Sample records for antimicrobial agents based

  1. [Research on the marketing status of antimicrobial products and the use of antimicrobial agents indicated on product labels from 1991 through 2005].

    PubMed

    Nakashima, Harunobu; Miyano, Naoko; Matsunaga, Ichiro; Nakashima, Naomi; Kaniwa, Masa-aki

    2007-05-01

    To clarify the marketing status of antimicrobial products, descriptions on the labels of commercially available antimicrobial products were investigated from 1991 through 2005, and the results were analyzed using a database system on antimicrobial deodorant agents. A classification table of household antimicrobial products was prepared and revised, based on which target products were reviewed for any changes in the product type. The number of antimicrobial products markedly increased over 3 years starting from 1996, among which there were many products apparently not requiring antimicrobial processing. More recently, in the 2002 and 2004 surveys, while sales of kitchenware and daily necessities decreased, chemical products, baby articles, and articles for pets increased; this poses new problems. To clarify the use of antimicrobial agents in the target products, a 3-step (large, intermediate, small) classification table of antimicrobial agents was also prepared, based on which antimicrobial agents indicated on the product labels were checked. The rate of identifying the agents increased. However, this is because of the increase of chemical products and baby articles, both of which more frequently indicated the ingredient agents on the labels, and the decrease of kitchenware and daily necessities, which less frequently indicated them on the labels. Therefore there has been little change in the actual identification rate. The agents used are characterized by product types: quaternary ammonium salts, metal salts, and organic antimicrobials are commonly used in textiles, plastics, and chemical products, respectively. Since the use of natural organic agents has recently increased, the safety of these agents should be evaluated.

  2. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  3. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  4. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  5. Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film.

    PubMed

    Bhatia, Sugandha; Bharti, Anoop

    2015-06-01

    The pleothera of micro organisms obtained from contaminated food cultured in a starch broth was effectively tested against antibacterial agents, i.e. nisin, lysozyme and chelating agent EDTA. A variety of combination treatments of these antimicrobial agents and their incorporation in Starch based active packaging film according to their permissibility standards was done. 4 variables of Nisin concentration (ranging from 0 to 750 IU/ml), 3 variables of lysozyme concentration (ranging from 0 to 500 IU/ml) and 3 variables of EDTA concentration from (0 to 20 μM) were chosen. Bacterial inhibition by combination of different levels of different factors without antimicrobial films was evaluated using a liquid incubation method. The samples were assayed for turbidity at interval of 2, 4 and 24 h to check effectiveness of combined effects of antimicrobial agents which proved a transitory bactericidal effect for short incubation times. Zone of Inhibition was observed in the antimicrobial films prepared by agar diffusion method. Statistical analysis of experimental data for their antimicrobial spectrum was carried out by multi regression analysis and ANOVA using Design-Expert software to plot the final equation in terms of coded factors as antimicrobial agents. The experimental data indicated that the model was highly significant. Results were also evaluated graphically using response surface showing interactions between two factors, keeping other factor fixed at values at the center of domain. Synergy was also determined among antibacterial agents using the fractional inhibitory concentration (FIC) index which was observed to be 0.56 supporting the hypothesis that nisin and EDTA function as partial synergistically. The presented work aimed to screen in quick fashion the combinatorial effect of three antimicrobial agents and evaluating their efficacy in anti microbial film development.

  6. Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles.

    PubMed

    Lam, Shu J; Wong, Edgar H H; O'Brien-Simpson, Neil M; Pantarat, Namfon; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-12-14

    'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs. With the exception of Acinetobacter baumannii, the presence of divalent cations at physiological concentrations reduced the antimicrobial efficacy of SNAPPs from minimum inhibitory concentrations (MICs) within the nanomolar range (40-300 nM) against Escherichia coli, Pseudomanas aeruginosa, and Klebsiella pneumoniae to 0.6-4.7 μM. By using E. coli as a representative bacterial species, we demonstrated that the reduction in activity was due to a decrease in the ability of SNAPPs to cause outer and inner membrane disruption. This effect could be reversed through coadministration with a chelating agent. Interestingly, the potency of SNAPPs against A. baumannii was retained even under high salt concentrations. The presence of serum proteins was also found to affect the interaction of SNAPPs with bacterial membranes, possibly through intermolecular binding. Collectively, this study highlights the need to consider the possible interactions of (bio)molecules present in vivo with any new antimicrobial agent under development. We also demonstrate that outer membrane disruption/destabilization is an important but hitherto under-recognized target for the antimicrobial action of peptide-based agents, such as antimicrobial peptides (AMPs). Overall, the findings presented herein could aid in the design of more efficient peptide-based antimicrobial agents with uncompromised potency even under physiological conditions.

  7. Nationwide survey on the 2005 Guidelines for the Management of Community-Acquired Adult Pneumonia: validation of differentiation between bacterial pneumonia and atypical pneumonia.

    PubMed

    Watanabe, Akira; Goto, Hajime; Kohno, Shigeru; Matsushima, Toshiharu; Abe, Shosaku; Aoki, Nobuki; Shimokata, Kaoru; Mikasa, Keiichi; Niki, Yoshihito

    2012-03-01

    The Japanese Respiratory Society Guidelines for the Management of Community-Acquired Pneumonia (CAP) in Adults (JRS 2005) was published as a revision of the Basic Concept for the Management of CAP in Adults (JRS 2000). To evaluate the JRS 2005 criteria for differentiating between disease types and assessing the status of antimicrobial agent use in initial treatment, we conducted a prospective survey. The survey was conducted from July 2006 to March 2007 as a nationwide joint study by 200 institutions. The study subjects included patients aged ≥16 years of age who had CAP, and patients who met the inclusion criteria were consecutively enrolled. Disease type differentiation based on JRS 2005 and JRS 2000 was conducted. Disease type diagnosis was also performed based on test results. The sensitivity and specificity of disease type differentiation were calculated. The antimicrobial agents used in the initial treatment were classified as recommended or non-recommended based on JRS 2005. The validity of non-recommended antimicrobial agent use was investigated. A total of 1875 patients were analyzed. Differentiation of atypical pneumonia using the JRS 2005 criteria had higher sensitivity and lower specificity than differentiation using the JRS 2000 criteria. The antimicrobial agents recommended by JRS 2005 were used as initial treatment in a low number of cases. The efficacy of the recommended antimicrobial agents was similar to that of the non-recommended agents. JRS 2005 is advantageous in terms of reducing the number of items used in disease type differentiation. The recommended antimicrobial agents used for the initial treatment are believed to be appropriate. Copyright © 2012 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  8. Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces.

    PubMed

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Nanoparticles as potential new generation broad spectrum antimicrobial agents.

    PubMed

    Yah, Clarence S; Simate, Geoffrey S

    2015-09-02

    The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens. Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP) technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will revolutionize clinical medicine and play a significant role in alleviating disease burden.

  10. Prudent Use of Antimicrobials in Exotic Animal Medicine.

    PubMed

    Broens, Els M; van Geijlswijk, Ingeborg M

    2018-05-01

    Reduction of antimicrobial use can result in reduction of resistance in commensal bacteria. In exotic animals, information on use of antimicrobials and resistance in commensals and pathogens is scarce. However, use of antimicrobials listed as critically important antimicrobials for human medicine seems high in exotic animals. Ideally, the selection of a therapy should be based on an accurate diagnosis and antimicrobial susceptibility testing. When prescribing antimicrobials based on empiricism, knowledge of the most common pathogens causing specific infections and the antimicrobial spectrum of antimicrobial agents is indispensable. Implementing antimicrobial stewardship promotes the prudent use of antimicrobials in exotic animals. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Impact of formulary restriction with prior authorization by an antimicrobial stewardship program

    PubMed Central

    Reed, Erica E.; Stevenson, Kurt B.; West, Jessica E.; Bauer, Karri A.; Goff, Debra A.

    2013-01-01

    In an era of increasing antimicrobial resistance and few antimicrobials in the developmental pipeline, many institutions have developed antimicrobial stewardship programs (ASPs) to help implement evidence-based (EB) strategies for ensuring appropriate utilization of these agents. EB strategies for accomplishing this include formulary restriction with prior authorization. Potential limitations to this particular strategy include delays in therapy, prescriber pushback, and unintended increases in use of un-restricted antimicrobials; however, our ASP found that implementing prior authorization for select antimicrobials along with making a significant effort to educate clinicians on criteria for use ensured more appropriate prescribing of these agents, hopefully helping to preserve their utility for years to come. PMID:23154323

  12. Impact of formulary restriction with prior authorization by an antimicrobial stewardship program.

    PubMed

    Reed, Erica E; Stevenson, Kurt B; West, Jessica E; Bauer, Karri A; Goff, Debra A

    2013-02-15

    In an era of increasing antimicrobial resistance and few antimicrobials in the developmental pipeline, many institutions have developed antimicrobial stewardship programs (ASPs) to help implement evidence-based (EB) strategies for ensuring appropriate utilization of these agents. EB strategies for accomplishing this include formulary restriction with prior authorization. Potential limitations to this particular strategy include delays in therapy, prescriber pushback, and unintended increases in use of un-restricted antimicrobials; however, our ASP found that implementing prior authorization for select antimicrobials along with making a significant effort to educate clinicians on criteria for use ensured more appropriate prescribing of these agents, hopefully helping to preserve their utility for years to come.

  13. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  14. Silanols, a New Class of Antimicrobial Agent

    DTIC Science & Technology

    2006-04-01

    carbinols against the four bacteria was log (1/MLC) = 0.670 log P + 0.0035 ∆ν -1.836, n = 282, r = 0.96, s = 0.22. This equation and a significantly...activity relationship of antimicrobial agents by means of equations [8] based on a method proposed by Hansch and Fujita in 1964 [1]. This multiple...correlation equations between their antimicrobial activities and structural properties, log P and H-bond acidity, were created by a multiple regression

  15. Synthesis of Pharmacological Heterocyclic Derivatives Based Surfactants.

    PubMed

    El-Sayed, Refat; Fadda, Ahmed A

    2016-01-01

    Synthesis of chromenopyrimidine derivatives and the related fused system carried out by the reaction of chromene derivative 1 with various reagents under suitable reaction conditions. Condensation of stearoyl chloride with these heterocycles, then, propoxylated the products using propylene oxide to produce surface active agents having a twofold capacity as surface and antimicrobial dynamic specialists which may be served in the production of medications, pesticides, beautifying agents or may be utilized as an antimicrobial. Some of the surface properties and antimicrobial activity were resolved.

  16. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Antimicrobial efficacy of oral topical agents on microorganisms associated with radiated head and neck cancer patients: an in vitro study.

    PubMed

    Bidra, Avinash S; Tarrand, Jeffery J; Roberts, Dianna B; Rolston, Kenneth V; Chambers, Mark S

    2011-04-01

    A variety of oral topical agents have been used for prevention and management of radiotherapy-induced adverse effects. The antimicrobial nature of some of the commonly used agents is unknown. The purpose of this study was to evaluate antimicrobial efficacies of various oral topical agents on common microorganisms associated with radiated head and neck cancer patients. Seven commonly used topical oral agents-0.12% chlorhexidine with alcohol, 0.12% chlorhexidine without alcohol, baking soda-salt rinse, 0.4% stannous fluoride gel, 0.63% stannous fluoride rinse, calcium phosphate mouthrinse, and acemannan hydrogel (aloe vera) rinse-were evaluated in vitro for their antimicrobial efficacies against four common microorganisms. A combination of baking soda-salt rinse and 0.4% stannous fluoride gel was evaluated as the eighth agent. The microorganisms used were Staphylococcus aureus, group B Streptococcus, Escherichia coli, and Candida albicans. An ELISA reader was used to measure the turbidity of microbial culture wells and optical density (OD) values for each of the 960 wells recorded. Mean OD values were rank ordered based on their turbidity. One-way ANOVA with Tukey HSD post hoc analysis was used to study differences in OD values (P < .05). Mean OD values classified for topical agents from lowest to highest were chlorhexidine with alcohol, chlorhexidine without alcohol, baking soda- salt, calcium phosphate rinse, and the combination of baking soda-salt and stannous fluoride gel. Mean OD values classified for microorganisms from lowest to highest were Escherichia coli, Staphylococcus aureus, group B Streptococcus, and Candida albicans. A significant difference among the antimicrobial efficacies of topical agents was evident for each of four microorganisms (P < .05). There was also a significant difference among the antimicrobial efficacies of the same topical agent on the four microorganisms tested (P < .05).

  18. Impact of Gram stain results on initial treatment selection in patients with ventilator-associated pneumonia: a retrospective analysis of two treatment algorithms.

    PubMed

    Yoshimura, Jumpei; Kinoshita, Takahiro; Yamakawa, Kazuma; Matsushima, Asako; Nakamoto, Naoki; Hamasaki, Toshimitsu; Fujimi, Satoshi

    2017-06-19

    Ventilator-associated pneumonia (VAP) is a common and serious problem in intensive care units (ICUs). Several studies have suggested that the Gram stain of endotracheal aspirates is a useful method for accurately diagnosing VAP. However, the usefulness of the Gram stain in predicting which microorganisms cause VAP has not been established. The purpose of this study was to evaluate whether a Gram stain of endotracheal aspirates could be used to determine appropriate initial antimicrobial therapy for VAP. Data on consecutive episodes of microbiologically confirmed VAP were collected from February 2013 to February 2016 in the ICU of a tertiary care hospital in Japan. We constructed two hypothetical empirical antimicrobial treatment algorithms for VAP: a guidelines-based algorithm (GLBA) based on the recommendations of the American Thoracic Society-Infectious Diseases Society of America (ATS-IDSA) guidelines and a Gram stain-based algorithm (GSBA) which limited the choice of initial antimicrobials according to the results of bedside Gram stains. The GLBA and the GSBA were retrospectively reviewed for each VAP episode. The initial coverage rates and the selection of broad-spectrum antimicrobial agents were compared between the two algorithms. During the study period, 219 suspected VAP episodes were observed and 131 episodes were assessed for analysis. Appropriate antimicrobial coverage rates were not significantly different between the two algorithms (GLBA 95.4% versus GSBA 92.4%; p = 0.134). The number of episodes for which antimethicillin-resistant Staphylococcus aureus agents were selected as an initial treatment was larger in the GLBA than in the GSBA (71.0% versus 31.3%; p < 0.001), as were the number of episodes for which antipseudomonal agents were recommended as an initial treatment (70.2% versus 51.9%; p < 0.001). Antimicrobial treatment based on Gram stain results may restrict the administration of broad-spectrum antimicrobial agents without increasing the risk of treatment failure. UMIN-CTR, UMIN000026457 . Registered 8 March 2017 (retrospectively registered).

  19. The chemistry and applications of antimicrobial polymers: a state-of-the-art review.

    PubMed

    Kenawy, El-Refaie; Worley, S D; Broughton, Roy

    2007-05-01

    Microbial infection remains one of the most serious complications in several areas, particularly in medical devices, drugs, health care and hygienic applications, water purification systems, hospital and dental surgery equipment, textiles, food packaging, and food storage. Antimicrobials gain interest from both academic research and industry due to their potential to provide quality and safety benefits to many materials. However, low molecular weight antimicrobial agents suffer from many disadvantages, such as toxicity to the environment and short-term antimicrobial ability. To overcome problems associated with the low molecular weight antimicrobial agents, antimicrobial functional groups can be introduced into polymer molecules. The use of antimicrobial polymers offers promise for enhancing the efficacy of some existing antimicrobial agents and minimizing the environmental problems accompanying conventional antimicrobial agents by reducing the residual toxicity of the agents, increasing their efficiency and selectivity, and prolonging the lifetime of the antimicrobial agents. Research concerning the development of antimicrobial polymers represents a great a challenge for both the academic world and industry. This article reviews the state of the art of antimicrobial polymers primarily since the last comprehensive review by one of the authors in 1996. In particular, it discusses the requirements of antimicrobial polymers, factors affecting the antimicrobial activities, methods of synthesizing antimicrobial polymers, major fields of applications, and future and perspectives in the field of antimicrobial polymers.

  20. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use.

    PubMed

    Zarb, P; Coignard, B; Griskeviciene, J; Muller, A; Vankerckhoven, V; Weist, K; Goossens, Mm; Vaerenberg, S; Hopkins, S; Catry, B; Monnet, Dl; Goossens, H; Suetens, C

    2012-11-15

    A standardised methodology for a combined point prevalence survey (PPS) on healthcare-associated infections (HAIs) and antimicrobial use in European acute care hospitals developed by the European Centre for Disease Prevention and Control was piloted across Europe. Variables were collected at national, hospital and patient level in 66 hospitals from 23 countries. A patient-based and a unit-based protocol were available. Feasibility was assessed via national and hospital questionnaires. Of 19,888 surveyed patients, 7.1% had an HAI and 34.6% were receiving at least one antimicrobial agent. Prevalence results were highest in intensive care units, with 28.1% patients with HAI, and 61.4% patients with antimicrobial use. Pneumonia and other lower respiratory tract infections (2.0% of patients; 95% confidence interval (CI): 1.8–2.2%) represented the most common type (25.7%) of HAI. Surgical prophylaxis was the indication for 17.3% of used antimicrobials and exceeded one day in 60.7% of cases. Risk factors in the patient-based protocol were provided for 98% or more of the included patients and all were independently associated with both presence of HAI and receiving an antimicrobial agent. The patient-based protocol required more work than the unit-based protocol, but allowed collecting detailed data and analysis of risk factors for HAI and antimicrobial use.

  1. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  2. General Principles of Antimicrobial Therapy

    PubMed Central

    Leekha, Surbhi; Terrell, Christine L.; Edson, Randall S.

    2011-01-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  3. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    PubMed

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis

    PubMed Central

    Hao, Haihong; Sander, Pascal; Iqbal, Zahid; Wang, Yulian; Cheng, Guyue; Yuan, Zonghui

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data, and risk assessment results of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in humans. From the selected examples, it was apparent from reviewing the published scientific literature that the ban on use of some antimicrobial agents (e.g., avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and did not mitigate the intended goal of minimizing antimicrobial resistance. The use of some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food animals may have an impact on the antimicrobial resistance in humans, but it was largely depended on the pattern of drug usage in different geographical regions. The epidemiological characteristics of resistant bacteria were closely related to molecular mechanisms involved in the development, fitness, and transmission of antimicrobial resistance. PMID:27803693

  5. Recent advances in the microbiological diagnosis of bloodstream infections.

    PubMed

    Florio, Walter; Morici, Paola; Ghelardi, Emilia; Barnini, Simona; Lupetti, Antonella

    2018-05-01

    Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.

  6. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia.

    PubMed

    S Alanazi, Abdurrahman; Qureshi, Kamal Ahmad; Elhassan, Gamal Osman; I El-Agamy, Elsayed

    Escherichia coli is one of the most common pathogenic bacteria, which cause urinary tract infections in infants as well as in adult human beings. Due to the emergence of antibiotic resistance in E. coli, there is a great demand of new antimicrobial agent for the treatment of infections caused by such E. coli. This study aims to isolate, identify and characterize the native soil-bacterial strains predominate in the soil of Unaizah city, which produce antimicrobial agent antagonistic to E. coli ATCC 10536, followed by isolation, purification and characterization of antimicrobial agent. Pour plate, spread plate and 16S rRNA sequence analysis methods were followed for the isolation and identification of soil bacteria. Ammonium sulphate and dialysis (MWCO-8 KD) methods were followed for the isolation and partial purification of antimicrobial agent from the cell free broths. The characterization of antimicrobial agent was carried out by determining the minimum inhibitory concentration and effects of temperature and pH on the antimicrobial stability. Out of the twenty five soil samples, only one soil-bacterial strain was found to produce antimicrobial agent antagonistic to E. coli ATCC 10536. The isolated soil bacterium was identified as Bacillus pumilus SAFR-032. The soil isolate was characterized and results suggest that 30°C temperature and pH 7.0 were the optimum growth parameters and soybean casein digest broth was the best fermentation medium, whereas the highest production of antimicrobial agent was at 35°C temperature, pH 7.0, shaking at 150-220 rpm and at 60th h of incubation. The maximum yield of antimicrobial agent was obtained at 60% of (NH 4) 2SO 4. The results of characterization of antimicrobial agent suggest that the maximum and minimum antimicrobial activities were at pH 3.0 and 8.0, respectively, whereas antimicrobial activity was unaffected by temperature. The antimicrobial agent was highly stable at varying range of temperature 50-120°C. Minimum inhibitory concentration of antimicrobial agent was found to be 64 μg mL -1. In conclusion, this study might be a great endeavor for the healthcare industry in order to treatment of different infections caused by E. coli and that warrants further investigations to fully standardized and establish the antimicrobial profile of effect(s) of this isolate.

  7. Bacterial-Derived Polymer Poly-y-Glutamic Acid (y-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications.

    PubMed

    Khalil, Ibrahim R; Burns, Alan T H; Radecka, Iza; Kowalczuk, Marek; Khalaf, Tamara; Adamus, Grazyna; Johnston, Brian; Khechara, Martin P

    2017-02-02

    In the past decade, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have garnered remarkable attention as antimicrobial agents and for drug delivery, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. γ-PGA is a naturally occurring biopolymer produced by several gram-positive bacteria that, due to its biodegradable, non-toxic and non-immunogenic properties, has been used successfully in the medical, food and wastewater industries. Moreover, its carboxylic group on the side chains can offer an attachment point to conjugate antimicrobial and various therapeutic agents, or to chemically modify the solubility of the biopolymer. The unique characteristics of γ-PGA have a promising future for medical and pharmaceutical applications. In the present review, the structure, properties and micro/nanoparticle preparation methods of γ-PGA and its derivatives are covered. Also, we have highlighted the impact of micro/nanoencapsulation or immobilisation of antimicrobial agents and various disease-related drugs on biodegradable γ-PGA micro/nanoparticles.

  8. Bacterial-Derived Polymer Poly-γ-Glutamic Acid (γ-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications

    PubMed Central

    Khalil, Ibrahim R.; Burns, Alan T. H.; Radecka, Iza; Kowalczuk, Marek; Khalaf, Tamara; Adamus, Grazyna; Johnston, Brian; Khechara, Martin P.

    2017-01-01

    In the past decade, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have garnered remarkable attention as antimicrobial agents and for drug delivery, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. γ-PGA is a naturally occurring biopolymer produced by several gram-positive bacteria that, due to its biodegradable, non-toxic and non-immunogenic properties, has been used successfully in the medical, food and wastewater industries. Moreover, its carboxylic group on the side chains can offer an attachment point to conjugate antimicrobial and various therapeutic agents, or to chemically modify the solubility of the biopolymer. The unique characteristics of γ-PGA have a promising future for medical and pharmaceutical applications. In the present review, the structure, properties and micro/nanoparticle preparation methods of γ-PGA and its derivatives are covered. Also, we have highlighted the impact of micro/nanoencapsulation or immobilisation of antimicrobial agents and various disease-related drugs on biodegradable γ-PGA micro/nanoparticles. PMID:28157175

  9. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  10. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Proanthocyanidin-based Endotoxin Removal

    DTIC Science & Technology

    2014-01-16

    5–7]. These various compounds present a range of limitations. Antimicrobial peptides tend to be somewhat unstable, though there are several...Overall, the PACs provided poor capture of both bacterial species when compared with antibodies or even antimicrobial peptides with detection limits for...Frecer, B. Ho, and J.L. Ding, “De Novo Design of Potent Antimicrobial Peptides ,” Antimicrobial Agents and Chemotherapy 48, 3349–3357 (2004). 5. Y.H

  12. In vitro susceptibility of four antimicrobials against Riemerella anatipestifer isolates: a comparison of minimum inhibitory concentrations and mutant prevention concentrations for ceftiofur, cefquinome, florfenicol, and tilmicosin.

    PubMed

    Li, Yafei; Zhang, Yanan; Ding, Huanzhong; Mei, Xian; Liu, Wei; Zeng, Jiaxiong; Zeng, Zhenling

    2016-11-09

    Mutant prevention concentration (MPC) is an alternative pharmacodynamic parameter that has been used to measure antimicrobial activity and represents the propensities of antimicrobial agents to select resistant mutants. The concentration range between minimum inhibitory concentration (MIC) and MPC is defined as mutant selection window (MSW). The MPC and MSW parameters represent the ability of antimicrobial agents to inhibit the bacterial mutants selected. This study was conducted to determine the MIC and MPC values of four antimicrobials including ceftiofur, cefquinome, florfenicol and tilmicosin against 105 Riemerella anatipestifer isolates. The MIC 50 /MIC 90 values of clinical isolates tested in our study for ceftiofur, cefquinome, florfenicol and tilmicosin were 0.063/0.5、0.031/0.5、1/4、1/4 μg/mL, respectively; MPC 50 / MPC 90 values were 4/64、8/64、4/32、16/256 μg/mL, respectively. These results provided information on the use of these compounds in treating the R. anatipestifer infection; however, additional studies are needed to demonstrate their therapeutic efficacy. Based on the MSW theory, the hierarchy of these tested antimicrobial agents with respect to selecting resistant subpopulations was as follows: cefquinome > ceftiofur > tilmicosin > florfenicol. Cefquinome was the drug that presented the highest risk of selecting resistant mutant among the four antimicrobial agents.

