculations [B3LYP/6-311+G(d,p)]. The calculation is very useful for a thorough mode assignment of the Raman bands of halofantrine. The strong bands at 1621 and 1590 cm-1 in the UV Raman spectrum are assigned to combined C=C stretching vibrations in the phenanthrene ring of halofantrine. These bands are considered as putative marker bands for ππ interactions with the biological target molecules. The calculation of the electron density demonstrates a strong distribution across the phenanthrene ring of halofantrine, besides the electron withdrawing effect of the Cl and CF3 substituents. This strong and even electron density distribution supports the hypothesis of ππ stacking as a possible mode of action of halofantrine. Complementary IR spectroscopy is performed for an investigation of vibrations of polar functional groups of the halofantrine molecule.

  18. Presumptive treatment of malaria from formal and informal drug vendors in Nigeria.

    PubMed

    Isiguzo, Chinwoke; Anyanti, Jennifer; Ujuju, Chinazo; Nwokolo, Ernest; De La Cruz, Anna; Schatzkin, Eric; Modrek, Sepideh; Montagu, Dominic; Liu, Jenny

    2014-01-01

    Despite policies that recommend parasitological testing before treatment for malaria, presumptive treatment remains widespread in Nigeria. The majority of Nigerians obtain antimalarial drugs from two types of for-profit drug vendors-formal and informal medicine shops-but little is known about the quality of malaria care services provided at these shops. This study seeks to (1) describe the profile of patients who seek treatment at different types of drug outlets, (2) document the types of drugs purchased for treating malaria, (3) assess which patients are purchasing recommended drugs, and (4) estimate the extent of malaria over-treatment. In urban, peri-urban, and rural areas in Oyo State, customers exiting proprietary and patent medicine vendor (PPMV) shops or pharmacies having purchased anti-malarial drugs were surveyed and tested with malaria rapid diagnostic test. A follow-up phone survey was conducted four days after to assess self-reported drug administration. Bivariate and multivariate regression analysis was conducted to determine the correlates of patronizing a PPMV versus pharmacy, and the likelihood of purchasing an artemisinin-combination therapy (ACT) drug. Of the 457 participants who sought malaria treatment in 49 enrolled outlets, nearly 92% had diagnosed their condition by themselves, a family member, or a friend. Nearly 60% pharmacy customers purchased an ACT compared to only 29% of PPMV customers, and pharmacy customers paid significantly more on average. Multivariate regression results show that patrons of PPMVs were younger, less wealthy, waited fewer days before seeking care, and were less likely to be diagnosed at a hospital, clinic, or laboratory. Only 3.9% of participants tested positive with a malaria rapid diagnostic test. Poorer individuals seeking care at PPMVs are more likely to receive inappropriate malaria treatment when compared to those who go to pharmacies. Increasing accessibility to reliable diagnosis should be explored to reduce

  19. Presumptive Treatment of Malaria from Formal and Informal Drug Vendors in Nigeria

    PubMed Central

    Isiguzo, Chinwoke; Anyanti, Jennifer; Ujuju, Chinazo; Nwokolo, Ernest; De La Cruz, Anna; Schatzkin, Eric; Modrek, Sepideh; Montagu, Dominic; Liu, Jenny

    2014-01-01

    Background Despite policies that recommend parasitological testing before treatment for malaria, presumptive treatment remains widespread in Nigeria. The majority of Nigerians obtain antimalarial drugs from two types of for-profit drug vendors—formal and informal medicine shops—but little is known about the quality of malaria care services provided at these shops. Aims This study seeks to (1) describe the profile of patients who seek treatment at different types of drug outlets, (2) document the types of drugs purchased for treating malaria, (3) assess which patients are purchasing recommended drugs, and (4) estimate the extent of malaria over-treatment. Methods In urban, peri-urban, and rural areas in Oyo State, customers exiting proprietary and patent medicine vendor (PPMV) shops or pharmacies having purchased anti-malarial drugs were surveyed and tested with malaria rapid diagnostic test. A follow-up phone survey was conducted four days after to assess self-reported drug administration. Bivariate and multivariate regression analysis was conducted to determine the correlates of patronizing a PPMV versus pharmacy, and the likelihood of purchasing an artemisinin-combination therapy (ACT) drug. Results Of the 457participants who sought malaria treatment in 49 enrolled outlets, nearly 92% had diagnosed their condition by themselves, a family member, or a friend. Nearly 60% pharmacy customers purchased an ACT compared to only 29% of PPMV customers, and pharmacy customers paid significantly more on average. Multivariate regression results show that patrons of PPMVs were younger, less wealthy, waited fewer days before seeking care, and were less likely to be diagnosed at a hospital, clinic, or laboratory. Only 3.9% of participants tested positive with a malaria rapid diagnostic test. Conclusions Poorer individuals seeking care at PPMVs are more likely to receive inappropriate malaria treatment when compared to those who go to pharmacies. Increasing accessibility to

  20. In vitro and In vivo Antimalarial Activity of Amphiphilic Naphthothiazolium Salts with Amine-Bearing Side Chains

    PubMed Central

    Ulrich, Peter; Gipson, Gregory R.; Clark, Martha A.; Tripathi, Abhai; Sullivan, David J.; Cerami, Carla

    2014-01-01

    Because of emerging resistance to existing drugs, new chemical classes of antimalarial drugs are urgently needed. We have rationally designed a library of compounds that were predicted to accumulate in the digestive vacuole and then decrystallize hemozoin by breaking the iron carboxylate bond in hemozoin. We report the synthesis of 16 naphthothiazolium salts with amine-bearing side chains and their activities against the erythrocytic stage of Plasmodium falciparum in vitro. KSWI-855, the compound with the highest efficacy against the asexual stages of P. falciparum in vitro, also had in vitro activity against P. falciparum gametocytes and in vivo activity against P. berghei in a murine malaria model. PMID:25184829

  1. Malaria treatment in the retail sector: Knowledge and practices of drug sellers in rural Tanzania

    PubMed Central

    Hetzel, Manuel W; Dillip, Angel; Lengeler, Christian; Obrist, Brigit; Msechu, June J; Makemba, Ahmed M; Mshana, Christopher; Schulze, Alexander; Mshinda, Hassan

    2008-01-01

    Background Throughout Africa, the private retail sector has been recognised as an important source of antimalarial treatment, complementing formal health services. However, the quality of advice and treatment at private outlets is a widespread concern, especially with the introduction of artemisinin-based combination therapies (ACTs). As a result, ACTs are often deployed exclusively through public health facilities, potentially leading to poorer access among parts of the population. This research aimed at assessing the performance of the retail sector in rural Tanzania. Such information is urgently required to improve and broaden delivery channels for life-saving drugs. Methods During a comprehensive shop census in the districts of Kilombero and Ulanga, Tanzania, we interviewed 489 shopkeepers about their knowledge of malaria and malaria treatment. A complementary mystery shoppers study was conducted in 118 retail outlets in order to assess the vendors' drug selling practices. Both studies included drug stores as well as general shops. Results Shopkeepers in drug stores were able to name more malaria symptoms and were more knowledgeable about malaria treatment than their peers in general shops. In drug stores, 52% mentioned the correct child-dosage of sulphadoxine-pyrimethamine (SP) compared to only 3% in general shops. In drug stores, mystery shoppers were more likely to receive an appropriate treatment (OR = 9.6), but at an approximately seven times higher price. Overall, adults were more often sold an antimalarial than children (OR = 11.3). On the other hand, general shopkeepers were often ready to refer especially children to a higher level if they felt unable to manage the case. Conclusion The quality of malaria case-management in the retail sector is not satisfactory. Drug stores should be supported and empowered to provide correct malaria-treatment with drugs they are allowed to dispense. At the same time, the role of general shops as first contact points

  2. An Invitation to Open Innovation in Malaria Drug Discovery: 47 Quality Starting Points from the TCAMS.

    PubMed

    Calderón, Félix; Barros, David; Bueno, José María; Coterón, José Miguel; Fernández, Esther; Gamo, Francisco Javier; Lavandera, José Luís; León, María Luisa; Macdonald, Simon J F; Mallo, Araceli; Manzano, Pilar; Porras, Esther; Fiandor, José María; Castro, Julia

    2011-10-13

    In 2010, GlaxoSmithKline published the structures of 13533 chemical starting points for antimalarial lead identification. By using an agglomerative structural clustering technique followed by computational filters such as antimalarial activity, physicochemical properties, and dissimilarity to known antimalarial structures, we have identified 47 starting points for lead optimization. Their structures are provided. We invite potential collaborators to work with us to discover new clinical candidates.

  3. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia.

    PubMed

    Suswardany, Dwi Linna; Sibbritt, David W; Supardi, Sudibyo; Pardosi, Jerico F; Chang, Sungwon; Adams, Jon

    2017-01-01

    The level of traditional medicine use, particularly Jamu use, in Indonesia is substantial. Indonesians do not always seek timely treatment for malaria and may seek self-medication via traditional medicine. This paper reports findings from the first focused analyses of traditional medicine use for malaria in Indonesia and the first such analyses worldwide to draw upon a large sample of respondents across high-risk malaria endemic areas. A sub-study of the Indonesia Basic Health Research/Riskesdas Study 2010 focused on 12,226 adults aged 15 years and above residing in high-risk malaria-endemic provinces. Logistic regression was undertaken to determine the significant associations for traditional medicine use for malaria symptoms. Approximately one in five respondents use traditional medicine for malaria symptoms and the vast majority experiencing multiple episodes of malaria use traditional medicine alongside free antimalarial drug treatments. Respondents consuming traditional medicine for general health/common illness purposes every day (odds ratio: 3.75, 95% Confidence Interval: 2.93 4.79), those without a hospital in local vicinity (odds ratio: 1.31, 95% Confidence Interval: 1.10 1.57), and those living in poorer quality housing, were more likely to use traditional medicine for malaria symptoms. A substantial percentage of those with malaria symptoms utilize traditional medicine for treating their malaria symptoms. In order to promote safe and effective malaria treatment, all providing malaria care in Indonesia need to enquire with their patients about possible traditional medicine use.

  4. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia

    PubMed Central

    Suswardany, Dwi Linna; Sibbritt, David W.; Supardi, Sudibyo; Pardosi, Jerico F.; Chang, Sungwon; Adams, Jon

    2017-01-01

    Background The level of traditional medicine use, particularly Jamu use, in Indonesia is substantial. Indonesians do not always seek timely treatment for malaria and may seek self-medication via traditional medicine. This paper reports findings from the first focused analyses of traditional medicine use for malaria in Indonesia and the first such analyses worldwide to draw upon a large sample of respondents across high-risk malaria endemic areas. Methods A sub-study of the Indonesia Basic Health Research/Riskesdas Study 2010 focused on 12,226 adults aged 15 years and above residing in high-risk malaria-endemic provinces. Logistic regression was undertaken to determine the significant associations for traditional medicine use for malaria symptoms. Findings Approximately one in five respondents use traditional medicine for malaria symptoms and the vast majority experiencing multiple episodes of malaria use traditional medicine alongside free antimalarial drug treatments. Respondents consuming traditional medicine for general health/common illness purposes every day (odds ratio: 3.75, 95% Confidence Interval: 2.93 4.79), those without a hospital in local vicinity (odds ratio: 1.31, 95% Confidence Interval: 1.10 1.57), and those living in poorer quality housing, were more likely to use traditional medicine for malaria symptoms. Conclusion A substantial percentage of those with malaria symptoms utilize traditional medicine for treating their malaria symptoms. In order to promote safe and effective malaria treatment, all providing malaria care in Indonesia need to enquire with their patients about possible traditional medicine use. PMID:28329019

  5. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  6. Potential antimalarial activity of Methyl Jasmonate and its effect on lipid profiles in Plasmodium Berghei infected mice.

    PubMed

    Oyinloye, Oladapo E; Kosoko, Ayokulehin M; Emikpe, Benjamin; Falade, Catherine O; Ademowo, Olusegun G

    2015-09-01

    The antimalarial activity and lipid profiles of Methyl Jasmonate (MJ) were investigated against established malaria infection in vivo using BALB/c mice. Arteether (AE) and chloroquine (CQ) were used as reference drugs while ethanol was used as the vehicle for drug delivery for MJ. Mice treated with 10 and 25 mg/kg MJ showed a remarkable reduction in percentage parasitemia by 68.3% and 78.2% on day 10(post treatment) respectively while 45.4% and 87.2% reduction in percentage parasitemia were observed in the group treated with 50 mg/kg on day 3 and 10 (post treatment) respectively. The highest mean survival time was observed in CQ followed by AE and MJ in dose-dependent manner. A progressive decrease in packed cell volume (PCV) was observed in infected untreated mice which led to the death of all the mice by day 9 (post treatment). Infected mice treated with MJ showed reduced level of HDL and LDL compared with infected untreated group. As the dose of MJ increased in infected mice cholesterol levels increased while there was reduction in triglyceride. Overall there was marked decrease in parasitemia in Plasmodium berghei infected mice treated with graded doses of MJ but appears to have reduced antimalarial activity compared with CQ and AE.

  7. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya.

