Science.gov

Sample records for antimalarial drug resistance

  1. PfCRT and its role in antimalarial drug resistance

    PubMed Central

    Ecker, Andrea; Lehane, Adele M.; Clain, Jérôme; Fidock, David A.

    2012-01-01

    Plasmodium falciparum resistance to chloroquine, the former gold standard antimalarial drug, is mediated primarily by mutant forms of the ‘Chloroquine Resistance Transporter’ (PfCRT). These mutations impart upon PfCRT the ability to efflux chloroquine from the intracellular digestive vacuole, the site of drug action. Recent studies reveal that PfCRT variants can also affect parasite fitness, protect immature gametocytes against chloroquine action, and alter P. falciparum susceptibility to current first-line therapies. These results highlight the need to be vigilant in screening for the appearance of novel pfcrt alleles that could contribute to new multi-drug resistance phenotypes. PMID:23020971

  2. Quality of antimalarials at the epicenter of antimalarial drug resistance: results from an overt and mystery client survey in Cambodia.

    PubMed

    Yeung, Shunmay; Lawford, Harriet L S; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M; Swamidoss, Isabel; Green, Michael D; Fernandez, Facundo M; Kaur, Harparkash

    2015-06-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources.

  3. Quality of Antimalarials at the Epicenter of Antimalarial Drug Resistance: Results from an Overt and Mystery Client Survey in Cambodia

    PubMed Central

    Yeung, Shunmay; Lawford, Harriet L. S.; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M.; Swamidoss, Isabel; Green, Michael D.; Fernandez, Facundo M.; Kaur, Harparkash

    2015-01-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources. PMID:25897063

  4. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network

    PubMed Central

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K.; Rosenthal, Philip J.

    2015-01-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  5. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing.

    PubMed

    Severini, Carlo; Menegon, Michela

    2015-06-01

    The objective of this review was to describe the 'state of the art' of Plasmodium falciparum resistance to the main antimalarial drugs. A brief note on Plasmodium vivax is also included. Resistance of P. falciparum to the various antimalarials has a long history of hits and misses. During the last 60 years, the pace at which this parasite has developed resistance to antimalarial drugs has exceeded the pace at which new drugs have been developed. In the last decade, the introduction of artemisinin-based combination therapies (ACTs) as a first-line drug treatment for non-complicated P. falciparum malaria had led to extraordinary results in disease control, especially in sub-Saharan Africa. However, the emergence and spread of resistance to artemisinin in Southeast Asia jeopardise these results. In conclusion, the possible spread of artemisinin resistance in Africa should be considered as an epochal disaster.

  6. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro.

    PubMed

    Nakornchai, Sunan; Konthiang, Phattanapong

    2006-09-01

    Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.

  7. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread

    PubMed Central

    Klein, E.Y.

    2013-01-01

    The emergence of resistance to former first-line antimalarial drugs has been an unmitigated disaster. In recent years, artemisinin class drugs have become standard and they are considered an essential tool for helping to eradicate the disease. However, their ability to reduce morbidity and mortality and to slow transmission requires the maintenance of effectiveness. Recently, an artemisinin delayed-clearance phenotype was described. This is believed to be the precursor to resistance and threatens local elimination and global eradication plans. Understanding how resistance emerges and spreads is important for developing strategies to contain its spread. Resistance is the result of two processes: (i) drug selection of resistant parasites; and (ii) the spread of resistance. In this review, we examine the factors that lead to both drug selection and the spread of resistance. We then examine strategies for controlling the spread of resistance, pointing out the complexities and deficiencies in predicting how resistance will spread. PMID:23394809

  8. Clinical status and implications of antimalarial drug resistance.

    PubMed

    Winstanley, Peter A; Ward, Steven A; Snow, Robert W

    2002-02-01

    Africa carries the greatest burden of disease caused by Plasmodium falciparum, and we can expect this burden to rise in the near future, mainly because of drug resistance. Although effective drugs are available (such as artemether-lumefantrine, mefloquine, atovaquone-proguanil and halofantrine) they are uniformly too expensive for routine use. Affordable options include chloroquine plus sulfadoxine-pyrimethamine (SP), amodiaquine (alone or in combination with SP) and chlorproguanil-dapsone. Artemisinin combination therapy may offer considerable advantages over alternative therapies, but its introduction faces considerable logistic difficulty.

  9. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition.

    PubMed

    Kim, Ju-Hwa; Choi, Ae-Ran; Kim, Yong Kee; Yoon, Sungpil

    2013-11-22

    The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs.

  10. Herbicidal properties of antimalarial drugs

    PubMed Central

    Corral, Maxime G.; Leroux, Julie; Stubbs, Keith A.; Mylne, Joshua S.

    2017-01-01

    The evolutionary relationship between plants and the malarial parasite Plasmodium falciparum is well established and underscored by the P. falciparum apicoplast, an essential chloroplast-like organelle. As a result of this relationship, studies have demonstrated that herbicides active against plants are also active against P. falciparum and thus could act as antimalarial drug leads. Here we show the converse is also true; many antimalarial compounds developed for human use are highly herbicidal. We found that human antimalarial drugs (e.g. sulfadiazine, sulfadoxine, pyrimethamine, cycloguanil) were lethal to the model plant Arabidopsis thaliana at similar concentrations to market herbicides glufosinate and glyphosate. Furthermore, the physicochemical properties of these herbicidal antimalarial compounds were similar to commercially used herbicides. The implications of this finding that many antimalarial compounds are herbicidal proffers two novel applications: (i) using the genetically tractable A. thaliana to reveal mode-of-action for understudied antimalarial drugs, and (ii) co-opting antimalarial compounds as a new source for much needed herbicide lead molecules. PMID:28361906

  11. Expanding the Antimalarial Drug Arsenal—Now, But How?

    PubMed Central

    Grimberg, Brian T.; Mehlotra, Rajeev K.

    2011-01-01

    The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i) re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii) repurposing drugs that are currently used to treat other infections or diseases; (iii) chemically modifying existing antimalarial compounds; (iv) exploring natural sources; (v) large-scale screening of diverse chemical libraries; and (vi) through parasite genome-based (“targeted”) discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum), and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs), and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into “short term” (4. Feasible options for now) and “long term” (5. Next generation of antimalarial

  12. Trends in antimalarial drug use in Africa.

    PubMed

    Flegg, Jennifer A; Metcalf, Charlotte J E; Gharbi, Myriam; Venkatesan, Meera; Shewchuk, Tanya; Hopkins Sibley, Carol; Guerin, Philippe J

    2013-11-01

    Resistance to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) led the World Health Organization (WHO) to recommend changes in national drug policies. The time between policy changes and their implementation profoundly affects program impact. We developed a model based on data on antimalarial treatments, extracted from household surveys and national antimalarial policy information from the literature. Drug use in each country during the time period 1999-2011 and the trend in reduction of CQ use after policy change were estimated. The SP use estimates were correlated with the prevalence of a molecular marker associated with SP resistance. There was no spatial pattern in the country-level rate of reduction of CQ use, after policy change. In East Africa SP drug use was strongly correlated to resistance. If artemisinin resistance spreads to, or emerges in, Africa this methodology will be a valuable tool to estimate actual drug use and its impact on changes in drug efficacy.

  13. The Tragedy Caused by Fake Antimalarial Drugs

    PubMed Central

    Ambroise-Thomas, Pierre

    2012-01-01

    Counterfeit antimalarials (mainly artemisinin derivatives) is a crucial health problem in developing countries, particularly in Africa. The illegal production, sale and distribution of fake drugs is a huge market evaluated to several billion of dollars and represents more than 50% of the pharmaceutical market in several African countries. Fake drugs have led to a very great number of deaths from untreated malaria or fatality provoked by toxic ingredients. These fake medicines increase the risk of artemisinin resistance developed by the use of sub therapeutic dosages of antimalarials. Tackling this criminal traffic is the objective of an international program created by WHO and involves the international police and custom organizations like INTERPOL. Several very important and encouraging results have been obtained, but the problem will be completely solved if genuine antimalarials, free-of-charge, are handed-over to populations in sub Sahara African countries. PMID:22708042

  14. New tissue schizontocidal antimalarial drugs

    PubMed Central

    Davidson, David E.; Ager, Arba L.; Brown, John L.; Chapple, Frank E.; Whitmire, Richard E.; Rossan, Richard N.

    1981-01-01

    Over 700 causal prophylactic and radical curative antimalarial drugs have been discovered during the screening of approximately 4000 chemical compounds in rodent and simian malaria models. Causal prophylactic activity in the Plasmodium berghei—rodent model was demonstrated by 10 distinct groups of chemicals: 1) tetrahydrofolate dehydrogenase inhibitors, 2) naphthoquinones, 3) dihydroacridinediones, 4) tetrahydrofurans, 5) guanylhydrazones, 6) analogues of clopidol, 7) quinoline esters, 8) dibenzyltetrahydro-pyrimidines, 9) 6-aminoquinolines, 10) 8-aminoquinolines. Of the causal prophylactic compounds, only the 6- and 8-aminoquinolines were capable of curing persistent exoerythrocytic infections of P. cynomolgi in rhesus monkeys. The 6-aminoquinolines were substantially less active than primaquine. This report describes a series of 4-methyl-5-phenoxy-6-methoxy-8-aminoquinolines, which are potent blood schizontocides and radical curative drugs. The most active member of this series, 4-methyl-5-(3-trifluoromethylphenoxy)-6-methoxy-8-[(4-amino-1-methylbutyl)| amino]quinoline succinate (WR 225448), was 5 times more active than primaquine in curing persistent exoerythrocytic infections of P. cynomolgi in rhesus monkeys. As a blood schizontocide, WR 225448 was effective in animal models against P. berghei, P. cynomolgi, P. vivax, and both drug-sensitive and drug-resistant strains of P. falciparum. WR 225448 was also more toxic than primaquine in rats on subacute (28-day) administration. PMID:6976854

  15. Prevalence of Plasmodium falciparum Molecular Markers of Antimalarial Drug Resistance in a Residual Malaria Focus Area in Sabah, Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Abdullah, Noor Rain; Sastu, Umi Rubiah; Imwong, Mallika; Muniandy, Prem Kumar; Saat, Muhammad Nor Farhan; Muhammad, Amirrudin; Jelip, Jenarun; Tikuson, Moizin; Yusof, Norsalleh; Rundi, Christina; Mudin, Rose Nani; Syed Mohamed, Ami Fazlin

    2016-01-01

    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control. PMID:27788228

  16. Resistance of Plamodium falciparum to antimalarial drugs in Zaragoza (Antioquia, Colombia), 1998.

    PubMed

    Blair-Trujillo, Silvia; Lacharme-Lora, Leidy; Carmona-Fonseca, Jaime

    2002-04-01

    Plasmodium falciparum sensitivity to chloroquine (CHL), amodiaquine (AMO) and sulfadoxine/pyrimethamine (SDX/PYR) was assessed in vivo and in vitro in a representative sample from the population of Zaragoza in El Bajo Cauca region (Antioquia-Colombia). There were 94 patients with P. falciparum evaluated. For the in vivo test the patients were followed by clinical examination and microscopy, during 7 days. The in vitro test was performed following the recommendations of the World Health Organization. The in vivo prevalence of resistance to CHL was 67%, to AMO 3% and to SDX/PYR 9%. The in vitro test showed sensitivity to all antimalarials evaluated. Concordance for CHL between the in vivo and in vitro tests was 33%. For AMO and SDX/PYR, the concordance was 100%. We conclude that a high percentage of patients are resistant to CHL (in vivo). A high rate of intestinal parasitism might explain in part, the differences observed between the in vivo and the in vitro results. Therefore, new policies and treatment regimens should be proposed for the treatment of the infection in the region. Nationwide studies assessing the degree of resistance are needed.

  17. How can we identify parasite genes that underlie antimalarial drug resistance?

    PubMed Central

    Anderson, Tim; Nkhoma, Standwell; Ecker, Andrea; Fidock, David

    2011-01-01

    This article outlines genome-scale approaches that can be used to identify mutations in malaria (Plasmodium) parasites that underlie drug resistance and contribute to treatment failure. These approaches include genetic mapping by linkage or genome-wide association studies, drug selection and characterization of resistant mutants, and the identification of genome regions under strong recent selection. While these genomic approaches can identify candidate resistance loci, genetic manipulation is needed to demonstrate causality. We therefore also describe the growing arsenal of available transfection approaches for direct incrimination of mutations suspected to play a role in resistance. Our intention is both to review past progress and highlight promising approaches for future investigations. PMID:21174623

  18. Pricing, distribution, and use of antimalarial drugs.

    PubMed

    Foster, S D

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much as half of antimalarials distributed in many developing countries. Use of antimalarials through the health services is often poor; drug shortages are common and overprescription and overuse of injections are significant problems. Anxiety over drug costs may prevent patients from getting the necessary treatment for malaria, especially because of the seasonal appearance of this disease when people's cash reserves are very low. The high costs may lead them to unofficial sources, which will sell a single tablet instead of a complete course of treatment, and subsequently to increased, often irrational demand for more drugs and more injections. Increasingly people are resorting to self-medication for malaria, which may cause delays in seeking proper treatment in cases of failure, especially in areas where chloroquine resistance has increased rapidly. Self-medication is now widespread, and measures to restrict the illicit sale of drugs have been unsuccessful. The "unofficial" channels thus represent an unacknowledged extension of the health services in many countries; suggestions are advanced to encourage better self-medication by increasing the knowledge base among the population at large (mothers, schoolchildren, market sellers, and shopkeepers), with an emphasis on correct dosing and on the importance of seeking further treatment without delay, if necessary.

  19. Molecular diagnosis of resistance to antimalarial drugs during epidemics and in war zones.

    PubMed

    Djimdé, Abdoulaye A; Dolo, Amagana; Ouattara, Amed; Diakité, Sira; Plowe, Christopher V; Doumbo, Ogobara K

    2004-08-15

    Plasmodium falciparum mutations pfcrt K76T and the dhfr/dhps "quintuple mutant" are molecular markers of resistance to chloroquine and sulfadoxine-pyrimethamine, respectively. During an epidemic of P. falciparum malaria in an area of political unrest in northern Mali, where standard efficacy studies have been impossible, we measured the prevalence of these markers in a cross-sectional survey. In 80% of cases of infection, pfcrt K76T was detected, but none of the cases carried the dhfr/dhps quintuple mutant. On the basis of these results, chloroquine was replaced by sulfadoxine-pyrimethamine in control efforts. This example illustrates how molecular markers for drug resistance can provide timely data that inform malaria-control policy during epidemics and other emergency situations.

  20. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    PubMed Central

    Mukherjee, Avinaba; Sadhukhan, Gobinda Chandra

    2016-01-01

    Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance. PMID

  1. Antimalarial drug policy in India: Past, present & future

    PubMed Central

    Anvikar, Anupkumar R.; Arora, Usha; Sonal, G.S.; Mishra, Neelima; Shahi, Bharatendu; Savargaonkar, Deepali; Kumar, Navin; Shah, Naman K.; Valecha, Neena

    2014-01-01

    The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions. PMID:24718394

  2. Development of mefloquine as an antimalarial drug*

    PubMed Central

    1983-01-01

    The spread of multiresistant strains of Plasmodium falciparum in south-east Asia and South America and the appearance of chloroquine resistance in Africa indicates the urgent need for alternative drugs against these parasites. Mefloquine, a 4-quinoline methanol, is the only new drug that is currently at an advanced stage of development. Studies in animal models and in the clinic have shown that it is highly active as a blood schizontocide against strains that are resistant to many established antimalarials, e.g., chloroquine and pyrimethamine. It is not, however, effective as a causal prophylactic agent. Preclinical toxicological, teratological, and carcinogenicity studies do not indicate any major contraindications to its use. Intensive clinical studies have been carried out in Africa, North and South America, south-east Asia, and Europe. These studies have indicated that the compound is generally well tolerated, safe, and effective in the treatment of malaria, particularly infections with chloroquine-resistant parasites. In order to protect this new and promising drug against the development of resistance to it in endemic areas, it is important that its introduction should be accomplished in a rational and deliberate manner. Appropriate precautionary measures include the development of mefloquine combinations (a combination of mefloquine with pyrimethamine—sulfadoxine is presently under investigation), its use with primaquine as a gametocytocidal drug to prevent transmission, and its deployment primarily for treatment, being used for prophylaxis only in special risk groups. PMID:6407767

  3. Assessment of the Worldwide Antimalarial Resistance Network Standardized Procedure for In Vitro Malaria Drug Sensitivity Testing Using SYBR Green Assay for Field Samples with Various Initial Parasitemia Levels

    PubMed Central

    Cheruiyot, Agnes C.; Auschwitz, Jennifer M.; Lee, Patricia J.; Yeda, Redemptah A.; Okello, Charles O.; Leed, Susan E.; Talwar, Mayank; Murthy, Tushar; Gaona, Heather W.; Hickman, Mark R.; Akala, Hoseah M.; Kamau, Edwin

    2016-01-01

    The malaria SYBR green assay, which is used to profile in vitro drug susceptibility of Plasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC50) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia. P. falciparum laboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC50s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z′) analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels. PMID:26856829

  4. Assessment of the Worldwide Antimalarial Resistance Network Standardized Procedure for In Vitro Malaria Drug Sensitivity Testing Using SYBR Green Assay for Field Samples with Various Initial Parasitemia Levels.

    PubMed

    Cheruiyot, Agnes C; Auschwitz, Jennifer M; Lee, Patricia J; Yeda, Redemptah A; Okello, Charles O; Leed, Susan E; Talwar, Mayank; Murthy, Tushar; Gaona, Heather W; Hickman, Mark R; Akala, Hoseah M; Kamau, Edwin; Johnson, Jacob D

    2016-04-01

    The malaria SYBR green assay, which is used to profilein vitrodrug susceptibility ofPlasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC50) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia.P. falciparumlaboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC50s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z') analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels.

  5. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  6. Solution structures of antimalarial drug-heme complexes.

    PubMed

    Leed, Alison; DuBay, Kateri; Ursos, Lyann M B; Sears, Devin; De Dios, Angel C; Roepe, Paul D

    2002-08-13

    Paramagnetic metal centers [such as Fe(III) found within ferriprotoporphyrin IX heme (FPIX)] exert through space effects on the relaxation rate of nearby proton spins that depend critically on the metal-proton distance. We have measured these effects for all protons of several antimalarial drugs that bind to FPIX by systematically varying the drug:heme molar ratio in high field NMR experiments. These measurements allow us to determine precise FPIX Fe-drug H distances for the solution structures of noncovalent complexes formed between FPIX mu-oxo dimers and the antimalarial drugs chloroquine (CQ), quinine (QN), and quinidine (QD). Using these distances, we then performed distance restraint calculations to determine the lowest-energy solution structures of these complexes. Structures were solved for neutral, monoprotic (+1), and diprotic (+2) forms of the drugs. Analysis of these structures allows us to visualize for the first time the stereospecific differences between QN and QD binding to FPIX and the differences in populations of QN and QD solution structures upon changes in digestive vacuolar pH for drug resistant malarial parasites [Dzekunov, S. M., et al. (2000) Mol. Biochem. Parasitol. 110, 107-124]. The data indicate a previously unrecognized key role for the CQ aliphatic chain in stabilizing FPIX-CQ complexes, and suggest how lengthening or shortening the chain might perturb stability. We also define FPIX:drug stoichiometries of 2:1 for the complexes formed at physiological FPIX concentrations, in contrast to the 4:1 and 5:1 stoichiometries previously determined at higher FPIX concentrations [Dorn, A., et al. (1998) Biochem. Pharmacol. 55, 727-736]. These atomic resolution antimalarial drug-heme structures should help elucidate how these drugs inhibit formation of hemozoin during metabolism of heme within the malarial parasite Plasmodium falciparum and assist ongoing development of strategies for circumventing antimalarial drug resistance.

  7. From crystal to compound: structure-based antimalarial drug discovery.

    PubMed

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  8. Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery.

    PubMed

    Waterman, Carrie; Calcul, Laurent; Beau, Jeremy; Ma, Wai Sheung; Lebar, Matthew D; von Salm, Jacqueline L; Harter, Charles; Mutka, Tina; Morton, Lindsay C; Maignan, Patrick; Barisic, Betty; van Olphen, Alberto; Kyle, Dennis E; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric J; Baker, Bill J

    2016-01-01

    The ongoing search for effective antiplasmodial agents remains essential in the fight against malaria worldwide. Emerging parasitic drug resistance places an urgent need to explore chemotherapies with novel structures and mechanisms of action. Natural products have historically provided effective antimalarial drug scaffolds. In an effort to search nature's chemical potential for antiplasmodial agents, unconventionally sourced organisms coupled with innovative cultivation techniques were utilized. Approximately 60,000 niche microbes from various habitats (slow-growing terrestrial fungi, Antarctic microbes, and mangrove endophytes) were cultivated on a small-scale, extracted, and used in high-throughput screening to determine antimalarial activity. About 1% of crude extracts were considered active and 6% partially active (≥ 67% inhibition at 5 and 50 μg/mL, respectively). Active extracts (685) were cultivated on a large-scale, fractionated, and screened for both antimalarial activity and cytotoxicity. High interest fractions (397) with an IC50 < 1.11 μg/mL were identified and subjected to chromatographic separation for compound characterization and dereplication. Identifying active compounds with nanomolar antimalarial activity coupled with a selectivity index tenfold higher was accomplished with two of the 52 compounds isolated. This microscale, high-throughput screening project for antiplasmodial agents is discussed in the context of current natural product drug discovery efforts.

  9. Quantifying the pharmacology of antimalarial drug combination therapy

    PubMed Central

    Hastings, Ian M.; Hodel, Eva Maria; Kay, Katherine

    2016-01-01

    Most current antimalarial drugs are combinations of an artemisinin plus a ‘partner’ drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs. PMID:27604175

  10. A combined within-host and between-hosts modelling framework for the evolution of resistance to antimalarial drugs.

    PubMed

    Legros, Mathieu; Bonhoeffer, Sebastian

    2016-04-01

    The spread of drug resistance represents a significant challenge to many disease control efforts. The evolution of resistance is a complex process influenced by transmission dynamics between hosts as well as infection dynamics within these hosts. This study aims to investigate how these two processes combine to impact the evolution of resistance in malaria parasites. We introduce a stochastic modelling framework combining an epidemiological model of Plasmodium transmission and an explicit within-human infection model for two competing strains. Immunity, treatment and resistance costs are included in the within-host model. We show that the spread of resistance is generally less likely in areas of intense transmission, and therefore of increased competition between strains, an effect exacerbated when costs of resistance are higher. We also illustrate how treatment influences the spread of resistance, with a trade-off between slowing resistance and curbing disease incidence. We show that treatment coverage has a stronger impact on disease prevalence, whereas treatment efficacy primarily affects resistance spread, suggesting that coverage should constitute the primary focus of control efforts. Finally, we illustrate the importance of feedbacks between modelling scales. Overall, our results underline the importance of concomitantly modelling the evolution of resistance within and between hosts.

  11. Heme Aggregation inhibitors: antimalarial drugs targeting an essential biomineralization process.

    PubMed

    Ziegler, J; Linck, R; Wright, D W

    2001-02-01

    Malaria, resulting from the parasites of the genus Plasmodium, places an untold burden on the global population. As recently as 40 years ago, only 10% of the world's population was at risk from malaria. Today, over 40% of the world's population is at risk. Due to increased parasite resistance to traditional drugs and vector resistance to insecticides, malaria is once again resurgent. An emergent theme from current strategies for the development of new antimalarials is that metal homeostasis within the parasite represents an important drug target. During the intra-erythrocytic phase of its life cycle, the malaria parasite can degrade up to 75% of an infected cell's hemoglobin. While hemoglobin proteolysis yields requisite amino acids, it also releases toxic free heme (Fe(III)PPIX). To balance the metabolic requirements for amino acids against the toxic effects of heme, malaria parasites have evolved a detoxification mechanism which involves the formation of a crystalline heme aggregate known as hemozoin. An overview of the biochemistry of the critical detoxification process will place it in the appropriate context with regards to drug targeting and design. Quinoline-ring antimalarial drugs are effective against the intraerythrocytic stages of pigment-producing parasites. Recent work on the mechanism of these compounds suggests that they prevent the formation of hemozoin. Evidence for such a mechanism is reviewed, especially in the context of the newly reported crystal structure of hemozoin. Additionally, novel drugs, such as the hydroxyxanthones, which have many of the characteristics of the quinolines are currently being investigated. Recent work has also highlighted two classes of inorganic complexes that have interesting antimalarial activity: (1) metal-N(4)O(2) Schiff base complexes and (2) porphyrins. The mechanism of action for these complexes is discussed. The use of these complexes as probes for the elucidation of structure-activity relationships in heme

  12. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination.

    PubMed

    Abdul-Ghani, Rashad; Basco, Leonardo K; Beier, John C; Mahdy, Mohammed A K

    2015-10-19

    Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies.

  13. Hemozoin Formation as a Target for Antimalarial Drug Design

    DTIC Science & Technology

    2005-02-01

    AD Award Number: DAMD17-03-1-0030 TITLE: Hemozoin Formation as a Target for Antimalarial Drug Design PRINCIPAL INVESTIGATOR: Michael K. Riscoe, Ph.D...Formation as a Target for Antimalarial Drug Design DAMD17-03-1-0030 6. A UTHOR(S) Michael K. Riscoe, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS...Report: by Principal Investigator - Michael K. Riscoe, Ph.D. DAMD1 7-03-1-0030: "Hemozoin Formation as a Target for Antimalarial Drug Design " INTRODUCTION

  14. Role of US military research programs in the development of US Food and Drug Administration--approved antimalarial drugs.

    PubMed

    Kitchen, Lynn W; Vaughn, David W; Skillman, Donald R

    2006-07-01

    US military physicians and researchers helped identify the optimum treatment dose of the naturally occurring compound quinine and collaborated with the pharmaceutical industry in the development and eventual US Food and Drug Administration approval of the synthetic antimalarial drugs chloroquine, primaquine, chloroquine-primaquine, sulfadoxine-pyrimethamine, mefloquine, doxycycline, halofantrine, and atovaquone-proguanil. Because malaria parasites develop drug resistance, the US military must continue to support the creation and testing of new drugs to prevent and treat malaria until an effective malaria vaccine is developed. New antimalarial drugs also benefit civilians residing in and traveling to malarious areas.

  15. Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs.

    PubMed

    An, Jie; Minie, Mark; Sasaki, Tomikazu; Woodward, Joshua J; Elkon, Keith B

    2017-01-14

    The best known of the naturally occurring antimalarial compounds are quinine, extracted from cinchona bark, and artemisinin (qinghao), extracted from Artemisia annua in China. These and other derivatives are now chemically synthesized and remain the mainstay of therapy to treat malaria. The beneficial effects of several of the antimalarial drugs (AMDs) on clinical features of autoimmune disorders were discovered by chance during World War II. In this review, we discuss the chemistry of AMDs and their mechanisms of action, emphasizing how they may impact multiple pathways of innate immunity. These pathways include Toll-like receptors and the recently described cGAS-STING pathway. Finally, we discuss the current and future impact of AMDs on systemic lupus erythematosus, rheumatoid arthritis, and devastating monogenic disorders (interferonopathies) characterized by expression of type I interferon in the brain.

  16. Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations

    PubMed Central

    Matthews, Holly; Deakin, Jon; Rajab, May; Idris-Usman, Maryam

    2017-01-01

    The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26–32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product. PMID:28257497

  17. Using evidence to change antimalarial drug policy in Kenya.

    PubMed

    Shretta, R; Omumbo, J; Rapuoda, B; Snow, R W

    2000-11-01

    Chloroquine resistance was first detected in Kenya in 1978 and escalated during the 1980s. Chloroquine remained the treatment of choice for uncomplicated malaria infections until revised guidelines were launched in 1998 despite a plethora of scientific evidence on failure. This review analyses the range and quality of the evidence base that was used to change the drug policy in Kenya from chloroquine to SP and examines the process of consensus building and decision making. Our review illustrates the difficulties in translating sensitivity data with gross geographical, temporal and methodological variations into national treatment policy. The process was complicated by limited options, unknown adverse effects of replacement therapies, cost, as well as limited guidance on factors pertinent to changing the drug policy for malaria. Although > 50% of the studies showed parasitological failures by 1995, there was a general lack of consensus on the principles for assessing drug failures, the inclusion criteria for the study subjects and the relative benefits of parasitological and clinical assessments. A change in international recommendations for assessment of drug efficacy in 1996 from parasitological to clinical response further perplexed the decisions. There is an urgent need for international standards and evidence-based guidelines to provide a framework to assist the process by which decision-makers in malaria-endemic countries can make rational choices for antimalarial drug policy change.

  18. Esterase mutation is a mechanism of resistance to antimalarial compounds

    PubMed Central

    Istvan, Eva S.; Mallari, Jeremy P.; Corey, Victoria C.; Dharia, Neekesh V.; Marshall, Garland R.; Winzeler, Elizabeth A.; Goldberg, Daniel E.

    2017-01-01

    Pepstatin is a potent peptidyl inhibitor of various malarial aspartic proteases, and also has parasiticidal activity. Activity of pepstatin against cultured Plasmodium falciparum is highly variable depending on the commercial source. Here we identify a minor contaminant (pepstatin butyl ester) as the active anti-parasitic principle. We synthesize a series of derivatives and characterize an analogue (pepstatin hexyl ester) with low nanomolar activity. By selecting resistant parasite mutants, we find that a parasite esterase, PfPARE (P. falciparum Prodrug Activation and Resistance Esterase) is required for activation of esterified pepstatin. Parasites with esterase mutations are resistant to pepstatin esters and to an open source antimalarial compound, MMV011438. Recombinant PfPARE hydrolyses pepstatin esters and de-esterifies MMV011438. We conclude that (1) pepstatin is a potent but poorly bioavailable antimalarial; (2) PfPARE is a functional esterase that is capable of activating prodrugs; (3) Mutations in PfPARE constitute a mechanism of antimalarial resistance. PMID:28106035

  19. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    PubMed

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.

  20. [The proper use of antimalarial drugs currently available].

    PubMed

    Bourgeade, A; Delmont, J

    1998-01-01

    French medical practitioners have at their disposal several antimalarial drugs for giving chemoprophylaxis to people travelling to a malaria endemic country or treating an imported malaria case in a patient. The choice depends on the contre-indications and indications of each drug, essentially subordinated to the presence and level of Plasmodium falciparum chemosensitivity in the visited area. For prevention, chloroquine alone can be taken in the areas where P. falciparum is absent or not chloroquine resistant; elsewhere, the choice between chloroquine/proguanil or mefloquine depends on knowing the prevalence and level of falciparum chloroquine resistance in these areas. For treatment, the only indications of chloroquine are imported malaria cases either due to P. vivax, P. ovale or P. malariae, or caused by P. falciparum contracted in one of the rare countries where the species is still sensitive to chloroquine. For uncomplicated falciparum malaria cases acquired in a chemoresistance area, mefloquine, halofantrine, sulfadoxine-pyrimethamine or oral quinine is selected, depending on the observed chemoprophylaxis, the contra-indications and the suspicion of chemoresistance type. Whatever the provenance area, P. falciparum in a patient with one or several serious symptoms or possibly profuse vomiting is treated by intravenous quinine, associated with tetracycline if the patient comes from an area known for a low quinine sensitivity of this species. The spectrum of falciparum malaria treatment has recently broadened to include new drugs such as artemisinin, artemether or atovaquone/proguanil, the latter being as yet unauthorized in France.

  1. [The evolution over time of the in-vitro resistance of Plasmodium falciparum to antimalarial drugs in 2 areas of the Brazilian Amazonia with distinct socioeconomic and geographic characteristics].

    PubMed

    Couto, A A; Calvosa, V S; Santos, M A; de Souza, J M

    1995-01-01

    We evaluated the temporal progression of in vitro P. falciparum resistance to chloroquine, amodiaquine, quinine and mefloquine in two areas with distinct socioeconomical and geographical characteristics: Lourenço, in Amapá state and Paragominas, in Pará state. The former region is essentially an "open" gold mining camp, whereas the latter is one currently undergoing a colonization settlement process, in addition to expanding economical activities which mainly include cattle raising and wood exploitation. Our results show high resistance rates to chloroquine in the two study areas: 79.8% and 68.4% in Lourenço and Paragominas, respectively. Variations in the response of P. falciparum to both amodiaquine and quinine were recorded throughout the study period. On the other hand, no mefloquine P. falciparum resistant strains could be identified, despite the tact we had noted a decrease in sensitivity to this antimalarial drug throughout the study period.

  2. Medical need, scientific opportunity and the drive for antimalarial drugs.

    PubMed

    Ridley, Robert G

    2002-02-07

    Continued and sustainable improvements in antimalarial medicines through focused research and development are essential for the world's future ability to treat and control malaria. Unfortunately, malaria is a disease of poverty, and despite a wealth of scientific knowledge there is insufficient market incentive to generate the competitive, business-driven industrial antimalarial drug research and development that is normally needed to deliver new products. Mechanisms of partnering with industry have been established to overcome this obstacle and to open up and build on scientific opportunities for improved chemotherapy in the future.

  3. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  4. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo Andrade; Hopfinger, Anton J.

    2001-01-01

    A set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines were studied using four-dimensional quantitative structure-activity relationship (4D-QSAR) analysis. The corresponding biological activities of these compounds include IC50 inhibition constants for both the wild type, and a specific mutant type of Plasmodium falciparum dihydrofolate reductase (DHFR). Two thousand conformations of each analog were sampled to generate a conformational ensemble profile (CEP) from a molecular dynamics simulation (MDS) of 100,000 conformer trajectory states. Each sampled conformation was placed in a 1 Å cubic grid cell lattice for each of five trial alignments. The frequency of occupation of each grid cell was computed for each of six types of pharmacophore groups of atoms of each compound. These grid cell occupancy descriptors (GCODs) were then used as a descriptor pool to construct 4D-QSAR models. Models for inhibition of both the `wild' type and the mutant enzyme were generated which provide detailed spatial pharmacophore requirements for inhibition in terms of atom types and their corresponding relative locations in space. The 4D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the Plasmodium falciparum DHFR to current antimalarials. One feature identified is a slightly different binding alignment of the ligands to the mutant form of the enzyme as compared to the wild type.

  5. [Plasmodium falciparum susceptibility to antimalarial drugs: global data issued from the Pasteur Institutes international network].

    PubMed

    Ménard, Didier; Ariey, Frédéric; Mercereau-Puijalon, Odile

    2013-01-01

    Malaria research units within the Institut Pasteur international network (RIIP-Palu) located in Africa, in South-East Asia and in South America, work for many years in close collaboration with the National malaria control programmes. Relying on technical platforms with well-equipped laboratories and scientific expertise, they are at the forefront of research on the antimalarial drug resistance by working together for training young scientists and developping similar protocols allowing comprehensive comparisons. Including fundamental and operational researches, they conduct regional and international projects which aim (1) to detect the emergence of antimalarial drugs resistant parasites and to evaluate their spatio-temporal distribution, (2) to develop in vitro and molecular tools, (3) to identify epidemiological factors involved in the emergence and the spread of antimalarial drugs resistant parasites and (4) to understand the molecular and cellular mechanisms implicated in resistance. In this review, will be presented methodological approaches and data obtained since 2000.

  6. Impact of prepackaging antimalarial drugs on cost to patients and compliance with treatment.

    PubMed Central

    Yeboah-Antwi, K.; Gyapong, J. O.; Asare, I. K.; Barnish, G.; Evans, D. B.; Adjei, S.

    2001-01-01

    OBJECTIVE: To examine the extent to which district health teams could reduce the burden of malaria, a continuing major cause of mortality and morbidity, in a situation where severe resource constraints existed and integrated care was provided. METHODS: Antimalarial drugs were prepackaged into unit doses in an attempt to improve compliance with full courses of chemotherapy. FINDINGS: Compliance improved by approximately 20% in both adults and children. There were 50% reductions in cost to patients, waiting time at dispensaries and drug wastage at facilities. The intervention, which tended to improve both case and drug management at facilities, was well accepted by health staff and did not involve them in additional working time. CONCLUSION: The prepackaging of antimalarials at the district level offers the prospect of improved compliance and a reduction in the spread of resistance. PMID:11417034

  7. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  8. A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery

    PubMed Central

    Jiménez-Díaz, María Belén; Viera, Sara; Ibáñez, Javier; Mulet, Teresa; Magán-Marchal, Noemí; Garuti, Helen; Gómez, Vanessa; Cortés-Gil, Lorena; Martínez, Antonio; Ferrer, Santiago; Fraile, María Teresa; Calderón, Félix; Fernández, Esther; Shultz, Leonard D.; Leroy, Didier; Wilson, David M.; García-Bustos, José Francisco; Gamo, Francisco Javier; Angulo-Barturen, Iñigo

    2013-01-01

    The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task

  9. Glycosides as possible lead antimalarial in new drug discovery: future perspectives.

    PubMed

    Marya; Khan, Haroon; Ahmad, Izhar

    2017-01-15

    Malaria remains one of the major public health problems worldwide and is responsible for a large number of morbidity and mortality. Especially, in the third world countries, it is still alarming. The development of drug-resistant to Plasmodium falciparum strains has further degraded the overall situation. However, a limited number of effective drugs available emphasizes how essential it is to establish new anti-malarial compounds. New antimalarial agents with distinctive structures and mechanism of action from the natural origin are thus immediately required to treat sensitive and drug-resistant strains of malaria. over the years, phytopharmaceuticals have provided numerous lead compounds. Similarly, the success rate of botanicals in terms of clinical significance is also very high. Of them, glycosides is one of the most widely distributed and emerging class of plant secondary metabolites. This review provides an outlook to recently isolated glycosides from plants with marked antimalarial effects in an in-vitro and in-vivo protocols and thus ideal candidates for clinical trials to ascertain their clinical utility and or led compounds.

  10. Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept.

    PubMed

    Aponte, Samanda L; Díaz, Gustavo; Pava, Zuleima; Echeverry, Diego F; Ibarguen, Darío; Rios, Melissa; Murcia, Luz M; Quelal, Claudia; Murillo, Claribel; Gil, Pedro; Björkman, Anders; Osorio, Lyda

    2011-08-01

    Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.

  11. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes

    PubMed Central

    Goodman, Christopher D.; Siregar, Josephine E.; Mollard, Vanessa; Vega-Rodríguez, Joel; Syafruddin, Din; Matsuoka, Hiroyuki; Matsuzaki, Motomichi; Toyama, Tomoko; Sturm, Angelika; Cozijnsen, Anton; Jacobs-Lorena, Marcelo; Kita, Kiyoshi; Marzuki, Sangkot; McFadden, Geoffrey I.

    2016-01-01

    Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control. PMID:27081071

  12. Reliability of antimalarial sensitivity tests depends on drug mechanisms of action.

    PubMed

    Wein, Sharon; Maynadier, Marjorie; Tran Van Ba, Christophe; Cerdan, Rachel; Peyrottes, Suzanne; Fraisse, Laurent; Vial, Henri

    2010-05-01

    In vitro antimalarial activity tests play a pivotal role in malaria drug research or for monitoring drug resistance in field isolates. We applied two isotopic tests, two enzyme-linked immunosorbent assays (ELISA) and the SYBR green I fluorescence-based assay, to test artesunate and chloroquine, the metabolic inhibitors atovaquone and pyrimethamine, our fast-acting choline analog T3/SAR97276, and doxycycline, which has a delayed death profile. Isotopic tests based on hypoxanthine and ethanolamine incorporation are the most reliable tests provided when they are applied after one full 48-h parasite cycle. The SYBR green assay, which measures the DNA content, usually requires 72 h of incubation to obtain reliable results. When delayed death is suspected, specific protocols are required with increasing incubation times up to 96 h. In contrast, both ELISA tests used (pLDH and HRP2) appear to be problematic, leading to disappointing and even erroneous results for molecules that do not share an artesunatelike profile. The reliability of these tests is linked to the mode of action of the drug, and the conditions required to get informative results are hard to predict. Our results suggest some minimal conditions to apply these tests that should give rise to a standard 50% inhibitory concentration, regardless of the mechanism of action of the compounds, and highlight that the most commonly used in vitro antimalarial activity tests do not have the same potential. Some of them might not detect the antimalarial potential of new classes of compounds with innovative modes of action, which subsequently could become promising new antimalarial drugs.

  13. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei

    PubMed Central

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa

    2015-01-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca2+, and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527

  14. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    PubMed Central

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2016-01-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium that inflicts approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase (NMT), which catalyzes N-myristoylation of protein substrates. Here we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small molecule NMT inhibitors. We demonstrate that NMT is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for development of new antimalarials targeting NMT. PMID:24451586

  15. Chemical and genetic validation of thiamine utilization as an antimalarial drug target.

    PubMed

    Chan, Xie Wah Audrey; Wrenger, Carsten; Stahl, Katharina; Bergmann, Bärbel; Winterberg, Markus; Müller, Ingrid B; Saliba, Kevin J

    2013-01-01

    Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.

  16. Long term effectiveness of antimalarial drugs in rheumatic diseases

    PubMed Central

    Avina-Zubieta, J; Galindo-Rodriguez, G.; Newman, S.; Suarez-Almazor, M.; Russell, A.

    1998-01-01

    OBJECTIVE—The purpose of this study was to compare the long term effectiveness between chloroquine (CQ) and hydroxychloroquine (HCQ).
METHODS—Medical charts of all patients seen by eight rheumatologists practising in two tertiary care centres and starting antimalarial treatment between January 1985 and December 1993 were reviewed. Patient characteristics, disease, and treatment information were collected. The main outcome measures were the cause of and the time to the discontinuation of antimalarial drugs resulting from all causes, principally toxicity or inefficacy, or both. Bivariate analysis including t tests and χ2 tests were used to assess differences between means and proportions respectively. Survival curves were evaluated using the Kaplan-Meier method. Multivariate analysis (Cox regression) was used to adjust for potential confounders.
RESULTS—After all medical records were reviewed, 1042 eligible cases were identified. From these, 940 (90%) had usable information and they represent the cohort. Five hundred and fifty eight had rheumatoid arthritis, 178 had systemic lupus erythematosus, 127 had palindromic arthritis, and 77 had other diagnoses. Fifty seven per cent of the patients received CQ and 43% HCQ. The proportion of patients with side effects taking HCQ and CQ was 15% and 28% respectively (p=0.001). Using Cox regression model to adjust for age at the onset of antimalarial treatment, physician differences, sex, disease type, disease duration before treatment, and rank selection, there were no differences in the hazard ratio (HR) for overall discontinuations between CQ and HCQ. While the HR for discontinuations because of toxicity was lower for HCQ (HR= 0.6, 95% CI 0.4, 0.9), the HR for discontinuations because of inefficacy was significantly higher for HCQ (HR= 1.4, 95% CI 1.1, 1.9).
CONCLUSIONS—After adjusting for time and several confounders HCQ was less toxic but less effective than CQ. Only one case of probable

  17. Potential P-glycoprotein-mediated drug-drug interactions of antimalarial agents in Caco-2 cells.

    PubMed

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2012-07-01

    Antimalarials are widely used in African and Southeast Asian countries, where they are combined with other drugs for the treatment of concurrent ailments. The potential for P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) between antimalarials and P-gp substrates was examined using a Caco-2 cell-based model. Selected antimalarials were initially screened for their interaction with P-gp based on the inhibition of rhodamine-123 (Rho-123) transport in Caco-2 cells. Verapamil (100 μM) and quinidine (1 μM) were used as positive inhibition controls. Lumefantrine, amodiaquin, and artesunate all showed blockade of Rho-123 transport. Subsequently, the inhibitory effect of these antimalarials on the bi-directional passage of digoxin (DIG) was examined. All of the drugs decreased basal-to-apical (B-A) P-gp-mediated DIG transport at concentrations of 100 μM and 1 mM. These concentrations may reflect therapeutic doses for amodiaquin and artesunate. Therefore, clinically relevant DDIs may occur between certain antimalarials and P-gp substrates in general.

  18. Genotoxic evaluation of the antimalarial drug, fansidar, in cultured human lymphocytes.

    PubMed

    Abou-Eisha, A; Afifi, M

    2004-09-01

    Fansidar (pyrimethamine-sulfadoxine) has been used extensively worldwide for the treatment of chloroquine resistant Plasmodium falciparum malaria, toxoplasmosis and Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. Because of the wide usage of pyrimethamine-sulfadoxine in developing countries and the lake of information from open literature and reports from manufacturers about the genotoxicity of such antimalarial drug, the present work was suggested. The possible genetic toxicity of fansidar has been evaluated in human peripheral blood lymphocyte cultures. The frequencies of sister-chromatid exchanges (SCE) and micronuclei (MN) were scored as genetic endpoints. Both tests covering a wide range of induced genetic damage as primary DNA damage, clastogenicity and aneugenicity. Cultures were set up by using blood samples from two healthy donors and the treatment was done using different fansidar concentrations ranging from 1:20 to 10:200 microg/ml. From our results, it appears that this drug is able to induce moderate genotoxic effects, as revealed by the increases found in SCE and MN frequencies in cultures from the two donors at the two highest concentrations tested (5:100 and 10:200 microg/ml). In addition, cyotoxic/cytostatic effects of fansidar were revealed by a decrease in the proliferative rate index (PRI) and in the cytokinesis block proliferation index (CBPI). Our findings suggest that the use of this drug should be restricted to situations where other antimalarial drugs cannot be used. The drug should never be given to pregnant women.

  19. Assessment of urinary excretion of antimalarial drugs in large-scale chemotherapeutic eradication projects

    PubMed Central

    Bruce-Chwatt, L. J.

    1959-01-01

    Assessment of the urinary excretion of an antimalarial drug is a useful means of checking the amount of drug administered and the regularity of intake. The author describes the various methods available for the qualitative and quantitative estimation of antimalarial drugs in urine and discusses their relative merits, with special reference to their suitability for use in the field. He points out the difficulties involved in estimating the urinary excretion of antimalarials in large-scale chemotherapeutic eradication projects and stress the importance of simplifying testing techniques as far as possible. PMID:13805135

  20. Antimalarial drug quality in the most severely malarious parts of Africa - a six country study.

    PubMed

    Bate, Roger; Coticelli, Philip; Tren, Richard; Attaran, Amir

    2008-05-07

    A range of antimalarial drugs were procured from private pharmacies in urban and peri-urban areas in the major cities of six African countries, situated in the part of that continent and the world that is most highly endemic for malaria. Semi-quantitative thin-layer chromatography (TLC) and dissolution testing were used to measure active pharmaceutical ingredient content against internationally acceptable standards. 35% of all samples tested failed either or both tests, and were substandard. Further, 33% of treatments collected were artemisinin monotherapies, most of which (78%) were manufactured in disobservance of an appeal by the World Health Organisation (WHO) to withdraw these clinically inappropriate medicines from the market. The high persistence of substandard drugs and clinically inappropriate artemisinin monotherapies in the private sector risks patient safety and, through drug resistance, places the future of malaria treatment at risk globally.

  1. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness

    PubMed Central

    Hastings, Ian M.

    2015-01-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 1012 parasites, while the standard dosing regimens allow approximately 1 in 1010 parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 1017 parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  2. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development

    PubMed Central

    Deniskin, Roman; Frame, I.J.; Sosa, Yvett; Akabas, Myles H.

    2015-01-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine) and pyrimidines ([3H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  3. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    PubMed

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy.

  4. Lack of doxycycline antimalarial prophylaxis impact on Staphylococcus aureus tetracycline resistance.

    PubMed

    Mende, Katrin; Beckius, Miriam L; Zera, Wendy C; Yu, Xin; Li, Ping; Tribble, David R; Murray, Clinton K

    2016-10-01

    There is concern that susceptibility of Staphylococcus aureus to tetracyclines may decrease due to use of antimalarial prophylaxis (doxycycline). We examined characteristics related to tetracycline resistance, including doxycycline exposure, in S. aureus isolates collected via admission surveillance swabs and inpatient clinical cultures from United States military personnel injured during deployment (June 2009-January 2012). Tetracycline class resistance was determined using antimicrobial susceptibility testing. The first S. aureus isolate from 168 patients were analyzed, of which 38 (23%) isolates were resistant to tetracyclines (class). Tetracycline-resistant isolates had a higher proportion of resistance to clindamycin (P=0.019) compared to susceptible isolates. There was no significant difference in tetracycline resistance between isolates collected from patients with and without antimalarial prophylaxis; however, significantly more isolates had tet(M) resistance genes in the doxycycline exposure group (P=0.031). Despite 55% of the patients receiving doxycycline as antimalarial prophylaxis, there was no association with resistance to tetracyclines.