  13. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    NASA Astrophysics Data System (ADS)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  14. Role of Nutrients and Phyto-compounds in the Modulation of Antimicrobial Resistance.

    PubMed

    Harakeh, Steve; Khan, Imran; Almasaudi, Saad B; Azhar, Esam I; Al-Jaouni, Soad; Niedzweicki, Aleksandra

    2017-01-01

    Antimicrobial resistance is quickly spreading and has become a major public health problem worldwide. If this issue is not resolved, it may cause a shift back to the pre-antibiotics era and infectious disease will again be a serious problem, especially in developing countries. Since the discovery of antibiotics, bacterial resistance has emerged, enabling certain bacteria to withstand antibiotic action. The emergence of antibiotic resistance is fueled by excessive and improper use of antimicrobial agents, especially in developing countries. For this reason, alternatives to or modifications of current treatment methods have been sought. The aim of this review is to highlight the possible synergies of various agents that can augment antibiotic activities. A structured literature search was conducted using only papers that have been published in PubMed with the focus on the agents that are likely to modulate antimicrobial resistance. In this review, data was retrieved from the literature regarding the possible synergies that exist between commercially available antimicrobial drugs with agents of interest. The papers included were summarized and analyzed, critiqued and compared for their contents using a conceptual frame-work. In total, one hundred and twenty six papers were reviewed. The number of papers that dealt with the different topics included are as follows (): emergence of antimicrobial resistance (22), bioactive phyto-compounds (36) (phytobiologics, and phytochemicals), Antioxidants (40) (N-acetylcysteine, Ambroxol, Ascorbic acid, Glutathione and vitamin E), Peptide synergies (14) (Synthetic cationic α-helical AMPs, CopA3, Alafosfalin, PMAP-36, Phosphonopeptide L-norvalyl-L-1-aminoethylphosphonic acid and norcardicin-A), nano-antibiotics (10), drug-compound interactions (4).This review addressed the new strategies using the above compounds in the modulation of antimicrobial resistance to avoid issues related to resistance of bacteria to antibiotics. The findings of this review confirm that certain compounds can act in synergy with currently used antimicrobials to enhance the potential of antimicrobial agents and thus to reduce the emergence of antimicrobial resistance. Some of these synergies are already being used to enhance the potential of currently used antimicrobial agents. More studies need to be conducted to better understand the mechanism of action of such compounds, and based on the results, new compounds may be sought. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    PubMed

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias.

  16. Development of antimicrobial active packaging materials based on gluten proteins.

    PubMed

    Gómez-Heincke, Diana; Martínez, Inmaculada; Partal, Pedro; Guerrero, Antonio; Gallegos, Críspulo

    2016-08-01

    The incorporation of natural biocide agents into protein-based bioplastics, a source of biodegradable polymeric materials, manufactured by a thermo-mechanical method is a way to contribute to a sustainable food packaging industry. This study assesses the antimicrobial activity of 10 different biocides incorporated into wheat gluten-based bioplastics. The effect that formulation, processing, and further thermal treatments exert on the thermo-mechanical properties, water absorption characteristics and rheological behaviour of these materials is also studied. Bioplastics containing six of the 10 examined bioactive agents have demonstrated suitable antimicrobial activity at 37 °C after their incorporation into the bioplastic. Moreover, the essential oils are able to create an antimicrobial atmosphere within a Petri dish. Depending on the selected biocide, its addition may alter the bioplastics protein network in a different extent, which leads to materials exhibiting less water uptake and different rheological and thermo-mechanical behaviours. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    PubMed

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  19. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents.

    PubMed

    Czyzewski, Ann M; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Chongsiriwatana, Nathaniel P; Yuen, Eddie; Hancock, Robert E W; Barron, Annelise E

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.

  20. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective.

    PubMed

    Aidara-Kane, A

    2012-04-01

    The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.

  1. Nontherapeutic Use of Antimicrobial Agents in Animal Agriculture: Implications for Pediatrics.

    PubMed

    Paulson, Jerome A; Zaoutis, Theoklis E

    2015-12-01

    Antimicrobial resistance is one of the most serious threats to public health globally and threatens our ability to treat infectious diseases. Antimicrobial-resistant infections are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of susceptible and resistant food zoonotic pathogens through the food supply, direct contact with animals, and environmental pathways. The overuse and misuse of antimicrobial agents in veterinary and human medicine is, in large part, responsible for the emergence of antibiotic resistance. Approximately 80% of the overall tonnage of antimicrobial agents sold in the United States in 2012 was for animal use, and approximately 60% of those agents are considered important for human medicine. Most of the use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create new health dangers for humans. This report describes how antimicrobial agents are used in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance, and discusses US and global initiatives to curb the use of antimicrobial agents in agriculture. Copyright © 2015 by the American Academy of Pediatrics.

  2. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    PubMed

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives. © 2014 Institute of Food Technologists®

  3. An oral carbapenem, but only now intravenous penicillin: the paradox of Japanese antimicrobials.

    PubMed

    Rogers, Benjamin A; Hayashi, Yoshiro

    2012-12-01

    At present there is a profound paradox in antimicrobial use and development in Japan. A tightly held domestic pharmaceutical market with significant barriers to the importation and registration of foreign agents, has spurred domestic pharmaceutical companies to develop a vast range of antimicrobials. Many Japanese developed antimicrobials are now used globally. A negative consequence of this environment, however, is the lack of availability of several 'workhorse' narrow-spectrum agents to treat patients in Japan. Absent agents include anti-staphylococcal penicillins and until recently, intravenous benzylpenicillin. In substitution for these unavailable agents, patients are frequently administered broader spectrum antimicrobials. This change offers no additional benefit to the patient and is potentially contributing to treatment failure and high rates of antimicrobial resistance amongst key bacterial pathogens in Japan. The situation in Japan illustrates the broader global challenges faced in integrating the development of new antimicrobial agents with maintaining the supply and use of older and less profitable agents. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  5. Determination of the Mutant Prevention Concentration and the Mutant Selection Window of Topical Antimicrobial Agents against Propionibacterium acnes.

    PubMed

    Nakase, Keisuke; Nakaminami, Hidemasa; Toda, Yuta; Noguchi, Norihisa

    2017-01-01

    Determination of the mutant prevention concentration (MPC) and the mutant selection window (MSW) of antimicrobial agents used to treat pathogenic bacteria is important in order to apply effective antimicrobial therapies. Here, we determined the MPCs of the major topical antimicrobial agents against Propionibacterium acnes and Staphylococcus aureus which cause skin infections and compared their MSWs. Among the MPCs of nadifloxacin and clindamycin, the clindamycin MPC was determined to be the lowest against P. acnes. In contrast, the nadifloxacin MPC was the lowest against S. aureus. Calculations based on the minimum inhibitory concentrations and MPCs showed that clindamycin has the lowest MSW against both P. acnes and S. aureus. Nadifloxacin MSWs were 4-fold higher against P. acnes than against S. aureus. It is more likely for P. acnes to acquire resistance to fluoroquinolones than S. aureus. Therefore, topical application of clindamycin contributes very little to the emergence of resistant P. acnes and S. aureus strains. © 2016 S. Karger AG, Basel.

  6. Potential development of a new cotton-based antimicrobial wipe

    USDA-ARS?s Scientific Manuscript database

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige and bleached nonwoven cotton fabrics was investigated using UV/visible spectroscopy. Initial results have shown that greige cotton adsorbs roughly three tim...

  7. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    PubMed

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  8. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  9. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance.

    PubMed

    Chou, Shuli; Shao, Changxuan; Wang, Jiajun; Shan, Anshan; Xu, Lin; Dong, Na; Li, Zhongyu

    2016-01-01

    The β-hairpin structure has been proposed to exhibit potent antimicrobial properties with low cytotoxicity, thus, multiple β-hairpin structures have been proved to be highly stable in structures containing tightly packed hydrophobic cores. The aim of this study was to develop peptide-based synthetic strategies for generating short, but effective AMPs as inexpensive antimicrobial agents. Multiple-stranded β-hairpin peptides with the same β-hairpin unit, (WRXxRW)n where n=1, 2, 3, or 4 and Xx represent the turn sequence, were synthesized, and their potential as antimicrobial agents was evaluated. Owning to the tightly packed hydrophobic core and paired Trp of this multiple-stranded β-hairpin structure, all the 12-residues peptides exhibited high cell selectivity towards bacterial cells over human red blood cells (hRBCs), and the peptide W2 exhibited stronger antimicrobial activities with the MIC values of 2-8μM against various tested bacteria. Not only that, but W2 also showed obvious synergy with streptomycin and chloramphenicol against Escherichia coli, and displayed synergy with ciprofloxacin against Staphylococcus aureus with the FICI values ⩽0.5. Fluorescence spectroscopy and electron microscopy analyses indicated that W2 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Collectively, based on the multiple β-hairpin peptides, the ability to develop libraries of short and effective peptides will be a powerful approach to the discovery of novel antimicrobial agents. We successfully screened a peptide W2 ((WRPGRW)2) from a series of multiple-stranded β-hairpin antimicrobial peptides based on the "S-shaped" motif that induced the formation of a globular structure, and Trp zipper was used to replace the disulfide bonds to reduce the cost of production. This novel structure applied to AMPs improved cell selectivity and salt stability. The findings of this study will promote the development of peptide-based antimicrobial biomaterials. Further exploration of these AMPs will allow for diverse biotechnological and clinical applications such as biomedical coating, food storaging, and animal feeding. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Patterns of antimicrobial agent prescription in a sentinel population of canine and feline veterinary practices in the United Kingdom.

    PubMed

    Singleton, D A; Sánchez-Vizcaíno, F; Dawson, S; Jones, P H; Noble, P J M; Pinchbeck, G L; Williams, N J; Radford, A D

    2017-06-01

    Antimicrobial resistance is an increasingly important global health threat and the use of antimicrobial agents is a key risk factor in its development. This study describes antimicrobial agent prescription (AAP) patterns over a 2year period using electronic health records (EHRs) from booked consultations in a network of 457 sentinel veterinary premises in the United Kingdom. A semi-automated classification methodology was used to map practitioner defined product codes in 918,333 EHRs from 413,870 dogs and 352,730 EHRs from 200,541 cats, including 289,789 AAPs. AAP as a proportion of total booked consultations was more frequent in dogs (18.8%, 95% confidence interval, CI, 18.2-19.4) than cats (17.5%, 95% CI 16.9-18.1). Prescription of topical antimicrobial agents was more frequent in dogs (7.4%, 95% CI 7.2-7.7) than cats (3.2%, 95% CI 3.1-3.3), whilst prescription of systemic antimicrobial agents was more frequent in cats (14.8%, 95% CI 14.2-15.4) than dogs (12.2%, 95% CI 11.7-12.7). A decreasing temporal pattern was identified for prescription of systemic antimicrobial agents in dogs and cats. Premises which prescribed antimicrobial agents frequently for dogs also prescribed frequently for cats. AAP was most frequent during pruritus consultations in dogs and trauma consultations in cats. Clavulanic acid potentiated amoxicillin was the most frequently prescribed antimicrobial agent in dogs (28.6% of prescriptions, 95% CI 27.4-29.8), whereas cefovecin, a third generation cephalosporin, was the most frequently prescribed antimicrobial agent in cats (36.2%, 95% CI 33.9-38.5). This study demonstrated patterns in AAP over time and for different conditions in a population of companion animals in the United Kingdom. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Effects of antimicrobial treatment on fiberglass-acrylic filters.

    PubMed

    Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A

    2004-01-01

    The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.

  12. A 3D Hydrodynamic Model for Heterogeneous Biofilms with Antimicrobial Persistence

    DTIC Science & Technology

    2014-01-01

    antimicrobial agents, providing a useful tool for analyzing the mechanism of biofilm persistence to antimicrobial agents in an aqueous environment. The numerical...mecha- nism of biofilm persistence to antimicrobial agents in an aqueous environment. The numerical result also confirms that the periodic dosing...We model the biofilm together with its surrounding aqueous environment as a mixture of complex fluids. The biofilm is consisted of the biomass

  13. Antifungal Indole and Pyrrolidine-2,4-Dione Derivative Peptidomimetic Lead Design Based on In Silico Study of Bioactive Peptide Families

    PubMed Central

    Moradi, Shoeib; Azerang, Parisa; Khalaj, Vahid; Sardari, Soroush

    2013-01-01

    Background The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. Methods In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. Results C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. Conclusion The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification. PMID:23626876

  14. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    PubMed Central

    Fjell, Christopher D.; Waldbrook, Matt; Chongsiriwatana, Nathaniel P.; Yuen, Eddie; Hancock, Robert E. W.; Barron, Annelise E.

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. PMID:26849681

  15. Antimicrobial formulary management: a case study in a teaching hospital.

    PubMed

    Wright, D B

    1991-01-01

    The role of the formulary system for effective cost containment is becoming increasingly important. With antimicrobial agents taking up a large proportion of most pharmaceutical budgets, this group of agents is an obvious target for cost reduction. The responsible interchange of selected antimicrobial agents offers a promising method to achieve this goal. The Pharmacy and Therapeutics Committee at Henry Ford Hospital implemented the formulary replacement of cefoxitin with cefotetan on a cost basis after the agents were evaluated and considered to be therapeutically equivalent. Drug usage guidelines were developed to implement this change. Educational materials were distributed to the medical staff, and lectures on the appropriate use of cefotetan were given to the house staff. On implementation, all orders written for cefoxitin were automatically changed to cefotetan in the appropriate dosage. After the first 12 months of cefotetan usage no unanticipated problems with treatment failures or adverse effects were noted. Based on analysis of cefotetan use for the first year, a savings of +4F229,811 was achieved with this interchange.

  16. Antimicrobial Effects of 7,8-Dihydroxy-6-Methoxycoumarin and 7-Hydroxy-6-Methoxycoumarin Analogues against Foodborne Pathogens and the Antimicrobial Mechanisms Associated with Membrane Permeability.

    PubMed

    Yang, Ji-Yeon; Park, Jun-Hwan; Lee, Myung-Ji; Lee, Ji-Hoon; Lee, Hoi-Seon

    2017-10-03

    The antimicrobial effects of 7,8-dihydroxy-6-methoxycoumarin and 7-hydroxy-6-methoxycoumarin isolated from Fraxinus rhynchophylla bark and of their structural analogues were determined in an attempt to develop natural antimicrobial agents against the foodborne pathogens Escherichia coli, Bacillus cereus, Staphylococcus intermedius, and Listeria monocytogenes. To elucidate the relationship between structure and antimicrobial activity for the coumarin analogues, isolated constituents and their structural analogues were evaluated against foodborne pathogens. Based on the culture plate inhibition zones and MICs, 6,7-dimethoxycoumarin, 7,8-dihydroxy-6-methoxycoumarin, 7-hydroxy-6-methoxycoumarin, and 7-methoxycoumarin, containing a methoxy functional group on the coumarin skeleton, had the notable antimicrobial activity against foodborne pathogens. However, 7-hydroxycoumarin and 6,7-dihydroxycoumarin, which contained a hydroxyl functional group on the coumarin skeleton, had no antimicrobial activity against these pathogens. An increase in cell membrane permeability was confirmed by electron microscopy observations, and release of extracellular ATP and cell constituents followed treatment with the ethyl acetate fraction of F. rhynchophylla extract. These findings indicate that F. rhynchophylla extract and coumarin analogues have potential for use as antimicrobial agents against foodborne pathogens and that the antimicrobial mechanisms are associated with the loss of cell membrane integrity.

  17. Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase

    USDA-ARS?s Scientific Manuscript database

    We have evaluated the antimicrobial properties of Ag-based nanoparticles (Np) using two solid platform-based bioassays and found that 10-20 uL of 0.3-3 uM keratin-based Nps (depending on the starting bacteria concentration = CI) completely inhibited the growth of an equivalent volume of ca. 1,000 to...

  18. Effect of clavulanic acid on minimal inhibitory concentrations of 16 antimicrobial agents tested against Legionella pneumophila.

    PubMed Central

    Pohlod, D J; Saravolatz, L D; Quinn, E L; Somerville, M M

    1980-01-01

    A total of 15 Legionella pneumophilia isolated were tested against 16 antimicrobial agents used singly and in combination with clavulanic acid. When combined with clavulanic acid, 4 of the 16 antimicrobial agents produced no enhanced effect. However, the minimal inhibitory concentrations of 12 of the antimicrobial agents were reduced by one-half to one-third when in combination with clavulanic acid. These reductions reflected only a one-dilution decrease, however, in the original minimal inhibitory concentrations. Thus, clavulanic acid combinations appear to be only nominally effective beta-lactamase inhibitors against L. pneumophilia. PMID:6969575

  19. Efficacy of Antimicrobial Agents for Food Contact Applications: Biological Activity, Incorporation into Packaging, and Assessment Methods: A Review.

    PubMed

    Mousavi Khaneghah, Amin; Hashemi, Seyed Mohammad Bagher; Eş, Ismail; Fracassetti, Daniela; Limbo, Sara

    2018-07-01

    Interest in the utilization of antimicrobial active packaging for food products has increased in recent years. Antimicrobial active packaging involves the incorporation of antimicrobial compounds into packaging materials, with the aim of maintaining or extending food quality and shelf life. Plant extracts, essential oils, organic acids, bacteriocins, inorganic substances, enzymes, and proteins are used as antimicrobial agents in active packaging. Evaluation of the antimicrobial activity of packaging materials using different methods has become a critical issue for both food safety and the commercial utilization of such packaging technology. This article reviews the different types of antimicrobial agents used for active food packaging materials, the main incorporation techniques, and the assessment methods used to examine the antimicrobial activity of packaging materials, taking into account their safety as food contact materials.

  20. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Antimicrobial graphene family materials: Progress, advances, hopes and fears.

    PubMed

    Lukowiak, Anna; Kedziora, Anna; Strek, Wieslaw

    2016-10-01

    Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review

    PubMed Central

    Chandra, Harish; Bishnoi, Parul; Yadav, Archana; Patni, Babita; Mishra, Abhay Prakash; Nautiyal, Anant Ram

    2017-01-01

    Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes. PMID:28394295

  3. Adenylate Kinase Release as a High-Throughput-Screening-Compatible Reporter of Bacterial Lysis for Identification of Antibacterial Agents

    PubMed Central

    Jacobs, Anna C.; DiDone, Louis; Jobson, Jennielle; Sofia, Madeline K.

    2013-01-01

    Adenylate kinase (AK) is a ubiquitous intracellular enzyme that is released into the extracellular space upon cell lysis. We have shown that AK release serves as a useful reporter of bactericidal agent activity and can be exploited for antimicrobial screening purposes. The AK assay exhibits improved sensitivity over that of growth-based assays and can detect agents that are active against bacteria in clinically relevant growth states that are difficult to screen using conventional approaches, such as small colony variants (SCV) and bacteria within established biofilms. The usefulness of the AK assay was validated by screening a library of off-patent drugs for agents that exhibit antimicrobial properties toward a variety of bacterial species, including Escherichia coli and all members of the “ESKAPE” pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The assay detected antibiotics within the library that were expected to be active against the organism screened. Moreover, 38 drugs with no previously reported antibacterial activity elicited AK release. Four of these were acquired, and all were verified to exhibit antimicrobial activity by standard susceptibility testing. Two of these molecules were further characterized. The antihistamine, terfenadine, was active against S. aureus planktonic, SCV population, and biofilm-associated cells. Tamoxifen, an estrogen receptor antagonist, was active toward E. faecium in vitro and also reduced E. faecium pathogenesis in a Galleria mellonella infection model. Our data demonstrate that the AK assay provides an attractive screening approach for identifying new antimicrobial agents. Further, terfenadine and tamoxifen may represent novel antimicrobial drug development scaffolds. PMID:23027196

  4. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances. © 2014 Institute of Food Technologists®

  5. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  6. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J J; Hesje, C E

    2012-11-09

    Mannheimia haemolytica is the most prevalent cause of bovine respiratory disease (BRD) and this disease accounts for 75% of morbidity, 50-70% of feedlot deaths and is estimated to cost up to $1 billion dollars annually in the USA. Antimicrobial therapy is essential for reducing morbidity, mortality and impacting on the financial burden of this disease. Due to the concern of increasing antimicrobial resistance, investigation of antibacterial agents for their potential for selecting for resistance is of paramount importance. A novel in vitro measurement called the mutant prevention concentration (MPC) defines the antimicrobial drug concentration necessary to block the growth of the least susceptible cells present in high density (≥10(7) colony forming units/ml) bacterial populations such as those seen in acute infection. We compared the minimum inhibitory concentration (MIC) and MPC values for 5 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tilmicosin, tulathromycin) against 285 M. haemolytica clinical isolates. The MIC(90)/MPC(90) values for each agent respectively were as follows: 0.016/2, 0.125/1, 2/≥16, 8/≥32, 2/8. Dosing to achieve MPC concentrations (where possible) may serve to reduce the selection of bacterial subpopulations with reduced antimicrobial susceptibility. The rank order of potency based on MIC(90) values was ceftiofur > enrofloxacin > florfenicol = tulathromycin > tilmicosin. The rank order of potency based on MPC(90) values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Antimicrobial resistance incidence and risk factors among Helicobacter pylori-infected persons, United States.

    PubMed

    Duck, William M; Sobel, Jeremy; Pruckler, Janet M; Song, Qunsheng; Swerdlow, David; Friedman, Cindy; Sulka, Alana; Swaminathan, Balasubra; Taylor, Tom; Hoekstra, Mike; Griffin, Patricia; Smoot, Duane; Peek, Rick; Metz, David C; Bloom, Peter B; Goldschmidt, Steven; Parsonnet, Julie; Triadafilopoulos, George; Perez-Perez, Guillermo I; Vakil, Nimish; Ernst, Peter; Czinn, Steve; Dunne, Donald; Gold, Ben D

    2004-06-01

    Helicobacter pylori is the primary cause of peptic ulcer disease and an etiologic agent in the development of gastric cancer. H. pylori infection is curable with regimens of multiple antimicrobial agents, and antimicrobial resistance is a leading cause of treatment failure. The Helicobacter pylori Antimicrobial Resistance Monitoring Program (HARP) is a prospective, multicenter U.S. network that tracks national incidence rates of H. pylori antimicrobial resistance. Of 347 clinical H. pylori isolates collected from December 1998 through 2002, 101 (29.1%) were resistant to one antimicrobial agent, and 17 (5%) were resistant to two or more antimicrobial agents. Eighty-seven (25.1%) isolates were resistant to metronidazole, 45 (12.9%) to clarithromycin, and 3 (0.9%) to amoxicillin. On multivariate analysis, black race was the only significant risk factor (p < 0.01, hazard ratio 2.04) for infection with a resistant H. pylori strain. Formulating pretreatment screening strategies or providing alternative therapeutic regimens for high-risk populations may be important for future clinical practice.

  8. Antimicrobial Resistance Incidence and Risk Factors among Helicobacter pylori–Infected Persons, United States

    PubMed Central

    Sobel, Jeremy; Pruckler, Janet M.; Song, Qunsheng; Swerdlow, David; Friedman, Cindy; Sulka, Alana; Swaminathan, Balasubra; Taylor, Tom; Hoekstra, Mike; Griffin, Patricia; Smoot, Duane; Peek, Rick; Metz, David C.; Bloom, Peter B.; Goldschmid, Steven; Parsonnet, Julie; Triadafilopoulos, George; Perez-Perez, Guillermo I.; Vakil, Nimish; Ernst, Peter; Czinn, Steve; Dunne, Donald; Gold, Ben D.

    2004-01-01

    Helicobacter pylori is the primary cause of peptic ulcer disease and an etiologic agent in the development of gastric cancer. H. pylori infection is curable with regimens of multiple antimicrobial agents, and antimicrobial resistance is a leading cause of treatment failure. The Helicobacter pylori Antimicrobial Resistance Monitoring Program (HARP) is a prospective, multicenter U.S. network that tracks national incidence rates of H. pylori antimicrobial resistance. Of 347 clinical H. pylori isolates collected from December 1998 through 2002, 101 (29.1%) were resistant to one antimicrobial agent, and 17 (5%) were resistant to two or more antimicrobial agents. Eighty-seven (25.1%) isolates were resistant to metronidazole, 45 (12.9%) to clarithromycin, and 3 (0.9%) to amoxicillin. On multivariate analysis, black race was the only significant risk factor (p < 0.01, hazard ratio 2.04) for infection with a resistant H. pylori strain. Formulating pretreatment screening strategies or providing alternative therapeutic regimens for high-risk populations may be important for future clinical practice. PMID:15207062

  9. Antimicrobial activity of chemomechanical gingival retraction products.

    PubMed

    Hsu, Belinda; Lee, Stephanie; Schwass, Donald; Tompkins, Geoffrey

    2017-07-01

    Application of astringent hemostatic agents is the most widely used technique for gingival retraction, and a variety of products are offered commercially. However, these products may have additional unintended yet clinically beneficial properties. The authors assessed the antimicrobial activities of marketed retraction products against plaque-associated bacteria in both planktonic and biofilm assays, in vitro. The authors assessed hemostatic solutions, gels, pellets, retraction cords, pastes, and their listed active agents against a collection of microorganisms by means of conventional agar diffusion and minimum bacteriostatic and bactericidal concentration determinations. The authors then tested the most active products against monospecies biofilms grown on hydroxyapatite disks. All of the tested retraction products exhibited some antimicrobial activity. The results of the most active products were comparable with those of a marketed mouthwash. The listed retraction-active agents displayed relatively little activity when tested in pure form. At 10% dilution, some products evidenced inhibitory activity against most tested bacteria within 3 minutes of exposure, whereas others displayed variable effects after 10 minutes. The most active agents reduced, but did not completely prevent, the metabolic activity of a monospecies biofilm. Commercial gingival retraction products exhibit antimicrobial effects to various degrees in vitro. Some products display rapid bactericidal activity. The antimicrobial activity is not owing to the retraction-active agents. Biofilm bacteria are less sensitive to the antimicrobial effects of the agents. The rapidity of killing by some hemostatic agents suggests an antimicrobial effect that may be efficacious during clinical placement. The results of this in vitro study suggest that clinicians should be aware of the potential antimicrobial effects of some hemostatic agents, but more research is needed to confirm these observations in clinical use. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  10. Introduction: the goals of antimicrobial therapy.