    PubMed

    Nguta, J M; Mbaria, J M

    2013-07-30

    In Kenya, most people especially in rural areas use traditional medicine and medicinal plants to treat many diseases including malaria. Malaria is of national concern in Kenya, in view of development of resistant strains of Plasmodium falciparum to drugs especially chloroquine, which had been effective and affordable. There is need for alternative and affordable therapy. Many antimalarial drugs have been derived from medicinal plants and this is evident from the reported antiplasmodial activity. The present study reports on the in vivo antimalarial activity and brine shrimp lethality of five medicinal plants traditionally used to treat malaria in Msambweni district, Kenya. A total of five aqueous crude extracts from different plant parts used in traditional medicine for the treatment of malaria were evaluated for their in vivo antimalarial activity using Plasmodium berghei infected Swiss mice and for their acute toxicity using Brine shrimp lethality test. The screened crude plant extracts suppressed parasitaemia as follows: Azadirachta indica (L) Burm. (Meliaceae), 3.1%; Dichrostachys cinerea (L) Wight et Arn (Mimosaceae), 6.3%; Tamarindus indica L. (Caesalpiniaceae), 25.1%; Acacia seyal Del. (Mimosaceae) 27.8% and Grewia trichocarpa Hochst ex A.Rich (Tiliaceae) 35.8%. In terms of toxicity, A.indica root bark extract had an LC50 of 285.8 µg/ml and was considered moderately toxic. T.indica stem bark extract and G.trichocarpa root extract had an LC50 of 516.4 and 545.8 µg/ml respectively and were considered to be weakly toxic while A.seyal and D.cinerea root extracts had a LC50>1000 µg/ml and were therefore considered to be non toxic. The results indicate that the aqueous extracts of the tested plants when used alone as monotherapy had antimalarial activity which was significantly different from that of chloroquine (P≤0.05). The results also suggest that the anecdotal efficacy of the above plants reported by the study community is related to synergism of

  8. A Divergent SAR Study Allows Optimization of a Potent 5-HT2c Inhibitor to a Promising Antimalarial Scaffold.

    PubMed

    Calderón, Félix; Vidal-Mas, Jaume; Burrows, Jeremy; de la Rosa, Juan Carlos; Jiménez-Díaz, María Belén; Mulet, Teresa; Prats, Sara; Solana, Jorge; Witty, Michael; Gamo, Francisco Javier; Fernández, Esther

    2012-05-10

    From the 13 533 chemical structures published by GlaxoSmithKline in 2010, we identified 47 quality starting points for lead optimization. One of the most promising hits was the TCMDC-139046, a molecule presenting an indoline core, which is well-known for its anxiolytic properties by interacting with serotonin antagonist receptors 5-HT2. The inhibition of this target will complicate the clinical development of these compounds as antimalarials. Herein, we present the antimalarial profile of this series and our efforts to avoid interaction with this receptor, while maintaining a good antiparasitic potency. By using a double-divergent structure-activity relationship analysis, we have obtained a novel lead compound harboring an indoline core.

  9. Differential speciation of ferriprotoporphyrin IX in the presence of free base and diprotic 4-aminoquinoline antimalarial drugs

    NASA Astrophysics Data System (ADS)

    Gildenhuys, Johandie; Müller, Ronel; le Roex, Tanya; de Villiers, Katherine A.

    2017-03-01

    The crystal structures of the μ-propionato dimer and π-π dimer of ferriprotoporphyrin IX (Fe(III)PPIX) have been determined by single crystal X-ray diffraction (SCD). Both species were obtained in the presence of the synthetic 4-aminoquinoline antimalarial drug, amodiaquine (AQ). The solution that afforded the μ-propionato dimer contained AQ as a free base (i.e. with both quinoline and terminal amine nitrogen atoms neutral). On the other hand, when the diprotic salt of AQ was included in the crystallization medium, the Fe(III)PPIX π-π dimer was obtained. The structure of the μ-propionato dimer, which is the discrete structural unit that constitutes haemozoin (malaria pigment), is identical to that obtained previously in presence of chloroquine free base. We suspect that the drug, via its two available basic sites, facilitates dissociation of one of the two Fe(III)PPIX propionic acid groups to yield a propionate group that is required for reciprocal coordination of the metal centre to form the centrosymmetric dimer. On the other hand, this proton transfer is not possible when the drug is present as a diprotic salt. In this case, the π-π dimer of Fe(III)PPIX is obtained. In the current study, the π-π dimer of haemin (chloro-Fe(III)PPIX) was obtained as a DMF solvate from non-aqueous aprotic solution (dimethyl formamide and chloroform), however the π-π dimer is also known to exist in aqueous solution (as aqua- or hydroxo-Fe(III)PPIX), where it is purportedly involved in the nucleation of haemozoin. We have been able to unambiguously determine the positions of all non-hydrogen atoms, as well as locate or assign all hydrogen atoms in the structure of the π-π dimer, which was not possible in the SCD structure of haemin reported by Koenig in 1965 owing to disorder in the vinyl and methyl substituents. Interestingly, no disorder in the methyl and vinyl groups is observed in the current structure. Both the π-π and μ-propionato dimers of Fe(III)PPIX are

  10. Naturally occurring cobalamins have antimalarial activity.

    PubMed

    Chemaly, Susan M; Chen, Chien-Teng; van Zyl, Robyn L

    2007-05-01

    The acquisition of resistance by malaria parasites towards existing antimalarials has necessitated the development of new chemotherapeutic agents. The effect of vitamin B(12) derivatives on the formation of beta-haematin (synthetic haemozoin) was determined under conditions similar to those in the parasitic food vacuole (using chloroquine, a known inhibitor of haemozoin formation for comparison). Adenosylcobalamin (Ado-cbl), methylcobalamin (CH(3)-cbl) and aquocobalamin (H(2)O-cbl) were approximately forty times more effective inhibitors of beta-haematin formation than chloroquine, cyanocobalamin (CN-cbl) was slightly more inhibitory than chloroquine, while dicyanocobinamide had no effect. It is proposed that the cobalamins exert their inhibitory effect on beta-haematin formation by pi-interactions of their corrin ring with the Fe(III)-protoporphyrin ring and by hydrogen-bonding using their 5,6-dimethylbenzimidazole/ribose/sugar side-chain. The antimalarial activity for the cobalamins (Ado-cbl>CH(3)-cbl>H(2)O-cbl>CN-cbl) was found to be less than that for chloroquine or quinine. Ado-cbl, CH(3)-cbl and CN-cbl do not accumulate in the parasite food vacuole by pH trapping, but H(2)O-cbl does. Unlike humans, the malaria parasite has only one enzyme that uses cobalamin as a cofactor, namely methionine synthase, which is important for growth and metabolism. Thus cobalamins in very small amounts are necessary for Plasmodium falciparum growth but in larger amounts they display antimalarial properties.

  11. Antimalarial efficacy of Pongamia pinnata (L) Pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA).

    PubMed

    Satish, P V V; Sunita, K

    2017-09-11

    dose-dependent (P < 0.05) when compared to the control groups, which shown a daily increase of parasitemia, unlike the CQ-treated groups. The highest concentration of the extract (1000 mg/kg b.wt./day) had shown 83.90, 87.47 and 94.67% of chemo-suppression during Suppressive, Repository, and Curative tests respectively which is almost nearer to the standard drug Chloroquine (5 mg/kg b.wt./day). Thus, the study has revealed that the methanolic bark extract had shown promisingly high ((P < 0.05) and dose-dependent chemo-suppression. The phytochemical screening of the crude extracts had shown the presence of alkaloids, flavonoids, triterpenes, tannins, carbohydrates, phenols, coumarins, saponins, phlobatannins and steroids. The present study is useful to develop new antimalarial drugs in the scenario of the growing resistance to the existing antimalarials. Thus, additional research is needed to characterize the bioactive molecules of the extracts of Pongamia pinnata that are responsible for inhibition of malaria parasite.

  12. Design, synthesis and antimalarial evaluation of novel thiazole derivatives.

    PubMed

    Bueno, José María; Carda, Miguel; Crespo, Benigno; Cuñat, Ana Carmen; de Cozar, Cristina; León, María Luisa; Marco, J Alberto; Roda, Nuria; Sanz-Cervera, Juan F

    2016-08-15

    As part of our medicinal chemistry program's ongoing search for compounds with antimalarial activity, we prepared a series of thiazole analogs and conducted a SAR study analyzing their in vitro activities against the chloroquine-sensitive Plasmodium falciparum 3D7 strain. The results indicate that modifications of the N-aryl amide group linked to the thiazole ring are the most significant in terms of in vitro antimalarial activity, leading to compounds with high antimalarial potency and low cytotoxicity in HepG2 cell lines. Furthermore, the observed SAR implies that non-bulky, electron-withdrawing groups are preferred at ortho position on the phenyl ring, whereas small atoms such as H or F are preferred at para position. Finally, replacement of the phenyl ring by a pyridine affords a compound with similar potency, but with potentially better physicochemical properties which could constitute a new line of research for further studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A retrospective analysis of the change in anti-malarial treatment policy: Peru.

    PubMed

    Williams, Holly Ann; Vincent-Mark, Arlene; Herrera, Yenni; Chang, O Jaime

    2009-04-28

    National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process. To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru). Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents), a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed. The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a) having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b) engaging in collaborative teamwork among nationals and between nationals and international collaborators, c) respect for and inclusion of district-level staff in all phases of the process, d) reliance on high levels of technical and scientific knowledge, e) use of standardized protocols to collect data, and f) transparency. Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the change, utilized political will to their favor, approved the policy, and

  14. Methods for implementing a medicine outlet survey: lessons from the anti-malarial market.

    PubMed

    O'Connell, Kathryn A; Poyer, Stephen; Solomon, Tsione; Munroe, Erik; Patouillard, Edith; Njogu, Julius; Evance, Illah; Hanson, Kara; Shewchuk, Tanya; Goodman, Catherine

    2013-02-05

    In recent years an increasing number of public investments and policy changes have been made to improve the availability, affordability and quality of medicines available to consumers in developing countries, including anti-malarials. It is important to monitor the extent to which these interventions are successful in achieving their aims using quantitative data on the supply side of the market. There are a number of challenges related to studying supply, including outlet sampling, gaining provider cooperation and collecting accurate data on medicines. This paper provides guidance on key steps to address these issues when conducting a medicine outlet survey in a developing country context. While the basic principles of good survey design and implementation are important for all surveys, there are a set of specific issues that should be considered when conducting a medicine outlet survey. This paper draws on the authors' experience of designing and implementing outlet surveys, including the lessons learnt from ACTwatch outlet surveys on anti-malarial retail supply, and other key studies in the field. Key lessons and points of debate are distilled around the following areas: selecting a sample of outlets; techniques for collecting and analysing data on medicine availability, price and sales volumes; and methods for ensuring high quality data in general. The authors first consider the inclusion criteria for outlets, contrasting comprehensive versus more focused approaches. Methods for developing a reliable sampling frame of outlets are then presented, including use of existing lists, key informants and an outlet census. Specific issues in the collection of data on medicine prices and sales volumes are discussed; and approaches for generating comparable price and sales volume data across products using the adult equivalent treatment dose (AETD) are explored. The paper concludes with advice on practical considerations, including questionnaire design, field worker

  15. In vitro and in vivo antimalarial activity of amphiphilic naphthothiazolium salts with amine-bearing side chains.

    PubMed

    Ulrich, Peter; Gipson, Gregory R; Clark, Martha A; Tripathi, Abhai; Sullivan, David J; Cerami, Carla

    2014-10-01

    Because of emerging resistance to existing drugs, new chemical classes of antimalarial drugs are urgently needed. We have rationally designed a library of compounds that were predicted to accumulate in the digestive vacuole and then decrystallize hemozoin by breaking the iron carboxylate bond in hemozoin. We report the synthesis of 16 naphthothiazolium salts with amine-bearing side chains and their activities against the erythrocytic stage of Plasmodium falciparum in vitro. KSWI-855, the compound with the highest efficacy against the asexual stages of P. falciparum in vitro, also had in vitro activity against P. falciparum gametocytes and in vivo activity against P. berghei in a murine malaria model. © The American Society of Tropical Medicine and Hygiene.

  16. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    NASA Astrophysics Data System (ADS)

    Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  17. The mechanism of antimalarial action of the ruthenium (II)-chloroquine complex [RuCl2(CQ)]2

    PubMed Central

    Martínez, Alberto; Rajapakse, Chandima S. K.; Naoulou, Becky; Kopkalli, Yasemin; Davenport, Lesley; Sánchez-Delgado, Roberto A.

    2008-01-01

    The mechanism of antimalarial action of the ruthenium-chloroquine complex [RuCl2(CQ)]2 (1), previously shown by us to be active in vitro against CQ-resistant strains of Plasmodium falciparum and in vivo against P. berghei, has been investigated. The complex is rapidly hydrolyzed in aqueous solution to [RuCl(OH2)3(CQ)]2 [Cl]2, which is probably the active species. This compound binds to hematin in solution and inhibits aggregation to β-hematin at pH ∼ 5 to a slightly lower extent than chloroquine diphosphate; more importantly, the heme aggregation inhibition activity of complex 1 is significantly higher than that of CQ when measured at the interface of n-octanol-aqueous acetate buffer mixtures under acidic conditions modeling the food vacuole of the parasite. Partition coefficient measurements confirmed that complex 1 is considerably more lipophilic than CQ in n-octanol-water mixtures at pH ∼ 5. This suggests that the principal target of complex 1 is the heme aggregation process, which has recently been reported to be fast and spontaneous at or near water-lipid interfaces. The enhanced antimalarial activity of complex 1 is thus probably due to a higher effective concentration of the drug at or near the interface compared with that of CQ, which accumulates strongly in the aqueous regions of the vacuole under those conditions. Furthermore, the activity of complex 1 against CQ-resistant strains of P. falciparum is probably related to its greater lipophilicity, in line with previous reports indicating a lowered ability of the mutated transmembrane transporter PfCRT to promote the efflux of highly lipophilic drugs. The metal complex also interacts with DNA by intercalation, to a comparable extent and in a similar manner to uncomplexed CQ and therefore DNA binding does not appear to be an important part of the mechanism of antimalarial action in this case. PMID:18305967

  18. Prevalence of substandard and falsified artemisinin-based combination antimalarial medicines on Bioko Island, Equatorial Guinea.