  5. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach.

    PubMed

    Wright, Megan H; Clough, Barbara; Rackham, Mark D; Rangachari, Kaveri; Brannigan, James A; Grainger, Munira; Moss, David K; Bottrill, Andrew R; Heal, William P; Broncel, Malgorzata; Serwa, Remigiusz A; Brady, Declan; Mann, David J; Leatherbarrow, Robin J; Tewari, Rita; Wilkinson, Anthony J; Holder, Anthony A; Tate, Edward W

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  6. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    NASA Astrophysics Data System (ADS)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  7. Important drug interactions in patients with rheumatic disorders: interactions of glucocorticoids, immunosuppressants and antimalarial drugs.

    PubMed

    Hromadkova, L; Soukup, T; Vlcek, J

    2012-08-01

    Despite the fact that biological treatments are very promising, classical immunosuppressants, antimalarial drugs and glucocorticosteroids are still very important and widely used in practice. Although drug interactions can have fatal consequences, few studies have reviewed drug interactions of these classical drugs used in rheumatology, and very few guidelines are available on this subject. Therefore, this report summarizes important interactions of immunosuppressants, antimalarial drugs and glucocorticosteroids with drugs commonly used in internal medicine. In the present study, more than 300 interactions were retrieved from the Micromedex ® database. The selection was reduced to the interactions rated as moderate, major or contraindicated. The selected interactions were further checked against PubMed ®, MEDLINE ®, InfoPharm Compendium of Drug Interactions and Summaries of Product Characteristics. For each interaction, its nature, mechanism, onset and clinical severity were indicated, documentation quality was rated and recommendations for clinical practice were formulated. Twenty significant interactions that we rated as moderate, severe and very severe were identified. Interacting drugs were warfarin, fluoroquinolones, azole antifungals, co-trimoxazole, proton pump inhibitors, amiodarone, cholestyramine, activated carbon, allopurinol, angiotensin-converting enzyme inhibitors, statins, digoxin, iron, aluminium and magnesium salts, and hepatotoxic and nephrotoxic agents.

  8. Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China.

    PubMed

    Feng, Jun; Li, Jun; Yan, He; Feng, Xinyu; Xia, Zhigui

    2015-01-01

    Imported malaria has been a great challenge for public health in China due to decreased locally transmitted cases and frequent exchange worldwide. Plasmodium falciparum has been mainly responsible for the increasing impact. Currently, artesunate plus amodiaquine, one of the artemisinin combination therapies recommended by the World Health Organization, has been mainly used against uncomplicated P. falciparum malaria in China. However, drug resistance marker polymorphism in returning migrant workers has not been demonstrated. Here, we have evaluated the prevalence of pfmdr1 and pfcrt polymorphisms, as well as the K13 propeller gene, a molecular marker of artemisinin resistance, in migrant workers returned from Ghana to Shanglin County, Guangxi Province, China, in 2013. A total of 118 blood samples were randomly selected and used for the assay. Mutations of the pfmdr1 gene that covered codons 86, 184, 1034, and 1246 were found in 11 isolates. Mutations at codon N86Y (9.7%) were more frequent than at others, and Y(86)Y(184)S(1034)D(1246) was the most prevalent (63.6%) of the four haplotypes. Mutations of the pfcrt gene that covered codons 74, 75, and 76 were observed in 17 isolates, and M(74)N(75)T(76) was common (70.6%) in three haplotypes. Eight different genotypes of the K13 propeller were first observed in 10 samples in China, 2 synonymous mutations (V487V and A627A) and 6 nonsynonymous mutations. C580Y was the most prevalent (2.7%) in all the samples. The data presented might be helpful for enrichment of molecular surveillance of antimalarial resistance and will be useful for developing and updating antimalarial guidance in China.

  9. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    PubMed Central

    Neto, Zoraima; Machado, Marta; Lindeza, Ana; do Rosário, Virgílio; Gazarini, Marcos L.; Lopes, Dinora

    2013-01-01

    Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs). Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group's 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest. PMID:23691276

  10. Strengthening of national capacity in implementation of antimalarial drug quality assurance in Thailand.

    PubMed

    Vijaykadga, Saowanit; Cholpol, Sawat; Sitthimongkol, Saipin; Pawaphutanan, Anusorn; Pinyoratanachot, Arunya; Rojanawatsirivet, Chaiporn; Kovithvattanapong, Rojana; Thimasarn, Krongthong

    2006-01-01

    Substandard and counterfeit pharmaceutical products, including antimalarial drugs, appear to be widespread internationally and affect both the developing and developed countries. The aim of the study was to investigate the quality of antimalarial drugs, ie, artesunate (ART), chloroquine (CHL), mefloquine (MEF), quinine (QUI), sulfadoxine/pyrimethamine (S/P) and tetracycline (TT) obtained from the government sector and private pharmacies in 4 Thai provinces: Mae Hong Son, Kanchanaburi, Ranong, and Chanthaburi. Three hundred sixty-nine samples of 6 antimalarial drugs from 27 government hospitals, 27 malaria clinics, and 53 drugstores, were collected. Drug quality was assessed by simple disintegration test and semi-quantitative thin-layer chromatography in each province; 10% passed, 100% failed and doubtful samples were sent to be verified by high performance liquid chromatography (HPLC) at the Thai National Drug Analysis Laboratory, (NL). Fifteen point four percent of ART, 11.1% of CHL and 29.4% of QUI were substandard. Based on the finding, drug regulatory authorities in the country took appropriate action against violators to ensure that antimalarial drugs consumed by malaria patients are of good quality.

  11. Retinal toxicity induced by antimalarial drugs: literature review and case report.

    PubMed

    Garza-Leon, Manuel; Flores-Alvarado, Diana Elsa; Muñoz-Bravo, Juan Manuel

    2016-06-17

    Antimalarial drugs are widely used in several countries for control of rheumatologic diseases such as systemic lupus erythematosus and rheumatoid arthritis. They are still used in Mexico because of their low cost and few secondary effects, most of which are mild and reversible. Even so, at an ophthalmological level, they could produce irreversible visual damage, which is why it is important to have ophthalmological evaluation and proper follow up. We present a clinical case as an example of characteristic ophthalmological findings as well as risk factors for retinal toxicity. We then discuss guidelines for diagnosis and follow up of patients who use antimalarial drugs for the treatment of rheumatologic illnesses.

  12. Antimicrobial (Drug) Resistance Prevention

    MedlinePlus

    ... Visitor Information Contact Us Research > NIAID's Role in Research > Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter ... Prevention, Antimicrobial (Drug) Resistance Antimicrobial (Drug) Resistance Antimicrobial ... To prevent antimicrobial resistance, you and your healthcare ...

  13. Antimalarial Activity and Mechanisms of Action of Two Novel 4-Aminoquinolines against Chloroquine-Resistant Parasites

    PubMed Central

    Aguiar, Anna Caroline Campos; Santos, Raquel de Meneses; Figueiredo, Flávio Júnior Barbosa; Cortopassi, Wilian Augusto; Pimentel, André Silva; França, Tanos Celmar Costa; Meneghetti, Mario Roberto; Krettli, Antoniana Ursine

    2012-01-01

    Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation. PMID:22649514

  14. Considerations about the structure—activity relationships of 8-aminoquinoline antimalarial drugs

    PubMed Central

    McChesney, James D.

    1981-01-01

    A discussion of the structure-activity relationships (SAR) of 8-aminoquinoline antimalarial drugs is presented. Consideration is given to the potential role of metabolic transformations in the in vivo activation of 8-aminoquinolines. It is emphasized that the mechanism of action of 8-aminoquinoline agents has not yet been established and thus any analysis of SAR must be speculative. PMID:6976853

  15. Formation of the diuretic chlorazanil from the antimalarial drug proguanil--implications for sports drug testing.

    PubMed

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Tretzel, Laura; Bailloux, Isabelle; Buisson, Corinne; Lasne, Francoise; Schaefer, Maximilian S; Kienbaum, Peter; Mueller-Stoever, Irmela; Schänzer, Wilhelm

    2015-11-10

    Chlorazanil (Ordipan, N-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine) is a diuretic agent and as such prohibited in sport according to the regulations of the World Anti-Doping Agency (WADA). Despite its introduction into clinical practice in the late 1950s, the worldwide very first two adverse analytical findings were registered only in 2014, being motive for an in-depth investigation of these cases. Both individuals denied the intake of the drug; however, the athletes did declare the use of the antimalarial prophylactic agent proguanil due to temporary residences in African countries. A structural similarity between chlorazanil and proguanil is given but no direct metabolic relation has been reported in the scientific literature. Moreover, chlorazanil has not been confirmed as a drug impurity of proguanil. Proguanil however is metabolized in humans to N-(4-chlorophenyl)-biguanide, which represents a chemical precursor in the synthesis of chlorazanil. In the presence of formic acid, formaldehyde, or formic acid esters, N-(4-chlorophenyl)-biguanide converts to chlorazanil. In order to probe for potential sources of the chlorazanil detected in the doping control samples, drug formulations containing proguanil and urine samples of individuals using proguanil as antimalarial drug were subjected to liquid chromatography-high resolution/high accuracy mass spectrometry. In addition, in vitro simulations with 4-chlorophenyl-biguanide and respective reactants were conducted in urine and resulting specimens analyzed for the presence of chlorazanil. While no chlorazanil was found in drug formulations, the urine samples of 2 out of 4 proguanil users returned findings for chlorazanil at low ng/mL levels, similar to the adverse analytical findings in the doping control samples. Further, in the presence of formaldehyde, formic acid and related esters, 4-chlorophenyl-biguanide was found to produce chlorazanil in human urine, suggesting that the detection of the obsolete diuretic

  16. Concurrent Inflammation Augments Antimalarial Drugs-Induced Liver Injury in Rats

    PubMed Central

    Niknahad, Hossein; Heidari, Reza; Firuzi, Roya; Abazari, Farzaneh; Ramezani, Maral; Azarpira, Negar; Hosseinzadeh, Massood; Najibi, Asma; Saeedi, Arastoo

    2016-01-01

    Purpose: Accumulating evidence suggests that drug exposure during a modest inflammation induced by bacterial lipopolysaccharide (LPS) might increase the risk of drug-induced liver injury. The current investigation was designed to test if antimalarial drugs hepatotoxicity is augmented in LPS‑treated animals. Methods: Rats were pre-treated with LPS (100 µg/kg, i.p). Afterward, non-hepatotoxic doses of amodiaquine (25, 50 and 100 mg/kg, oral) and chloroquine (25, 50 and 100 mg/kg, oral) were administered. Results: Interestingly, liver injury was evident only in animals treated with both drug and LPS as estimated by pathological changes in serum biochemistry (ALT, AST, LDH, and TNF-α), and liver tissue (severe hepatitis, endotheliitis, and sinusoidal congestion). An increase in liver myeloperoxidase enzyme activity, lipid peroxidation, and protein carbonylation, along with tissue glutathione depletion were also detected in LPS and drug co-treated animals. Conclusion: Antimalarial drugs rendered hepatotoxic in animals undergoing a modest inflammation. These results indicate a synergistic liver injury from co-exposure to antimalarial drugs and inflammation. PMID:28101469

  17. Research in Experimental Antimalarial Chemotherapy.

    DTIC Science & Technology

    1995-01-01

    and reversal of chloroquine resistance with promethazine (WRBL 50601), chlorpheniramine , diphenhydramine and pyrilamine were identified and published...in 1991 and 1992. The findings on reversal of chloroquine resistance with promethazine and chlorpheniramine represent the first demonstration of the...pharmacokinetics and clinical efficacy of potential combinations of chlorpheniramine with antimalarial drugs in human volunteers and animal models

  18. Irrational use of antimalarial drugs in rural areas of eastern Pakistan: a random field study

    PubMed Central

    2012-01-01

    Background Prescription of antimalarial drugs in the absence of malarial disease is a common practice in countries where malaria is endemic. However, unwarranted use of such drugs can cause side effects in some people and is a financial drain on local economies. In this study, we surveyed the prevalence of malaria parasites in humans, and the prevalence of the malaria transmitting mosquito vectors in the study area. We also investigated the use of antimalarial drugs in the local people. We focused on randomly selected rural areas of eastern Pakistan where no malaria cases had been reported since May 2004. Methods Mass blood surveys, active case detection, passive case detection, and vector density surveys were carried out in selected areas of Sargodha district from September 2008 to August 2009. Data pertaining to the quantities and types of antimalarial drugs used in these areas were collected from health centers, pharmacies, and the district CDC program of the Health Department of the Government of the Punjab. Results Seven hundred and forty four blood samples were examined, resulting in a Blood Examination Rate (BER) of 3.18; microscopic analysis of blood smears showed that none of the samples were positive for malaria parasites. Investigation of the mosquito vector density in 43 living rooms (bedrooms or rooms used for sleeping), 23 stores, and 32 animal sheds, revealed no vectors capable of transmitting malaria in these locations. In contrast, the density of Culex mosquitoes was high. Substantial consumption of a variety of antimalarial tablets, syrups, capsules and injections costing around 1000 US$, was documented for the region. Conclusion Use of antimalarial drugs in the absence of malarial infection or the vectors that transmit the disease was common in the study area. Continuous use of such drugs, not only in Pakistan, but in other parts of the world, may lead to drug-induced side effects amongst users. Better training of health care professionals is

  19. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

    PubMed

    Ro, Dae-Kyun; Paradise, Eric M; Ouellet, Mario; Fisher, Karl J; Newman, Karyn L; Ndungu, John M; Ho, Kimberly A; Eachus, Rachel A; Ham, Timothy S; Kirby, James; Chang, Michelle C Y; Withers, Sydnor T; Shiba, Yoichiro; Sarpong, Richmond; Keasling, Jay D

    2006-04-13

    Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.

  20. DETECTION OF PUTATIVE ANTIMALARIAL-RESISTANT PLASMODIUM VIVAX IN ANOPHELES VECTORS AT THAILAND-CAMBODIA AND THAILAND-MYANMAR BORDERS.

    PubMed

    Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa

    2016-03-01

    Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance

  1. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine

    PubMed Central

    Olafson, Katy N.; Ketchum, Megan A.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2015-01-01

    Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼104× less than hematin’s physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials. PMID:25831526

  2. Plasmodium falciparum drug resistance in Angola.

    PubMed

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  3. A nuclear magnetic resonance study of the interactions of antimalarial drugs with porphyrins.

    PubMed

    Moreau, S; Perly, B; Chachaty, C; Deleuze, C

    1985-05-29

    Haematins (hydroxyferriprotoporphyrin IX) constitute a possible receptor for antimalarial drugs such as chloroquine or quinine. This paper reports the study of the interactions of these two molecules with two tetrapyrrole (haematin and uroporphyrin I) by 1H-NMR spectroscopy. This method provided us with the geometry of the interactions in aqueous medium. The interaction consists of a close stacking of the porphyrin ring and the quinoleine moiety of the drugs. Using a porphyrin ring current model it was possible to reach the spatial relationships of the interacting species. It was concluded that hydrophobic forces play a key role in the interaction. The porphyrin plane can accommodate wide structural variations of the interacting species, leading to a weak specificity. The consequences on the mode of action of antimalarial drugs are discussed.

  4. The mechanism of resistance to sulfa drugs in Plasmodium falciparum.

    PubMed

    Triglia, Tony; Cowman, Alan F.

    1999-02-01

    The sulfonamide and sulfone (sulfa) group of antimalarials has been used extensively throughout malaria endemic regions of the world to control this important infectious disease of humans. Sulfadoxine is the most extensively used drug of this group of drugs and is usually combined with pyrimethamine (Fansidar), particularly for the control of Plasmodium falciparum, the causative agent of the most lethal form of malaria. Resistance to the sulfadoxine/pyrimethamine combination is widespread. Analysis using molecular, genetic and biochemical approaches has shown that the mechanism of resistance to sulfadoxine involves mutation of dihydropteroate synthase, the enzyme target of this group of drugs. Understanding the mechanism of resistance of P. falciparum to sulfa drugs has allowed detailed analysis of the epidemiology of the spread of drug resistance alleles in the field(1)and, in the future, opens the way to the development of novel antimalarials to this target enzyme. Copyright 1999 Harcourt Publishers Ltd.

  5. Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development

    PubMed Central

    McCarthy, James S.; Marquart, Louise; Sekuloski, Silvana; Trenholme, Katharine; Elliott, Suzanne; Griffin, Paul; Rockett, Rebecca; O'Rourke, Peter; Sloots, Theo; Angulo-Barturen, Iñigo; Ferrer, Santiago; Jiménez-Díaz, María Belén; Martínez, María-Santos; Duparc, Stephan; Leroy, Didier; Wells, Timothy N. C.; Baker, Mark

    2016-01-01

    Effective progression of candidate antimalarials is dependent on optimal dosing in clinical studies, which is determined by a sound understanding of pharmacokinetics and pharmacodynamics (PK/PD). Recently, two important translational models for antimalarials have been developed: the NOD/SCID/IL2Rγ−/− (NSG) model, whereby mice are engrafted with noninfected and Plasmodium falciparum-infected human erythrocytes, and the induced blood-stage malaria (IBSM) model in human volunteers. The antimalarial mefloquine was used to directly measure the PK/PD in both models, which were compared to previously published trial data for malaria patients. The clinical part was a single-center, controlled study using a blood-stage Plasmodium falciparum challenge inoculum in volunteers to characterize the effectiveness of mefloquine against early malaria. The study was conducted in three cohorts (n = 8 each) using different doses of mefloquine. The characteristic delay in onset of action of about 24 h was seen in both NSG and IBSM systems. In vivo 50% inhibitory concentrations (IC50s) were estimated at 2.0 μg/ml and 1.8 μg/ml in the NSG and IBSM models, respectively, aligning with 1.8 μg/ml reported previously for patients. In the IBSM model, the parasite reduction ratios were 157 and 195 for the 10- and 15-mg/kg doses, within the range of previously reported clinical data for patients but significantly lower than observed in the mouse model. Linking mouse and human challenge models to clinical trial data can accelerate the accrual of critical data on antimalarial drug activity. Such data can guide large clinical trials required for development of urgently needed novel antimalarial combinations. (This trial was registered at the Australian New Zealand Clinical Trials Registry [http://anzctr.org.au] under registration number ACTRN12612000323820.) PMID:27044554

  6. Computer-assisted design of pro-drugs for antimalarial atovaquone.

    PubMed

    Karaman, Rafik; Hallak, Hussein

    2010-10-01

    Density Functional Theory (DFT) and ab initio calculation results for the proton transfer reaction in Kirby's enzyme models 1-6 reveal that the reaction rate is largely dependent on the existence of a hydrogen bonding net in the reactants and the corresponding transition states. Further, the distance between the two reacting centers and the angle of the hydrogen bonding formed along the reaction path has profound effects on the rate. Hence, the study on the systems reported herein could provide a good basis for designing antimalarial (atovaquone) pro-drug systems that can be used to release the parent drug in a controlled manner. For example, based on the calculated log EM, the cleavage process for pro-drug 1Pro may be predicted to be about 10¹¹ times faster than that for a pro-drug 4Pro and about 10⁴ times faster than pro-drug 2Pro: rate (1Pro) > rate (2Pro > rate (4Pro). Thus, the rate by which the pro-drug releases the antimalarial drug can be determined according to the nature of the linker (Kirby's enzyme model 1-6).

  7. Voltammetric behaviour of antimalarial drug artesunate in solubilized systems.

    PubMed

    Jain, Rajeev; Vikas

    2011-12-01

    The voltammetric behaviour of artesunate is studied at glassy carbon electrode in different buffer systems using square wave, differential pulse and cyclic voltammetric techniques. The peak current is linear with the drug concentration in the range 4.0-40 μg mL(-1) for serum, plasma and urine. The mean percentage recoveries of the drug, urine, plasma and serum samples are 98.6-100.2%. No electroactive interferences from the excipients and endogenous substance could be observed in the pharmaceutical dosage forms and in biological samples.

  8. Antimalarial Drug Discovery: Approaches and Progress towards New Medicines

    PubMed Central

    Flannery, Erika L.; Chatterjee, Arnab K.; Winzeler, Elizabeth A.

    2014-01-01

    Malaria elimination has recently been reinstated as a global health priority but current therapies seem to be insufficient for the task. Elimination efforts require new drug classes that alleviate symptoms, prevent transmission and provide a radical cure. To develop these next generation medicines, public-private partnerships are funding innovative approaches to identify compounds that target multiple parasite species at multiple stages of the parasite lifecycle. Here, we review the cell-, chemistry- and target-based approaches used to discover new drug candidates that are currently in clinical trials or undergoing preclinical testing. PMID:24217412

  9. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors

    NASA Astrophysics Data System (ADS)

    Urbán, Patricia; Estelrich, Joan; Adeva, Alberto; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-12-01

    Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with

  10. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season.

    PubMed

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Mahmud, Rohela

    2016-10-01

    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a

  11. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper.

    PubMed

    Koesdjojo, Myra T; Wu, Yuanyuan; Boonloed, Anukul; Dunfield, Elizabeth M; Remcho, Vincent T

    2014-12-01

    With the emergence of artesunate antimalarial counterfeiting in Southeast Asia and sub-Saharan Africa, we present the production of a rapid, inexpensive and simple colorimetric-based testing kit for the detection of counterfeit artesunate in order to preserve life and prevent the development of multi-drug resistant malaria. The kit works based on paper microfluidics which offer several advantages over conventional microfluidics, and has great potential to generate inexpensive, easy-to-use, rapid and disposable diagnostic devices. Here, we have developed a colorimetric assay that is specific to artesunate and turns yellow upon addition of the sample. The test can be done within minutes, and allows for a semi-quantitative analysis of the artesunate tablets by comparing the developed yellow color on the paper test to a color-coded key chart that comes with the kit. A more accurate and precise analysis is done by utilizing a color analyzer on an iPhone camera that measures the color intensity of the developed color on the paper chip. A digital image of the chip was taken and analyzed by measuring the average gray intensity of the color developed on the paper circle. A plot of the artesunate concentration versus the average gray scale intensity was generated. Results show that the intensity of the yellow color developed on the paper test was consistent and proportional to the amount of artesunate present in the sample. With artesunate concentrations ranging from 0.0 to 20mg/mL, a linear calibration plot was obtained with a detection limit of 0.98 mg/mL.

  12. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  13. Comparative efficacy and safety of chloroquine and alternative antimalarial drugs: a meta-analysis from six African countries.

    PubMed

    Mengesha, T; Makonnen, E

    1999-06-01

    A meta-analysis study evaluating the efficacy and safety of chloroquine and alternative antimalarial drugs used in six African countries including Ethiopia, Kenya, Uganda, Cote D'Ivoire, Gambia and Nigeria is presented. Findings from the six countries showed a higher efficacy of amodiaquine and quinine (over 90%) in malaria treatment compared to chloroquine, which was found to be 70% or more effective. The efficacy of amodiaquine can also be compared to other antimalarial drugs such as mefloquine and halofantrine. Data showed that fever clearance time of these drugs was less than 2 days, but parasite clearance time ranged from 2.5 days to 1 week. Recrudescence rate also varied among the different drugs. This is a very important indicator in determining which drug can be used for prophylactic or suppressive treatment of malaria. Pharmacokinetic profile demonstrates that all these drugs have similar therapeutic effects, but differ in their adverse reactions, contraindications, and half-life. A significant difference was also noted in the cost of these antimalarial drugs; chloroquine was the cheapest, while halofantrine was the most expensive among the drugs. Based on these results, the study recommends that different aspects of antimalarial drugs have to be considered before deciding which drug is the best alternative treatment.

  14. Why Hospital Pharmacists Have Failed to Manage Antimalarial Drugs Stock-Outs in Pakistan? A Qualitative Insight

    PubMed Central

    Hassali, Mohamed Azmi Ahmad; Shafie, Asrul Akmal; Hussain, Azhar

    2013-01-01

    Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital) and Rawalpindi (twin city). Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors' analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs. PMID:24223321

  15. Optimization of propafenone analogues as antimalarial leads.

    PubMed

    Lowes, David J; Guiguemde, W Armand; Connelly, Michele C; Zhu, Fangyi; Sigal, Martina S; Clark, Julie A; Lemoff, Andrew S; Derisi, Joseph L; Wilson, Emily B; Guy, R Kiplin

    2011-11-10

    Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug's potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogues was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multidrug resistant K1 strain of P. falciparum compared to the 3D7 strain.

  16. Effect of membrane filtration of antimalarial drug solutions on in vitro activity against Plasmodium falciparum*

    PubMed Central

    Baird, J. K.; Lambros, C.

    1984-01-01

    Antimalarial activities of chloroquine, mefloquine, amodiaquine, and quinine in vitro against Plasmodium falciparum were diminished as a consequence of membrane filtration. Filtered drug solutions gave ID50 values up to 25-fold greater than those of non-filtered (ethanol-sterilized) drug solutions. Loss of activity by filtration was overcome by increasing the drug concentration prior to filtration. Water solutions filtered through Millex-GS filter units consistently showed an absorbance maximum at 277 nm, accompanied by a lesser peak at 225 nm. Water filtrates from Nucleopore and Millex-GV filters showed no absorbance at 277 nm and only slight absorbance was evident for the Gelman filter unit. Activity losses were attributed to extractable contaminating moieties in the membrane filters and/or drug binding to the membrane filters. PMID:6380786

  17. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach.

    PubMed

    N, Nagasundaram; C, George Priya Doss; Chakraborty, Chiranjib; V, Karthick; D, Thirumal Kumar; V, Balaji; R, Siva; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-29

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  18. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    PubMed Central

    N., Nagasundaram; C., George Priya Doss; Chakraborty, Chiranjib; V., Karthick; D., Thirumal Kumar; V., Balaji; R., Siva; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-01-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs. PMID:27471101

  19. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    NASA Astrophysics Data System (ADS)

    Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  20. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

    PubMed Central

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

    2012-01-01

    Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID

  1. Purine import into malaria parasites as a target for antimalarial drug development.

    PubMed

    Frame, I J; Deniskin, Roman; Arora, Avish; Akabas, Myles H

    2015-04-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 μM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.

  2. A Redox-Active Fluorescent pH Indicator for Detecting Plasmodium falciparum Strains with Reduced Responsiveness to Quinoline Antimalarial Drugs.

    PubMed

    Jida, Mouhamad; Sanchez, Cecilia P; Urgin, Karène; Ehrhardt, Katharina; Mounien, Saravanan; Geyer, Aurelia; Elhabiri, Mourad; Lanzer, Michael; Davioud-Charvet, Elisabeth

    2017-02-10

    Mutational changes in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) have been associated with differential responses to a wide spectrum of biologically active compounds including current and former quinoline and quinoline-like antimalarial drugs. PfCRT confers altered drug responsiveness by acting as a transport system, expelling drugs from the parasite's digestive vacuole where these drugs exert, at least part of, their antiplasmodial activity. To preserve the efficacy of these invaluable drugs, novel functional tools are required for epidemiological surveys of parasite strains carrying mutant PfCRT variants and for drug development programs aimed at inhibiting or circumventing the action of PfCRT. Here we report the synthesis and characterization of a pH-sensitive fluorescent chloroquine analogue consisting of 7-chloro-N-{2-[(propan-2-yl)amino]ethyl}quinolin-4-amine functionalized with the fluorochrome 7-nitrobenzofurazan (NBD) (henceforth termed Fluo-CQ). In the parasite, Fluo-CQ accumulates in the digestive vacuole, giving rise to a strong fluorescence signal but only in parasites carrying the wild type PfCRT. In parasites carrying the mutant PfCRT, Fluo-CQ does not accumulate. The differential handling of the fluorescent probe, combined with live cell imaging, provides a diagnostic tool for quick detection of those P. falciparum strains that carry a PfCRT variant associated with altered responsiveness to quinoline and quinoline-like antimalarial drugs. In contrast to the accumulation studies, chloroquine (CQ)-resistant parasites were observed cross-resistant to Fluo-CQ when the chemical probe was tested in various CQ-sensitive and -resistant parasite strains. NBD derivatives were found to act as redox cyclers of two essential targets, using a coupled assay based on methemoglobin and the NADPH-dependent glutathione reductase (GRs) from P. falciparum. This redox activity is proposed to contribute to the dual action of Fluo-CQ on redox

  3. Recent progress in the development of anti-malarial quinolones.

    PubMed

    Beteck, Richard M; Smit, Frans J; Haynes, Richard K; N'Da, David D

    2014-08-30

    Available anti-malarial tools have over the ten-year period prior to 2012 dramatically reduced the number of fatalities due to malaria from one million to less than six-hundred and thirty thousand. Although fewer people now die from malaria, emerging resistance to the first-line anti-malarial drugs, namely artemisinins in combination with quinolines and arylmethanols, necessitates the urgent development of new anti-malarial drugs to curb the disease. The quinolones are a promising class of compounds, with some demonstrating potent in vitro activity against the malaria parasite. This review summarizes the progress made in the development of potential anti-malarial quinolones since 2008. The efficacy of these compounds against both asexual blood stages and other stages of the malaria parasite, the nature of putative targets, and a comparison of these properties with anti-malarial drugs currently in clinical use, are discussed.

  4. CRIMALDDI: a co-ordinated, rational, and integrated effort to set logical priorities in anti-malarial drug discovery initiatives.

    PubMed

    Boulton, Ian C; Nwaka, Solomon; Bathurst, Ian; Lanzer, Michael; Taramelli, Donatella; Vial, Henri; Doerig, Christian; Chibale, Kelly; Ward, Steve A

    2010-07-13

    Despite increasing efforts and support for anti-malarial drug R&D, globally anti-malarial drug discovery and development remains largely uncoordinated and fragmented. The current window of opportunity for large scale funding of R&D into malaria is likely to narrow in the coming decade due to a contraction in available resources caused by the current economic difficulties and new priorities (e.g. climate change). It is, therefore, essential that stakeholders are given well-articulated action plans and priorities to guide judgments on where resources can be best targeted.The CRIMALDDI Consortium (a European Union funded initiative) has been set up to develop, through a process of stakeholder and expert consultations, such priorities and recommendations to address them. It is hoped that the recommendations will help to guide the priorities of the European anti-malarial research as well as the wider global discovery agenda in the coming decade.

  5. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production

    PubMed Central

    Pulice, Giuseppe; Pelaz, Soraya; Matías-Hernández, Luis

    2016-01-01

    Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further

  6. Quality of Antimalarial Drugs and Antibiotics in Papua New Guinea: A Survey of the Health Facility Supply Chain

    PubMed Central

    Hetzel, Manuel W.; Page-Sharp, Madhu; Bala, Nancy; Pulford, Justin; Betuela, Inoni; Davis, Timothy M. E.; Lavu, Evelyn K.

    2014-01-01

    Background Poor-quality life-saving medicines are a major public health threat, particularly in settings with a weak regulatory environment. Insufficient amounts of active pharmaceutical ingredients (API) endanger patient safety and may contribute to the development of drug resistance. In the case of malaria, concerns relate to implications for the efficacy of artemisinin-based combination therapies (ACT). In Papua New Guinea (PNG), Plasmodium falciparum and P. vivax are both endemic and health facilities are the main source of treatment. ACT has been introduced as first-line treatment but other drugs, such as primaquine for the treatment of P. vivax hypnozoites, are widely available. This study investigated the quality of antimalarial drugs and selected antibiotics at all levels of the health facility supply chain in PNG. Methods and Findings Medicines were obtained from randomly sampled health facilities and selected warehouses and hospitals across PNG and analysed for API content using validated high performance liquid chromatography (HPLC). Of 360 tablet/capsule samples from 60 providers, 9.7% (95% CI 6.9, 13.3) contained less, and 0.6% more, API than pharmacopoeial reference ranges, including 29/37 (78.4%) primaquine, 3/70 (4.3%) amodiaquine, and one sample each of quinine, artemether, sulphadoxine-pyrimethamine and amoxicillin. According to the package label, 86.5% of poor-quality samples originated from India. Poor-quality medicines were found in 48.3% of providers at all levels of the supply chain. Drug quality was unrelated to storage conditions. Conclusions This study documents the presence of poor-quality medicines, particularly primaquine, throughout PNG. Primaquine is the only available transmission-blocking antimalarial, likely to become important to prevent the spread of artemisinin-resistant P. falciparum and eliminating P. vivax hypnozoites. The availability of poor-quality medicines reflects the lack of adequate quality control and regulatory

  7. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    PubMed

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  8. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeokjun; Ha, Young-Ran; Lee, Sang Joon

    2015-11-01

    Malaria parasites induce morphological, biochemical, and mechanical changes in red blood cells (RBCs). Mechanical variations are closely related to the deformability of individual RBCs. The deformation of various RBCs, including healthy and malaria-infected RBCs (iRBCs), can be directly observed through quantitative phase imaging (QPI). The effects of chloroquine treatment on the mechanical property variation of iRBCs were investigated using time-resolved holographic QPI of single live cells on a millisecond time scale. The deformabilities of healthy RBCs, iRBCs, and drug-treated iRBCs were compared, and the effect of chloroquine on iRBC restoration was experimentally examined. The present results are beneficial to elucidate the dynamic characteristics of iRBCs and the effect of the antimalarial drug on iRBCs.

  9. Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin.

    PubMed

    Phukon, Pinkee; Radhapyari, Keisham; Konwar, Bolin Kumar; Khan, Raju

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate-gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate-gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01-0.08μg mL(-1)) with sensitivity of 0.26μAμg mL(-1). The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035μg mL(-1) and 0.0036μg mL(-1) in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis.

  10. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    PubMed

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  11. A population genetic model for the initial spread of partially resistant malaria parasites under anti-malarial combination therapy and weak intrahost competition.

    PubMed

    Kim, Yuseob; Escalante, Ananias A; Schneider, Kristan A

    2014-01-01

    To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing "transient" mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites' fitnesses. Overall, contrary to other studies' proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance.

  12. [Resistance of Plasmodium falciparum to 3 antimalarials in Turbo (Antioquia, Colombia), 1998].

    PubMed

    Blair, S; Lacharme, L L; Fonseca, J C; Tobón, A

    2001-01-01

    In 1998 we determined in vivo and in vitro the frequency and the degree of resistance of Plasmodium falciparum to the three antimalarials (chloroquine, amodiaquine, and sulfadoxine/pyrimethamine) most utilized in the municipality of Turbo (in the area of Urabá, Antioquia, Colombia), in a sample representative of the population with malaria. We carried out clinical and parasitological analyses over a 14-day period using the standard test recommended by the World Health Organization. In vivo, P. falciparum showed resistance to chloroquine, amodiaquine, and sulfadoxine/pyrimethamine, with a frequency of 97%, 7%, and 13%, respectively. In vitro, the corresponding figures were 21%, 23%, and 9%, respectively. For chloroquine the level of agreement between the in vivo and in vitro results was 23%.

  13. Ethics and drug resistance.

    PubMed

    Selgelid, Michael J

    2007-05-01

    This paper reviews the dynamics behind, and ethical issues associated with, the phenomenon of drug resistance. Drug resistance is an important ethical issue partly because of the severe consequences likely to result from the increase in drug resistant pathogens if more is not done to control them. Drug resistance is also an ethical issue because, rather than being a mere quirk of nature, the problem is largely a product of drug distribution. Drug resistance results from the over-consumption of antibiotics by the wealthy; and it, ironically, results from the under-consumption of antibiotics, usually by the poor or otherwise marginalized. In both kinds of cases the phenomenon of drug resistance illustrates why health (care)--at least in the context of infectious disease--should be treated as a (global) public good. The point is that drug resistance involves 'externalities' affecting third parties. When one patient develops a resistant strain of disease because of her over- or under-consumption of medication, this more dangerous malady poses increased risk to others. The propriety of free-market distribution of goods subject to externalities is famously dubious--given that the 'efficiency' rationale behind markets assumes an absence of externalities. Market failure in the context of drug resistance is partly revealed by the fact that no new classes of antibiotics have been developed since 1970. I conclude by arguing that the case of drug resistance reveals additional reasons--to those traditionally appealed to by bioethicists--for treating health care as something special when making policy decisions about its distribution.

  14. Chemotherapy of drug-resistant malaria

    PubMed Central

    Kain, Kevin C

    1996-01-01

    OBJECTIVE: To review the impact of drug-resistant malaria on current management of plasmodial infections. DATA SOURCES: A MEDLINE search of the English-language medical literature from 1985 to 1995; bibliographies of selected papers; international malaria advisory experts. DATA SYNTHESIS: Combinations of artemisinin derivatives and mefloquine or atovaquone plus proguanil appear to be the most active drug regimens against multidrug-resistant falciparum malaria from Southeast Asia. The optimal therapy for chloroquine-resistant Plasmodium vivax is unknown, but recent data indicate that halofantrine or chloroquine plus high doses of primaquine are efficacious. CONCLUSIONS: The incidence of drug-resistant malaria continues to increase at a rate that exceeds new drug development. Ultimately the control of malaria will require more creative approaches than just the development of additional inhibitory drugs. These might include the identification of biochemical pathways unique to the parasite (such as drug efflux and heme polymerization), making it possible to design new classes of antimalarial agents that are selectively toxic to the parasite; methods to block parasite development in the mosquito vector; and multistage vaccines against asexual and sexual stages to block both the pathophysiology and the transmission of disease. PMID:22514413

  15. Studies on genotoxicity and carcinogenicity of antibacterial, antiviral, antimalarial and antifungal drugs.

    PubMed

    Brambilla, Giovanni; Mattioli, Francesca; Robbiano, Luigi; Martelli, Antonietta

    2012-07-01

    This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity studies performed of antibacterial, antiviral, antimalarial and antifungal drugs of long-term or intermittent frequent use. Of the 48 drugs considered, 9 (18.75%) do not have retrievable data, whereas the other 39 (81.25%) have at least one genotoxicity or carcinogenicity tests result. Of these 39 drugs, 24 tested positive in at least one genotoxicity assay and 19 in at least one carcinogenicity assay; 14 of them gave a positive response in both at least one genotoxicity assay and at least one carcinogenicity assay. Concerning the predictivity of genetic toxicology findings for the results of long-term carcinogenesis assays, of 23 drugs with both genotoxicity and carcinogenicity data: 2 (8.7%) were neither genotoxic nor carcinogenic, 2 (8.7%) tested positive in at least one genotoxicity assay but were non-carcinogenic, 4 (17.4%) tested negative in genotoxicity assays but were carcinogenic, and 15 (65.2%) gave a positive response in at least one genotoxicity assay and in at least one carcinogenicity assay. Only 18 (37.5%) of the 48 drugs examined had all data required by present guidelines for testing of pharmaceuticals, but a fraction of them (49%) were developed and marketed prior to the present regulatory climate. In the absence of compelling indications, the prescription of the 19 drugs that are animal carcinogens should be avoided.

  16. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    NASA Astrophysics Data System (ADS)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  17. Evidence for a Central Role for PfCRT in Conferring Plasmodium falciparum Resistance to Diverse Antimalarial Agents

    PubMed Central

    Johnson, David J.; Fidock, David A.; Mungthin, Mathirut; Lakshmanan, Viswanathan; Sidhu, Amar Bir Singh; Bray, Patrick G.; Ward, Stephen A.

    2010-01-01

    Summary Chloroquine resistance in Plasmodium falciparum is primarily conferred by mutations in pfcrt. Parasites resistant to chloroquine can display hypersensitivity to other antimalarials; however, the patterns of cross-resistance are complex, and the genetic basis has remained elusive. We show that stepwise selection for resistance to amantadine or halofantrine produced previously unknown pfcrt mutations (including S163R), which were associated with a loss of verapamil-reversible chloroquine resistance. This was accompanied by restoration of efficient chloroquine binding to hematin in these selected lines. This S163R mutation provides insight into a mechanism by which PfCRT could gate the transport of protonated chloroquine through the digestive vacuole membrane. Evidence for the presence of this mutation in a Southeast Asian isolate supports the argument for a broad role for PfCRT in determining levels of susceptibility to structurally diverse antimalarials. PMID:15383277

  18. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border

    PubMed Central

    Wang, Zenglei; Cabrera, Mynthia; Yang, Jingyun; Yuan, Lili; Gupta, Bhavna; Liang, Xiaoying; Kemirembe, Karen; Shrestha, Sony; Brashear, Awtum; Li, Xiaolian; Porcella, Stephen F.; Miao, Jun; Yang, Zhaoqing; Su, Xin-zhuan; Cui, Liwang

    2016-01-01

    Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy. PMID:27694982

  19. Mass administration of the antimalarial drug mefloquine to Guantánamo detainees: a critical analysis.

    PubMed

    Nevin, Remington L

    2012-10-01

    Recently, evidence has emerged from an unusual form of mass drug administration practised among detainees held at US Naval Station Guantánamo Bay, Cuba ('Guantánamo'), ostensibly as a public health measure. Mefloquine, an antimalarial drug originally developed by the US military, whose use is associated with a range of severe neuropsychiatric adverse effects, was administered at treatment doses to detainees immediately upon their arrival at Guantánamo, prior to laboratory testing for malaria and irrespective of symptoms of disease. In this analysis, the history of mefloquine's development is reviewed and the indications for its administration at treatment doses are discussed. The stated rationale for the use of mefloquine among Guantánamo detainees is then evaluated in the context of accepted forms of population-based malaria control. It is concluded that there was no plausible public health indication for the use of mefloquine at Guantánamo and that based on prevailing standards of care, the clinical indications for its use are decidedly unclear. This analysis suggests the troubling possibility that the use of mefloquine at Guantánamo may have been motivated in part by knowledge of the drug's adverse effects, and points to a critical need for further investigation to resolve unanswered questions regarding the drug's potentially inappropriate use.

  20. The biological and clinical activity of anti-malarial drugs in autoimmune disorders.

    PubMed

    Taherian, Elham; Rao, Anshul; Malemud, Charles J; Askari, Ali D

    2013-01-01

    Chloroquine and hydroxychloroquine are 4-aminoquinoline compounds commonly employed as anti-malarial drugs. Chloroquine and its synthetic analogue, hydroxychloroquine also belong to the disease-modifying anti-rheumatic drug class because these drugs are immunosuppressive. The immunosuppressive activity of chloroquine and hydroxychloroquine is likely to account for their capacity to reduce T-cell and B-cell hyperactivity as well as pro-inflammatory cytokine gene expression. This review evaluated experimental and clinical trials results as well as clinical response data relative to the use of chloroquine and/or hydroxychloroquine as first-line medical therapies in systemic lupus erythematosus, rheumatoid arthritis, primary Sjogren's syndrome, the anti-phospholipid syndrome and in the treatment of sarcoidosis. A primary outcomes measure in these clinical trials was the extent to which chloroquine and/or hydroxychloroquine reduced disease progression or exacerbations and/or the use and dosage of corticosteroids. The relative efficacy of chloroquine and hydroxychloroquine in modifying the clinical course of these autoimmune disorders is balanced against evidence that these drugs induce adverse effects which may reduce their use and effectiveness in the therapy of autoimmune disorders.

  1. Antimicrobial (Drug) Resistance

    MedlinePlus

    ... NIAID invests in basic research to understand the biology of microbes, their behavior, and how drug resistance ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  2. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites.

    PubMed

    Muangphrom, Paskorn; Seki, Hikaru; Fukushima, Ery Odette; Muranaka, Toshiya

    2016-07-01

    Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.

  3. New Antimalarial Hits from Dacryodes edulis (Burseraceae) - Part I: Isolation, In Vitro Activity, In Silico “drug-likeness” and Pharmacokinetic Profiles

    PubMed Central

    Zofou, Denis; Tematio, Esther Laure; Ntie-Kang, Fidele; Tene, Mathieu; Ngemenya, Moses N.; Tane, Pierre; Titanji, Vincent P. K.

    2013-01-01

    The aims of the present study were to identify the compounds responsible for the anti-malarial activity of Dacryoedes edulis (Burseraceae) and to investigate their suitability as leads for the treatment of drug resistant malaria. Five compounds were isolated from ethyl acetate and hexane extracts of D. edulis stem bark and tested against 3D7 (chloroquine-susceptible) and Dd2 (multidrug-resistant) strains of Plasmodium falciparum, using the parasite lactate dehydrogenase method. Cytotoxicity studies were carried out on LLC-MK2 monkey kidney epithelial cell-line. In silico analysis was conducted by calculating molecular descriptors using the MOE software running on a Linux workstation. The “drug-likeness” of the isolated compounds was assessed using Lipinski criteria, from computed molecular properties of the geometry optimized structures. Computed descriptors often used to predict absorption, distribution, metabolism, elimination and toxicity (ADMET) were used to assess the pharmacokinetic profiles of the isolated compounds. Antiplasmodial activity was demonstrated for the first time in five major natural products previously identified in D. edulis, but not tested against malaria parasites. The most active compound identified was termed DES4. It had IC50 values of 0.37 and 0.55 µg/mL, against 3D7 and Dd2 respectively. In addition, this compound was shown to act in synergy with quinine, satisfied all criteria of “Drug-likeness” and showed considerable probability of providing an antimalarial lead. The remaining four compounds also showed antiplasmodial activity, but were less effective than DES4. None of the tested compounds was cytotoxicity against LLC-MK2 cells, suggesting their selective activities on malaria parasites. Based on the high in vitro activity, low toxicity and predicted “Drug-likeness” DES4 merits further investigation as a possible drug lead for the treatment of malaria. PMID:24282507

  4. Antimicrobial drug resistance.

    PubMed

    Martinez, Marilyn; Silley, Peter

    2010-01-01

    This chapter provides an overview of our current understanding of the mechanisms associated with the development of antimicrobial drug resistance, international differences in definitions of resistance, ongoing efforts to track shifts in drug susceptibility, and factors that can influence the selection of therapeutic intervention. The latter presents a matrix of complex variables that includes the mechanism of drug action, the pharmacokinetics (PK) of the antimicrobial agent in the targeted patient population, the pharmacodynamics (PD) of the bacterial response to the antimicrobial agent, the PK/PD relationship that will influence dose selection, and the integrity of the host immune system. Finally, the differences between bacterial tolerance and bacterial resistance are considered, and the potential for non-traditional anti-infective therapies is discussed.

  5. Highly active ozonides selected against drug resistant malaria

    PubMed Central

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  6. Highly active ozonides selected against drug resistant malaria.

    PubMed

    Lobo, Lis; Sousa, Bruno de; Cabral, Lília; Cristiano, Maria Ls; Nogueira, Fátima

    2016-06-07

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites.

  7. Acquired resistance of malarial parasites against artemisinin-based drugs: social and economic impacts.

    PubMed

    Porter-Kelley, Johanna M; Cofie, Joann; Jean, Sophonie; Brooks, Mark E; Lassiter, Mia; Mayer, Dc Ghislaine

    2010-01-01

    Malaria, a disease of poverty and high morbidity and mortality in the tropical world, has led to a worldwide search for control measures. To that end, good antimalarial chemotherapies have been difficult to find in the global market and those that seem to be most effective are rapidly becoming ineffective due to the emergence and spread of drug resistance. Artemisinin, a very effective yet expensive antimalarial, has quickly become the recommended drug of choice when all other possibilities fail. However, for all its promise as the next great antimalarial, the outlook is bleak. Resistance is developing to artemisinin while another effective antimalarial is not in sight. Malaria endemic areas which are mostly in developing countries must deal with the multifaceted process of changing and implementing new national malaria treatment guidelines. This requires complex interactions between several sectors of the affected society which in some cases take place within the context of political instability. Moreover, the cost associated with preventing and containing the spread of antimalarial resistance is detrimental to economic progress. This review addresses the impact of artemisinin resistance on the socioeconomic structure of malaria endemic countries.

  8. Alteration of redox status by commonly used antimalarial drugs in the north-western region of Nigeria.

    PubMed

    Muhammad, A; Ibrahim, M A; Mohammed, H A; Erukainure, O L; Malami, I; Suleiman, A; Mansir, A; Godwin, A; Khalil, H A

    2017-02-01

    This study was designed to investigate the alteration of redox status by commonly used antimalarials in Nigeria. Drugs used were artemisinin, artesunate, chloroquine, coartem and quinine at the final concentrations of 0.5-8.0 mg/mL. Blood samples were collected from malarial patients and apparently healthy humans for comparison. Reduced glutathione, catalase, superoxide dismutase (SOD) activities, protein content and lipid peroxidation were determined. All drugs significantly ( p < 0.05) increases the protein level relative to control in normal blood, whereas in the infected, a significant ( p < 0.05) reduction was observed. In normal blood, the antimalarials dose dependently decreased ( p < 0.05) SOD and catalase activities with significant ( p < 0.05) increase in the infected. The level of glutathione in normal blood significantly ( p < 0.05) increases as compared with control, whereas in the infected, similar observation was made except that the levels were less, relative to control sample. Malondialdehyde level significantly ( p < 0.05) increases with increase in drugs concentration even though less than the level in the control with few exceptions. These effects were dose dependent and more pronounced in non-malarial conditions. Commonly used antimalarials might alter the redox status in both healthy and non-healthy subjects thereby inducing oxidative stress.