    PubMed

    Song, Jae-Hoon

    2003-03-01

    Antimicrobial agents are generally evaluated in preclinical studies assessing in vitro activity, animal models demonstrating in vivo bacteriologic efficacy, and clinical trials primarily investigating safety and clinical efficacy. However, large sample sizes are required to detect any differences in outcomes between antimicrobials in clinical trials, and, generally, studies are powered to show only clinical equivalence. In addition, diagnosis is often based on clinical symptoms, rather than microbiological evidence of bacterial infection, and the patients most likely to have resistant pathogens are often excluded. Clinical efficacy can be achieved in some bacterial infections in which antimicrobials are suboptimal or even not prescribed. However, bacterial eradication maximizes clinical efficacy and may also reduce the development and spread of resistant organisms. The goal of antimicrobial therapy is, therefore, to eradicate bacteria at the site of infection. Bacterial eradication is not usually assessed as a primary endpoint within the limits of currently recommended clinical trial design. However, pharmacokinetic (PK) (serum concentration profiles, penetration to site of infection) and pharmacodynamic (PD) (susceptibility, concentration- versus time-dependent killing, post-antimicrobial effects) criteria can be used to predict bacteriologic efficacy. PK/PD predictions should be confirmed during all phases of antimicrobial development and throughout clinical use in response to changing patterns of resistance. A clear rationale for dose recommendations can be determined preclinically based on PK/PD parameters, and correlated with efficacy, safety and resistance endpoints in clinical trials. The duration of treatment and dose should be the shortest that will reliably eradicate the pathogen(s), and that is safe and well tolerated. Currently available agents vary significantly in their ability to achieve PK/PD parameters necessary for bacteriologic eradication. Recommendations for appropriate antimicrobial therapy should be based on PK/PD parameters, with the aim of achieving the maximum potential for eradication of both existing and emerging resistant pathogens.

  11. Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment.

    PubMed

    González, Blanca; Colilla, Montserrat; Díez, Jaime; Pedraza, Daniel; Guembe, Marta; Izquierdo-Barba, Isabel; Vallet-Regí, María

    2018-03-01

    This work aims to provide an effective and novel solution for the treatment of infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, thus increasing the antimicrobial effectiveness. These nanosystems, named "nanoantibiotics", are composed of mesoporous silica nanoparticles (MSNs), which act as nanocarriers of an antimicrobial agent (levofloxacin, LEVO) localized inside the mesopores. To provide the nanosystem of bacterial membrane interaction capability, a polycationic dendrimer, concretely the poly(propyleneimine) dendrimer of third generation (G3), was covalently grafted to the external surface of the LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing a high penetrability throughout Gram-negative bacterial membranes. This work evidences that the synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on Gram-negative bacterial biofilm. These positive results open up very promising expectations for their potential application in new infection therapies. Seeking new alternatives to current available treatments of bacterial infections represents a great challenge in nanomedicine. This work reports the design and optimization of a new class of antimicrobial agent, named "nanoantibiotic", based on mesoporous silica nanoparticles (MSNs) decorated with polypropyleneimine dendrimers of third generation (G3) and loaded with levofloxacin (LEVO) antibiotic. The covalently grafting of these G3 dendrimers to MSNs allows an effective internalization in Gram-negative bacteria. Furthermore, the LEVO loaded into the mesoporous cavities is released in a sustained manner at effective antimicrobial dosages. The novelty and originality of this manuscript relies on proving that the synergistic combination of bacteria-targeting and antimicrobial agents into a unique nanosystem provokes a remarkable antimicrobial effect against bacterial biofilm. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Scaffold-based Anti-infection Strategies in Bone Repair

    PubMed Central

    Johnson, Christopher T.; García, Andrés J.

    2014-01-01

    Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field. PMID:25476163

  13. The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries - a review.

    PubMed

    Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J

    2015-12-01

    Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed. © 2015 John Wiley & Sons Ltd.

  14. Electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents as an innovative type of polymeric materials with superior antimicrobial efficacy.

    PubMed

    Sun, Xinbo; Zhang, Lifeng; Cao, Zhengbing; Deng, Ying; Liu, Li; Fong, Hao; Sun, Yuyu

    2010-04-01

    Herein we report that electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents and having large surface-to-mass ratios are an innovative type of antimicrobial polymeric materials with durable, nonleachable, and biocompatible characteristics, and more importantly, superior antimicrobial efficacy. Specifically, electrospun cellulose acetate (CA) nanofiber fabrics containing an N-halamine antimicrobial agent of bis(N-chloro-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Cl-BTMP) were prepared and evaluated; the results of antimicrobial efficacy indicated that the electrospun composite nanofiber fabrics substantially outperformed the control samples that were solution-cast films containing identical amounts of CA and Cl-BTMP. Additionally, the results of trypan blue assay test suggested that the electrospun composite nanofiber fabrics also had excellent mammal cell viability. The developed electrospun composite nanofiber fabrics with superior antimicrobial efficacy are expected to find vital applications in biomedical, hygienic, and many other fields.

  15. TOF-SIMS imaging of chlorhexidine-digluconate transport in frozen hydrated biofilms of the fungus Candida albicans

    NASA Astrophysics Data System (ADS)

    Tyler, Bonnie J.; Rangaranjan, Srinath; Möller, Jörg; Beumer, Andre'; Arlinghaus, Heinrich F.

    2006-07-01

    The diffusion of the anti-microbial chlorhexidine digluconate (CHG) has been studied in C. albicans biofilms by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). C. albicans has been shown to become resistant to common anti-microbial agents, including CHG, when growing as a biofilm. Mass transport resistance within biofilms has commonly been suggested as a resistance mechanism, but measurement of transport for most anti-microbial agents in biofilms has proven extremely difficult because of the heterogeneity of the biofilms and the difficulty in detecting these agents within an intact biofilm. In this study, TOF-SIMS has been used to study the transport of CHG and glucose in a frozen hydrated biofilm. The TOF-SIMS images reveal a progression of CHG from the top of the biofilm to its base with time. Images suggest that there are channels within the biofilm and show preferential binding of CHG to cellular components of the biofilm. Additionally, both living and dead cells can be identified in the TOF-SIMS images by the sequestration of K + and the presence of cell markers. This study demonstrates that TOF-SIMS has the unique potential to simultaneously observe the presence of an antimicrobial agent, concentration of nutrients, and the viability of the cell population.

  16. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Sales of veterinary antibacterial agents in nine European countries during 2005-09: trends and patterns.

    PubMed

    Grave, Kari; Greko, Christina; Kvaale, Mari K; Torren-Edo, Jordi; Mackay, David; Muller, Arno; Moulin, Gerard

    2012-12-01

    To identify trends and patterns of sales of veterinary antimicrobial agents in nine European countries during 2005-09 in order to document the situation. Existing sales data, in tonnes of active ingredients, of veterinary antimicrobial agents by class were collected from nine European countries in a standardized manner for the years 2005-09 (one country for 2006-09). A population correction unit (PCU) is introduced as a proxy for the animal population potentially treated with antimicrobial agents. The sales data are expressed as mg of active substance/PCU. Data coverage was reported to be 98%-100% for the nine countries. Overall, sales of veterinary antimicrobials agents, in mg/PCU, declined during the reporting period in the nine countries. Substantial differences in the sales patterns and in the magnitude of sales of veterinary antimicrobial agents, expressed as mg/PCU, between the nine countries are observed. The major classes sold were penicillins, sulphonamides and tetracyclines. The sales accounted for by the various veterinary antimicrobial agents have changed substantially for most countries. An increase in the sales of third- and fourth-generation cephalosporins and fluoroquinolones were observed for the majority of the countries. Through re-analysis of existing data by application of a harmonized approach, an overall picture of the trends in the sales of veterinary antimicrobial agents in the nine countries was obtained. Notable differences in trends in sales between the countries were observed. Further studies, preferably including data by animal species, are needed to understand the factors that explain these observations.

  18. The US national antimicrobial resistance monitoring system.

    PubMed

    Gilbert, Jeffrey M; White, David G; McDermott, Patrick F

    2007-10-01

    The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.

  19. [Studies on antimicrobial activity of extracts from thyme].

    PubMed

    Fan, M; Chen, J

    2001-08-01

    The extracts from thyme by water and ethanol, thyme essential oil, thymol and carvacrol were used as antimicrobial agents in this paper. The results show that all antimicrobial agents used have strong inhibition activity against Staphalococcus aureus, Bacillus subtilis, Escherichia coli.

  20. Susceptibilities of Legionella spp. to Newer Antimicrobials In Vitro

    PubMed Central

    Schülin, T.; Wennersten, C. B.; Ferraro, M. J.; Moellering, R. C.; Eliopoulos, G. M.

    1998-01-01

    The in vitro activities of 13 antimicrobial agents against 30 strains of Legionella spp. were determined. Rifapentine, rifampin, and clarithromycin were the most potent agents (MICs at which 90% of isolates are inhibited [MIC90s], ≤0.008 μg/ml). The ketolide HMR 3647 and the fluoroquinolones levofloxacin and BAY 12-8039 (MIC90s, 0.03 to 0.06 μg/ml) were more active than erythromycin A or roxithromycin. The MIC90s of dalfopristin-quinupristin and linezolid were 0.5 and 8 μg/ml, respectively. Based on class characteristics and in vitro activities, several of these agents may have potential roles in the treatment of Legionella infections. PMID:9624509

  1. Absorbent silver (I) antimicrobial fabrics

    USDA-ARS?s Scientific Manuscript database

    In recent years, silver in form of silver ions, has been gaining importance in the wound management as an effective broad-spectrum antimicrobial agent. Silver has a long history as an antimicrobial agent, especially in the treatment of wounds. Alginates and carboxymethyl (CM) cotton contain carboxyl...

  2. Comparison of Antimicrobial Efficacy of Triclosan- Containing, Herbal and Homeopathy Toothpastes- An Invitro Study

    PubMed Central

    Fawaz, Mohammed Alimullah; Narahari, Rao; Shahela, Tanveer; Syed, Afroz

    2015-01-01

    Background Use of antimicrobial agents is one of the important strategies to prevent oral diseases. These agents vary in their abilities to deliver preventive and therapeutic benefits. Objectives This invitro study was conducted to assess antimicrobial efficacy of different toothpastes against various oral pathogens. Materials and Methods A total of nine toothpastes in three groups were tested for their antimicrobial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Streptococcus mutans (ATCC 0266P) and Candida albicans (Laboratory Strain) by modified agar well diffusion method. Statistical Analysis was performed using Minitab Software. A p-value of less than 0.05 was considered significant. Results Triclosan-based dental formulation with combination of fluoride (1000ppm) exhibited higher antimicrobial activity against test organisms than the combination of lower fluoride-concentration or sodium monofluorophosphate. Among herbal dentifrices, formulation containing Neem, Pudina, Long, Babool, Turmeric and Vajradanti showed significant antimicrobial activity against all the four tested microorganisms (p<0.05). However, against Streptococcus mutans, all three herbal products showed significant antimicrobial activity. Homeo products showed least antimicrobial activity on the tested strains. Formulation with kreosotum, Plantago major and calendula was significantly effective only against Streptococcus mutans. Conclusion In the present study, antimicrobial activity of the toothpaste containing both triclosan and fluoride (1000ppm) as active ingredients showed a significant difference (p< 0.05) against all four tested microflora compared to that of with lower fluoride-concentration or sodium monofluorophosphate. Of herbal groups, the only dentifrice containing several phytochemicals was found to be significantly effective and comparable to triclosan-fluoride (1000ppm) formulation. Thus, this herbal toothpaste can be used as alternative to triclosan-based formulations. However, these results might not be clinically useful unless tested invivo. PMID:26557516

  3. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  4. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    NASA Astrophysics Data System (ADS)

    Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.

  5. Kunkel Lecture: Fundamental immunodeficiency and its correction

    PubMed Central

    2017-01-01

    “Fundamental immunodeficiency” is the inability of the encoded immune system to protect an otherwise healthy host from every infection that could threaten its life. In contrast to primary immunodeficiencies, fundamental immunodeficiency is not rare but nearly universal. It results not from variation in a given host gene but from the rate and extent of variation in the genes of other organisms. The remedy for fundamental immunodeficiency is “adopted immunity,” not to be confused with adaptive or adoptive immunity. Adopted immunity arises from four critical societal contributions to the survival of the human species: sanitation, nutrition, vaccines, and antimicrobial agents. Immunologists have a great deal to contribute to the development of vaccines and antimicrobial agents, but they have focused chiefly on vaccines, and vaccinology is thriving. In contrast, the effect of antimicrobial agents in adopted immunity, although fundamental, is fragile and failing. Immunologists can aid the development of sorely needed antimicrobial agents, and the study of antimicrobial agents can help immunologists discover targets and mechanisms of host immunity. PMID:28701368

  6. Antimicrobial Resistance Among Nontyphoidal Salmonella Isolated From Blood in the United States, 2003-2013.

    PubMed

    Angelo, Kristina M; Reynolds, Jared; Karp, Beth E; Hoekstra, Robert Michael; Scheel, Christina M; Friedman, Cindy

    2016-11-15

     Salmonella causes an estimated 100 000 antimicrobial-resistant infections annually in the United States. Salmonella antimicrobial resistance may result in bacteremia and poor outcomes. We describe antimicrobial resistance among nontyphoidal Salmonella blood isolates, using data from the National Antimicrobial Resistance Monitoring System.  Human nontyphoidal Salmonella isolates from 2003 to 2013 were classified as fully susceptible, resistant to ≥1 antimicrobial agent, or resistant to a first-line agent. Logistic regression was used to compare resistance patterns, serotypes, and patient characteristics for Salmonella isolated from blood versus stool and to determine resistance trends over time.  Approximately 20% of blood isolates had antimicrobial resistance to a first-line treatment agent. Bacteremia was associated with male sex, age ≥65 years, and specific serotypes. Blood isolates were more likely to be resistant to ≥1 agent for serotypes Enteritidis, Javiana, Panama, and Typhimurium. Blood isolates were most commonly resistant to tetracycline (19%), and more likely resistant to a first-line agent (odds ratio, 1.81; 95% confidence interval, 1.56-2.11) than stool isolates. Ceftriaxone resistance increased in blood isolates from 2003 to 2013 (odd ratio, 1.12; 95% confidence interval, 1.02-1.22).  Resistance to first-line treatment agents in patients with Salmonella bacteremia is a concern for public health and for informing clinical decisions. Judicious antimicrobial use is crucial to limit resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.

  8. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    NASA Astrophysics Data System (ADS)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  9. Modeling antimicrobial tolerance and treatment of heterogeneous biofilms.

    PubMed

    Zhao, Jia; Seeluangsawat, Paisa; Wang, Qi

    2016-12-01

    A multiphasic, hydrodynamic model for spatially heterogeneous biofilms based on the phase field formulation is developed and applied to analyze antimicrobial tolerance of biofilms by acknowledging the existence of persistent and susceptible cells in the total population of bacteria. The model implements a new conversion rate between persistent and susceptible cells and its homogeneous dynamics is bench-marked against a known experiment quantitatively. It is then discretized and solved on graphic processing units (GPUs) in 3-D space and time. With the model, biofilm development and antimicrobial treatment of biofilms in a flow cell are investigated numerically. Model predictions agree qualitatively well with available experimental observations. Specifically, numerical results demonstrate that: (i) in a flow cell, nutrient, diffused in solvent and transported by hydrodynamics, has an apparent impact on persister formation, thereby antimicrobial persistence of biofilms; (ii) dosing antimicrobial agents inside biofilms is more effective than dosing through diffusion in solvent; (iii) periodic dosing is less effective in antimicrobial treatment of biofilms in a nutrient deficient environment than in a nutrient sufficient environment. This model provides us with a simulation tool to analyze mechanisms of biofilm tolerance to antimicrobial agents and to derive potentially optimal dosing strategies for biofilm control and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Alginate edible films containing microencapsulated lemongrass oil or citral: effect of encapsulating agent and storage time on physical and antimicrobial properties.

    PubMed

    Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B

    2017-08-01

    Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.

  11. Lead Discovery Strategies for Identification of Chlamydia pneumoniae Inhibitors.

    PubMed

    Hanski, Leena; Vuorela, Pia

    2016-11-28

    Throughout its known history, the gram-negative bacterium Chlamydia pneumoniae has remained a challenging target for antibacterial chemotherapy and drug discovery. Owing to its well-known propensity for persistence and recent reports on antimicrobial resistence within closely related species, new approaches for targeting this ubiquitous human pathogen are urgently needed. In this review, we describe the strategies that have been successfully applied for the identification of nonconventional antichlamydial agents, including target-based and ligand-based virtual screening, ethnopharmacological approach and pharmacophore-based design of antimicrobial peptide-mimicking compounds. Among the antichlamydial agents identified via these strategies, most translational work has been carried out with plant phenolics. Thus, currently available data on their properties as antichlamydial agents are described, highlighting their potential mechanisms of action. In this context, the role of mitogen-activated protein kinase activation in the intracellular growth and survival of C . pneumoniae is discussed. Owing to the complex and often complementary pathways applied by C. pneumoniae in the different stages of its life cycle, multitargeted therapy approaches are expected to provide better tools for antichlamydial therapy than agents with a single molecular target.

  12. Lead Discovery Strategies for Identification of Chlamydia pneumoniae Inhibitors

    PubMed Central

    Hanski, Leena; Vuorela, Pia

    2016-01-01

    Throughout its known history, the gram-negative bacterium Chlamydia pneumoniae has remained a challenging target for antibacterial chemotherapy and drug discovery. Owing to its well-known propensity for persistence and recent reports on antimicrobial resistence within closely related species, new approaches for targeting this ubiquitous human pathogen are urgently needed. In this review, we describe the strategies that have been successfully applied for the identification of nonconventional antichlamydial agents, including target-based and ligand-based virtual screening, ethnopharmacological approach and pharmacophore-based design of antimicrobial peptide-mimicking compounds. Among the antichlamydial agents identified via these strategies, most translational work has been carried out with plant phenolics. Thus, currently available data on their properties as antichlamydial agents are described, highlighting their potential mechanisms of action. In this context, the role of mitogen-activated protein kinase activation in the intracellular growth and survival of C. pneumoniae is discussed. Owing to the complex and often complementary pathways applied by C. pneumoniae in the different stages of its life cycle, multitargeted therapy approaches are expected to provide better tools for antichlamydial therapy than agents with a single molecular target. PMID:27916800

  13. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Insights from the Society of Infectious Diseases Pharmacists.

    PubMed

    Le, Jennifer; Ashley, Elizabeth Dodds; Neuhauser, Melinda M; Brown, Jack; Gentry, Chris; Klepser, Michael E; Marr, Ann Marie; Schiller, Daryl; Schwiesow, Joshua N; Tice, Sally; VandenBussche, Heather L; Wood, G Christopher

    2010-06-01

    Aerosolized delivery of antimicrobial agents is an attractive option for management of pulmonary infections, as this is an ideal method of providing high local drug concentrations while minimizing systemic exposure. With the paucity of consensus regarding the safety, efficacy, and means with which to use aerosolized antimicrobials, a task force was created by the Society of Infectious Diseases Pharmacists to critically review and evaluate the literature on the use of aerosolized antiinfective agents. This article summarizes key findings and statements for preventing or treating a variety of infectious diseases, including cystic fibrosis, bronchiecstasis, hospital-acquired pneumonia, fungal infections, nontuberculosis mycobacterial infection, and Pneumocystis jiroveci pneumonia. Our intention was to provide guidance for clinicians on the use of aerosolized antibiotics through evidence-based pharmacotherapy. Further research with well-designed clinical trials is necessary to elucidate the optimal dosage and duration of therapy and, of equal importance, to appreciate the true risks associated with the use of aerosolized delivery systems.

  15. Preparation of antimicrobial fabric using magnesium-based PET masterbatch

    NASA Astrophysics Data System (ADS)

    Zhu, Yimin; Wang, Ying; Sha, Lin; Zhao, Jiao

    2017-12-01

    The magnesium-based antimicrobial polyethylene terephthalate (PET) masterbatch (MAPM) was extruded from twin screw extruder by melting-and-mixing method, using magnesium-based antimicrobial agent (MAA) as the functional material for the first time. The magnesium-based antimicrobial fabric (MAPF) was prepared using MAPM and pure PET resin by high-speed melt-spinning technology and weaving technology for the first time. The materials used in this work were healthy to human body and friendly to environment. The characteristics of MAA, MAPM and MAPF were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When the MAPM (MAA) content reached to 25 wt.% (5 wt.%) in MAPF, the MAA had excellent dispersion and compatibility in MAPF, and the MAPF had good physico-mechanical properties. Then the MAPF presented excellent spinnability and antimicrobial property against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Candida albicans (C. albicans) and Aspergillus niger (A. niger), with pretty good laundering durability.

  16. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  17. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  18. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model.

    PubMed

    Paudel, Atmika; Panthee, Suresh; Urai, Makoto; Hamamoto, Hiroshi; Ohwada, Tomohiko; Sekimizu, Kazuhisa

    2018-01-25

    Poor pharmacokinetic parameters are a major reason for the lack of therapeutic activity of some drug candidates. Determining the pharmacokinetic parameters of drug candidates at an early stage of development requires an inexpensive animal model with few associated ethical issues. In this study, we used the silkworm infection model to perform structure-activity relationship studies of an antimicrobial agent, GPI0039, a novel nitrofuran dichloro-benzyl ester, and successfully identified compound 5, a nitrothiophene dichloro-benzyl ester, as a potent antimicrobial agent with superior therapeutic activity in the silkworm infection model. Further, we compared the pharmacokinetic parameters of compound 5 with a nitrothiophene benzyl ester lacking chlorine, compound 7, that exerted similar antimicrobial activity but had less therapeutic activity in silkworms, and examined the metabolism of these antimicrobial agents in human liver fractions in vitro. Compound 5 had appropriate pharmacokinetic parameters, such as an adequate half-life, slow clearance, large area under the curve, low volume of distribution, and long mean residence time, compared with compound 7, and was slowly metabolized by human liver fractions. These findings suggest that the therapeutic effectiveness of an antimicrobial agent in the silkworms reflects appropriate pharmacokinetic properties.

  19. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries.

    PubMed

    Grave, Kari; Torren-Edo, Jordi; Muller, Arno; Greko, Christina; Moulin, Gerard; Mackay, David

    2014-08-01

    To describe sales and sales patterns of veterinary antimicrobial agents in 25 European Union (EU)/European Economic Area (EEA) countries for 2011. Data on the sales of veterinary antimicrobial agents from 25 EU member states and EEA countries for 2011 were collected at package level (name, formulation, strength, pack size, number of packages sold) according to a standardized protocol and template and presented in a harmonized manner. These data were calculated to express amounts sold, in metric tonnes, of active ingredient of each package. A population correction unit (PCU) was applied as a proxy for the animal biomass potentially treated with antimicrobial agents. The indicator used to express sales was milligrams of active substance per PCU. Substantial variations in the sales patterns and in the magnitude of sales of veterinary antimicrobial agents, expressed as mg/PCU, between the countries were observed. The proportion of sales, in mg/PCU, of products applicable for treatment of groups or herds of animals (premixes, oral powders and oral solution) varied considerably between the countries. Some countries reported much lower sales of veterinary antimicrobial agents than others, when expressed as mg/PCU. Sales patterns varied between countries, particularly with respect to pharmaceutical forms. Further studies are needed to understand the factors that explain the observed differences. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Periodontal therapy using local delivery of antimicrobial agents.

    PubMed

    Niederman, Richard; Abdelshehid, George; Goodson, J Max

    2002-10-01

    Antimicrobial agents, systemic and/or local, are thought by some to be effective agents for treating periodontal infections. Here the authors determine the costs and benefits of local delivery agents for treating periodontal disease. Applying this cost-benefit analysis to patient care, however, will depend upon a clinician's expertise and a patient's value system.

  1. Antimicrobial Approaches for Textiles: From Research to Market

    PubMed Central

    Morais, Diana Santos; Guedes, Rui Miranda; Lopes, Maria Ascensão

    2016-01-01

    The large surface area and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes’ growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics. PMID:28773619

  2. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens.