    PubMed

    Kaur, Harparkash; Allan, Elizabeth Louise; Mamadu, Ibrahim; Hall, Zoe; Green, Michael D; Swamidos, Isabel; Dwivedi, Prabha; Culzoni, Maria Julia; Fernandez, Facundo M; Garcia, Guillermo; Hergott, Dianna; Monti, Feliciano

    2017-01-01

    Poor-quality artemisinin-containing antimalarials (ACAs), including falsified and substandard formulations, pose serious health concerns in malaria endemic countries. They can harm patients, contribute to the rise in drug resistance and increase the public's mistrust of health systems. Systematic assessment of drug quality is needed to gain knowledge on the prevalence of the problem, to provide Ministries of Health with evidence on which local regulators can take action. We used three sampling approaches to purchase 677 ACAs from 278 outlets on Bioko Island, Equatorial Guinea as follows: convenience survey using mystery client (n=16 outlets, 31 samples), full island-wide survey using mystery client (n=174 outlets, 368 samples) and randomised survey using an overt sampling approach (n=88 outlets, 278 samples). The stated active pharmaceutical ingredients (SAPIs) were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Content analysis showed 91.0% of ACAs were of acceptable quality, 1.6% were substandard and 7.4% falsified. No degraded medicines were detected. The prevalence of medicines without the SAPIs was higher for ACAs purchased in the convenience survey compared with the estimates obtained using the full island-wide survey-mystery client and randomised-overt sampling approaches. Comparable results were obtained for full island survey-mystery client and randomised overt. However, the availability of purchased artesunate monotherapies differed substantially according to the sampling approach used (convenience, 45.2%; full island-wide survey-mystery client, 32.6%; random-overt sampling approach, 21.9%). Of concern is that 37.1% (n=62) of these were falsified. Falsified ACAs were found on Bioko Island, with the prevalence ranging between 6.1% and 16.1%, depending on the sampling method used. These findings underscore the vital need for national authorities to track the scale of ineffective

  19. Prevalence of substandard and falsified artemisinin-based combination antimalarial medicines on Bioko Island, Equatorial Guinea

    PubMed Central

    Kaur, Harparkash; Allan, Elizabeth Louise; Mamadu, Ibrahim; Hall, Zoe; Green, Michael D; Swamidos, Isabel; Dwivedi, Prabha; Culzoni, Maria Julia; Fernandez, Facundo M; Garcia, Guillermo; Hergott, Dianna; Monti, Feliciano

    2017-01-01

    Introduction Poor-quality artemisinin-containing antimalarials (ACAs), including falsified and substandard formulations, pose serious health concerns in malaria endemic countries. They can harm patients, contribute to the rise in drug resistance and increase the public’s mistrust of health systems. Systematic assessment of drug quality is needed to gain knowledge on the prevalence of the problem, to provide Ministries of Health with evidence on which local regulators can take action. Methods We used three sampling approaches to purchase 677 ACAs from 278 outlets on Bioko Island, Equatorial Guinea as follows: convenience survey using mystery client (n=16 outlets, 31 samples), full island-wide survey using mystery client (n=174 outlets, 368 samples) and randomised survey using an overt sampling approach (n=88 outlets, 278 samples). The stated active pharmaceutical ingredients (SAPIs) were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results Content analysis showed 91.0% of ACAs were of acceptable quality, 1.6% were substandard and 7.4% falsified. No degraded medicines were detected. The prevalence of medicines without the SAPIs was higher for ACAs purchased in the convenience survey compared with the estimates obtained using the full island-wide survey-mystery client and randomised-overt sampling approaches. Comparable results were obtained for full island survey-mystery client and randomised overt. However, the availability of purchased artesunate monotherapies differed substantially according to the sampling approach used (convenience, 45.2%; full island-wide survey-mystery client, 32.6%; random-overt sampling approach, 21.9%). Of concern is that 37.1% (n=62) of these were falsified. Conclusion Falsified ACAs were found on Bioko Island, with the prevalence ranging between 6.1% and 16.1%, depending on the sampling method used. These findings underscore the vital need for national

  20. Specific Stereoisomeric Conformations Determine the Drug Potency of Cladosporin Scaffold against Malarial Parasite.

    PubMed

    Das, Pronay; Babbar, Palak; Malhotra, Nipun; Sharma, Manmohan; Jachak, Gorakhnath R; Gonnade, Rajesh G; Shanmugam, Dhanasekaran; Harlos, Karl; Yogavel, Manickam; Sharma, Amit; Reddy, D Srinivasa

    2018-05-21

    The dependence of drug potency on diastereomeric configurations is a key facet. Using a novel general divergent synthetic route for a three-chiral centre anti-malarial natural product cladosporin, we built its complete library of stereoisomers (cladologs) and assessed their inhibitory potential using parasite-, enzyme- and structure-based assays. We show that potency is manifest via tetrahyropyran ring conformations that are housed in the ribose binding pocket of parasite lysyl tRNA synthetase (KRS). Strikingly, drug potency between top and worst enantiomers varied 500-fold, and structures of KRS-cladolog complexes reveal that alterations at C3 and C10 are detrimental to drug potency where changes at C3 are sensed by rotameric flipping of Glutamate332. Given that scores of anti-malarial and anti-infective drugs contain chiral centers, this work provides a new foundation for focusing on inhibitor stereochemistry as a facet of anti-microbial drug development.

  1. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria.

    PubMed

    Nondo, Ramadhani S O; Erasto, Paul; Moshi, Mainen J; Zacharia, Abdallah; Masimba, Pax J; Kidukuli, Abdul W

    2016-01-01

    Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 × 10(7) erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

  2. Examination of the Cytotoxic and Embryotoxic Potential and Underlying Mechanisms of Next-Generation Synthetic Trioxolane and Tetraoxane Antimalarials

    PubMed Central

    Copple, Ian M; Mercer, Amy E; Firman, James; Donegan, Gail; Herpers, Bram; Wong, Michael HL; Chadwick, James; Bringela, Andreia D; Cristiano, Maria LS; van de Water, Bob; Ward, Stephen A; O’Neill, Paul M; Park, B Kevin

    2012-01-01

    Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria. PMID:22669474

  3. Pilot Study of Essential Drug Quality in Two Major Cities in India

    PubMed Central

    Bate, Roger; Tren, Richard; Mooney, Lorraine; Hess, Kimberly; Mitra, Barun; Debroy, Bibek; Attaran, Amir

    2009-01-01

    Background India is an increasingly influential player in the global pharmaceutical market. Key parts of the drug regulatory system are controlled by the states, each of which applies its own standards for enforcement, not always consistent with others. A pilot study was conducted in two major cities in India, Delhi and Chennai, to explore the question/hypothesis/extent of substandard and counterfeit drugs available in the market and to discuss how the Indian state and federal governments could improve drug regulation and more importantly regulatory enforcement to combat these drugs. Methodology/Principal Findings Random samples of antimalarial, antibiotic, and antimycobacterial drugs were collected from pharmacies in urban and peri-urban areas of Delhi and Chennai, India. Semi-quantitative thin-layer chromatography and disintegration testing were used to measure the concentration of active ingredients against internationally acceptable standards. 12% of all samples tested from Delhi failed either one or both tests, and were substandard. 5% of all samples tested from Chennai failed either one or both tests, and were substandard. Spatial heterogeneity between pharmacies was observed, with some having more or less substandard drugs (30% and 0% respectively), as was product heterogeneity, with some drugs being more or less frequently substandard (12% and 7% respectively). Conclusions/Significance In a study using basic field-deployable techniques of lesser sensitivity rather than the most advanced laboratory-based techniques, the prevalence of substandard drugs in Delhi and Chennai is confirmed to be roughly in accordance with the Indian government's current estimates. However, important spatial and product heterogeneity exists, which suggests that India's substandard drug problem is not ubiquitous, but driven by a subset of manufacturers and pharmacies which thrive in an inadequately regulated environment. It is likely that the drug regulatory system in India needs

  4. Pharmacokinetic studies of a novel trioxane antimalarial (99/411) in rats and monkeys using LC-MS/MS.

    PubMed

    Pandey, Saurabh; Gautam, Nagsen; Kushwaha, Hari Narayan; Singh, Shio Kumar

    2016-12-01

    The pharmacokinetic profile of 99/411, a novel anti-malarial drug, was established in rats (12 mg/kg of body weight) and monkeys (20 mg/kg of body weight). Following oral administration, the presence of 99/411 was rapidly determined in rat plasma, tissues, urine, feces and monkey plasma using a validated LC-MS/MS method. The tissue distribution studies in rats indicated that the drug was partially distributed in all major tissues and plasma, and peak concentration levels were achieved within 0.5-4 h. Area under the curve in different rat tissues and plasma was found in order of blood > lung > intestine > heart > muscle > brain > kidney > spleen > liver. The total recoveries (within 86 h) of 99/411 were <0.0017% and <0.08% in urine and feces, respectively. The peak plasma concentration was 3499 ng/mL in rats after ~2 h of oral administration and 697-767 ng/mL in monkeys after ~6 h of oral administration. No plasma accumulation was observed in both male and female monkeys, even after multiple dosing. The preclinical pharmacokinetic profile and tissue distribution data are expected to assist in future clinical explorations of 99/411 as a promising anti-malarial agent. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Discovery of new antimalarial chemotypes through chemical methodology and library development.

    PubMed

    Brown, Lauren E; Chih-Chien Cheng, Ken; Wei, Wan-Guo; Yuan, Pingwei; Dai, Peng; Trilles, Richard; Ni, Feng; Yuan, Jing; MacArthur, Ryan; Guha, Rajarshi; Johnson, Ronald L; Su, Xin-zhuan; Dominguez, Melissa M; Snyder, John K; Beeler, Aaron B; Schaus, Scott E; Inglese, James; Porco, John A

    2011-04-26

    In an effort to expand the stereochemical and structural complexity of chemical libraries used in drug discovery, the Center for Chemical Methodology and Library Development at Boston University has established an infrastructure to translate methodologies accessing diverse chemotypes into arrayed libraries for biological evaluation. In a collaborative effort, the NIH Chemical Genomics Center determined IC(50)'s for Plasmodium falciparum viability for each of 2,070 members of the CMLD-BU compound collection using quantitative high-throughput screening across five parasite lines of distinct geographic origin. Three compound classes displaying either differential or comprehensive antimalarial activity across the lines were identified, and the nascent structure activity relationships (SAR) from this experiment used to initiate optimization of these chemotypes for further development.

  6. Antimalarial activity of Garcinia mangostana L rind and its synergistic effect with artemisinin in vitro.

    PubMed

    Tjahjani, Susy

    2017-02-28

    Malaria especially falciparum malaria still causes high morbidity and mortality in tropical countries. Several factors have been linked to this situation and the most important one is the rapid spread of parasite resistance to the currently available antimalarials, including artemisinin. Artemisinin is the main component of the currently recommended antimalarial, artemisinin based combination therapy (ACT), and it is a free radical generating antimalarial. Garcinia mangostana L (mangosteen) rind contain a lot of xanthone compounds acting as an antioxidant and exhibited antimalarial activity. The aim of this study was to evaluate the antimalarial activity of mangosteen rind extract and its fractions and their interaction with artemisinin against the 3D7 clone of Plasmodium falciparum in vitro. Dry ripe mangosteen rind was extracted with ethanol followed by fractionation with hexane, ethylacetate, buthanol, and water consecutively to get ethanol extract, hexane, athylacetate, buthanol, and water fractions. Each of these substances was diluted in DMSO and examined for antimalarial activity either singly or in combination with artemisinin in vitro against Plasmodium falciparum 3D7 clone. Synergism between these substances with artemisinin was evaluated according to certain formula to get the sum of fractional inhibitory concentration 50 (∑FIC 50 ). Analysis of the parasite growth in vitro indicated that IC 50 of these mangosteen rind extract, hexane, ethylacetate, buthanol, and water fraction ranged from 0.41 to > 100 μg/mL. All of the ∑FIC50 were <1. This study demonstrated a promising antimalarial activity of the extract and fractions of G.mangostana L rind and its synergistic effect with artemisinin. Further study using lead compound(s) isolated from extract and fractions should be performed to identify more accurately their mechanism of antimalarial activities.

  7. Discovery and optimisation studies of antimalarial phenotypic hits

    PubMed Central

    Mital, Alka; Murugesan, Dinakaran; Kaiser, Marcel; Yeates, Clive; Gilbert, Ian H.

    2015-01-01

    There is an urgent need for the development of new antimalarial compounds. As a result of a phenotypic screen, several compounds with potent activity against the parasite Plasmodium falciparum were identified. Characterization of these compounds is discussed, along with approaches to optimise the physicochemical properties. The in vitro antimalarial activity of these compounds against P. falciparum K1 had EC50 values in the range of 0.09–29 μM, and generally good selectivity (typically >100-fold) compared to a mammalian cell line (L6). One example showed no significant activity against a rodent model of malaria, and more work is needed to optimise these compounds. PMID:26408453

  8. Prices and mark-ups on antimalarials: evidence from nationally representative studies in six malaria-endemic countries

    PubMed Central

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Torres Rueda, Sergio; Kiefer, Sabine; O’Connell, Kate; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Poyer, Stephen; Chavasse, Desmond

    2016-01-01

    The private for-profit sector is an important source of treatment for malaria. However, private patients face high prices for the recommended treatment for uncomplicated malaria, artemisinin combination therapies (ACTs), which makes them more likely to receive cheaper, less effective non-artemisinin therapies (nATs). This study seeks to better understand consumer antimalarial prices by documenting and exploring the pricing behaviour of retailers and wholesalers. Using data collected in 2009–10, we present survey estimates of antimalarial retail prices, and wholesale- and retail-level price mark-ups from six countries (Benin, Cambodia, the Democratic Republic of Congo, Nigeria, Uganda and Zambia), along with qualitative findings on factors affecting pricing decisions. Retail prices were lowest for nATs, followed by ACTs and artemisinin monotherapies (AMTs). Retailers applied the highest percentage mark-ups on nATs (range: 40% in Nigeria to 100% in Cambodia and Zambia), whereas mark-ups on ACTs (range: 22% in Nigeria to 71% in Zambia) and AMTs (range: 22% in Nigeria to 50% in Uganda) were similar in magnitude, but lower than those applied to nATs. Wholesale mark-ups were generally lower than those at retail level, and were similar across antimalarial categories in most countries. When setting prices wholesalers and retailers commonly considered supplier prices, prevailing market prices, product availability, product characteristics and the costs related to transporting goods, staff salaries and maintaining a property. Price discounts were regularly used to encourage sales and were sometimes used by wholesalers to reward long-term customers. Pricing constraints existed only in Benin where wholesaler and retailer mark-ups are regulated; however, unlicensed drug vendors based in open-air markets did not adhere to the pricing regime. These findings indicate that mark-ups on antimalarials are reasonable. Therefore, improving ACT affordability would be most readily

  9. On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond with free heme in solution

    NASA Astrophysics Data System (ADS)

    Macetti, Giovanni; Rizzato, Silvia; Beghi, Fabio; Silvestrini, Lucia; Lo Presti, Leonardo

    2016-02-01

    4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π···π interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in acidic solutions of hematin at room temperature was investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy in the 4.0-5.5 pH range, both in the presence and in the absence of the antimalarial drug chloroquine. EXAFS results were complemented by DFT simulations in polarizable continuum media to model solvent effects. We found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization of the malaria pigment without permanently hampering the catalytic activity of the redox center. These findings are discussed in the light of possible implications on the engineering of drugs able to thwart the adaptability of the malaria parasite against classical aminoquinoline-based therapies.