  9. Salinomycin and Other Ionophores as a New Class of Antimalarial Drugs with Transmission-Blocking Activity

    PubMed Central

    D'Alessandro, Sarah; Corbett, Yolanda; Ilboudo, Denise P.; Misiano, Paola; Dahiya, Nisha; Abay, Solomon M.; Habluetzel, Annette; Grande, Romualdo; Gismondo, Maria R.; Dechering, Koen J.; Koolen, Karin M. J.; Sauerwein, Robert W.; Taramelli, Donatella; Parapini, Silvia

    2015-01-01

    The drug target profile proposed by the Medicines for Malaria Venture for a malaria elimination/eradication policy focuses on molecules active on both asexual and sexual stages of Plasmodium, thus with both curative and transmission-blocking activities. The aim of the present work was to investigate whether the class of monovalent ionophores, which includes drugs used in veterinary medicine and that were recently proposed as human anticancer agents, meets these requirements. The activity of salinomycin, monensin, and nigericin on Plasmodium falciparum asexual and sexual erythrocytic stages and on the development of the Plasmodium berghei and P. falciparum mosquito stages is reported here. Gametocytogenesis of the P. falciparum strain 3D7 was induced in vitro, and gametocytes at stage II and III or stage IV and V of development were treated for different lengths of time with the ionophores and their viability measured with the parasite lactate dehydrogenase (pLDH) assay. The monovalent ionophores efficiently killed both asexual parasites and gametocytes with a nanomolar 50% inhibitory concentration (IC50). Salinomycin showed a fast speed of kill compared to that of standard drugs, and the potency was higher on stage IV and V than on stage II and III gametocytes. The ionophores inhibited ookinete development and subsequent oocyst formation in the mosquito midgut, confirming their transmission-blocking activity. Potential toxicity due to hemolysis was excluded, since only infected and not normal erythrocytes were damaged by ionophores. Our data strongly support the downstream exploration of monovalent ionophores for repositioning as new antimalarial and transmission-blocking leads. PMID:26055362

  10. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    SciTech Connect

    Paeshuyse, Jan; Coelmont, Lotte; Vliegen, Inge; Hemel, Johan van; Vandenkerckhove, Jan; Peys, Eric; Sas, Benedikt; Clercq, Erik De; Neyts, Johan . E-mail: johan.neyts@rega.kuleuven.be

    2006-09-15

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC{sub 5}) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 {+-} 21 {mu}M. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 {mu}M) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.

  11. Repurposing the anti-malarial drug, quinacrine: new anti-colitis properties

    PubMed Central

    Chumanevich, Alexander A.; Witalison, Erin E.; Chaparala, Anusha; Chumanevich, Anastasiya; Nagarkatti, Prakash; Nagarkatti, Mitzi; Hofseth, Lorne J.

    2016-01-01

    Background Ulcerative colitis (UC) is a chronic inflammatory bowel disease that is associated with an increased risk of colorectal cancer in 8-10 years after disease onset. Current colitis treatment strategies do not offer a cure for the disease, but only treat the symptoms with limited success and dangerous side-effects. Also, there is no preventive treatment for either UC or colorectal cancer. Quinacrine is an anti-malarial drug with versatile use in the treatment of diseases involving inflammatory response such as rheumatoid arthritis and lupus erythematosus. It also has putative anti-cancer effect. Quinacrine's anti-inflammatory, anti-oxidant properties, and anti-tumorigenic properties make it a potential small molecule preventive agent for both UC and associated colorectal cancer. Results There were obvious changes in the CDI, histology, and inflammatory load in quinacrine-treated groups in a dose and time dependent manner in both models of UC, induced by chemical or haptenating agent. Methods We tested quinacrine at two different doses as a colitis treatment agent in two mouse models of UC - the dextran sulfate sodium and oxazolone. The clinical disease index (CDI), histological changes of the colon, levels of inflammatory markers (Cox-2, iNOS, p53) and overall health vitals were evaluated. Conclusions We demonstrate that quinacrine successfully suppresses colitis without any indication of toxicity or side-effects in two mouse models of UC. PMID:27447967

  12. Study on the developmental toxicity of combined artesunate and mefloquine antimalarial drugs on rats.

    PubMed

    Boareto, Ana Cláudia; Müller, Juliane Centeno; de Araujo, Samanta Luiza; Lourenço, Ana Carolina; Lourenço, Emerson Luiz Botelho; Gomes, Caroline; Minatovicz, Bruna; Lombardi, Natália; Paumgartten, Francisco Roma; Dalsenter, Paulo Roberto

    2012-12-01

    Antimalarial drug combinations containing artemisinins (ACTs) have become first choice therapies for Plasmodium falciparum malaria. Data on safety of ACTs in pregnancy are limited and no previous study has been conducted on the developmental toxicity of artesunate-mefloquine combinations on the first trimester of gestation. To evaluate the developmental toxicity of an artesunate/mefloquine combination, pregnant rats were treated orally with artesunate (15 and 40 mg/kg bwt/day), mefloquine (30 and 80 mg/kg bwt/day) and artesunate/mefloquine (15/30 and 40/80 mg/kg bwt/day) on gestation days 9-11. Dams were C-sectioned on day 20, and their uteri and fetuses removed and examined for soft tissue and skeleton abnormalities. Artesunate increased embryolethality and the incidence of limb long bone malformations on the absence of overt maternal toxicity. Mefloquine (80 mg/kg bwt/day) was maternally toxic and enhanced fetal variations. Combination of artesunate and mefloquine did not enhance their toxicity compared to the toxicity observed after its separate administration. Embryotoxicity of artesunate was apparently attenuated when it is co-administered with mefloquine.

  13. Effects of quinoline-containing antimalarials on the erythrocyte membrane and their significance to drug action on Plasmodium falciparum.

    PubMed

    Ginsburg, H; Krugliak, M

    1988-05-15

    Quinoline-containing antimalarials are cationic amphiphiles which accumulate to high levels in lysosomes and are known to interact with membrane phospholipids. It was therefore hypothesized that they could exert their antimalarial effect by compromising the integrity of the parasite's acidic organelles. To test this hypothesis, the effects of chloroquine (CQ), quinine (Q) and mefloquine (MQ) on the osmotic stability of human red blood cells exposed to hypotonic solutions have been investigated. With CQ and Q stabilization was observed at pH 7.8 and destabilization at pH 5, indicating that destabilization is caused by the protonated forms of the drugs. With MQ the pH dependence was reversed, i.e. it destabilized at pH 7.8 and stabilized at pH 5, suggesting that destabilization is caused by the unprotonated drug. MQ caused cell lysis at the tenth millimolar range by a detergent effect. The possible destabilizing effect of drugs on the membranes of Plasmodium falciparum acidic organelles was investigated in metabolically-labelled parasites. We expected an increase in degradation of parasite proteins if drugs did indeed cause the release of acid hydrolases from destabilized organelles to the cytoplasm. No effect of drugs on parasite protein degradation could be observed, but protein synthesis was inhibited at therapeutic drug concentrations. These results imply that quinoline-containing antimalarials do not compromise the integrity of parasite acidic organelles, and that inhibition of protein synthesis results from a limited supply of essential amino acid(s) due to the demonstrable drug-mediated suppression of parasite digestion of host cell cytosol.

  14. Alkalinization of the food vacuole of malaria parasites by quinoline drugs and alkylamines is not correlated with their antimalarial activity.

    PubMed

    Ginsburg, H; Nissani, E; Krugliak, M

    1989-08-15

    Quinoline-containing antimalarial drugs accumulate inside the acid food vacuole of the parasite where they inhibit the digestion of ingested host cell cytosol, and consequently, parasite growth. In order to verify whether this inhibition is caused by drug-induced alkalinization of the food vacuole, we investigated the accumulation of acridine orange (AO) as a vacuolar pH probe in intact Plasmodium falciparum-infected human erythrocytes as affected by the drugs chloroquine (CQ), 7H-quinoleine (7HQ), quinine (Q) and mefloquine (MQ). It was established by various criteria that AO accumulates primarily in the acid compartment(s) of the parasite as a function of the pH difference between it and the extracellular medium. This pH gradient was dissipated by the drugs in the rank order MQ greater than CQ greater than Q greater than 7HQ. The kinetics of vacuolar alkalinization and the concentration ranges at which it was observed imply that the monoprotic drugs MQ and Q exerted their effect mostly by translocating protons across the vacuolar membrane, i.e. they could cross the membrane as a protonated species, while the diprotic drugs CQ and 7HQ raised the vacuolar pH mostly by proton trapping. Similarly, hydrophobic alkylamines raised the vacuolar pH by proton translocation, while their relatively more polar congeners and ammonia did so by proton titration. However, the alkalinizing effect of each drug was observed at a concentration which was 1-2 orders of magnitude larger than the IC50 of its antimalarial effect. These results mean that vacuolar alkalinization is not the primary effect of antiparasitic action of quinoline antimalarials.

  15. Rational Design of Antimalarial Drugs Using Molecular Modeling and Statistical Analysis.

    PubMed

    Santos, Cleydson Breno Rodrigues dos; Lobato, Cleison Carvalho; Braga, Francinaldo Sarges; Costa, Josivan da Silva; Favacho, Hugo Alexandre Silva; Carvalho, Jose Carlos Tavares; Macedo, Williams Jorge da Cruz; Brasil, Davi Do Socorro Barros; Silva, Carlos Henrique Tomich de Paula da; Silva Hage-Melim, Lorane Izabel da

    2015-01-01

    Artemisinin is an antimalarial compound isolated from Artemisia annua L. that is effective against Plasmodium falciparum. This paper proposes the development of new antimalarial derivatives of artemisinin from a SAR study and statistical analysis by multiple linear regression (MLR). The HF/6-31G** method was used to determine the molecular properties of artemisinin and 10 derivatives with antimalarial action. MEP maps and molecular docking were used to study the interface between ligand and receptor (heme). The Pearson correlation was used to choose the most important properties interrelated to the antimalarial activity: Hydration Energy (HE), Energy of the Complex (Ecplex), bond length (FeO1), and maximum index of R/Electronegativity of Sanderson (RTe+). After the Pearson correlation, 72 MLR models were built between antimalarial activity and molecular properties; the statistical quality of the models was evaluated by means of correlation coefficient (r), squared correlation coefficient (r(2)), explained variance (adjusted R(2)), standard error of estimate (SEE), and variance ratio (F), and only four models showed predictive ability. The selected models were used to predict the antimalarial activity of ten new artemisinin derivatives (test set) with unknown activity, and only eight of these compounds were predicted to be more potent than artemisinin, and were therefore subjected to theoretical studies of pharmacokinetic and toxicological properties. The test set showed satisfactory results for six new artemisinin compounds which is a promising factor for future synthesis and biological assays.

  16. Selection of Parasites with Diminished Drug Sensitivity by Amodiaquine-Containing Antimalarial Regimens in Uganda

    PubMed Central

    Nawaz, Fatima; Nsobya, Samuel L.; Kiggundu, Moses; Joloba, Moses; Rosenthal, Philip J.

    2009-01-01

    Background Amodiaquine (AQ) is paired with artesunate (AS) or sulfadoxine-pyrimethamine (SP) in recommended antimalarial regimens. It is unclear how readily AQ resistance will be selected with combination chemotherapy. Methods We collected 61 Plasmodium falciparum samples from a cohort of Ugandan children randomized to treatment with AQ/SP, AS/AQ, or artemether-lumefantrine (AL) for uncomplicated malaria. In vitro sensitivity to monodesethylamodiaquine (MDAQ) was measured with a histidine rich protein-2-based ELISA, and potential resistance-mediating polymorphisms pfmdr-1were evaluated. Results Parasites from subjects previously treated with AQ/SP or AS/AQ within 12 weeks were less sensitive to MDAQ (n=18; mean IC50 62.9 nM; range 12.7–158.3 nM) than parasites from those not treated within 12 weeks (n=43; mean IC50 37.5 nM; range 6.3–184.7 nM; p=0.0085) or only those in the treatment arm that did not contain AQ (n=20; mean IC50 28.8 nM; range 6.3–121.8 nM; p=0.0042). The proportion of strains with polymorphisms expected to mediate diminished response to AQ (pfmdr-1 86Y and 1246Y) increased after prior AQ therapy, although differences were not significant. Conclusions Prior therapy selected for diminished response to MDAQ, suggesting that AQ-containing regimens may rapidly lose efficacy in Africa. The mechanism of diminished MDAQ response is not fully explained by known mutations in pfmdr-1. PMID:19905933

  17. Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum

    PubMed Central

    Agarwal, Ankita; Paliwal, Sarvesh; Mishra, Ruchi; Sharma, Swapnil; Kumar Dwivedi, Anil; Tripathi, Renu; Gunjan, Sarika

    2015-01-01

    In recent years the DNA minor groove has attracted much attention for the development of anti-malarial agents. In view of this we have attempted to discover novel DNA minor groove binders through in-silico and in-vitro workflow. A rigorously validated pharmacophore model comprising of two positive ionizable (PI), one hydrophobic (HY) and one ring aromatic (RA) features was used to mine NCI chemical compound database. This led to retrieval of many hits which were screened on the basis of estimated activity, fit value and Lipinski’s violation. Finally two compounds NSC639017 and NSC371488 were evaluated for their in-vitro anti-malarial activities against Plasmodium falciparum 3D7 (CQ sensitive) and K1 (CQ resistant) strains by SYBR green-I based fluorescence assay. The results revealed that out of two, NSC639017 posses excellent anti-malarial activity particularly against chloroquine resistant strain and moreover NSC639017 also appeared to be safe (CC50 126.04 μg/ml) and selective during cytotoxicity evaluation. PMID:26346444

  18. Design, Synthesis and Testing of Novel Antimalarial

    DTIC Science & Technology

    2006-05-05

    malaria can be caused by four species of protozoan parasites: Plasmodium (P.) falciparum, P. vivax, P. ovale, and P. malariae. The most serious...conditions arise from infection by P. falciparum and may include heart, lung, kidney and brain problems or death. Resistance to many currently used anti...more active than quinine in mice, even against Plasmodium strains resistant to pyrimethamine and other antimalarial drugs. In monkeys, the results

  19. Initial evaluation of low-dose phenobarbital as an indicator of compliance with antimalarial drug treatment.

    PubMed Central

    Karbwang, J.; Fungladda, W.; Pickard, C. E.; Shires, S.; Hay, A.; Feely, M.

    1998-01-01

    Since poor compliance with antimalarial therapy is often suspected but difficult to prove, this study attempted to establish a model for predicting the plasma concentration of phenobarbital (given in low doses in conjunction with the drug) as an indicator of compliance. Phenobarbital was chosen because its value had been demonstrated as a marker of compliance in long-course therapies, any significant departure from steady-state concentrations (achieved with full compliance) indicating one or more missed doses. Therapy for uncomplicated malaria varies from 5 days with artesunate to 7 days with quinine + tetracycline. Volunteers with confirmed falciparum malaria were randomized into 5 groups and given malaria therapy as well as phenobarbital daily for 3-7 days. Plasma samples for determination of phenobarbital concentrations were taken just prior to the daily dose of phenobarbital. Although there was a clear and predictable individual pattern of blood concentrations following each dose of phenobarbital, inter-individual variation in blood levels was significant and reduced their predictive value beyond the second day's dose. The cause of the variations is not clear; it could be attributable to different sources of the drug, previous intake of phenobarbital by the patient, or differences in drug absorption and disposition in malaria patients. Results for the 5-day artesunate regimen suggest that phenobarbital may be useful as a marker of compliance if the patient stops medication after 3 days; clear differences were evident at the end of the course of treatment between plasma phenobarbital concentrations in individuals completing the 5-day course and those who stopped after 3 days. For the quinine-tetracycline regimen, results suggest that it may be possible to discriminate between subjects where there is a 3-day difference in treatment. Phenobarbital is a better discriminant when dosing is every 24 hours as with artesunate, rather than the 8-hourly regimen for

  20. A New Set of Chemical Starting Points with Plasmodium falciparum Transmission-Blocking Potential for Antimalarial Drug Discovery

    PubMed Central

    Almela, Maria Jesus; Lozano, Sonia; Lelièvre, Joël; Colmenarejo, Gonzalo; Coterón, José Miguel; Rodrigues, Janneth; Gonzalez, Carolina; Herreros, Esperanza

    2015-01-01

    The discovery of new antimalarials with transmission blocking activity remains a key issue in efforts to control malaria and eventually eradicate the disease. Recently, high-throughput screening (HTS) assays have been successfully applied to Plasmodium falciparum asexual stages to screen millions of compounds, with the identification of thousands of new active molecules, some of which are already in clinical phases. The same approach has now been applied to identify compounds that are active against P. falciparum gametocytes, the parasite stage responsible for transmission. This study reports screening results for the Tres Cantos Antimalarial Set (TCAMS), of approximately 13,533 molecules, against P. falciparum stage V gametocytes. Secondary confirmation and cytotoxicity assays led to the identification of 98 selective molecules with dual activity against gametocytes and asexual stages. Hit compounds were chemically clustered and analyzed for appropriate physicochemical properties. The TCAMS chemical space around the prioritized hits was also studied. A selection of hit compounds was assessed ex vivo in the standard membrane feeding assay and demonstrated complete block in transmission. As a result of this effort, new chemical structures not connected to previously described antimalarials have been identified. This new set of compounds may serve as starting points for future drug discovery programs as well as tool compounds for identifying new modes of action involved in malaria transmission. PMID:26317851

  1. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    PubMed

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  2. The antimalarial drug primaquine targets Fe-S cluster proteins and yeast respiratory growth.

    PubMed

    Lalève, Anaïs; Vallières, Cindy; Golinelli-Cohen, Marie-Pierre; Bouton, Cécile; Song, Zehua; Pawlik, Grzegorz; Tindall, Sarah M; Avery, Simon V; Clain, Jérôme; Meunier, Brigitte

    2016-04-01

    Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase severely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding mitochondrial enzymes involved in the response to oxidative stress. This indicated that ROS produced by respiratory activity had a key role in primaquine-induced growth defect. We observed that Δsod2 cells treated with primaquine displayed a severely decreased activity of aconitase that contains a Fe-S cluster notoriously sensitive to oxidative damage. We also showed that in vitro exposure to primaquine impaired the activity of purified aconitase and accelerated the turnover of the Fe-S cluster of the essential protein Rli1. It is suggested that ROS-labile Fe-S groups are the primary targets of primaquine. Aconitase activity is known to be essential at certain life-cycle stages of the malaria parasite. Thus primaquine-induced damage of its labile Fe-S cluster - and of other ROS-sensitive enzymes - could inhibit parasite development.

  3. The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth

    PubMed Central

    Lalève, Anaïs; Vallières, Cindy; Golinelli-Cohen, Marie-Pierre; Bouton, Cécile; Song, Zehua; Pawlik, Grzegorz; Tindall, Sarah M.; Avery, Simon V.; Clain, Jérôme; Meunier, Brigitte

    2015-01-01

    Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase severely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding mitochondrial enzymes involved in the response to oxidative stress. This indicated that ROS produced by respiratory activity had a key role in primaquine-induced growth defect. We observed that Δsod2 cells treated with primaquine displayed a severely decreased activity of aconitase that contains a Fe–S cluster notoriously sensitive to oxidative damage. We also showed that in vitro exposure to primaquine impaired the activity of purified aconitase and accelerated the turnover of the Fe–S cluster of the essential protein Rli1. It is suggested that ROS-labile Fe–S groups are the primary targets of primaquine. Aconitase activity is known to be essential at certain life-cycle stages of the malaria parasite. Thus primaquine-induced damage of its labile Fe–S cluster – and of other ROS-sensitive enzymes – could inhibit parasite development. PMID:26629948

  4. Blocking Plasmodium falciparum Malaria Transmission with Drugs: The Gametocytocidal and Sporontocidal Properties of Current and Prospective Antimalarials

    PubMed Central

    Kiszewski, Anthony E.

    2011-01-01

    Drugs that kill or inhibit the sexual stages of Plasmodium could potentially amplify or synergize the impact of other interventions by blocking transmission to mosquitoes. Primaquine and other 8-aminoquinolines have long offered such potential, but safety and other concerns have limited their use. Although transmission-blocking properties are not often a priority of drug discovery efforts, a number of interesting gametocytocidal and/or sporontocidal drug candidates have emerged in recent years. Some still bear significant technical and safety concerns, while others have passed clinical trials and are on the verge of entering the antimalarial armamentarium. Recent advances in our knowledge of gametocyte differentiation, gametogenesis and sporogony have also led to the identification of a large array of potential new targets for drugs that might interfere with malaria transmission. This review examines the properties of existing and prospective drugs, mechanisms of action, counter-indications and their potential role in regional malaria elimination efforts.

  5. Incorporating Stage-Specific Drug Action into Pharmacological Modeling of Antimalarial Drug Treatment

    PubMed Central

    2016-01-01

    Pharmacological modeling of antiparasitic treatment based on a drug's pharmacokinetic and pharmacodynamic properties plays an increasingly important role in identifying optimal drug dosing regimens and predicting their potential impact on control and elimination programs. Conventional modeling of treatment relies on methods that do not distinguish between parasites at different developmental stages. This is problematic for malaria parasites, as their sensitivity to drugs varies substantially during their 48-h developmental cycle. We investigated four drug types (short or long half-lives with or without stage-specific killing) to quantify the accuracy of the standard methodology. The treatment dynamics of three drug types were well characterized with standard modeling. The exception were short-half-life drugs with stage-specific killing (i.e., artemisinins) because, depending on time of treatment, parasites might be in highly drug-sensitive stages or in much less sensitive stages. We describe how to bring such drugs into pharmacological modeling by including additional variation into the drug's maximal killing rate. Finally, we show that artemisinin kill rates may have been substantially overestimated in previous modeling studies because (i) the parasite reduction ratio (PRR) (generally estimated to be 104) is based on observed changes in circulating parasite numbers, which generally overestimate the “true” PRR, which should include both circulating and sequestered parasites, and (ii) the third dose of artemisinin at 48 h targets exactly those stages initially hit at time zero, so it is incorrect to extrapolate the PRR measured over 48 h to predict the impact of doses at 48 h and later. PMID:26902760

  6. Assessment of the efficacy of antimalarial drugs recommended by the National Malaria Control Programme in Madagascar: Up-dated baseline data from randomized and multi-site clinical trials

    PubMed Central

    Ménard, Didier; Ratsimbasoa, Arsène; Randrianarivelojosia, Milijaona; Rabarijaona, Léon-Paul; Raharimalala, Lucie; Domarle, Olivier; Randrianasolo, Laurence; Randriamanantena, Arthur; Jahevitra, Martial; Andriantsoanirina, Valérie; Rason, Marie-Ange; Raherinjafy, Rogelin; Rakotomalala, Emma; Tuseo, Luciano; Raveloson, Andrianirina

    2008-01-01

    Background In order to improve the monitoring of the antimalarial drug resistance in Madagascar, a new national network based on eight sentinel sites was set up. In 2006/2007, a multi-site randomized clinical trial was designed to assess the therapeutic efficacy of chloroquine (CQ), sulphadoxine-pyrimethamine (SP), amodiaquine (AQ) and artesunate plus amodiaquine combination (ASAQ), the antimalarial therapies recommended by the National Malaria Control Programme (NMCP). Methods Children between six months and 15 years of age, with uncomplicated falciparum malaria, were enrolled. Primary endpoints were the day-14 and day-28 risks of parasitological failure, either unadjusted or adjusted by genotyping. Risks of clinical and parasitological treatment failure after adjustment by genotyping were estimated using Kaplan-Meier survival analysis. Secondary outcomes included fever clearance, parasite clearance, change in haemoglobin levels between Day 0 and the last day of follow-up, and the incidence of adverse events. Results A total of 1,347 of 1,434 patients (93.9%) completed treatment and follow-up to day 28. All treatment regimens, except for the chloroquine (CQ) treatment group, resulted in clinical cure rates above 97.6% by day-14 and 96.7% by day-28 (adjusted by genotyping). Parasite and fever clearance was more rapid with artesunate plus amodiaquine, but the extent of haematological recovery on day-28 did not differ significantly between the four groups. No severe side-effects were observed during the follow-up period. Conclusion These findings (i) constitute an up-dated baseline data on the efficacy of antimalarial drugs recommended by the NMCP, (ii) show that antimalarial drug resistance remains low in Madagascar, except for CQ, compared to the bordering countries in the Indian Ocean region such as the Comoros Archipelago and (iii) support the current policy of ASAQ as the first-line treatment in uncomplicated falciparum malaria. PMID:18394169

  7. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria.

    PubMed

    Achan, Jane; Talisuna, Ambrose O; Erhart, Annette; Yeka, Adoke; Tibenderana, James K; Baliraine, Frederick N; Rosenthal, Philip J; D'Alessandro, Umberto

    2011-05-24

    Quinine remains an important anti-malarial drug almost 400 years after its effectiveness was first documented. However, its continued use is challenged by its poor tolerability, poor compliance with complex dosing regimens, and the availability of more efficacious anti-malarial drugs. This article reviews the historical role of quinine, considers its current usage and provides insight into its appropriate future use in the treatment of malaria. In light of recent research findings intravenous artesunate should be the first-line drug for severe malaria, with quinine as an alternative. The role of rectal quinine as pre-referral treatment for severe malaria has not been fully explored, but it remains a promising intervention. In pregnancy, quinine continues to play a critical role in the management of malaria, especially in the first trimester, and it will remain a mainstay of treatment until safer alternatives become available. For uncomplicated malaria, artemisinin-based combination therapy (ACT) offers a better option than quinine though the difficulty of maintaining a steady supply of ACT in resource-limited settings renders the rapid withdrawal of quinine for uncomplicated malaria cases risky. The best approach would be to identify solutions to ACT stock-outs, maintain quinine in case of ACT stock-outs, and evaluate strategies for improving quinine treatment outcomes by combining it with antibiotics. In HIV and TB infected populations, concerns about potential interactions between quinine and antiretroviral and anti-tuberculosis drugs exist, and these will need further research and pharmacovigilance.

  8. Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

    PubMed Central

    2011-01-01

    generators for capnophilic bacteria Genbag CO2® is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance. PMID:21235757

  9. Origin of robustness in generating drug-resistant malaria parasites.

    PubMed

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W; Kamchonwongpaisan, Sumalee; Fidock, David A; Kirkman, Laura A; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-07-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs.

  10. Rational deployment of antimalarial drugs in Africa: should first-line combination drugs be reserved for paediatric malaria cases?

    PubMed

    Sutherland, Colin J; Babiker, Hamza; Mackinnon, Margaret J; Ranford-Cartwright, Lisa; El Sayed, Badria Babiker

    2011-10-01

    Artemisinin-based combination therapy is exerting novel selective pressure upon populations of Plasmodium falciparum across Africa. Levels of resistance to non-artemisinin partner drugs differ among parasite populations, and so the artemisinins are not uniformly protected from developing resistance, already present in South East Asia. Here, we consider strategies for prolonging the period of high level efficacy of combination therapy for two particular endemicities common in Africa. Under high intensity transmission, two alternating first-line combinations, ideally with antagonistic selective effects on the parasite genome, are advocated for paediatric malaria cases. This leaves second-line and other therapies for adult cases, and for intermittent preventive therapy. The drug portfolio would be selected to protect the 'premier' combination regimen from selection for resistance, while maximising impact on severe disease and mortality in children. In endemic areas subject to low, seasonal transmission of Plasmodium falciparum, such a strategy may deliver little benefit, as children represent a minority of cases. Nevertheless, the deployment of other drug-based interventions in low transmission and highly seasonal areas, such as mass drug administration aimed to interrupt malaria transmission, or intermittent preventive therapy, does provide an opportunity to diversify drug pressure. We thus propose an integrated approach to drug deployment, which minimises direct selective pressure on parasite populations from any one drug component. This approach is suitable for qualitatively and quantitatively different burdens of malaria, and should be supported by a programme of routine surveillance for emerging resistance.

  11. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    NASA Astrophysics Data System (ADS)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  12. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    PubMed

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  13. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery.

    PubMed

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-21

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL(-1). Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (±)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.

  14. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    PubMed

    Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A

    2014-01-01

    With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  15. Substandard Antimalarials Available in Afghanistan: A Case for Assessing the Quality of Drugs in Resource Poor Settings

    PubMed Central

    Lalani, Mirza; Kaur, Harparkash; Mohammed, Nader; Mailk, Naiela; van Wyk, Albert; Jan, Sakhi; Kakar, Rishtya Meena; Mojadidi, Mohammed Khalid; Leslie, Toby

    2015-01-01

    Good-quality antimalarials are crucial for the effective treatment and control of malaria. A total of 7,740 individual and packaged tablets, ampoules, and syrups were obtained from 60 randomly selected public (N = 35) and private outlets (N = 25) in Afghanistan. Of these, 134 samples were screened using the Global Pharma Health Fund (GPHF) MiniLab® in Kabul with 33/126 (26%) samples failing the MiniLab® disintegration test. The quality of a subsample (N = 37) of cholorquine, quinine, and sulfadoxine/pyrimethamine tablets was assessed by in vitro dissolution testing following U.S. Pharmacopeia (USP) monographs at a bioanalytical laboratory in London, United Kingdom. Overall, 12/32 (32%) samples of sulfadoxine/pyrimethamine and quinine were found not to comply with the USP tolerance limits. Substandard antimalarials were available in Afghanistan demonstrating that continuous monitoring of drug quality is warranted. However, in Afghanistan as in many low-income countries, capacity to determine and monitor drug quality using methods such as dissolution testing needs to be established to empower national authorities to take appropriate action in setting up legislation and regulation. PMID:25897070

  16. Substandard antimalarials available in Afghanistan: a case for assessing the quality of drugs in resource poor settings.

    PubMed

    Lalani, Mirza; Kaur, Harparkash; Mohammed, Nader; Mailk, Naiela; van Wyk, Albert; Jan, Sakhi; Kakar, Rishtya Meena; Mojadidi, Mohammed Khalid; Leslie, Toby

    2015-06-01

    Good-quality antimalarials are crucial for the effective treatment and control of malaria. A total of 7,740 individual and packaged tablets, ampoules, and syrups were obtained from 60 randomly selected public (N = 35) and private outlets (N = 25) in Afghanistan. Of these, 134 samples were screened using the Global Pharma Health Fund (GPHF) MiniLab® in Kabul with 33/126 (26%) samples failing the MiniLab® disintegration test. The quality of a subsample (N = 37) of cholorquine, quinine, and sulfadoxine/pyrimethamine tablets was assessed by in vitro dissolution testing following U.S. Pharmacopeia (USP) monographs at a bioanalytical laboratory in London, United Kingdom. Overall, 12/32 (32%) samples of sulfadoxine/pyrimethamine and quinine were found not to comply with the USP tolerance limits. Substandard antimalarials were available in Afghanistan demonstrating that continuous monitoring of drug quality is warranted. However, in Afghanistan as in many low-income countries, capacity to determine and monitor drug quality using methods such as dissolution testing needs to be established to empower national authorities to take appropriate action in setting up legislation and regulation.

  17. Drug-resistant tuberculous meningitis.

    PubMed

    Garg, Ravindra K; Jain, Amita; Malhotra, Hardeep S; Agrawal, Avinash; Garg, Rajiv

    2013-06-01

    Drug-resistant tuberculosis, including drug-resistant tuberculous meningitis, is an emerging health problem in many countries. An association with Beijing strains and drug resistance-related mutations, such as mutations in katG and rpoB genes, has been found. The pathology, clinical features and neuroimaging characteristics of drug-resistant tuberculous meningitis are similar to drug-responsive tuberculous meningitis. Detection of mycobacteria in cerebrospinal fluid (CSF) by conventional methods (smear examination or culture) is often difficult. Nucleic acid amplification assays are better methods owing to their rapidity and high sensitivity. The Xpert MTB/RIF assay (Cepheid, CA, USA) is a fully-automated test that has also been found to be effective for CSF samples. Treatment of multidrug-resistant tuberculous meningitis depends on the drug susceptibility pattern of the isolate and/or the previous treatment history of the patient. Second-line drugs with good penetration of the CSF should be preferred. Isoniazid monoresistant disease requires addition of another drug with better CSF penetration. Drug-resistant tuberculous meningitis is associated with a high mortality. HIV infected patients with drug-resistant tuberculous meningitis have severe clinical manifestations with exceptionally high mortality. Prevention of tuberculosis is the key to reduce drug-resistant tuberculous meningitis.

  18. The interplay between drug resistance and fitness in malaria parasites.

    PubMed

    Rosenthal, Philip J

    2013-09-01

    Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.

  19. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold

    PubMed Central

    Rudrapal, Mithun; Chetia, Dipak

    2016-01-01

    Malaria disease continues to be a major health problem worldwide due to the emergence of multidrug-resistant strains of Plasmodium falciparum. In recent days, artemisinin (ART)-based drugs and combination therapies remain the drugs of choice for resistant P. falciparum malaria. However, resistance to ART-based drugs has begun to appear in some parts of the world. Endoperoxide compounds (natural/semisynthetic/synthetic) representing a huge number of antimalarial agents possess a wide structural diversity with a desired antimalarial effectiveness against resistant P. falciparum malaria. The 1,2,4-trioxane ring system lacking the lactone ring that constitutes the most important endoperoxide structural scaffold is believed to be the key pharmacophoric moiety and is primarily responsible for the pharmacodynamic potential of endoperoxide-based antimalarials. Due to this reason, research into endoperoxide, particularly 1,2,4-trioxane-, 1,2,4-trioxolane- and 1,2,4,5-teraoxane-based scaffolds, has gained significant interest in recent years for developing antimalarial drugs against resistant malaria. In this paper, a comprehensive effort has been made to review the development of endoperoxide antimalarials from traditional antimalarial leads (natural/semisynthetic) and structural diversity of endoperoxide molecules derived from 1,2,4-trioxane-, 1,2,4-trioxolane- and 1,2,4,5-teraoxane-based structural scaffolds, including their chimeric (hybrid) molecules, which are newer and potent antimalarial agents. PMID:27843298

  20. Drugs and drug resistance in African trypanosomiasis.

    PubMed

    Delespaux, Vincent; de Koning, Harry P

    2007-01-01

    Despite the many decades of use of most of the current trypanocides, we know little of their mode of action. This may in part be because most of these will act on multiple targets once inside the cell, and they derive their selective action on the parasite from selective accumulation by the pathogen. Loss of this capacity for drug uptake by the trypanosome would thus be a major cause for drug resistance. We here discuss the use of current drugs against human and veterinary African trypanosomiasis, the prevalence, causes and mechanisms of drug resistance and new developments in trypanosomiasis therapy such as the introduction of nifurtimox and DB289.

  1. Assessment of global reporting of adverse drug reactions for anti-malarials, including artemisinin-based combination therapy, to the WHO Programme for International Drug Monitoring

    PubMed Central

    2011-01-01

    Background In spite of enhanced control efforts, malaria remains a major public health problem causing close to a million deaths annually. With support from several donors, large amounts of artemisinin-based combination therapy (ACT) are being deployed in endemic countries raising safety concerns as little is known about the use of ACT in several of the settings where they are deployed. This project was undertaken to profile the provenance of the pharmacovigilance reporting of all anti-malarials, including ACT to the WHO adverse drug reaction (ADR) database (Vigibase™) over the past 40 years. Methods The WHO Programme for International Drug Monitoring, the Uppsala Monitoring Centre (UMC) provided anonymized extracts of Vigibase™ covering the period 1968-2008. All countries in the programme were clustered according to their malaria control phase and income status. The number of individual case safety reports (ICSRs) of anti-malarials was analyzed according to those clusters. Results From 1968 to 2008, 21,312 ICSRs suspecting anti-malarials were received from 64 countries. Low-income countries, that are also malaria-endemic (categorized as priority 1 countries) submitted only 1.2% of the ICSRs. Only 60 out of 21,312 ICSRs were related to ACT, 51 of which were coming from four sub-Saharan African countries. Although very few ICSRs involved artemisinin-based compounds, many of the adverse events reported were potentially serious. Conclusions This paper illustrates the low reporting of ADRs to anti-malarials in general and ACT in particular. Most reports were submitted by non-endemic and/or high-income countries. Given the current mix of large donor funding, the insufficient information on safety of these drugs, increasing availability of ACT and artemisinin-based monotherapies in public and private sector channels, associated potential for inappropriate use and finally a pipeline of more than 10 new novel anti-malarials in various stages of development, the

  2. Mechanisms of drug resistance: quinolone resistance

    PubMed Central

    Hooper, David C.; Jacoby, George A.

    2015-01-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  3. Mechanisms of drug resistance: quinolone resistance.

    PubMed

    Hooper, David C; Jacoby, George A

    2015-09-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.

  4. Mind the gaps - the epidemiology of poor-quality anti-malarials in the malarious world - analysis of the WorldWide Antimalarial Resistance Network database

    PubMed Central

    2014-01-01

    Background Poor quality medicines threaten the lives of millions of patients and are alarmingly common in many parts of the world. Nevertheless, the global extent of the problem remains unknown. Accurate estimates of the epidemiology of poor quality medicines are sparse and are influenced by sampling methodology and diverse chemical analysis techniques. In order to understand the existing data, the Antimalarial Quality Scientific Group at WWARN built a comprehensive, open-access, global database and linked Antimalarial Quality Surveyor, an online visualization tool. Analysis of the database is described here, the limitations of the studies and data reported, and their public health implications discussed. Methods The database collates customized summaries of 251 published anti-malarial quality reports in English, French and Spanish by time and location since 1946. It also includes information on assays to determine quality, sampling and medicine regulation. Results No publicly available reports for 60.6% (63) of the 104 malaria-endemic countries were found. Out of 9,348 anti-malarials sampled, 30.1% (2,813) failed chemical/packaging quality tests with 39.3% classified as falsified, 2.3% as substandard and 58.3% as poor quality without evidence available to categorize them as either substandard or falsified. Only 32.3% of the reports explicitly described their definitions of medicine quality and just 9.1% (855) of the samples collected in 4.6% (six) surveys were conducted using random sampling techniques. Packaging analysis was only described in 21.5% of publications and up to twenty wrong active ingredients were found in falsified anti-malarials. Conclusions There are severe neglected problems with anti-malarial quality but there are important caveats to accurately estimate the prevalence and distribution of poor quality anti-malarials. The lack of reports in many malaria-endemic areas, inadequate sampling techniques and inadequate chemical analytical methods and

  5. Erythrophagocytosis Enhances Heme-Dependent Cytotoxicity of Antimalarial Drugs in Canine Histiocytic Sarcoma Cell Line DH82

    PubMed Central

    CHIKAZAWA, Seishiro; KITAHARA, Yasunori; ANDO, Erika; HORI, Yasutomo; HOSHI, Fumio; KANAI, Kazutaka; ITO, Naoyuki; HIGUCHI, Seiichi

    2013-01-01

    ABSTRACT Antimalarial drugs, dihydroartemisinin (DHA) and artesunate (ATS), exhibit iron-dependent cytotoxicity in tumor cells. We hypothesized that erythrophagocytic uptake of heme-iron enhances the cytotoxicity of DHA and ATS. Erythrophagocytic (EP) treatment of the canine histiocytic sarcoma cell line DH82 markedly increased the cytotoxicity of DHA and ATS compared to controls. Succinyl acetone, an inhibitor of intracellular heme synthesis, decreased the cytotoxicity of DHA and ATS in normal cells, but this change was not observed in EP cells. These results suggest that exogenous heme derived from erythrocytes can enhance the cytotoxicity of DHA and ATS. Furthermore, our study suggests that heme could be a novel component of tumor treatment in veterinary medicine. PMID:24065080

  6. Establishment of an in vitro screening model for neurodegeneration induced by antimalarial drugs of the artemisinin-type..

    PubMed

    Schmuck, G; Haynes, R K

    2000-01-01

    The establishment of an in vitro screening model for neurodegeneration inducing antimalarial drugs was conducted in stepwise fashion. Firstly, the in vivo selective neurotoxic potency of artemisinin was tested in neuronal cells in vitro in relation to the cytotoxic potency in other organ cell cultures such as liver and kidney or versus glial cells. Secondly, a comparison between different parts of the brain (cortex vs. brain stem) was performed and in the last step, a fast and sensitive screening endpoint was identified. In summary, non-neuronal cell lines such as hepatocytes (HEP-G2), liver epithelial cells (IAR), proximal tubular cells (LLC-PK(1)) and glial cells from the rat (C6) and human (GO-G-IJKT) displayed only moderate sensitivity to artemisinin and its derivatives. The same was found in undifferentiated neuronal cell lines from the mouse (N-18) and from human (Kelly), whereas during differentiation, these cells became much more sensitive. Primary astrocytes from the rat also were not specifically involved. In the comparison of primary neuronal cell cultures from the cortex and brain stem of the rat, the brain stem was found to be more sensitive than the cortex. The neurotoxic potential was determined by cytoskeleton elements (neurofilaments), which were degradated in vitro by diverse neurodegenerative compounds. In comparison of dog and rat primary brain stem cultures, the dog cells were found to be more sensitive to artemisinin than the rat cells. In addition to the primary brain stem cell cultures it was shown that the sprouting assay, which determines persistent delayed neurotoxic effects, is also useful for screening antimalarial drugs. To other compounds, artemether and artesunate, showed that use of the sprouting assay followed by primary brain stem cultures of the rat will be a good strategy to select candidate compounds.

  7. Population genetics and drug resistance markers: an essential for malaria surveillance in Pakistan.

    PubMed

    Raza, Afsheen; Beg, Mohammad Asim

    2013-12-01

    Plasmodium (P.) vivax is the prevalent malarial species accounting for 70% of malaria cases in Pakistan. However, baseline epidemiological data on P. vivax population structure and drug resistance are lacking from Pakistan. For population structure studies, molecular genetic markers, circumsporozoite protein (csp) and merozoite surface protein-1 (msp-1) are considered useful as these play an important role in P. vivax survival under immune and environmental pressure. Furthermore, these genes have also been identified as suitable candidates for vaccine development. While efforts for effective vaccine are underway, anti-malarial agents remain the mainstay for control. Evidence of resistance against commonly used anti-malarial agents, particularly Sulphadoxine-Pyrimethamine (SP) is threatening to make this form of control defunct. Therefore, studies on drug resistance are necessary so that anti-malarial treatment strategies can be structured and implemented accordingly by the Malaria Control Program, Pakistan. This review aims to provide information on genetic markers of P. vivax population structure and drug resistance and comment on their usefulness in molecular surveillance and control.

  8. Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity.

    PubMed

    Ichino, C; Soonthornchareonnon, N; Chuakul, W; Kiyohara, H; Ishiyama, A; Sekiguchi, H; Namatame, M; Otoguro, K; Omura, S; Yamada, H

    2006-04-01

    To discover antimalarial substances from plants cultivated in Thailand 80%-EtOH extracts from selected plants were screened for in vitro antimalarial activity against the drug resistant K1 strain of Plasmodium falciparum. In total, 86 Thai medicinal plant samples representing 48 species from 35 genera in 16 families were screened and two species (Polyalthia viridis and Goniothalamus marcanii) were found to show notable antimalarial activity (IC50: 10.0 and 6.3 microg/mL). Marcanine A and 16-hydroxycleroda-3,13(14)Z-dien-15,16-olide were identified as the respective major active constituents in P. viridis and G. marcanii, respectively.

  9. Optimization of 2-Anilino 4-Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity.

    PubMed

    Gilson, Paul R; Tan, Cyrus; Jarman, Kate E; Lowes, Kym N; Curtis, Joan M; Nguyen, William; Di Rago, Adrian E; Bullen, Hayley E; Prinz, Boris; Duffy, Sandra; Baell, Jonathan B; Hutton, Craig A; Jousset Subroux, Helene; Crabb, Brendan S; Avery, Vicky M; Cowman, Alan F; Sleebs, Brad E

    2017-02-09

    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against P. falciparum parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved in vitro metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of P. falciparum and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden.

  10. Multiple drug resistance genes in malaria -- from epistasis to epidemiology.

    PubMed

    Duraisingh, Manoj T; Refour, Philippe

    2005-08-01

    A decline in our ability to successfully treat patients with malaria infections of the parasitic protozoan Plasmodium falciparum with cheap quinoline drugs has led to a huge escalation in morbidity and mortality in recent years. Many approaches have been taken, including classical genetics, reverse genetics and molecular epidemiology, to identify the molecular determinants underlying this resistance. The contribution of the P. falciparum multidrug resistance gene, pfmdr1, to antimalarial resistance has been a source of controversy for over a decade since it was first identified. In the current issue of Molecular Microbiology, Sidhu and colleagues use powerful reverse genetics to demonstrate the importance of commonly occurring alleles of pfmdr1 in conferring resistance to the second-line drugs quinine and sensitivity to the new alternatives mefloquine and artemisinin. They also elegantly highlight the importance of genetic background and epistasis between pfmdr1 and other potential modulators of drug resistance. Such molecular knowledge will facilitate surveillance/monitoring and aid the development of strategies for the reversal of resistance.

  11. Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles

    PubMed Central

    2016-01-01

    The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought. One chemical subseries was found to exhibit oral activity but contained a labile ester that could not be replaced without loss of activity, and the original hit exhibited remarkable sensitivity to minor structural change. A second subseries displayed high potency, including activity within gametocyte and liver stage assays, but at the cost of low solubility. As an open source research project, unexplored avenues are clearly identified and may be explored further by the community; new findings may be cumulatively added to the present work. PMID:27800551

  12. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.

  13. In Vitro Antimalarial Activity of Novel Semisynthetic Nocathiacin I Antibiotics

    PubMed Central

    Sullivan, Margery; McCutchan, Thomas F.

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. PMID:25779576

  14. Antimalarial hybrid molecules: a close reality or a distant dream?

    PubMed

    Agarwal, Drishti; Gupta, Rinkoo D; Awasthi, Satish K

    2017-03-13

    Emergence of drug resistant Plasmodium falciparum strains has led to a situation of haste in the scientific and pharmaceutical communities. Hence, all their efforts are redirected towards finding alternate chemotherapeutic agents that are capable of combating multi-drug resistant parasite strains. In the above light, scientists have come up with the concept of hybridisation of two or more active pharmacophores into a single chemical entity, resulting in 'antimalarial hybrids.' The approach has been applied widely for lead generation against deadly diseases such as cancer and AIDS, with proven potential to be used as novel drugs, but is comparatively new in the sphere of antimalarial drug discovery. A sudden surge has been evidenced in the number of studies on design and synthesis of hybrids for treating malaria, and may be regarded as proof of their potential advantages over Artemisinin based Combination Therapy (ACT). However, it is evident from recent studies that most of the potential advantages of antimalarial hybrids, such as lower toxicity, better pharmacokinetics and easier formulation, have yet to be realised. A number of questions left unaddressed at present need to be answered before this approach can progress in to the late stages of clinical development and prove their worth in the clinic. To the best of our knowledge, this compilation is the first attempt to shed light over the shortcomings that are surfacing as more and more studies on molecular hybridization of the active pharmacophores of known antimalarials are being published.

  15. Artemisinin Antimalarials: Preserving the “Magic Bullet”

    PubMed Central

    Maude, Richard J; Woodrow, Charles J; White, Lisa J

    2010-01-01

    The artemisinins are the most effective antimalarial drugs known. They possess a remarkably wide therapeutic index. These agents have been used in traditional Chinese herbal medicine for more than 2,000 years but were not subjected to scientific scrutiny until the 1970s. The first formal clinical trials of the artemisinins, and the development of methods for their industrial scale production, followed rapidly. A decade later, Chinese scientists shared their findings with the rest of the world; since then, a significant body of international trial evidence has confirmed these drugs to be far superior to any available alternatives. In particular, they have the ability to rapidly kill a broad range of asexual parasite stages at safe concentrations that are consistently achievable via standard dosing regimens. As their half-life is very short, there was also thought to be a low risk of resistance. These discoveries coincided with the appearance and spread of resistance to all the other major classes of antimalarials. As a result, the artemisinins now form an essential element of recommended first-line antimalarial treatment regimens worldwide. To minimize the risk of artemisinin resistance, they are recommended to be used to treat uncomplicated malaria in combination with other antimalarials as artemisinin combination therapies (ACTs). Their rollout has resulted in documented reductions in malaria prevalence in a number of African and Asian countries. Unfortunately, there are already worrisome early signs of artemisinin resistance appearing in western Cambodia. If this resistance were to spread, it would be disastrous for malaria control efforts worldwide. The enormous challenge for the international community is how to avert this catastrophe and preserve the effectiveness of this antimalarial “magic bullet”. Drug Dev Res 71: 12–19, 2010. © 2009 Wiley-Liss, Inc. PMID:21399699

  16. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    PubMed

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  17. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-06-24

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.