    PubMed

    Sweeney, Michael T; Lubbers, Brian V; Schwarz, Stefan; Watts, Jeffrey L

    2018-06-01

    Standardized definitions for MDR are currently not available in veterinary medicine despite numerous reports indicating that antimicrobial resistance may be increasing among clinically significant bacteria in livestock and companion animals. As such, assessments of MDR presented in veterinary scientific reports are inconsistent. Herein, we apply previously standardized definitions for MDR, XDR and pandrug resistance (PDR) used in human medicine to animal pathogens and veterinary antimicrobial agents in which MDR is defined as an isolate that is not susceptible to at least one agent in at least three antimicrobial classes, XDR is defined as an isolate that is not susceptible to at least one agent in all but one or two available classes and PDR is defined as an isolate that is not susceptible to all agents in all available classes. These definitions may be applied to antimicrobial agents used to treat bovine respiratory disease (BRD) caused by Mannheimia haemolytica, Pasteurella multocida and Histophilus somni and swine respiratory disease (SRD) caused by Actinobacillus pleuropneumoniae, P. multocida and Streptococcus suis, as well as antimicrobial agents used to treat canine skin and soft tissue infections (SSTIs) caused by Staphylococcus and Streptococcus species. Application of these definitions in veterinary medicine should be considered static, whereas the classification of a particular resistance phenotype as MDR, XDR or PDR could change over time as more veterinary-specific clinical breakpoints or antimicrobial classes and/or agents become available in the future.

  3. Synergistic effects of guanidine-grafted CMC on enhancing antimicrobial activity and dry strength of paper.

    PubMed

    Liu, Kai; Xu, Yaoguang; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Li, Jian

    2014-09-22

    In order to improve the strength property and antimicrobial activity of paper simultaneously, we prepared a novel multifunctional agent based on carboxymethyl cellulose (CMC) by a simple two-stage method. The first stage was the oxidation of CMC to obtain the dialdehyde CMC (DCMC), and the second stage was the graft of guanidine hydrochloride (GH) onto DCMC to obtain DCMC-GH polymer. The strength property and antimicrobial activity of DCMC-GH-coated copy paper have been studied by the tensile test and inhibition zone method, respectively. The results showed that the dry strength index could increase about 20% after the paper was coated with DCMC-GH. The coating of DCMC-GH on paper also resulted in excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus, and the inhibition zone became larger as the GH content grafted on DCMC increased. The novel DCMC-GH polymer would be a multifunctional coating agent for food packaging paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Rizk, Sameh A.; El-Naggar, Abeer M.; El-Badawy, Azza A.

    2018-03-01

    A series of 5-cyano-2-thiouracil derivatives, containing diverse hydrophobic groups in the 2-, 4- and 6-positions, were synthesized through one pot reaction of thiophene 2-carboxaldehyde, ethylcyanoacetate and thiourea using classic reflux-based method as well as microwave-assisted methods. Such prepared compounds were reacted with different electrophilic reagents to synthesize potent anti-microbial agents, e.g. 1,3,4-thiadiazinopyrimidine, hydrazide and triazolopyrimidine derivatives (compounds 4a-e, 9 and 10-12) respectively. The density functional theory (DFT) was then applied to explore the structural and electronic characteristics of these materials. It is found that compound 12 exhibited the highest antibacterial and antifungal activity against C. Albicans showing six-fold increasing biological affinity compared to that of Colitrimazole drug with MIC values 7.8 and 49 μg/mL, respectively. All the synthesized compounds have been characterized based on their elemental analyses and spectral data. Such compounds can be submitted to in vivo antimicrobial studies in future works.

  5. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  6. A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway.

    PubMed

    This declaration, signed by an interdisciplinary task force of 234 experts from 83 different countries with different backgrounds, highlights the threat posed by antimicrobial resistance and the need for appropriate use of antibiotic agents and antifungal agents in hospitals worldwide especially focusing on surgical infections. As such, it is our intent to raise awareness among healthcare workers and improve antimicrobial prescribing. To facilitate its dissemination, the declaration was translated in different languages.

  7. The in situ synthesis and application of silver nanoparticles as an antimicrobial agent for cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The application of sliver (Ag) as an antimicrobial agent dates back to the 1800s. Silver systems release positively charged silver ions (Ag+), when in aqueous media, that disrupts negatively charged surfaces of bacterial membranes, thus resulting in bacterial death. Its antimicrobial utility is not ...

  8. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    PubMed

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Methods of Antimicrobial Coating of Diverse Materials

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  10. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    PubMed

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  11. 42 CFR 493.1261 - Standard: Bacteriology.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) For antimicrobial susceptibility tests, the laboratory must check each batch of media and each lot number and shipment of antimicrobial agent(s) before, or concurrent with, initial use, using approved...

  12. Coatings with a Mole-hill Structure of Nanoparticle-Raspberry Containers for Surfaces with Abrasion-Refreshable Reservoir Functionality.

    PubMed

    Ballweg, Thomas; Gellermann, Carsten; Mandel, Karl

    2015-11-11

    Active silica nanoparticle-based raspberry-like container depots for agents such as antimicrobial substances are presented. The nano raspberry-containers are integrated into coatings in a way that they form a mole-hill structure; i.e., they are partly standing out of the coating. As an application example, it is demonstrated that the containers can be filled with antimicrobially active agents such as nano ZnO or Ag or organic molecules such as thymol. It is demonstrated that the containers can be partly chopped-off via abrasion by rubbing over the surface. This mechanism proves to be an attractive approach to render surfaces refreshable. A first proof of principle for antimicrobial activity of the intact containers in the coatings and the abrasion treated, chopped-off (and thereby reactivated) containers is demonstrated.

  13. Effect of Two Cancer Chemotherapeutic Agents on the Antibacterial Activity of Three Antimicrobial Agents

    PubMed Central

    Moody, Marcia R.; Morris, Maureen J.; Young, Viola Mae; Moyé, Lemuel A.; Schimpff, Stephen C.; Wiernik, Peter H.

    1978-01-01

    Cancer chemotherapeutic agents and antibacterial antibiotics are often given concomitantly. Daunorubicin, cytosine arabinoside, and three antibiotics (gentamicin, amikacin, and ticarcillin) were tested individually and in combinations to determine their antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. These cytotoxic agents are commonly employed in the therapy of acute nonlymphocytic leukemia for remission induction therapy, and these antimicrobial agents are used in infection therapy. The maximum concentrations of the two cytotoxic drugs were chosen to be twice the known peak plasma levels of commonly employed dosage schedules. Neither of the cancer chemotherapeutic agents, alone or in combination, demonstrated bactericidal activity at the levels tested. However, in the presence of these agents, the antimicrobial activity of gentamicin and amikacin, although not that of ticarcillin, was depressed for 11 of 15 K. pneumoniae strains and 8 of 15 P. aeruginosa strains, but for none of the strains of E. coli. This level of decreased activity occasionally resulted in a minimal inhibitory concentration of the tested aminoglycoside well above the standard serum levels. Daunorubicin was more likely to antagonize gentamicin than was cytosine arabinoside. PMID:103494

  14. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  15. The interface between veterinary and human antibiotic use.

    PubMed

    Shryock, Thomas R; Richwine, Amy

    2010-12-01

    The identification and early development of novel antimicrobial agents for use in veterinary medicine is subject to many of the same business and technical challenges as those found in antimicrobial agent use for human infectious disease. However, as awareness that some of the antimicrobial classes used in veterinary medicine are the same as used in human medicine, concern by multiple stakeholders has increased that this nonhuman use might be contributing to the problem of antimicrobial resistance to pathogens in humans, particularly with regard to food-borne diseases, such as salmonellosis and campylobacteriosis. Consequently, the interface between veterinary and human antibiotic use and resistance, especially with respect to human microbial food safety, has begun to redirect the industry pipeline of novel antimicrobial agents to be commercialized for use in veterinary medicine.

  16. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver.

    PubMed

    Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire

    2017-04-01

    The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Contact killing and antimicrobial properties of copper.

    PubMed

    Vincent, M; Duval, R E; Hartemann, P; Engels-Deutsch, M

    2018-05-01

    With the emergence of antibiotic resistance, the interest for antimicrobial agents has recently increased again in public health. Copper was recognized in 2008 by the United States Environmental Protection Agency (EPA) as the first metallic antimicrobial agent. This led to many investigations of the various properties of copper as an antibacterial, antifungal and antiviral agent. This review summarizes the latest findings about 'contact killing', the mechanism of action of copper nanoparticles and the different ways micro-organisms develop resistance to copper. © 2017 The Society for Applied Microbiology.

  18. Recent updates of marine antimicrobial peptides.

    PubMed

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  19. Antimicrobial activity of pomegranate peel extracts as affected by cultivar.

    PubMed

    Rosas-Burgos, Ema C; Burgos-Hernández, Armando; Noguera-Artiaga, Luis; Kačániová, Miroslava; Hernández-García, Francisca; Cárdenas-López, José L; Carbonell-Barrachina, Ángel A

    2017-02-01

    Some studies have reported that different parts of the pomegranate fruit, especially the peel, may act as potential antimicrobial agents and thus might be proposed as a safe natural alternative to synthetic antimicrobial agents. The high tannin content, especially punicalagin, found in pomegranate extracts, has been reported as the main compound responsible for such antimicrobial activity. Because the pomegranate peel chemical composition may vary with the type of cultivar (sweet, sour-sweet and sour), pomegranates may also differ with respect to their antimicrobial capacity. The extract from PTO8 pomegranate cultivar peel had the highest antimicrobial activity, as well as the highest punicalagins (α and β) and ellagic acid concentrations. In the results obtained from both antibacterial and antifungal activity studies, the sour-sweet pomegranate cultivar PTO8 showed the best antimicrobial activity, and the highest ellagic acid concentrations. The results of the present study suggest that ellagic acid content has a significant influence on the antimicrobial activity of the pomegranate extracts investigated. The pomegranate peel of the PTO8 cultivar is a good source of antifungal and antibacterial compounds, and may represent an alternative to antimicrobial agents of synthetic origin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies.

    PubMed

    Samiei, Mohammad; Farjami, Afsaneh; Dizaj, Solmaz Maleki; Lotfipour, Farzaneh

    2016-01-01

    Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide

    PubMed Central

    Singh, Madhuri; Mukhopadhyay, Kasturi

    2014-01-01

    The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent. PMID:25140322

  2. Antimicrobial resistance trends among Escherichia coli isolates obtained from dairy cattle in the northeastern United States, 2004-2011.

    PubMed

    Cummings, Kevin J; Aprea, Victor A; Altier, Craig

    2014-01-01

    Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform risk analyses and guide public policy regarding antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Escherichia coli isolates from dairy cattle in the northeastern United States and to identify trends in resistance to selected antimicrobial agents over time. We collected data retrospectively for all bovine E. coli isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. We investigated temporal trends in the prevalence of resistant E. coli for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 3373 bovine E. coli isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 2.7% (enrofloxacin) to 91.3% (oxytetracycline). There was evidence of a significantly decreasing trend in prevalence of resistance to several agents: chlortetracycline, florfenicol, neomycin, oxytetracycline, spectinomycin, and trimethoprim/sulfamethoxazole. However, a significantly increasing trend in prevalence of resistance to enrofloxacin was also evident. These results do not support the idea that current antimicrobial use practices on dairy operations are driving a general increase in the emergence and dissemination of drug-resistant E. coli in the region served by the laboratory. However, resistance to some drugs remained consistently high during the study period, and increasing resistance to enrofloxacin is a key area of concern.

  3. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents

    PubMed Central

    Nicholson, John W.; Coleman, Nichola J.; Booth, Samantha; Dimkov, Aleksandar

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent. PMID:28620615

  4. NRC/AMRMC Resident Research Associateship Program

    DTIC Science & Technology

    2015-03-01

    antimicrobials (and antiseptics) as well as to evaluate the effectiveness of various biofilm dispersal agents utilizing a number of bacterial species as...combat related wounds. 3 Demonstrated the utility of combinations of biofilm dispersal agents and antimicrobials as an alternate therapy for...alone or in combination with antimicrobials ) to reduce infection in contaminated femoral segmental defects. 5 Characterized host responses of

  5. [Etiology of urinary tract infections and antimicrobial susceptibility of urinary pathogens].

    PubMed

    Correia, Carlos; Costa, Elísio; Peres, António; Alves, Madalena; Pombo, Graça; Estevinho, Letícia

    2007-01-01

    With the objective of knowing the common etiological agents in urinary infection and comparing its antimicrobial susceptibility in nosocomial and community-acquired urinary infections, we analyse all the urine bacteriological exams from the Serviço de Patologia Clínica do Centro Hospitalar do Nordeste, EPE - Unidade Hospitalar de Bragança, during a two years period (April 2004 to March 2006). During this period, 4018 urine bacteriological exams were made. The cultural exam was positive in 572 samples (144 from nosocomial infections and 428 from community-acquired urinary infections). The Escherichia coli was the more isolated strain (68,4 %), followed by Klebsiella spp (7,9%), Pseudomonas aeruginosa (6,1%) and Proteus mirabilis (5,2%). Concerning to antimicrobial susceptibility, Escherichia coli and Klebsiella spp showed a high resistance to the antimicrobials Amoxicillin, Piperacillin, Cephalothin, Ceftazidim and Quinolones. For Enterobacteriaceae Imipenem, Amikacin and Netilmicin were the antimicrobials with more level of susceptibility. Imipenem and Amikacin were the more efficient antimicrobials against Pseudomonas aeruginosa. Concerning to the susceptibility for the same etiological agent, in nosocomial and community-acquired urinary infections, we founded statistical significant differences in the antimicrobials Ticarcillin-clavulanic acid and Collistin for Pseudomonas aeruginosa and in the group of antimicrobials from Quinolones for the Proteus mirabilis. In the other identified agents there were no statistical significant differences for antimicrobials. This study it allows making use of data necessary for the knowledge of etiologic urinary infection agents in Bragança and provides the information about the antimicrobials resistance, which were necessary to initiate an adequate empirical treatment and to elaborate treatment guides.

  6. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology.

    PubMed

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-02-15

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

  7. [Antibiotics in the critically ill].

    PubMed

    Kolak, Radmila R

    2010-01-01

    Antibiotics are one the most common therapies administered in the intensive care unit setting. This review outlines the strategy for optimal use of antimicrobial agents in the critically ill. In severely ill patients, empirical antimicrobial therapy should be used when a suspected infection may impair the outcome. It is necessary to collect microbiological documentation before initiating empirical antimicrobial therapy. In addition to antimicrobial therapy, it is recommended to control a focus of infection and to modify factors that promote microbial growth or impair the host's antimicrobial defence. A judicious choice of antimicrobial therapy should be based on the host characteristics, the site of injection, the local ecology, and the pharmacokinetics/pharmacodynamics of antibiotics. This means treating empirically with broad-spectrum antimicrobials as soon as possible and narrowing the spectrum once the organism is identified (de-escalation), and limiting duration of therapy to the minimum effective period. Despite theoretical advantages, a combined antibiotic therapy is nor more effective than a mono-therapy in curing infections in most clinical trials involving intensive care patients. Nevertheless, textbooks and guidelines recommend a combination for specific pathogens and for infections commonly caused by these pathogens. Avoiding unnecessary antibiotic use and optimizing the administration of antimicrobial agents will improve patient outcomes while minimizing risks for the development of bacterial resistance. It is important to note that each intensive care unit should have a program in place which monitors antibiotic utilisation and its effectiveness. Only in this way can the impact of interventions aimed at improving antibiotic use be evaluated at the local level.

  8. Resistance patterns in clinical isolates of pathogenic Actinomyces species.

    PubMed

    Steininger, C; Willinger, Birgit

    2016-02-01

    Actinomyces spp. are commensals that may occasionally invade deep tissue structures, causing difficult-to-treat and disfiguring lesions. Information on antimicrobial resistance patterns is limited to observations from two previous studies. Therefore, we examined antimicrobial resistance patterns in clinical isolates of Actinomyces spp. In this retrospective assessment of antimicrobial resistance patterns, we identified 392 Actinomyces spp. at a tertiary care centre from January 2008 to December 2014. MICs of various antimicrobial agents, including ampicillin/sulbactam, meropenem, clindamycin, metronidazole and vancomycin for anaerobic actinomycetes, were obtained by Etest. For aerobic actinomycetes, imipenem, cefotaxime, amikacin, linezolid, moxifloxacin, trimethoprim/sulfamethoxazole and clarithromycin were tested. MIC results were interpreted based on guidelines published by the CLSI (formerly NCCLS). Actinomyces meyeri was predominantly isolated and accounted for 34% of all Actinomyces spp. identified, followed by Actinomyces turicensis with 23%. Actinomyces neuii is considered to be a rare Actinomyces sp., but accounted for 8% of isolates. Antimicrobial susceptibility testing of isolates showed that the Actinomyces spp. were almost uniformly susceptible to β-lactam antimicrobials (with and without β-lactamase inhibitors), carbapenems, tetracyclines and vancomycin. In contrast, Actinomyces spp. isolates were almost uniformly resistant to metronidazole. β-Lactam antimicrobial agents remain the first choice, whereas metronidazole should be avoided, in the treatment of actinomycosis. Reasonable alternatives for treatment are tetracyclines and carbapenems. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Development and characterization of antimicrobial poly(l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins.

    PubMed

    Joo, Min Jung; Merkel, Crispin; Auras, Rafael; Almenar, Eva

    2012-02-15

    Trans-2-hexenal, a naturally occurring plant volatile with antimicrobial capacity, was encapsulated into β-cyclodextrins (β-CDs), enzymatically modified starch, and shown effective to control main microorganisms causing food spoilage (Alternaria solani, Aspergillus niger, Botrytis cinerea, Colletotrichum acutatum, Penicillium sp). Loaded β-CDs were incorporated into a poly(L-lactic acid) (PLA) matrix by extrusion and casting, and yielded antimicrobial polymers made from natural resources. A masterbatch was used prior to sheet casting to improve the dispersion of the antimicrobial agent in the PLA matrix. However, this increased the number of extrusion processes for the material. The concentration of the antimicrobial compound in the polymers and its antimicrobial capacity against one food spoilage microorganism (A. solani) were measured during the different processing operations. Although the concentration of trans-2-hexenal was reduced by processing by about 70 and 99% compared to the loaded β-CDs, for the masterbatch and sheet, respectively, the polymers were still effective in reducing microbial growth. The changes of the polymer properties due to the addition of the antimicrobial agent were investigated, too. It was found that the mechanical and barrier properties of the PLA were changed (decreased by about half the tensile strength and elongation at break and nine-fold increased permeability) while the physical properties remained the same. Based on these results, the developed polymer may be a viable antimicrobial material for applications in food packaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage.

    PubMed

    Wesgate, Rebecca; Grasha, Pierre; Maillard, Jean-Yves

    2016-04-01

    In this study we assessed the propensity of biocide exposure in the development of antimicrobial resistance in bacteria. Our protocol is based on reporting changes in established antimicrobial susceptibility profiles in biocides and antibiotics after during use exposure to a product. The during use exposure reflects worse conditions of product use during application. It differs from the term low concentration, which usually reflects a concentration below the minimal inhibitory concentration, but not necessarily a concentration that occurs in practice. Our results showed that exposure to triclosan (0.0004%) was associated with a high risk of developing resistance and cross-resistance in Staphylococcus aureus and Escherichia coli. This was not observed with exposure to chlorhexidine (0.00005%) or a hydrogen peroxide-based biocidal product (in during use conditions). Interestingly, exposure to a low concentration of hydrogen peroxide (0.001%) carried a risk of emerging resistance to antibiotics if the presence of the oxidizing agent was maintained. We observed a number of unstable clinical resistances to antibiotics after exposure to the cationic biocide and oxidizing agent, notably to tobramycin and ticarcillin-clavulanic acid. Using a decision tree based on the change in antimicrobial susceptibility test results, we were able to provide information on the effect of biocide exposure on the development of bacterial resistance to antimicrobials. Such information should address the call from the U.S. Food and Drug Administration and European Union Biocidal Products Regulation for manufacturers to provide information on antimicrobial resistance and cross-resistance in bacteria after the use of their product. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. A review of poly(lactic acid)-based materials for antimicrobial packaging.

    PubMed

    Tawakkal, Intan S M A; Cran, Marlene J; Miltz, Joseph; Bigger, Stephen W

    2014-08-01

    Poly(lactic acid) (PLA) can be synthesized from renewable bio-derived monomers and, as such, it is an alternative to conventional petroleum-based polymers. Since PLA is a relatively new polymer, much effort has been directed toward its development in order to make it an acceptable and effective option to the more traditional petroleum-based polymers. Commercially, PLA has received considerable attention in food packaging applications with a focus on films and coatings that are suitable for short shelf life and ready-to-eat food products. The potential for PLA to be used in active packaging has also been recognized by a number of researchers. This review focuses on the use of PLA in antimicrobial systems for food packaging applications and explores the engineering characteristics and antimicrobial activity of PLA films incorporated and/or coated with antimicrobial agents. © 2014 Institute of Food Technologists®

  12. Antimicrobial Drug Use and Resistance in Europe

    PubMed Central

    van de Sande-Bruinsma, Nienke; Verloo, Didier; Tiemersma, Edine; Monen, Jos; Goossens, Herman; Ferech, Matus

    2008-01-01

    Our study confronts the use of antimicrobial agents in ambulatory care with the resistance trends of 2 major pathogens, Streptococcus pneumoniae and Escherichia coli, in 21 European countries in 2000–2005 and explores whether the notion that antimicrobial drug use determines resistance can be supported by surveillance data at national aggregation levels. The data obtained from the European Surveillance of Antimicrobial Consumption and the European Antimicrobial Resistance Surveillance System suggest that variation of consumption coincides with the occurrence of resistance at the country level. Linear regression analysis showed that the association between antimicrobial drug use and resistance was specific and robust for 2 of 3 compound pathogen combinations, stable over time, but not sensitive enough to explain all of the observed variations. Ecologic studies based on routine surveillance data indicate a relation between use and resistance and support interventions designed to reduce antimicrobial drug consumption at a national level in Europe. PMID:18976555

  13. Antiaflatoxigenic and Antimicrobial Activities of Schiff Bases of 2-Hydroxy-4-methoxybenzaldehyde, Cinnamaldehyde, and Similar Aldehydes.

    PubMed

    Harohally, Nanishankar V; Cherita, Chris; Bhatt, Praveena; Anu Appaiah, K A

    2017-10-11

    2-Hydroxy-4-methoxybenzaldehyde (HMBA) is a nontoxic phenolic flavor from dietary source Decalipus hamiltonii and Hemidesmus indicus. HMBA is an excellent antimicrobial agent with additional antiaflatoxigenic potency. On the other hand, cinnamaldehyde from cinnamon is a widely employed flavor with significant antiaflatoxigenic activity. We have attempted the enhancement of antiaflatoxigenic and antimicrobial properties of HMBA, cinnamaldehyde, and similar molecules via Schiff base formation accomplished from condensation reaction with amino sugar (d-glucamine). HMBA derived Schiff bases exhibited commendable antiaflatoxigenic activity at the concentration 0.1 mg/mL resulting in 9.6 ± 1.9% growth of Aspergillus flavus and subsequent 91.4 ± 3.9% reduction of aflatoxin B 1 with respect to control.

  14. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: a systematic review and meta-analysis.

    PubMed

    de Almeida, C M; da Rosa, W L O; Meereis, C T W; de Almeida, S M; Ribeiro, J S; da Silva, A F; Lund, Rafael Guerra

    2018-06-01

    The purpose of this study was to evaluate the efficacy of orthodontic bonding systems containing different antimicrobial agents, as well as the influence of antimicrobial agent incorporation in the bonding properties of these materials. Eight databases were searched: PubMed (Medline), Web of Science, Scopus, Lilacs, Ibecs, BBO, Scielo and Google Scholar. Any study that evaluated antimicrobial activity in experimental or commercial orthodontic bonding systems was included. Data were tabulated independently and in duplicated by two authors on pre-designed data collection form. The global analysis was carried out using a random-effects model, and pooled-effect estimates were obtained by comparing the standardised mean difference of each antimicrobial orthodontic adhesive with the respective control group. A p-value < .05 was considered as statistically significant. Thirty-two studies were included in the qualitative analysis; of these, 22 studies were included in the meta-analysis. Antimicrobial agents such as silver nanoparticles, benzalkonium chloride, chlorhexidine, triclosan, cetylpyridinium chloride, Galla chinensis extract, acid ursolic, dimethylaminododecyl methacrylate, dimethylaminohexadecyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 1,3,5-triacryloylhexahydro-1,3,5-triazine, zinc oxide and titanium oxide have been incorporated into orthodontic bonding systems. The antimicrobial agent incorporation in orthodontic bonding systems showed higher antimicrobial activity than the control group in agar diffusion (overall standardised mean difference: 3.71; 95% CI 2.98 to 4.43) and optical density tests (0.41; 95% CI -0.05 to 0.86) (p < .05). However, for biofilm, the materials did not present antimicrobial activity (6.78; 95% CI 4.78 to 8.77). Regarding bond strength, the global analysis showed antimicrobial orthodontic bonding systems were statistically similar to the control. Although there is evidence of antibacterial activity from in vitro studies, clinical and long-term studies are still necessary to confirm the effectiveness of antibacterial orthodontic bonding systems in preventing caries disease.