  10. Antimalarial evaluation of copper(II) nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum.

    PubMed

    Mohapatra, Subash Chandra; Tiwari, Hemandra Kumar; Singla, Manisha; Rathi, Brijesh; Sharma, Arun; Mahiya, Kuldeep; Kumar, Mukesh; Sinha, Saket; Chauhan, Shyam Singh

    2010-03-01

    A new class of copper(II) nanohybrid solids, LCu(CH(3)COO)(2) and LCuCl(2), have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5-10 and 60-70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV-vis spectroscopy and inhibition kinetics using Lineweaver-Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC(50) values (0.025-0.032 microg/ml) are similar to the IC(50) value of the standard drug chloroquine used in the bioassay. Lineweaver-Burk plots for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH(3)COO)(2) and LCuCl(2) were found to be 10 and 13 microM, respectively. The IC(50) values for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) were found to be 14 and 17 microM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, beta-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of

  11. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.

    PubMed

    Haynes, Richard K; Cheu, Kwan-Wing; N'Da, David; Coghi, Paolo; Monti, Diego

    2013-08-01

    The isolation of artemisinin from the traditional medicinal herb qīng hāo (Artemisia annua), its characterization as a peroxide and preparation of the derivatives dihydroartemisinin, artemether and artesunate in the 1970s and 1980s by Chinese scientists under the umbrella of Project 523 collectively represents one of the great events in medicine in the latter third of the 20(th) Century. Artemisinins have become the most important component of chemotherapy of malaria: although used initially in monotherapy, they are now used in combination therapies or ACTs with longer half-life quinolines or arylmethanols. Nevertheless, the recent emergence of artemisinin-tolerant strains of the malaria parasite as reflected in increased clearance times of parasitaemia in patients treated with ACTs represents the greatest threat to control of malaria since resistance to chloroquine was first reported over 55 years ago. Importantly, the event brings into sharp focus the realization that relatively little is precisely understood, as opposed to widely assumed, for the mechanism of drug action of artemisinins and their synthetic peroxide analogues. Thus, we review here their antimalarial activities, the use of artemisinins in combination therapies, drug-drug interactions with the quinolines and arylmethanols, and metabolism of the artemisinins and synthetic peroxides. The mechanism of action of quinolines and arylmethanols, in particular their ability to induce redistribution of heme into the parasite cytosol, is also highlighted. This collective information is then used as a counterpoint to screen the validity of two of the prevailing hypotheses of drug action of artemisinins and synthetic peroxides, namely i. 'the C-radical hypothesis' wherein the peroxide undergoes 'bioactivation' by ferrous iron to generate C-radicals that are held to be the cytotoxic agents and ii. the 'heme hypothesis' wherein ferrous heme may generate either the same type of 'cytotoxic' C-radical, or the

  12. Synthesis and antimalarial activity study of some new Mannich bases of 7-chloro-4-aminoquinoline.

    PubMed

    Roy, Susanta; Chetia, Dipak; Rudrapal, Mithun; Prakash, Anil

    2013-05-01

    New derivatives of 7-chloro-4-aminoquinoline Mannich base were prepared by selectively modifying the aliphatic diethyl amino function of isoquine with different aliphatic/aromatic heterocyclic primary amino moieties at Mannich side chain. The synthesized compounds were characterized by their analytical and spectral data, and screened for in-vitro antimalarial activity against a chloroquine-sensitive 3D7 strain of Plasmodium falciparum. All the compounds showed in-vitro antimalarial activity at the tested dose; which, however, was considerably less than that of the standard reference drug, chloroquine. Among synthesized compounds, compounds with cyclohexyl (2f), methyl (2c) substitutions showed better activity than compounds substituted with n-octyl (2a), propyl (2b), 3-aminopropyl (2d) and furan-2- ylmethyl (2e) moieties at aminomethyl side chain. The results clearly demonstrate that the compound substituted with saturated cycloalkyl moiety (cyclohexyl) exhibited to some extent increased activity as compared to the compound containing heterocyclic moiety (furan-2-ylmethyl), and compounds with short chain alkyl substitutions (methyl, propyl) were found to be more active than that of compounds with long chain alkyl substitution (n-octyl).

  13. The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain.

    PubMed

    Ehrhardt, Katharina; Davioud-Charvet, Elisabeth; Ke, Hangjun; Vaidya, Akhil B; Lanzer, Michael; Deponte, Marcel

    2013-05-01

    Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are "subversive substrates." These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates.

  14. The Antimalarial Activities of Methylene Blue and the 1,4-Naphthoquinone 3-[4-(Trifluoromethyl)Benzyl]-Menadione Are Not Due to Inhibition of the Mitochondrial Electron Transport Chain

    PubMed Central

    Ehrhardt, Katharina; Ke, Hangjun; Vaidya, Akhil B.; Lanzer, Michael

    2013-01-01

    Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are “subversive substrates.” These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates. PMID:23439633

  15. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.

    PubMed

    Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha

    2008-03-15

    Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.

  16. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    PubMed Central

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  17. ICI 56,780 Optimization: Structure-Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity.

    PubMed

    Maignan, Jordany R; Lichorowic, Cynthia L; Giarrusso, James; Blake, Lynn D; Casandra, Debora; Mutka, Tina S; LaCrue, Alexis N; Burrows, Jeremy N; Willis, Paul A; Kyle, Dennis E; Manetsch, Roman

    2016-07-28

    Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days.

  18. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds

    PubMed Central

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-01-01

    Alcoholic extracts of 8 different types of seaweeds from Iran’s Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml-1) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml-1). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml-1, respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  19. General Pharmacology of Artesunate, a Commonly used Antimalarial Drug:Effects on Central Nervous, Cardiovascular, and Respiratory System

    PubMed Central

    Lee, Hyang-Ae; Kim, Ki-Suk

    2010-01-01

    Artesunate, a semi-synthetic derivative of artemisinin, is used primarily as a treatment for malaria. Its effects on the central nervous system, general behavior, and cardiovascular, respiratory, and other organ systems were studied using mice, rats, guinea pigs, and dogs. Artesunate was administered orally to mice at doses of 125, 250, and 500 mg/kg and to rats and guinea pigs at 100, 200, and 400 mg/kg. In dogs, test drugs were administered orally in gelatin capsules at doses of 50, 100, and 150 mg/kg. Artesunate induced insignificant changes in general pharmacological studies, including general behavior, motor coordination, body temperature, analgesia, convulsion modulation, blood pressure, heart rate (HR) , and electrocardiogram (ECG) in dogs in vivo; respiration in guinea pigs; and gut motility or direct effects on isolated guinea pig ileum, contractile responses, and renal function. On the other hand, artesunate decreased the HR and coronary flow rate (CFR) in the rat in vitro; however, the extent of the changes was small and they were not confirmed in in vivo studies in the dog. Artesunate increased hexobarbital-induced sleeping time in a dose-related manner. Artesunate induced dose-related decreases in the volume of gastric secretions and the total acidity of gastric contents, and induced increases in pH at a dose of 400 mg/kg. However, all of these changes were observed at doses much greater than clinical therapeutic doses (2.4 mg/kg in humans, when used as an anti-malarial) . Thus, it can be concluded that artesunate is safe at clinical therapeutic doses. PMID:24278528

  20. Ex Vivo Drug Sensitivity Profiles of Plasmodium falciparum Field Isolates from Cambodia and Thailand, 2005 to 2010, Determined by a Histidine-Rich Protein-2 Assay

    DTIC Science & Technology

    2012-06-13

    References 1. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated...potentially concerning. As before, un- regulated availability of antimalarial medications during that period may have been a contributing factor. Not- ably...et al. observed a similar dip in IC50 values for a range of antimalarial drugs in 2006, and attributed the observa- tion to sampling bias since most

  1. Synthesis and biological evaluation of some novel pyrido[1,2-a]pyrimidin-4-ones as antimalarial agents.

    PubMed

    Mane, Uttam R; Mohanakrishnan, D; Sahal, Dinkar; Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2014-05-22

    Novel pyrido[1,2-a]pyrimidin-4-ones have been synthesized and evaluated for their antimalarial activity by SYBR Green I assay against erythrocytic stages of chloroquine (CQ) sensitive Pf 3D7 strain. The antimalarial screening of 42 different compounds revealed that 3-Fluorobenzyl(4-oxo-4H-pyrido [1,2-a]pyrimidin-3-yl)carbamate (21, IC50 value 33 μM) and 4-Oxo-N-[4-(trifluoromethyl)benzyl]-4H-pyrido[1,2-a]pyrimidine-3-carboxamide (37, IC50 value 37 μM) showed moderate antimalarial activity. Cytotoxicity study was performed against mammalian cell line (Huh-7) by using the MTT assay for the moderately active compounds. Structural activity relationship (SAR) studies displayed that B-ring unsubstituted pyrido[1,2-a]pyrimidine scaffold is responsible for the antimalarial activities of the evaluated derivatives. This SAR based antimalarial screening supported that pyrido[1,2-a]pyrimidin-4-one can be considered as a lead heterocyclic structure for further development of more potent derivatives for antimalarial activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. A SAR and QSAR study of new artemisinin compounds with antimalarial activity.

    PubMed

    Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T

    2013-12-30

    The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  3. An ethnobotanical study of anti-malarial plants among indigenous people on the upper Negro River in the Brazilian Amazon.

    PubMed

    Frausin, Gina; Hidalgo, Ari de Freitas; Lima, Renata Braga Souza; Kinupp, Valdely Ferreira; Ming, Lin Chau; Pohlit, Adrian Martin; Milliken, William

    2015-11-04

    material available, the patient's age (children and adults) and the local expert. The treatment time varies from a single dose to up to several weeks. Most anti-malarial plants are domesticated or grow spontaneously. They are grown in home gardens, open areas near the communities, clearings and secondary forests, and wild species grow in areas of seasonally flooded wetlands and terra firme ('solid ground') forest, in some cases in locations that are hard to access. Traditional knowledge of plants was found to be falling into disuse presumably as a consequence of the local official health services that treat malaria in the communities using commercial drugs. Despite this, some species are used in the prevention of this disease and also in the recovery after using conventional anti-malarial drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Antimalarial activity of physalins B, D, F, and G.

    PubMed

    Sá, Matheus S; de Menezes, Maria N; Krettli, Antoniana U; Ribeiro, Ivone M; Tomassini, Therezinha C B; Ribeiro dos Santos, Ricardo; de Azevedo, Walter F; Soares, Milena B P

    2011-10-28

    The antimalarial activities of physalins B, D, F, and G (1-4), isolated from Physalis angulata, were investigated. In silico analysis using the similarity ensemble approach (SEA) database predicted the antimalarial activity of each of these compounds, which were shown using an in vitro assay against Plasmodium falciparum. However, treatment of P. berghei-infected mice with 3 increased parasitemia levels and mortality, whereas treatment with 2 was protective, causing a parasitemia reduction and a delay in mortality in P. berghei-infected mice. The exacerbation of in vivo infection by treatment with 3 is probably due to its potent immunosuppressive activity, which is not evident for 2.

  5. A pharmacy too far? Equity and spatial distribution of outcomes in the delivery of subsidized artemisinin-based combination therapies through private drug shops

    PubMed Central

    2010-01-01

    Background Millions of individuals with malaria-like fevers purchase drugs from private retailers, but artemisinin-based combination therapies (ACTs), the only effective treatment in regions with high levels of resistance to older drugs, are rarely obtained through these outlets due to their relatively high cost. To encourage scale up of ACTs, the Affordable Medicines Facility – malaria is being launched to subsidize their price. The Government of Tanzania and the Clinton Foundation piloted this subsidized distribution model in two Tanzanian districts to examine concerns about whether the intervention will successfully reach poor, rural communities. Methods Stocking of ACTs and other antimalarial drugs in all retail shops was observed at baseline and in four subsequent surveys over 15 months. Exit interviews were conducted with antimalarial drug customers during each survey period. All shops and facilities were georeferenced, and variables related to population density and proximity to distribution hubs, roads, and other facilities were calculated. To understand the equity of impact, shops stocking ACTs and consumers buying them were compared to those that did not, according to geographic and socioeconomic variables. Patterning in ACT stocking and sales was evaluated against that of other common antimalarials to identify factors that may have impacted access. Qualitative data were used to assess motivations underlying stocking, distribution, and buying disparities. Results Results indicated that although total ACT purchases rose from negligible levels to nearly half of total antimalarial sales over the course of the pilot, considerable geographic variation in stocking and sales persisted and was related to a variety of socio-spatial factors; ACTs were stocked more often in shops located closer to district towns (p<0.01) and major roads (p<0.01) and frequented by individuals of higher socioeconomic status (p<0.01). However, other antimalarial drugs displayed

  6. A pharmacy too far? Equity and spatial distribution of outcomes in the delivery of subsidized artemisinin-based combination therapies through private drug shops.

    PubMed

    Cohen, Justin M; Sabot, Oliver; Sabot, Kate; Gordon, Megumi; Gross, Isaac; Bishop, David; Odhiambo, Moses; Ipuge, Yahya; Ward, Lorrayne; Mwita, Alex; Goodman, Catherine

    2010-07-02

    Millions of individuals with malaria-like fevers purchase drugs from private retailers, but artemisinin-based combination therapies (ACTs), the only effective treatment in regions with high levels of resistance to older drugs, are rarely obtained through these outlets due to their relatively high cost. To encourage scale up of ACTs, the Affordable Medicines Facility--malaria is being launched to subsidize their price. The Government of Tanzania and the Clinton Foundation piloted this subsidized distribution model in two Tanzanian districts to examine concerns about whether the intervention will successfully reach poor, rural communities. Stocking of ACTs and other antimalarial drugs in all retail shops was observed at baseline and in four subsequent surveys over 15 months. Exit interviews were conducted with antimalarial drug customers during each survey period. All shops and facilities were georeferenced, and variables related to population density and proximity to distribution hubs, roads, and other facilities were calculated. To understand the equity of impact, shops stocking ACTs and consumers buying them were compared to those that did not, according to geographic and socioeconomic variables. Patterning in ACT stocking and sales was evaluated against that of other common antimalarials to identify factors that may have impacted access. Qualitative data were used to assess motivations underlying stocking, distribution, and buying disparities. Results indicated that although total ACT purchases rose from negligible levels to nearly half of total antimalarial sales over the course of the pilot, considerable geographic variation in stocking and sales persisted and was related to a variety of socio-spatial factors; ACTs were stocked more often in shops located closer to district towns (p<0.01) and major roads (p<0.01) and frequented by individuals of higher socioeconomic status (p<0.01). However, other antimalarial drugs displayed similar patterning, indicating the

  7. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.