  18. Drug resistance in eukaryotic microorganisms

    PubMed Central

    Fairlamb, Alan H.; Gow, Neil A. R.; Matthews, Keith R.; Waters, Andrew P.

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  19. The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with mefloquine/artesunate.

    PubMed

    Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2014-03-01

    Multidrug resistance Plasmodium falciparum is the major health problem in Thailand. Discovery and development of new antimalarial drugs with novel modes of action is urgently required. The aim of the present study was to investigate the antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with the standard antimalarial drugs mefloquine and artesunate in chloroquine sensitive (3D7) and chloroquine resistant (K1) P. falciparum clones in vitro. Median (range) IC50 (drug concentration which produces 50% parasite growth inhibition) values of the 9-hydroxycalabaxanthone, α-mangostin, artesunate and mefloquine for 3D7 vs K1 clones were 1.5 (0.9-2.1) vs 1.2 (1.1-1.6) μM, 17.9 (15.7.0-20.0) vs 9.7 (6.0-14.0) μM, 1.0 (0.4-3.0) vs 1.7 (1.0-2.5) nM, and 13.3 (11.1-13.3) vs 7.1 (6.7-12.2) nM, respectively. Analysis of isobologram and combination index (CI) of 9-hydroxycalabaxanthone with artesunate or mefloquine showed synergistic and indifference antimalarial interaction, respectively. α-mangostin-artesunate combination exhibited a slight antagonistic effect of antimalarial interaction, whereas α-mangostin and mefloquine combination showed indifference interaction in both clones. The combination of 9-hydroxycalabaxanthone with α-mangostin showed the synergistic antimalarial interaction in both clones.

  20. A single LC-tandem mass spectrometry method for the simultaneous determination of 14 antimalarial drugs and their metabolites in human plasma.

    PubMed

    Hodel, E M; Zanolari, B; Mercier, T; Biollaz, J; Keiser, J; Olliaro, P; Genton, B; Decosterd, L A

    2009-04-01

    Among the various determinants of treatment response, the achievement of sufficient blood levels is essential for curing malaria. For helping us at improving our current understanding of antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 200mul of plasma for the simultaneous determination of 14 antimalarial drugs and their metabolites which are the components of the current first-line combination treatments for malaria (artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, evaporation and reconstitution in methanol/ammonium formate 20mM (pH 4.0) 1:1. Reverse-phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 20mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 21min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effect variability, overall process efficiency, standard addition experiments as well as antimalarials short- and long-term stability in plasma. The reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested both in vitro and on malaria patients samples. With this method, signal intensity of artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day CV%: 3.1-12.6%) and sensitive

  1. Rational quality assessment procedure for less-investigated herbal medicines: Case of a Congolese antimalarial drug with an analytical report.

    PubMed

    Tshitenge, Dieudonné Tshitenge; Ioset, Karine Ndjoko; Lami, José Nzunzu; Ndelo-di-Phanzu, Josaphat; Mufusama, Jean-Pierre Koy Sita; Bringmann, Gerhard

    2016-04-01

    Herbal medicines are the most globally used type of medical drugs. Their high cultural acceptability is due to the experienced safety and efficiency over centuries of use. Many of them are still phytochemically less-investigated, and are used without standardization or quality control. Choosing SIROP KILMA, an authorized Congolese antimalarial phytomedicine, as a model case, our study describes an interdisciplinary approach for a rational quality assessment of herbal drugs in general. It combines an authentication step of the herbal remedy prior to any fingerprinting, the isolation of the major constituents, the development and validation of an HPLC-DAD analytical method with internal markers, and the application of the method to several batches of the herbal medicine (here KILMA) thus permitting the establishment of a quantitative fingerprint. From the constitutive plants of KILMA, acteoside, isoacteoside, stachannin A, and pectolinarigenin-7-O-glucoside were isolated, and acteoside was used as the prime marker for the validation of an analytical method. This study contributes to the efforts of the WHO for the establishment of standards enabling the analytical evaluation of herbal materials. Moreover, the paper describes the first phytochemical and analytical report on a marketed Congolese phytomedicine.

  2. The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction.

    PubMed

    López-Izquierdo, Angélica; Ponce-Balbuena, Daniela; Moreno-Galindo, Eloy G; Aréchiga-Figueroa, Iván A; Rodríguez-Martínez, Martín; Ferrer, Tania; Rodríguez-Menchaca, Aldo A; Sánchez-Chapula, José A

    2011-04-01

    The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.

  3. Effects of the antimalarial drugs ferroquine and artesunate on Plasmodium yoelii yoelii gametocytegenesis and vectorial transmission.

    PubMed

    Mustfa, Kamla; Landau, Irène; Chabaud, Alain-Gabriel; Chavatte, Jean-Marc; Chandenier, Jacques; Duong, Thanh Hai; Richard-Lenoble, Dominique

    2011-01-01

    Chemistry still has a role in the management of malaria, alongside the mosquito netting soaked in insecticide that is used increasingly, as we continue to await the long anticipated vaccine. During its cycle, the hematozoon parasite develops through three major periods. The first, malarial infection, corresponds to the intrahepatic development of infective forms from the mosquito vector; this period is not sensitive to treatment and is often asymptomatic. The period of erythrocytic schizogony is the most urgent, and treatment activity is primordial. Finally, the phase of sexual reproduction, when gametocytes develop within the erythrocytes ensures the perpetuation of the species when these reach the blood-feeding female anopheles mosquitoes. The aim of our work was to study the effect on gametocytes of drugs known to be effective on the asexual blood forms of the protozoan and thus the potential repercussions on malaria transmission. This experimental study was conducted with an animal model whose parasite cycle and modes of transmission are close to those of human malaria: Plasmodium yoelii, maintained on Swiss mice, with the Anopheles stephensi vector (maintained in an animal facility at the National Museum of Natural History in Paris). Two drugs were tested: ferroquine (a chloroquine derivative with a ferrocene molecule at the lateral carbon chain that restores its efficacy against chloroquine-resistant strains) and artesunate (a derivative of artemisinin, from ginghao, a Chinese plant also known as artemisia annua, or sweet wormwood), a treatment of choice in the combined therapies recommended by WHO. The efficacy of these drugs, prescribed at doses subcurative for the asexual forms, were tested against gametocyte production, quantitatively by counting them in the blood and qualitatively by counting the quantity of oocysts developed on the mosquito's midgut, which are indicators of gametocyte activity. The mice that were parasite-infected and then treated

  4. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review

    PubMed Central

    Parhizgar, Arezoo Rafiee; Tahghighi, Azar

    2017-01-01

    Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold. PMID:28360437

  5. Prescribing Pattern of Anti-malarial Drugs with Particular Reference to the use of Artesunate in Complicated Plasmodium Vivax Cases

    PubMed Central

    Singh, Ashutosh Kumar; Khan, Mohd Sajid

    2014-01-01

    Background: In developing countries, Malaria has been found to be one of the most common cause of fever and morbidity, particularly among infants and young children. Therefore, its drug utilization studies should be carried out to know the rationality of treatment. Aim: To evaluate the use of antimalarial agents in children with a diagnosis of Malaria and visited to OPD & IPD Paediatric department of a tertiary care teaching hospital. Materials and Methods: This was a prospective six months study based on a Medication Utilization Form, which has been designed in consultation with the paediatrician. One hundred eighty three children <12 y of age were selected on the basis of inclusion and exclusion criteria. Results: Out of 183 patients, 110 were infected with Plasmodium falciparum (60.10%) and 73 with Plasmodium vivax (39.89%). Most of the patients were male, 56.83% and 43.16% were female patients. Most of the complicated cases were found from Plasmodium falciparum (n = 110) than Plasmodium vivax (n=15). In prescriptions with monotherapy, Artesunate (n=101) was found to be the most commonly prescribed drug and in prescriptions containing more than one drug, Artesunate – lumefantrine (n=125) combinations were frequently used. Most of the drugs were prescribed by oral route (n=285), than the parenteral route (n=140). The average number of drugs per encounter was 2.32 and only 4.50% drugs were prescribed by generic name. Average drug cost per prescription in complicated cases was found to be higher (185.5 INR) than uncomplicated cases (115 INR). Conclusion: Artemisinin were used as first line drugs irrespective of the causative agent for malaria, which is not recommended, however has been found to be effective in complicated cases of Plasmodium vivax also. The cost of the prescription was higher. Interventions to rectify over prescription of injectables necessary to further improve rational drug use in our facility. Also, there should be an awareness program

  6. Antimalarials for children: indications, toxicities, and guidelines.

    PubMed

    Ziering, C L; Rabinowitz, L G; Esterly, N B

    1993-05-01

    The use of antimalarial drugs in children has been discussed extensively in the rheumatology literature, but there is scant information in the dermatology literature. We discuss indications, dosing, administration, and side effects of antimalarial drugs in children as well as skin diseases in children who have been treated with chloroquine or hydroxychloroquine.

  7. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2014-12-01

    Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.

  8. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite’s Chloroquine Resistance Transporter

    PubMed Central

    Baker, Eileen S.; Webster, Michael W.; Lehane, Adele M.; Shafik, Sarah H.; Martin, Rowena E.

    2016-01-01

    Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite

  9. Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria.

    PubMed

    McKie, J H; Douglas, K T; Chan, C; Roser, S A; Yates, R; Read, M; Hyde, J E; Dascombe, M J; Yuthavong, Y; Sirawaraporn, W

    1998-04-23

    Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase (DHFR-TS). Resistance in the most important human parasite, Plasmodium falciparum, initially results from an S108N mutation in the DHFR domain, with additional mutation (most commonly C59R or N51I or both) imparting much greater resistance. From a homology model of the 3-D structure of DHFR-TS, rational drug design techniques have been used to design and subsequently synthesize inhibitors able to overcome malarial pyrimethamine resistance. Compared to pyrimethamine (Ki 1.5 nM) with purified recombinant DHFR fromP. falciparum, the Ki value of the m-methoxy analogue of pyrimethamine was 1.07 nM, but against the DHFR bearing the double mutation (C59R + S108N), the Ki values for pyrimethamine and the m-methoxy analogue were 71.7 and 14.0 nM, respectively. The m-chloro analogue of pyrimethamine was a stronger inhibitor of both wild-type DHFR (with Ki 0.30 nM) and the doubly mutant (C59R +S108N) purified enzyme (with Ki 2.40 nM). Growth of parasite cultures of P. falciparum in vitro was also strongly inhibited by these compounds with 50% inhibition of growth occurring at 3.7 microM for the m-methoxy and 0.6 microM for the m-chloro compounds with the K1 parasite line bearing the double mutation (S108N + C59R), compared to 10.2 microM for pyrimethamine. These inhibitors were also found in preliminary studies to retain antimalarial activity in vivo in P. berghei-infected mice.

  10. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    DTIC Science & Technology

    2014-10-01

    are urgently needed to address the ma-jor global public health problem of malaria . Despite contain- ment and control measures, malaria caused by...test wells (basal growth control ) to the OD for the well containing the maximum tested drug concentration. Molecular markers of malaria drug resistance...Extensive in vitro evidence suggests a role for pfmdr1 amplification in artemisinin resistance, such as indicated by a genetically modified P

  11. Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design

    PubMed Central

    AhYoung, Andrew P; Koehl, Antoine; Cascio, Duilio; Egea, Pascal F

    2015-01-01

    Caseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis. ClpB1 is present in the apicoplast, a parasite-specific and plastid-like organelle hosting various metabolic pathways necessary for parasite growth. ClpB2 localizes to the parasitophorous vacuole membrane where it drives protein export as core subunit of a parasite-derived protein secretion complex, the Plasmodium Translocon of Exported proteins (PTEX); this process is central to parasite virulence and survival in the human host. The functional associations of these two chaperones with parasite-specific metabolism and protein secretion make them prime drug targets. ClpB proteins function as unfoldases and disaggregases and share a common architecture consisting of four domains—a variable N-terminal domain that binds different protein substrates, followed by two highly conserved catalytic ATPase domains, and a C-terminal domain. Here, we report and compare the first crystal structures of the N terminal domains of ClpB1 and ClpB2 from Plasmodium and analyze their molecular surfaces. Solution scattering analysis of the N domain of ClpB2 shows that the average solution conformation is similar to the crystalline structure. These structures represent the first step towards the characterization of these two malarial chaperones and the reconstitution of the entire PTEX to aid structure-based design of novel anti-malarial drugs. PMID:26130467

  12. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery.

    PubMed

    Meister, Stephan; Plouffe, David M; Kuhen, Kelli L; Bonamy, Ghislain M C; Wu, Tao; Barnes, S Whitney; Bopp, Selina E; Borboa, Rachel; Bright, A Taylor; Che, Jianwei; Cohen, Steve; Dharia, Neekesh V; Gagaring, Kerstin; Gettayacamin, Montip; Gordon, Perry; Groessl, Todd; Kato, Nobutaka; Lee, Marcus C S; McNamara, Case W; Fidock, David A; Nagle, Advait; Nam, Tae-gyu; Richmond, Wendy; Roland, Jason; Rottmann, Matthias; Zhou, Bin; Froissard, Patrick; Glynne, Richard J; Mazier, Dominique; Sattabongkot, Jetsumon; Schultz, Peter G; Tuntland, Tove; Walker, John R; Zhou, Yingyao; Chatterjee, Arnab; Diagana, Thierry T; Winzeler, Elizabeth A

    2011-12-09

    Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.

  13. Factors relating to neurotoxicity of artemisinin antimalarial drugs "listening to arteether".

    PubMed

    Brewer, T G; Genovese, R F; Newman, D B; Li, Q

    1998-01-01

    The discovery of the occult brainstem neurotoxicity subsequent to widespread deployment of artemisinin derivatives has created particular problems. That is, the clinical setting for artemisinin use is problematic for accomplishing what ordinarily would be addressed in phase I-II clinical trials. Nevertheless, it is clear that an urgent and vital need exists for the deployment and widespread availability of artemisinins. The work done to date has already yielded a substantial body of evidence that, while incomplete, provides guidelines for artemisinin use to minimize the risk of these drugs while preserving their much-needed efficacy. The evidence thus far shows that route of administration, oil/water solubility and concentration-duration of drug level, are critical determinants of toxicity and can be given appropriate consideration in the clinical decisions regarding route, choice of drug used, and drug regimens. In this regard, an oral, water-soluble drug with moderately rapid clearance may be the most attractive choice in the absence of significant differences in efficacy. The same body of evidence clearly shows that toxicity can, and does, develop with no obvious or useful clinical marker. Therefore, the development and validation of a test that can reliably detect the onset of injury, at a reversible stage, is a critical path task for any future development in this class. More complete understanding of mechanisms, kinetics, and molecular targets of neurotoxicity, will certainly be forthcoming. A continuing, more generalized use of these drugs, however, cannot be fully endorsed without a useful, practical clinical test of toxicity. The requirement is especially critical in light of the reality that those patients receiving artemisinin derivatives live in high risk environments and are likely to receive repeated courses of therapy with little likelihood of close, post marketing surveillance.

  14. Determination of log P values of new cyclen based antimalarial drug leads using RP-HPLC.

    PubMed

    Rudraraju, A V; Amoyaw, P N A; Hubin, T J; Khan, M O F

    2014-09-01

    Lipophilicity, expressed by log P, is an important physicochemical property of drugs that affects many biological processes, including drug absorption and distribution. The main purpose of this study to determine the log P values of newly discovered drug leads using reversed-phase high-performance liquid chromatography (RP-HPLC). The reference standards, with varying polarity ranges, were dissolved in methanol and analyzed by RP-HPLC using a C18 column. The mobile phase consisted of a mixture of acetonitrile, methanol and water in a gradient elution mode. A calibration curve was plotted between the experimental log P values and obtained log k values of the reference standard compounds and a best fit line was obtained. The log k values of the new drug leads were determined in the same solvent system and were used to calculate the respective log P values by using the best fit equation. The log P vs. log k data gave a best fit linear curve that had an R2 of 0.9786 with Pvalues of the intercept and slope of 1.19 x 10(-6) and 1.56 x 10(-10), respectively, at 0.05 level of significance. Log P values of 15 new drug leads and related compounds, all of which are derivatives of macrocyclic polyamines and their metal complexes, were determined. The values obtained are closely related to the calculated log P (Clog P) values using ChemDraw Ultra 12.0. This experiment provided efficient, fast and reasonable estimates of log P values of the new drug leads by using RP-HPLC.

  15. Drug resistance in Giardia duodenalis.

    PubMed

    Ansell, Brendan R E; McConville, Malcolm J; Ma'ayeh, Showgy Y; Dagley, Michael J; Gasser, Robin B; Svärd, Staffan G; Jex, Aaron R

    2015-11-01

    Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.

  16. Potent Antimalarial Activity of Acriflavine In Vitro and In Vivo

    PubMed Central

    2015-01-01

    Malaria continues to be a major health problem globally. There is an urgent need to find new antimalarials. Acriflavine (ACF) is known as an antibacterial agent and more recently as an anticancer agent. Here, we report that ACF inhibits the growth of asexual stages of both chloroquine (CQ) sensitive and resistant strains of human malarial parasite, Plasmodium falciparum in vitro at nanomolar concentration. ACF clears the malaria infection in vivo from the bloodstreams of mice infected with Plasmodium berghei. Interestingly, ACF is accumulated only in the parasitized red blood cells (RBCs) and parasite specific transporters may have role in this specific drug accumulation. We further show that ACF impairs DNA replication foci formation in the parasites and affects the enzymatic activities of apicoplast specific Gyrase protein. We thus establish ACF as a potential antimalarial amidst the widespread incidences of drug resistant Plasmodium strains. PMID:25089658

  17. Antimalarial activity of WR 243251, a Dihydroacridinedione.

    PubMed Central

    Berman, J; Brown, L; Miller, R; Andersen, S L; McGreevy, P; Schuster, B G; Ellis, W; Ager, A; Rossan, R

    1994-01-01

    WR 243251 is a dihydroacridinedione that was evaluated for antimalarial blood schizonticidal activity in vitro and in vivo. The in vitro doses calculated to kill 50% of organisms were 11 nM for a chloroquine-susceptible, mefloquine-resistant standard strain and 25 nM for a chloroquine- and pyrimethamine-resistant standard strain. The total dose needed to cure 100% of mice infected with a drug-susceptible strain of Plasmodium berghei was 12 to 20 mg/kg of body weight for both oral and subcutaneous administration. The regimen needed to cure 100% of Aotus monkeys infected with Plasmodium falciparum was 8 mg/kg/day for 3 days (chloroquine-susceptible strain) and 16 mg/kg/day for 3 days (chloroquine-resistant strain). The 100% curative doses for Aotus monkeys did not increase for parasites previously exposed to subcurative doses. The absolute value of the curative doses of WR 243251 was comparable to or lower than the values for clinical antimalarial agents. The high absolute activity, comparability of activities against susceptible and resistant parasites, and inability to induce resistance by exposure to subcurative doses suggest that WR 243251 has strong potential as a blood schizonticidal agent. PMID:7986005

  18. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites

    PubMed Central

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H.; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael

    2016-01-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers—a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum. We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. PMID:27297478

  19. Comparative Study of Antimalarial and Other Drugs on G6PD Deficient Red Cells.

    DTIC Science & Technology

    the WR compounds previously studied. The suggested use of xylitol as a protective agent against hemolytic drugs (Wang et al) had raised considerable...expectation. Unfortunately, xylitol at the dosages of 20 and 30 g./day was unable, in our experimental set up (transfusion of 51 Cr tagged G6PD

  20. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    PubMed

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  1. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    PubMed Central

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  2. General Pharmacology of Artesunate, a Commonly used Antimalarial Drug:Effects on Central Nervous, Cardiovascular, and Respiratory System.

    PubMed

    Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Eun-Joo

    2010-09-01

    Artesunate, a semi-synthetic derivative of artemisinin, is used primarily as a treatment for malaria. Its effects on the central nervous system, general behavior, and cardiovascular, respiratory, and other organ systems were studied using mice, rats, guinea pigs, and dogs. Artesunate was administered orally to mice at doses of 125, 250, and 500 mg/kg and to rats and guinea pigs at 100, 200, and 400 mg/kg. In dogs, test drugs were administered orally in gelatin capsules at doses of 50, 100, and 150 mg/kg. Artesunate induced insignificant changes in general pharmacological studies, including general behavior, motor coordination, body temperature, analgesia, convulsion modulation, blood pressure, heart rate (HR) , and electrocardiogram (ECG) in dogs in vivo; respiration in guinea pigs; and gut motility or direct effects on isolated guinea pig ileum, contractile responses, and renal function. On the other hand, artesunate decreased the HR and coronary flow rate (CFR) in the rat in vitro; however, the extent of the changes was small and they were not confirmed in in vivo studies in the dog. Artesunate increased hexobarbital-induced sleeping time in a dose-related manner. Artesunate induced dose-related decreases in the volume of gastric secretions and the total acidity of gastric contents, and induced increases in pH at a dose of 400 mg/kg. However, all of these changes were observed at doses much greater than clinical therapeutic doses (2.4 mg/kg in humans, when used as an anti-malarial) . Thus, it can be concluded that artesunate is safe at clinical therapeutic doses.

  3. Ascertainment of risk of serious adverse reactions associated with chemoprophylactic antimalarial drugs.

    PubMed Central

    Phillips-Howard, P. A.; Bjorkman, A. B.

    1990-01-01

    Serious adverse reactions during malaria chemoprophylaxis are reviewed. Three drugs considered to have caused serious reactions in recent years are pyrimethamine/sulfadoxine (Fansidar), pyrimethamine/dapsone (Maloprim) and amodiaquine. These reactions are principally independent of dose and cannot be determined during screening for optimal doses. However, host factors may precipitate dose-dependent reactions, some of which could be avoided with improvements in drug licensing. Since serious and life-threatening reactions are relatively rare (between 1:1000 and 1:20,000), Phase I to III trials cannot identify them. Reliance must therefore be placed on Phase IV post-marketing studies, including ongoing reviews of national registers, and specially tailored studies to identify the risk using prescription-event monitoring in high-risk populations. Occasionally, medical-record linkage, case-control and cohort studies may provide supportive data. Although large numbers of travellers must, of necessity, be exposed to a drug before relatively rare reactions are identified, the ascertainment of risk using post-marketing surveillance was prevented by the following five deficiencies: lack of awareness of early alerts, inadequate use of national registers, poor attention to epidemiological and statistical rigour, inadequate verification of denominators, and inadequacy of data records. Recommendations are given for minimizing such errors in the future. PMID:2208562

  4. Differential speciation of ferriprotoporphyrin IX in the presence of free base and diprotic 4-aminoquinoline antimalarial drugs

    NASA Astrophysics Data System (ADS)

    Gildenhuys, Johandie; Müller, Ronel; le Roex, Tanya; de Villiers, Katherine A.

    2017-03-01

    The crystal structures of the μ-propionato dimer and π-π dimer of ferriprotoporphyrin IX (Fe(III)PPIX) have been determined by single crystal X-ray diffraction (SCD). Both species were obtained in the presence of the synthetic 4-aminoquinoline antimalarial drug, amodiaquine (AQ). The solution that afforded the μ-propionato dimer contained AQ as a free base (i.e. with both quinoline and terminal amine nitrogen atoms neutral). On the other hand, when the diprotic salt of AQ was included in the crystallization medium, the Fe(III)PPIX π-π dimer was obtained. The structure of the μ-propionato dimer, which is the discrete structural unit that constitutes haemozoin (malaria pigment), is identical to that obtained previously in presence of chloroquine free base. We suspect that the drug, via its two available basic sites, facilitates dissociation of one of the two Fe(III)PPIX propionic acid groups to yield a propionate group that is required for reciprocal coordination of the metal centre to form the centrosymmetric dimer. On the other hand, this proton transfer is not possible when the drug is present as a diprotic salt. In this case, the π-π dimer of Fe(III)PPIX is obtained. In the current study, the π-π dimer of haemin (chloro-Fe(III)PPIX) was obtained as a DMF solvate from non-aqueous aprotic solution (dimethyl formamide and chloroform), however the π-π dimer is also known to exist in aqueous solution (as aqua- or hydroxo-Fe(III)PPIX), where it is purportedly involved in the nucleation of haemozoin. We have been able to unambiguously determine the positions of all non-hydrogen atoms, as well as locate or assign all hydrogen atoms in the structure of the π-π dimer, which was not possible in the SCD structure of haemin reported by Koenig in 1965 owing to disorder in the vinyl and methyl substituents. Interestingly, no disorder in the methyl and vinyl groups is observed in the current structure. Both the π-π and μ-propionato dimers of Fe(III)PPIX are

  5. From a cytotoxic agent to the discovery of a novel antimalarial agent.

    PubMed

    Singh, Ravi S P; Das, Umashankar; Auschwitz, Jennifer M; Leed, Susan E; Hickman, Mark R; Dimmock, Jonathan R; Alcorn, Jane

    2013-01-15

    A novel cytotoxin 3,5-bis(4-chlorobenzylidene)-1-[4-{2-(4-morpholinyl)ethoxy}phenyl-carbonyl]-4-piperidone hydrochloride 2 demonstrated potent antimalarial properties with IC(50) values of 0.60 and 1.97 μM against the drug sensitive D6 strain and the C235 drug-resistant strain of Plasmodium falciparum. This compound concentrates in red blood cells, lowers glutathione concentrations in erythrocytes and permeates across CACO-2 cells. These data reveal 2 to be a promising lead compound in the quest for novel antimalarial agents.

  6. Malaria Related Perceptions, Care Seeking after Onset of Fever and Anti-Malarial Drug Use in Malaria Endemic Settings of Southwest Ethiopia

    PubMed Central

    Birhanu, Zewdie; Abebe, Lakew; Sudhakar, Morankar; Dissanayake, Gunawardena; Yihdego, Yemane Ye-ebiyo; Alemayehu, Guda; Yewhalaw, Delenasaw

    2016-01-01

    Background Prompt care seeking and appropriate use of anti-malarial drugs are critical components of malaria prevention and control. This study assessed malaria related perceptions, care seeking behavior and anti-malarial drug use in malaria endemic settings of Ethiopia. Methods Data were generated from a community based cross-sectional study conducted among 798 households during January 2014 as part of a larger household behavioral study in three malaria endemic districts of Jimma Zone, Southwest Ethiopia. Both quantitative and qualitative data were collected and analyzed using SPSS 17.0 and STATA 12.0. Results In this study, only 76.1% of the respondents associated malaria to mosquito bite, and incorrect beliefs and perceptions were noted. Despite moderate level of knowledge (estimated mean = 62.2, Std Err = 0.7, 95% CI: 60.6–63.8%), quite high favorable attitude (overall estimated mean = 91.5, Std Err = 0.6, 95% CI: 90.1–92.9%) were recorded towards malaria preventive measures. The mean attitude score for prompt care seeking, appropriate use of anti-malarial drugs, LLIN use and Indoor Residual Spray acceptance was 98.5 (Std Err = 0.4, 95% CI:97.5–99.4), 92.7 (Std Err = 0.6 95% CI:91.5–93.9), 88.8 (Std Err = 0.5, 95% CI:85.5–92.1) and 86.5 (Std Err = 1.2, 95% CI: 83.9–89.1), respectively. The prevalence of fever was 2.9% (116/4107) and of the study participants with fever, 71.9% (95% CI: 65.5–78.3%) sought care and all of them consulted formal health care system. However, only 17 (19.8%) sought care within 24 hours after onset of fever. The frequency of care seeking was higher (77.8%, n = 21/27) and more prompt (28.6%, 6/21) for children under five as compared to old age groups despite it was not statistically significant (p > 0.05). However, higher median time of seeking first care was observed among Muslims and people who did not attend school (p < 0.05). Of those who used anti-malarial drugs, 9.1% indicated that they used it inappropriately

  7. Antimalarial activity of methanolic leaf extract of Piper betle L.

    PubMed

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05) schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  8. Factors related to compliance to anti-malarial drug combination: example of amodiaquine/sulphadoxine-pyrimethamine among children in rural Senegal

    PubMed Central

    Souares, Aurélia; Lalou, Richard; Sene, Ibra; Sow, Diarietou; Le Hesran, Jean-Yves

    2009-01-01

    Background The introduction of new anti-malarial treatment that is effective, but more expensive, raises questions about whether the high level of effectiveness observed in clinical trials can be found in a context of family use. The objective of this study was to determine the factors related to adherence, when using the amodiaquine/sulphadoxine-pyrimethamine (AQ/SP) association, a transitory strategy before ACT implementation in Senegal. Methods The study was conducted in five rural dispensaries. Children, between two and 10 years of age, who presented mild malaria were recruited at the time of the consultation and were prescribed AQ/SP. The child's primary caretaker was questioned at home on D3 about treatment compliance and factors that could have influenced his or her adherence to treatment. A logistic regression model was used for the analyses. Results The study sample included 289 children. The adherence rate was 64.7%. Two risks factors for non-adherence were identified: the children's age (8–10 years) (ORa = 3.07 [1.49–6.29]; p = 0.004); and the profession of the head of household (retailer/employee versus farmer) (ORa = 2.71 [1.34–5.48]; p = 0.006). Previously seeking care (ORa = 0.28 [0.105–0.736], p=0.001] satisfaction with received information (ORa = 0.45 [0.24–0.84]; p = 0.013), and the quality of history taking (ORa = 0.38 [0.21–0.69]; p = 0.001) were significantly associated with good compliance. Conclusion The results of the study show the importance of information and communication between caregivers and health center staff. The experience gained from this therapeutic transition emphasizes the importance of information given to the patients at the time of the consultation and drug delivery in order to improve drug use and thus prevent the emergence of rapid drug resistance. PMID:19497103

  9. Anti-malarial prescriptions in three health care facilities after the emergence of chloroquine resistance in Niakhar, Senegal (1992–2004)

    PubMed Central

    Munier, Aline; Diallo, Aldiouma; Cot, Michel; Ndiaye, Ousmane; Arduin, Pascal; Chippaux, Jean-Philippe

    2009-01-01

    Background In the rural zone of Niakhar in Senegal, the first therapeutic failures for chloroquine (CQ) were observed in 1992. In 2003, the national policy regarding first-line treatment of uncomplicated malaria was modified, replacing CQ by a transitory bi-therapy amodiaquine/sulphadoxine-pyrimethamine (AQ/SP), before the implementation of artemisinin-based combination therapy (ACT) in 2006. The aims of the study were to assess the evolution of anti-malarial prescriptions in three health care facilities between 1992 and 2004, in parallel with increasing CQ resistance in the region. Methods The study was conducted in the area of Niakhar, a demographic surveillance site located in a sahelo-sudanese region of Senegal, with mesoendemic and seasonal malaria transmission. Health records of two public health centres and a private catholic dispensary were collected retrospectively to cover the period 1992–2004. Results Records included 110,093 consultations and 292,965 prescribed treatments. Twenty-five percent of treatments were anti-malarials, prescribed to 49% of patients. They were delivered all year long, but especially during the rainy season, and 20% of patients with no clinical malaria diagnosis received anti-malarials. Chloroquine and quinine represented respectively 55.7% and 34.6% of prescribed anti-malarials. Overall, chloroquine prescriptions rose from 1992 to 2000, in parallel with clinical malaria; then the CQ prescription rate decreased from 2000 and was concomitant with the rise of SP and the persistence of quinine use. AQ and SP were mainly used as bi-therapy after 2003, at the time of national treatment policy change. Conclusion The results show the overall level of anti-malarial prescription in the study area for a considerable number of patients over a large period of time. Even though resistance to CQ rapidly increased from 1992 to 2001, no change in CQ prescription was observed until the early 2000s, possibly due to the absence of an obvious

  10. Antimalarial Drug Artemether Inhibits Neuroinflammation in BV2 Microglia Through Nrf2-Dependent Mechanisms.

    PubMed

    Okorji, Uchechukwu P; Velagapudi, Ravikanth; El-Bakoush, Abdelmeneim; Fiebich, Bernd L; Olajide, Olumayokun A

    2016-11-01

    Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40 μM) for 24 h. ELISAs and western blotting were used to detect pro-inflammatory cytokines, nitric oxide, prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity and Aβ levels were measured with ELISA kits. Protein levels of targets in nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signalling, as well as heme oxygenase-1 (HO-1), NQO1 and nuclear factor-erythroid 2-related factor 2 (Nrf2) were also measured with western blot. NF-κB binding to the DNA was investigated using electrophoretic mobility shift assays (EMSA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DNA fragmentation and reactive oxygen species (ROS) assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, tumour necrosis factor-alpha (TNFα) and interleukin (IL)-6); Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-κB and p38 MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated

  11. Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa

    PubMed Central

    2011-01-01

    Glucose is the primary source of energy and a key substrate for most cells. Inhibition of cellular glucose uptake (the first step in its utilization) has, therefore, received attention as a potential therapeutic strategy to treat various unrelated diseases including malaria and cancers. For malaria, blood forms of parasites rely almost entirely on glycolysis for energy production and, without energy stores, they are dependent on the constant uptake of glucose. Plasmodium falciparum is the most dangerous human malarial parasite and its hexose transporter has been identified as being the major glucose transporter. In this review, recent progress regarding the validation and development of the P. falciparum hexose transporter as a drug target is described, highlighting the importance of robust target validation through both chemical and genetic methods. Therapeutic targeting potential of hexose transporters of other protozoan pathogens is also reviewed and discussed. PMID:21676209

  12. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    PubMed

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.

  13. Molecular epidemiology of malaria in Cameroon. XXIV. Trends of in vitro antimalarial drug responses in Yaounde, Cameroon.

    PubMed

    Basco, Leonardo K; Ringwald, Pascal

    2007-01-01

    In vitro response to chloroquine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin was assessed by the radioisotopic microtest in Yaoundé, Cameroon, during 2000-2004 and compared with our previous data obtained during 1996-1999. Based on the cut-off value of 100 nmol/L, 36.3% of isolates were chloroquine-susceptible (N = 175; geometric mean IC(50), 40.3 nmol/L) and 63.7% were chloroquine-resistant (N = 307; geometric mean IC(50), 211 nmol/L). There was no significant difference (P > 0.05) in the mean IC(50)s from 1996 to 2004, but a significant linear trend (P < 0.05) toward an increased proportion of chloroquine-resistant isolates was observed from 1996 (49%) to 2004 (69%). All chloroquine-susceptible isolates and most chloroquine-resistant isolates were susceptible to monodesethylamodiaquine (i.e., IC(50) < 60 nmol/L). Despite the positive correlation between chloroquine and monodesethylamodiaquine (r = 0.739, P < 0.05), the IC(50)s for monodesethylamodiaquine remained stable during 1997-2004, with no increase in the proportion of monodesethylamodiaquine-resistant isolates. Mefloquine, lumefantrine, and dihydroartemisinin were equally active against the chloroquine-susceptible and chloroquine-resistant parasites. The responses to these three drugs were positively correlated, and a significant decrease (P < 0.05) in the mean IC(50)s was observed during the study period compared with our earlier data in 1997-1999, probably because of their inverse relationship with chloroquine response. The in vitro results were in general agreement with the in vivo response to chloroquine and amodiaquine. In vitro drug susceptibility assay is a useful, complementary laboratory tool for determining the trend of response to drugs for which there is still no established molecular marker and may serve as an early warning system for emerging drug resistance.

  14. Quorum sensing and microbial drug resistance.

    PubMed

    Yufan, Chen; Shiyin, Liu; Zhibin, Liang; Mingfa, Lv; Jianuan, Zhou; Lianhui, Zhang

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  15. Novel molecular targets for antimalarial chemotherapy.

    PubMed

    Jana, Snehasis; Paliwal, Jyoti

    2007-07-01

    The emergence and spread of drug-resistant malaria parasites is a serious public health problem in the tropical world. Malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the last quarter of the 20th century. An alarming increase in drug-resistant strains of the malaria parasite poses a significant problem for effective control. Recent advances in our knowledge of parasite biology as well as the availability of the genome sequence provide a wide range of novel targets for drug design. Gene products involved in controlling vital aspects of parasite metabolism and organelle function could be attractive targets. It is expected that the application of functional genomic tools in combination with modern approaches such as structure-based drug design and combinatorial chemistry will lead to the development of effective new drugs against drug-resistant malaria strains. This review discusses novel molecular targets of the malaria parasite available to the drug discovery scientist.

  16. Overcoming drug resistance through in silico prediction.

    PubMed

    Carbonell, Pablo; Trosset, Jean-Yves

    2014-03-01

    Prediction tools are commonly used in pre-clinical research to assist target selection, to optimize drug potency or to predict the pharmacological profile of drug candidates. In silico prediction and overcoming drug resistance is a new opportunity that creates a high interest in pharmaceutical research. This review presents two main in silico strategies to meet this challenge: a structure-based approach to study the influence of mutations on the drug-target interaction and a system-biology approach to identify resistance pathways for a given drug. In silico screening of synergies between therapeutic and resistant pathways through biological network analysis is an example of technique to escape drug resistance. Structure-based drug design and in silico system biology are complementary approaches to reach few objectives at once: increase efficiency, reduce toxicity and overcoming drug resistance.

  17. Potentiation of antimalarial activity of arteether in combination with Vetiver root extract.

    PubMed

    Dhawan, Sangeeta; Gunjan, Sarika; Pal, Anirban; Tripathi, Renu

    2016-05-01

    In malaria, development of resistance towards artemisinin derivatives has urged the need for new drugs or new drug combinations to tackle the drug resistant malaria. We studied the fresh root extract of Vetiver zizanioides (Linn.) Nash (VET) with a CDRI-CIMAP antimalarial α/β arteether (ART) together for their antimalarial potential. Our results showed additive to synergistic antimalarial activity of VET and ART with sum fractional inhibitory concentrations Σ FICs 1.02 ± 0.24 and 1.12 ± 0.32 for chloroquine sensitive (CQS) and chloroquine resistant (CQR) strain of Plasmodium falciparum (William H. Welch), respectively. Further, these combinations were explored against multidrug resistant rodent malaria parasite i.e. P. yoelii nigeriensis. Analysis of in vivo interaction of ART and VET showed that 10 mg/kg x 5 days of ART with 1000 mg/kg of VET x 5 days cured 100% mice infected with MDR parasite, while the same dose of ART could produce only up to 30% cure and VET fraction was not curative at all. Synergism/additiveness, found between VET and ART is reported for the first time. The curative dose of ART in the combination was reduced to its one fourth, and thus limits the side effects, if any. Although antimalarial potential of ART was enhanced by VET, action mechanism of later needs to be elucidated in detail.

  18. Microbial transformation of antimalarial terpenoids.

    PubMed

    Parshikov, Igor A; Netrusov, Alexander I; Sutherland, John B

    2012-01-01

    The fungal and bacterial transformation of terpenoids derived from plant essential oils, especially the sesquiterpenoid artemisinin from Artemisia annua, has produced several new candidate drugs for the treatment of malaria. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.

  19. Modelling the time course of antimalarial parasite killing: a tour of animal and human models, translation and challenges.

    PubMed

    Patel, Kashyap; Simpson, Julie A; Batty, Kevin T; Zaloumis, Sophie; Kirkpatrick, Carl M

    2015-01-01

    Malaria remains a global public health concern and current treatment options are suboptimal in some clinical settings. For effective chemotherapy, antimalarial drug concentrations must be sufficient to remove completely all of the parasites in the infected host. Optimized dosing therefore requires a detailed understanding of the time course of antimalarial response, whilst simultaneously considering the parasite life cycle and host immune elimination. Recently, the World Health Organization (WHO) has recommended the development of mathematical models for understanding better antimalarial drug resistance and management. Other international groups have also suggested that mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) models can support the rationalization of antimalarial dosing strategies. At present, artemisinin-based combination therapy (ACT) is recommended as first line treatment of falciparum malaria for all patient groups. This review summarizes the PK-PD characterization of artemisinin derivatives and other partner drugs from both preclinical studies and human clinical trials. We outline the continuous and discrete time models that have been proposed to describe antimalarial activity on specific stages of the parasite life cycle. The translation of PK-PD predictions from animals to humans is considered, because preclinical studies can provide rich data for detailed mechanism-based modelling. While similar sampling techniques are limited in clinical studies, PK-PD models can be used to optimize the design of experiments to improve estimation of the parameters of interest. Ultimately, we propose that fully developed mechanistic models can simulate and rationalize ACT or other treatment strategies in antimalarial chemotherapy.

  20. Antimalarial activity of fractions of aqueous extract of Acacia nilotica root

    PubMed Central

    Alli, Lukman Adewale; Adesokan, Abdulfatai Ayoade; Salawu, Adeola Oluwakanyinsola

    2016-01-01

    Background: The problem of resistance of malarial parasites to available antimalarial drugs makes the development of new drugs imperative, with natural plant products providing an alternative source for discovering new drugs. Aim: To evaluate the antimalarial activity of eluted fractions of Acacia nilotica root extract and determine the phytochemicals responsible for its antimalarial activity. Materials and Methods: The extract was eluted successively in gradients of solvent mixture (hexane, ethyl acetate, and methanol) in multiples of 100 ml, and each fraction was collected separately. Eluates that showed similar thin layer chromatographic profiles and Rf values were combined to produce 4 main fractions (F-1, F-2, F-3, and F-4), which were tested separately for antimalarial activity using the curative test. Changes in body weight, temperature, and packed cell volume (PCV) were also recorded. Results: Fraction F-1 of A. nilotica at 50 and 100 mg/kg b/w produced significant and dose-dependent reduction in parasite count in Plasmodium berghei infected mice compared to the control, and also significantly increased the survival time of the mice compared to the control group. This fraction also ameliorated the malaria-induced anemia by improving PCV in treated mice. Conclusion: Antimalarial activity of extract of A. nilotica root is probably localized in the F-1 fraction of the extract, which was found to be rich in alkaloids and phenolics. Further study will provide information on the chemical properties of the active metabolites in this fraction. PMID:27104040

  1. Crystal and molecular structure of the antimalarial agent enpiroline.

    PubMed Central

    Karle, J M; Karle, I L

    1989-01-01

    To identify common spatial and structural features of amino alcohol antimalarial agents with the eventual goal of designing more effective drugs and a better understanding of the mechanism of action of this class of antimalarial agents, the three-dimensional crystal and molecular structure of enpiroline, a new antimalarial agent active against chloroquine-resistant Plasmodium falciparum, was determined by X-ray crystallography and compared with the crystal structures of the cinchona alkaloids and of the new antimalarial agent WR 194,965. The aromatic rings of the phenyl-pyridine ring system of enpiroline are twisted from each other by approximately 18 degrees. The intramolecular aliphatic N-O distance in enpiroline was 2.80 A (1 A = 0.1 nm), which is close to the N-O distance found in the antimalarial cinchona alkaloids. Enpiroline contains both an intramolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms and an intermolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms of two neighboring molecules. One enantiomer of enpiroline superimposed best with quinine, and the other enantiomer of enpiroline superimposed best with quinidine, suggesting that both enantiomers of enpiroline possess antimalarial activity. Since a common feature of the crystal structures of the amino alcohol antimalarial agents is the formation of intermolecular hydrogen bonds, the common spatial direction of hydrogen bond formation indicates the potential ability of these antimalarial agents to bind to a common receptor site. The crystallographic parameters were as follows: C19H18F6N5O; Mr = 404.3; symmetry of unit cell, monoclinic; space group, P2(1)/a; parameters of unit cell---a = 9.454 +/- 0.004 A, b = 18.908 +/- 0.008 A, c = 10.300 +/- 0.004 A, and beta = 96.55 +/- 0.03 degrees: V (volume of unit cell) = 1829.2 A3; Z (number of molecules per unit cell) = 4; Dchi (calculated density) = 1.46 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu

  2. Understanding drug resistance in human intestinal protozoa.

    PubMed

    El-Taweel, Hend Aly

    2015-05-01

    Infections with intestinal protozoa continue to be a major health problem in many areas of the world. The widespread use of a limited number of therapeutic agents for their management and control raises concerns about development of drug resistance. Generally, the use of any antimicrobial agent should be accompanied by meticulous monitoring of its efficacy and measures to minimize resistance formation. Evidence for the occurrence of drug resistance in different intestinal protozoa comes from case studies and clinical trials, sometimes with a limited number of patients. Large-scale field-based assessment of drug resistance and drug sensitivity testing of clinical isolates are needed. Furthermore, the association of drug resistance with certain geographic isolates or genotypes deserves consideration. Drug resistance has been triggered in vitro and has been linked to modification of pyruvate:ferredoxin oxidoreductase, nitroreductases, antioxidant defense, or cytoskeletal system. Further mechanistic studies will have important implications in the development of second generation therapeutic agents.

  3. [Synthetic antimalarials].

    PubMed

    Fardet, L; Revuz, J

    2005-01-01

    The antimalarials, mainly chloroquine and hydroxychloroquine, derive from the quinoleine core of quinine. Their initial therapeutic indication was the treatment of malaria attacks but, because of anti-inflammatory and immuno-modulatory activities, they have been since used to treat many other pathologies, in particular dermatological ones. For some of these pathologies, lupus or porphyria cutanea tarda for example, the use of these molecules is based on obvious scientific evidence. For other pathologies (cutaneous sarcoidosis, polymyositis, polymorphous light eruption...), the data on the medical literature corroborating the daily clinical practice are extremely poor. Their toxicity is limited. Their most common toxic effects are gastrointestinal (mild nausea or diarrhea) or mucocutaneous (reversible skin or mucosal pigmentation). Their most serious and dreaded side effect, retinopathy, can be largely prevented by using amounts of APS adapted to the weight of the patients. The recommended "safe" daily dose for hydroxychloroquine is 6.5 mg per kilogramme of body weight and for chloroquine 4 mg per kilogramme of body weight. However, at 6- to 12 months intervals, follow-up eye examinations should be performed.

  4. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice

    PubMed Central

    Borkaew, Preeyanuch; Klubsri, Chokdee; Dondee, Kittiyaporn; Bootprom, Panatda; Saiphet, Butsarat

    2016-01-01

    Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 107 parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg) in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P < 0.05) antimalarial activity in dose-dependent manner with percentage of suppression of 45, 50, and 55% for G. pentaphyllum leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies. PMID:27872647

  5. High School Students Are a Target Group for Fight against Self-Medication with Antimalarial Drugs: A Pilot Study in University of Kinshasa, Democratic Republic of Congo

    PubMed Central

    Kabongo Kamitalu, Ramsès; Aloni, Michel Ntetani

    2016-01-01

    Aim. To assess the self-medication against malaria infection in population of Congolese students in Kinshasa, Democratic Republic of Congo (DRC). Methods. A cross-sectional study was carried out in University of Kinshasa, Kinshasa, Democratic Republic of Congo. Medical records of all students with malaria admitted to Centre de Santé Universitaire of University of Kinshasa from January 1, 2008, to April 30, 2008, were reviewed retrospectively. Results. The median age of the patients was 25.4 years (range: from 18 to 36 years). The majority of them were male (67.9%). Artemisinin-based combination treatments (ACTs) was the most used self-prescribed antimalarial drugs. However, self-medication was associated with the ingestion of quinine in 19.9% of cases. No case of ingestion of artesunate/artemether in monotherapy was found. All the medicines taken were registered in DRC. In this series, self-prescribed antimalarial was very irrational in terms of dose and duration of treatment. Conclusion. This paper highlights self-medication by a group who should be aware of malaria treatment protocols. The level of self-prescribing quinine is relatively high among students and is disturbing for a molecule reserved for severe disease in Congolese health care policy in management of malaria. PMID:27340411

  6. High School Students Are a Target Group for Fight against Self-Medication with Antimalarial Drugs: A Pilot Study in University of Kinshasa, Democratic Republic of Congo.

    PubMed

    Kabongo Kamitalu, Ramsès; Aloni, Michel Ntetani

    2016-01-01

    Aim. To assess the self-medication against malaria infection in population of Congolese students in Kinshasa, Democratic Republic of Congo (DRC). Methods. A cross-sectional study was carried out in University of Kinshasa, Kinshasa, Democratic Republic of Congo. Medical records of all students with malaria admitted to Centre de Santé Universitaire of University of Kinshasa from January 1, 2008, to April 30, 2008, were reviewed retrospectively. Results. The median age of the patients was 25.4 years (range: from 18 to 36 years). The majority of them were male (67.9%). Artemisinin-based combination treatments (ACTs) was the most used self-prescribed antimalarial drugs. However, self-medication was associated with the ingestion of quinine in 19.9% of cases. No case of ingestion of artesunate/artemether in monotherapy was found. All the medicines taken were registered in DRC. In this series, self-prescribed antimalarial was very irrational in terms of dose and duration of treatment. Conclusion. This paper highlights self-medication by a group who should be aware of malaria treatment protocols. The level of self-prescribing quinine is relatively high among students and is disturbing for a molecule reserved for severe disease in Congolese health care policy in management of malaria.