  16. Antimicrobial property of zinc based nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  17. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2006-08-01

    Screening of different adjuvants, namely, suspending agents, phagostimulants, stickers, antimicrobial agents, and UV screens to develop aqueous biopesticidal suspensions of Bacillus thuringiensis (Bt) variety kurstaki HD-1 fermented broths, specifically, nonhydrolyzed sludge, hydrolyzed sludge, starch industry wastewater, and soya (commercial medium), were investigated. The selected suspending agents [20% (wt:vol)] included sorbitol, sodium monophosphate, and sodium metabisulfite with corresponding suspendibility of 74-92, 69-85, and 71-82%, respectively. Molasses [0.2% (wt:vol)] increased adherence by 84-90% for all fermented broths. The optimal phagostimulants [0.5% (wt:vol)], namely, soya and molasses, caused entomotoxicity increase of 3-13 and 7-13%, respectively. Sorbic and propionic acids showed high antimicrobial action [0.5% (wt:vol)], irrespective of fermentation medium. Sodium lignosulfonate, molasses, and Congo red, when used as UV screens [0.2% (wt:vol)], showed percent corresponding entomotoxicity losses of 3-5, 0.5-5 and 2-16, respectively. The Bt formulations, when exposed to UV radiation, showed higher half-lives (with and without UV screens) than the fermented broths or semisynthetic soya medium and commercial Bt formulation. UV screen-amended nonhydrolyzed, hydrolyzed, and starch industry wastewater formulations showed 1.3-1.5-fold higher half-lives than commercial Bt formulation. Thus, the recommended formulation comprises sorbitol, sodium monophosphate, sodium metabisulfite (suspending agents); molasses, soya flour (phagostimulants); molasses and skimmed milk powder (rainfasteners); sorbic and propionic acids (antimicrobial agents) and sodium lignosulfate; and molasses and Congo red (UV screens). These waste-based Bt formulations offer better UV resistance in comparison with commercial formulation.

  18. Characteristics of antimicrobial studies registered in the USA through ClinicalTrials.Gov

    PubMed Central

    Stockmann, Chris; Sherwin, Catherine M.T.; Ampofo, Krow; Hersh, Adam L.; Pavia, Andrew T.; Byington, Carrie L.; Ward, Robert M.; Spigarelli, Michael G.

    2013-01-01

    Increasing rates of antimicrobial-resistant infections and the dwindling pipeline of new agents necessitate judicious, evidence-based antimicrobial prescribing. Clinical trials represent a vital resource for establishing evidence of safety and efficacy, which are crucial to guiding antimicrobial treatment decisions. The objective of this study was to comprehensively evaluate the characteristics of antimicrobial research studies registered in ClinicalTrials.gov. Primary outcome measures, funding sources, inclusion criteria and the reporting of study results were evaluated for 16 055 antimicrobial studies registered in ClinicalTrials.gov as of mid 2012. Interventional studies accounted for 93% of registered antimicrobial studies. Clinical trials of drugs (82%) and biologics (9%) were most common. Antibacterial, antiviral and antifungal studies accounted for 43%, 41% and 16% of drug trials, respectively. Among interventional drug trials, 73% featured randomised allocation to study arms and 71% included measures of safety and/or efficacy as primary endpoints. Children were eligible for enrolment in 26% of studies. Among the studies, 60% were sponsored primarily by non-profit organisations, 30% by industry and 10% by the federal government. Only 7% of studies reported results; however, 71% of these were sponsored primarily by industry. Antimicrobial studies commonly incorporated elements of high-quality trial design, including randomisation and safety/efficacy endpoints. Publication of study results and updating of ClinicalTrials.gov should be encouraged for all studies, with particular attention paid to research sponsored by non-profit organisations and governmental agencies. Leveraging the application of these data to guide the careful selection of antimicrobial agents will be essential to preserve their utility for years to come. PMID:23726436

  19. Resistance of Staphylococcus aureus to antimicrobial agents in Ethiopia: a meta-analysis.

    PubMed

    Deyno, Serawit; Fekadu, Sintayehu; Astatkie, Ayalew

    2017-01-01

    Emergence of antimicrobial resistance by Staphylococcus aureus has limited treatment options against its infections. The purpose of this study was to determine the pooled prevalence of resistance to different antimicrobial agents by S. aureus in Ethiopia. Web-based search was conducted in the databases of PubMed, Google Scholar, Hinari, Scopus and the Directory of Open Access Journals (DOAJ) to identify potentially eligible published studies. Required data were extracted and entered into Excel spread sheet. Statistical analyses were performed using Stata version 13.0. The metaprop Stata command was used to pool prevalence values. Twenty-one separate meta-analysis were done to estimate the pooled prevalence of the resistance of S. aureus to twenty-one different antimicrobial agents. Heterogeneity among the studies was assessed using the I 2 statistic and chi-square test. Publication bias was assessed using Egger's test. Because of significant heterogeneity amongst the studies, the random effects model was used to pool prevalence values. The electronic database search yielded 1317 studies among which 45 studies met our inclusion criteria. Our analyses demonstrated very high level of resistance to amoxicillin (77% [95% confidence interval (CI): 68%, 0.85%]), penicillin (76% [95% CI: 67%, 84%]), ampicillin (75% [95% CI: 65%, 85%]), tetracycline (62% [95% CI: 55%, 68%]), methicillin (47% [95% CI: 33%, 61%]), cotrimoxaziole (47% [95% CI: 40%, 55%]), doxycycline (43% [95% CI: 26%, 60%]), and erythromycin (41% [95% CI: 29%, 54%]). Relatively low prevalence of resistance was observed with kanamycin (14% [95% CI: 5%, 25%]) and ciprofloxacin (19% [95% CI: 13%, 26%]). The resistance level to vancomycin is 11% 995% CI: (4%, 20%). High heterogeneity was observed for each of the meta-analysis performed (I 2 ranging from 79.36% to 95.93%; all p -values ≤0.01). Eggers' test did not show a significant publication bias for all antimicrobial agents except for erythromycin and ampicillin. S. aureus in Ethiopia has gotten notoriously resistant to almost to all of antimicrobial agents in use including, penicillin, cephalosporins, tetracyclines, chloramphenicol, methicillin, vancomycin and sulphonamides. The resistance level to vancomycin is bothersome and requires a due attention. Continued and multidimensional efforts of antimicrobial stewardship program promoting rational use of antibiotics, infection prevention and containment of AMR are urgently needed.

  20. Nanocomposites: suitable alternatives as antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Matharu, Rupy Kaur; Ciric, Lena; Edirisinghe, Mohan

    2018-07-01

    The exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents. This review aims to provide a comprehensive account of various nanocomposites that elucidate promising antimicrobial activity. The composition, physical and chemical properties, as well as the antimicrobial performance of these nanocomposites, are discussed in detail.

  1. Antimicrobials in beekeeping.

    PubMed

    Reybroeck, Wim; Daeseleire, Els; De Brabander, Hubert F; Herman, Lieve

    2012-07-06

    The bee diseases American and European foulbrood and nosemosis can be treated with anti-infectious agents. However, in the EU and the USA the use of these agents in beekeeping is strictly regulated due to the lack of tolerance (e.g. Maximum Residue Limit) for residues of antibiotics and chemotherapeutics in honey. This article reviews the literature dealing with antimicrobials of interest in apiculture, stability of these antimicrobials in honey, and disposition of the antimicrobials in honeybee hives. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  3. NRC/AMRMC Resident Research Associateship Program

    DTIC Science & Technology

    2015-03-01

    antimicrobials (and antiseptics) as well as to evaluate the effectiveness of various biofilm dispersal agents utilizing a number of bacterial species as well...combat related wounds. 3 Demonstrated the utility of combinations of biofilm dispersal agents and antimicrobials as an alternate therapy for targeting...alone or in combination with antimicrobials ) to reduce infection in contaminated femoral segmental defects. 5 Characterized host responses of

  4. NRC/AMRMC Resident Research Associateship Program

    DTIC Science & Technology

    2015-05-01

    2011-9/6/2014 1 Developed in vitrobiofilm assays to test susceptibility to various antimicrobials (and antiseptics) as well as to evaluate the...combinations of biofilm dispersal agents and antimicrobials as an alternate therapy for targeting bacterial biofilms. 4 Through collaborative efforts...contributed to the development of biomaterials capable of delivering biofilm dispersal agents (alone or in combination with antimicrobials ) to reduce

  5. NRC/AMRMC Resident Research Associateship Program

    DTIC Science & Technology

    2015-04-01

    Sanchez, Carlos 9/7/2011-9/6/2014 1 Developed in vitrobiofilm assays to test susceptibility to various antimicrobials (and antiseptics) as well as to...utility of combinations of biofilm dispersal agents and antimicrobials as an alternate therapy for targeting bacterial biofilms. 4 Through...collaborative efforts contributed to the development of biomaterials capable of delivering biofilm dispersal agents (alone or in combination with antimicrobials

  6. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    PubMed

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  7. In vitro susceptibility of Trichomonas vaginalis to 50 antimicrobial agents.

    PubMed Central

    Sears, S D; O'Hare, J

    1988-01-01

    We determined the susceptibilities of five strains of Trichomonas vaginalis, one of which was metronidazole resistant, to 50 antimicrobial agents. For the metronidazole-susceptible strains, the most active agents were metronidazole, tinidazole, mebendazole, furazolidone, and anisomycin. Against the resistant strain mebendazole, furazolidone, and anisomycin were the most active. Antifungal agents, beta-lactams, macrolides, aminoglycosides, and folic acid antagonists were ineffective against all strains. PMID:3258142

  8. Differences in antimicrobial susceptibility breakpoints for Pseudomonas aeruginosa, isolated from blood cultures, set by the Clinical and Laboratory Standards Institute (CLSI) and the Japanese Society of Chemotherapy.

    PubMed

    Nakamura, Tatsuya; Shimizu, Chihiro; Kasahara, Mayumi; Nakata, Chiyo; Munakata, Machiko; Takahashi, Hakuo

    2007-02-01

    A study was made of the antimicrobial susceptibility to and efficacy of various kinds of antimicrobial agents against 179 strains of Pseudomonas aeruginosa that were isolated from blood cultures at Kansai Medical University Hospital from 1990 through 2004. The annual detection rate was highest in 1994, at 22 strains (6.5%). There were 9 multidrug resistant strains of Pseudomonas aeruginosa (5.0%). Among 14 antimicrobial agents tested for measurements, ciprofloxacin (CPFX) showed the best minimum inhibitory concentration (MIC) 50 value, of 0.25 microg/ml, followed by pazufloxacin (PZFX) and biapenem (BIPM), each at 0.5 microg/ml. When the period of 15 years was divided into three stages, the MIC50 value for each antimicrobial agent was highest in the middle stage (1995 to 1999). Assuming that the percentage of sensitive strains according to the breakpoints set by the Clinical and Laboratory Standards Institute (CLSI) represents the antimicrobial susceptibility rate, amikacin (AMK) showed the best value, of 85.5%. According to the sepsis breakpoint set by the Japanese Society of Chemotherapy (JSC), the efficacy of CPFX showed the highest rate (77.1%) of all the antimicrobial agents tested. Among beta-lactams, BIPM showed the highest efficacy rate, of 67.0%. When the efficacy rates were compared with each other, the difference in efficacy rate between the breakpoint set by the CLSI and the sepsis breakpoint set by the JSC was large for beta-lactams. Comparisons made based on the CLSI criteria showed no difference in cross-resistance rates between CPFX, meropenem (MEPM), and BIPM. However, when comparisons were made using the JSC sepsis breakpoint, MEPM showed a cross-resistance rate of 87.8%, while the rate for BIPM was lower, at 56.1%, with the chi2 test showing a significant difference, at P = 0.0014. In accordance with the pharmacokinetics/pharmacodynamics theory that has been advocated, breakpoints which are more suitable for the clinical setting in Japan should be set so that more effective and more appropriate treatment can be carried out.

  9. The efficacy of the direct clinical intervention for infectious diseases by a pediatric infectious disease specialist in the pediatric ward of a tertiary medical facility without a pediatric antimicrobial stewardship program.

    PubMed

    Hoshina, T; Yamamoto, N; Ogawa, M; Nakamoto, T; Kusuhara, K

    2017-08-01

    Antimicrobial stewardship programs (ASPs) have been introduced in most hospital complexes; however, they are not always useful for pediatric patients. The aim of this study is to investigate the efficacy of direct clinical intervention for infectious diseases by a pediatric infectious disease specialist in a tertiary medical facility without pediatric ASP. This retrospective study included 1,821 patients who were hospitalized in the pediatric ward of a large metropolitan hospital from 2010 to 2015. The clinical course, the use of intravenous antimicrobial agents and the results of a microbiological analysis were compared between the period after the beginning of direct intervention by the specialist (post-intervention period) and the previous period (pre-intervention period). In the post-intervention period, the proportion of the patients who received intravenous antimicrobial agents, the number of antimicrobial agents used for each episode, and the proportion of episodes in which an antimicrobial agent was re-administrated were significantly lower (P = 0.006, P = 0.004, P = 0.036, respectively), and the duration of antimicrobial treatment was significantly shorter (P < 0.001). In addition, narrower spectrum antimicrobial agents were used, and the incidence of meropenem-sensitive Pseudomonas aeruginosa significantly increased (P = 0.037) in the post-intervention period. There was no change of mortality between the two periods. Direct clinical intervention by a pediatric infectious diseases specialist is useful for the treatment of infectious diseases in the pediatric ward of a tertiary medical facility without a pediatric ASP. The creation of a pediatric ASP is recommended in hospital complexes.

  10. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology

    PubMed Central

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-01-01

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed. PMID:28212308

  11. Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles.

    PubMed

    Holt, Brandon Alexander; Gregory, Shawn Alan; Sulchek, Todd; Yee, Shannon; Losego, Mark D

    2018-03-07

    Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl 2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl 2 -treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl 2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.

  12. [Antibiotic Residue in Environmental Water in Vietnam].

    PubMed

    Harada, Kazuo

    2018-01-01

     The increasing prevalence of antimicrobial resistance (AMR) has caused intractable infections worldwide. Nearly 50% of the healthy population of Southeast Asia carries extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. The overuse of antimicrobial agents in the agriculture, aquaculture, and medical care sectors causes environmental pollution, facilitating the spread of AMR. However, there is a lack of data pertaining to antimicrobial residues in environmental water in such regions. We investigated a total of 49 chemicals, including β-lactams, sulfonamides, quinolones, and tetracyclines. Water samples were collected from rivers in city centers, and ponds in livestock and aquaculture farms, in Ha Noi, Thai Binh, and Can Tho in Vietnam. We detected antimicrobial agents at 87 of 111 sampling sites (78.4%). Among the target analytes, sulfamethoxazole, sulfamethazine, trimethoprim, cephalexin, and ofloxacin were detected frequently. The residual levels of each antimicrobial agent ranged from 0.1 to 10000 ng/L. Moreover, we detected multi-drug resistant E. coli in fishes sampled from these rivers, suggesting unwanted effects of antimicrobial residues in the environment.

  13. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    PubMed

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.

  14. Hyperosmolar metabolic acidosis in burn patients exposed to glycol based topical antimicrobials-A systematic review.

    PubMed

    Leibson, Tom; Davies, Paige; Nickel, Cheri; Koren, Gideon

    2018-06-01

    The well documented susceptibility of burn patients to acquired infections via damaged skin mandates application of antimicrobial agents. These agents are dissolved in various vehicles that augment skin absorption thus allowing greater efficacy. Polyethylene glycol (PEG) and Propylene glycol (PropG) are among the most commonly used vehicles, and both have been used in numerous medications and cosmetic products over the past few decades. Rarely, burn patients treated with agents containing these glycols present with a life threatening systemic toxidrome of hyperosmolar metabolic acidosis. We present a systematic review of outcomes in burn patients treated with similar agents. Relevant studies were identified through systematic searches conducted in MEDLINE (Ovid), Embase (Ovid), CENTRAL (Ovid), and Web of Science (Thomson Reuters), from database inception to August 4th, 2016. All publications of clinical burn patient studies included at least one arm receiving a glycol based topical therapy. A total of 61 studies involving 10,282 patients and 4 different antimicrobial medications fulfilled the inclusion criteria. Nine burn patients (0.09%) were documented to present with hyperosmolar metabolic acidosis during topical silver sulfadiazine treatment. Propylene glycol isolated from their blood accounted for the high osmole gap. This first systematic review found very few cases of documented hyperosmolar metabolic acidosis, all within one study that had set to specifically explore this toxidrome. High index of suspicion with frequent osmolar gap monitoring may help identify future toxicities in a timely manner. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  15. New Approaches to Antibiotic Use and Review of Recently Approved Antimicrobial Agents.

    PubMed

    Hahn, Andrew W; Jain, Rupali; Spach, David H

    2016-07-01

    Antimicrobial drug-resistance continues to force adaptation in our clinical practice. We explore new evidence regarding adjunctive antibiotic therapy for skin and soft tissue abscesses as well as duration of therapy for intra-abdominal abscesses. As new evidence refines optimal practice, it is essential to support clinicians in adopting practice patterns concordant with evidence-based guidelines. We review a simple approach that can 'nudge' clinicians towards concordant practices. Finally, the use of novel antimicrobials will play an increasingly important role in contemporary therapy. We review five new antimicrobials recently FDA-approved for use in drug-resistant infections: dalbavancin, oritavancin, ceftaroline, ceftolozane-tazobactam, and ceftazidime-avibactam. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Susceptibility of Legionella pneumophila to twenty antimicrobial agents.

    PubMed Central

    Edelstein, P H; Meyer, R D

    1980-01-01

    Thirty-three isolates of Legionella pneumophila, all except one of which were clinical isolates, were tested against 20 antimicrobial agents by using an agar dilution technique. Erythromycin, rifamp]in, and rosaramycin were the most active agents tested. Aminoglycosides, chloramphenicol, and cefoxitin also inhibited the organisms at low concentrations. Other agents, including moxalactam, cefoperazone, and cephalosporins, exhibited moderate to little activity. Tetracycline, doxycycline and minocyeline were apparently inactivated by charcoal-yeast extract medium. There was slight inoculum dependence noted with most of the antimicrobials tested, particularly the beta-lactam agents. There was no consistent difference in susceptibility between Center for Disease Control-supplied stock strains and recent clinical isolates, but there were marked differences with some agents. Susceptibility testing needs to be standardized in view of the influence of inoculum size, strain variation, and the medium used. PMID:7425611

  17. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  18. Antimicrobial susceptibility of Histophilus somni isolated from clinically affected cattle in Australia.

    PubMed

    Goldspink, Lauren K; Mollinger, Joanne L; Barnes, Tamsin S; Groves, Mitchell; Mahony, Timothy J; Gibson, Justine S

    2015-02-01

    This study investigated antimicrobial resistance traits, clonal relationships and epidemiology of Histophilus somni isolated from clinically affected cattle in Queensland and New South Wales, Australia. Isolates (n = 53) were subjected to antimicrobial susceptibility testing against six antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin and tulathromycin) using disc diffusion and minimum inhibitory concentration (MIC) assays. Clonal relationships were assessed using repetitive sequence PCR and descriptive epidemiological analysis was performed. The H. somni isolates appeared to be geographically clonal, with 27/53 (47%) isolates grouping in one cluster from one Australian state. On the basis of disc diffusion, 34/53 (64%) isolates were susceptible to all antimicrobial agents tested; there was intermediate susceptibility to tulathromycin in 12 isolates, tilmicosin in seven isolates and resistance to tilmicosin in one isolate. Using MIC, all but one isolate was susceptible to all antimicrobial agents tested; the non-susceptible isolate was resistant to tetracycline, but this MIC result could not be compared to disc diffusion, since there are no interpretative guidelines for disc diffusion for H. somni against tetracycline. In this study, there was little evidence of antimicrobial resistance in H. somni isolates from Australian cattle. Disc diffusion susceptibility testing results were comparable to MIC results for most antimicrobial agents tested; however, results for isolates with intermediate susceptibility or resistance to tilmicosin and tulathromycin on disc diffusion should be interpreted with caution in the absence of MIC results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    PubMed

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  20. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  1. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    NASA Astrophysics Data System (ADS)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  2. Testing for sustainable preservatives

    USDA-ARS?s Scientific Manuscript database

    Rising antimicrobial resistance and heath concerns of common antimicrobials warrants the development of new, safer antimicrobial agents. A rapid screening protocol was developed to assess the antimicrobial properties of natural and synthetic substances. Benchmark substances were evaluated against re...

  3. Antimicrobial Susceptibility of Campylobacter Cuniculorum Isolated from Rabbits Reared in Intensive and Rural Farms

    PubMed Central

    Piva, Silvia; Florio, Daniela; Mion, Domenico; Zanoni, Renato Giulio

    2016-01-01

    The present study aimed to investigate the antimicrobial susceptibility in Campylobacter cuniculorum. To do so, 29 isolates from rabbits reared in 18 intensive and 11 rural farms not epidemiologically correlated were tested. Minimum inhibitory concentration of 8 antimicrobial agents was determined using the agar dilution method recommended by the Clinical and Laboratory Standards Institute (Wayne, PA, USA), modified – for what supplements in the base medium and incubation conditions concern – for C. cuniculorum isolates. The isolates obtained from rural farming resulted susceptible to all the antimicrobial agents tested, with the exception of one isolate resistant to nalidixic acid. All the isolates obtained from intensively farmed rabbits were sensitive to chloramphenicol and ampicillin; 16 isolates were resistant to tetracycline; 15 to nalidixic acid and erythromycin; 13 and 10 isolates to ciprofloxacin and enrofloxacin, respectively; and only 1 to gentamicin. The resistance of several isolates to macrolides and fluoroquinolones, which are the drugs of choice in treatment of human campylobacteriosis, could pose a risk to human health if a pathogenic role of C. cuniculorum was demonstrated. PMID:27853713

  4. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology.

    PubMed

    Bugrysheva, Julia V; Lascols, Christine; Sue, David; Weigel, Linda M

    2016-06-01

    Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in <4 h for B. anthracis and <6 h for Y. pestis and B. pseudomallei One exception was B. pseudomallei in the presence of ceftazidime, which required >10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Paralikar, Priti

    2016-10-01

    The alarming rate of infections caused by various pathogens and development of their resistance towards a large number of antimicrobial agents has generated an essential need to search for novel and effective antimicrobial agents. Metal nanoparticles such as silver have been widely used and accepted as strong antimicrobial agents, but considering the cost effectiveness and significant bioactivities, researchers are looking to utilize sulfur nanoparticles as an effective alternative to silver nanoparticles. This review has been focused on different approaches for the synthesis of sulfur nanoparticles, their broad spectrum bioactivities and possible mechanisms involved in their bioactivities. Expert commentary: Sulfur nanoparticles are reported to possess broad spectrum antimicrobial activity, and hence can be used to treat microbial infections and potentially tackle the problem of antibiotic resistance. Thus, in the future, sulfur nanoparticles can be used as an effective, non-toxic and economically viable alternative to other precious metal nanoparticles.

  6. Sales of veterinary antimicrobial agents for therapeutic use in food-producing animal species in Japan between 2005 and 2010.

    PubMed

    Hosoi, Y; Asai, T; Koike, R; Tsuyuki, M; Sugiura, K

    2014-12-01

    The use of veterinary antimicrobial agents in animals can result in the emergence and selection of resistant bacteria in food-producing animals. This study elucidated the use of veterinary antimicrobial agents in Japan in terms of milligrams of active ingredient sold per kilogram of biomass between 2005 and 2010. Data on sales of antimicrobial agents and on the biomass of the target animal species were compiled from statistics published bythe Japanese Ministry of Agriculture, Forestry and Fisheries. The quantities of antimicrobials used varied between animal species: the highest usage was observed in pigs (392 to 423 mg/ kg), followed by beef cattle (45 to 67 mg/kg), broiler chickens (44 to 63 mg/kg) and dairy cattle (33 to 49 mg/kg). For the animal species combined, usage of third- and fourth-generation cefalosporins, fluoroquinolones and macrolides ranged from 0.10 to 0.14 mg/kg biomass, 1.1 to 1.3 mg/kg biomass and 7.8 to 10.6 mg/kg biomass, respectively.

  7. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015.

    PubMed

    Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F

    Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI) and 970 isolates from urinary tract infections (UTI) were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (%) for K. pneumoniae (92.2, 92.3), Enterobacter spp. (97.5, 92.1), and P. aeruginosa (85.3, 75.2) isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6) and imipenem (79.2, 75.9) showed substantially higher rates of susceptibility (%) than other β-lactams, including piperacillin-tazobactam (35.9, 37.4) against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Novel Treatment of Staphylococcus aureus Device-Related Infections Using Fibrinolytic Agents.