    PubMed

    Haynes, Richard K; Chan, Wing-Chi; Wong, Ho-Ning; Li, Ka-Yan; Wu, Wai-Keung; Fan, Kit-Man; Sung, Herman H Y; Williams, Ian D; Prosperi, Davide; Melato, Sergio; Coghi, Paolo; Monti, Diego

    2010-08-02

    The antimalarial drug methylene blue (MB) affects the redox behaviour of parasite flavin-dependent disulfide reductases such as glutathione reductase (GR) that control oxidative stress in the malaria parasite. The reduced flavin adenine dinucleotide cofactor FADH(2) initiates reduction to leucomethylene blue (LMB), which is oxidised by oxygen to generate reactive oxygen species (ROS) and MB. MB then acts as a subversive substrate for NADPH normally required to regenerate FADH(2) for enzyme function. The synergism between MB and the peroxidic antimalarial artemisinin derivative artesunate suggests that artemisinins have a complementary mode of action. We find that artemisinins are transformed by LMB generated from MB and ascorbic acid (AA) or N-benzyldihydronicotinamide (BNAH) in situ in aqueous buffer at physiological pH into single electron transfer (SET) rearrangement products or two-electron reduction products, the latter of which dominates with BNAH. Neither AA nor BNAH alone affects the artemisinins. The AA-MB SET reactions are enhanced under aerobic conditions, and the major products obtained here are structurally closely related to one such product already reported to form in an intracellular medium. A ketyl arising via SET with the artemisinin is invoked to explain their formation. Dihydroflavins generated from riboflavin (RF) and FAD by pretreatment with sodium dithionite are rapidly oxidised by artemisinin to the parent flavins. When catalytic amounts of RF, FAD, and other flavins are reduced in situ by excess BNAH or NAD(P)H in the presence of the artemisinins in the aqueous buffer, they are rapidly oxidised to the parent flavins with concomitant formation of two-electron reduction products from the artemisinins; regeneration of the reduced flavin by excess reductant maintains a catalytic cycle until the artemisinin is consumed. In preliminary experiments, we show that NADPH consumption in yeast GR with redox behaviour similar to that of parasite GR is

  8. Antimalarial activity of three Pakistani medicinal plants.

    PubMed

    Irshad, Saba; Mannan, Abdul; Mirza, Bushra

    2011-10-01

    This study was conducted to determine the in vitro anti-malarial activity of three medicinal plants, Picrorhiza kurroa, Caesalpinia bonducella and Artemisia absinthium of Pakistan. Different extracts of various parts of these plants were prepared by maceration and percolation, and were evaluated for their antimalarial activity. Aqueous, cold alcoholic and hot alcoholic extracts of Picrorhiza kurroa showed 34%, 100% and 90% inhibition in growth of Plasmodium falciparum, respectively, at 2.00 mg/ml. While aqueous, cold alcoholic and hot alcoholic extracts of Caesalpinia bonducella showed 65%, 56% and 76% inhibition in growth of Plasmodium falciparum, respectively at same concentrations. In the case of Artemisia absinthium, aqueous, cold alcoholic and hot alcoholic extract of Artemisia absinthium showed 35%, 55% and 21% inhibition in growth of Plasmodium falciparum, respectively at 2.00 mg/ml. In our study, extracts of Picrorhiza kurroa were found good for traditional therapy with highly significant results.

  9. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  10. Efflux of a range of antimalarial drugs and 'chloroquine resistance reversers' from the digestive vacuole in malaria parasites with mutant PfCRT.

    PubMed

    Lehane, Adele M; Kirk, Kiaran

    2010-08-01

    Chloroquine-resistant malaria parasites (Plasmodium falciparum) show an increased leak of H(+) ions from their internal digestive vacuole in the presence of chloroquine. This phenomenon has been attributed to the transport of chloroquine, together with H(+), out of the digestive vacuole (and hence away from its site of action) via a mutant form of the parasite's chloroquine resistance transporter (PfCRT). Here, using transfectant parasite lines, we show that a range of other antimalarial drugs, as well as various 'chloroquine resistance reversers' induce an increased leak of H(+) from the digestive vacuole of parasites expressing mutant PfCRT, consistent with these compounds being substrates for mutant forms, but not the wild-type form, of PfCRT. For some compounds there were significant differences observed between parasites having the African/Asian Dd2 form of PfCRT and those with the South American 7G8 form of PfCRT, consistent with there being differences in the transport properties of the two mutant proteins. The finding that chloroquine resistance reversers are substrates for mutant PfCRT has implications for the mechanism of action of this class of compound. © 2010 Blackwell Publishing Ltd.

  11. Adverse drug events resulting from use of drugs with sulphonamide-containing anti-malarials and artemisinin-based ingredients: findings on incidence and household costs from three districts with routine demographic surveillance systems in rural Tanzania

    PubMed Central

    2013-01-01

    Background Anti-malarial regimens containing sulphonamide or artemisinin ingredients are widely used in malaria-endemic countries. However, evidence of the incidence of adverse drug reactions (ADR) to these drugs is limited, especially in Africa, and there is a complete absence of information on the economic burden such ADR place on patients. This study aimed to document ADR incidence and associated household costs in three high malaria transmission districts in rural Tanzania covered by demographic surveillance systems. Methods Active and passive surveillance methods were used to identify ADR from sulphadoxine-pyrimethamine (SP) and artemisinin (AS) use. ADR were identified by trained clinicians at health facilities (passive surveillance) and through cross-sectional household surveys (active surveillance). Potential cases were followed up at home, where a complete history and physical examination was undertaken, and household cost data collected. Patients were classified as having ‘possible’ or ‘probable’ ADR by a physician. Results A total of 95 suspected ADR were identified during a two-year period, of which 79 were traced, and 67 reported use of SP and/or AS prior to ADR onset. Thirty-four cases were classified as ‘probable’ and 33 as ‘possible’ ADRs. Most (53) cases were associated with SP monotherapy, 13 with the AS/SP combination (available in one of the two areas only), and one with AS monotherapy. Annual ADR incidence per 100,000 exposures was estimated based on ‘probable’ ADR only at 5.6 for AS/SP in combination, and 25.0 and 11.6 for SP monotherapy. Median ADR treatment costs per episode ranged from US$2.23 for those making a single provider visit to US$146.93 for patients with four visits. Seventy-three per cent of patients used out-of-pocket funds or sold part of their farm harvests to pay for treatment, and 19% borrowed money. Conclusion Both passive and active surveillance methods proved feasible methods for anti-malarial ADR

  12. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria.

    PubMed

    Bankole, A E; Adekunle, A A; Sowemimo, A A; Umebese, C E; Abiodun, O; Gbotosho, G O

    2016-01-01

    The use of plant to meet health-care needs has greatly increased worldwide in the recent times. The search for new plant-derived bioactive agents that can be explored for the treatment of drug-resistant malaria infection is urgently needed. Thus, we evaluated the antimalarial activity of three medicinal plants used in Nigerian folklore for the treatment of malaria infection. A modified Peter's 4-day suppressive test was used to evaluate the antimalarial activity of the plant extracts in a mouse model of chloroquine-resistant Plasmodium berghei ANKA strain. Animals were treated with 250, 500, or 800 mg/kg of aqueous extract. It was observed that of all the three plants studied, Markhamia tomentosa showed the highest chemosuppression of parasites of 73 % followed by Polyalthia longifolia (53 %) at day 4. All the doses tested were well tolerated. Percentage suppression of parasite growth on day 4 post-infection ranged from 1 to 73 % in mice infected with P. berghei and treated with extracts when compared with chloroquine diphosphate, the standard reference drug which had a chemosuppression of 90 %. The percentage survival of mice that received extract ranged from 0 to 60 % (increased as the dose increases to 800 mg/kg). Phytochemical analysis revealed the presence of tannins, saponins, and phenolic compounds in all the three plants tested.

  13. Substandard/Counterfeit Antimicrobial Drugs

    PubMed Central

    Kelesidis, Theodoros

    2015-01-01

    SUMMARY Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. PMID:25788516

  14. Substandard/counterfeit antimicrobial drugs.

    PubMed

    Kelesidis, Theodoros; Falagas, Matthew E

    2015-04-01

    Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Lack of Doxycycline Antimalarial Prophylaxis Impact on Staphylococcus aureus Tetracycline Resistance

    PubMed Central

    Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Yu, Xin; Li, Ping; Tribble, David R.; Murray, Clinton K.

    2016-01-01

    There is concern that susceptibility of Staphylococcus aureus to tetracyclines may decrease due to use of antimalarial prophylaxis (doxycycline). We examined characteristics related to tetracycline resistance, including doxycycline exposure, in S. aureus isolates collected via admission surveillance swabs and inpatient clinical cultures from United States military personnel injured during deployment (June 2009-January 2012). Tetracycline class resistance was determined using antimicrobial susceptibility testing. The first S. aureus isolate from 168 patients were analyzed, of which 38 (23%) isolates were resistant to tetracyclines (class). Tetracycline-resistant isolates had a higher proportion of resistance to clindamycin (p=0.019) compared to susceptible isolates. There was no significant difference in tetracycline resistance between isolates collected from patients with and without antimalarial prophylaxis; however, significantly more isolates had tet(M) resistance genes in the doxycycline exposure group (p=0.031). Despite 55% of the patients receiving doxycycline as antimalarial prophylaxis, there was no association with resistance to tetracyclines. PMID:27460426

  16. Availability and affordability of antimalarial and antibiotic medicines in Malawi

    PubMed Central

    Khuluza, Felix

    2017-01-01

    Background Availability and affordability of medicines are key determinants of universal health coverage, yet achieving them presents a major challenge especially in low-income countries. We here present an analysis of availability and prices of antimalarial and antibiotic medicines in public, faith-based and private health facilities in Malawi. Medicines are provided free of charge in the public health care system of Malawi. In contrast, facilities of the Christian Health Association of Malawi (CHAM) usually charge their patients for medicines, as do private for-profit facilities. Methods As part of a study on medicine quality, samples of six antimalarial and six antibiotic medicines were collected in 31 health facilities in four districts of southern Malawi. These included 15 public facilities (i.e. health centres, district hospitals and central hospitals), eight CHAM and eight private facilities. Random selection was used in choosing the included health facilities. The availability of medicines was recorded, including the number of units which could be collected of each medicine, as well as the prices of medicines which were charged in CHAM and private facilities. These data were analyzed using the standard methodology developed by the World Health Organization (WHO) and Health Action International (HAI). Results Availability of the antimalarials artemether/lumefantrine and sulfadoxine/pyrimethamine, which are provided with financial support from international donors, was high in public and CHAM facilities (93% and 100%, respectively). However, availability of antibiotics was much lower (e.g. 40% availability of amoxicillin tablets/capsules in public health centres). Medicine prices were lower than reported from many other countries. The median price ratio (MPR) to a wholesale international procurement price was 2.8 in CHAM facilities and even lower in the private sector (MPR 2.3). Nevertheless, for 10 of the 12 investigated medicines the cost for one course of

  17. Mass drug administration for malaria

    PubMed Central

    Poirot, Eugenie; Skarbinski, Jacek; Sinclair, David; Kachur, S Patrick; Slutsker, Laurence; Hwang, Jimee

    2013-01-01

    Background Mass drug administration (MDA), defined as the empiric administration of a therapeutic antimalarial regimen to an entire population at the same time, has been a historic component of many malaria control and elimination programmes, but is not currently recommended. With renewed interest in MDA and its role in malaria elimination, this review aims to summarize the findings from existing research studies and program experiences of MDA strategies for reducing malaria burden and transmission. Objectives To assess the impact of antimalarial MDA on population asexual parasitaemia prevalence, parasitaemia incidence, gametocytaemia prevalence, anaemia prevalence, mortality and MDA-associated adverse events. Search methods We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE+, EMBASE, to February 2013. We also searched CABS Abstracts, LILACS, reference lists, and recent conference proceedings. Selection criteria Cluster-randomized trials and non-randomized controlled studies comparing therapeutic MDA versus placebo or no MDA, and uncontrolled before-and-after studies comparing post-MDA to baseline data were selected. Studies administering intermittent preventive treatment (IPT) to sub-populations (for example, pregnant women, children or infants) were excluded. Data collection and analysis Two authors independently reviewed studies for inclusion, extracted data and assessed risk of bias. Studies were stratified by study design and then subgrouped by endemicity, by co-administration of 8-aminoquinoline plus schizonticide drugs and by plasmodium species. The quality of evidence was assessed using the GRADE approach. Main results Two cluster-randomized trials, eight non-randomized controlled studies and 22 uncontrolled before-and-after studies are included in this review. Twenty-two studies (29 comparisons) compared MDA to placebo or no intervention of which two comparisons were

  18. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies.

    PubMed

    Adebayo, J O; Balogun, E A; Malomo, S O; Soladoye, A O; Olatunji, L A; Kolawole, O M; Oguntoye, O S; Babatunde, A S; Akinola, O B; Aguiar, A C C; Andrade, I M; Souza, N B; Krettli, A U

    2013-01-01

    In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT) ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25-500 mg/kg body weight) using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF) contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P > 0.05) function indices of the liver and cardiovascular system at all doses administered but significantly increased (P < 0.05) plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles.

  19. Evidence on anti-malarial and diagnostic markets in Cambodia to guide malaria elimination strategies and policies.

    PubMed

    Phok, Sochea; Lek, Dysoley

    2017-04-25

    Understanding Cambodia's anti-malarial and diagnostic landscape in 2015 is critical for informing and monitoring strategies and policies as Cambodia moves forward with national efforts to eliminate malaria. The aim of this paper is to present timely and key findings on the public and private sector anti-malarial and diagnostic landscape in Cambodia. This evidence can serve as a baseline benchmark for guiding implementation of national strategies as well as other regional initiatives to address malaria elimination activities. From August 17th to October 1st, 2015, a cross sectional, nationally-representative malaria outlet survey was conducted in Cambodia. A census of all public and private outlets with potential to distribute malaria testing and/or treatment was conducted among 180 communes. An audit was completed for all anti-malarials, malaria rapid diagnostic tests (RDT) and microscopy. A total of 26,664 outlets were screened, and 1303 outlets were eligible and interviewed. Among all screened outlets in the public sector, 75.9% of public health facilities and 67.7% of community health workers stocked both malaria diagnostic testing and a first-line artemisinin-based combination therapy (ACT). Among anti-malarial-stocking private sector outlets, 64.7% had malaria blood testing available, and 70.9% were stocking a first-line ACT. Market share data illustrate that most of the anti-malarials were sold or distributed through the private sector (58.4%), including itinerant drug vendors (23.4%). First-line ACT accounted for the majority of the market share across the public and private sectors (90.3%). Among private sector outlets stocking any anti-malarial, the proportion of outlets with a first-line ACT or RDT was higher among outlets that had reportedly received one or more forms of 'support' (e.g. reportedly received training in the previous year on malaria diagnosis [RDT and/or microscopy] and/or the national treatment guidelines for malaria) compared to outlets

  20. Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5*

    PubMed Central

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J.