  7. Medical Management of Drug-Resistant Tuberculosis.

    PubMed

    Jeon, Doosoo

    2015-07-01

    Drug-resistant tuberculosis (TB) is still a major threat worldwide. However, recent scientific advances in diagnostic and therapeutic tools have improved the management of drug-resistant TB. The development of rapid molecular testing methods allows for the early detection of drug resistance and prompt initiation of an appropriate treatment. In addition, there has been growing supportive evidence for shorter treatment regimens in multidrug-resistant TB; and for the first time in over 50 years, new anti-TB drugs have been developed. The World Health Organization has recently revised their guidelines, primarily based on evidence from a meta-analysis of individual patient data (n=9,153) derived from 32 observational studies, and outlined the recommended combination and correct use of available anti-TB drugs. This review summarizes the updated guidelines with a focus on the medical management of drug-resistant TB.

  8. New Drugs and Drug Resistance in Malaria: Molecular Genetic Analysis.

    DTIC Science & Technology

    1996-06-26

    heterologous expressions system in yeast for potential drug target enzymes. The yeast expression system should allow rapid screening of new drugs , greatly...medication yet the world faces a crisis-drug resistance is emerging and spreading faster than drugs are being developed and the flow in the pipeline of new ... drugs has all but stopped. This represents a particular threat to the US Military. In a short time there may be parts of the world where no effective

  9. New Drugs and Drug Resistance in Malaria: Molecular Genetic Analysis.

    DTIC Science & Technology

    1995-06-20

    heterologous expressions system in yeast for potential drug target enzymes. The yeast expression system should allow rapid screening of new drugs , greatly...medication yet the world faces a crisis-drug resistance is emerging and spreading faster than drugs are being developed and the flow in the pipeline of new ... drugs has all but stopped. This represents a particular threat to the US Military. In a short time there may be parts of the world where no effective

  10. [Drug-resistant malaria: problems with its definition and technical approaches].

    PubMed

    Basco, L; Ringwald, P

    2000-01-01

    In antimalarial chemotherapy, drug resistance is defined as "the ability of a parasite strain to survive and/or multiply despite the administration and absorption of a drug in doses equal to or higher than those usually recommended but within the limits of tolerance of the subject". This official World Health Organization definition, based on clinical and parasitological observations, was established in 1973, when genetics, pharmacology and in vitro culture techniques were still in the early stages of development. Several techniques are currently used to detect drug-resistant Plasmodium falciparum. Several in vivo tests, the traditional gold standard for the detection of drug resistance, have been developed. Classical tests include the 28-day extended test and the 7-day test, interpreted using the S-RI-RII-RIII classification system (S for susceptible and R for resistant, with three degrees of resistance, I to III, depending on parasitological response). These tests cannot be applied in practice, in field situations, and the results do not take into account the clinical condition of the patient, largely because they were designed for use with asymptomatic carriers. These limitations led to the development in 1994 (modified in 1996) of the more practical and simplified 14-day test of therapeutic efficacy. This test classifies the patient's clinical and parasitological response as "adequate clinical response", "late treatment failure" or "early treatment failure". This in vivo test of therapeutic efficacy can be applied in the field with a minimum of health facilities, personnel and other resources. However, true cases of drug resistance may not always be detected by in vivo tests due to pharmacokinetic variations, reinfection, multiple infections, noncompliance or interference with the acquired immune response. The most commonly used reliable in vitro assay, the isotopic microtest, determines the drug concentration at which 50% of parasite growth is inhibited (50

  11. Fixed Dose Combination of Arterolane and Piperaquine: A Newer Prospect in Antimalarial Therapy

    PubMed Central

    Patil, CY; Katare, SS; Baig, MS; Doifode, SM

    2014-01-01

    Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms “Malaria,” “Arterolane,” “OZ277,” “Piperaquine,” and “Artemisinin combination therapy.” A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines. PMID:25221689

  12. Preventing drug resistance in severe influenza

    NASA Astrophysics Data System (ADS)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  13. The antimalarial activity of Ru-chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces.

    PubMed

    Martínez, Alberto; Rajapakse, Chandima S K; Jalloh, Dalanda; Dautriche, Cula; Sánchez-Delgado, Roberto A

    2009-08-01

    We have measured water/n-octanol partition coefficients, pK(a) values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium-pi-arene-chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.

  14. Defective DNA repair as a potential mechanism for the rapid development of drug resistance in Plasmodium falciparum.

    PubMed

    Trotta, Richard F; Brown, Matthew L; Terrell, James C; Geyer, Jeanne A

    2004-05-04

    The development and spread of highly drug-resistant parasites pose a central problem in the control of malaria. Understanding mechanisms that regulate genomic stability, such as DNA repair, in drug-resistant parasites and during drug treatment may help determine whether this rapid onset of resistance is due to an increase in the rate at which resistance-causing mutations are generated. This is the first report to demonstrate DNA repair activities from the malaria-causing parasite Plasmodium falciparum that are specific for ultraviolet light-induced DNA damage. The efficiency of DNA repair differs dramatically among P. falciparum strains with varying drug sensitivities. Most notable is the markedly reduced level of repair in the highly drug-resistant W2 isolate, which has been shown to develop resistance to novel drugs at an increased rate when compared to drug-sensitive strains. Additionally, the antimalarial drug chloroquine and other quinoline-like compounds interfered with the DNA synthesis step of the repair process, most likely a result of direct binding to repair substrates. We propose that altered DNA repair, either through defective repair mechanisms or drug-mediated inhibition, may contribute to the accelerated development of drug resistance in the parasite.

  15. Different Patterns of pfcrt and pfmdr1 Polymorphisms in P. falciparum Isolates from Nigeria and Brazil: The Potential Role of Antimalarial Drug Selection Pressure

    PubMed Central

    Gbotosho, Grace O.; Folarin, Onikepe A.; Bustamante, Carolina; Pereira da Silva, Luis Hildebrando; Mesquita, Elieth; Sowunmi, Akintunde; Zalis, Mariano G.; Oduola, Ayoade M. J.; Happi, Christian T.

    2012-01-01

    The effect of antimalarial drug selection on pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from two distinct geographical locations was determined in 70 and 18 P. falciparum isolates from Nigeria and Brazil, respectively, using nested polymerase chain reaction and direct DNA sequencing approaches. All isolates from Brazil and 72% from Nigeria harbored the mutant SVMNT and CVIET pfcrt haplotype, respectively. The pfcrt CVMNT haplotype was also observed in (7%) of the Nigerian samples. One hundred percent (100%) and 54% of the parasites from Brazil and Nigeria, respectively, harbored wild-type pfmdr1Asn86. We provide first evidence of emergence of the CVMNT haplotype in West Africa. The high prevalence of pfcrt CVIET and SVMNT haplotypes in Nigeria and Brazil, respectively, is indicative of different selective pressure by chloroquine and amodiaquine. Continuous monitoring of pfcrt SVMNT haplotype is required in endemic areas of Africa, where artesunate-amodiaquine combination is used for treatment of acute uncomplicated malaria. PMID:22302850

  16. Use of bacterial surrogates as a tool to explore antimalarial drug interaction: Synergism between inhibitors of malarial dihydrofolate reductase and dihydropteroate synthase.

    PubMed

    Talawanich, Yuwadee; Kamchonwongpaisan, Sumalee; Sirawaraporn, Worachart; Yuthavong, Yongyuth

    2015-09-01

    Interaction between antimalarial drugs is important in determining the outcome of chemotherapy using drug combinations. Inhibitors of dihydrofolate reductase (DHFR) such as pyrimethamine and of dihydropteroate synthase (DHPS) such as sulfa drugs are known to have synergistic interactions. However, studies of the synergism are complicated by the fact that the malaria parasite can also salvage exogenous folates, and the salvage may also be affected by the drugs. It is desirable to have a convenient system to study interaction of DHFR and DHPS inhibitors without such complications. Here, we describe the use of Escherichia coli transformed with malarial DHFR and DHPS, while its own corresponding genes have been inactivated by optimal concentration of trimethoprim and genetic knockout, respectively, to study the interaction of the inhibitors. Marked synergistic effects are observed for all combinations of pyrimethamine and sulfa inhibitors in the presence of trimethoprim. At 0.05μM trimethoprim, sum of fractional inhibitory concentrations, ΣFIC of pyrimethamine with sulfadoxine, pyrimethamine with sulfathiazole, pyrimethamine with sulfamethoxazole, and pyrimethamine with dapsone are in the range of 0.24-0.41. These results show synergism between inhibitors of the two enzymes even in the absence of folate transport and uptake. This bacterial surrogate system should be useful as a tool for assessing the interactions of drug combinations between the DHFR and DHPS inhibitors.

  17. Haem polymerase as a novel target of antimalarial action of cyproheptadine.

    PubMed

    Agrawal, Rashmi; Tripathi, Renu; Tekwani, Babu L; Jain, S K; Dutta, Guru P; Shukla, Onkar P

    2002-11-01

    An antihistaminic drug, cyproheptadine (20-25mg/kg x 4 days), showed significant schizontocidal activity in the blood against a lethal multidrug-resistant (MDR) strain of Plasmodium yoelii nigeriensis (highly resistant to chloroquine, mefloquine, and quinine); the protection of mice ranged between 75 and 100%. A combination of cyproheptadine (15 mg/kg) and chloroquine improved antimalarial activity compared to treatment with either drug alone, whereas a combination of cyproheptadine with quinine or mefloquine did not improve its antimalarial activity. Chloroquine and cyproheptadine inhibited haem polymerization activity in cell-free extracts and in in vivo experiments with MDR P. yoelii, but the combination did not cause a more significant inhibition than found with either drug alone. Cyproheptadine has been shown to produce dose-dependent inhibition of haem polymerization activity both in vitro and in vivo. The mechanism of the antimalarial action of cyproheptadine and its enhanced antimalarial activity with chloroquine could be due, in part, to their inhibitory effect on haem polymerization.

  18. Road towards new antimalarials - overview of the strategies and their chemical progress.

    PubMed

    Wu, Tao; Nagle, Advait S; Chatterjee, Arnab K

    2011-01-01

    Malaria is a major health and economic threat to about 40% of the world's population. The absence of effective vaccines and widespread resistance to many of the current antimalarials make this disease an urgent target for the scientific community. As a developing world disease, most of the efforts towards new drugs have been from academic and government supported projects. This has recently changed with the emergence of new funding mechanisms and public-private partnerships (PPP). The purpose of this review is to highlight the different approaches used to discover new antimalarial agents, including target-based approaches, derivatization of known antimalarial pharmacophores, drug repositioning from non-malaria indication and cell-based screening. Specific examples are provided to illustrate the pros and cons in the context of how to best address the ever-increasing drug resistance and how to cost-effectively identify new antimalarials. More attention is given to relatively mature programs that have gone through extensive SAR study, pharmacology and/or toxicity studies in the last ten years.

  19. Potential antimalarials from African natural products: A reviw

    PubMed Central

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance. PMID:26649238

  20. Mechanisms of Drug Resistance: Daptomycin Resistance

    PubMed Central

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  1. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites.

  2. Sensitivity in vitro of Plasmodium falciparum to three currently used antimalarial drugs on the western border of Thailand.

    PubMed

    Fèvre, E M; Barnish, G; Yamokgul, P; Rooney, W

    1999-01-01

    The sensitivity in vitro of Plasmodium falciparum to mefloquine, quinine and artemisinin was assessed in an area of multi-drug resistance on the Thai-Myanmar border, using the World Health Organization's microtest, based on schizont maturation inhibition. Participating individuals were exclusively those who had contracted their infections within Myanmar. A total of 34 successful tests were carried out for mefloquine and quinine, showing a marked decrease in sensitivity compared to previously published results. Ten artemisinin tests were successful, with many failures due to the poor storage stability of the test plates. The implications of the shelf-life of the artemisinin plates is discussed. These results contribute to setting a base line of sensitivity to artemisinin in vitro.

  3. Preventing and managing antiretroviral drug resistance.

    PubMed

    Kuritzkes, Daniel R

    2004-05-01

    Development of resistance to antiretroviral drugs (ARVs) is a major impediment to optimum treatment of HIV-1 infection. Although resistance testing can help to select subsequent regimens when virologic failure occurs, cross-resistance, which affects all classes of ARVs, may make it more difficult to achieve optimum control of HIV. We have known for some time that our first choice of antiretroviral therapy offers the best chance to control HIV replication and that initial therapy should be selected with an eye on future options. Potency is the first line of defense against the development of resistance. Other factors that affect resistance development include: tolerability, potential for optimum adherence, and genetic and pharmacologic barriers to development of resistance. If resistance emerges, only a single drug may be affected initially, and a rapid change in ARVs may preserve the efficacy of other components. One cautionary note is that we can no longer assume that a patient's HIV is fully susceptible to all ARVs even in the initial regimen. Transmission of drug-resistant HIV means that the genetic composition may be that of an "experienced" virus with reduced susceptibility to ARVs. Resistance testing at the time of transmission is most likely to reveal this resistance, but over time the dominant genetic pattern may revert to wild-type, and be missed by resistance testing. Because "archived" resistant HIV may emerge quickly once treatment is initiated, we need to keep this in mind when selecting initial therapy.

  4. Mechanisms of drug resistance: daptomycin resistance.

    PubMed

    Tran, Truc T; Munita, Jose M; Arias, Cesar A

    2015-09-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP resistance (DAP-R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP-R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria.

  5. Emerging pathogens: Dynamics, mutation and drug resistance

    SciTech Connect

    Perelson, A.S.; Goldstein, B.; Korber, B.T.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  6. Giardiasis, drug resistance, and new target discovery.

    PubMed

    Tian, Hai-Feng; Chen, Bing; Wen, Jian-Fan

    2010-08-01

    Giardiasis is a worldwide parasitic disease caused by the protozoan Giardia lamblia in humans and other animals, especially live stocks. Here, we briefly review the current state of therapeutic availability for giardiasis, including chemical drugs and vaccines, and the dilemma in the prevention and treatment of this disease, including the emergence of drug resistance and the shortage of vaccine (especially for humans). Future efforts and progress in controlling giardiasis are expected in three aspects: clarification of the drug resistance mechanisms, development of efficient vaccines, and identification of more targets for new drugs and vaccines.

  7. Identifying representative drug resistant mutants of HIV

    PubMed Central

    2015-01-01

    Background Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore the molecular mechanisms of resistance and develop improved antiviral drugs. Results In order to solve this problem, we have developed a new algorithm to reveal the most representative mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants. Conclusion This approach for predicting the most representative mutants for each drug has major importance for experimental verification since the results provide a small number of representative sequences, which will be amenable for in vitro testing and characterization of the expressed mutant proteins. PMID:26678327

  8. Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology

    PubMed Central

    Gabryszewski, Stanislaw J.; Dhingra, Satish K.; Lewis, Ian A.; Callaghan, Paul S.; Hassett, Matthew R.; Siriwardana, Amila; Henrich, Philipp P.; Lee, Andrew H.; Gnädig, Nina F.; Musset, Lise; Llinás, Manuel; Egan, Timothy J.; Roepe, Paul D.

    2016-01-01

    Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize

  9. Mechanisms of echinocandin antifungal drug resistance

    PubMed Central

    Perlin, David S.

    2015-01-01

    Fungal infections due to Candida and Aspergillus species cause extensive morbidity and mortality, especially among immunosuppressed patients, and antifungal therapy is critical to patient management. Yet only a few drug classes are available to treat invasive fungal diseases, and this problem is compounded by the emergence of antifungal resistance. Echinocandin drugs are the preferred choice to treat candidiasis. They are the first cell wall–active agents and target the fungal-specific enzyme glucan synthase, which catalyzes the biosynthesis of β-1,3-glucan, a key cell wall polymer. Therapeutic failures occur rarely among common Candida species, with the exception of Candida glabrata, which are frequently multidrug resistant. Echinocandin resistance in susceptible species is always acquired during therapy. The mechanism of resistance involves amino acid changes in hot-spot regions of Fks subunits of glucan synthase, which decrease the sensitivity of the enzyme to drug. Cellular stress response pathways lead to drug adaptation, which promote the formation of resistant fks strains. Clinical factors promoting echinocandin resistance include empiric therapy, prophylaxis, gastrointestinal reservoirs, and intra-abdominal infections. A better understanding of the echinocandin resistance mechanism, along with cellular and clinical factors promoting resistance, will promote more effective strategies to overcome and prevent echinocandin resistance. PMID:26190298

  10. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    PubMed Central

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-01-01

    Summary There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. We describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the parasite, with good pharmacokinetic properties, and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery. PMID:26085270

  11. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NASA Astrophysics Data System (ADS)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  12. Recent progress in the identification and development of anti-malarial agents using virtual screening based approaches.

    PubMed

    Shah, Priyanka; Tiwari, Sunita; Siddiqi, Mohammad Imran

    2015-01-01

    Malaria has continued to be one of the most perplexing diseases for biological science community around the world due to its prevalent devastating nature and quick developing resistance against the frontline drugs. Artimisinin-based combination therapy (ACT) has been so far found to be among the best therapies against Plasmodium pathogens but alarming emergence of resistance in parasites against every known chemotherapy has prompted the scientific community to step up all the efforts towards development of new and affordable anti-malarial drugs. Computer-aided approaches have received enormous attention in recent years in the field of identification and design of novel drugs. In this review, we summarize recently published research concerning the identification and development of anti-malarial compounds using virtual screening approaches. It would be admirable to discern the successful application of in silico studies for anti-malarial drug discovery hitherto and would certainly help in generating new avenues for pursuing integrated studies between the experimentalists and computational chemists in a systematic manner as a time and cost efficient alternative for future antimalarial drug discovery projects.

  13. MICROBIAL DRUG RESISTANCE (EPIDEMIOLOGY, GENETICS).

    DTIC Science & Technology

    resistance. Antibacterial and inducer activities of LM and its derivatives were examined. Mechanisms of Mac-resistance after induction was investigated...combination of ribosomes from S.aureus and supernatant of E.coli. The ribosomes decrease their binding to spiramycin (SP) in parallel with the increase

  14. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones

    PubMed Central

    Sarkar, Souvik; Siddiqui, Asim A.; Saha, Shubhra J.; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S.; Nag, Shiladitya; Adhikari, Susanta

    2016-01-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  15. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase

    PubMed Central

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S.; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M. R. K.; Freund, Yvonne R.; DeRisi, Joseph; Cusack, Stephen

    2016-01-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum. Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [14C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  16. Malaria epidemic and drug resistance, Djibouti.

    PubMed

    Rogier, Christophe; Pradines, Bruno; Bogreau, H; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-02-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  17. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    PubMed

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads.

  18. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    PubMed

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases.

  19. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    PubMed

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.

  20. Drug-resistant Neisseria gonorrhoeae: latest developments.

    PubMed

    Suay-García, B; Pérez-Gracia, M T

    2017-02-16

    Gonorrhea is the second most frequently reported notifiable disease in the United States and is becoming increasingly common in Europe. The purpose of this review was to assess the current state of drug-resistant Neisseria gonorrhoeae in order to evaluate future prospects for its treatment. An exhaustive literature search was conducted to include the latest research regarding drug resistance and treatment guidelines for gonorrhea. Gonococci have acquired all known resistance mechanisms to all antimicrobials used for treatment. Currently, the European Union, the United States, and the United Kingdom have established surveillance programs to assess, on a yearly basis, the development of gonococcal resistance. Current treatment guidelines are being threatened by the increasing number of ceftriaxone-, cefixime-, and azithromycin-resistant N. gonorrhoeae strains being detected worldwide. This has led the scientific community to develop new treatment options with new molecules in order to persevere in the battle against this "superbug".

  1. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    PubMed Central

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  2. Synthesis and Antimalarial Activities of Cyclen 4-Aminoquinoline Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an attempt to augment the efficacy of 7-chloro 4-aminoquinoline analogs and also to overcome resistance to anti-malarial agents we synthesized three cyclen analogs of chloroquine (4,6,7). Compound 4 displays the most potent in vitro and in vivo antimalarial activities. It displays an IC50 of 7.5 ...

  3. CancerDR: cancer drug resistance database.

    PubMed

    Kumar, Rahul; Chaudhary, Kumardeep; Gupta, Sudheer; Singh, Harinder; Kumar, Shailesh; Gautam, Ankur; Kapoor, Pallavi; Raghava, Gajendra P S

    2013-01-01

    Cancer therapies are limited by the development of drug resistance, and mutations in drug targets is one of the main reasons for developing acquired resistance. The adequate knowledge of these mutations in drug targets would help to design effective personalized therapies. Keeping this in mind, we have developed a database "CancerDR", which provides information of 148 anti-cancer drugs, and their pharmacological profiling across 952 cancer cell lines. CancerDR provides comprehensive information about each drug target that includes; (i) sequence of natural variants, (ii) mutations, (iii) tertiary structure, and (iv) alignment profile of mutants/variants. A number of web-based tools have been integrated in CancerDR. This database will be very useful for identification of genetic alterations in genes encoding drug targets, and in turn the residues responsible for drug resistance. CancerDR allows user to identify promiscuous drug molecules that can kill wide range of cancer cells. CancerDR is freely accessible at http://crdd.osdd.net/raghava/cancerdr/

  4. Drug targeting of leptin resistance.

    PubMed

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles.

  5. Antibacterial drug discovery in the resistance era.

    PubMed

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.

  6. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    PubMed

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  7. Drug-resistant tuberculosis: an insurmountable epidemic?

    PubMed

    Chakroborty, Amitabha

    2011-06-01

    Drug-resistant tuberculosis has brought back the spectre of pre-antibiotic days. WHO surveillance data from 2007 showed multi-drug-resistant tuberculosis (MDR-TB)-tubercle bacillus resistant to both isoniazid and rifampicin accounting for 4.8% of all new and subsequent cases of tuberculosis. India and China-the two most populated countries of the world, house the maximum number of drug-resistant tuberculosis cases. In eastern European and central Asian countries, more than 6% of new TB cases are MDR-TB, whereas the number is <3% in the countries of the western world. Extensively drug-resistant tuberculosis (XDR-TB) has emerged with the prospect of tuberculosis becoming an incurable disease. A surveillance spreading over the six continents showed 10% of MDR-TB cases were also XDR-TB. The fact that tuberculosis is the most common opportunistic infection among HIV-infected patients in developing countries makes the challenge almost insurmountable. The mortality of HIV and MDR-TB co-infected patients is exceedingly high. The absence of guidelines for treatment of drug-resistant tuberculosis and of infrastructure for delivery of DOT program and rapid laboratory diagnostic facilities, including drug susceptibility testing for both first and second-line drugs, and lack of trained human resource in most of the developing world account for the emergence and perpetuation of this menacing problem. WHO along with partnership with Green Light Committee and individual national governments has started DOT plus program to control this global epidemic.

  8. A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India

    PubMed Central

    Rao, Pavitra N.; Uplekar, Swapna; Kayal, Sriti; Mallick, Prashant K.; Bandyopadhyay, Nabamita; Kale, Sonal; Singh, Om P.; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel C.

    2016-01-01

    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy. PMID:27008882

  9. Antifungal drug resistance to azoles and polyenes.

    PubMed

    Masiá Canuto, Mar; Gutiérrez Rodero, Félix

    2002-09-01

    There is an increased awareness of the morbidity and mortality associated with fungal infections caused by resistant fungi in various groups of patients. Epidemiological studies have identified risk factors associated with antifungal drug resistance. Selection pressure due to the continuous exposure to azoles seems to have an essential role in developing resistance to fluconazole in Candida species. Haematological malignancies, especially acute leukaemia with severe and prolonged neutropenia, seem to be the main risk factors for acquiring deep-seated mycosis caused by resistant filamentous fungi, such us Fusarium species, Scedosporium prolificans, and Aspergillus terreus. The still unacceptably high mortality rate associated with some resistant mycosis indicates that alternatives to existing therapeutic options are needed. Potential measures to overcome antifungal resistance ranges from the development of new drugs with better antifungal activity to improving current therapeutic strategies with the present antifungal agents. Among the new antifungal drugs, inhibitors of beta glucan synthesis and second-generation azole and triazole derivatives have characteristics that render them potentially suitable agents against some resistant fungi. Other strategies including the use of high doses of lipid formulations of amphotericin B, combination therapy, and adjunctive immune therapy with cytokines are under investigation. In addition, antifungal control programmes to prevent extensive and inappropriate use of antifungals may be needed.

  10. Drug-resistant tuberculosis: emerging treatment options

    PubMed Central

    Adhvaryu, Meghna; Vakharia, Bhasker

    2011-01-01

    Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV), inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drugsusceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO) has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and markers for adequacy of treatment and an integrative approach to fulfill WHO goals. However, regulatory control over the drug market, as well as public-private partnership to use health program facilities to track patients and ensure

  11. Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box.

    PubMed

    Tiwari, Neil K; Reynolds, Priscilla J; Calderón, Angela I

    2016-03-28

    Plasmodium falciparum thioredoxin reductase (PfTrxR) has been identified as a potential drug target to combat growing antimalarial drug resistance. Medicines for Malaria Venture (MMV) has pre-screened and identified a set of 400 antimalarial compounds called the Malaria Box. From those, we have evaluated their mechanisms of action through inhibition of PfTrxR and found new active chemical scaffolds. Five compounds with significant PfTrxR inhibitory activity, with IC50 values ranging from 0.9-7.5 µM against the target enzyme, were found out of the Malaria Box.

  12. Interventions to improve the use of antimalarials in south-east Asia: an overview.

    PubMed Central

    Gomes, M.; Wayling, S.; Pang, L.

    1998-01-01

    There are few drugs for malaria, and those which are available for use are subject to rapid development of resistance. Curiously, little effort has been made to improve drug use in malaria-endemic countries and to assess the benefits of such improvements. Advances can be made in public understanding of the value of ingesting a full regimen of antimalarials, in order to achieve complete cure, and in improving simple technologies (blister packaging) to achieve the same result. Better efforts can be made to reduce the availability of fake or substandard drugs in the marketplace. In this article, we describe the outcome of a concerted effort to improve drug compliance and drug quality in an area of multidrug resistance for malaria. These research efforts, guided by the Task Force for Improved Use of Antimalarials, characterized the problems in drug compliance in South-East Asia, and developed interventions to improve drug use in the various countries. Interventions involved drug packaging, public information campaigns, and assessments of drug quality. Results show that blister packaging worked best to improve drug compliance and that the increased cost of packaged medication did not limit its use. Drug quality was a major problem in unregulated countries and should be improved. PMID:9763718

  13. In vivo Antimalarial Activities of Russelia Equisetiformis in Plasmodium Berghei Infected Mice

    PubMed Central

    Ojurongbe, O.; Ojo, J. A.; Adefokun, D. I.; Abiodun, O. O.; Odewale, G.; Awe, E. O.

    2015-01-01

    The rising problem of resistance to most commonly used antimalarials remains a major challenge in the control of malaria suggesting the need for new antimalarial agents. This work explores the antiplasmodial potential of ethanol extract of Russelia equisetiformis in chloroquine Plasmodium berghei infected mice. Swiss albino mice were intraperitoneally infected with chloroquine-resistant P. berghei (ANKA). Experimental mice were treated for four days consecutively with graded doses of plant extracts and standard antimalarial drugs (artesunate and chloroquine) at a dose of 10 mg/kg body weight used as control. The extract showed a dose-dependent activity in the chemosuppression of P. berghei parasites by 31.6, 44.7, 48.4 and 86.5% at doses of 100, 200, 400 and 800 mg/kg, while chloroquine (10 mg/kg) and artesunate produced 59.4 and 68.4%, respectively. The extract showed a significant decrease in parasitaemia (P<0.05). The level of parasitemia and decrease in weight in all the treated groups was significantly lower (P<0.05) compared with the infected but untreated mice. The plant extract was devoid of toxicity at the highest dose tested (5000 mg/kg). The study concluded that the ethanol extract of R. equisetiformis possesses antimalarial effect, which supports the folk medicine claim of its use in the treatment of malaria. PMID:26664070

  14. Communicating trends in resistance using a drug resistance index

    PubMed Central

    Klugman, Keith P

    2011-01-01

    Background Antibiotic resistance is a growing problem worldwide, but communicating this challenge to policymakers and non-experts is complicated by the multiplicity of bacterial pathogens and the distinct classes of antibiotics used to treat them. It is difficult, even for experts aware of the pharmacodynamics of antibiotics, to infer the seriousness of resistance without information on how commonly the antibiotic is being used and whether alternative antibiotics are available. Difficulty in aggregating resistance to multiple drugs to assess trends poses a further challenge to quantifying and communicating changes in resistance over time and across locations. Methods We developed a method for aggregating bacterial resistance to multiple antibiotics, creating an index comparable to the composite economic indices that measure consumer prices and stock market values. The resulting drug resistance index (DRI) and various subindices show antibiotic resistance and consumption trends in the USA but can be applied at any geographical level. Findings The DRI based on use patterns in 1999 for Escherichia coli rose from 0.25 (95% CI 0.23 to 0.26) to 0.30 (95% CI 0.29 to 0.32) between 1999 and 2006. However, the adaptive DRI, which includes treatment of baseline resistant strains with alternative agents, climbed from 0.25 to 0.27 (95% CI 0.25 to 0.28) during that period. In contrast, both the static-use and the adaptive DRIs for Acinetobacter spp. rose from 0.41 (95% CI 0.4 to 0.42) to 0.48 (95% CI 0.46 to 0.49) between 1999 and 2006. Interpretation Divergence between the static-use and the adaptive-use DRIs for E coli reflects the ability of physicians to adapt to increasing resistance. However, antibiotic use patterns did not change much in response to growing resistance to Acinetobacter spp. because physicians were unable to adapt; new drugs for Acinetobacter spp. are therefore needed. Composite indices that aggregate resistance to various drugs can be useful for assessing

  15. Communicating trends in resistance using a drug resistance index.

    PubMed

    Laxminarayan, Ramanan; Klugman, Keith P

    2011-01-01

    Background Antibiotic resistance is a growing problem worldwide, but communicating this challenge to policymakers and non-experts is complicated by the multiplicity of bacterial pathogens and the distinct classes of antibiotics used to treat them. It is difficult, even for experts aware of the pharmacodynamics of antibiotics, to infer the seriousness of resistance without information on how commonly the antibiotic is being used and whether alternative antibiotics are available. Difficulty in aggregating resistance to multiple drugs to assess trends poses a further challenge to quantifying and communicating changes in resistance over time and across locations. Methods We developed a method for aggregating bacterial resistance to multiple antibiotics, creating an index comparable to the composite economic indices that measure consumer prices and stock market values. The resulting drug resistance index (DRI) and various subindices show antibiotic resistance and consumption trends in the USA but can be applied at any geographical level. Findings The DRI based on use patterns in 1999 for Escherichia coli rose from 0.25 (95% CI 0.23 to 0.26) to 0.30 (95% CI 0.29 to 0.32) between 1999 and 2006. However, the adaptive DRI, which includes treatment of baseline resistant strains with alternative agents, climbed from 0.25 to 0.27 (95% CI 0.25 to 0.28) during that period. In contrast, both the static-use and the adaptive DRIs for Acinetobacter spp. rose from 0.41 (95% CI 0.4 to 0.42) to 0.48 (95% CI 0.46 to 0.49) between 1999 and 2006. Interpretation Divergence between the static-use and the adaptive-use DRIs for E coli reflects the ability of physicians to adapt to increasing resistance. However, antibiotic use patterns did not change much in response to growing resistance to Acinetobacter spp. because physicians were unable to adapt; new drugs for Acinetobacter spp. are therefore needed. Composite indices that aggregate resistance to various drugs can be useful for assessing

  16. Drug resistance confounding prion therapeutics

    PubMed Central

    Berry, David B.; Lu, Duo; Geva, Michal; Watts, Joel C.; Bhardwaj, Sumita; Oehler, Abby; Renslo, Adam R.; DeArmond, Stephen J.; Prusiner, Stanley B.; Giles, Kurt

    2013-01-01

    There is not a single pharmaceutical that halts or even slows any neurodegenerative disease. Mounting evidence shows that prions cause many neurodegenerative diseases, and arguably, scrapie and Creutzfeldt–Jakob disease prions represent the best therapeutic targets. We report here that the previously identified 2-aminothiazoles IND24 and IND81 doubled the survival times of scrapie-infected, wild-type mice. However, mice infected with Rocky Mountain Laboratory (RML) prions, a scrapie-derived strain, and treated with IND24 eventually exhibited neurological dysfunction and died. We serially passaged their brain homogenates in mice and cultured cells. We found that the prion strain isolated from IND24-treated mice, designated RML[IND24], emerged during a single passage in treated mice. Although RML prions infect both the N2a and CAD5 cell lines, RML[IND24] prions could only infect CAD5 cells. When passaged in CAD5 cells, the prions remained resistant to high concentrations of IND24. However, one passage of RML[IND24] prions in untreated mice restored susceptibility to IND24 in CAD5 cells. Although IND24 treatment extended the lives of mice propagating different prion strains, including RML, another scrapie-derived prion strain ME7, and chronic wasting disease, it was ineffective in slowing propagation of Creutzfeldt–Jakob disease prions in transgenic mice. Our studies demonstrate that prion strains can acquire resistance upon exposure to IND24 that is lost upon passage in mice in the absence of IND24. These data suggest that monotherapy can select for resistance, thus intermittent therapy with mixtures of antiprion compounds may be required to slow or stop neurodegeneration. PMID:24128760

  17. Development of a New Generation of 4-Aminoquinoline Antimalarial Compounds Using Predictive Pharmacokinetic and Toxicology Models

    PubMed Central

    Ray, Sunetra; Madrid, Peter B.; Catz, Paul; LeValley, Susanna E.; Furniss, Michael J.; Rausch, Linda L.; Guy, R. Kiplin; DeRisi, Joseph L.; Iyer, Lalitha V.; Green, Carol E.; Mirsalis, Jon C.

    2010-01-01

    Among the known antimalarial drugs, chloroquine (CQ) and other 4-aminoquinolines have shown high potency and good bioavailability, yet complications associated with drug resistance necessitate the discovery of effective new antimalarial agents. ADMETa prediction studies were employed to evaluate a library of new molecules based on the 4-aminoquinolone-related structure of CQ. Extensive in vitro screening and in vivo pharmacokinetic studies in mice helped to identify two lead molecules, 18 and 4, with promising in vitro therapeutic efficacy, improved ADMET properties, low risk for drug-drug interactions, and desirable pharmacokinetic profiles. Both 18 and 4 are highly potent antimalarial compounds, with IC50 values = 5.6 nM and 17.3 nM, respectively, against the W2 (CQ-resistant) strain of Plasmodium falciparum (IC50 for CQ = 382 nM). When tested in mice, these compounds were found to have biological half-lives and plasma exposure values similar to or higher than those of CQ; they are therefore desirable candidates to pursue in future clinical trials. PMID:20361799

  18. Genotoxic effects of the antimalarial drug lumefantrine in human lymphocytes in vitro and computational prediction of the mechanism associated with its interaction with DNA.

    PubMed

    de Lucca, Renato M R; Batista Júnior, João; Fontes, Cor J Fernandes; Bahia, Marcelo de Oliveira; Bassi-Branco, Carmen L

    2015-07-01

    Lumefantrine (LF) is an aryl-amino alcohol antimalarial drug used in artemisinin-based combination therapies against malaria worldwide. In this study, we investigated the genotoxic effects of LF in human lymphocytes in vitro, and the potential noncovalent interaction of LF with DNA using a 3D DNA-docking model. The number of DNA breaks and the frequency of nuclear buds (NBUDS) was significantly increased (P < 0.01 and P < 0. 05, respectively) at LF concentrations of 60, 80, and 100 µg/mL (LF60, LF80, and LF100, respectively). Frequency (‰) of micronuclei (MN) formation also increased after LF treatments. However, this was only significant for LF100 (P = 0.01) and LF80 (P = 0.001). LF did not affect the frequency of nucleoplasmic bridges (NPBs) (P = 0.12) or the nuclear division index (NDI) (P = 0.32). Computational analysis suggests that LF may interact noncovalently with DNA via the DNA minor groove surface with a predicted binding affinity energy of -7.2 kcal/mol and showing a favorable shape complementary to this groove. Our results suggest that LF has clastogenic effects in human lymphocytes in vitro due to noncovalent interaction with the minor groove of DNA.

  19. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  20. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    DTIC Science & Technology

    2013-08-01

    vesicular stomatitis virus (VSV) can exert a dual antitumor effect by triggering direct tumor lysis and eliciting tumor specific immunity. VSV can also...tumors, and the levels of infiltrating leukocytes were similar across the VSV-treated tumors. Altogether the data indicate that VSV-based therapy is...effective against a cisplatin-resistant lung tumor model. 15. SUBJECT TERMS Drug resistance, oncolytic virotherapy, vesicular stomatitis virus, lung

  1. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2013-10-01

    Neuroblastoma PRINCIPAL INVESTIGATOR: Yves A. DeClerck, MD CONTRACTING ORGANIZATION: Children’s Hospital Los Angeles Los Angeles, CA...3. DATES COVERED 30September2012 – 29September2013 4. TITLE AND SUBTITLE Environment-Mediated Drug Resistance in Neuroblastoma 5a. CONTRACT...demonstrating that interleukin-6 protects neuroblastoma cells from drug-induced apoptosis via activation of signal transduction and activator of

  2. Virologic Tools for HCV Drug Resistance Testing

    PubMed Central

    Fourati, Slim; Pawlotsky, Jean-Michel

    2015-01-01

    Recent advances in molecular biology have led to the development of new antiviral drugs that target specific steps of the Hepatitis C Virus (HCV) lifecycle. These drugs, collectively termed direct-acting antivirals (DAAs), include non-structural (NS) HCV protein inhibitors, NS3/4A protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors (nucleotide analogues and non-nucleoside inhibitors), and NS5A inhibitors. Due to the high genetic variability of HCV, the outcome of DAA-based therapies may be altered by the selection of amino-acid substitutions located within the targeted proteins, which affect viral susceptibility to the administered compounds. At the drug developmental stage, preclinical and clinical characterization of HCV resistance to new drugs in development is mandatory. In the clinical setting, accurate diagnostic tools have become available to monitor drug resistance in patients who receive treatment with DAAs. In this review, we describe tools available to investigate drug resistance in preclinical studies, clinical trials and clinical practice. PMID:26690198

  3. Drug resistance in human African trypanosomiasis.

    PubMed

    Barrett, Michael P; Vincent, Isabel M; Burchmore, Richard J S; Kazibwe, Anne J N; Matovu, Enock

    2011-09-01

    Human African trypanosomiasis or 'sleeping sickness' is a neglected tropical disease caused by the parasite Trypanosoma brucei. A decade of intense international cooperation has brought the incidence to fewer than 10,000 reported cases per annum with anti-trypanosomal drugs, particularly against stage 2 disease where the CNS is involved, being central to control. Treatment failures with melarsoprol started to appear in the 1990s and their incidence has risen sharply in many foci. Loss of plasma membrane transporters involved in drug uptake, particularly the P2 aminopurine transporter and also a transporter termed the high affinity pentamidine transporter, relate to melarsoprol resistance selected in the laboratory. The same two transporters are also responsible for the uptake of the stage 1 drug pentamidine and, to varying extents, other diamidines. However, reports of treatment failures with pentamidine have been rare from the field. Eflornithine (difluoromethylornithine) has replaced melarsoprol as first-line treatment in many regions. However, a need for protracted and complicated drug dosing regimens slowed widespread implementation of eflornithine monotherapy. A combination of eflornithine with nifurtimox substantially decreases the required dose and duration of eflornithine administration and this nifurtimox-eflornithine combination therapy has enjoyed rapid implementation. Unfortunately, selection of resistance to eflornithine in the laboratory is relatively easy (through loss of an amino acid transporter believed to be involved in its uptake), as is selection of resistance to nifurtimox. The first anecdotal reports of treatment failures with eflornithine monotherapy are emerging from some foci. The possibility that parasites resistant to melarsoprol on the one hand, and eflornithine on the other, are present in the field indicates that genes capable of conferring drug resistance to both drugs are in circulation. If new drugs, that act in ways that will not

  4. New quinoline di-Mannich base compounds with greater antimalarial activity than chloroquine, amodiaquine, or pyronaridine.

    PubMed Central

    Kotecka, B M; Barlin, G B; Edstein, M D; Rieckmann, K H

    1997-01-01

    We have compared the ex vivo antimalarial activity of 12 new quinoline di-Mannich base compounds containing the 7-dichloroquinoline or 7-trifluoromethylquinoline nucleus with amodiaquine, chloroquine, and pyronaridine using the Saimiri-bioassay model. Each compound was administered orally (30 mg/kg of body weight) to three or more noninfected Saimiri sciureus monkeys, and serum samples were collected at various times after drug administration and serially diluted with drug-free (control) serum. In vitro activity against the multidrug-resistant K1 isolate of Plasmodium falciparum was determined in serum samples by measuring the maximum inhibitory dilution at which the treated monkey serum inhibited schizont maturation in vitro. Of the 12 Mannich bases tested, 8 were associated with levels of ex vivo antimalarial activity in serum greater than those of amodiaquine, chloroquine, or pyronaridine 1 to 7 days after drug administration. Further studies were carried out with four of these compounds, and the results showed that the areas under the serum drug concentration-time curves for the four compounds were between 7- and 26-fold greater than that obtained for pyronaridine. Activity against four multidrug-resistant strains of P. falciparum was also much greater in serum samples collected from monkeys after administration of these four compounds than in serum samples collected after administration of pyronaridine or chloroquine. These findings suggest that these four quinoline Mannich base compounds possess a very marked and prolonged antimalarial activity and that further studies should be performed to determine their value as antimalarial drugs. PMID:9174201

  5. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    Neuroblastoma PRINCIPAL INVESTIGATOR: Yves A. DeClerck CONTRACTING ORGANIZATION... Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0571 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DE CLERCK, YVES 5d. PROJECT...experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma . Further

  6. [Travellers and multi-drug resistance bacteria].

    PubMed

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers.

  7. Antimalarial Activity of Cupredoxins

    PubMed Central

    Cruz-Gallardo, Isabel; Díaz-Moreno, Irene; Díaz-Quintana, Antonio; Donaire, Antonio; Velázquez-Campoy, Adrián; Curd, Rachel D.; Rangachari, Kaveri; Birdsall, Berry; Ramos, Andres; Holder, Anthony A.; De la Rosa, Miguel A.

    2013-01-01

    The discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle. Because a number of specific antibodies inhibit erythrocyte invasion and parasite growth, MSP119 is therefore a promising target against malaria. Given the structural homology of cupredoxins with the Fab domain of monoclonal antibodies, an approach combining NMR and isothermal titration calorimetry (ITC) measurements with docking calculations based on BiGGER is employed on MSP119-cupredoxin complexes. Among the cupredoxins tested, rusticyanin forms a well defined complex with MSP119 at a site that overlaps with the surface recognized by the inhibitory antibodies. The addition of holo-rusticyanin to infected cells results in parasitemia inhibition, but negligible effects on parasite growth can be observed for apo-rusticyanin and other proteins of the cupredoxin family. These findings point to rusticyanin as an excellent therapeutic tool for malaria treatment and provide valuable information for drug design. PMID:23749994

  8. Synthesis and evaluation of 7-substituted 4-aminoquinoline analogs for antimalarial activity

    PubMed Central

    Hwang, Jong Yeon; Kawasuji, Takashi; Lowes, David J.; Clark, Julie A.; Connelly, Michele C.; Zhu, Fangyi; Guiguemde, W. Armand; Sigal, Martina S.; Wilson, Emily B.; DeRisi, Joseph L.; Guy, R. Kiplin

    2013-01-01

    We previously reported that substituted 4-aminoquinolines with a phenylether substituent at the 7-position of the quinoline ring and the capability of intramolecular hydrogen bonding between the protonated amine on the side chain and a hydrogen bond acceptor on the amine’s alkyl substituents exhibited potent antimalarial activity against the multi-drug resistant strain P. falciparum W2. We employed a parallel synthetic method to generate diaryl ether, biaryl, and alkylaryl 4-aminoquinoline analogs, in the background of a limited number of side chain variations that had previously afforded potent 4-aminoquinolines. All subsets were evaluated for their antimalarial activity against the chloroquine-sensitive strain 3D7 and the chloroquine-resistant K1 and cytotoxicity mammalian cell lines. While all three arrays showed good antimalarial activity, only the biaryl-containing subset showed consistently good potency against the drug-resistant K1strain good selectivity with regard to mammalian cytotoxicity. Overall, our data indicate that the biaryl-containing series contains promising candidates for further study. PMID:21910466

  9. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model.

    PubMed

    Wargo, Andrew R; Huijben, Silvie; de Roode, Jacobus C; Shepherd, James; Read, Andrew F

    2007-12-11

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance.

  10. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    USGS Publications Warehouse

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  11. In vitro assessment of antifungal drug resistance.

    PubMed

    Holmberg, K

    1986-01-01

    Several studies have documented the variability in the susceptibility pattern of fungi to antifungal drugs, and fungi possess resistance determinants to negate the effects of antifungal agents. In vitro assessment of both resistance and susceptibility are measured by suitable concentration endpoints of the antifungal drug, the minimal inhibitory concentration (MIC). MICs serve as the main parameter to define the fungistatic action on fungi growing in culture. For the antifungals used for treatment of local mycoses, the limit between a MIC value indicating susceptibility and one indicating resistance is usually determined empirically on the basis of the correlation between MIC values, and either positive or negative response to chemotherapy. The principles of susceptibility testing of fungi are essentially the same as those for bacteria. However, testing with fungi must deal with the fact that interpretation of the results is complicated by inherent differences in fungal morphology, growth rate, and optimal culture conditions. Several factors could adversely affect the test results and must be considered in the design of susceptibility testing of fungi. It is obvious when the present data on fungal susceptibility testing are reviewed that much more work on standardization of techniques and interpretation of results is necessary. This presentation will focus on the in vitro susceptibility testing for determining primary and secondary drug resistance of griseofulvin and azole antifungal agents, and the correlation between the activities of these antifungals in vitro and in vivo.

  12. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents.

    PubMed

    Devender, Nalmala; Gunjan, Sarika; Chhabra, Stuti; Singh, Kartikey; Pasam, Venkata Reddy; Shukla, Sanjeev K; Sharma, Abhisheak; Jaiswal, Swati; Singh, Sunil Kumar; Kumar, Yogesh; Lal, Jawahar; Trivedi, Arun Kumar; Tripathi, Renu; Tripathi, Rama Pati

    2016-02-15

    In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity.

  13. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice.

    PubMed

    de Sá, Matheus Santos; Costa, José Fernando Oliveira; Krettli, Antoniana Ursine; Zalis, Mariano Gustavo; Maia, Gabriela Lemos de Azevedo; Sette, Ivana Maria Fechine; Câmara, Celso de Amorim; Filho, José Maria Barbosa; Giulietti-Harley, Ana Maria; Ribeiro Dos Santos, Ricardo; Soares, Milena Botelho Pereira

    2009-07-01

    Malaria is one of the most important tropical diseases and mainly affects populations living in developing countries. Reduced sensitivity of Plasmodium sp. to formerly recommended antimalarial drugs places an increasing burden on malaria control programs as well as on national health systems in endemic countries. The present study aims to evaluate the antimalarial activity of betulinic acid and its derivative compounds, betulonic acid, betulinic acid acetate, betulinic acid methyl ester, and betulinic acid methyl ester acetate. These substances showed antiplasmodial activity against chloroquine-resistant Plasmodium falciparum parasites in vitro, with IC(50) values of 9.89, 10.01, 5.99, 51.58, and 45.79 microM, respectively. Mice infected with Plasmodium berghei and treated with betulinic acid acetate had a dose-dependent reduction of parasitemia. Our results indicate that betulinic acid and its derivative compounds are candidates for the development of new antimalarial drugs.

  14. QSAR modeling and chemical space analysis of antimalarial compounds.

    PubMed

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-04-03

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including ~3000 molecules tested in one or several of 17 anti-Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  15. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    PubMed Central

    2011-01-01

    Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems. PMID:22152094

  16. New developments in anti-malarial target candidate and product profiles.

    PubMed

    Burrows, Jeremy N; Duparc, Stephan; Gutteridge, Winston E; Hooft van Huijsduijnen, Rob; Kaszubska, Wiweka; Macintyre, Fiona; Mazzuri, Sébastien; Möhrle, Jörg J; Wells, Timothy N C

    2017-01-13

    A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.