    PubMed

    Hogan, S; O'Gara, J P; O'Neill, E

    2018-02-01

    Staphylococcal infections involving biofilms represent a significant challenge in the treatment of patients with device-related infections. Staphylococcus aureus biofilms have been shown to be SaeRS regulated and dependent on the coagulase-catalyzed conversion of fibrinogen into fibrin on surfaces coated with human plasma. Here we investigated the treatment of staphylococcal biofilm device-related infections by digesting the fibrin biofilm matrix with and without existing antimicrobials. The fibrinolytic agents plasmin, streptokinase, and nattokinase, and TrypLE, a recombinant trypsin-like protease, were used to digest and treat S. aureus biofilms grown in vitro using in vivo -like static biofilm assays with and without antimicrobials. Cytotoxicity, the potential to induce a cytokine response in whole human blood, and the risk of induction of tolerance to fibrinolytic agents were investigated. A rat model of intravascular catheter infection was established to investigate the efficacy of selected fibrinolytic agents in vivo Under biomimetic conditions, the fibrinolytic agents effectively dispersed established S. aureus biofilms and, in combination with common antistaphylococcal antimicrobials, effectively killed bacterial cells being released from the biofilm. These fibrinolytic agents were not cytotoxic and did not affect the host immune response. The rat model of infection successfully demonstrated the activity of the selected fibrinolytic agents alone and in combination with antimicrobials on established biofilms in vivo TrypLE and nattokinase most successfully removed adherent cells from plasma-coated surfaces and significantly improved the efficacy of existing antimicrobials against S. aureus biofilms in vitro and in vivo These biofilm dispersal agents represent a viable future treatment option for S. aureus device-related infections. Copyright © 2018 American Society for Microbiology.

  9. Lethal photosensitization of biofilm-grown bacteria

    NASA Astrophysics Data System (ADS)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  10. Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.

    PubMed

    Herron, Maggie; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J; Abbott, Nicholas L

    2016-10-03

    We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga 3+ (antibiofilm agent)- and Ag + (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga 3+ and Ag + from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga 3+ and Ag + can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.

  11. Semi-synthesis of dihydrochalcone derivatives and their in vitro antimicrobial activities.

    PubMed

    Awouafack, Maurice D; Kusari, Souvik; Lamshöft, Marc; Ngamga, Dieudonne; Tane, Pierre; Spiteller, Michael

    2010-04-01

    We describe the semi-synthesis of dihydrochalcone derivatives and their IN VITRO antimicrobial activities. These compounds were prepared by modifying two naturally occurring antimicrobial dihydrochalcones, erioschalcones A and B, reported by us earlier. The structures of the compounds were assigned on the basis of spectroscopic evidence and by comparing their physical and spectroscopic data with those reported in the literature. All the compounds were subjected to IN VITRO antimicrobial assays against a panel of pathogenic microorganisms, including gram-positive and gram-negative bacteria, and fungi. The antimicrobial efficacies of this class of compounds were established by correlating the activity profile of each compound with its structure and by comparing the activities of all the compounds with each other based on their structure. This should enable the development of other derivatives of the dihydrochalcone family that would serve as more potent antimicrobial agents against specific pathogens. Georg Thieme Verlag KG Stuttgart.New York.

  12. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    PubMed

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  13. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria. © 2015 Institute of Food Technologists®

  14. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones.

    PubMed

    Bollu, Rajitha; Banu, Saleha; Bantu, Rajashaker; Reddy, A Gopi; Nagarapu, Lingaiah; Sirisha, K; Kumar, C Ganesh; Gunda, Shravan Kumar; Shaik, Kamal

    2017-12-01

    A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1 H NMR, 13 C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. La(III) complex involving the O,N-donor environment of quinazoline-4(3H)-one Schiff’s base and their antimicrobial attributes against methicillin-resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Siddappa, K.; Mane, Sunilkumar B.; Manikprabhu, Deene

    2014-09-01

    The incidence of methicillin-resistant Staphylococcus aureus increased during the past few decades, so there is an urgent need of new antimicrobial agents if public health is concerned. Though the Schiff’s bases and La(III) complex have enormous biological activity, but less attention was given in their synthesis. In the present investigation, we synthesized a new (E)-3-((2-hydroxynaphthalen-1-yl) methyleneamino)-2-methylquinazoline-4(3H)-one HNMAMQ Schiff’s base by the condensation of 3-(2-aminophenyl) quinazolin-2-methyl-4(3H)-one and 2-hydroxy-1-naphthaldehyde. The Schiff’s base HNMAMQ and its La(III) complex were characterized by elemental analyses, IR, NMR, mass spectra, and thermal studies. The newly synthesized Schiff’s base HNMAMQ and its La(III) complex were evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus isolated from the Gulbarga region in India. The Schiff’s base HNMAMQ and its La(III) complex showed good antimicrobial activity and thus represents a potential new drug of choice.

  16. Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection

    PubMed Central

    Baines, Simon D.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile infection (CDI) remains a substantial burden on healthcare systems and is likely to remain so given our reliance on antimicrobial therapies to treat bacterial infections, especially in an aging population in whom multiple co-morbidities are common. Antimicrobial agents are a key component in the aetiology of CDI, both in the establishment of the infection and also in its treatment. The purpose of this review is to summarise the role of antimicrobial agents in primary and recurrent CDI; assessing why certain antimicrobial classes may predispose to the induction of CDI according to a balance between antimicrobial activity against the gut microflora and C. difficile. Considering these aspects of CDI is important in both the prevention of the infection and in the development of new antimicrobial treatments. PMID:27025625

  17. The Integral Method, a new approach to quantify bactericidal activity.

    PubMed

    Gottardi, Waldemar; Pfleiderer, Jörg; Nagl, Markus

    2015-08-01

    The bactericidal activity (BA) of antimicrobial agents is generally derived from the results of killing assays. A reliable quantitative characterization and particularly a comparison of these substances, however, are impossible with this information. We here propose a new method that takes into account the course of the complete killing curve for assaying BA and that allows a clear-cut quantitative comparison of antimicrobial agents with only one number. The new Integral Method, based on the reciprocal area below the killing curve, reliably calculates an average BA [log10 CFU/min] and, by implementation of the agent's concentration C, the average specific bactericidal activity SBA=BA/C [log10 CFU/min/mM]. Based on experimental killing data, the pertaining BA and SBA values of exemplary active halogen compounds were established, allowing quantitative assertions. N-chlorotaurine (NCT), chloramine T (CAT), monochloramine (NH2Cl), and iodine (I2) showed extremely diverging SBA values of 0.0020±0.0005, 1.11±0.15, 3.49±0.22, and 291±137log10 CFU/min/mM, respectively, against Staphylococcus aureus. This immediately demonstrates an approximately 550-fold stronger activity of CAT, 1730-fold of NH2Cl, and 150,000-fold of I2 compared to NCT. The inferred quantitative assertions and conclusions prove the new method suitable for characterizing bactericidal activity. Its application comprises the effect of defined agents on various bacteria, the consequence of temperature shifts, the influence of varying drug structure, dose-effect relationships, ranking of isosteric agents, comparison of competing commercial antimicrobial formulations, and the effect of additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An Injectable System for Local and Sustained Release of Antimicrobial Agents in the Periodontal Pocket.

    PubMed

    Morelli, Laura; Cappelluti, Martino Alfredo; Ricotti, Leonardo; Lenardi, Cristina; Gerges, Irini

    2017-08-01

    Periodontitis treatments usually require local administration of antimicrobial drugs with the aim to reduce the bacterial load inside the periodontal pocket. Effective pharmaceutical treatments may require sustained local drug release for several days in the site of interest. Currently available solutions are still not able to fulfill the clinical need for high-quality treatments, mainly in terms of release profiles and patients' comfort. This work aims to fill this gap through the development of an in situ gelling system, capable to achieve controlled and sustained release of antimicrobial agents for medium-to-long-term treatments. The system is composed of micrometer-sized β-cyclodextrin-based hydrogel (bCD-Jef-MPs), featured by a strong hydrophilic character, suspended in a synthetic block-co-polymer solution (Poloxamer 407), which is capable to undergo rapid thermally induced sol-gel phase transition at body temperature. The chemical structure of bCD-Jef-MPs was confirmed by cross-correlating data from Fourier transform infrared (FTIR) spectroscopy, swelling test, and degradation kinetics. The thermally induced sol-gel phase transition is demonstrated by rheometric tests. The effectiveness of the described system to achieve sustained release of antimicrobial agents is demonstrated in vitro, using chlorhexidine digluconate as a drug model. The results achieved in this work disclose the potential of the mentioned system in effectively treating periodontitis lesions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents.

    PubMed Central

    Vildé, J L; Dournon, E; Rajagopalan, P

    1986-01-01

    The activity of serial concentrations of different antimicrobial agents on the multiplication of Legionella pneumophila within human monocyte-derived macrophages was studied. The results led to the definition of a minimal extracellular concentration inhibiting intracellular multiplication (MIEC). According to the MIECs, the antimicrobial agents tested were classified in three groups: very active (MIEC less than or equal to 0.06 microgram/ml), such as erythromycin, rifampin, and pefloxacin; active (1 microgram/ml greater than or equal to MIEC greater than or equal to 0.1 microgram/ml), such as sulfamethoxazole-trimethoprim or doxycycline; and ineffective, such as cefoxitin, which was not active within macrophages at as high as 64 micrograms/ml despite a low MIC (0.2 microgram/ml) on bacterial charcoal-yeast extract agar. The activity of netilmicin was difficult to assess because of its effect on extracellular legionellae. Combinations of erythromycin with rifampin and pefloxacin with erythromycin, rifampin, doxycycline, or netilmicin showed an additive effect and no antagonism. These results obtained in a cellular model are in agreement with the efficacy of antimicrobial agents in experimental infections and in Legionnaires disease. They sustain clinical interest in the new quinolones, such as pefloxacin, and in combinations of antimicrobial agents for the treatment of Legionnaires disease. PMID:3492176

  20. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides.

    PubMed

    Lázár, Viktória; Martins, Ana; Spohn, Réka; Daruka, Lejla; Grézal, Gábor; Fekete, Gergely; Számel, Mónika; Jangir, Pramod K; Kintses, Bálint; Csörgő, Bálint; Nyerges, Ákos; Györkei, Ádám; Kincses, András; Dér, András; Walter, Fruzsina R; Deli, Mária A; Urbán, Edit; Hegedűs, Zsófia; Olajos, Gábor; Méhi, Orsolya; Bálint, Balázs; Nagy, István; Martinek, Tamás A; Papp, Balázs; Pál, Csaba

    2018-06-01

    Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.

  1. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene

    PubMed Central

    Marchese, Anna; Arciola, Carla Renata; Barbieri, Ramona; Silva, Ana Sanches; Nabavi, Seyed Fazel; Tsetegho Sokeng, Arold Jorel; Izadi, Morteza; Jafari, Nematollah Jonaidi; Suntar, Ipek; Nabavi, Seyed Mohammad

    2017-01-01

    p-Cymene [1-methyl-4-(1-methylethyl)-benzene] is a monoterpene found in over 100 plant species used for medicine and food purposes. It shows a range of biological activity including antioxidant, anti-inflammatory, antinociceptive, anxiolytic, anticancer and antimicrobial effects. This last property has been widely investigated due to the urgent need for new substances with antimicrobial properties, to be used to treat communicable diseases whose diffusion in developed countries has been facilitated by globalization and the evolution of antimicrobial resistance. This review summarizes available scientific data, as reported by the most recent studies describing the antimicrobial activity of p-cymene either alone, or as the main component of plant extracts, as well as addressing the mechanisms of action of cymenes as antimicrobial agents. While p-cymene is one of the major constituents of extracts and essential oils used in traditional medicines as antimicrobial agents, but considering the limited data on its in vivo efficacy and safety, further studies are required to reach a definitive recommendation on the use and beneficial effects of p-cymene in human healthcare and in biomedical applications as a promising candidate to functionalize biomaterials and nanomaterials. PMID:28809799

  2. Current Trend of Antimicrobial Prescription for Oral Implant Surgery Among Dentists in India.

    PubMed

    Datta, Rahul; Grewal, Yasmin; Batth, J S; Singh, Amandeep

    2014-12-01

    The aim of our study was to evaluate antimicrobial prescription behaviour amongst dentists performing oral implant surgery in India. Dentists performing oral implant surgery from different parts of India were personally approached during various national events such as conferences and academic meetings and information regarding their prescription habits for antimicrobial agents in routine oral implant surgery was collected using a structured questionnaire. Out of a total sample of 332 dentists, 85.5 % prescribed 17 different groups or combinations of antibiotics routinely for oral implant surgery in the normal healthy patient. Majority preferred the peri-operative protocol of drug therapy (72.2 %) with variable and prolonged duration of therapy after surgery, ranging from 3 to 10 days. An antimicrobial mouthwash was routinely prescribed by all the doctors (14.5 %) not in favour of prescribing antimicrobials in a normal healthy patient. Our findings suggest that there is a trend of antimicrobial agent misuse by dentists performing oral implant surgery in India, both in terms of drugs used and the protocols prescribed. The majority of these dentists prescribed a variety of antimicrobial agents for prolonged durations routinely even in the normal, healthy patients.

  3. Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control.

    PubMed

    Ashjari, Hamid Reza; Dorraji, Mir Saeed Seyed; Fakhrzadeh, Vahid; Eslami, Hosein; Rasoulifard, Mohammad Hossein; Rastgouy-Houjaghan, Mehrdad; Gholizadeh, Pourya; Kafil, Hossein Samadi

    2018-05-01

    In the present study, a new method for the synthesis of the open cell flexible polyurethane foams (PUFs) was developed by using starch powder and the modification of closed cell foam formulation. Starch is the second largest polymeric carbohydrate as a macromolecule on this planet with a large number of glucose units. Copper oxide nanoparticles (CuO NPs) were synthesized by thermal degradation method at different temperatures of 400, 600 and 800 °C as antimicrobial agents. The antimicrobial activity of CuO NPs and commercial CuO powder against the main causes of hospital infections were tested. CuO 600 was the most effective antimicrobial agent and enhanced polymer matrix tensile strength with starch powder as new polyurethane foams (PUFs) cell opener with high tensile strength. The effects of parameters on tensile strength were optimized using response surface methodology (RSM). CuO NPs and PUF had optimal conditions and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Foam synthesized at the optimal conditions had an open cell structure with high tensile strength and efficient antimicrobial activity that made them suitable to be used as an antimicrobial hospital mattress to control hospital infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Simultaneous Identification and Antimicrobial Susceptibility Testing of Multiple Uropathogens on a Microfluidic Chip with Paper-Supported Cell Culture Arrays.

    PubMed

    Xu, Banglao; Du, Yan; Lin, Jinqiong; Qi, Mingyue; Shu, Bowen; Wen, Xiaoxia; Liang, Guangtie; Chen, Bin; Liu, Dayu

    2016-12-06

    A microfluidic chip was developed for one-step identification and antimicrobial susceptibility testing (AST) of multiple uropathogens. The polydimethylsiloxane (PDMS) microchip used had features of cell culture chamber arrays connected through a sample introduction channel. At the bottom of each chamber, a paper substrate preloaded with chromogenic media and antimicrobial agents was embedded. By integrating a hydrophobic membrane valve on the microchip, the urine sample can be equally distributed into and confined in individual chambers. The identification and AST assays on multiple uropathogens were performed by combining the spatial resolution of the cell culture arrays and the color resolution from the chromogenic reaction. The composite microbial testing assay was based on dynamic changes in color in a serial of chambers. The bacterial antimicrobial susceptibility was determined by the lowest concentration of an antimicrobial agent that is capable of inhibiting the chromogenic reaction. Using three common uropathogenic bacteria as test models, the developed microfluidic approach was demonstrated to be able to complete the multiple colorimetric assays in 15 h. The accuracy of the microchip method, in comparison with that of the conventional approach, showed a coincidence of 94.1%. Our data suggest this microfluidic approach will be a promising tool for simple and fast uropathogen testing in resource-limited settings.

  5. Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens.

    PubMed

    Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C

    2012-06-01

    Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.

  6. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland).

    PubMed

    Giebułtowicz, Joanna; Tyski, Stefan; Wolinowska, Renata; Grzybowska, Wanda; Zaręba, Tomasz; Drobniewska, Agata; Wroczyński, Piotr; Nałęcz-Jawecki, Grzegorz

    2018-02-01

    Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes.

  7. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  8. Maintaining Fluoroquinolone Class Efficacy: Review of Influencing Factors

    PubMed Central

    2003-01-01

    Previous experience with antimicrobial resistance has emphasized the importance of appropriate stewardship of these pharmacotherapeutic agents. The introduction of fluoroquinolones provided potent new drugs directed primarily against gram-negative pathogens, while the newer members of this class demonstrate more activity against gram-positive species, including Streptococcus pneumoniae. Although these agents are clinically effective against a broad range of infectious agents, emergence of resistance and associated clinical failures have prompted reexamination of their use. Appropriate use revolves around two key objectives: 1) only prescribing antimicrobial therapy when it is beneficial and 2) using the agents(s) with optimal activity against the expected pathogens(s). Pharmacodynamic principles and properties can be applied to achieve the latter objective when prescribing agents belonging to the fluoroquinolone class. A focused approach emphasizing “correct-spectrum” coverage may reduce development of antimicrobial resistance and maintain class efficacy. PMID:12533274

  9. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications

    PubMed Central

    Yoon, Bo Kyeong; Jackman, Joshua A.; Valle-González, Elba R.

    2018-01-01

    Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids. PMID:29642500

  10. In-vitro susceptibility of 1982 respiratory tract pathogens and 1921 urinary tract pathogens against 19 antimicrobial agents: a Canadian multicentre study. Canadian Antimicrobial Study Group.

    PubMed

    Blondeau, J M; Yaschuk, Y; Suter, M; Vaughan, D

    1999-03-01

    A total of 3903 pathogens from 48 Canadian medical centres were tested against 19 antimicrobial agents. Five agents showed activity against > or = 90% of all 1982 respiratory tract pathogens tested (ciprofloxacin, 90%; cefoperazone, 91%; ticarcillin/clavulanate, 92%; ceftazidime and imipenem, 93% each). Nine agents had > or = 90% activity against Enterobacteriaceae from respiratory tract infection (cefotaxime and ticarcillin/clavulanate, 90% each; aztreonam, ceftizoxime and ceftriaxone, 91% each; ceftazidime, 93%; ciprofloxacin, 97%; imipenem and netilmicin, 98% each). Similarly, five agents had activity against > or = 90% of all 1921 urinary tract pathogens tested (ciprofloxacin and ticarcillin/clavulanate, 90% each; cefoperazone and netilmicin, 91% each; imipenem, 99%). Nine agents had > or = 95% activity against Enterobacteriaceae from urinary tract infection (ciprofloxacin, 95%; cefotetan, 97%; aztreonam, cefotaxime, ceftazidime, ceftizoxime, ceftriaxone and netilmicin, 98% each; imipenem, 99%). Seventeen agents had activity against > or = 95% of Staphylococcus aureus strains. Susceptibility of Pseudomonas aeruginosa isolates ranged from 2% to 91%.

  11. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes

    PubMed Central

    Argudín, Maria Angeles; Deplano, Ariane; Meghraoui, Alaeddine; Dodémont, Magali; Heinrichs, Amelie; Denis, Olivier; Nonhoff, Claire; Roisin, Sandrine

    2017-01-01

    Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. PMID:28587316

  12. A Comparative Study on the Cost of New Antibiotics and Drugs of Other Therapeutic Categories

    PubMed Central

    Falagas, Matthew E.; Fragoulis, Konstantinos N.; Karydis, Ioannis

    2006-01-01

    Background Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. Methodology/Principal Findings We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. Conclusions/Significance The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance. PMID:17183637

  13. A comparative study on the cost of new antibiotics and drugs of other therapeutic categories.

    PubMed

    Falagas, Matthew E; Fragoulis, Konstantinos N; Karydis, Ioannis

    2006-12-20

    Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance.

  14. Preliminary evaluation of storax and its constituents: Fungal decay mold and termite resistance

    Treesearch

    S. Nami Kartal; Evren Terzi; Tsuyoshi Yoshimura; Rachel Arango; Carol A. Clausen; Frederick Green III

    2012-01-01

    Essential oils and their derivatives might be one of the promising preserving agents to prevent funga ldecay and termite/insect attack in wood since such compounds have a long history of safe usage as antimicrobial agents in various industries. Considerable research has focused on utilizing bioactive essential oils and wood extractives based on green technologies to...

  15. Occurrence of Salmonella spp. in broiler chicken carcasses and their susceptibility to antimicrobial agents

    PubMed Central

    Duarte, Dalila Angélica Moliterno; Ribeiro, Aldemir Reginato; Vasconcelos, Ana Mércia Mendes; Santos, Sylnei Barros; Silva, Juliana Vital Domingos; de Andrade, Patrícia Lúcia Arruda; de Arruda Falcão, Lúcia Sadae Pereira da Costa

    2009-01-01

    The present study was carried out to evaluate the occurrence of Salmonellae in broiler chicken carcasses and to determine the antimicrobial resistance profile of the isolated strains. Twenty-five out of the 260 broiler chicken carcasses samples (9.6%) were positive for Salmonella. S. Enteritidis was the most frequent serovar. Nineteen Salmonella isolates were tested for antimicrobial resistance, and the results indicated that 94.7% were resistant to at least one antimicrobial agent. Resistance to streptomycin (73.7%), nitrofurantoin (52.3%), tetracycline (31.6%), and nalidixic acid (21%) were the prevalent amongst Salmonella strains tested. PMID:24031401

  16. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  17. Role of Combination Antimicrobial Therapy for Vancomycin-Resistant Enterococcus faecium Infections: Review of the Current Evidence.

    PubMed

    Yim, Juwon; Smith, Jordan R; Rybak, Michael J

    2017-05-01

    Enterococcus species are the second most common cause of nosocomial infections in the United States and are particularly concerning in critically ill patients with preexisting comorbid conditions. Rising resistance to antimicrobials that were historically used as front-line agents for treatment of enterococcal infections, such as ampicillin, vancomycin, and aminoglycosides, further complicates the treatment of these infections. Of particular concern are Enterococcus faecium strains that are associated with the highest rate of vancomycin resistance. The introduction of antimicrobial agents with specific activity against vancomycin-resistant Enterococcus (VRE) faecium including daptomycin, linezolid, quinupristin-dalfopristin, and tigecycline did not completely resolve this clinical dilemma. In this review, the mechanisms of action and resistance to currently available anti-VRE antimicrobial agents including newer agents such as oritavancin and dalbavancin will be presented. In addition, novel combination therapies including β-lactams and fosfomycin, and the promising results from in vitro, animal studies, and clinical experience in the treatment of VRE faecium will be discussed. © 2017 Pharmacotherapy Publications, Inc.

  18. All Natural and Clean-Label Preservatives and Antimicrobial Agents Used during Poultry Processing and Packaging.

    PubMed

    Grant, Ar'quette; Parveen, Salina

    2017-04-01

    The poultry industry is faced with compounding pressures of maintaining product safety and wholesomeness while keeping up with consumer trends of all-natural foods and label accuracy. Consumers are increasingly demanding that their foods be minimally processed and contain compounds that are easily read and recognized, i.e., products must be clean labeled. The purpose of this review is to briefly describe several natural antimicrobial agents that can be incorporated into poultry processing. These compounds and their essential oils were included in this mini-review because they are generally recognized as safe by the U.S. Food and Drug Administration and are considered clean label: thyme extract, rosemary extract, garlic, and oregano. This list of natural antimicrobial agents by no means includes all of the options available to poultry processors. Rather, this review provides a brief glance at the potential these natural antimicrobial agents have in terms of reduced pathogenicity, increased shelf stability, and sensory acceptability through direct product application or as part of the product packaging.

  19. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents. © 2015 John Wiley & Sons A/S.

  20. Antimicrobial resistance trends among Salmonella isolates obtained from dairy cattle in the northeastern United States, 2004-2011.

    PubMed

    Cummings, Kevin J; Perkins, Gillian A; Khatibzadeh, Sarah M; Warnick, Lorin D; Altier, Craig

    2013-04-01

    Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform public policy regarding appropriate antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Salmonella isolates from dairy cattle in the northeastern United States and to identify trends in resistance to various antimicrobial agents over time. Data were collected retrospectively for all bovine Salmonella isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. Temporal trends in the prevalence of resistant Salmonella were investigated for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 2745 bovine Salmonella isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 0% (amikacin, ciprofloxacin, and nalidixic acid) to 72.0% (sulfadimethoxine). There was evidence of a significantly decreasing trend in prevalence of resistance to most agents: amoxicillin/clavulanic acid (AUG), ampicillin (AMP), cefoxitin (FOX), ceftiofur (TIO), ceftriaxone (AXO), chloramphenicol (CHL), chlortetracycline (CTET), florfenicol (FFN), kanamycin (KAN), neomycin (NEO), oxytetracycline (OXY), spectinomycin (SPE), streptomycin (STR), sulfadimethoxine (SDM), sulfisoxazole (FIS), and tetracycline (TET). Among the 265 isolates that were tested using the National Antimicrobial Resistance Monitoring System (NARMS) panel, the most common resistance patterns were pansusceptible (54.0%), AUG-AMP-FOX-TIO-AXO-CHL-KAN-STR-FIS-TET (18.1%), and AUG-AMP-FOX-TIO-AXO-CHL-STR-FIS-TET (12.1%). Increasing prevalence of S. enterica serovar Cerro over the course of the study period presumably had an impact on the observed resistance trends. Nevertheless, these results do not support the notion that the current level of antimicrobial use in dairy cattle is driving an increase in the emergence and dissemination of drug-resistant Salmonella in the region served by the laboratory.