    2014-01-01

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. PMID:24737313

  1. Human serum albumin binding of certain antimalarials

    NASA Astrophysics Data System (ADS)

    Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.

    2018-03-01

    Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.

  2. Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives.

    PubMed

    Pereira, Glaécia A N; Souza, Gisele C; Santos, Lourivaldo S; Barata, Lauro E S; Meneses, Carla C F; Krettli, Antoniana U; Daniel-Ribeiro, Cláudio Tadeu; Alves, Cláudio Nahum

    2017-09-01

    The absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventional antimalarial drugs result in a worrisome scenario making the search for new drugs a priority. In the present study, the activities of nine neolignan derivatives were evaluated as follows: (i) against blood forms of chloroquine-resistant Plasmodium falciparum (clone W2), using the tritiated hypoxanthine incorporation and anti-HRPII assays; (ii) for cytotoxic activity against cultured human hepatoma cells (HepG2); and (iii) for intermolecular interaction with the P. falciparum cysteine protease of falcipain-2 (F2) by molecular docking. The neolignan derivatives 9 and 10 showed activity against the blood form of the chloroquine-resistant P. falciparum clone W2 and were not cytotoxic against cultured human hepatoma cells. A molecular docking study of these two neolignans with FP2 revealed several intermolecular interactions that should guide the design of future analogs. © 2017 John Wiley & Sons A/S.

  3. Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity.

    PubMed

    Vyas, V K; Qureshi, G; Ghate, M; Patel, H; Dalai, S

    2016-06-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere-Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.

  4. Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles

    PubMed Central

    2016-01-01

    The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought. One chemical subseries was found to exhibit oral activity but contained a labile ester that could not be replaced without loss of activity, and the original hit exhibited remarkable sensitivity to minor structural change. A second subseries displayed high potency, including activity within gametocyte and liver stage assays, but at the cost of low solubility. As an open source research project, unexplored avenues are clearly identified and may be explored further by the community; new findings may be cumulatively added to the present work. PMID:27800551

  5. Prices and mark-ups on antimalarials: evidence from nationally representative studies in six malaria-endemic countries.

    PubMed

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Torres Rueda, Sergio; Kiefer, Sabine; O'Connell, Kate; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Poyer, Stephen; Chavasse, Desmond

    2016-03-01

    The private for-profit sector is an important source of treatment for malaria. However, private patients face high prices for the recommended treatment for uncomplicated malaria, artemisinin combination therapies (ACTs), which makes them more likely to receive cheaper, less effective non-artemisinin therapies (nATs). This study seeks to better understand consumer antimalarial prices by documenting and exploring the pricing behaviour of retailers and wholesalers. Using data collected in 2009-10, we present survey estimates of antimalarial retail prices, and wholesale- and retail-level price mark-ups from six countries (Benin, Cambodia, the Democratic Republic of Congo, Nigeria, Uganda and Zambia), along with qualitative findings on factors affecting pricing decisions. Retail prices were lowest for nATs, followed by ACTs and artemisinin monotherapies (AMTs). Retailers applied the highest percentage mark-ups on nATs (range: 40% in Nigeria to 100% in Cambodia and Zambia), whereas mark-ups on ACTs (range: 22% in Nigeria to 71% in Zambia) and AMTs (range: 22% in Nigeria to 50% in Uganda) were similar in magnitude, but lower than those applied to nATs. Wholesale mark-ups were generally lower than those at retail level, and were similar across antimalarial categories in most countries. When setting prices wholesalers and retailers commonly considered supplier prices, prevailing market prices, product availability, product characteristics and the costs related to transporting goods, staff salaries and maintaining a property. Price discounts were regularly used to encourage sales and were sometimes used by wholesalers to reward long-term customers. Pricing constraints existed only in Benin where wholesaler and retailer mark-ups are regulated; however, unlicensed drug vendors based in open-air markets did not adhere to the pricing regime. These findings indicate that mark-ups on antimalarials are reasonable. Therefore, improving ACT affordability would be most readily

  6. Drugs Used in the Treatment of Rheumatoid Arthritis: Relationship between Current Use and Cardiovascular Risk Factors

    PubMed Central

    Rho, Young Hee; Oeser, Annette; Chung, Cecilia P; Milne, Ginger L; Stein, C Michael

    2009-01-01

    Objectives Drugs used for the treatment of rheumatoid arthritis (RA) have the potential to affect cardiovascular risk factors. There is concern that corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 inhibitors could affect cardiovascular risk adversely, while drugs such as the antimalarial, hydroxychloroquine, may have beneficial effects. However, there is limited information about cardiovascular risk factors in patients with RA receiving different drugs. Methods We measured cardiovascular risk factors including systolic and diastolic blood pressure, serum HDL and LDL cholesterol, glucose and homocysteine concentrations and urinary F2-isoprostane excretion in 169 patients with RA. Risk factors were compared according to current use of corticosteroids, methotrexate, antimalarials, NSAIDs, COX-2 inhibitors, leflunomide and TNF-α blockers. Comparisons were adjusted for age, sex, race, disease activity (DAS28 score), current hypertension, diabetes, smoking status and statin use. Results No cardiovascular risk factor differed significantly among current users and non-users of NSAIDs, COX-2 inhibitors, methotrexate and TNF-α blockers. Serum HDL cholesterol concentrations were significantly higher in patients currently receiving corticosteroids (42.2 ± 10.5 vs. 50.2 ± 15.3 mg/dL, adjusted P < 0.001). Diastolic blood pressure (75.9 ± 11.2 vs. 72.0 ± 9.1 mm Hg, adjusted P = 0.02), serum LDL cholesterol (115.6 ± 34.7 vs. 103.7 ± 27.8 mg/dL, adjusted P = 0.03) and triglyceride concentrations (157.7 ± 202.6 vs. 105.5 ± 50.5 mg/dL, adjusted P = 0.03) were significantly lower in patients taking antimalarial drugs. Plasma glucose was significantly lower in current lefunomide users (93.0 ± 19.2 vs. 83.6 ± 13.4 mg/dL, adjusted P = 0.006). Conclusions In a cross-sectional setting drugs used to treat RA did not have major adverse effects on cardiovascular risk factors and use of antimalarials was associated with beneficial lipid profiles. PMID

  7. A novel prediction approach for antimalarial activities of Trimethoprim, Pyrimethamine, and Cycloguanil analogues using extremely randomized trees.

    PubMed

    Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa

    2017-01-01

    Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, K i of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted K i values from the proposed model show a strong coefficient of determination, R 2 =0.996, to experimental K i values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low K i values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted K i should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low K i . Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Drugs for preventing malaria in pregnant women in endemic areas: any drug regimen versus placebo or no treatment

    PubMed Central

    Radeva-Petrova, Denitsa; Kayentao, Kassoum; ter Kuile, Feiko O; Sinclair, David; Garner, Paul

    2014-01-01

    reduces placental parasitaemia by around 46% (RR 0.54, 95% CI 0.43 to 0.69; seven trials, 2830 participants, high quality evidence). Fewer trials evaluated spontaneous abortions, still births, perinatal deaths, or neonatal deaths, and these analyses were underpowered to detect clinically important differences. In multigravid women, chemoprevention has similar effects on antenatal parasitaemia (RR 0.38, 95% CI 0.28 to 0.50; three trials, 977 participants, high quality evidence)but there are too few trials to evaluate effects on other outcomes. In trials giving chemoprevention to all pregnant women irrespective of parity, the average effects of chemoprevention measured in all women indicated it may prevent severe anaemia (defined by authors, but at least < 8 g/L: RR 0.19, 95% CI 0.05 to 0.75; two trials, 1327 participants, low quality evidence), but consistent benefits have not been shown for other outcomes. In an analysis confined only to intermittent preventive therapy with SP, the estimates of effect and the quality of the evidence were similar. A summary of a single trial in Thailand of prophylaxis against P. vivax showed chloroquine prevented vivax infection (RR 0.01, 95% CI 0.00 to 0.20; one trial, 942 participants). Authors' conclusions Routine chemoprevention to prevent malaria and its consequences has been extensively tested in RCTs, with clinically important benefits on anaemia and parasitaemia in the mother, and on birthweight in infants. PLAIN LANGUAGE SUMMARY The effect of taking antimalarial drugs routinely to prevent malaria in pregnancy Pregnancy increases the risk of malaria and this is associated with poor health outcomes for both the mother and the infant, especially during the first or second pregnancy. For this reason, women are encouraged to try and prevent malaria infection during pregnancy by sleeping under mosquito bed-nets, and by taking drugs effective against malaria throughout pregnancy as chemoprevention. This Cochrane Review looked at all drug

  9. [Animal drugs quality status and reason analysis].

    PubMed

    Ding, Qing; Qiu, Ya-jing; Fang, Ke-hui; Hu, Hao-bin; Wu, Yue

    2015-11-01

    In order to reaction the quality present situation, problems on the current quality of animal sources of drugs are summed up by using test data analysis, literature search and marketing research. This paper can also help the improvement of the quality management, the revision of the relevant department policy system and the improvement of standards.

  10. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    DTIC Science & Technology

    2014-10-01

    OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone...Prescribed by ANSI Std Z39-18 Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone and Arterolane, against Multidrug-Resistant...potent antimalarial activity (2, 3). Despite having a rapid mecha- nism of action, artemisinin resistance eventually emerged and was first detected

  11. 76 FR 25358 - 2011 Parenteral Drug Association/Food and Drug Administration Glass Quality Conference; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] 2011 Parenteral Drug Association/Food and Drug Administration Glass Quality Conference; Public Conference AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public conference. SUMMARY: The Food...

  12. Indicators for the automated analysis of drug prescribing quality.

    PubMed

    Coste, J; Séné, B; Milstein, C; Bouée, S; Venot, A

    1998-01-01

    Irrational and inconsistent drug prescription has considerable impact on morbidity, mortality, health service utilization, and community burden. However, few studies have addressed the methodology of processing the information contained in these drug orders used to study the quality of drug prescriptions and prescriber behavior. We present a comprehensive set of quantitative indicators for the quality of drug prescriptions which can be derived from a drug order. These indicators were constructed using explicit a priori criteria which were previously validated on the basis of scientific data. Automatic computation is straightforward, using a relational database system, such that large sets of prescriptions can be processed with minimal human effort. We illustrate the feasibility and value of this approach by using a large set of 23,000 prescriptions for several diseases, selected from a nationally representative prescriptions database. Our study may result in direct and wide applications in the epidemiology of medical practice and in quality control procedures.

  13. Assessment of deoxyhypusine hydroxylase as a putative, novel drug target.

    PubMed

    Kerscher, B; Nzukou, E; Kaiser, A

    2010-02-01

    Antimalarial drug resistance has nowadays reached each drug class on the market for longer than 10 years. The focus on validated, classical targets has severe drawbacks. If resistance is arising or already present in the field, a target-based High-Throughput-Screening (HTS) with the respective target involves the risk of identifying compounds to which field populations are also resistant. Thus, it appears that a rewarding albeit demanding challenge for target-based drug discovery is to identify novel drug targets. In the search for new targets for antimalarials, we have investigated the biosynthesis of hypusine, present in eukaryotic initiation factor 5A (eIF5A). Deoxyhypusine hydroxylase (DOHH), which has recently been cloned and expressed from P. falciparum, completes the modification of eIF5A through hydroxylation. Here, we assess the present druggable data on Plasmodium DOHH and its human counterpart. Plasmodium DOHH arose from a cyanobacterial phycobilin lyase by loss of function. It has a low FASTA score of 27 to its human counterpart. The HEAT-like repeats present in the parasite DOHH differ in number and amino acid identity from its human ortholog and might be of considerable interest for inhibitor design.

  14. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity, docking to PfDHODH and SAR of lapachol-based compounds.

    PubMed

    Brandão, Geraldo Célio; Rocha Missias, Franciele C; Arantes, Lucas Miquéias; Soares, Luciana Ferreira; Roy, Kuldeep K; Doerksen, Robert J; Braga de Oliveira, Alaide; Pereira, Guilherme Rocha

    2018-02-10

    Lapachol is an abundant prenyl naphthoquinone occurring in Brazilian Bignoniaceae that was clinically used, in former times, as an antimalarial drug, despite its moderate effect. Aiming to search for potentially better antimalarials, a series of 1,2,3-triazole derivatives was synthesized by chemical modification of lapachol. Alkylation of the hydroxyl group gave its propargyl ether which, via copper-catalyzed cycloaddition (CuAAC) click chemistry with different organic azides, afforded 17 naphthoquinonolyl triazole derivatives. All the synthetic compounds were evaluated for their in vitro activity against chloroquine resistant Plasmodium falciparum (W2) and for cytotoxicity to HepG2 cells. Compounds containing the naphthoquinolyl triazole moieties showed higher antimalarial activity than lapachol (IC 50 123.5 μM) and selectivity index (SI) values in the range of 4.5-197.7. Molecular docking simulations of lapachol, atovaquone and all the newly synthesized compounds were carried out for interactions with PfDHODH, a mitochondrial enzyme of the parasite respiratory chain that is essential for de novo pyrimidine biosynthesis. Docking of the naphthoquinonolyl triazole derivatives to PfDHODH yielded scores between -9.375 and -14.55 units, compared to -9.137 for lapachol and -12.95 for atovaquone and disclosed the derivative 17 as a lead compound. Therefore, the study results show the enhancement of DHODH binding affinity correlated with improvement of SI values and in vitro activities of the lapachol derivatives. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. In vivo Antimalarial and Antitrypanosomal Activity of Strychnogucine B, a Bisindole Alkaloid from Strychnos icaja.