  17. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia

    PubMed Central

    Suswardany, Dwi Linna; Sibbritt, David W.; Supardi, Sudibyo; Pardosi, Jerico F.; Chang, Sungwon; Adams, Jon

    2017-01-01

    Background The level of traditional medicine use, particularly Jamu use, in Indonesia is substantial. Indonesians do not always seek timely treatment for malaria and may seek self-medication via traditional medicine. This paper reports findings from the first focused analyses of traditional medicine use for malaria in Indonesia and the first such analyses worldwide to draw upon a large sample of respondents across high-risk malaria endemic areas. Methods A sub-study of the Indonesia Basic Health Research/Riskesdas Study 2010 focused on 12,226 adults aged 15 years and above residing in high-risk malaria-endemic provinces. Logistic regression was undertaken to determine the significant associations for traditional medicine use for malaria symptoms. Findings Approximately one in five respondents use traditional medicine for malaria symptoms and the vast majority experiencing multiple episodes of malaria use traditional medicine alongside free antimalarial drug treatments. Respondents consuming traditional medicine for general health/common illness purposes every day (odds ratio: 3.75, 95% Confidence Interval: 2.93 4.79), those without a hospital in local vicinity (odds ratio: 1.31, 95% Confidence Interval: 1.10 1.57), and those living in poorer quality housing, were more likely to use traditional medicine for malaria symptoms. Conclusion A substantial percentage of those with malaria symptoms utilize traditional medicine for treating their malaria symptoms. In order to promote safe and effective malaria treatment, all providing malaria care in Indonesia need to enquire with their patients about possible traditional medicine use. PMID:28329019

  18. Slowing down glioblastoma progression in mice by running or the anti-malarial drug dihydroartemisinin? Induction of oxidative stress in murine glioblastoma therapy

    PubMed Central

    Lemke, Dieter; Pledl, Hans-Werner; Zorn, Markus; Jugold, Manfred; Green, Ed; Blaes, Jonas; Löw, Sarah; Hertenstein, Anne; Ott, Martina; Sahm, Felix; Steffen, Ann-Catherine; Weiler, Markus; Winkler, Frank; Platten, Michael

    2016-01-01

    Influencing cancer metabolism by lifestyle changes is an attractive strategy as - if effective - exercise-induced problems may be less severe than those induced by classical anti-cancer therapies. Pursuing this idea, clinical trials evaluated the benefit of e.g. different diets such as the ketogenic diet, intermittent caloric restriction and physical exercise (PE) in the primary and secondary prevention of different cancer types. PE proved to be beneficial in the context of breast and colon cancer. Glioblastoma has a dismal prognosis, with an average overall survival of about one year despite maximal safe resection, concomitant radiochemotherapy with temozolomide followed by adjuvant temozolomide therapy. Here, we focused on the influence of PE as an isolated and adjuvant treatment in murine GB therapy. PE did not reduce toxic side effects of chemotherapy in mice administered in a dose escalating scheme as shown before for starvation. Although regular treadmill training on its own had no obvious beneficial effects, its combination with temozolomide was beneficial in the treatment of glioblastoma-bearing mice. As PE might partly act through the induction of reactive oxygen species, dihydroartemisinin - an approved anti-malarial drug which induces oxidative stress in glioma cells - was further evaluated in vitro and in vivo. Dihydroartemisinin showed anti-glioma activity by promoting autophagy, reduced the clonogenic survival and proliferation capacity of glioma cells, and prolonged the survival of tumor bearing mice. Using the reactive oxygen species scavenger n-acetyl-cysteine these effects were in part reversible, suggesting that dihydroartemisinin partly acts through the generation of reactive oxygen species. PMID:27447560

  19. Oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine that potentially interacts with parasite ferritin and cystatin.

    PubMed

    Küster, Tatiana; Stadelmann, Britta; Rufener, Reto; Risch, Corina; Müller, Joachim; Hemphill, Andrew

    2015-11-01

    This study investigated the effects of oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine (MEF) and identified proteins that bind to MEF in parasite extracts and human cells by affinity chromatography. In a pilot experiment, MEF treatment was applied 5 days per week and was intensified by increasing the dosage stepwise from 12.5 mg/kg to 200 mg/kg during 4 weeks followed by treatments of 100 mg/kg during the last 7 weeks. This resulted in a highly significant reduction of parasite weight in MEF-treated mice compared with mock-treated mice, but the reduction was significantly less efficacious compared with the standard treatment regimen of albendazole (ABZ). In a second experiment, MEF was applied orally in three different treatment groups at dosages of 25, 50 or 100 mg/kg, but only twice a week, for a period of 12 weeks. Treatment at 100 mg/kg had a profound impact on the parasite, similar to ABZ treatment at 200 mg/kg/day (5 days/week for 12 weeks). No adverse side effects were noted. To identify proteins in E. multilocularis metacestodes that physically interact with MEF, affinity chromatography of metacestode extracts was performed on MEF coupled to epoxy-activated Sepharose(®), followed by SDS-PAGE and in-gel digestion LC-MS/MS. This resulted in the identification of E. multilocularis ferritin and cystatin as MEF-binding proteins. In contrast, when human cells were exposed to MEF affinity chromatography, nicotinamide phosphoribosyltransferase was identified as a MEF-binding protein. This indicates that MEF could potentially interact with different proteins in parasites and human cells.

  20. Fungal Biofilms, Drug Resistance, and Recurrent Infection

    PubMed Central

    Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.

    2014-01-01

    A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758

  1. Substrate-analogous inhibitors exert antimalarial action by targeting the Plasmodium lactate transporter PfFNT at nanomolar scale

    PubMed Central

    Golldack, André; Henke, Björn; Wiechert, Marie; Blancke Soares, Alexandra

    2017-01-01

    Resistance against all available antimalarial drugs calls for novel compounds that hit unexploited targets in the parasite. Here, we show that the recently discovered Plasmodium falciparum lactate/proton symporter, PfFNT, is a valid druggable target, and describe a new class of fluoroalkyl vinylogous acids that potently block PfFNT and kill cultured parasites. The original compound, MMV007839, is derived from the malaria box collection of potent antimalarials with unknown targets and contains a unique internal prodrug principle that reversibly switches between a lipophilic transport form and a polar, substrate-analogous active form. Resistance selection of cultured P. falciparum parasites with sub-lethal concentrations of MMV007839 produced a single nucleotide exchange in the PfFNT gene; this, and functional characterization of the resulting PfFNT G107S validated PfFNT as a novel antimalarial target. From quantitative structure function relations we established the compound binding mode and the pharmacophore. The pharmacophore largely circumvents the resistance mutation and provides the basis for a medicinal chemistry program that targets lactate and proton transport as a new mode of antimalarial action. PMID:28178358

  2. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    PubMed

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea.

  3. European recommendations on surveillance of antituberculosis drug resistance.

    PubMed

    Schwoebel, V; Lambregts, C.S.B.; Moro, M.L.; Drobniewski, F; Hoffner, S.E.; Raviglione, M.C.; Rieder, H.L.

    2000-10-01

    Antituberculosis drug resistance, whose extent in Europe is not well documented, is a serious threat to tuberculosis control. The aim of the recent European recommendations on antituberculosis drug resistance surveillance, issued by a working group compos

  4. DDTRP: Database of Drug Targets for Resistant Pathogens

    PubMed Central

    Sundaramurthi, Jagadish Chandrabose; Ramanandan, Prabhakaran; Brindha, Sridharan; Subhasree, Chelladurai Ramarathnam; Prasad, Abhimanyu; Kumaraswami, Vasanthapuram; Hanna, Luke Elizabeth

    2011-01-01

    Emergence of drug resistance is a major threat to public health. Many pathogens have developed resistance to most of the existing antibiotics, and multidrug-resistant and extensively drug resistant strains are extremely difficult to treat. This has resulted in an urgent need for novel drugs. We describe a database called ‘Database of Drug Targets for Resistant Pathogens’ (DDTRP). The database contains information on drugs with reported resistance, their respective targets, metabolic pathways involving these targets, and a list of potential alternate targets for seven pathogens. The database can be accessed freely at http://bmi.icmr.org.in/DDTRP. PMID:21938213

  5. Drug Resistance in Malaria: Investigation of Mechanisms and Patterns of Drug Resistance and Cross Resistance in Malaria.

    DTIC Science & Technology

    1987-10-19

    sites of drugs (fefloquine, etc.) in erythrocytes and/or parasites, 2) investigation of bindihg of drugs ( mefloquine in particular) in malaria strains...resistant and suscePible to other drugs (chloroquine in particu- lar), 3) investigation of the echanism of action of drugs ( mefloquine in particular...binds to phospholipids (13). This observation is of particular interest because mefloquine binds with high affinity to phospholipids (14). It is

  6. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  7. Antibacterial Cleaning Products and Drug Resistance

    PubMed Central

    Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug resistance after 1 year (odds ratio 1.33, 95% confidence interval 0.74–2.41), nor did it have an effect on bacterial susceptibility to triclosan. However, more extensive and longer term use of triclosan might provide a suitable environment for emergence of resistant species. Further research on this issue is needed. PMID:16318697

  8. Susceptibility of human Plasmodium knowlesi infections to anti-malarials

    PubMed Central

    2013-01-01

    Background Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed. Methods Here the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax. Results Plasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine. Conclusions Taken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken. PMID:24245918

  9. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum.

    PubMed

    Bagavan, Asokan; Rahuman, Abdul Abdul; Kaushik, Naveen Kumar; Sahal, Dinkar

    2011-01-01

    Malaria is a major global public health problem, and the alarming spread of drug resistance and limited number of effective drugs now available underline how important it is to discover new antimalarial compounds. In the present study, ten plants were extracted with ethyl acetate and methanol and tested for their antimalarial activity against chloroquine (CQ)-sensitive (3D7) and CQ-resistant (Dd2 and INDO) strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green assay. Plant extracts showed moderate to good antiparasitic effects. Promising antiplasmodial activity was found in the extracts from two plants, Phyllanthus emblica leaf 50% inhibitory concentration (IC₅₀) 3D7: 7.25 μg/mL (ethyl acetate extract), 3.125 μg/mL (methanol extract), and Syzygium aromaticum flower bud, IC₅₀ 3D7:13 μg/mL, (ethyl acetate extract) and 6.25 μg/mL (methanol extract). Moderate activity (30-75 μg/mL) was found in the ethyl acetate and methanol extracts of Abrus precatorius (seed) and Gloriosa superba (leaf); leaf ethyl acetate extracts of Annona squamosa and flower of Musa paradisiaca. The above mentioned plant extracts were also found to be active against CQ-resistant strains (Dd2 and INDO). Cytotoxicity study with P. emblica leaf and S. aromaticum flower bud, extracts showed good therapeutic indices. These results demonstrate that leaf ethyl acetate and methanol extracts of P. emblica and flower bud extract of S. aromaticum may serve as antimalarial agents even in their crude form. The isolation of compounds from P. emblica and S. aromaticum seems to be of special interest for further antimalarial studies.

  10. Optimization of endochin-like quinolones for antimalarial activity

    PubMed Central

    Winter, Rolf; Kelly, Jane X.; Smilkstein, Martin J.; Hinrichs, David; Koop, Dennis R.; Riscoe, Michael K.

    2010-01-01

    Structural analogs of the antimalarial Endochin were synthesized and screened for antiplasmodial activity against drug sensitive and multidrug resistant strains of Plasmodium falciparum. Structural features have been identified that are associated with improved potency while other features are associated with equipotency against an atovaquone-resistant clinical isolate. Relative to endochin the most active compound ELQ-121 shows ≈ 100-fold improvement in IC50 for inhibition of P. falciparum in vitro and it also exhibits enhanced metabolic stability. A polyethylene glycol carbonate ester prodrug of ELQ-121 demonstrated in vivo efficacy against P. yoelii in mice. This is the first report of an endochin-like quinolone that is efficacious in treating malaria in a mammalian host. PMID:21040724

  11. Investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX).

    PubMed

    Longo, Monica; Zanoncelli, Sara; Della Torre, Paola; Rosa, Francesco; Giusti, AnnaMaria; Colombo, Paolo; Brughera, Marco; Mazué, Guy; Olliaro, Piero

    2008-08-01

    Artemisinin derivatives are effective and safe drugs for treating malaria, but they are not recommended during the first trimester of pregnancy because of resorptions and abnormalities observed in animal reproduction studies. Previous studies in rats showed that artemisinin embryotoxicity derives from the depletion of primitive red blood cells (RBCs) over a narrow critical time window (gestation Days 9-14). In order to further investigate the susceptibility of primitive RBCs to artemisinins and to establish whether this susceptibility is species-specific or inherent to the compound, we studied dihydroartemisinin (DHA), both a drug in its own right and the main metabolite of current artemisinin derivatives in use, in the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). This model readily allows investigation and monitoring of primitive and definitive RBCs. Effects on frog larvae exposed to DHA for 48 h during early embryonic development, starting from 24 h post fertilization, were similar to those on rat embryos in terms of reduction in the number of primitive RBCs (clonally produced within the ventral blood island). In contrast, RBCs of older larvae (stage 47, produced at the definitive sites of hematopoiesis) were affected minimally and subsequently recovered. Compared to rat embryos, the frog larvae had no areas of necrosis but they shared similar heart defects. The mitochondrion appeared to be the main subcellular target, similar to observations in Plasmodium. These results implicate artemisinin-induced embryotoxicity through perturbation of metabolically active RBCs; whereas this mode of action does not appear to be species-specific, the stages of susceptibility varied between different species. The window of susceptibility and duration of exposure must be considered to evaluate the clinical relevance of these findings.

  12. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  13. A non-radioactive DAPI-based high-throughput in vitro assay to assess Plasmodium falciparum responsiveness to antimalarials--increased sensitivity of P. falciparum to chloroquine in Senegal.

    PubMed

    Ndiaye, Daouda; Patel, Vishal; Demas, Allison; LeRoux, Michele; Ndir, Omar; Mboup, Souleymane; Clardy, Jon; Lakshmanan, Viswanathan; Daily, Johanna P; Wirth, Dyann F

    2010-02-01

    The spread of Plasmodium falciparum drug resistance is outpacing new antimalarial development and compromising effective malaria treatment. Combination therapy is widely implemented to prolong the effectiveness of currently approved antimalarials. To maximize utility of available drugs, periodic monitoring of drug efficacy and gathering of accurate information regarding parasite-sensitivity changes are essential. We describe a high-throughput, non-radioactive, field-based assay to evaluate in vitro antimalarial drug sensitivity of P. falciparum isolates from 40 Senegalese patients. Compared with earlier years, we found a significant decrease in chloroquine in vitro and in genotypic resistances (> 50% and > 65%, respectively, in previous studies) with only 23% of isolates showing resistance. This is possibly caused by a withdrawal of chloroquine from Senegal in 2002. We also found a range of artemisinin responses. Prevalence of drug resistance is dynamic and varies by region. Therefore, the implementation of non-radioactive, robust, high-throughput antimalarial sensitivity assays is critical for defining region-specific prophylaxis and treatment guidelines.

  14. Plasmodium falciparum endoplasmic reticulum-resident calcium binding protein is a possible target of synthetic antimalarial endoperoxides, N-89 and N-251.

    PubMed

    Morita, Masayuki; Sanai, Hitomi; Hiramoto, Akiko; Sato, Akira; Hiraoka, Osamu; Sakura, Takaya; Kaneko, Osamu; Masuyama, Araki; Nojima, Masatomo; Wataya, Yusuke; Kim, Hye-Sook

    2012-12-07

    The endoperoxide artemisinin is a current first-line antimalarial and a critical component of the artemisinin-based combination therapies (ACT) recommended by WHO for treatment of Plasmodium falciparum, the deadliest of malaria parasites. However, recent emergence of the artemisinin-resistant P. falciparum urged us to develop new antimalarial drugs. We have shown that synthetic endoperoxides N-89 and its hydroxyl derivative N-251 had high antimalarial activities both in vivo and in vitro. However, the mechanisms including the cellular targets of the endoperoxide antimalarials are not well understood. Thus, in this study, we employed chemical proteomics to survey potential molecular targets of endoperoxides by evaluating P. falciparum proteins capable to associate with endoperoxide structure (N-346, a carboxyamino derivative of N-89). We also analyzed the protein expression profiles of malaria parasites treated with N-89 or N-251 to explore possible changes associated with the drug action. From these experiments, we found that P. falciparum endoplasmic reticulum-resident calcium binding protein (PfERC) had high affinity to the endoperoxide structure (N-346) and was decreased by treatment with N-89 or N-251. PfERC is a member of CREC protein family, a potential disease marker and also a potential target for therapeutic intervention. We propose that the PfERC is a strong candidate of the endoperoxide antimalarial's target.

  15. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.

    PubMed

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-11-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.

  16. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence

    PubMed Central

    2014-01-01

    Background The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. Methods A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Results Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Conclusion Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change

  17. Effect of selected anti-malarial drugs on the blood chemistry and brain serotonin levels in male rabbits.

    PubMed

    Eigbibhalu, Ukpo Grace; Albert Taiwo, Ebuehi Osaretin; Douglass, Idiakheua Akhabue; Abimbola, Efunogbon Aderonke

    2013-01-01

    The effects of oral administration of sulfadoxine - pyrimethamine (SP), artesunate (A) and sulfadoxine - pyrimethamine - artesunate (SPA) on blood chemistry and brain serotonin in rabbits were investigated. Forty rabbits were divided into four groups of ten animals each. The group that served as the control received 2ml of distilled water while the other groups were received 1.25/25mg base/kg body weight of SP, 3.3mg/kg body weight of A and 1.25/25mg base/kg body weight of SP plus 3.3mg/kg body weight of A respectively by oral route daily for 3 days in a week for four weeks. At the end of each week of drug administration, three rabbits from each group were anaesthetized, blood was taken from the jugular veins using sterile needle and serum was extracted. The rabbits were sacrificed by decapitation; the liver and brain tissues were excised and homogenized. Total blood protein, cholesterol, triglyceride, albumin, creatinine and urea concentrations, creatine kinase, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, ALP activities were assayed using CX5 synchron autoanalyzer. The brain and liver serotonin levels were determined using high performance liquid chromatography (HPLC). There were no significant differences (P < 0.05) in the concentrations of serum albumin, urea, creatinine, cholesterol and triglyceride of rabbits administered SP, A and SPA for 4 weeks, except in serum total protein. No significant differences existed in the activities of AST, ALT and ALP, except in creatine kinase which was elevated in the control. The brain serotonin levels of rabbits administered SP, A and SPA were significantly higher as compared to the control throughout the duration of the study Data of the study indicate that oral administration of SP, A or SPA in rabbits do not affect blood chemistry, but affected brain serotonin levels and could alter some neural functions.

  18. Neurostimulation for Drug-Resistant Epilepsy

    PubMed Central

    DeGiorgio, Christopher M.; Krahl, Scott E.

    2013-01-01

    Purpose of Review: The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries. Recent Findings: The field of neurostimulation for epilepsy has grown dramatically since 1997, when vagus nerve stimulation became the first device to be approved for epilepsy by the US Food and Drug Administration (FDA). New data from recently completed randomized controlled trials are available for deep brain stimulation of the anterior thalamus, responsive neurostimulation, and trigeminal nerve stimulation. Although vagus nerve stimulation is the only device currently approved in the United States, deep brain stimulation and responsive neurostimulation devices are awaiting FDA approval. Deep brain stimulation, trigeminal nerve stimulation, and transcutaneous vagus nerve stimulation are now approved for epilepsy in the European Union. In this article, the mechanisms of action, safety, and efficacy of new neurostimulation devices are reviewed, and the key advantages and disadvantages of each are discussed. Summary: The exponential growth of the field of neuromodulation for epilepsy is an exciting development; these new devices provide physicians with new options for patients with drug-resistant epilepsy. PMID:23739108

  19. Management of multiple drug-resistant tuberculosis.

    PubMed

    Hutchison, D C S; Drobniewski, F A; Milburn, H J

    2003-01-01

    There has been a worldwide increase in multiple drug-resistant tuberculosis (MDR-TB) which has in the past been associated with a poor prognosis. In the U.K., about half of the cases live in the London area and we have set out to obtain further information on their treatment and outcome. We examined the risk factors, drug resistance, drug treatment, sputum conversion, and outcome in patients with MDR-TB at three hospitals in South London and diagnosed during the period June 1995-January 1999. Human Immunodeficiency Virus (HIV)-positive patients were excluded. There were 760 patients resident in Lambeth, Southwark and Lewisham Health Authority (LSLHA) who were notified as tuberculosis (TB) during the time period and who were of negative or unknown HIV status. (The population of LSLHA is approx.750,000.) There was a total of 13 patients with MDR-TB, known or presumed to be HlV negative. Their median age was 28 years (range 15-53); nine (69%) were born outside the U.K. and 11 had pulmonary disease; they had organisms resistant to a median of two first-line drugs (range 2-4) and to a median of four of all drugs tested (range 2-10). They received treatment with a median of six drugs (range 3-9). Eight were followed up for at least 3 years (range 3-6) after the completion of treatment; at their last assessment none had features of active TB and all were sputum negative (smear and culture). Two returned to their countries of origin during treatment; they were sputum negative at that time. Two patients are well and continue on treatment in the U.K. One patient (known HIV negative) died following treatment failure. In conclusion, we obtained disease-free survival in eight cases of MDR-TB, known or presumed to be HIV negative and followed up for 3 years or more. The prognosis for patients treated at specialised centres is good (and better than is generally believed). We describe a new protocol for the detection and management of MDR-TB.

  20. Why does drug resistance readily evolve but vaccine resistance does not?

    PubMed

    Kennedy, David A; Read, Andrew F

    2017-03-29

    Why is drug resistance common and vaccine resistance rare? Drugs and vaccines both impose substantial pressure on pathogen populations to evolve resistance and indeed, drug resistance typically emerges soon after the introduction of a drug. But vaccine resistance has only rarely emerged. Using well-established principles of population genetics and evolutionary ecology, we argue that two key differences between vaccines and drugs explain why vaccines have so far proved more robust against evolution than drugs. First, vaccines tend to work prophylactically while drugs tend to work therapeutically. Second, vaccines tend to induce immune responses against multiple targets on a pathogen while drugs tend to target very few. Consequently, pathogen populations generate less variation for vaccine resistance than they do for drug resistance, and selection has fewer opportunities to act on that variation. When vaccine resistance has evolved, these generalities have been violated. With careful forethought, it may be possible to identify vaccines at risk of failure even before they are introduced.

  1. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants.

    PubMed

    de Andrade-Neto, Valter F; Pohlit, Adrian M; Pinto, Ana Cristina S; Silva, Ellen Cristina C; Nogueira, Karla L; Melo, Márcia R S; Henrique, Marycleuma C; Amorim, Rodrigo C N; Silva, Luis Francisco R; Costa, Mônica R F; Nunomura, Rita C S; Nunomura, Sergio M; Alecrim, Wilson D; Alecrim, M das Graças C; Chaves, F Célio M; Vieira, Pedro Paulo R

    2007-06-01

    In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  2. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    PubMed

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  3. Lessons learnt from 20 years surveillance of malaria drug resistance prior to the policy change in Burkina Faso.

    PubMed

    Tinto, Halidou; Valea, Innocent; Ouédraogo, Jean-Bosco; Guiguemdé, Tinga Robert

    2016-01-01

    The history of drug resistance to the previous antimalarial drugs, and the potential for resistance to evolve to Artemisinin-based combination therapies, demonstrates the necessity to set-up a good surveillance system in order to provide early warning of the development of resistance. Here we report a review summarizing the history of the surveillance of drug resistance that led to the policy change in Burkina Faso. The first Plasmodium falciparum Chloroquine-Resistance strain identified in Burkina Faso was detected by an in vitro test carried out in Koudougou in 1983. Nevertheless, no further cases were reported until 1987, suggesting that resistant strains had been circulating at a low prevalence before the beginning of the systematic surveillance system from 1984. We observed a marked increase of Chloroquine-Resistance in 2002-2003 probably due to the length of follow-up as the follow-up duration was 7 or 14 days before 2002 and 28 days from 2002 onwards. Therefore, pre-2002 studies have probably under-estimated the real prevalence of Chloroquine-Resistance by not detecting the late recrudescence. With a rate of 8.2% treatment failure reported in 2003, Sulfadoxine-Pyrimethamine was still efficacious for the treatment of uncomplicated malaria in Burkina Faso but this rate might rapidly increase as the result of its spreading from neighboring countries and due to its current use for both the Intermittent Preventive Treatment in pregnant women and Seasonal Malaria Chemoprophylaxis. The current strategy for the surveillance of the Artemisinin-based combination treatments resistance should build on lessons learnt under the previous period of 20 years surveillance of Chloroquine and Sulfadoxine-Pyrimethamine resistance (1994-2004). The most important aspect being to extend the number of sentinel sites so that data would be less patchy and could help understanding the dynamic of the resistance.

  4. Signalling to drug resistance in CLL.

    PubMed

    Hertlein, Erin; Byrd, John C

    2010-03-01

    The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signalling pathway is constitutively active in a variety of cancers, including chronic lymphocytic leukaemia (CLL). The importance of this signalling pathway identifies it as a prime therapeutic target; however, the complexity and potential side effects of inhibiting NF-kappaB have thus far made the clinical use of NF-kappaB inhibitors a relatively unexplored resource in this disease. This article discusses the role of NF-kappaB in CLL as a common crossroad for pathways promoting drug resistance in CLL. We provide the background on how this pathway contributes to both spontaneous and drug-induced apoptosis. Potential new avenues to regulate this pathway in CLL are also discussed.

  5. Use of antimalarials in dermatology.

    PubMed

    Ochsendorf, Falk R

    2010-10-01

    The antimalarials chloroquine and hydroxychloroquine have been used for the treatment of inflammatory diseases for more than 60 years. Even today new indications evolve due to the complex mode of action of these compounds. Due to the fear of side effects, especially irreversible retinopathy, their use is often limited. These side-effects, however, are a consequence of excessive daily dosages. An effective, safe therapy needs correct dosing, i. e. adherence to maximal daily dosages of 3.5(-4) mg chloroquine or 6(-6.5) mg hydroxychloroquine per kilogram ideal body weight. If the actual body weight is lower than the ideal body weight, this actual weight is used for the calculation of the dosage. Observing these limits allows a rather safe therapy of the diseases like lupus erythematosus, REM syndrome, porphyria cutanea tarda (2 × 125 mg chloroquine/week), cutaneous sarcoidosis and dermatomyositis. If standard therapies fail, then antimalarials can be tried to treat Sjögren syndrome, granuloma annulare or erosive lichen planus. If therapy fails, either can be combined with quinacrine to increase their effectiveness. Chloroquine and hydroxychloroquine are indispensable and well-tolerated essential drugs in dermatology and especially suited as part of a combination scheme, for example with corticosteroids, as they act synergistically and reduce side-effects.

  6. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  7. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    PubMed Central

    Ramli, Norazsida; Ahamed, Pakeer Oothuman Syed; Elhady, Hassan Mohamed; Taher, Muhammad

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group) during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000), 200 (P = 0.000) and 400 mg/kg doses (P = 0.000) in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection. PMID:25276063

  8. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... HUMAN SERVICES Food and Drug Administration Antibacterial Resistance and Diagnostic Device and Drug... resistance, rapid diagnostic device development for bacterial diseases, and antibacterial drug development. The workshop will address antibacterial drug resistance, mechanisms of resistance, epidemiology...

  9. Basigin is a druggable target for host-oriented antimalarial interventions

    PubMed Central

    Zenonos, Zenon A.; Dummler, Sara K.; Müller-Sienerth, Nicole; Chen, Jianzhu; Preiser, Peter R.; Rayner, Julian C.

    2015-01-01

    Plasmodium falciparum is the parasite responsible for the most lethal form of malaria, an infectious disease that causes a large proportion of childhood deaths and poses a significant barrier to socioeconomic development in many countries. Although antimalarial drugs exist, the repeated emergence and spread of drug-resistant parasites limit their useful lifespan. An alternative strategy that could limit the evolution of drug-resistant parasites is to target host factors that are essential and universally required for parasite growth. Host-targeted therapeutics have been successfully applied in other infectious diseases but have never been attempted for malaria. Here, we report the development of a recombinant chimeric antibody (Ab-1) against basigin, an erythrocyte receptor necessary for parasite invasion as a putative antimalarial therapeutic. Ab-1 inhibited the PfRH5-basigin interaction and potently blocked erythrocyte invasion by all parasite strains tested. Importantly, Ab-1 rapidly cleared an established P. falciparum blood-stage infection with no overt toxicity in an in vivo infection model. Collectively, our data demonstrate that antibodies or other therapeutics targeting host basigin could be an effective treatment for patients infected with multi-drug resistant P. falciparum. PMID:26195724

  10. On the Spread of Drug-Resistant Diseases

    NASA Astrophysics Data System (ADS)

    Schinazi, Rinaldo B.

    1999-10-01

    We introduce an interacting particle system to model the emergence of drug-resistant diseases, one of the most serious health problems in modern society. We are interested in diseases for which a natural strain may mutate into a drug-resistant strain. This happens, for instance, when antibiotics are misused. The main result of our analysis is that with an efficient drug against the natural strain, if there is even a small chance that the natural strain mutates into the drug-resistant one, then there will eventually be an outbreak of the drug-resistant strain throughout the population. In that case the natural strain disappears and is replaced by the drug-resistant strain. The disturbing part of this is that an efficient treatment of the natural strain gives an edge to the drug-resistant strain.

  11. My Cousin, My Enemy: quasispecies suppression of drug resistance

    PubMed Central

    Kirkegaard, Karla; van Buuren, Nicholas J; Mateo, Roberto

    2017-01-01

    If a freshly minted genome contains a mutation that confers drug resistance, will it be selected in the presence of the drug? Not necessarily. During viral infections, newly synthesized viral genomes occupy the same cells as parent and other progeny genomes. If the antiviral target is chosen so that the drug-resistant progeny’s growth is dominantly inhibited by the drug-susceptible members of its intracellular family, its outgrowth can be suppressed. Precedent for ‘dominant drug targeting’ as a deliberate approach to suppress the outgrowth of inhibitor-resistant viruses has been established for envelope variants of vesicular stomatitis virus and for capsid variants of poliovirus and dengue virus. Small molecules that stabilize oligomeric assemblages are a promising means to an unfit family to destroy the effectiveness of a newborn drug-resistant relative due to the co-assembly of drug-susceptible and drug-resistant monomers. PMID:27764731

  12. Characterization of noncovalent complexes of antimalarial agents of the artemisinin-type and FE(III)-heme by electrospray mass spectrometry and collisional activation tandem mass spectrometry.

    PubMed

    Pashynska, Vlada A; Van den Heuvel, Hilde; Claeys, Magda; Kosevich, Marina V

    2004-08-01

    In this study, we demonstrate, using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (ESI-MS/CID/MS), that stable noncovalent complexes can be formed between Fe(III)-heme and antimalarial agents, i.e., quinine, artemisinin, and the artemisinin derivatives, dihydroartemisinin, alpha- and beta-artemether, and beta-arteether. Differences in the binding behavior of the examined drugs with Fe(III)-heme and the stability of the drug-heme complexes are demonstrated. The results show that all tested antimalarial agents form a drug-heme complex with a 1:1 stoichiometry but that quinine also results in a second complex with the heme dimer. ESI-MS performed on mixtures of pairs of various antimalarial agents with heme indicate that quinine binds preferentially to Fe(III)-heme, while ESI-MS/CID/MS shows that the quinine-heme complex is nearly two times more stable than the complexes formed between heme and artemisinin or its derivatives. Moreover, it is found that dihydroartemisinin, the active metabolite of the artemisinin-type drugs in vivo, results in a Na(+)-containing heme-drug complex, which is as stable as the heme-quinine complex. The efficiency of drug-heme binding of artemisinin derivatives is generally lower and the decomposition under CID higher compared with quinine, but these parameters are within the same order of magnitude. These results suggest that the efficiency of antimalarial agents of the artemisinin-type to form noncovalent complexes with Fe(III)-heme is comparable with that of the traditional antimalarial agent, quinine. Our study illustrates that electrospray ionization mass spectrometry and collision-induced dissociation tandem mass spectrometry are suitable tools to probe noncovalent interactions between heme and antimalarial agents. The results obtained provide insights into the underlying molecular modes of action of the traditional antimalarial agent quinine and of the antimalarials of

  13. Comprehensive Treatment of Extensively Drug-Resistant Tuberculosis

    PubMed Central

    Mitnick, Carole D.; Shin, Sonya S.; Seung, Kwonjune J.; Rich, Michael L.; Atwood, Sidney S.; Furin, Jennifer J.; Fitzmaurice, Garrett M.; Alcantara Viru, Felix A.; Appleton, Sasha C.; Bayona, Jaime N.; Bonilla, Cesar A.; Chalco, Katiuska; Choi, Sharon; Franke, Molly F.; Fraser, Hamish S.F.; Guerra, Dalia; Hurtado, Rocio M.; Jazayeri, Darius; Joseph, Keith; Llaro, Karim; Mestanza, Lorena; Mukherjee, Joia S.; Muñoz, Maribel; Palacios, Eda; Sanchez, Epifanio; Sloutsky, Alexander; Becerra, Mercedes C.

    2009-01-01

    BACKGROUND Extensively drug-resistant tuberculosis has been reported in 45 countries, including countries with limited resources and a high burden of tuberculosis. We describe the management of extensively drug-resistant tuberculosis and treatment outcomes among patients who were referred for individualized outpatient therapy in Peru. METHODS A total of 810 patients were referred for free individualized therapy, including drug treatment, resective surgery, adverse-event management, and nutritional and psychosocial support. We tested isolates from 651 patients for extensively drug-resistant tuberculosis and developed regimens that included five or more drugs to which the infecting isolate was not resistant. RESULTS Of the 651 patients tested, 48 (7.4%) had extensively drug-resistant tuberculosis; the remaining 603 patients had multidrug-resistant tuberculosis. The patients with extensively drug-resistant tuberculosis had undergone more treatment than the other patients (mean [±SD] number of regimens, 4.2±1.9 vs. 3.2±1.6; P<0.001) and had isolates that were resistant to more drugs (number of drugs, 8.4±1.1 vs. 5.3±1.5; P<0.001). None of the patients with extensively drug-resistant tuberculosis were coinfected with the human immunodeficiency virus (HIV). Patients with extensively drug-resistant tuberculosis received daily, supervised therapy with an average of 5.3±1.3 drugs, including cycloserine, an injectable drug, and a fluoroquinolone. Twenty-nine of these patients (60.4%) completed treatment or were cured, as compared with 400 patients (66.3%) with multidrug-resistant tuberculosis (P=0.36). CONCLUSIONS Extensively drug-resistant tuberculosis can be cured in HIV-negative patients through outpatient treatment, even in those who have received multiple prior courses of therapy for tuberculosis. PMID:18687637

  14. Rhabdomyolysis associated with antimicrobial drug-resistant Mycoplasma pneumoniae.

    PubMed

    Oishi, Tomohiro; Narita, Mitsuo; Ohya, Hitomi; Yamanaka, Takayuki; Aizawa, Yuta; Matsuo, Mai; Matsunaga, Masamichi; Tsukano, Shinya; Taguchi, Testuo

    2012-05-01

    We describe a case of rhabdomyolysis in a patient infected with antimicrobial drug-resistant Mycoplasma pneumoniae The patient's acute-phase serum levels of interleukin-18 and tumor necrosis factor-α were high, which suggests a pathogenic role for M. pneumoniae. In an era of increasing antimicrobial drug resistance, a system for rapidly identifying resistant M. pneumoniae would be beneficial.

  15. Antimalarial activity of Bergenia ciliata (Haw.) Sternb. against Plasmodium berghei.

    PubMed

    Walter, Neha Sylvia; Bagai, Upma; Kalia, Shagun

    2013-09-01

    The emergence of resistance against most of the drugs in current use against malaria has aggravated the disease burden in endemic regions. Several plants species have been used for treatment of malaria in traditional/cultural health systems. Bergenia ciliata, used traditionally for treatment of fever by local communities in the Himalayan Region, was evaluated for its plausible role as an antimalarial. Phytochemical screening of the ethanolic leaf extract of B. ciliata (ELEBC) revealed the presence of phenols, flavonoids, steroids and diterpenes. The extract showed good in vitro antiplasmodial activity, with an IC50 <10 μg/ml. Acute toxicity of the extract was observed to be >5 g/kg, which is considered toxicologically safe for oral administration. When tested in vivo, different concentrations of the extract (250 to 1,000 mg/kg) exhibited considerable chemosuppression on day 7, in a dose-dependent manner. Maximum chemosuppression was observed to be 87.50% at 1,000 mg/kg. Administration of ELEBC (750 and 1,000 mg/kg) significantly (p < 0.0005) enhanced the mean survival time of mice in comparison to infected control, which exhibited a mean survival time of 8.6 ± 1.5 days. Study reports presence of considerable in vitro and in vivo antimalarial activity in ethanolic leaf extract of B. ciliata for first time. Hence, the ethnopharmacological usage of the plant for treating fever is confirmed with experimental evidence.

  16. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    ERIC Educational Resources Information Center

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  17. Evaluation of Idaho's DARE "Drug Abuse Resistance Education Projects."

    ERIC Educational Resources Information Center

    Silva, Roberta K.

    The goal of DARE (Drug Abuse Resistance Education) is not to completely eliminate the drug and alcohol problems of society. It is a proactive prevention program designed to equip youth (focusing on elementary school) with skills for resisting peer pressure to experiment with drugs, and to manage anger without resorting to violence or the use of…

  18. 2015 Update of the Drug Resistance Mutations in HIV-1.

    PubMed

    Wensing, Annemarie M; Calvez, Vincent; Günthard, Huldrych F; Johnson, Victoria A; Paredes, Roger; Pillay, Deenan; Shafer, Robert W; Richman, Douglas D

    2015-01-01

    The 2015 edition of the IAS-USA drug resistance mutations list updates the figures last published in July 2014. The mutations listed are those that have been identified by specific criteria for evidence and drugs described. The figures are designed to assist practitioners in identifying key mutations associated with resistance to antiretroviral drugs and, therefore, in making clinical decisions regarding antiretroviral therapy.

  19. 2017 Update of the Drug Resistance Mutations in HIV-1.

    PubMed

    Wensing, Annemarie M; Calvez, Vincent; Günthard, Huldrych F; Johnson, Victoria A; Paredes, Roger; Pillay, Deenan; Shafer, Robert W; Richman, Douglas D

    The 2017 edition of the IAS-USA drug resistance mutations list updates the figures last published in November 2015. The mutations listed are those that have been identified by specific criteria for evidence and drugs described. The figures are designed to assist practitioners in identifying key mutations associated with resistance to antiretroviral drugs and, therefore, in making clinical decisions regarding antiretroviral therapy.

  20. Bedaquiline: a novel antitubercular drug for multidrug-resistant tuberculosis.

    PubMed

    Nagabushan, H; Roopadevi, H S

    2014-01-01

    Multidrug-resistant and extensively drug-resistant tuberculosis (TB) are emerging global health threats. Bedaquiline is a new antituberculous drug belonging to the diarylquinoline class that efficiently inhibits the adenosine triphosphate synthase enzyme of Mycobacterium tuberculosis. It is a bactericidal and long-acting drug. It inhibits both dormant as well as replicating bacterial sub-populations and thus shortens the duration of TB treatment. This drug has been approved by the Food and Drug Administration in December 2012 for the management of multidrug resistant-TB. The drug marks the introduction of a new addition to the TB armamentarium after four decades.

  1. GEAR: A database of Genomic Elements Associated with drug Resistance

    PubMed Central

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  2. GEAR: A database of Genomic Elements Associated with drug Resistance.

    PubMed

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-03-15

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org.

  3. Counterfeit and Substandard Antimalarial Drugs

    MedlinePlus

    ... products, because some manufacturers try to avoid costly quality control and good manufacturing practices. The quality of commercially ... vary due to lack of regulations and poor quality control practices in many of these countries. Some pills ...

  4. Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis.

    PubMed

    Krüüner, Annika; Jureen, Pontus; Levina, Klavdia; Ghebremichael, Solomon; Hoffner, Sven

    2003-09-01

    It is generally thought that there is full cross-resistance in Mycobacterium tuberculosis between the aminoglycoside drugs kanamycin and amikacin. However, kanamycin resistance and amikacin susceptibility were seen in 43 of 79 (54%) multidrug-resistant Estonian isolates, indicating that there might be a need to test the resistance of M. tuberculosis isolates to both drugs.

  5. The Malaria TaqMan Array Card: 87 assays for Plasmodium falciparum drug resistance, speciation, and genotyping in a single reaction.

    PubMed

    Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Jacob, Shevin; Banura, Patrick; Moore, Christopher; Huang, Fang; Laufer, Miriam; Houpt, Eric; Guler, Jennifer

    2017-03-06

    Antimalarial drug resistance exacerbates the global disease burden and complicates eradication efforts. To facilitate the surveillance of resistance markers in malaria-endemic countries, we developed a suite of TaqMan assays for known resistance markers and compartmentalized them into a single array card (TAC). We included 87 assays for species identification, the detection of Plasmodium falciparum mutations associated with chloroquine, atovaquone, pyrimethamine, sulfadoxine, and artemisinin resistance, and neutral single nucleotide polymorphism (SNP) genotyping. Assay performance was first optimized using DNA from common laboratory parasite lines and plasmid controls. The limit of detection was 0.1-10 pg of DNA and yielded 100% accuracy when compared to sequencing. The tool was then evaluated on 87 clinical blood samples from around the world and the malaria-TAC once again achieved 100% accuracy when compared to sequencing, plus detected the presence of mixed infections in clinical samples. With its streamlined protocol and high accuracy, this malaria-TAC should be a useful tool for large-scale antimalarial resistance surveillance.

  6. AN ELEMENTARY APPROACH TO MODELING DRUG RESISTANCE IN CANCER

    PubMed Central

    Tomasetti, Cristian; Levy, Doron

    2013-01-01

    Resistance to drugs has been an ongoing obstacle to a successful treatment of many diseases. In this work we consider the problem of drug resistance in cancer, focusing on random genetic point mutations. Most previous works on mathematical models of such drug resistance have been based on stochastic methods. In contrast, our approach is based on an elementary, compartmental system of ordinary differential equations. We use our very simple approach to derive results on drug resistance that are comparable to those that were previously obtained using much more complex mathematical techniques. The simplicity of our model allows us to obtain analytic results for resistance to any number of drugs. In particular, we show that the amount of resistance generated before the start of the treatment, and present at some given time afterward, always depends on the turnover rate, no matter how many drugs are simultaneously used in the treatment. PMID:21077714

  7. Drug resistance reversal--are we getting closer?

    PubMed

    Baird, R D; Kaye, S B

    2003-11-01

    Clinical drug resistance is a major barrier to overcome before chemotherapy can become curative for most patients presenting with metastatic cancer. Rational attempts to tackle clinical drug resistance need to be based on an understanding of the mechanisms involved; these are likely to be complex and multifactorial, and may be due to inadequate drug exposure or alterations in the cancer cell itself. This article reviews a number of strategies used to tackle drug resistance, focussing on work in our institution related to the treatment of ovarian cancer and resistance to platinum and taxane-based chemotherapy. Further progress towards drug resistance reversal will require a three-pronged approach, namely: the development of novel cytotoxics which exploit selectively expressed targets; modulation of resistance to conventional agents and, most importantly, a serious attempt to understand resistance mechanisms in tumour samples taken both pre- and post-chemotherapy.

  8. Syntheses and antimalarial activities of N-substituted 11-azaartemisinins.

    PubMed

    Torok, D S; Ziffer, H; Meshnick, S R; Pan, X Q; Ager, A

    1995-12-22

    A two-step reaction sequence between artemisinin and methanolic ammonia followed by treatment with Amberlyst 15 yielded 11-azaartemisinin in 65% yield. Substituting a variety of primary alkyl- and heteroaromatic amines for ammonia in the reaction sequence yields N-substituted 11-azaartemisinins in similar or greater yield. When Amberlyst 15 is replaced by a mixture of sulfuric acid/silica gel, both 11-azaartemisinin and the expected metabolite, 10-azadesoxyartemisinin, are formed in 45% and 15% yields, respectively. In vitro and in vivo test data for a number of novel N-substituted 11-azaartemisinins, against drug-resistant strains of Plasmodium falciparum, show they possess antimalarial activities equal to or greater than that of artemisinin. The most active derivative, N-(2'-acetaldehydo)-11-azaartemisinin, 17, was 26 times more active in vitro and 4 times more active in vivo than artemisinin.

  9. EPIDEMIOLOGICAL AND GENETICAL STUDIES ON THE DRUG-RESISTANCE OF SHIGELLAE AND STAPHYLOCOCCI.

    DTIC Science & Technology

    ANTIBIOTICS , RESISTANCE (BIOLOGY)), (*SHIGELLA, RESISTANCE(BIOLOGY)), (*STAPHYLOCOCCUS, RESISTANCE(BIOLOGY)), EPIDEMIOLOGY, GENETICS, DRUGS, BACTERIOPHAGES, TETRACYCLINES, PENICILLINS, ESCHERICHIA COLI, JAPAN

  10. What is Multidrug and Extensively Drug Resistant TB?

    MedlinePlus

    ... org > Lung Health and Diseases > Lung Disease Lookup > Tuberculosis (TB) What Is Multidrug and Extensively Drug Resistant TB? Multidrug-resistant tuberculosis ( MDR TB ) is a very dangerous form of ...

  11. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine.

    PubMed

    Thiengsusuk, Artitaya; Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2013-04-01

    Malaria is one of the world's leading killer infectious diseases with high incidence and morbidity. The problem of multidrug-resistant Plasmodium falciparum has been aggravating particularly in Southeast Asia. Therefore, development of new potential antimalarial drugs is urgently required. The present study aimed to investigate antimalarial activities of a total of 27 medicinal plants and 5 herbal formulations used in Thai traditional medicine against chloroquine-resistant (K1) and chloroquine-sensitive (3D7) P. falciparum clones. Antimalarial activity of the ethanolic extracts of all plants/herbal formulations against K1 and 3D7 P. falciparum clones was assessed using SYBR Green I-based assay. All plants were initially screened at the concentration of 50 μg/ml to select the candidate plants that inhibited malaria growth by ≥50%. Each candidate plant was further assessed for the IC50 value (concentration that inhibits malaria growth by 50%) to select the potential plants. Selectivity index (SI) of each extract was determined from the IC50 ratio obtained from human renal epithelial cell and K1 or 3D7 P. falciparum clone. The ethanolic extracts from 19 medicinal plants/herbal formulation exhibited promising activity against both K1 and 3D7 clones of P. falciparum with survival of less than 50% at the concentration of 50 μg/ml. Among these, the extracts from the eight medicinal plants (Plumbago indica Linn., Garcinia mangostana Linn., Dracaena loureiri Gagnep., Dioscorea membranacea Pierre., Artemisia annua Linn., Piper chaba Hunt., Myristica fragrans Houtt., Kaempferia galanga Linn.) and two herbal formulations (Benjakul Formulation 1 and Pra-Sa-Prao-Yhai Formulation) showed potent antimalarial activity with median range IC50 values of less than 10 μg/ml against K1 or 3D7 P. falciparum clone or both. All except G. mangostana Linn. and A. annua Linn. showed high selective antimalarial activity against both clones with SI>10. Further studies on antimalarial

  12. Access to Artemisinin-Combination Therapy (ACT) and other Anti-Malarials: National Policy and Markets in Sierra Leone

    PubMed Central

    Amuasi, John H.; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S.; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days’ worth of wages in both the public and private sectors. PMID:23133522

  13. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    PubMed

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  14. Targeting efflux pumps to overcome antifungal drug resistance.

    PubMed

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  15. Drug resistance in Leishmania: similarities and differences to other organisms.

    PubMed

    Papadopoulou, B; Kündig, C; Singh, A; Ouellette, M

    1998-01-01

    The main line of defense available against parasitic protozoa is chemotherapy. Drug resistance has emerged however, as a primary obstacle to the successful treatment and control of parasitic diseases. Leishmania spp., the causative agents of leishmaniasis, have served as a useful model for studying mechanisms of drug resistance in vitro. Antimonials and amphotericin B are the first line drugs to treat Leishmania followed by pentamidine and a number of other drugs. Parasites resistant against all these classes of drugs have been selected under laboratory conditions. A multiplicity of resistance mechanisms has been detected, the most prevalent being gene amplification and transport mutations. With the tools now available, it should be possible to elucidate the mechanisms that govern drug resistance in field isolates and develop more effective chemotherapeutic agents.