  1. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil.

    PubMed

    Zishiri, Oliver T; Mkhize, Nelisiwe; Mukaratirwa, Samson

    2016-05-26

    Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51%) tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%), trimethoprim-sulfamthoxazole (84%), trimethoprim (78.4%), kanamycin (74%), gentamicin (48%), ampicillin (47%), amoxicillin (31%), chloramphenicol (31%), erythromycin (18%) and streptomycin (12%). All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3")-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in order to mitigate the proliferation of multiple drug resistance across species.

  2. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil.

    PubMed

    Zishiri, Oliver T; Mkhize, Nelisiwe; Mukaratirwa, Samson

    2016-05-26

    Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51%) tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%), trimethoprim-sulfamthoxazole (84%), trimethoprim (78.4%), kanamycin (74%), gentamicin (48%), ampicillin (47%), amoxicillin (31%), chloramphenicol (31%), erythromycin (18%) and streptomycin (12%). All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3")-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in order to mitigate the proliferation of multiple drug resistance across species.

  3. Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent.

    PubMed

    Roy Choudhury, S; Goswami, A

    2013-01-01

    Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high-throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur-resistant and sulphur-susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility. © 2012 The Society for Applied Microbiology.

  4. A case study of preservation of semi-solid preparations using the European Pharmacopoeia test: comparative efficacy of antimicrobial agents in zinc gelatin.

    PubMed

    Favet, J; Chappuis, M L; Doelker, E

    2001-09-01

    The present study was undertaken with the aim of finding an alternative preservative system to methyl parahydroxybenzoate in zinc gelatin, which was described in the monographs of the Swiss Pharmacopoeia (until Ph. Helv. 8) and in previous editions of the German Pharmacopoeia (until DAB 7). This antimicrobial agent has now been withdrawn in the DAB, because of its potential allergy risks. As for the USP and DAB-DDR zinc gelatin preparations, they have always been devoid of any preservative agent, probably relying on the mild antimicrobial activity of zinc. A literature survey did not reveal if such an aqueous preparation containing the water-insoluble zinc oxide shows efficacious antimicrobial activity by itself. Thus, a comparative evaluation of differently preserved zinc gelatin preparations was performed using a test for the efficacy of antimicrobial preservation that has been modified with regard to the European Pharmacopoeia (EP) test to take into account the solid state of the preparations and the bactericidal effect of the zinc. Three zinc gelatin preparations were checked, either: (i), without any agent; or (ii), with 0.1% methyl parahydroxybenzoate; or (iii), with 0.5% phenoxyethanol, a broad-spectrum antimicrobial agent almost devoid of allergy risks. The three preparations behave quite differently, in particular with respect to fungi. All three preparations passed the modified EP test as far as bacteria are concerned. Even zinc gelatin without preservative is very effective, not only because of the mild antimicrobial activity of zinc (the soluble fraction of zinc oxide in the liquid phase of zinc gelatin was determined to be 13 microg/ml), but most probably because of the low water activity of the preparation (measured as around 0.81), as shown by the absence of growth of a zinc-resistant strain of Pseudomonas aeruginosa. Zinc gelatin preserved with methyl parahydroxybenzoate has a weak, although satisfactory, activity against Staphylococcus aureus. Regarding fungi, gelatin without an antimicrobial agent and that preserved with methyl parahydroxybenzoate meet the requirements for efficacy against Candida albicans, but are only bacteriostatic against Aspergillus niger. As for zinc gelatin preserved with phenoxyethanol, it displays the best activity against C. albicans and, above all, appears to be the only formulation exhibiting fungicidal activity against A. niger. It is therefore recommended to preserve zinc gelatin with this antimicrobial agent, as recently adopted in Supplement 2000 of the Swiss Pharmacopoeia.

  5. Advances in pharmacovigilance initiatives surrounding antimicrobial resistance-Indian perspective.

    PubMed

    Bairy, Laxminarayana Kurady; Nayak, Veena; A, Avinash; Kunder, Sushil Kiran

    2016-08-01

    In recent years the development of antimicrobial resistance has been accelerating, the discovery of new antimicrobial agents has slowed substantially in past decades. This review mainly focuses on the problem of antimicrobial resistance(AMR); the various contributor mechanisms, consequences and future of AMR. The review also highlights the irrational use of antimicrobials, improving their usage and problems associated with pharmacovigilance of antimicrobial resistance. Pharmacovigilance in the form of surveillance of antibiotic use is being done in 90% of the countries worldwide through the WHONET program developed by WHO. However, the data comes from a limited area of the globe. Data from every part of the world is required, so that there is geographical representation of every region. A major hurdle in quantifying the extent of antimicrobial resistance is the fact that there are several known microbes, that may turn out to be resistant to one or more of the several known antimicrobial agents. The global action plan initiated by WHO, if implemented successfully will definitely reduce AMR and will help in evaluating treatment interventions.

  6. 'Prevalence and antimicrobial susceptibility of Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains from raw meat and meat products in Zaria, Nigeria.

    PubMed

    Ndahi, M D; Kwaga, J K P; Bello, M; Kabir, J; Umoh, V J; Yakubu, S E; Nok, A J

    2014-03-01

    The bacterial genera Listeria and Staphylococcus have been frequently isolated from food products and are responsible for a number of animal and human diseases. The aim of the study was to simultaneously isolate and characterize L. monocytogenes and Staphylococcus species from 300 samples of raw meat and meat products, to determine the susceptibility of the organisms to commonly used antimicrobial agents and to determine the presence of haemolysin A (hyl) virulence gene in L. monocytogenes and staphylococcal cassette chromosome mecA (SCCmec) gene in the Staph. aureus isolates using PCR. Of the 85 Listeria isolates tested, 12 L. monocytogenes were identified and tested for their sensitivity to 14 antimicrobial agents. All the 12 isolates (100%) were resistant to nine antimicrobial agents, but however sensitive to gentamicin. Only one isolate was found to harbour the hylA gene. Twenty-nine isolates were confirmed as Staph. aureus by the Microbact 12S identification system and were all presumptively identified as methicillin-resistant Staph. aureus species using oxacillin-resistant Staph. aureus basal medium (ORSAB). The 29 Staph. aureus isolates were tested for their sensitivity to 16 antimicrobial agents, and 11 were resistant to methicillin. None of the 11 Staph. aureus isolates harboured the methicillin resistance, mecA gene. Listeria monocytogenes and Staphylococcus aureus are important agents of foodborne diseases. Occurrence of these infectious agents was established in meat and meat products in Zaria, Nigeria. Majority of isolates obtained from this study, displayed multidrug resistance to commonly used antimicrobial agents, including methicillin resistance among the Staph. aureus isolates. The potential virulence of L. monocytogenes found in ready-to-eat food was documented by the carriage of hly A gene by one of the isolates. A different mechanism of methicillin resistance or different homologue of mec A gene may be circulating among Nigerian isolates. © 2013 The Society for Applied Microbiology.

  7. Current and future challenges in the development of antimicrobial agents.

    PubMed

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to determine if new agents will reach sufficient concentrations at infection sites to predict clinical efficacy without toxicity. It will also be key to consider antimicrobial stewardship as an important component of the continuing battle to prevent the development of antimicrobial resistance.

  8. Susceptibility of Acinetobacter Strains Isolated from Deployed U.S. Military Personnel▿

    PubMed Central

    Hawley, Joshua S.; Murray, Clinton K.; Griffith, Matthew E.; McElmeel, M. Leticia; Fulcher, Letitia C.; Hospenthal, Duane R.; Jorgensen, James H.

    2007-01-01

    The susceptibilities of 142 Acinetobacter baumannii-calcoaceticus complex isolates (95 from wounded U.S. soldiers deployed overseas) to 13 antimicrobial agents were determined by broth microdilution. The most active antimicrobial agents (≥95% of isolates susceptible) were colistin, polymyxin B, and minocycline. PMID:17043112

  9. Current and future treatment options for gonorrhoea.

    PubMed

    Ison, Catherine A; Deal, Carolyn; Unemo, Magnus

    2013-12-01

    The delivery of effective antimicrobial therapy is essential for public health control of gonorrhoea, in the absence of a suitable vaccine. The antimicrobial agent chosen should have high efficacy and quality, lack toxicity and give >95% success when given empirically. Guidelines, which are informed by surveillance data, are used to aid clinicians in their choice of appropriate agent. Historically, gonorrhoea treatment has been delivered as a single, directly observed dose but this has resulted in failure of successive antimicrobial agents which have been replaced by a new antimicrobial to which resistance has been rare or non-existing. Following the drift towards decreased susceptibility and treatment failure to the extended spectrum cephalosporins, and the lack of 'new' alternative antimicrobials, the threat of difficult to treat or untreatable gonorrhoea has emerged. The challenge of maintaining gonorrhoea as a treatable infection has resulted in national, regional and global response or action plans. This review discusses different approaches to the future treatment of gonorrhoea including; use of ceftriaxone, the injectable cephalosporin at increased dosage; dual antimicrobial therapy; use of drugs developed for other infections and use of older agents, directed by rapid point of care tests, to susceptible infections. Finally, it is considered whether the time is right to readdress the possibility of developing an effective gonococcal vaccine, given the major advances in our understanding of natural infection, molecular pathogenesis and the revolution in molecular biology techniques.

  10. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.

    PubMed

    Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael

    2016-11-01

    Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.

  11. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    PubMed

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p < 0.001) between the sites. Both stx1 and stx2 genes were present in 82.3% of STEC (n=17) while remaining isolates possess either stxl (11.8%) or stx2 (5.9%). The presence of eaeA, hlyA, and chuA genes was observed in 70.6, 88.2, and 58.8% of STEC, respectively. Both LT1 and ST1 genes were positive in 66.7% of ETEC (n=15) while 33.3% of isolates harbor only LT1 gene. The prevalence of multi-antimicrobial-agent resistant E. coli in the river Ganga water poses increased risk of infections in the human population.

  12. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages.

    PubMed

    Joerger, R D

    2003-04-01

    Bacteriocins, antimicrobial peptides, and bacteriophage have attracted attention as potential substitutes for, or as additions to, currently used antimicrobial compounds. This publication will review research on the potential application of these alternative antimicrobial agents to poultry production and processing. Bacteriocins are proteinaceous compounds of bacterial origin that are lethal to bacteria other than the producing strain. It is assumed that some of the bacteria in the intestinal tract produce bacteriocins as a means to achieve a competitive advantage, and bacteriocin-producing bacteria might be a desirable part of competitive exclusion preparations. Purified or partially purified bacteriocins could be used as preservatives or for the reduction or elimination of certain pathogens. Currently only nisin, produced by certain strains of Lactococcus lactis subsp. lactis, has regulatory approval for use in certain foods, and its use for poultry products has been studied extensively. Exploration of the application of antimicrobial peptides from sources other than bacteria to poultry has not yet commenced to a significant extent. Evidence for the ability of chickens to produce such antimicrobial peptides has been provided, and it is likely that these peptides play an important role in the defense against various pathogens. Bacteriophages have received renewed attention as possible agents against infecting bacteria. Evidence from several trials indicates that phage therapy can be effective under certain circumstances. Numerous obstacles for the use of phage as antimicrobials for poultry or poultry products remain. Chiefly among them are the narrow host range of many phages, the issue of phage resistance, and the possibility of phage-mediated transfer of genetic material to bacterial hosts. Regulatory issues and the high cost of producing such alternative antimicrobial agents are also factors that might prevent application of these agents in the near future.

  13. Antimicrobial efficacy of soap and water hand washing versus an alcohol-based hand cleanser.

    PubMed

    Holton, Ronald H; Huber, Michaell A; Terezhalmy, Geza T

    2009-12-01

    The emergence of alcohol-based hand cleansers may represent an alternative to soap and water in the clinical dental setting. In this study, the antimicrobial efficacy of traditional hand washing vs. a unique alcohol-based hand cleanser with persistence was evaluated. Two experienced dentists participated over a 10-day period. On days 1-5, each clinician used an antibacterial liquid soap (Dial, Dial Corporation, Scottsdale, AZ). Days 6-10, an alcohol-based hand cleanser (Triseptin Water Optional, Healthpoint Surgical, Fort Worth, TX) was used. Sampling was by modified glove juice technique. The results indicate that the alcohol-based hand cleanser dramatically outperforms the traditional hand washing agent in the general dental setting.

  14. Extended stability of antimicrobial agents in administration devices.

    PubMed

    Jenkins, Abi; Hills, Tim; Santillo, Mark; Gilchrist, Mark

    2017-04-01

    Outpatient parenteral antimicrobial therapy (OPAT) is an established approach to patient care. A lack of data on antimicrobial stability within administration devices is a barrier to service expansion, and poses an antimicrobial stewardship dilemma. Often broad-spectrum, long half-life agents are used instead of narrow-spectrum agents, which need more frequent administration, but could possibly be used if stability data were available. To complete a comprehensive literature review of published antimicrobial stability data, and assess these against a nationally recognized minimum dataset for medicines compounded into administration devices. Medline, EMBASE, Global Health, International Pharmaceutical Abstracts and Biomedical Research Database were interrogated in April 2014 and updated in November 2015. A total of 420 citations were reviewed with 121 selected for full text review. None of these papers met the inclusion criteria stipulated in the national standards. The most frequent reason for study exclusion was the tolerance limit for the level of the active pharmaceutical ingredient being wider than 95%-105% and absence of 'in-use' testing at 37 °C. This review found no published studies that comply with UK national standards for stability testing. We recommend further research and publication of antimicrobial stability data to support OPAT within the antimicrobial stewardship agenda. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Interaction of antimicrobial arginine-based cationic surfactants with liposomes and lipid monolayers.

    PubMed

    Castillo, José A; Pinazo, Aurora; Carilla, Josep; Infante, M Rosa; Alsina, M Asunción; Haro, Isabel; Clapés, Pere

    2004-04-13

    The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.

  16. A Quality Assessment of a Collaborative Model of a Pediatric Antimicrobial Stewardship Program.

    PubMed

    Nguyen-Ha, Phuong-Tan; Howrie, Denise; Crowley, Kelli; Vetterly, Carol G; McGhee, William; Berry, Donald; Ferguson, Elizabeth; Polischuk, Emily; Brooks, Maria Mori; Goff, Jeffrey; Stillwell, Terri; Darville, Toni; Thompson, Ann E; Levin, James E; Michaels, Marian G; Green, Michael

    2016-05-01

    Infectious Diseases Society of America guidelines recommend that key antimicrobial stewardship program (ASP) personnel include an infectious disease (ID) physician leader and dedicated ID-trained clinical pharmacist. Limited resources prompted development of an alternative model by using ID physicians and service-based clinical pharmacists at a pediatric hospital. The aim of this study was to analyze the effectiveness and impact of this alternative ASP model. The collaborative ASP model incorporated key strategies of education, antimicrobial restriction, day 3 audits, and practice guidelines. High-use and/or high-cost antimicrobial agents were chosen with audits targeting vancomycin, caspofungin, and meropenem. The electronic medical record was used to identify patients requiring day 3 audits and to communicate ASP recommendations. Segmented regression analyses were used to analyze quarterly antimicrobial agent prescription data for the institution and selected services over time. Initiation of ASP and day 3 auditing was associated with blunting of a preexisting increasing trend for caspofungin drug starts and use and a significant downward trend for vancomycin drug starts (relative change -12%) and use (-25%), with the largest reduction in critical care areas. Although meropenem use was already low due to preexisting requirements for preauthorization, a decline in drug use (-31%, P = .021) and a nonsignificant decline in drug starts (-21%, P = .067) were noted. A 3-month review of acceptance of ASP recommendations found rates of 90%, 93%, and 100% for vancomycin, caspofungin, and meropenem, respectively. This nontraditional ASP model significantly reduced targeted drug usage demonstrating acceptance of integration of service-based clinical pharmacists and ID consultants. Copyright © 2016 by the American Academy of Pediatrics.

  17. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  18. Antimicrobial Stewardship: A Call to Action for Surgeons

    PubMed Central

    Duane, Therese M.; Catena, Fausto; Tessier, Jeffrey M.; Coccolini, Federico; Kao, Lillian S.; De Simone, Belinda; Labricciosa, Francesco M.; May, Addison K.; Ansaloni, Luca; Mazuski, John E.

    2016-01-01

    Abstract Despite current antimicrobial stewardship programs (ASPs) being advocated by infectious disease specialists and discussed by national and international policy makers, ASPs coverage remains limited to only certain hospitals as well as specific service lines within hospitals. The ASPs incorporate a variety of strategies to optimize antimicrobial agent use in the hospital, yet the exact set of interventions essential to ASP success remains unknown. Promotion of ASPs across clinical practice is crucial to their success to ensure standardization of antimicrobial agent use within an institution. To effectively accomplish this standardization, providers who actively engage in antimicrobial agent prescribing should participate in the establishment and support of these programs. Hence, surgeons need to play a major role in these collaborations. Surgeons must be aware that judicious antibiotic utilization is an integral part of any stewardship program and necessary to maximize clinical cure and minimize emergence of antimicrobial resistance. The battle against antibiotic resistance should be fought by all healthcare professionals. If surgeons around the world participate in this global fight and demonstrate awareness of the major problem of antimicrobial resistance, they will be pivotal leaders. If surgeons fail to actively engage and use antibiotics judiciously, they will find themselves deprived of the autonomy to treat their patients. PMID:27828764

  19. Topical antimicrobial agents for the treatment of chronic wounds.

    PubMed

    Ousey, Karen; McIntosh, Caroline

    2009-09-01

    Chronic wounds are commonly observed in acute and community settings. The management of chronic wounds represents a significant proportion of health-care resources and makes up a substantial amount of contact time with community-based nurses spending approximately 25% to 50% of their time treating wounds. Chronic wounds often exhibit increased bacterial burden that can negatively impact upon patients, reduce their quality of life and substantially increase treatment costs for health care providers. Antibiotic resistance has become a major medical and public health problem, and interest has been generated in the use of topical therapies to manage wound infection. This article presents an overview of the historical use of honey, silver and iodine for the treatment of infected wounds progressing through to modern day use and the current evidence base for the use of these antimicrobial agents in the management of infected wounds.

  20. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  2. Use of Computer-Assisted Instruction to Review Microbiology and Antimicrobial Agents.

    ERIC Educational Resources Information Center

    Carver, Peggy L.; And Others

    1991-01-01

    A study assessed the effectiveness of a microcomputer-assisted instructional program using graphics, color, and text in simulations to enhance pharmacy students' knowledge of microbiology and antimicrobial agents. Results indicated high short- and long-term retention of information presented and higher levels of knowledge and comprehension among…

  3. Synthetic biology platform technologies for antimicrobial applications.

    PubMed

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tokyo Guidelines 2018: antimicrobial therapy for acute cholangitis and cholecystitis.

    PubMed

    Gomi, Harumi; Solomkin, Joseph S; Schlossberg, David; Okamoto, Kohji; Takada, Tadahiro; Strasberg, Steven M; Ukai, Tomohiko; Endo, Itaru; Iwashita, Yukio; Hibi, Taizo; Pitt, Henry A; Matsunaga, Naohisa; Takamori, Yoriyuki; Umezawa, Akiko; Asai, Koji; Suzuki, Kenji; Han, Ho-Seong; Hwang, Tsann-Long; Mori, Yasuhisa; Yoon, Yoo-Seok; Huang, Wayne Shih-Wei; Belli, Giulio; Dervenis, Christos; Yokoe, Masamichi; Kiriyama, Seiki; Itoi, Takao; Jagannath, Palepu; Garden, O James; Miura, Fumihiko; de Santibañes, Eduardo; Shikata, Satoru; Noguchi, Yoshinori; Wada, Keita; Honda, Goro; Supe, Avinash Nivritti; Yoshida, Masahiro; Mayumi, Toshihiko; Gouma, Dirk J; Deziel, Daniel J; Liau, Kui-Hin; Chen, Miin-Fu; Liu, Keng-Hao; Su, Cheng-Hsi; Chan, Angus C W; Yoon, Dong-Sup; Choi, In-Seok; Jonas, Eduard; Chen, Xiao-Ping; Fan, Sheung Tat; Ker, Chen-Guo; Giménez, Mariano Eduardo; Kitano, Seigo; Inomata, Masafumi; Mukai, Shuntaro; Higuchi, Ryota; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu

    2018-01-01

    Antimicrobial therapy is a mainstay of the management for patients with acute cholangitis and/or cholecystitis. The Tokyo Guidelines 2018 (TG18) provides recommendations for the appropriate use of antimicrobials for community-acquired and healthcare-associated infections. The listed agents are for empirical therapy provided before the infecting isolates are identified. Antimicrobial agents are listed by class-definitions and TG18 severity grade I, II, and III subcategorized by clinical settings. In the era of emerging and increasing antimicrobial resistance, monitoring and updating local antibiograms is underscored. Prudent antimicrobial usage and early de-escalation or termination of antimicrobial therapy are now important parts of decision-making. What is new in TG18 is that the duration of antimicrobial therapy for both acute cholangitis and cholecystitis is systematically reviewed. Prophylactic antimicrobial usage for elective endoscopic retrograde cholangiopancreatography is no longer recommended and the section was deleted in TG18. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included. © 2018 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  5. Impact of computerized pre-authorization of broad spectrum antibiotics in Pseudomonas aeruginosa at a children's hospital in Japan.

    PubMed

    Horikoshi, Yuho; Higuchi, Hiroshi; Suwa, Junichi; Isogai, Mihoko; Shoji, Takayo; Ito, Kenta

    2016-08-01

    The spread of antimicrobial-resistant organisms is a global concern. To stem this tide, an antimicrobial stewardship program at hospitals is essential to optimize the prescription of broad spectrum antibiotics. In this study we examined the impact of computerized pre-authorization for broad spectrum antibiotics for Pseudomonas aeruginosa at a children's hospital. An antimicrobial stewardship program at Tokyo Metropolitan Children's Medical Center was assessed between March 2010 and March 2015. A paper-based post-prescription audit was switched to computerized pre-authorization for broad antipseudomonal agents in October 2011. The prescriber was required to obtain approval from physicians in the pediatric infectious diseases division before prescribing restricted antimicrobial agents. Approved prescriptions were processed and logged electronically. We evaluated days of therapy per 1000 patient-days, the cost of antibiotics, and the susceptibility of P. aeruginosa to piperacillin, ceftazidime, cefepime, piperacillin/tazobactam, carbapenems, and ciprofloxacin. Also, the average length of admission and infection-related mortality at 30 days were compared pre- and post-intervention. Administration of carbapenems, piperacillin/tazobactam, and ceftazidime decreased significantly after the introduction of computerized pre-authorization. Antibiotic costs were reduced by JPY2.86 million (USD 26,000) annually. None of the antipseudomonal agents showed decreased sensitivity. The average length of admission was shorter in post-intervention. Infection-related mortality at 30 days showed no difference between the pre- and post-intervention periods. An antimicrobial stewardship program using computerized pre-authorization decreased the use and cost of broad spectrum antibiotics without significant difference in infection-related mortality at 30 days, although our study did not improve susceptibilities of P. aeruginosa. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract.

    PubMed

    Awad El-Gied, Amgad A; Abdelkareem, Abdelkareem M; Hamedelniel, Elnazeer I

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  7. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    PubMed Central

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  8. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed Central

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-01-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline. PMID:8452363

  9. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-02-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.

  10. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.

    PubMed

    Miao, Jianyin; Chen, Feilong; Duan, Shan; Gao, Xiangyang; Liu, Guo; Chen, Yunjiao; Dixon, William; Xiao, Hang; Cao, Yong

    2015-08-19

    Antimicrobial peptides have received increasing attention in the agricultural and food industries due to their potential to control pathogens. However, to facilitate the development of novel peptide-based antimicrobial agents, details regarding the molecular mechanisms of these peptides need to be elucidated. The aim of this study was to investigate the antimicrobial mechanism of peptide F1, a bacteriocin found in Tibetan kefir, against Escherichia coli at protein levels using iTRAQ-based quantitative proteomic analysis. In response to treatment with peptide F1, 31 of the 280 identified proteins in E. coli showed alterations in their expression, including 10 down-regulated proteins and 21 up-regulated proteins. These 31 proteins all possess different molecular functions and are involved in different molecular pathways, as is evident in referencing the Kyoto Encyclopedia of Genes and Genomes pathways. Specifically, pathways that were significantly altered in E. coli in response to peptide F1 treatment include the tricarboxylic acid cycle, oxidative phosphorylation, glycerophospholipid metabolism, and the cell cycle-caulobacter pathways, which was also associated with inhibition of the cell growth, induction of morphological changes, and cell death. The results provide novel insights into the molecular mechanisms of antimicrobial peptides.