    PubMed

    Beaufay, Claire; Ledoux, Allison; Jansen, Olivia; Bordignon, Annélise; Zhao, Senzhi; Teijaro, Christiana N; Andrade, Rodrigo B; Quetin-Leclercq, Joëlle; Frédérich, Michel

    2018-06-21

    Strychnogucine B is a bisindole alkaloid previously isolated from Strychnos icaja that possesses promising in vitro antiplasmodial properties. This compound was synthesized in four steps from (-)-strychnine. As no acute toxicity was observed at the highest tested cumulative dose of 60 mg/kg, its in vivo antimalarial activity was determined intraperitoneally at 30 mg/kg/d in a Plasmodium berghei murine model. In the Peters's 4-d suppressive test, this alkaloid suppressed the parasitaemia by almost 36% on day 5 and 60% on day 7 compared to vehicle-treated mice. In addition to this interesting antimalarial activity, it showed moderate in vitro antitrypanosomal activity but no in vivo activity in an acute Trypanosoma brucei model. It was also inactive in vitro on Leishmania mexicana promastigotes. This highlights its selective antimalarial efficacy and leads to further investigation to assess its potential as new antimalarial lead compound. Georg Thieme Verlag KG Stuttgart · New York.

  16. Oxidative Pentose Phosphate Pathway Inhibition Is A Key Determinant of Antimalarial Induced Cancer Cell Death

    PubMed Central

    Salas, Eduardo; Roy, Srirupa; Marsh, Timothy; Rubin, Brian; Debnath, Jayanta

    2015-01-01

    Despite immense interest in employing antimalarials as autophagy inhibitors to treat cancer, it remains unclear if these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592

  17. Sharing individual patient and parasite-level data through the WorldWide Antimalarial Resistance Network platform: A qualitative case study

    PubMed Central

    Pisani, Elizabeth; Botchway, Stella

    2017-01-01

    Background: Increasingly, biomedical researchers are encouraged or required by research funders and journals to share their data, but there's very little guidance on how to do that equitably and usefully, especially in resource-constrained settings. We performed an in-depth case study of one data sharing pioneer: the WorldWide Antimalarial Resistance Network (WWARN). Methods: The case study included a records review, a quantitative analysis of WAARN-related publications, in-depth interviews with 47 people familiar with WWARN, and a witness seminar involving a sub-set of 11 interviewees. Results: WWARN originally aimed to collate clinical, in vitro, pharmacological and molecular data into linked, open-access databases intended to serve as a public resource to guide antimalarial drug treatment policies. Our study describes how WWARN navigated challenging institutional and academic incentive structures, alongside funders' reluctance to invest in capacity building in malaria-endemic countries, which impeded data sharing. The network increased data contributions by focusing on providing free, online tools to improve the quality and efficiency of data collection, and by inviting collaborative authorship on papers addressing policy-relevant questions that could only be answered through pooled analyses. By July 1, 2016, the database included standardised data from 103 molecular studies and 186 clinical trials, representing 135,000 individual patients. Developing the database took longer and cost more than anticipated, and efforts to increase equity for data contributors are on-going. However, analyses of the pooled data have generated new methods and influenced malaria treatment recommendations globally. Despite not achieving the initial goal of real-time surveillance, WWARN has developed strong data governance and curation tools, which are now being adapted relatively quickly for other diseases. Conclusions: To be useful, data sharing requires investment in long

  18. Sharing individual patient and parasite-level data through the WorldWide Antimalarial Resistance Network platform: A qualitative case study.

    PubMed

    Pisani, Elizabeth; Botchway, Stella

    2017-01-01

    Increasingly, biomedical researchers are encouraged or required by research funders and journals to share their data, but there's very little guidance on how to do that equitably and usefully, especially in resource-constrained settings. We performed an in-depth case study of one data sharing pioneer: the WorldWide Antimalarial Resistance Network (WWARN). The case study included a records review, a quantitative analysis of WAARN-related publications, in-depth interviews with 47 people familiar with WWARN, and a witness seminar involving a sub-set of 11 interviewees. WWARN originally aimed to collate clinical, in vitro, pharmacological and molecular data into linked, open-access databases intended to serve as a public resource to guide antimalarial drug treatment policies. Our study describes how WWARN navigated challenging institutional and academic incentive structures, alongside funders' reluctance to invest in capacity building in malaria-endemic countries, which impeded data sharing. The network increased data contributions by focusing on providing free, online tools to improve the quality and efficiency of data collection, and by inviting collaborative authorship on papers addressing policy-relevant questions that could only be answered through pooled analyses. By July 1, 2016, the database included standardised data from 103 molecular studies and 186 clinical trials, representing 135,000 individual patients. Developing the database took longer and cost more than anticipated, and efforts to increase equity for data contributors are on-going. However, analyses of the pooled data have generated new methods and influenced malaria treatment recommendations globally. Despite not achieving the initial goal of real-time surveillance, WWARN has developed strong data governance and curation tools, which are now being adapted relatively quickly for other diseases. To be useful, data sharing requires investment in long-term infrastructure. To be feasible, it requires new

  19. DETECTION OF PUTATIVE ANTIMALARIAL-RESISTANT PLASMODIUM VIVAX IN ANOPHELES VECTORS AT THAILAND-CAMBODIA AND THAILAND-MYANMAR BORDERS.

    PubMed

    Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa

    2016-03-01

    Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance

  20. Modulation of Antimalarial Activity at a Putative Bisquinoline Receptor In Vivo Using Fluorinated Bisquinolines.

    PubMed

    Fielding, Alistair J; Lukinović, Valentina; Evans, Philip G; Alizadeh-Shekalgourabi, Said; Bisby, Roger H; Drew, Michael G B; Male, Verity; Del Casino, Alessio; Dunn, James F; Randle, Laura E; Dempster, Nicola M; Nahar, Lutfun; Sarker, Satyajit D; Cantú Reinhard, Fabián G; de Visser, Sam P; Dascombe, Mike J; Ismail, Fyaz M D

    2017-05-17

    Antimalarials can interact with heme covalently, by π⋅⋅⋅π interactions or by hydrogen bonding. Consequently, the prototropy of 4-aminoquinolines and quinoline methanols was investigated by using quantum mechanics. Calculations showed mefloquine protonated preferentially at the piperidine and was impeded at the endocyclic nitrogen because of electronic rather than steric factors. In gas-phase calculations, 7-substituted mono- and bis-4-aminoquinolines were preferentially protonated at the endocyclic quinoline nitrogen. By contrast, compounds with a trifluoromethyl substituent on both the 2- and 8-positions, reversed the order of protonation, which now favored the exocyclic secondary amine nitrogen at the 4-position. Loss of antimalarial efficacy by CF 3 groups simultaneously occupying the 2- and 8-positions was recovered if the CF 3 group occupied the 7-position. Hence, trifluoromethyl groups buttressing the quinolinyl nitrogen shifted binding of antimalarials to hematin, enabling switching from endocyclic to the exocyclic N. Both theoretical calculations (DFT calculations: B3LYP/BS1) and crystal structure of (±)-trans-N 1 ,N 2 -bis-(2,8-ditrifluoromethylquinolin-4-yl)cyclohexane-1,2-diamine were used to reveal the preferred mode(s) of interaction with hematin. The order of antimalarial activity in vivo followed the capacity for a redox change of the iron(III) state, which has important implications for the future rational design of 4-aminoquinoline antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Working towards consensus on methods used to elicit participant-reported safety data in uncomplicated malaria clinical drug studies: a Delphi technique study.

    PubMed

    Mandimika, Nyaradzo; Barnes, Karen I; Chandler, Clare I R; Pace, Cheryl; Allen, Elizabeth N

    2017-01-28

    Eliciting adverse event (AE) and non-study medication data reports from clinical research participants is integral to evaluating drug safety. However, using different methods to question participants yields inconsistent results, compromising the interpretation, comparison and pooling of data across studies. This is particularly important given the widespread use of anti-malarials in vulnerable populations, and their increasing use in healthy, but at-risk individuals, as preventive treatment or to reduce malaria transmission. Experienced and knowledgeable anti-malarial drug clinical researchers were invited to participate in a Delphi technique study, to facilitate consensus on what are considered optimal (relevant, important and feasible) methods, tools, and approaches for detecting participant-reported AE and non-study medication data in uncomplicated malaria treatment studies. Of 72 invited, 25, 16 and 10 panellists responded to the first, second and third rounds of the Delphi, respectively. Overall, 68% (68/100) of all questioning items presented for rating achieved consensus. When asking general questions about health, panellists agreed on the utility of a question/concept about any change in health, taking care to ensure that such questions/concepts do not imply causality. Eighty-nine percent (39/44) of specific signs and symptoms questions were rated as optimal. For non-study medications, a general question and most structured questioning items were considered an optimal approach. The use of mobile phones, patient diaries, rating scales as well as openly engaging with participants to discuss concerns were also considered optimal complementary data-elicitation tools. This study succeeded in reaching consensus within a section of the anti-malarial drug clinical research community about using a general question concept, and structured questions for eliciting data about AEs and non-study medication reports. The concepts and items considered in this Delphi to be

  2. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies

    PubMed Central

    Adebayo, J. O.; Balogun, E. A.; Malomo, S. O.; Soladoye, A. O.; Olatunji, L. A.; Kolawole, O. M.; Oguntoye, O. S.; Babatunde, A. S.; Akinola, O. B.; Aguiar, A. C. C.; Andrade, I. M.; Souza, N. B.; Krettli, A. U.

    2013-01-01

    In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT) ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight) using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF) contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P > 0.05) function indices of the liver and cardiovascular system at all doses administered but significantly increased (P < 0.05) plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles. PMID:23983800

  3. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    PubMed Central

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  4. A Repeat Random Survey of the Prevalence of Falsified and Substandard Antimalarials in the Lao PDR: A Change for the Better

    PubMed Central

    Tabernero, Patricia; Mayxay, Mayfong; Culzoni, María Julia; Dwivedi, Prabha; Swamidoss, Isabel; Allan, Elizabeth Louise; Khanthavong, Maniphone; Phonlavong, Chindaphone; Vilayhong, Chantala; Yeuchaixiong, Sengchanh; Sichanh, Chanvilay; Sengaloundeth, Sivong; Kaur, Harparkash; Fernández, Facundo M.; Green, Michael D.; Newton, Paul N.

    2015-01-01

    In 2003, a stratified random sample survey was conducted in the Lao People's Democratic Republic (Laos) to study the availability and quality of antimalarials in the private sector. In 2012, this survey was repeated to allow a statistically valid analysis of change through time. The counterfeit detection device 3 (CD-3) was used to assess packaging quality in the field and HPLC and mass spectroscopy analysis chemical analysis performed. The availability of oral artesunate monotherapies had significantly decreased from 22.9% (22) of 96 outlets in southern Laos in 2003 to 4.8% (7) of 144 outlets in 2012 (P < 0.0001). All the samples collected in the 2012 survey contained the correct active pharmaceutical ingredients (APIs) in contrast to the 21 (84%) falsified artesunate samples found in the 2003 survey. Although none of the medicines found in 2012 survey had evidence for falsification, 25.4% (37) of the samples were outside the 90–110% pharmacopeial limits of the label claim, suggesting that they were substandard or degraded. Results obtained from this survey show that patients are still exposed to poorly manufactured drugs or to ineffective medicines such as chloroquine. The quality of artemisinin-based combination therapies (ACTs) used in Laos needs to be monitored, since falsified ACTs would have devastating consequences in public health. PMID:25897062

  5. Screening of traditionally used plants for in vivo antimalarial activity in mice.

    PubMed

    Innocent, Esther; Moshi, Mainen J; Masimba, Pax J; Mbwambo, Zakaria H; Kapingu, Modest C; Kamuhabwa, Appolinary

    2009-03-07

    Aqueous ethanol (80%) extracts of six plants used traditionally for treatment of malaria, Vepris glomerata (F.Hoffm.) Engl (Rutaceae), Maranthus floribunda (Bak.) F.White (Chrysobalanaceae), Strophanthus eminii Asch. & Pax ex Pax (Apocynaceae), Cassia abbreviata Oliv. (Leguminosae) and Caesalpinia bonducella L. Fleming (Fabaceae) were screened for antimalarial activity to establish validity of their claims. The extracts exhibited antimalarial activity in the 4-day Peter's suppressive antimalarial assay in mice inoculated with red blood cells parasitized with Plasmodium berghei. The extracts gave ID(50) values of 42.8, 111.0, 639.3 and 1560 mg/kg body wt for C. bonducella, C. abbreviata, T. furialis and S. eminii, respectively. The ID(50) values for V. glomerata and M. floribunda were above 2400 mg/kg body wt, above which point solubility was a problem. All the tested extracts were innocuous to the mice, up to 2400 mg/kg body wt, suggesting they may be safe for short-term use.

  6. Recent advances in malaria drug discovery

    PubMed Central

    Biamonte, Marco A.; Wanner, Jutta; Le Roch, Karine G.

    2013-01-01

    This digest covers some of the most relevant progress in malaria drug disco very published betwe en 2010 and 2012. There is an urgent need to develop new antimalarial drugs. Such drugs can target the blood stage of the disease to alleviate the symptoms, the liver stage to prevent relapses, and the transmission stage to protect other humans. The pipeline for the blood stage is becoming robust, but this should not be a source of complacency, as the current therapies set a high standard. Drug disco very efforts directed towards the liver and transmission stages are in their infancy but are receiving increasing attention as targeting these stages could be instrumental in eradicating malaria. PMID:23587422

  7. Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon.