  16. New approaches for understanding mechanisms of drug resistance in schistosomes

    PubMed Central

    GREENBERG, ROBERT M.

    2013-01-01

    SUMMARY Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease that affects hundreds of millions worldwide. Treatment and control of schistosomiasis relies almost entirely on the single drug praziquantel (PZQ), making the prospect of emerging drug resistance particularly worrisome. This review will survey reports of PZQ (and other drug) resistance in schistosomes and other platyhelminths, and explore mechanisms by which drug resistance might develop. Newer genomic and post-genomic strategies that offer the promise of better understanding of how drug resistance might arise in these organisms will be discussed. These approaches could also lead to insights into the mode of action of these drugs and potentially provide markers for monitoring the emergence of resistance. PMID:23552512

  17. Antimalarial properties of imipramine and amitriptyline

    SciTech Connect

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-03-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 ..mu..M) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring (/sup 3/H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of (/sup 3/H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37/sup 0/C with variable concentrations of drugs and/or FP (1-7 ..mu..M). Both drugs at 10 to 100 ..mu..M significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria.

  18. The dynamics of drug resistance: a mathematical perspective.

    PubMed

    Lavi, Orit; Gottesman, Michael M; Levy, Doron

    2012-01-01

    Resistance to chemotherapy is a key impediment to successful cancer treatment that has been intensively studied for the last three decades. Several central mechanisms have been identified as contributing to the resistance. In the case of multidrug resistance (MDR), the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Mathematical models of drug resistance have dealt with many of the known aspects of this field, such as pharmacologic sanctuary and location/diffusion resistance, intrinsic resistance, induced resistance and acquired resistance. In addition, there are mathematical models that take into account the kinetic/phase resistance, and models that investigate intracellular mechanisms based on specific biological functions (such as ABC transporters, apoptosis and repair mechanisms). This review covers aspects of MDR that have been mathematically studied, and explains how, from a methodological perspective, mathematics can be used to study drug resistance. We discuss quantitative approaches of mathematical analysis, and demonstrate how mathematics can be used in combination with other experimental and clinical tools. We emphasize the potential benefits of integrating analytical and mathematical methods into future clinical and experimental studies of drug resistance.

  19. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination

    PubMed Central

    Sun, Xiaoqiang; Bao, Jiguang; You, Zhuhong; Chen, Xing; Cui, Jun

    2016-01-01

    The efficacy of pharmacological perturbation to the signaling transduction network depends on the network topology. However, whether and how signaling dynamics mediated by crosstalk contributes to the drug resistance are not fully understood and remain to be systematically explored. In this study, motivated by a realistic signaling network linked by crosstalk between EGF/EGFR/Ras/MEK/ERK pathway and HGF/HGFR/PI3K/AKT pathway, we develop kinetic models for several small networks with typical crosstalk modules to investigate the role of the architecture of crosstalk in inducing drug resistance. Our results demonstrate that crosstalk inhibition diminishes the response of signaling output to the external stimuli. Moreover, we show that signaling crosstalk affects the relative sensitivity of drugs, and some types of crosstalk modules that could yield resistance to the targeted drugs were identified. Furthermore, we quantitatively evaluate the relative efficacy and synergism of drug combinations. For the modules that are resistant to the targeted drug, we identify drug targets that can not only increase the relative drug efficacy but also act synergistically. In addition, we analyze the role of the strength of crosstalk in switching a module between drug-sensitive and drug-resistant. Our study provides mechanistic insights into the signaling crosstalk-mediated mechanisms of drug resistance and provides implications for the design of synergistic drug combinations to reduce drug resistance. PMID:27590512

  20. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species.

    PubMed

    Gopalakrishnan, Anusha M; Kumar, Nirbhay

    2015-01-01

    Artemisinin-based combination therapy (ACT) is the recommended first-line treatment for Plasmodium falciparum malaria. It has been suggested that the cytotoxic effect of artemisinin is mediated by free radicals followed by the alkylation of P. falciparum proteins. The endoperoxide bridge, the active moiety of artemisinin derivatives, is cleaved in the presence of ferrous iron, generating reactive oxygen species (ROS) and other free radicals. However, the emergence of resistance to artemisinin in P. falciparum underscores the need for new insights into the molecular mechanisms of antimalarial activity of artemisinin. Here we show that artesunate (ART) induces DNA double-strand breaks in P. falciparum in a physiologically relevant dose- and time-dependent manner. DNA damage induced by ART was accompanied by an increase in the intracellular ROS level in the parasites. Mannitol, a ROS scavenger, reversed the cytotoxic effect of ART and reduced DNA damage, and modulation of glutathione (GSH) levels was found to impact ROS and DNA damage induced by ART. Accumulation of ROS, increased DNA damage, and the resulting antiparasite effect suggest a causal relationship between ROS, DNA damage, and parasite death. Finally, we also show that ART-induced ROS production involves a potential role for NADPH oxidase, an enzyme involved in the production of superoxide anions. Our results with P. falciparum provide novel insights into previously unknown molecular mechanisms underlying the antimalarial activity of artemisinin derivatives and may help in the design of next-generation antimalarial drugs against the most virulent Plasmodium species.

  1. Antimalarial pharmacology and therapeutics of atovaquone.

    PubMed

    Nixon, Gemma L; Moss, Darren M; Shone, Alison E; Lalloo, David G; Fisher, Nicholas; O'Neill, Paul M; Ward, Stephen A; Biagini, Giancarlo A

    2013-05-01

    Atovaquone is used as a fixed-dose combination with proguanil (Malarone) for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travellers. Indeed, in the USA, between 2009 and 2011, Malarone prescriptions accounted for 70% of all antimalarial pre-travel prescriptions. In 2013 the patent for Malarone will expire, potentially resulting in a wave of low-cost generics. Furthermore, the malaria scientific community has a number of antimalarial quinolones with a related pharmacophore to atovaquone at various stages of pre-clinical development. With this in mind, it is timely here to review the current knowledge of atovaquone, with the purpose of aiding the decision making of clinicians and drug developers involved in the future use of atovaquone generics or atovaquone derivatives.

  2. Accepting the Invitation to Open Innovation in Malaria Drug Discovery: Synthesis, Biological Evaluation, and Investigation on the Structure-Activity Relationships of Benzo[b]thiophene-2-carboxamides as Antimalarial Agents.

    PubMed

    Pieroni, Marco; Azzali, Elisa; Basilico, Nicoletta; Parapini, Silvia; Zolkiewski, Michal; Beato, Claudia; Annunziato, Giannamaria; Bruno, Agostino; Vacondio, Federica; Costantino, Gabriele

    2017-03-09

    Malaria eradication is a global health priority, but current therapies are not always suitable for providing a radical cure. Artemisinin has paved the way for the current malaria treatment, the so-called Artemisinin-based Combination Therapy (ACT). However, with the detection of resistance to ACT, innovative compounds active against multiple parasite species and at multiple life stages are needed. GlaxoSmithKline has recently disclosed the results of a phenotypic screening of an internal library, publishing a collection of 400 antimalarial chemotypes, termed the "Malaria Box". After analysis of the data set, we have carried out a medicinal chemistry campaign in order to define the structure-activity relationships for one of the released compounds, which embodies a benzothiophene-2-carboxamide core. Thirty-five compounds were prepared, and a description of the structural features responsible for the in vitro activity against different strains of P. falciparum, the toxicity, and the metabolic stability is herein reported.

  3. Diagnosis and Treatment of Drug-Resistant Tuberculosis.

    PubMed

    Caminero, José A; Cayla, Joan A; García-García, José-María; García-Pérez, Francisco J; Palacios, Juan J; Ruiz-Manzano, Juan

    2017-03-27

    In the last 2 decades, drug-resistant tuberculosis has become a threat and a challenge to worldwide public health. The diagnosis and treatment of these forms of tuberculosis are much more complex and prognosis clearly worsens as the resistance pattern intensifies. Nevertheless, it is important to remember that with the appropriatesystematic clinical management, most of these patients can be cured. These guidelines itemize the basis for the diagnosis and treatment of all tuberculosis patients, from those infected by strains that are sensitive to all drugs, to those who are extensively drug-resistant. Specific recommendations are given forall cases. The current and future role of new molecular methods for detecting resistance, shorter multi-drug-resistant tuberculosis regimens, and new drugs with activity against Mycobacterium tuberculosis are also addressed.

  4. Plasmodium Drug Targets Outside the Genetic Control of the Parasite

    PubMed Central

    Sullivan, David J.

    2014-01-01

    Drug development often seeks to find “magic bullets” which target microbiologic proteins while not affecting host proteins. Paul Ehrlich tested methylene blue as an antimalarial but this dye was not superior to quinine. Many successful antimalarial therapies are “magic shotguns” which target many Plasmodium pathways with little interference in host metabolism. Two malaria drug classes, the 8-aminoquinolines and the artemisinins interact with cytochrome P450s and host iron protoporphyrin IX or iron, respectively, to generate toxic metabolites and/or radicals, which kill the parasite by interference with many proteins. The non 8-amino antimalarial quinolines like quinine or piperaquine bind heme to inhibit the process of heme crystallization, which results in multiple enzyme inhibition and membrane dysfunction. The quinolines and artemisinins are rapidly parasiticidal in contrast to metal chelators, which have a slower parasite clearance rate with higher drug concentrations. Iron chelators interfere with the artemisinins but otherwise represent a strategy of targeting multiple enzymes containing iron. Interest has been revived in antineoplastic drugs that target DNA metabolism as antimalarials. Specific drug targeting or investigation of the innate immunity directed to the more permeable trophozoite or schizont infected erythrocyte membrane has been under explored. Novel drug classes in the antimalarial development pipeline which either target multiple proteins or unchangeable cellular targets will slow the pace of drug resistance acquisition. PMID:22973888

  5. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance

    PubMed Central

    Chevereau, Guillaume; Dravecká, Marta; Batur, Tugce; Guvenek, Aysegul; Ayhan, Dilay Hazal; Toprak, Erdal; Bollenbach, Tobias

    2015-01-01

    The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the “morbidostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations—an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall

  6. Drug Response and Resistance in Advanced NF-1-Associated Cancers

    DTIC Science & Technology

    2015-07-01

    in Nf1 mutant mice and have investigated mechanisms of drug responses and resistance. Our studies of MEK inhibitors in Nf1 mutant mice unexpectedly...Nf1 inactivation; (4) implementing protocols for treating mice with CPX-351; and (5) performing in vivo studies of drug combinations in Nf1 mutant AML...MPN and AML in Nf1 mutant mice and have investigated mechanisms of drug response and resistance. Our studies of MEK inhibitors in Nf1 mutant mice

  7. Resistance to anti-influenza drugs: adamantanes and neuraminidase inhibitors.

    PubMed

    Hurt, Aeron C; Ho, Hui-Ting; Barr, Ian

    2006-10-01

    Development of effective drugs for the treatment or prevention of epidemic and pandemic influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs available for influenza therapy currently. However, emergence of resistance to these drugs has been detected, which raises concerns regarding their widespread use. In this review, resistance to the adamantanes and neuraminidase inhibitors will be discussed in relation to both epidemic and pandemic influenza viruses.

  8. Fitness cost of chromosomal drug resistance-conferring mutations.

    PubMed

    Sander, Peter; Springer, Burkhard; Prammananan, Therdsak; Sturmfels, Antje; Kappler, Martin; Pletschette, Michel; Böttger, Erik C

    2002-05-01

    To study the cost of chromosomal drug resistance mutations to bacteria, we investigated the fitness cost of mutations that confer resistance to different classes of antibiotics affecting bacterial protein synthesis (aminocyclitols, 2-deoxystreptamines, macrolides). We used a model system based on an in vitro competition assay with defined Mycobacterium smegmatis laboratory mutants; selected mutations were introduced by genetic techniques to address the possibility that compensatory mutations ameliorate the resistance cost. We found that the chromosomal drug resistance mutations studied often had only a small fitness cost; compensatory mutations were not involved in low-cost or no-cost resistance mutations. When drug resistance mutations found in clinical isolates were considered, selection of those mutations that have little or no fitness cost in the in vitro competition assay seems to occur. These results argue against expectations that link decreased levels of antibiotic consumption with the decline in the level of resistance.

  9. Antitubercular Drug Resistance in Four Healthcare Facilities in North India

    PubMed Central

    Gupta, Anamika; Mathuria, Jitendra Prasad; Singh, Surya Kumar; Gulati, Anil Kumar

    2011-01-01

    Tuberculosis (TB) is a major public-health problem in India, having the highest number of incident and multidrug-resistant (MDR) TB cases. The study was carried out to appraise the prevalence of first-line anti-TB drug resistance in Mycobacterium tuberculosis (MTB) and its patterns among different types of TB patients from different settings in a province of North India. Of 3,704 clinical specimens, 345 (9.3%) were culture-positive, and drug-susceptibility testing was carried out for 301 MTB strains. A high level of primary and acquired drug resistance of MTB was observed in the region studied, with weighted mean of 10.5% and 28.08%, 12.81% and 29.72%, 17.12% and 29.94%, 11.97% and 27.84%, and 10.74% and 23.54% for rifampicin, isoniazid, streptomycin, ethambutol-resistant and MDR cases respectively. Drug resistance was significantly higher in pulmonary (p=0.014) and acquired drug-resistant TB cases (p<0.001). Any drug resistance (p=0.002) and MDR TB were significantly (p=0.009) associated with HIV-seropositive cases. An urgent plan is needed to continuously monitor the transmission trends of drug-resistant strains, especially MDR-TB strains, in the region. PMID:22283032

  10. Overcome Cancer Cell Drug Resistance Using Natural Products

    PubMed Central

    Wang, Pu; Yang, Hua Li; Yang, Ying Juan; Wang, Lan; Lee, Shao Chin

    2015-01-01

    Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1) in vitro studies using cell line models; (2) serum pharmacology; (3) in vivo studies using animal models; and (4) clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance. PMID:26421052

  11. In vitro and in vivo antimalarial activity of amphiphilic naphthothiazolium salts with amine-bearing side chains.

    PubMed

    Ulrich, Peter; Gipson, Gregory R; Clark, Martha A; Tripathi, Abhai; Sullivan, David J; Cerami, Carla

    2014-10-01

    Because of emerging resistance to existing drugs, new chemical classes of antimalarial drugs are urgently needed. We have rationally designed a library of compounds that were predicted to accumulate in the digestive vacuole and then decrystallize hemozoin by breaking the iron carboxylate bond in hemozoin. We report the synthesis of 16 naphthothiazolium salts with amine-bearing side chains and their activities against the erythrocytic stage of Plasmodium falciparum in vitro. KSWI-855, the compound with the highest efficacy against the asexual stages of P. falciparum in vitro, also had in vitro activity against P. falciparum gametocytes and in vivo activity against P. berghei in a murine malaria model.

  12. Cancer stem cells and drug resistance: the potential of nanomedicine

    PubMed Central

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  13. Drug Evaluation in the Plasmodium Falciparum-Aotus Model

    DTIC Science & Technology

    1996-03-01

    with. drug resistant P. falciparum, chloroquine resist ance-l R) was reversed by chlorpromazine and prochlorperazine. Both water-insoluble and soluble...Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985) For the protection of human sub...new drugs be evaluated in the preclinical Aotus model for their potential usefulness against human infections. Initially, antimalarial drug studies

  14. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  15. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  16. Antimalarial properties of SAABMAL®: an ethnomedicinal polyherbal formulation for the treatment of uncomplicated malaria infection in the tropics

    PubMed Central

    Obidike, I.C.; Amodu, B.; Emeje, M.O.

    2015-01-01

    Background & objectives: Malaria is a serious problem in the countries of the developing world. As the malaria parasite has become resistant to most of the antimalaria drugs available currently, there is a need to search for newer drugs. This study reports the pharmaceutical quality and in vivo antimalarial activities of a polyherbal formulation (SAABMAL®) used as malarial remedy in Nigeria. Methods: The antiplasmodial activity of SAABMAL® was determined by using the 4-day suppressive test in Plasmodium berghei-infected mice. The formulation was tried on three different experimental animal models for in vivo antimalarial activities, which are prophylactic, suppressive and curative in mice. Chloroquine and pyrimethamine were used as standard drugs for comparison. Results: The suppressive study showed that, SAABMAL® (200 and 400 mg/kg/bw) significantly (P<0.01) produced a suppression (29.39 - 100%) of parasitaemia in a dose-dependent manner, while the curative study showed that SAABMAL® at 400 mg significantly (P<0.01) reduced (95.80%) parasitaemia compared with controls. The mean survival time of SAABMAL®-treated groups (100 and 200 mg/kg) was higher than that of the chloroquine-treated group. Histopathologically, no changes were found in the spleen of both untreated and treated groups. SAABMAL® capsules were of good mechanical properties with low weight variation and high degree of content mass uniformity. Interpretation & conclusions: The results obtained in this study showed the efficacy of SAABMAL®, a herbal antimalarial formulation against chloroquine sensitive malaria and its potential use in the treatment of uncomplicated malaria infection. Further studies need to be done in humans to test its efficacy and safety for its potential use as an antimalarial drug. PMID:25900958

  17. Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections

    DTIC Science & Technology

    2014-10-01

    Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections PRINCIPAL INVESTIGATOR: Andrew M. Gulick, PhD...Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0218 5c... infections . Recently, community-acquired infections , infections in wounded U.S. service members, and infections in residents of long-term care facilities

  18. Totally drug-resistant tuberculosis and adjunct therapies.

    PubMed

    Parida, S K; Axelsson-Robertson, R; Rao, M V; Singh, N; Master, I; Lutckii, A; Keshavjee, S; Andersson, J; Zumla, A; Maeurer, M

    2015-04-01

    The first cases of totally drug-resistant (TDR) tuberculosis (TB) were reported in Italy 10 years ago; more recently, cases have also been reported in Iran, India and South Africa. Although there is no consensus on terminology, it is most commonly described as 'resistance to all first- and second-line drugs used to treat TB'. Mycobacterium tuberculosis (M.tb) acquires drug resistance mutations in a sequential fashion under suboptimal drug pressure due to monotherapy, inadequate dosing, treatment interruptions and drug interactions. The treatment of TDR-TB includes antibiotics with disputed or minimal effectiveness against M.tb, and the fatality rate is high. Comorbidities such as diabetes and infection with human immunodeficiency virus further impact on TB treatment options and survival rates. Several new drug candidates with novel modes of action are under late-stage clinical evaluation (e.g., delamanid, bedaquiline, SQ109 and sutezolid). 'Repurposed' antibiotics have also recently been included in the treatment of extensively drug resistant TB. However, because of mutations in M.tb, drugs will not provide a cure for TB in the long term. Adjunct TB therapies, including therapeutic vaccines, vitamin supplementation and/or repurposing of drugs targeting biologically and clinically relevant molecular pathways, may achieve better clinical outcomes in combination with standard chemotherapy. Here, we review broader perspectives of drug resistance in TB and potential adjunct treatment options.

  19. A Hybrid Drug Limits Resistance by Evading the Action of the Multiple Antibiotic Resistance Pathway

    PubMed Central

    Wang, Kathy K.; Stone, Laura K.; Lieberman, Tami D.; Shavit, Michal; Baasov, Timor; Kishony, Roy

    2016-01-01

    Hybrid drugs are a promising strategy to address the growing problem of drug resistance, but the mechanism by which they modulate the evolution of resistance is poorly understood. Integrating high-throughput resistance measurements and genomic sequencing, we compared Escherichia coli populations evolved in a hybrid antibiotic that links ciprofloxacin and neomycin B with populations evolved in combinations of the component drugs. We find that populations evolved in the hybrid gain less resistance than those evolved in an equimolar mixture of the hybrid’s components, in part because the hybrid evades resistance mediated by the multiple antibiotic resistance (mar) operon. Furthermore, we find that the ciprofloxacin moiety of the hybrid inhibits bacterial growth whereas the neomycin B moiety diminishes the effectiveness of mar activation. More generally, comparing the phenotypic and genotypic paths to resistance across different drug treatments can pinpoint unique properties of new compounds that limit the emergence of resistance. PMID:26538141

  20. A Hybrid Drug Limits Resistance by Evading the Action of the Multiple Antibiotic Resistance Pathway.

    PubMed

    Wang, Kathy K; Stone, Laura K; Lieberman, Tami D; Shavit, Michal; Baasov, Timor; Kishony, Roy

    2016-02-01

    Hybrid drugs are a promising strategy to address the growing problem of drug resistance, but the mechanism by which they modulate the evolution of resistance is poorly understood. Integrating high-throughput resistance measurements and genomic sequencing, we compared Escherichia coli populations evolved in a hybrid antibiotic that links ciprofloxacin and neomycin B with populations evolved in combinations of the component drugs. We find that populations evolved in the hybrid gain less resistance than those evolved in an equimolar mixture of the hybrid's components, in part because the hybrid evades resistance mediated by the multiple antibiotic resistance (mar) operon. Furthermore, we find that the ciprofloxacin moiety of the hybrid inhibits bacterial growth whereas the neomycin B moiety diminishes the effectiveness of mar activation. More generally, comparing the phenotypic and genotypic paths to resistance across different drug treatments can pinpoint unique properties of new compounds that limit the emergence of resistance.

  1. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch.

    PubMed Central

    Asnaashari, Solmaz; Heshmati Afshar, Fariba; Ebrahimi, Atefeh; Bamdad Moghadam, Sedigheh; Delazar, Abbas

    2015-01-01

    Introduction:The risk of drug resistance and the use of medicinal plants in malaria prevention and treatment have led to the search for new antimalarial compounds with natural origin. Methods:In the current study, six extracts with different polarity from aerial parts and rhizomes of Eremostachys macrophylla Montbr. & Auch., were screened for their antimalarial properties by cell-free β-hematin formation assay. Results: Dichloromethane (DCM) extracts of both parts of plant showed significant antimalarial activities with IC50 values of 0.797 ± 0.016 mg/mL in aerial parts and 0.324 ± 0.039 mg/mL in rhizomes compared to positive control (Chloroquine, IC50 = 0.014 ± 0.003 mg/mL, IC90 = 0.163 ± 0.004 mg/mL). Bioactivity-guided fractionation of the most potent part (DCM extract of rhizomes) by vacuum liquid chromatography (VLC) afforded seven fractions. Sixty percent ethyl acetate/n-hexane fraction showed considerable antimalarial activity with IC50 value of 0.047 ± 0.0003 mg/mL. Conclusion: From 6 extracts with different polarity of E. macrophylla,s aerial parts and rhizomes, the DCM extract of both parts were the most active extract in this assay. The preliminary phytochemical study on the VLC fractions of the most potent part persuades us to focus on purifying the active components of these extracts and to conduct further investigation towards in vivo evaluation. PMID:26457251

  2. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  3. Rapid evolution of drug resistance of multiple myeloma in the microenvironment with drug gradients

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Silva, Ariosto; Gatenby, Robert; Kim, John; Pourmand, Nader; Austin, Robert; Sturm, James

    2013-03-01

    Drug resistance in cancer is usually caused by the spatial drug gradients in tumor environment. Here, we culture multiple myeloma in a gradient from 0 to 20 nM of doxorubicin (genotoxic drug) across 2 mm wide region for 12 days. The myeloma cells grew rapidly and formed 3D colonies in the regions with less drug concentration. However, we have seen emergent colonies forming in regions with drug concentration above the minimal inhibitory concentration in less than one week. Once the cells have occupied the regions with less drug concentration, they tend to migrate toward the regions with higher drug concentration in a collective behavior. To characterize their resistance, we collect them from this microfluidic system, for further analysis of the dose response. We find that the IC50 (drug concentration that inhibits 50% of controlled population) of the cells, undergone a drug gradient, increase 16-fold of the wildtype cells. We further discover that these resistant cells express more Multidrug Resistance (mdr) protein, which pumps out the drugs and causes drug resistance, than the wildtype. Our current works on RNA-sequencing analysis may discover other biomolecular mechanisms that may confer the drug resistance.

  4. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5.

    PubMed

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J

    2014-06-06

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.

  5. Injections, Cocktails and Diviners: Therapeutic Flexibility in the Context of Malaria Elimination and Drug Resistance in Northeast Cambodia

    PubMed Central

    Gryseels, Charlotte; Uk, Sambunny; Erhart, Annette; Gerrets, René; Sluydts, Vincent; Durnez, Lies; Muela Ribera, Joan; Hausmann Muela, Susanna; Menard, Didier; Heng, Somony; Sochantha, Tho; D’Alessandro, Umberto; Coosemans, Marc; Peeters Grietens, Koen

    2013-01-01

    Background Adherence to effective malaria medication is extremely important in the context of Cambodia’s elimination targets and drug resistance containment. Although the public sector health facilities are accessible to the local ethnic minorities of Ratanakiri province (Northeast Cambodia), their illness itineraries often lead them to private pharmacies selling “cocktails” and artemether injections, or to local diviners prescribing animal sacrifices to appease the spirits. Methods The research design consisted of a mixed methods study, combining qualitative (in-depth interviews and participant observation) and quantitative methods (household and cross-sectional survey). Results Three broad options for malaria treatment were identified: i) the public sector; ii) the private sector; iii) traditional treatment based on divination and ceremonial sacrifice. Treatment choice was influenced by the availability of treatment and provider, perceived side effects and efficacy of treatments, perceived etiology of symptoms, and patient-health provider encounters. Moreover, treatment paths proved to be highly flexible, changing mostly in relation to the perceived efficacy of a chosen treatment. Conclusions Despite good availability of anti-malarial treatment in the public health sector, attendance remained low due to both structural and human behavioral factors. The common use and under-dosage of anti-malaria monotherapy in the private sector (single-dose injections, single-day drug cocktails) represents a threat not only for individual case management, but also for the regional plan of drug resistance containment and malaria elimination. PMID:24244678

  6. High content live cell imaging for the discovery of new antimalarial marine natural products

    PubMed Central

    2012-01-01

    Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291

  7. Exploiting bacterial drug resistance: a single construct for the diagnosis and treatment of drug resistant infections

    NASA Astrophysics Data System (ADS)

    Sallum, Ulysses W.; Zheng, Xiang; Verma, Sarika; Hasan, Tayyaba

    2009-06-01

    β-lactamase enzyme-activated photosensitizer (β-LEAP). We aim to exploit drug resistance mechanisms to selectively release photosensitizers (PSs) for a specific photodynamic antimicrobial effect and reduced host tissue damage. Consequently, the fluorescence emission intensity of the PSs increases and allows for the detection of enzyme activity. In this work we sought to evaluate β-LEAP for use as a sensitive molecular probe. We have reported the enzyme specific antibacterial action of β-LEAP. Here we report the use of β-LEAP for the rapid functional definition of a β-lactamase.

  8. Understanding Drug Resistance in Breast Cancer with Mathematical Oncology

    PubMed Central

    Brocato, Terisse; Dogra, Prashant; Koay, Eugene J.; Day, Armin; Chuang, Yao-Li; Wang, Zhihui; Cristini, Vittorio

    2014-01-01

    Chemotherapy is mainstay of treatment for the majority of patients with breast cancer, but results in only 26% of patients with distant metastasis living 5 years past treatment in the United States, largely due to drug resistance. The complexity of drug resistance calls for an integrated approach of mathematical modeling and experimental investigation to develop quantitative tools that reveal insights into drug resistance mechanisms, predict chemotherapy efficacy, and identify novel treatment approaches. This paper reviews recent modeling work for understanding cancer drug resistance through the use of computer simulations of molecular signaling networks and cancerous tissues, with a particular focus on breast cancer. These mathematical models are developed by drawing on current advances in molecular biology, physical characterization of tumors, and emerging drug delivery methods (e.g., nanotherapeutics). We focus our discussion on representative modeling works that have provided quantitative insight into chemotherapy resistance in breast cancer and how drug resistance can be overcome or minimized to optimize chemotherapy treatment. We also discuss future directions of mathematical modeling in understanding drug resistance. PMID:24891927

  9. [New tuberculosis drugs in resistant and multiresistant tuberculosis].

    PubMed

    Ramírez Lapausa, Marta; Pascual Pareja, José Francisco; Noguerado Asensio, Arturo

    2013-10-05

    Drug-resistant tuberculosis is a globally emerging problem with a rising incidence. According to the WHO in 2008, 17% of strains of Mycobacterium tuberculosis, in untreated cases were resistant to at least one drug and 3.6% were resistant to rifampicin and isoniazid, which is called multidrug-resistant tuberculosis. The problem is greater in patients previously treated and in some countries, where rates of multidrug resistance reach 60%. Approximately 5% of multidrug-resistant tuberculosis patients are also resistant to any fluoroquinolone and at least one injectable drug, being called extensively drug-resistant tuberculosis. The treatment of these forms of tuberculosis requires the use of second-line drugs, which causes higher cost, higher toxicity and a longer duration of treatment. There is a need for new compounds with efficacy and safety profiles better than those currently used to treat these forms of tuberculosis. In the last decade different drugs have being reassessed and appeared, which are at different stages of development.

  10. Drug resistance analysis of bacterial strains isolated from burn patients.

    PubMed

    Wang, L F; Li, J L; Ma, W H; Li, J Y

    2014-01-22

    This study aimed to analyze the spectrum and drug resistance of bacteria isolated from burn patients to provide a reference for rational clinical use of antibiotics. Up to 1914 bacterial strain specimens isolated from burn patients admitted to hospital between 2001 and 2010 were subjected to resistance monitoring by using the K-B paper disk method. Retrospective analysis was performed on drug resistance analysis of burn patients. The top eight bacterium strains according to detection rate. A total of 1355 strains of Gram-negative (G(-)) bacteria and 559 strains of Gram-positive (G(+)) bacteria were detected. The top eight bacterium strains, according to detection rate, were Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Enterococcus. Drug resistance rates were higher than 90% in A. baumannii, P. aeruginosa, S. epidermidis, and S. aureus, which accounted for 52.2, 21.7, 27.8, and 33.3%, respectively, of the entire sample. Those with drug resistance rates lower than 30% accounted for 4.3, 30.4, 16.7, and 16.7%, respectively. Multidrug-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) accounted for 49.2 and 76.4% of the S. epidermis and S. aureus resistance, respectively. Antibacterial drugs that had drug resistance rates to MRSE and MRSA higher than 90% accounted for 38.9 and 72.2%, respectively, whereas those with lower than 30% drug resistance rates accounted for 11.1 and 16.7%, respectively. The burn patients enrolled in the study were mainly infected with G(-) bacteria. These results strongly suggest that clinicians should practice rational use of antibiotics based on drug susceptibility test results.

  11. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors.

    PubMed

    Kato, Nobutaka; Comer, Eamon; Sakata-Kato, Tomoyo; Sharma, Arvind; Sharma, Manmohan; Maetani, Micah; Bastien, Jessica; Brancucci, Nicolas M; Bittker, Joshua A; Corey, Victoria; Clarke, David; Derbyshire, Emily R; Dornan, Gillian L; Duffy, Sandra; Eckley, Sean; Itoe, Maurice A; Koolen, Karin M J; Lewis, Timothy A; Lui, Ping S; Lukens, Amanda K; Lund, Emily; March, Sandra; Meibalan, Elamaran; Meier, Bennett C; McPhail, Jacob A; Mitasev, Branko; Moss, Eli L; Sayes, Morgane; Van Gessel, Yvonne; Wawer, Mathias J; Yoshinaga, Takashi; Zeeman, Anne-Marie; Avery, Vicky M; Bhatia, Sangeeta N; Burke, John E; Catteruccia, Flaminia; Clardy, Jon C; Clemons, Paul A; Dechering, Koen J; Duvall, Jeremy R; Foley, Michael A; Gusovsky, Fabian; Kocken, Clemens H M; Marti, Matthias; Morningstar, Marshall L; Munoz, Benito; Neafsey, Daniel E; Sharma, Amit; Winzeler, Elizabeth A; Wirth, Dyann F; Scherer, Christina A; Schreiber, Stuart L

    2016-10-20

    Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.

  12. PCP prevention--more cases of resistance to sulfa drugs.

    PubMed

    1998-09-01

    Three studies that are highlighted suggest that PCP-causing microbes are developing resistance to Bactrim/Septra (B/S), the drug of choice for preventing the life-threatening complications caused by PCP, toxoplasmosis, and bacterial pneumonia. While resistance does not appear to be happening on a large scale, it is a concern because no other drug has the same beneficial effects of B/S. Research is needed for simple, low-toxicity treatments and prophylactic drugs for PCP, before resistance becomes a common problem.

  13. Microenvironment drug resistance in multiple myeloma: emerging new players

    PubMed Central

    Solimando, Antonio Giovanni; Ruggieri, Simona; Annese, Tiziana; Nico, Beatrice; Fumarulo, Ruggiero; Vacca, Angelo; Frassanito, Maria Antonia

    2016-01-01

    Multiple myeloma (MM) drug resistance (DR) is a multistep transformation process based on a powerful interplay between bone marrow stromal cells and MM cells that allows the latter to escape anti-myeloma therapies. Here we present an overview of the role of the bone marrow microenvironment in both soluble factors-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR), focusing on the role of new players, namely miRNAs, exosomes and cancer-associated fibroblasts. PMID:27474171

  14. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  15. Optimizing the programmatic deployment of the anti-malarials artemether-lumefantrine and dihydroartemisinin-piperaquine using pharmacological modelling

    PubMed Central

    2014-01-01

    Background Successful programmatic use of anti-malarials faces challenges that are not covered by standard drug development processes. The development of appropriate pragmatic dosing regimens for low-resource settings or community-based use is not formally regulated, even though these may alter factors which can substantially affect individual patient and population level outcome, such as drug exposure, patient adherence and the spread of drug resistance and can affect a drug’s reputation and its eventual therapeutic lifespan. Methods An in silico pharmacological model of anti-malarial drug treatment with the pharmacokinetic/pharmacodynamic profiles of artemether-lumefantrine (AM-LF, Coartem®) and dihydroartemisinin-piperaquine (DHA-PPQ, Eurartesim®) was constructed to assess the potential impact of programmatic factors, including regionally optimized, age-based dosing regimens, poor patient adherence, food effects and drug resistance on treatment outcome at population level, and compared both drugs’ susceptibility to these factors. Results Compared with DHA-PPQ, therapeutic effectiveness of AM-LF seems more robust to factors affecting drug exposure, such as age- instead of weight-based dosing or poor adherence. The model highlights the sub-optimally low ratio of DHA:PPQ which, in combination with the narrow therapeutic dose range of PPQ compared to DHA that drives the weight or age cut-offs, leaves DHA at a high risk of under-dosing. Conclusion Pharmacological modelling of real-life scenarios can provide valuable supportive data and highlight modifiable determinants of therapeutic effectiveness that can help optimize the deployment of anti-malarials in control programmes. PMID:24708571

  16. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action.

    PubMed

    Singh, Shiv Vardan; Manhas, Ashan; Kumar, Yogesh; Mishra, Sonali; Shanker, Karuna; Khan, Feroz; Srivastava, Kumkum; Pal, Anirban

    2017-03-05

    A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC50 values <10μg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes.

  17. Why does drug resistance readily evolve but vaccine resistance does not?

    PubMed Central

    2017-01-01

    Why is drug resistance common and vaccine resistance rare? Drugs and vaccines both impose substantial pressure on pathogen populations to evolve resistance and indeed, drug resistance typically emerges soon after the introduction of a drug. But vaccine resistance has only rarely emerged. Using well-established principles of population genetics and evolutionary ecology, we argue that two key differences between vaccines and drugs explain why vaccines have so far proved more robust against evolution than drugs. First, vaccines tend to work prophylactically while drugs tend to work therapeutically. Second, vaccines tend to induce immune responses against multiple targets on a pathogen while drugs tend to target very few. Consequently, pathogen populations generate less variation for vaccine resistance than they do for drug resistance, and selection has fewer opportunities to act on that variation. When vaccine resistance has evolved, these generalities have been violated. With careful forethought, it may be possible to identify vaccines at risk of failure even before they are introduced. PMID:28356449

  18. Bedaquiline for the treatment of drug-resistant tuberculosis.

    PubMed

    Bélard, Sabine; Heuvelings, Charlotte C; Janssen, Saskia; Grobusch, Martin P

    2015-05-01

    Bedaquiline is a much-needed novel drug which is highly effective against drug-resistant tuberculosis. While its clinical development has been laudably fast-tracked and the drug is now available for inclusion into treatment regimens when no suitable alternatives exist, clinical experience with bedaquiline is still limited. Phase III trial data and Phase IV studies are needed particularly to study different patient populations and to optimize treatment regimens. Drug resistance to bedaquiline needs to be monitored carefully, and full access to bedaquiline treatment where it is appropriate and needed must be promoted.

  19. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma.

    PubMed

    Issa, Mark E; Takhsha, Farnaz Sedigheh; Chirumamilla, Chandra Sekhar; Perez-Novo, Claudina; Vanden Berghe, Wim; Cuendet, Muriel

    2017-01-01

    Multiple myeloma (MM) is a hematological malignancy, which remains incurable because most patients eventually relapse or become refractory to current treatments. Due to heterogeneity within the cancer cell microenvironment, cancer cell populations employ a dynamic survival strategy to chemotherapeutic treatments, which frequently results in a rapid acquisition of therapy resistance. Besides resistance-conferring genetic alterations within a tumor cell population selected during drug treatment, recent findings also reveal non-mutational mechanisms of drug resistance, involving a small population of "cancer stem cells" (CSCs) which are intrinsically more refractory to the effects of a variety of anticancer drugs. Other studies have implicated epigenetic mechanisms in reversible drug tolerance to protect the population from eradication by potentially lethal exposures, suggesting that acquired drug resistance does not necessarily require a stable heritable genetic alteration. Clonal evolution of MM cells and the bone marrow microenvironment changes contribute to drug resistance. MM-CSCs may not be a static population and survive as phenotypically and functionally different cell types via the transition between stem-like and non-stem-like states in local microenvironments, as observed in other types of cancers. Targeting MM-CSCs is clinically relevant, and different approaches have been suggested to target molecular, metabolic and epigenetic signatures, and the self-renewal signaling characteristic of MM CSC-like cells. Here, we summarize epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma.

  20. Mechanisms of Resistance to Antibody-Drug Conjugates.

    PubMed

    Loganzo, Frank; Sung, Matthew; Gerber, Hans-Peter

    2016-12-01

    Drug resistance limits the effectiveness of cancer therapies. Despite attempts to develop curative anticancer treatments, tumors evolve evasive mechanisms limiting durable responses. Hence, diverse therapies are used to attack cancer, including cytotoxic and targeted agents. Antibody-drug conjugates (ADC) are biotherapeutics designed to deliver potent cytotoxins to cancer cells via tumor-specific antigens. Little is known about the clinical manifestations of drug resistance to this class of therapy; however, recent preclinical studies reveal potential mechanisms of resistance. Because ADCs are a combination of antibody and small molecule cytotoxin, multifactorial modes of resistance are emerging that are inherent to the structure and function of the ADC. Decreased cell-surface antigen reduces antibody binding, whereas elevated drug transporters such as MDR1 and MRP1 reduce effectiveness of the payload. Inherent to the uniqueness of the ADC, other novel resistance mechanisms are emerging, including altered antibody trafficking, ADC processing, and intracellular drug release. Most importantly, the modular nature of the ADC allows components to be switched and replaced, enabling development of second-generation ADCs that overcome acquired resistance. This review is intended to highlight recent progress in our understanding of ADC resistance, including approaches to create preclinical ADC-refractory models and to characterize their emerging mechanisms of resistance. Mol Cancer Ther; 15(12); 2825-34. ©2016 AACR.

  1. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  2. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis.

    PubMed

    Goel, Divya

    2014-01-01

    Tuberculosis (TB) is among the most common infectious diseases and continues as a major global health problem. The scenario is worsened by the emergence and spread of multiple drug-resistant tuberculosis (MDR-TB) and extensive drug-resistant tuberculosis (XDR-TB). Cure rates are high for drug sensitive strains of Myobacterium tuberculosis if treatment protocols are adhered to, but treatment of MDR-TB and extensive drug drug-resistant strains is virtually impossible. The treatment of MDR-TB and XDR-TB relies on the drugs, which are less potent, more toxic and more costly and have to be administered for the longer duration. No new drug had come in to market for last 40 years, but the emergence of MDR-TB and XDR-TB has spurred interest in the development of novel drugs. For the effective treatment outcome, there is a dire need of new drugs with a different mechanism of action that can tackle both drug sensitive as well as drug-resistant strains. Bedaquiline is one such new drug with unique mechanism of action. Food and Drug Administration has approved bedaquiline for MDR-TB in December 2012. This article reviews the available evidence of efficacy and safety of bedaquiline.

  3. Co-delivery of multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to effectively reverse cancer drug resistance.

    PubMed

    Wu, Cong; Gong, Meng-Qing; Liu, Bo-Ya; Zhuo, Ren-Xi; Cheng, Si-Xue

    2017-01-01

    To effectively reverse multiple drug resistance (MDR) in tumor treatments, a functional nano-sized drug delivery system with active targeting function and pH sensitivity was prepared for the co-delivery of multiple drug resistance inhibitors. Buthionine sulfoximine (BSO) to inhibit GSH synthesis and celecoxib (CXB) to down-regulate P-gp expression were co-loaded in polymer/inorganic hybrid nanoparticles to form buthionine sulfoximine/celecoxib@biotin-heparin/heparin/calcium carbonate/calcium phosphate nanoparticles (BSO/CXB@BNP). To investigate the reversal of MDR, the drug resistant cells (MCF-7/ADR) were pretreated by the dual-inhibitor loaded nanoparticles (BSO/CXB@BNP) followed by the treatment of doxorubicin (DOX) loaded nanoparticles (DOX@BNP). The dual-inhibitor loaded nanoparticles (BSO/CXB@BNP) exhibited greatly enhanced efficiency in down-regulation of GSH and P-gp since BSO and CXB had combined effects on the reduction of GSH and P-gp in drug resistant tumor cells. As a result, BSO/CXB@BNP exhibited a significantly improved capability in reversal of MDR compared with mono-inhibitor loaded nanoparticles (CXB@BNP and BSO@BNP). As compared with free drug resistance inhibitors, delivery of drug resistance inhibitors by functional nanocarriers could obviously improve the therapeutic efficiency due to enhanced cellular uptake and increased intracellular drug accumulation. The study on immunostimulatory effects of different treatments showed that BSO/CXB@BNP treatment resulted in the lowest concentration of interleukin 10, a cytokine related to tumor development. These results suggest the nanoparticulate drug delivery platform developed in this study has promising applications in multiple drug delivery to overcome drug resistance in tumor treatments.

  4. Mechanisms of Drug Resistance in Plasmodium falciparum

    DTIC Science & Technology

    1992-09-11

    parasites. With the collaboration of Dr. Esther Orozco, we cloned two mdr-like genes from Entamoeba histolytica and demonstrated an association of...Orozco (1990). " Entamoeba histolytica : "Physiology of multidrug resistance." Exp Parasitol. 71:169-175. Buschman, E., and P. Gros. (1991). "Functional...Ayala, E. Orozco, and D. Wirth. (1990). "Emetine-resistant mutants of Entamoeba histolytica overexpress mRNAs for multidrug resistance." Mol Biochem

  5. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    PubMed Central

    2010-01-01

    Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain) and CY27 (chloroquine-sensitive strain), using the parasite lactate dehydrogenase (pLDH) assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain). Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy), Solanum surattense (Burm.f.) and Prosopis juliflora (Sw.) showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml) and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time. PMID:20462416

  6. Drug resistance and biochemical characteristics of Salmonella from turkeys.

    PubMed Central

    Poppe, C; Kolar, J J; Demczuk, W H; Harris, J E

    1995-01-01

    A study was conducted to determine the antibiotic resistance and biochemical characteristics of 2690 Salmonella strains belonging to 52 serovars and isolated from environmental and feed samples from 270 turkey flocks in Canada. Resistance of the Salmonella strains to the aminoglycoside antibiotics varied widely; none of the strains were resistant to amikacin, 14.2% were resistant to neomycin, 25.8% were resistant to gentamicin, and 27.7% of the strains were resistant to kanamycin. Most strains (97.6%) were resistant to the aminocyclitol, spectinomycin. Regarding resistance to the beta-lactam antibiotics, 14.3% and 14.4% of the strains were resistant to ampicillin and carbenicillin, respectively, whereas only 5 (0.2%) of the strains were resistant to cephalothin. None of the strains were resistant to the fluoroquinolone ciprofloxacin or to polymyxin B. Resistance to chloramphenicol and nitrofurantoin was found in 2.4% and 7% of the strains, respectively. Only 1.7% of the strains were resistant to the trimethoprimsulfamethoxazole combination, whereas 58.1% were resistant to sulfisoxazole. Thirty-eight percent of the strains were resistant to tetracycline. Salmonella serovars differed markedly in their drug resistance profiles. Biochemical characterization of the Salmonella showed that the S. anatum, S. saintpaul and S. reading serovars could be divided into distinct biotypes. PMID:8548684

  7. New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents.

    PubMed

    Bekhit, Adnan A; Hassan, Ahmed M M; Abd El Razik, Heba A; El-Miligy, Mostafa M M; El-Agroudy, Eman J; Bekhit, Alaa El-Din A

    2015-04-13

    A new series of pyrazole derivatives were synthesized by hybridization with five-membered heterocyclic moieties such as thiazoles, thiazolidinones, 1,3,4-thiadiazoles and pyrazolines. The compounds were evaluated for their in vivo antimalarial activity against Plasmodium berghei infected mice and the most active derivatives were further examined for their in vitro antimalarial activity against chloroquine resistant (RKL9) strain of Plasmodium falciparum. Compounds 2c, 2d, 4b, 4c, 4d, 5a, 6c, 8c and 9b had more than 90% parasite suppression activity of that found with the antimalarial reference standard drug, chloroquine phosphate and had lower IC50 values than chloroquine. Compounds 4b and 9b were the most active derivatives, and their activities were 5-fold higher than chloroquine. All the newly synthesized compounds were evaluated for their in vitro antileishmanial activity against Leishmania aethiopica promastigotes and amastigote. The results showed that compounds 2c, 2d, 3d, 4b, 4c, 4d and 5a had lower or similar IC50 values than the reference standard drugs, amphotericin B and miltefosine. Compound 3d had the highest antileishmanial activity. Collectively, compounds 2c, 2d, 4b, 4c, 4d and 5a exhibited dual activity against malaria and leishmaniasis and were safe and well tolerated by the experimental animals orally up to 300 mg/kg and parenterally up to 100 mg/kg.

  8. Structure-based drug design to overcome drug resistance: challenges and opportunities.

    PubMed

    Ferreira, Rafaela S; Andricopulo, Adriano D

    2014-01-01

    Drug resistance is a common concern for the development of novel antiviral, antimicrobial and anticancer therapies. To overcome this problem, several strategies have been developed, many of which involving the theme of this review, the use of structure-based drug design (SBDD) approaches. These include the successful design of new compounds that target resistant mutant proteins, as well as the development of drugs that target multiple proteins involved in specific biochemical pathways. Finally, drug resistance can also be considered in the early stages of drug discovery, through the use of strategies to delay the development of resistance. The purpose of this brief review is to underline the usefulness of SBDD approaches based on case studies, highlighting present challenges and opportunities in drug design.

  9. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story.

    PubMed

    Baker, Nicola; de Koning, Harry P; Mäser, Pascal; Horn, David

    2013-03-01

    Melarsoprol and pentamidine represent the two main classes of drugs, the arsenicals and diamidines, historically used to treat the diseases caused by African trypanosomes: sleeping sickness in humans and Nagana in livestock. Cross-resistance to these drugs was first observed over 60 years ago and remains the only example of cross-resistance among sleeping sickness therapies. A Trypanosoma brucei adenosine transporter is well known for its role in the uptake of both drugs. More recently, aquaglyceroporin 2 (AQP2) loss of function was linked to melarsoprol-pentamidine cross-resistance. AQP2, a channel that appears to facilitate drug accumulation, may also be linked to clinical cases of resistance. Here, we review these findings and consider some new questions as well as future prospects for tackling the devastating diseases caused by these parasites.

  10. Drug resistance in cancer: molecular evolution and compensatory proliferation.

    PubMed

    Friedman, Ran

    2016-03-15

    Targeted therapies have revolutionized cancer treatment. Unfortunately, their success is limited due to the development of drug resistance within the tumor, which is an evolutionary process. Understanding how drug resistance evolves is a prerequisite to a better success of targeted therapies. Resistance is usually explained as a response to evolutionary pressure imposed by treatment. Thus, evolutionary understanding can and should be used in the design and treatment of cancer. In this article, drug-resistance to targeted therapies is reviewed from an evolutionary standpoint. The concept of apoptosis-induced compensatory proliferation (AICP) is developed. It is shown that AICP helps to explain some of the phenomena that are observed experimentally in cancers. Finally, potential drug targets are suggested in light of AICP.