    PubMed

    Vale, Valdicley V; Vilhena, Thyago C; Trindade, Rafaela C Santos; Ferreira, Márlia Regina C; Percário, Sandro; Soares, Luciana F; Pereira, Washington Luiz A; Brandão, Geraldo C; Oliveira, Alaíde B; Dolabela, Maria F; De Vasconcelos, Flávio

    2015-03-27

    Plasmodium falciparum has become resistant to some of the available drugs. Several plant species are used for the treatment of malaria, such as Himatanthus articulatus in parts of Brazil. The present paper reports the phyto-chemistry, the anti-plasmodial and anti-malarial activity, as well as the toxicity of H. articulatus. Ethanol and dichloromethane extracts were obtained from the powder of stem barks of H. articulatus and later fractionated and analysed. The anti-plasmodial activity was assessed against a chloroquine resistant strain P. falciparum (W2) in vitro, whilst in vivo anti-malarial activity against Plasmodium berghei (ANKA strain) was tested in mice, evaluating the role of oxidative stress (total antioxidant capacity--TEAC; lipid peroxidation--TBARS, and nitrites and nitrates--NN). In addition, cytotoxicity was evaluated using the HepG2 A16 cell-line. The acute oral and sub-chronic toxicity of the ethanol extract were evaluated in both male and female mice. Plumieride was isolated from the ethyl acetate fraction of ethanol extract, Only the dichloromethane extract was active against clone W2. Nevertheless, both extracts reduced parasitaemia in P. berghei-infected mice. Besides, a significant reduction in pulmonary and cerebral levels of NN (nitrites and nitrates) was found, as well as in pulmonary TBARS, indicating a reduced oxidative damage to these organs. The ethanol extract showed low cytotoxicity to HepG2 A16 cells in the concentrations used. No significant changes were observed in the in vivo toxicity studies. The ethanol extract of H. articulatus proved to be promising as anti-malarial medicine and showed low toxicity.

  8. Malaria and antimalarial plants in Roraima, Brazil.

    PubMed

    Milliken, W

    1997-01-01

    One of the numerous problems created by the gold rush which took place in northern Brazil (Roraima State) at the end of the 1980s was a severe epidemic of malaria amongst the indigenous peoples of the region. Worst hit were the Yanomami Indians, who had lived in almost total isolation prior to this event. The problem has been exacerbated by the development of chloroquine-resistant strains of Plasmodium falciparum. In an effort to identify viable alternatives to dependence on western medicine for malaria treatment, a survey was carried out on the local plant species (wild and cultivated) used for this purpose in Roraima. Fieldwork was carried out amongst seven indigenous peoples, as well as with the non-indigenous settlers. Over 90 species were collected, many of which have been cited as used for treatment of malaria and fevers elsewhere. Knowledge of antimalarial plants was found to vary greatly between the communities, and in some cases there was evidence of recent experimentation. Initial screening of plant extracts has shown a high incidence of significant antimalarial activity amongst the species collected.

  9. Medicinal Plants.

    ERIC Educational Resources Information Center

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  10. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    PubMed Central

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  11. A histidine-rich protein 2-based malaria drug sensitivity assay for field use.

    PubMed

    Noedl, Harald; Attlmayr, Bernhard; Wernsdorfer, Walther H; Kollaritsch, Herwig; Miller, Robert S

    2004-12-01

    With the spread of antimalarial drug resistance, simple and reliable tools for the assessment of antimalarial drug resistance, particularly in endemic regions and under field conditions, have become more important than ever before. We therefore developed a histidine-rich protein 2 (HRP2)-based drug sensitivity assay for testing of fresh isolates of Plasmodium falciparum in the field. In contrast to the HRP2 laboratory assay, the field assay uses a procedure that further simplifies the handling and culturing of malaria parasites by omitting centrifugation, washing, the use of serum, and dilution with uninfected red blood cells. A total of 40 fresh Plasmodium falciparum isolates were successfully tested for their susceptibility to dihydroartemisinin, mefloquine, quinine, and chloroquine (50% inhibitory concentration [IC50] = 3.43, 61.89, 326.75, and 185.31 nM, respectively). Results very closely matched those obtained with a modified World Health Organization schizont maturation assay (R2 = 0.96, P < 0.001; mean log difference at IC50 = 0.054).

  12. Design, Synthesis and Testing of Novel Antimalarial

    DTIC Science & Technology

    2006-05-05

    U.S.N.A. --- Trident Scholar project report; no. 343 (2006) DESIGN, SYNTHESIS AND TESTING OF NOVEL ANTIMALARIAL COMPOUNDS by Midshipman 1/C...Certification of Adviser Approval Assistant Professor Clare E. Gutteridge Chemistry Department ____________________________________ (signature...Leave blank) 2. REPORT DATE 5 May 2006 3. REPORT TYPE AND DATE COVERED 4. TITLE AND SUBTITLE Design, synthesis and testing of

  13. [Quality assessment of drug use in the elderly].

    PubMed

    Mosegui, G B; Rozenfeld, S; Veras, R P; Vianna, C M

    1999-10-01

    The objective is to evaluate the quality of medication utilization through the analysis of the pattern of usage, the degree of compliance to essential drug lists, therapeutic value and by drug interactions found among women over 60 years of age. Six hundred thirty-four women enrolled at the Open University of the Third Age were studied. Data was collected through pattern-oriented, tested questionnaires. The variables examined were related to drugs and to drug utilization. The units of analysis used were the drugs and the individual. Of 634 women that participated in the study, 9,1% did not use drugs. The number of medications taken vary from 1 to 17. The average is 4,0 drugs/woman. Among the 2.510 pharmaceutical specialties mentioned by the interviewed, 538 different substances were identified. About 26% of the medications were in agreement with the recommendations of the World Health Organization and 17% with recommendations of the "Relação Nacional de Medicamentos Essenciais". Seventeen percent of the drugs are inappropriate for use in seniors; 14,1% of the women may suffer consequences for taking drugs of the same therapeutic class, and 15, 5% are exposed to interactions. The data suggest that the pattern of the medication utilization is considerably influenced by the medical prescription and that their quality is harmed by the low selectiveness of the pharmaceutical market

  14. Response of falciparum malaria to different antimalarials in Myanmar.

    PubMed Central

    Ejov, M. N.; Tun, T.; Aung, S.; Sein, K.

    1999-01-01

    The purpose of the study was to ascertain the therapeutic efficacy of different treatments for uncomplicated falciparum malaria in the hospitals in Sagaing, northern and eastern Shan, to facilitate updating the existing national antimalarial drug policy. The proposed 14-day trial for monitoring the efficacy of treatments of uncomplicated falciparum malaria is an efficient method for identifying treatment failure patterns at the intermediate level (township hospital) in the Union of Myanmar. Minimal clinical and parasitological data for days 0-14 were required to classify treatment failure and success. Clinical and parasitiological responses on day 3 and days 4-14 were used as clear examples of early and late treatment failure, respectively. Mefloquine is five times more likely to be effective than chloroquine and sulfadoxine pyrimethamine (S-P), whereas chloroquine and S-P treatments have nearly identical failure patterns. The alarming frequency of clinical and parasitological failure (failure rate > 50%) following chloroquine treatment was reported in Sagaing and following S-P treatment in Sagaing and eastern Shan. PMID:10212515

  15. The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials.

    PubMed

    de Villiers, Katherine A; Marques, Helder M; Egan, Timothy J

    2008-08-01

    The crystal structure of the complex formed between the antimalarial drug halofantrine and ferriprotoporphyrin IX (Fe(III)PPIX) has been determined by single crystal X-ray diffraction. The structure shows that halofantrine coordinates to the Fe(III) center through its alcohol functionality in addition to pi-stacking of the phenanthrene ring over the porphyrin. The length of the Fe(III)-O bond is consistent with an alkoxide and not an alcohol coordinating group. The iron porphyrin is five coordinate and monomeric. Changes in the electronic spectrum of Fe(III)PPIX upon addition of halofantrine base in acetonitrile solution are almost identical to those observed upon addition of quinidine free base in the same solvent. This suggests homologous binding. Molecular mechanics modeling of Fe(III)PPIX complexes of quinidine, quinine, 9-epiquinine and 9-epiquinidine based on this homology suggests that the antimalarially active quinidine and quinine can readily adopt conformations that permit formation of an intramolecular salt bridge between the protonated quinuclidine tertiary amino group and unprotonated heme propionate group, while the inactive epimers 9-epiquinidine and 9-epiquinine have to adopt high energy conformations in order to accommodate such salt bridge formation. We propose that salt bridge formation may interrupt formation of the hemozoin precursor dimer formed during the heme detoxification pathway and so account for the strong activity of the two active isomers.

  16. Total Synthesis and Biological Investigation of (-)-Artemisinin: The Antimalarial Activity of Artemisinin is not Stereospecific.

    PubMed

    Krieger, Johannes; Smeilus, Toni; Kaiser, Marcel; Seo, Ean-Jeong; Efferth, Thomas; Giannis, Athanassios

    2018-05-03

    Here, we describe an efficient and diversity-oriented entry to both (-)-artemisinin (1) and its natural antipode (+)-artemisinin, starting from commercially and readily available S-(+)- and R-(-)-citronellene, respectively. Subsequently, we answered the still open question regarding the specificity of artemisinins action. By using a drug-sensitive Plasmodium falciparum NF54 strain, we showed that the antimalarial activity of artemisinin is not stereospecific. Our straightforward and biomimetic approach to this natural endoperoxide enables the synthesis of artemisinin derivatives that are not accessible through applying current methods and may help to address the problem of emerging resistance of Plasmodium falciparum towards artemisinin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improvements in access to malaria treatment in Tanzania after switch to artemisinin combination therapy and the introduction of accredited drug dispensing outlets - a provider perspective.

    PubMed

    Alba, Sandra; Hetzel, Manuel W; Goodman, Catherine; Dillip, Angel; Liana, Jafari; Mshinda, Hassan; Lengeler, Christian

    2010-06-15

    To improve access to treatment in the private retail sector a new class of outlets known as accredited drug dispensing outlets (ADDO) was created in Tanzania. Tanzania changed its first-line treatment for malaria from sulphadoxine-pyrimethamine (SP) to artemether-lumefantrine (ALu) in 2007. Subsidized ALu was made available in both health facilities and ADDOs. The effect of these interventions on access to malaria treatment was studied in rural Tanzania. The study was carried out in the villages of Kilombero and Ulanga Demographic Surveillance System (DSS) and in Ifakara town. Data collection consisted of: 1) yearly censuses of shops selling drugs; 2) collection of monthly data on availability of anti-malarials in public health facilities; and 3) retail audits to measure anti-malarial sales volumes in all public, mission and private outlets. The data were complemented with DSS population data. Between 2004 and 2008 access to malaria treatment greatly improved and the number of anti-malarial treatment doses dispensed increased by 78%. Particular improvements were observed in the availability (from 0.24 shops per 1,000 people in 2004 to 0.39 in 2008) and accessibility (from 71% of households within 5 km of a shop in 2004 to 87% in 2008) of drug shops. Despite no improvements in affordability this resulted in an increase of the market share from 49% of anti-malarial sales 2005 to 59% in 2008. The change of treatment policy from SP to ALu led to severe stock-outs of SP in health facilities in the months leading up to the introduction of ALu (only 40% months in stock), but these were compensated by the wide availability of SP in shops. After the introduction of ALu stock levels of the drug were relatively high in public health facilities (over 80% months in stock), but the drug could only be found in 30% of drug shops and in no general shops. This resulted in a low overall utilization of the drug (19% of all anti-malarial sales) The public health and private retail

  18. Improvements in access to malaria treatment in Tanzania after switch to artemisinin combination therapy and the introduction of accredited drug dispensing outlets - a provider perspective

    PubMed Central

    2010-01-01

    Background To improve access to treatment in the private retail sector a new class of outlets known as accredited drug dispensing outlets (ADDO) was created in Tanzania. Tanzania changed its first-line treatment for malaria from sulphadoxine-pyrimethamine (SP) to artemether-lumefantrine (ALu) in 2007. Subsidized ALu was made available in both health facilities and ADDOs. The effect of these interventions on access to malaria treatment was studied in rural Tanzania. Methods The study was carried out in the villages of Kilombero and Ulanga Demographic Surveillance System (DSS) and in Ifakara town. Data collection consisted of: 1) yearly censuses of shops selling drugs; 2) collection of monthly data on availability of anti-malarials in public health facilities; and 3) retail audits to measure anti-malarial sales volumes in all public, mission and private outlets. The data were complemented with DSS population data. Results Between 2004 and 2008 access to malaria treatment greatly improved and the number of anti-malarial treatment doses dispensed increased by 78%. Particular improvements were observed in the availability (from 0.24 shops per 1,000 people in 2004 to 0.39 in 2008) and accessibility (from 71% of households within 5 km of a shop in 2004 to 87% in 2008) of drug shops. Despite no improvements in affordability this resulted in an increase of the market share from 49% of anti-malarial sales 2005 to 59% in 2008. The change of treatment policy from SP to ALu led to severe stock-outs of SP in health facilities in the months leading up to the introduction of ALu (only 40% months in stock), but these were compensated by the wide availability of SP in shops. After the introduction of ALu stock levels of the drug were relatively high in public health facilities (over 80% months in stock), but the drug could only be found in 30% of drug shops and in no general shops. This resulted in a low overall utilization of the drug (19% of all anti-malarial sales) Conclusions

  19. Antimalarial and hepatoprotective effects of crude ethanolic extract of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P.Karst. (higher Basidiomycetes), in Plasmodium berghei-infected mice.

    PubMed

    Oluba, Olarewaju M; Olusola, Augustine O; Fagbohunka, Bamidele S; Onyeneke, E

    2012-01-01

    This study was aimed at investigating the in vivo antimalarial activity (using some biochemical indices) of crude aqueous extracts of the fruiting bodies of Ganoderma lucidum, a mushroom with well-established medicinal properties. A rodent malaria parasite, Plasmodium berghei (1 × 107), was inoculated intraperitoneally into Swiss albino mice. The test groups were administered G. lucidum extract and chloroquine (CQ, as standard drug), while the control groups were administered the same amount of distilled water by an intragastric tube once daily. The antimalarial activity of the extract was investigated from the suppressive, curative, and prophylactic effects of the extract on parasite growth. Serum aminotransferases (AST and ALT), alkaline phosphatase (ALP), and gamma glutamine transpeptidase (γ-GT) levels monitored following the 4-day suppressive test were significantly reduced, with a corresponding significant increase in the livers of mice treated with the extract compared with infected untreated mice. The results obtained from this study provide scientific justification in an animal model of malaria that an ethanolic extract of G. lucidum possesses potent antimalarial activity and also could help ameliorate the attendant Plasmodium-induced liver damage due to malarial infection.

  20. Organometallic conjugates of the drug sulfadoxine for combatting antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    Fourteen new RuII, RhIII and IrIII complexes conjugated to the antimalarial drug sulfadoxine functionalised with either a pyridylimino- or quinolylimino- group to allow N,N’-chelation ligands have been synthesized and characterized. The effect of the arene/Cpx, planarity of imino group on sulfadoxin...