  11. Combined antiretroviral and anti-tuberculosis drug resistance following incarceration

    PubMed Central

    Stott, K E; de Oliviera, T; Lessells, R J

    2013-01-01

    We describe a case of HIV/tuberculosis (TB) co-infection from KwaZulu-Natal, South Africa, characterised by drug resistance in both pathogens. The development of drug resistance was linked temporally to two periods of incarceration. This highlights the urgent need for improved integration of HIV/TB control strategies within prison health systems and within the broader public health framework. PMID:24273475

  12. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    PubMed

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  13. The challenges of multi-drug-resistance in hepatology.

    PubMed

    Fernández, Javier; Bert, Frédéric; Nicolas-Chanoine, Marie-Hélène

    2016-11-01

    Antimicrobial resistance has become a major global public health security problem that needs coordinated approaches at regional, national and international levels. Antibiotic overuse and the failure of control measures to prevent the spread of resistant bacteria in the healthcare environment have led to an alarming increase in the number of infections caused by resistant bacteria, organisms that resist many (multi-drug and extensively drug-resistant strains), if not all (pan-drug-resistant bacteria) currently available antibiotics. While Gram-positive cocci resistance (methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci) shows a heterogeneous geographical distribution, extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenem-resistant Enterobacteriaceae have become pandemic worldwide and endemic in some parts of the world, respectively. Moreover, currently available therapeutic options for resistant bacteria are very limited, with very few new agents in development. Antimicrobial resistance is especially relevant in decompensated cirrhosis. Firstly, cirrhotic patients are highly susceptible to develop infections caused by resistant bacteria as risk factors of multiresistance concentrate in this population (mainly repeated hospitalizations and antibiotic exposure). Secondly, inappropriate empirical antibiotic schedules easily translate into increased morbidity (acute kidney injury, acute-on-chronic liver failure, septic shock) and hospital mortality in advanced cirrhosis. Therefore, hepatologists must face nowadays a complex clinical scenario that requires new empirical antibiotic strategies that may further spread resistance. Global, regional and local preventive measures should therefore be implemented to combat antimicrobial resistance in cirrhosis including the restriction of antibiotic prophylaxis to high-risk populations, investigation on non-antibiotic prophylaxis, stewardship programs on adequate antibiotic

  14. Extensively drug-resistant tuberculosis: epidemiology and management.

    PubMed

    Matteelli, Alberto; Roggi, Alberto; Carvalho, Anna Cc

    2014-01-01

    The advent of antibiotics for the treatment of tuberculosis (TB) represented a major breakthrough in the fight against the disease. However, since its first use, antibiotic therapy has been associated with the emergence of resistance to drugs. The incorrect use of anti-TB drugs, either due to prescription errors, low patient compliance, or poor quality of drugs, led to the widespread emergence of Mycobacterium tuberculosis strains with an expanding spectrum of resistance. The spread of multidrug-resistant (MDR) strains (ie, strains resistant to both isoniazid and rifampicin) has represented a major threat to TB control since the 1990s. In 2006, the first cases of MDR strains with further resistance to fluoroquinolone and injectable drugs were described and named extensively drug-resistant TB (XDR-TB). The emergence of XDR-TB strains is a result of mismanagement of MDR cases, and treatment relies on drugs that are less potent and more toxic than those used to treat drug-susceptible or MDR strains. Furthermore, treatment success is lower and mortality higher than achieved in MDR-TB cases, and the number of drugs necessary in the intensive phase of treatment may be higher than the four drugs recommended for MDR-TB. Linezolid may represent a valuable drug to treat cases of XDR-TB. Delamanid, bedaquiline, and PA-824 are new anti-TB agents in the development pipeline that have the potential to enhance the cure rate of XDR-TB. The best measures to prevent new cases of XDR-TB are the correct management of MDR-TB patients, early detection, and proper treatment of existing patients with XDR-TB.

  15. Drug efflux pump deficiency and drug target resistance masking in growing bacteria

    PubMed Central

    Fange, David; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    Recent experiments have shown that drug efflux pump deficiency not only increases the susceptibility of pathogens to antibiotics, but also seems to “mask” the effects of mutations, that decrease the affinities of drugs to their intracellular targets, on the growth rates of drug-exposed bacteria. That is, in the presence of drugs, the growth rates of drug-exposed WT and target mutated strains are the same in a drug efflux pump deficient background, but the mutants grow faster than WT in a drug efflux pump proficient background. Here, we explain the mechanism of target resistance masking and show that it occurs in response to drug efflux pump inhibition among pathogens with high-affinity drug binding targets, low cell-membrane drug-permeability and insignificant intracellular drug degradation. We demonstrate that target resistance masking is fundamentally linked to growth-bistability, i.e., the existence of 2 different steady state growth rates for one and the same drug concentration in the growth medium. We speculate that target resistance masking provides a hitherto unknown mechanism for slowing down the evolution of target resistance among pathogens. PMID:19416855

  16. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance.

    PubMed

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10(4) known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.

  17. Toxicity and side-effects of antimalarials in Africa: a critical review

    PubMed Central

    Salako, L. A.

    1984-01-01

    Notwithstanding the presence of resistance to chloroquine in some parts of Africa, this drug is still the most widely used antimalarial in the continent. One adverse reaction of chloroquine that has an important bearing on its use is pruritus. The risk of increasing the incidence of ocular toxicity through prolonged use of chloroquine for prophylaxis must be borne in mind by physicians. Another antimalarial that is likely to be used in increasing amounts in Africa is pyrimethamine—sulfadoxine. With prolonged use of this combination for prophylaxis, the adverse reactions usually associated with the long-acting sulfonamides are possible. Genetic abnormalities may also play a part in the incidence and severity of adverse reactions to certain drugs, e.g., primaquine and quinine. Most of the common adverse reactions are mild and have little or no influence on the acceptability and utilization of the drugs, with the exception of chloroquine-induced pruritus. Studies to define the precise epidemiology and pathophysiology of this reaction are urgently needed. PMID:6335683

  18. Bacteremic pneumonia caused by extensively drug-resistant Streptococcus pneumoniae.

    PubMed

    Kang, Cheol-In; Baek, Jin Yang; Jeon, Kyeongman; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2012-12-01

    The emergence of antimicrobial resistance threatens the successful treatment of pneumococcal infections. Here we report a case of bacteremic pneumonia caused by an extremely drug-resistant strain of Streptococcus pneumoniae, nonsusceptible to at least one agent in all classes but vancomycin and linezolid, posing an important new public health threat in our region.

  19. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  20. Surveillance of in vivo resistance of Plasmodium falciparum to antimalarial drugs from 1992 to 1999 in Malabo (Equatorial Guinea).

    PubMed

    Roche, Jesús; Guerra-Neira, Ana; Raso, José; Benito, Agustîn

    2003-05-01

    From 1992-1999, we have assessed the therapeutic efficacy of three malaria treatment regimens (chloroquine 25 mg/kg over three days, pyrimethamine/sulfadoxine 1.25/25 mg/kg in one dose, and quinine 25-30 mg/kg daily in three oral doses over a four-, five-, or seven-day period) in 1,189 children under age 10 at Malabo Regional Hospital in Equatorial Guinea. Of those children, 958 were followed up clinically and parasitologically for 14 days. With chloroquine, the failure rate varied from 55% in 1996 to 40% in 1999; the early treatment failure rate increased progressively over the years, from 6% in 1992 to 30% in 1999. With pyrimethamine/sulfadoxine, the failure rate varied from 0% in 1996 to 16% in 1995. The short quinine treatment regimens used in 1992 and 1993 (4 and 5 days, respectively) resulted in significantly higher failure rates (19% and 22%, respectively) than the 7d regimen (3-5.5%). We conclude that: a) failure rates for chloroquine are in the change period (> 25%), and urgent action is needed; b) pyrimethamine/ sulfadoxine failure rates are in the alert period (6-15%), and surveillance must be continued; and c) quinine failure rates are in the grace period (< 6%), so quinine can be recommended.

  1. On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond with free heme in solution

    NASA Astrophysics Data System (ADS)

    Macetti, Giovanni; Rizzato, Silvia; Beghi, Fabio; Silvestrini, Lucia; Lo Presti, Leonardo

    2016-02-01

    4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π···π interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in acidic solutions of hematin at room temperature was investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy in the 4.0-5.5 pH range, both in the presence and in the absence of the antimalarial drug chloroquine. EXAFS results were complemented by DFT simulations in polarizable continuum media to model solvent effects. We found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization of the malaria pigment without permanently hampering the catalytic activity of the redox center. These findings are discussed in the light of possible implications on the engineering of drugs able to thwart the adaptability of the malaria parasite against classical aminoquinoline-based therapies.

  2. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  3. Synthesis of a potent new antimalarial through natural products conjugation

    PubMed Central

    Bruno, Michela; Trucchi, Beatrice; Monti, Diego; Romeo, Sergio; Kaiser, Marcel; Verotta, Luisella

    2013-01-01

    Three natural products have been assembled to obtain a new antimalarial hit. (+)-Usnic acid was used as scaffold to design and synthesize new products, that were tested on asexual development for P. falciparum and P. berghei. Among them, the ester of (+)-usnic acid-4-aminobutyric acid 14 with dihydroartemisinin shows considerable in vivo antimalarial activity against P. berghei in mice, similar to the synthetic drug artesunate. Compound 14 behaves as a delivery system for dihydroartemisinin and combine the effects of the endoperoxide with the redox properties of the phenolic portions of (+)-usnic acid. PMID:23307699

  4. The Warburg effect and drug resistance

    PubMed Central

    Mohd Omar, Mohd Feroz; Soong, Richie

    2016-01-01

      The Warburg effect describes the increased utilization of glycolysis rather than oxidative phosphorylation by tumour cells for their energy requirements under physiological oxygen conditions. This effect has been the basis for much speculation on the survival advantage of tumour cells, tumourigenesis and the microenvironment of tumours. More recently, studies have begun to reveal how the Warburg effect could influence drug efficacy and how our understanding of tumour energetics could be exploited to improve drug development. In particular, evidence is emerging demonstrating how better modelling of the tumour metabolic microenvironment could lead to a better prediction of drug efficacy and the identification of new combination strategies. This review will provide details of the current understanding of the complex interplay between glucose metabolism and pharmacology and discuss opportunities for utilizing the Warburg effect in future drug development. PMID:26750865

  5. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance.

    PubMed

    Haché, Guylaine; Mansky, Louis M; Harris, Reuben S

    2006-01-01

    Over 40 million people worldwide currently have HIV/AIDS. Many antiretroviral drugs have proven effective, but drug-resistant HIV variants frequently emerge to thwart treatment efforts. Reverse transcription errors undoubtedly contribute to drug resistance, but additional significant sources of viral genetic variation are debatable. The human APOBEC3F and APOBEC3G proteins can potently inhibit retrovirus infection by a mechanism that involves retroviral cDNA cytosine deamination. Here we review the current knowledge on the mechanism of APOBEC3-dependent retrovirus restriction and discuss whether this innate host-defense system actively contributes to HIV genetic variation.

  6. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.

  7. Indoleamides are active against drug-resistant Mycobacterium tuberculosis

    PubMed Central

    Lun, Shichun; Guo, Haidan; Onajole, Oluseye K.; Pieroni, Marco; Gunosewoyo, Hendra; Chen, Gang; Tipparaju, Suresh K.; Ammerman, Nicole C.; Kozikowski, Alan P.; Bishai, William R.

    2014-01-01

    Responsible for nearly two million deaths each year, the infectious disease tuberculosis remains a serious global health challenge. The emergence of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis confounds control efforts, and new drugs with novel molecular targets are desperately needed. Here we describe lead compounds, the indoleamides, with potent activity against both drug-susceptible and drug-resistant strains of M. tuberculosis by targeting the mycolic acid transporter MmpL3. We identify a single mutation in mmpL3 which confers high resistance to the indoleamide class while remaining susceptible to currently used first- and second-line tuberculosis drugs, indicating a lack of cross-resistance. Importantly, an indoleamide derivative exhibits dose-dependent anti-mycobacterial activity when orally administered to M. tuberculosis-infected mice. The bioavailability of the indoleamides, combined with their ability to kill tubercle bacilli, indicates great potential for translational developments of this structure class for the treatment of drug-resistant tuberculosis. PMID:24352433

  8. Molecular Biology of Drug Resistance in Mycobacterium tuberculosis

    PubMed Central

    Smith, Tasha; Wolff, Kerstin A.; Nguyen, Liem

    2014-01-01

    Tuberculosis (TB) has become a curable disease thanks to the discovery of antibiotics. However, it has remained one of the most difficult infections to treat. Most current TB regimens consist of six to nine months of daily doses of four drugs that are highly toxic to patients. The purpose of these lengthy treatments is to completely eradicate Mycobacterium tuberculosis, notorious for its ability to resist most antibacterial agents, thereby preventing the formation of drug resistant mutants. On the contrary, the prolonged therapies have led to poor patient adherence. This, together with a severe limit of drug choices, has resulted in the emergence of strains that are increasingly resistant to the few available antibiotics. Here we review our current understanding of molecular mechanisms underlying the profound drug resistance of M. tuberculosis. This knowledge is essential for the development of more effective antibiotics that not only are potent against drug resistant M. tuberculosis strains but also help shorten the current treatment courses required for drug susceptible TB. PMID:23179675

  9. The priorities for antiviral drug resistance surveillance and research.

    PubMed

    Pillay, Deenan

    2007-08-01

    The number of available antiviral drugs is growing fast. The emergence of drug-resistant viruses is well documented as a cause for drug failure. Such viruses also carry the potential for transmission, the risks for which vary according to specific viral transmission dynamics. This potential is best described for HIV and influenza. Resistance to the new generation of hepatitis C virus inhibitors is also likely to become a cause for concern. The priorities for future action to limit resistance include application of sophisticated surveillance mechanisms linked to detailed virological data, development of optimal treatment regimens (e.g. combination therapies) to limit emergence of resistance, and a focus on prevention strategies to prevent transmission.

  10. Malarial kinases: novel targets for in silico approaches to drug discovery.

    PubMed

    Bullard, Kristen M; DeLisle, Robert Kirk; Keenan, Susan M

    2013-01-01

    Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.

  11. Antifungal drug resistance evoked via RNAi-dependent epimutations.

    PubMed

    Calo, Silvia; Shertz-Wall, Cecelia; Lee, Soo Chan; Bastidas, Robert J; Nicolás, Francisco E; Granek, Joshua A; Mieczkowski, Piotr; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2014-09-25

    Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the fkbA mature mRNA as a template to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.

  12. Non-toxic antimicrobials that evade drug resistance

    PubMed Central

    Davis, Stephen A.; Vincent, Benjamin M.; Endo, Matthew M.; Whitesell, Luke; Marchillo, Karen; Andes, David R.; Lindquist, Susan; Burke, Martin D.

    2015-01-01

    Drugs that act more promiscuously provide fewer routes for the emergence of resistant mutants. But this benefit often comes at the cost of serious off-target and dose-limiting toxicities. The classic example is the antifungal amphotericin B (AmB), which has evaded resistance for more than half a century. We report dramatically less toxic amphotericins that nevertheless evade resistance. They are scalably accessed in just three steps from the natural product, and bind their target (the fungal sterol, ergosterol) with far greater selectivity than AmB. Hence, they are less toxic and far more effective in a mouse model of systemic candidiasis. Surprisingly, exhaustive efforts to select for mutants resistant to these more selective compounds revealed that they are just as impervious to resistance as AmB. Thus, highly selective cytocidal action and the evasion of resistance are not mutually exclusive, suggesting practical routes to the discovery of less toxic, resistance-evasive therapies. PMID:26030729

  13. Induction of anti-actin drug resistance in Tetrahymena.

    PubMed

    Zackroff, Robert V; Hufnagel, Linda A

    2002-01-01

    Both cytochalasin D and latrunculin B reversibly inhibited Tetrahymena phagocytosis at concentrations similar to those effective in mammalian systems, even though ciliate actins are known to be highly divergent from mammalian actins. Overnight exposure to relatively low (0.25 microM) concentrations of latrunculin B induced resistance in Tetrahymena to the inhibitory effects of that drug, as well as cross-resistance to cytochalasin D. However, much higher (> 30 microM) concentrations of cytochalasin D were required for induction of cross-resistance to latrunculin B. Anti-actin drug resistance in Tetrahymena may involve a general multidrug resistance mechanism and/or specific feedback regulation of F-actin assembly and stability.

  14. Modeling the evolution of drug resistance in malaria

    NASA Astrophysics Data System (ADS)

    Hecht, David; Fogel, Gary B.

    2012-12-01

    Plasmodium falciparum, the causal agent of malaria, continues to evolve resistance to frontline therapeutics such as chloroquine and sulfadoxine-pyrimethamine. Here we study the amino acid replacements in dihydrofolate reductase (DHFR) that confer resistance to pyrimethamine while still binding the natural DHFR substrate, 7,8-dihydrofolate, and cofactor, NADPH. The chain of amino acid replacements that has led to resistance can be inferred in a computer, leading to a broader understanding of the coevolution between the drug and target. This in silico approach suggests that only a small set of specific active site replacements in the proper order could have led to the resistant strains in the wild today. A similar approach can be used on any target of interest to anticipate likely pathways of future resistance for more effective drug development.

  15. Population-Based Drug Resistance Surveillance of Multidrug-Resistant Tuberculosis in Taiwan, 2007-2014

    PubMed Central

    Fan, Shin-Yuan; Lin, Keng-Yu; Jou, Ruwen

    2016-01-01

    Objective To determine the extent of drug resistance in multidrug-resistant tuberculosis (MDR-TB) cases, we conducted a retrospective, population-based analysis using drug susceptibility testing (DST) results of MDR Mycobacterium tuberculosis complex isolates obtained from 2007–2014 in Taiwan. Methods M. tuberculosis isolates collected from 1,331 MDR-TB cases were included in this survey. Treatment histories, age, sex, chest radiograph and bacteriological results of patients were analyzed. Standard DST was performed to assess resistance to the following drugs: isoniazid (INH), rifampicin (RIF), streptomycin (SM), ethambutol (EMB), amikacin (AM), kanamycin (KM), capreomycin (CAP), ofloxacin (OFX), moxifloxacin (MOX), levofloxacin (LVX), gatifloxacin (GAT), para-aminosalicylate (PAS), ethionamide (EA), and pyrazinamide (PZA). The Cochran-Armitage trend test was used for statistical analysis. Results We observed a significant increasing trend in portion of new MDR-TB cases, from 59.5% to 80.2% (p < 0.0001), and significant decreasing trend of portion in the 15-44-year-old age group (p < 0.05). Of the MDR M. tuberculosis isolates tested, 6.2% were resistant to AM, 8.6% were resistant to KM, 4.6% were resistant to CAP, 19.5% were resistant to OFX, 17.1% were resistant to MOX, 16.0% were resistant to LVX, 5.8% were resistant to GAT, 9.5% were resistant to PAS, 28.5% were resistant to EA and 33.3% were resistant to PZA. Fifty (3.8%) extensively drug-resistant TB cases were identified. No significant differences were found in drug resistance frequencies between new and previously treated MDR cases. However, we observed significant decreases in the rates of AM resistance (p < 0.05), OFX resistance (p < 0.00001), PAS resistance (p < 0.00001), EA resistance (p < 0.05) and PZA resistance (p < 0.05). Moreover, younger age groups had higher rates of resistance to fluoroquinolones. Conclusion A policy implemented in 2007 to restrict the prescription of fluoroquinolones was

  16. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  17. Establishing drug resistance in microorganisms by mass spectrometry.

    PubMed

    Demirev, Plamen A; Hagan, Nathan S; Antoine, Miquel D; Lin, Jeffrey S; Feldman, Andrew B

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and (13)C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  18. Acquisition of second-line drug resistance and extensive drug resistance during recent transmission of Mycobacterium tuberculosis in rural China.

    PubMed

    Hu, Y; Mathema, B; Zhao, Q; Chen, L; Lu, W; Wang, W; Kreiswirth, B; Xu, B

    2015-12-01

    Multidrug-resistant tuberculosis (MDR-TB) is prevalent in countries with a high TB burden, like China. As little is known about the emergence and spread of second-line drug (SLD) -resistant TB, we investigate the emergence and transmission of SLD-resistant Mycobacterium tuberculosis in rural China. In a multi-centre population-based study, we described the bacterial population structure and the transmission characteristics of SLD-resistant TB using Spoligotyping in combination with genotyping based on 24-locus MIRU-VNTR (mycobacterial interspersed repetitive unit-variable-number tandem repeat) plus four highly variable loci for the Beijing family, in four rural Chinese regions with diverse geographic and socio-demographic characteristics. Transmission networks among genotypically clustered patients were constructed using social network analysis. Of 1332 M. tuberculosis patient isolates recovered, the Beijing family represented 74.8% of all isolates and an association with MDR and simultaneous resistance between first-line drugs and SLDs. The genotyping analysis revealed that 189 isolates shared MIRU-VNTR patterns in 78 clusters with clustering rate and recent transmission rate of 14.2% and 8.3%, respectively. Fifty-three SLD-resistant isolates were observed in 31 clusters, 30 of which contained the strains with different drug susceptibility profiles and genetic mutations. In conjunction with molecular data, socio-network analysis indicated a key role of Central Township in the transmission across a highly interconnected network where SLD resistance accumulation occurred during transmission. SLD-resistant M. tuberculosis has been spreading in rural China with Beijing family being the dominant strains. Primary transmission of SLD-resistant strains in the population highlights the importance of routine drug susceptibility testing and effective anti-tuberculosis regimens for drug-resistant TB.

  19. Antimalarial activity of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors.

    PubMed

    Dow, Geoffrey S; Chen, Yufeng; Andrews, Katherine T; Caridha, Diana; Gerena, Lucia; Gettayacamin, Montip; Johnson, Jacob; Li, Qigui; Melendez, Victor; Obaldia, Nicanor; Tran, Thanh N; Kozikowski, Alan P

    2008-10-01

    The antimalarial activity and pharmacology of a series of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors (HDACIs) was evaluated. In in vitro growth inhibition assays approximately 50 analogs were evaluated against four drug resistant strains of Plasmodium falciparum. The range of 50% inhibitory concentrations (IC(50)s) was 0.0005 to >1 microM. Five analogs exhibited IC(50)s of <3 nM, and three of these exhibited selectivity indices of >600. The most potent compound, WR301801 (YC-2-88) was shown to cause hyperacetylation of P. falciparum histones, which is a marker for HDAC inhibition in eukaryotic cells. The compound also inhibited malarial and mammalian HDAC activity in functional assays at low nanomolar concentrations. WR301801 did not exhibit cures in P. berghei-infected mice at oral doses as high as 640 mg/kg/day for 3 days or in P. falciparum-infected Aotus lemurinus lemurinus monkeys at oral doses of 32 mg/kg/day for 3 days, despite high relative bioavailability. The failure of monotherapy in mice may be due to a short half-life, since the compound was rapidly hydrolyzed to an inactive acid metabolite by loss of its hydroxamate group in vitro (half-life of 11 min in mouse microsomes) and in vivo (half-life in mice of 3.5 h after a single oral dose of 50 mg/kg). However, WR301801 exhibited cures in P. berghei-infected mice when combined at doses of 52 mg/kg/day orally with subcurative doses of chloroquine. Next-generation HDACIs with greater metabolic stability than WR301801 may be useful as antimalarials if combined appropriately with conventional antimalarial drugs.

  20. Efflux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  1. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    DTIC Science & Technology

    2014-10-01

    Resistance PRINCIPAL INVESTIGATOR: Dr John Hiscott CONTRACTING ORGANIZATION: Vaccine & Gene Therapy Institute of Florida...NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Vaccine & Gene Therapy Institute of Florida Port St...highly immunogenic platform for gene delivery, it cured established prostate tumors of the same histological type (8). Suboptimal vaccination , on the

  2. Bcl-2–Mediated Drug Resistance

    PubMed Central

    Srivastava, Rakesh K.; Sasaki, Carl Y.; Hardwick, J. Marie; Longo, Dan L.

    1999-01-01

    Bcl-2 inhibits apoptosis induced by a variety of stimuli, including chemotherapy drugs and glucocorticoids. It is generally accepted that Bcl-2 exerts its antiapoptotic effects mainly by dimerizing with proapoptotic members of the Bcl-2 family such as Bax and Bad. However, the mechanism of the antiapoptotic effects is unclear. Paclitaxel and other drugs that disturb microtubule dynamics kill cells in a Fas/Fas ligand (FasL)-dependent manner; antibody to FasL inhibits paclitaxel-induced apoptosis. We have found that Bcl-2 overexpression leads to the prevention of chemotherapy (paclitaxel)-induced expression of FasL and blocks paclitaxel-induced apoptosis. The mechanism of this effect is that Bcl-2 prevents the nuclear translocation of NFAT (nuclear factor of activated T lymphocytes, a transcription factor activated by microtubule damage) by binding and sequestering calcineurin, a calcium-dependent phosphatase that must dephosphorylate NFAT to move to the nucleus. Without NFAT nuclear translocation, the FasL gene is not transcribed. Thus, it appears that paclitaxel and other drugs that disturb microtubule function kill cells at least in part through the induction of FasL. Furthermore, Bcl-2 antagonizes drug-induced apoptosis by inhibiting calcineurin activation, blocking NFAT nuclear translocation, and preventing FasL expression. The effects of Bcl-2 can be overcome, at least partially, through phosphorylation of Bcl-2. Phosphorylated Bcl-2 cannot bind calcineurin, and NFAT activation, FasL expression, and apoptosis can occur after Bcl-2 phosphorylation. PMID:10432288

  3. Drug Repurposing Identifies Inhibitors of Oseltamivir-Resistant Influenza Viruses.

    PubMed

    Bao, Ju; Marathe, Bindumadhav; Govorkova, Elena A; Zheng, Jie J

    2016-03-01

    The neuraminidase (NA) inhibitor, oseltamivir, is a widely used anti-influenza drug. However, oseltamivir-resistant H1N1 influenza viruses carrying the H275Y NA mutation spontaneously emerged as a result of natural genetic drift and drug treatment. Because H275Y and other potential mutations may generate a future pandemic influenza strain that is oseltamivir-resistant, alternative therapy options are needed. Herein, we show that a structure-based computational method can be used to identify existing drugs that inhibit resistant viruses, thereby providing a first line of pharmaceutical defense against this possible scenario. We identified two drugs, nalidixic acid and dorzolamide, that potently inhibit the NA activity of oseltamivir-resistant H1N1 viruses with the H275Y NA mutation at very low concentrations, but have no effect on wild-type H1N1 NA even at a much higher concentration, suggesting that the oseltamivir-resistance mutation itself caused susceptibility to these drugs.

  4. Resistance to drug by different isolates Trypanosoma evansi in China.

    PubMed

    Zhou, Jinlin; Shen, Jie; Liao, Dangjin; Zhou, Yongzhi; Lin, Jiaojiao

    2004-05-01

    In order to understand drug resistance in Chinese Trypanosoma evansi isolates, the in vitro growth inhibition test was carried out to detect the sensitivities to suramin and antrycide of 12 T. evansi isolates. For suramin, 50% inhibitory concentrations (IC(50)) ranged from 0.041 to 0.752 microg/ml; for antrycide, the IC(50) values ranged from 0.00151 to 0.06694 microg/ml. In vivo experiments in mice with selected isolates showed that the isolate most resistant to suramin was not cured at a dosage of 10 mg/kg, while the isolate that was most resistant to antrycide showed only 50% cure rate at a dose rate of 5 mg/kg. The data presented here indicate that T. evansi isolates from China had differences in drug resistance, with some isolates exhibiting low sensitivity to suramin or antrycide, while a few isolates showed complete drug resistance to curative dosages of suramin or antrycide. No drug cross-resistance was observed between suramin and antrycide.

  5. Additional Drug Resistance Patterns among Multidrug-Resistant Tuberculosis Patients in Korea: Implications for Regimen Design

    PubMed Central

    2017-01-01

    Detailed information on additional drug resistance patterns of multidrug-resistant tuberculosis (MDR-TB) is essential to build an effective treatment regimen; however, such data are scarce in Korea. We retrospectively analyzed the results of phenotypic drug susceptibility testing (DST) of culture confirmed-TB patients from January 2010 to December 2014 in 7 university hospitals in Korea. MDR-TB was identified among 6.8% (n = 378) of 5,599 isolates. A total of 57.1% (n = 216) of the MDR-TB patients had never been treated for TB. Strains from MDR-TB patients showed additional resistance to pyrazinamide (PZA) (35.7%), any second-line injectable drug (19.3%), and any fluoroquinolone (26.2%). Extensively drug resistant TB comprised 12.4% (n = 47) of the MDR-TB patients. Of 378 MDR-TB patients, 50.3% (n = 190) were eligible for the shorter MDR-TB regimen, and 50.0% (n = 189) were fully susceptible to the 5 drugs comprising the standard conventional regimen (PZA, kanamycin, ofloxoacin, prothionamide, and cycloserine). In conclusion, the proportion of new patients and the levels of additional drug resistance were high in MDR-TB patients. Considering the high levels of drug resistance, the shorter MDR-TB treatment regimen may not be feasible; instead, an individually tailored regimen based on the results of molecular and phenotypic DST may be more appropriate in MDR-TB patients in Korea. PMID:28244290

  6. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    PubMed

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed.

  7. Evolution of drug resistance in Salmonella panama isolates in Chile.

    PubMed Central

    Cordano, A M; Virgilio, R

    1996-01-01

    In a search for Salmonella isolates in the environment in Chile in 1975, drug-susceptible strains of Salmonella panama were recovered for the first time from river water and vegetables in the vicinity of Santiago. Two to 3 years later, antibiotic-resistant S. panama began to appear in a variety of sources (meat, animals, vegetables, etc.), giving rise to a human epidemic that involved the entire nation. Of 139 clinical isolates studied, 7 were drug susceptible, 11 were resistant only to nitrofurans, and 3 were streptomycin, spectinomycin, and nitrofuran resistant; none of these 21 isolates harbored plasmid DNA. Most isolates (n = 107) were resistant to nitrofurans (chromosomal) and to streptomycin, spectinomycin, sulfonamides, tetracycline, and mercuric and tellurite salts; this multidrug resistance was encoded on a 218-kb plasmid classified in a number of strains as being in the IncHI2 group. From 1982 to 1993, 11 isolates acquired an additional self-transferable plasmid coding for resistance to any one of ampicillin (61 kb), ampicillin and trimethoprim (65 kb), ampicillin, trimethoprim, streptomycin, and sulfonamides (71 kb), ampicillin, gentamicin, kanamycin, and tetracycline (120 kb), or a nontransferable plasmid of approximately 6 kb encoding resistance to ampicillin or kanamycin. With the exception of ampicillin or ampicillin and trimethoprim resistance, S. panama isolates from foodstuffs, mainly pork meat products, and animals had resistance patterns that were the same as those found in clinical specimens. Remarkably, strains from goats and goat cheese and from shellfish isolated in particular rural regions were either drug susceptible or resistant only to streptomycin-spectinomycin encoded on a mobile genetic element and to nitrofurans. The report describes the arrival of a susceptible S. panama strain, its spread all over the country, and the evolution of progressively complex resistance patterns. PMID:8834876

  8. Sunitinib treatment enhances metastasis of innately drug resistant breast tumors

    PubMed Central

    Wragg, Joseph W; Heath, Victoria L; Bicknell, Roy

    2017-01-01

    Anti-angiogenic therapies have failed to confer survival benefits in patients with metastatic breast cancer (mBC). However, to date there has not been an inquiry into roles for acquired versus innate drug resistance in this setting. In this study, we report roles for these distinct phenotypes in determining therapeutic response in a murine model of mBC resistance to the anti-angiogenic tyrosine kinase inhibitor sunitinib. Using tumor measurement and vascular patterning approaches, we differentiated tumors displaying innate versus acquired resistance. Bioluminescent imaging of tumor metastases to the liver, lungs and spleen revealed that sunitinib administration enhances metastasis, but only in tumors displaying innate resistance to therapy. Transcriptomic analysis of tumors displaying acquired versus innate resistance allowed the identification of specific biomarkers, many of which have a role in angiogenesis. In particular, aquaporin-1 upregulation occurred in acquired resistance, mTOR in innate resistance, and pleiotrophin in both settings, suggesting their utility as candidate diagnostics to predict drug response or to design tactics to circumvent resistance. Our results unravel specific features of antiangiogenic resistance, with potential therapeutic implications. PMID:28011623

  9. A Pharmacokinetic Study of Antimalarial 3,5-Diaryl-2-aminopyridine Derivatives

    PubMed Central

    Dambuza, Ntokozo; Smith, Peter; Evans, Alicia; Taylor, Dale; Chibale, Kelly; Wiesner, Lubbe

    2015-01-01

    Malaria caused by Plasmodium falciparum is responsible for approximately 80% of the incidence and 90% of deaths which occur in the World Health Organization (WHO) African region, with children and pregnant women having the highest incidence. P. falciparum has developed resistance, and therefore new effective candidate antimalarial drugs need to be developed. Previous studies identified 3,5-diaryl-2-aminopyridines as potential antimalarial drug candidates; therefore, derivatives of these compounds were synthesized in order to improve their desired properties and pharmacokinetic (PK) properties of the derivatives were investigated in a mouse model which was dosed orally and intravenously. Collected blood samples were analyzed using liquid chromatography coupled to mass spectrometer (LC-MS/MS). The mean peak plasma level of 1.9 μM was obtained at 1 hour for compound 1 and 3.3 μM at 0.5 hours for compound 2. A decline in concentration was observed with a half-life of 2.53 and 0.87 hours for compound 1 in mice dosed orally and intravenously, respectively. For compound 2 a half-life of 2.96 and 0.68 hours was recorded. The bioavailability was 69% and 59.7% for compound 1 and compound 2, respectively. PMID:25893131

  10. Influence of amodiaquine on the antimalarial activity of ellagic acid: crystallographic and biological studies.

    PubMed

    Żesławska, Ewa; Oleksyn, Barbara; Fabre, Aude; Benoit-Vical, Françoise

    2014-12-01

    In the search for new antimalarial drugs, design of hybrid molecules is recommended to improve biological activity and to decrease the risk of parasite resistance development. Ellagic acid, as an inhibitor of Plasmodium glutathione, presents an original mode of action and thus appears as a promising antiplasmodial compound. A new complex (AQ-EA) consisting of the well-known antimalarial drug, amodiaquine, and ellagic acid was obtained. The studied crystal structure of AQ-EA showed that the triclinic centrosymmetrical unit cell of the crystal contains two molecules of amodiaquine (AQ) and two symmetrically independent molecules of ellagic acid (EA). The packing of the molecules in the crystal is dominated by hydrogen bonds between AQ and EA. The antiplasmodial activity of the hybrid complex AQ-EA was also determined and compared with the values of IC50 for AQ and EA separately. Potentiation assays between both molecules were conducted to understand the pharmacological interactions between AQ and EA against Plasmodium falciparum in vitro. The hybrid complex AQ-EA (IC50 of 47 nm) showed improved antiplasmodial activity in comparison with EA alone.

  11. Mimicking the intramolecular hydrogen bond: synthesis, biological evaluation, and molecular modeling of benzoxazines and quinazolines as potential antimalarial agents.

    PubMed

    Gemma, Sandra; Camodeca, Caterina; Brindisi, Margherita; Brogi, Simone; Kukreja, Gagan; Kunjir, Sanil; Gabellieri, Emanuele; Lucantoni, Leonardo; Habluetzel, Annette; Taramelli, Donatella; Basilico, Nicoletta; Gualdani, Roberta; Tadini-Buoninsegni, Francesco; Bartolommei, Gianluca; Moncelli, Maria Rosa; Martin, Rowena E; Summers, Robert L; Lamponi, Stefania; Savini, Luisa; Fiorini, Isabella; Valoti, Massimo; Novellino, Ettore; Campiani, Giuseppe; Butini, Stefania

    2012-12-13

    The intramolecular hydrogen bond formed between a protonated amine and a neighboring H-bond acceptor group in the side chain of amodiaquine and isoquine is thought to play an important role in their antimalarial activities. Here we describe isoquine-based compounds in which the intramolecular H-bond is mimicked by a methylene linker. The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against Plasmodium falciparum ) and in vivo (against Plasmodium berghei ). Compounds 6b,c caused modest inhibition of chloroquine transport via the parasite's "chloroquine resistance transporter" (PfCRT) in a Xenopus laevis oocyte expression system. In silico predictions and experimental evaluation of selected drug-like properties were also performed on compounds 6b,c. Compound 6c emerged from this work as the most promising analogue of the series; it possessed low toxicity and good antimalarial activity when administered orally to P. berghei -infected mice.

  12. Mechanisms of Drug Resistance in Plasmodium Falciparum

    DTIC Science & Technology

    1994-06-14

    major threat to world health. Efforts to control the disease have focused on chemotherapy, mosquito control and most recently vaccine development. These...resistant mosquitoes and upheavals in spraying programs and the complicated problems of vaccine development and testing. The world is facing an...development of vaccines for several important bacterial pathogens. The malaria parasite presents a unique challenge for transfection in that it is

  13. The role of photodynamic therapy in overcoming cancer drug resistance

    PubMed Central

    Spring, Bryan Q.; Rizvi, Imran; Xu, Nan; Hasan, Tayyaba

    2015-01-01

    Many modalities of cancer therapy induce mechanisms of treatment resistance and escape pathways during chronic treatments, including photodynamic therapy (PDT). It is conceivable that resistance induced by one treatment might be overcome by another treatment. Emerging evidence suggests that the unique mechanisms of tumor cell and microenvironment damage produced by PDT could be utilized to overcome cancer drug resistance, to mitigate the compensatory induction of survival pathways and even to re-sensitize resistant cells to standard therapies. Approaches that capture the unique features of PDT, therefore, offer promising factors for increasing the efficacy of a broad range of therapeutic modalities. Here, we highlight key preclinical findings utilizing PDT to overcome classical drug resistance or escape pathways and thus enhance the efficacy of many pharmaceuticals, possibly explaining the clinical observations of the PDT response to otherwise treatment-resistant diseases. With the development of nanotechnology, it is possible that light activation may be used not only to damage and sensitize tumors but also to enable controlled drug release to inhibit escape pathways that may lead to resistance or cell proliferation. PMID:25856800

  14. Seeking Goldilocks During Evolution of Drug Resistance

    PubMed Central

    Petrov, Dmitri A.

    2017-01-01

    Speciation can occur when a population is split and the resulting subpopulations evolve independently, accumulating mutations over time that make them incompatible with one another. It is thought that such incompatible mutations, known as Bateson–Dobzhansky–Muller (BDM) incompatibilities, may arise when the two populations face different environments, which impose different selective pressures. However, a new study in PLOS Biology by Ono et al. finds that the first-step mutations selected in yeast populations evolving in parallel in the presence of the antifungal drug nystatin are frequently incompatible with one another. This incompatibility is environment dependent, such that the combination of two incompatible alleles can become advantageous under increasing drug concentrations. This suggests that the activity for the affected pathway must have an optimum level, the value of which varies according to the drug concentration. It is likely that many biological processes similarly have an optimum under a given environment and many single-step adaptive ways to reach it; thus, not only should BDM incompatibilities commonly arise during parallel evolution, they might be virtually inevitable, as the combination of two such steps is likely to overshoot the optimum. PMID:28158184

  15. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2012-10-01

    Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.

  16. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    PubMed

    Bell, Andrew S; Huijben, Silvie; Paaijmans, Krijn P; Sim, Derek G; Chan, Brian H K; Nelson, William A; Read, Andrew F

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  17. New strategies against drug resistance to herpes simplex virus

    PubMed Central

    Jiang, Yu-Chen; Feng, Hui; Lin, Yu-Chun; Guo, Xiu-Rong

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. PMID:27025259

  18. Analyzing Thiol-Dependent Redox Networks in the Presence of Methylene Blue and Other Antimalarial Agents with RT-PCR-Supported in silico Modeling

    PubMed Central

    Zirkel, J.; Cecil, A.; Schäfer, F.; Rahlfs, S.; Ouedraogo, A.; Xiao, K.; Sawadogo, S.; Coulibaly, B.; Becker, K.; Dandekar, T.

    2012-01-01

    Background In the face of growing resistance in malaria parasites to drugs, pharmacological combination therapies are important. There is accumulating evidence that methylene blue (MB) is an effective drug against malaria. Here we explore the biological effects of both MB alone and in combination therapy using modeling and experimental data. Results We built a model of the central metabolic pathways in P. falciparum. Metabolic flux modes and their changes under MB were calculated by integrating experimental data (RT-PCR data on mRNAs for redox enzymes) as constraints and results from the YANA software package for metabolic pathway calculations. Several different lines of MB attack on Plasmodium redox defense were identified by analysis of the network effects. Next, chloroquine resistance based on pfmdr/and pfcrt transporters, as well as pyrimethamine/sulfadoxine resistance (by mutations in DHF/DHPS), were modeled in silico. Further modeling shows that MB has a favorable synergism on antimalarial network effects with these commonly used antimalarial drugs. Conclusions Theoretical and experimental results support that methylene blue should, because of its resistance-breaking potential, be further tested as a key component in drug combination therapy efforts in holoendemic areas. PMID:23236254

  19. Antimalarial activity of plumbagin in vitro and in animal models

    PubMed Central

    2014-01-01

    Background Plumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). This compound has been shown to exhibit a wide spectrum of biological and pharmacological activities. The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice. Methods In vitro antimalarial activity of plumbagin against K1 and 3D7 Plasmodium falciparum clones were assessed using SYBR Green I based assay. In vivo antimalarial activity was investigated in Plasmodium berghei-infected mouse model (a 4-day suppressive test). Results Plumbagin exhibited promising antimalarial activity with in vitro IC50 (concentration that inhibits parasite growth to 50%) against 3D7 chloroquine-sensitive P. falciparum and K1 chloroquine-resistant P. falciparum clones of 580 (270–640) and 370 (270–490) nM, respectively. Toxicity testing indicated relatively low toxicity at the dose levels up to 100 (single oral dose) and 25 (daily doses for 14 days) mg/kg body weight for acute and subacute toxicity, respectively. Chloroquine exhibited the most potent antimalarial activity in mice infected with P. berghei ANKA strain with respect to its activity on the reduction of parasitaemia on day 4 and the prolongation of survival time. Conclusions Plumbagin at the dose of 25 mg/kg body weight given for 4 days was safe and produced weak antimalarial activity. Chemical derivatization of the parent compound or preparation of modified formulation is required to improve its systemic bioavailability. PMID:24410949

  20. Insights into cytochrome bc 1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling

    PubMed Central

    Sodero, Ana Carolina Rennó; Abrahim-Vieira, Bárbara; Torres, Pedro Henrique Monteiro; Pascutti, Pedro Geraldo; Garcia, Célia RS; Ferreira, Vitor Francisco; da Rocha, David Rodrigues; Ferreira, Sabrina Baptista; Silva, Floriano Paes

    2017-01-01

    BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc 1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite. PMID:28327793

  1. Persistence of HIV-1 transmitted drug resistance mutations.

    PubMed

    Castro, Hannah; Pillay, Deenan; Cane, Patricia; Asboe, David; Cambiano, Valentina; Phillips, Andrew; Dunn, David T

    2013-11-01

    There are few data on the persistence of individual human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) mutations in the absence of selective drug pressure. We studied 313 patients in whom TDR mutations were detected at their first resistance test and who had a subsequent test performed while ART-naive. The rate at which mutations became undetectable was estimated using exponential regression accounting for interval censoring. Most thymidine analogue mutations (TAMs) and T215 revertants (but not T215F/Y) were found to be highly stable, with NNRTI and PI mutations being relatively less persistent. Our estimates are important for informing HIV transmission models.

  2. Dynamic optical tweezers based assay for monitoring early drug resistance

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojing; Zhang, Yuquan; Min, Changjun; Zhu, Siwei; Feng, Jie; Yuan, X.-C.

    2013-06-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained.

  3. [Drug-resistant tuberculosis. Epidemiology, diagnostics and therapy].

    PubMed

    Grobusch, M P; Schaumburg, F; Altpeter, E; Bélard, S

    2016-02-01

    Drug-resistant tuberculosis (DR-TB) is one of the serious problems in the fight against tuberculosis on a global scale. This review article describes in brief the global epidemiology, diagnostics and treatment of DR-TB. The situation in Germany, Switzerland and Austria is addressed in detail. The article concludes with a presentation of current research topics in the field of resistant TB.

  4. A Novel Way to Grow Hemozoin-Like Crystals In Vitro and Its Use to Screen for Hemozoin Inhibiting Antimalarial Compounds

    PubMed Central

    Ritts, Bruce; Burke, Peter; Hänscheid, Thomas; McDonnell, Gerald

    2012-01-01

    Background Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. Methods We investigated the use of a new assay based on naturally occurring “self-replicating” particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit “self-replication” (crystallisation) of these particles. Results We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC). HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. Conclusions The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins assemblies

  5. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    PubMed Central

    Lee, Jinsoo; Son, Kwanghyun; Hwang, Gwiseo

    2016-01-01

    Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT) has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p = 0.0284, Fisher's exact test). Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children. PMID:27047568

  6. pncA Gene Mutations Associated with Pyrazinamide Resistance in Drug-Resistant Tuberculosis, South Africa and Georgia.

    PubMed

    Allana, Salim; Shashkina, Elena; Mathema, Barun; Bablishvili, Nino; Tukvadze, Nestani; Shah, N Sarita; Kempker, Russell R; Blumberg, Henry M; Moodley, Pravi; Mlisana, Koleka; Brust, James C M; Gandhi, Neel R

    2017-03-01

    Although pyrazinamide is commonly used for tuberculosis treatment, drug-susceptibility testing is not routinely available. We found polymorphisms in the pncA gene for 70% of multidrug-resistant and 96% of extensively drug-resistant Mycobacterium tuberculosis isolates from South Africa and Georgia. Assessment of pyrazinamide susceptibility may be prudent before using it in regimens for drug-resistant tuberculosis.

  7. Hepatitis C Virus and Antiviral Drug Resistance

    PubMed Central

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  8. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells

    PubMed Central

    Muralidharan-Chari, Vandhana; Kohan, Hamed Gilzad; Asimakopoulos, Alexandros G.; Sudha, Thangirala; Sell, Stewart; Kannan, Kurunthachalam; Boroujerdi, Mehdi; Davis, Paul J.; Mousa, Shaker A.

    2016-01-01

    High mortality in pancreatic cancer patients is partly due to resistance to chemotherapy. We describe that human pancreatic cancer cells acquire drug resistance by a novel mechanism in which they expel and remove chemotherapeutic drugs from the microenvironment via microvesicles (MVs). Using human pancreatic cancer cells that exhibit varied sensitivity to gemcitabine (GEM), we show that GEM exposure triggers the cancer cells to release MVs in an amount that correlates with that cell line's sensitivity to GEM. The importance of MV-release in gaining drug resistance in GEM-resistant pancreatic cancer cells was confirmed when the inhibition of MV-release sensitized the cells to GEM treatment, both in vitro and in vivo. Mechanistically, MVs remove drugs that are internalized into the cells and that are in the microenvironment. The differences between the drug-resistant and drug-sensitive pancreatic cancer cell lines tested here are explained based on the variable content of influx/efflux proteins present on MVs, which directly dictates the ability of MVs either to trap GEM or to allow GEM to flow back to the microenvironment. PMID:27391262

  9. [Multidrug-resistant tuberculosis: current epidemiology, therapeutic regimens, new drugs].

    PubMed

    Gómez-Ayerbe, C; Vivancos, M J; Moreno, S

    2016-09-01

    Multidrug and extensively resistant tuberculosis are especially severe forms of the disease for which no efficacious therapy exists in many cases. All the countries in the world have registered cases, although most of them are diagnosed in resource-limited countries from Asia, Africa and South America. For adequate treatment, first- and second-line antituberculosis drugs have to be judiciously used, but the development of new drugs with full activity, good tolerability and little toxicity is urgently needed. There are some drugs in development, some of which are already available through expanded-access programs.

  10. Biophysical principles predict fitness landscapes of drug resistance

    PubMed Central

    Bershtein, Shimon; Li, Annabel; Lozovsky, Elena R.; Hartl, Daniel L.; Shakhnovich, Eugene I.

    2016-01-01

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi. We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the