  11. Determination of the antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis. Canadian Antimicrobial Study Group.

    PubMed

    Blondeau, J M; Suter, M; Borsos, S

    1999-03-01

    The susceptibility of Canadian isolates of three respiratory tract pathogens (Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae) to several antimicrobial agents were tested by two different methods. Beta-lactamase was produced by 68/211 (32.2%) of H. influenzae isolates and 64/75 (85.3%) of M. catarrhalis isolates. For S. pneumoniae, 19/156 (12.2%) isolates were resistant to penicillin (MIC > or = 0.12 mg/L) and two isolates had MICs of 1.5 mg/L. For some combinations of agents and organisms, different methods gave different values for the proportion of isolates susceptible. Regardless of methodology, for H. influenzae, the most active antimicrobials based on proportion of strains susceptible were ciprofloxacin (100%) and cefpodoxime (98.5-100%). For M. catarrhalis, the most active agents were azithromycin, cefaclor, cefixime, cefpodoxime, cefuroxime, ciprofloxacin, clarithromycin and loracarbef (100% each); the least active was ampicillin. Against penicillin-sensitive and -resistant pneumococci, the activity was not significantly different for azithromycin and clarithromycin (93.4-100%) and ciprofloxacin (MIC90 2.0 and 1.5 mg/L, respectively) but was different for cefuroxime (99.3% and 31.6%, respectively), cefaclor (MIC90 0.75 and > or = 256 mg/L, respectively), cefpodoxime (MIC90 0.047 and 1.5 mg/L, respectively) and loracarbef (MIC90 0.75 and > or = 256 mg/L, respectively). This study indicates the increasing incidence, in Canada, of beta-lactamase resistance in H. influenzae and M. catarrhalis and penicillin resistance in S. pneumoniae.

  12. Eco-Friendly Synthesis of a New Class of Pyridinium-Based Ionic Liquids with Attractive Antimicrobial Activity.

    PubMed

    Messali, Mouslim

    2015-08-14

    The present study reports a green synthesis of a new family of ionic liquids (ILs) based on functionalized 4-dimethylaminopyridinium derivatives. The structures of 23 newly synthesized ILs (2-24) were confirmed by FT-IR, (1)H-, (13)C-, (11)B-, (19)F-, and (31)P-NMR spectroscopy and mass spectrometry. The antimicrobial activity of all novel ILs was tested against a panel of bacteria and fungi. The results prove that all tested ILs are effective antibacterial and antifungal agents, especially 4-(dimethylamino)-1-(4-phenoxybutyl) pyridinium derivatives 5 and 19.

  13. Antimicrobial resistance mechanisms among Campylobacter.

    PubMed

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  14. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

    PubMed Central

    Talebiyan, Reza; Kheradmand, Mehdi; Khamesipour, Faham; Rabiee-Faradonbeh, Mohammad

    2014-01-01

    Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Doxycycline (16.98%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), Ciprofloxacin (7.55%), and Gentamicin (5.66%). This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances. PMID:25548716

  15. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran.

    PubMed

    Talebiyan, Reza; Kheradmand, Mehdi; Khamesipour, Faham; Rabiee-Faradonbeh, Mohammad

    2014-01-01

    Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Doxycycline (16.98%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), Ciprofloxacin (7.55%), and Gentamicin (5.66%). This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances.

  16. Aspects of the antimicrobial efficacy of grapefruit seed extract and its relation to preservative substances contained.

    PubMed

    von Woedtke, T; Schlüter, B; Pflegel, P; Lindequist, U; Jülich, W D

    1999-06-01

    The antimicrobial efficacy as well as the content of preservative agents of six commercially available grapefruit seed extracts were examined. Five of the six extracts showed a high growth inhibiting activity against the test germs Bacillus subtilis SBUG 14, Micrococcus flavus SBUG 16, Staphylococcus aureus SBUG 11, Serratia marcescens SBUG 9, Escherichia coli SBUG 17, Proteus mirabilis SBUG 47, and Candida maltosa SBUG 700. In all of the antimicrobial active grapefruit seed extracts, the preservative benzethonium chloride was detected by thin layer chromatography. Additionally, three extracts contained the preserving substances triclosan and methyl parabene. In only one of the grapefruit seed extracts tested no preservative agent was found. However, with this extract as well as with several self-made extracts from seed and juiceless pulp of grapefruits (Citrus paradisi) no antimicrobial activity could be detected (standard serial broth dilution assay, agar diffusion test). Thus, it is concluded that the potent as well as nearly universal antimicrobial activity being attributed to grapefruit seed extract is merely due to the synthetic preservative agents contained within. Natural products with antimicrobial activity do not appear to be present.

  17. Encrypted Antimicrobial Peptides from Plant Proteins.

    PubMed

    Ramada, M H S; Brand, G D; Abrão, F Y; Oliveira, M; Filho, J L Cardozo; Galbieri, R; Gramacho, K P; Prates, M V; Bloch, C

    2017-10-16

    Examples of bioactive peptides derived from internal sequences of proteins are known for decades. The great majority of these findings appear to be fortuitous rather than the result of a deliberate and methodological-based enterprise. In the present work, we describe the identification and the biological activities of novel antimicrobial peptides unveiled as internal fragments of various plant proteins founded on our hypothesis-driven search strategy. All putative encrypted antimicrobial peptides were selected based upon their physicochemical properties that were iteratively selected by an in-house computer program named Kamal. The selected peptides were chemically synthesized and evaluated for their interaction with model membranes. Sixteen of these peptides showed antimicrobial activity against human and/or plant pathogens, some with a wide spectrum of activity presenting similar or superior inhibition efficacy when compared to classical antimicrobial peptides (AMPs). These original and previously unforeseen molecules constitute a broader and undisputable set of evidences produced by our group that illustrate how the intragenic concept is a workable reality and should be carefully explored not only for microbicidal agents but also for many other biological functions.

  18. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    PubMed Central

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  19. Production and characterization of vaginal suppositories with propolis wax as active agent to prevent and treat Fluor albus

    NASA Astrophysics Data System (ADS)

    Farida, Siti; Azizah, Nurul; Hermansyah, Heri; Sahlan, Muhamad

    2017-02-01

    Based on the content contained in propolis wax especially antimicrobial function, it can be analyzed that propolis wax had superiority for Fluor albus. This research was conducted on two formulation of vaginal suppositories with base, supplementary and active agent as a fixed variable: 2% propolis wax (% w/w). Evaluation of this research were weight variation, melting time, consistency, irritation effect test and physical and chemical stability test (organoleptic, pH and polyphenol content).

  20. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films.

    PubMed

    Higueras, Laura; López-Carballo, Gracia; Hernández-Muñoz, Pilar; Catalá, Ramón; Gavara, Rafael

    2014-10-01

    Chitosan/cyclodextrin films (CS:CD) incorporating carvacrol were obtained by casting, and conditioned at 23°C and 75% relative humidity prior to being immersed in liquid carvacrol until they reached sorption equilibrium. In a previous work, the in vitro antimicrobial activity of these films was studied. In this work, active films were used to inhibit microbial growth in packaged chicken breast fillets. Samples of CS:CD films loaded with carvacrol, of different sizes and thus with different quantities of antimicrobial agent, were stuck to the aluminium lid used to seal PP/EVOH/PP cups containing 25g of chicken fillets. These samples were stored for 9days at 4°C. The packages were hermetically sealed and it was confirmed that they provided an infinite barrier to carvacrol. The partition of the antimicrobial agent within the food/packaging system was analysed. The antimicrobial devices rapidly released a large percentage of the agent load, amounts that were gained by the adhesive coating of the lid and especially by the chicken fillets. The latter were the main sorbent phase, with average concentrations ranging between 200 and 5000mg/Kg during the period of storage. The microbiota of the packaged fresh chicken fillets - mesophiles, psychrophiles, Pseudomonas spp., enterobacteria, lactic acid bacteria and yeasts and fungi - were analysed and monitored during storage. A general microbial inhibition was observed, increasing with the size of the active device. Inhibition with a 24cm(2) device ranged from 0.3 log reductions against lactic acid bacteria to 1.8logs against yeasts and fungi. However, the large amount of antimicrobial that was sorbed or that reacted with the fillet caused an unacceptable sensory deterioration. These high sorption values are probably due to a great chemical compatibility between chicken proteins and carvacrol. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A probiotic approach to caries management.

    PubMed

    Anderson, M H; Shi, W

    2006-01-01

    The surgical approach has been the predominate mode of caries management for the past 150 years. Dentistry has, however, in recent years moved toward an antibiotic/antimicrobial model of disease management. This approach, however, raises serious questions: (1) do the antibiotic/antimicrobial agents (chlorhexidine, povidone iodine, fluoride, etc) kill all offending organisms?; (2) if so, do the agents preclude the re-entry of the same organisms from external sources?; and (3) if the agents do kill all the offending organisms, do any remaining pathogenic organisms have selective advantage in repopulating the tooth surfaces? To overcome the problems inherent in an antibiotic/antimicrobial approach, probiotic methods are currently under study as means of caries management. This paper discusses probiotic approaches, such as genetically modified Streptococcus mutans and targeted antimicrobials in the management of dental caries. Implications for this approach in the management of other diseases are also presented.

  2. [Consensus for antimicrobial susceptibility testing for Enterobacteriaceae. Subcommittee on Antimicrobials, SADEBAC (Argentinian Society of Clinical Bacteriology), Argentinian Association of Microbiology].

    PubMed

    Famiglietti, A; Quinteros, M; Vázquez, M; Marín, M; Nicola, F; Radice, M; Galas, M; Pasterán, F; Bantar, C; Casellas, J M; Kovensky Pupko, J; Couto, E; Goldberg, M; Lopardo, H; Gutkind, G; Soloaga, R

    2005-01-01

    Taking into account previous recommendations from the National Committee for Clinical Laboratory Standards (NCCLS), the Antimicrobial Committee, Sociedad Argentina de Bacteriología Clínica (SADEBAC), Asociación Argentina de Microbiología (AAM), and the experience from its members and some invited microbiologists, a consensus was obtained for antimicrobial susceptibility testing and interpretation in most frequent enterobacterial species isolated from clinical samples in our region. This document describes the natural antimicrobial resistance of some Enterobacteriaceae family members, including the resistance profiles due to their own chromosomal encoded beta-lactamases. A list of the antimicrobial agents that should be tested, their position on the agar plates, in order to detect the most frequent antimicrobial resistance mechanisms, and considerations on which antimicrobial agents should be reported regarding to the infection site and patient characteristics are included. Also, a description on appropriate phenotypic screening and confirmatory test for detection of prevalent extended spectrum beta-lactamases in our region are presented. Finally, a summary on frequent antimicrobial susceptibility profiles and their probably associated resistance mechanisms, and some infrequent antimicrobial resistance profiles that deserve confirmation are outlined.

  3. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed.

  4. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials.

    PubMed

    Şen, Ferhat; Uzunsoy, İrem; Baştürk, Emre; Kahraman, Memet Vezir

    2017-08-15

    This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic starch was synthesized and characterized by FT-IR spectroscopy and 1 H NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using starch, cationic starch and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by TGA and DSC. Hydrophobicity of samples was determined by contact angle measurements. Surface morphology of samples was investigated by SEM. Moreover, gel contents of samples were determined. The obtained results prove that produced food packaging materials have good thermal, antimicrobial and surface properties, and they can be used as food packaging material in many industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  6. Antimicrobials and therapeutic decision making: an historical perspective.

    PubMed

    Quintiliani, R; Nightingale, C H

    1991-01-01

    In an effort to remedy inappropriate and excessive use of antimicrobials and to control costs, most hospitals have developed some type of antimicrobial management program. At Hartford Hospital, our most effective approaches have been those that reduce the chances for physician error, decrease the burden on ancillary services, and encourage short hospital stays. These include automatic correction of dose and dosing intervals of antimicrobials and, if possible, their conversion by pharmacy to cost-effective alternative agents; daily review of patients who are taking the drugs by an antimicrobial team; and replacement of parenteral with oral agents as soon as possible. Physician acceptance of these approaches will require significant changes in traditional prescribing styles and willingness to allow pharmacists to implement the recommendations of therapeutic and medical staff committees.

  7. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  8. Animals living in polluted environments are potential source of antimicrobials against infectious agents

    PubMed Central

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-01-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations. PMID:23265422

  9. Edible coating as carrier of antimicrobial agents to extend the shelf life of fresh-cut apples

    USDA-ARS?s Scientific Manuscript database

    Edible coatings with antimicrobial agents can extend shelf-life of fresh-cut fruits. The effect of lemongrass, oregano oil and vanillin incorporated in apple puree-alginate edible coatings, on shelf-life of fresh-cut 'Fuji' apples, was investigated. Coated apples were packed in air filled polypropyl...

  10. Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the anti-microbial agent triclosan

    USDA-ARS?s Scientific Manuscript database

    Triclosan (5-chloro-2-(2, 4-dichlorophenoxy)phenol) is a widely used antimicrobial agent in personal care products whose fate and transport in aquatic ecosystems is a growing environmental concern. Evidence for chronic ecological effects of triclosan in aquatic organisms is increasing. At larger sca...

  11. Topical antimicrobial agents for treating foot ulcers in people with diabetes.

    PubMed

    Dumville, Jo C; Lipsky, Benjamin A; Hoey, Christopher; Cruciani, Mario; Fiscon, Marta; Xia, Jun

    2017-06-14

    People with diabetes are at high risk for developing foot ulcers, which often become infected. These wounds, especially when infected, cause substantial morbidity. Wound treatments should aim to alleviate symptoms, promote healing, and avoid adverse outcomes, especially lower extremity amputation. Topical antimicrobial therapy has been used on diabetic foot ulcers, either as a treatment for clinically infected wounds, or to prevent infection in clinically uninfected wounds. To evaluate the effects of treatment with topical antimicrobial agents on: the resolution of signs and symptoms of infection; the healing of infected diabetic foot ulcers; and preventing infection and improving healing in clinically uninfected diabetic foot ulcers. We searched the Cochrane Wounds Specialised Register, CENTRAL, Ovid MEDLINE, Ovid MEDLINE (In-Process & Other Non-Indexed Citations), Ovid Embase, and EBSCO CINAHL Plus in August 2016. We also searched clinical trials registries for ongoing and unpublished studies, and checked reference lists to identify additional studies. We used no restrictions with respect to language, date of publication, or study setting. We included randomised controlled trials conducted in any setting (inpatient or outpatient) that evaluated topical treatment with any type of solid or liquid (e.g., cream, gel, ointment) antimicrobial agent, including antiseptics, antibiotics, and antimicrobial dressings, in people with diabetes mellitus who were diagnosed with an ulcer or open wound of the foot, whether clinically infected or uninfected. Two review authors independently performed study selection, 'Risk of bias' assessment, and data extraction. Initial disagreements were resolved by discussion, or by including a third review author when necessary. We found 22 trials that met our inclusion criteria with a total of over 2310 participants (one study did not report number of participants). The included studies mostly had small numbers of participants (from 4 to 317) and relatively short follow-up periods (4 to 24 weeks). At baseline, six trials included only people with ulcers that were clinically infected; one trial included people with both infected and uninfected ulcers; two trials included people with non-infected ulcers; and the remaining 13 studies did not report infection status.Included studies employed various topical antimicrobial treatments, including antimicrobial dressings (e.g. silver, iodides), super-oxidised aqueous solutions, zinc hyaluronate, silver sulphadiazine, tretinoin, pexiganan cream, and chloramine. We performed the following five comparisons based on the included studies: Antimicrobial dressings compared with non-antimicrobial dressings: Pooled data from five trials with a total of 945 participants suggest (based on the average treatment effect from a random-effects model) that more wounds may heal when treated with an antimicrobial dressing than with a non-antimicrobial dressing: risk ratio (RR) 1.28, 95% confidence interval (CI) 1.12 to 1.45. These results correspond to an additional 119 healing events in the antimicrobial-dressing arm per 1000 participants (95% CI 51 to 191 more). We consider this low-certainty evidence (downgraded twice due to risk of bias). The evidence on adverse events or other outcomes was uncertain (very low-certainty evidence, frequently downgraded due to risk of bias and imprecision). Antimicrobial topical treatments (non dressings) compared with non-antimicrobial topical treatments (non dressings): There were four trials with a total of 132 participants in this comparison that contributed variously to the estimates of outcome data. Evidence was generally of low or very low certainty, and the 95% CIs spanned benefit and harm: proportion of wounds healed RR 2.82 (95% CI 0.56 to 14.23; 112 participants; 3 trials; very low-certainty evidence); achieving resolution of infection RR 1.16 (95% CI 0.54 to 2.51; 40 participants; 1 trial; low-certainty evidence); undergoing surgical resection RR 1.67 (95% CI 0.47 to 5.90; 40 participants; 1 trial; low-certainty evidence); and sustaining an adverse event (no events in either arm; 81 participants; 2 trials; very low-certainty evidence). Comparison of different topical antimicrobial treatments: We included eight studies with a total of 250 participants, but all of the comparisons were different and no data could be appropriately pooled. Reported outcome data were limited and we are uncertain about the relative effects of antimicrobial topical agents for each of our review outcomes for this comparison, that is wound healing, resolution of infection, surgical resection, and adverse events (all very low-certainty evidence). Topical antimicrobials compared with systemic antibiotics : We included four studies with a total of 937 participants. These studies reported no wound-healing data, and the evidence was uncertain for the relative effects on resolution of infection in infected ulcers and surgical resection (very low certainty). On average, there is probably little difference in the risk of adverse events between the compared topical antimicrobial and systemic antibiotics treatments: RR 0.91 (95% CI 0.78 to 1.06; moderate-certainty evidence - downgraded once for inconsistency). Topical antimicrobial agents compared with growth factor: We included one study with 40 participants. The only review-relevant outcome reported was number of ulcers healed, and these data were uncertain (very low-certainty evidence). The randomised controlled trial data on the effectiveness and safety of topical antimicrobial treatments for diabetic foot ulcers is limited by the availability of relatively few, mostly small, and often poorly designed trials. Based on our systematic review and analysis of the literature, we suggest that: 1) use of an antimicrobial dressing instead of a non-antimicrobial dressing may increase the number of diabetic foot ulcers healed over a medium-term follow-up period (low-certainty evidence); and 2) there is probably little difference in the risk of adverse events related to treatment between systemic antibiotics and topical antimicrobial treatments based on the available studies (moderate-certainty evidence). For each of the other outcomes we examined there were either no reported data or the available data left us uncertain as to whether or not there were any differences between the compared treatments. Given the high, and increasing, frequency of diabetic foot wounds, we encourage investigators to undertake properly designed randomised controlled trials in this area to evaluate the effects of topical antimicrobial treatments for both the prevention and the treatment of infection in these wounds and ultimately the effects on wound healing.

  12. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India.

    PubMed

    Devi, Mrinalee; Dutta, Jyoti B; Rajkhowa, Swaraj; Kalita, Dhireswar; Saikia, Girindra Kumar; Das, Bipin Chandra; Hazarika, Razibuddin Ahmed; Mahato, Gauranga

    2017-05-01

    This study was conducted to determine the prevalence and antimicrobial susceptibility of Streptococcus suis and their resistance patterns isolated from both clinically healthy carriers and diseased pigs in and around Guwahati, Assam, India. A total of 497 samples were collected during October, 2012, to April, 2014, from clinically healthy (n=67) and diseased (n=230) pigs of varying age and either sex maintained under organized and unorganized farming systems. Samples were processed for isolation and identification of S. suis by biochemical characterization and polymerase chain reaction targeting the housekeeping gene glutamate dehydrogenase. In vitro antimicrobial susceptibility of the recovered isolates against nine antibiotic groups comprising 17 antimicrobial agents was studied by standard method. Of the 497 samples examined, 7 (1.41%) isolates were confirmed to be S. suis of which 5 (1.87%) and 2 (0.87%) were derived from clinically healthy and diseased pigs, respectively. All the isolates were susceptible to gentamicin, amikacin, and erythromycin (100%) followed by the penicillin group and enrofloxacin (85.71%), ceftriaxone, doxycycline HCL, ofloxacin and chloramphenicol (71.43%), to kanamycin, clindamycin and co-trimoxazole (42.85%). The isolates showed least susceptibility to cefalexin, tetracycline and streptomycin (28.57%). All the five S. suis isolates from clinically healthy pigs were susceptible to penicillin G, amoxyclav, doxycycline HCl, gentamicin, amikacin and erythromycin, 80.00% isolates susceptible to ampicillin, enrofloxacin and ofloxacin, 60.00% to ceftriaxone, kanamycin and chloramphenicol, 40% to cefalexin, tetracycline, clindamycin and co-trimoxazole, respectively. Only 20.00% isolates were susceptible to streptomycin. Both the isolates recovered from diseased pigs were susceptible to ampicillin, ceftriaxone, gentamicin, amikacin, enrofloxacin, erythromycin, and clindamycin. On the other hand, both the isolates were resistant to cefalexin, tetracycline, doxycycline HCL, and kanamycin. Altogether five different resistance patterns (multi-drug resistance) were observed. Of the seven S. suis isolates, two isolates were susceptible to all the 17 antimicrobial agents, one isolate was resistant to four antimicrobial agents, two isolates to seven agents, one isolate to nine agents, and one isolate exhibited resistance to 14 antimicrobial agents. This study was conducted to determine the prevalence of S. suis in clinically healthy and diseased pigs and their antimicrobial susceptibility patterns. All the isolates were susceptible to gentamicin, amikacin and erythromycin, and most of them were resistant to cefalexin, tetracycline and streptomycin. Five different patterns of antimicrobial resistance (multi-drug resistance) were observed.

  13. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications

    NASA Astrophysics Data System (ADS)

    Vega-Jiménez, A. L.; Almaguer-Flores, A.; Flores-Castañeda, M.; Camps, E.; Uribe-Ramírez, M.; Aztatzi-Aguilar, O. G.; De Vizcaya-Ruiz, A.

    2017-10-01

    In recent years, nanomaterials have been used in the medical-dental field as new alternative antimicrobial agents. Bismuth subsalicylate (BSS) has been used as an antimicrobial agent, but the effect of BSS in the form of nanoparticles (BSS-nano) as a potential antimicrobial agent has not been tested, in specific against bacteria responsible for periodontal disease. The aim of this study was to evaluate the antibacterial effect of BSS-nano against oral anaerobic bacteria and to assess the safety of BSS-nano by evaluating their cytotoxicity in human gingival fibroblast (HGF-1) cells. BSS-nano were synthesized by laser ablation and were previously physico-chemically characterized using in vitro assays. The antibacterial activity was measured using the tetrazolium-based XTT assay, and cytotoxicity was determined using lactate dehydrogenase (LDH) and MTS assays in HGF-1 cells. Transmission electron microscopy of HGF-1 exposed to BSS-nano was also performed. BSS-nano was shown to have a primary size of 4-22 nm and a polygonal shape. Among the tested bacterial strains, those with a greater sensitivity to BSS-nano (highest concentration of 21.7 μg ml-1) were A. actinomycetemcomitans, C. gingivalis, and P. gingivalis. BSS-nano at a concentration of 60 μg ml-1 showed low cytotoxicity (6%) in HFG-1 cells and was mainly localized intracellularly in acidic vesicles. Our results indicate that the concentration of BSS-nano used as an effective antibacterial agent does not induce cytotoxicity in mammalian cells; thus, BSS-nano can be applied as an antibacterial agent in dental materials or antiseptic solutions.

  14. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  15. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.

    PubMed

    Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M

    2016-06-01

    Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.

  16. Palatability of oral antibiotics among children in an urban primary care center.

    PubMed

    Angelilli, M L; Toscani, M; Matsui, D M; Rieder, M J

    2000-03-01

    To evaluate the palatability of antimicrobial agents effective against beta-lactamase-producing bacteria in American children. In a taste test of 4 antimicrobial agents, azithromycin (cherry flavored), cefprozil (bubble gum flavored), cefixime (strawberry flavored), and amoxicillin-clavulanic acid (banana flavored) were compared. An urban inner-city primary care clinic. A volunteer sample of 30 healthy children (aged 5-8 years). Palatability was determined using a single-blind taste test of 4 flavored antimicrobial agents. The 4 antimicrobial agents used were azithromycin, cefprozil, cefixime, and amoxicillin-clavulanic acid. After each antimicrobial test dose, subjects rated the taste on a 10-cm visual analog scale incorporating a facial hedonic scale. Preference assessments for the best-tasting and worst-tasting agent were also conducted. Of the 20 children who expressed a preference, significantly more children (9 [45%], P<.05) selected the cefixime preparation as the best-tasting formulation compared with the other preparations. The cefixime preparation was also significantly the least likely to be selected as the worst-tasting preparation (2 [10%], P<.05). There were no significant differences between the other 3 preparations with respect to being selected as either the best or worst tasting. The mean (+/- SD) visual analog scale score for cefixime was highest (8.53 [2.49]) compared with the scores for azithromycin (6.78 [3.45]), cefprozil (6.26 [4.04]), and amoxicillin-clavulanic acid (6.24 [4.01]). The cefixime preparation was most commonly rated as best tasting by children.

  17. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  18. Estimated Incidence of Antimicrobial Drug-Resistant Nontyphoidal Salmonella Infections, United States, 2004-2012.

    PubMed

    Medalla, Felicita; Gu, Weidong; Mahon, Barbara E; Judd, Michael; Folster, Jason; Griffin, Patricia M; Hoekstra, Robert M

    2016-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004-2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted.

  19. Is it time for brushless scrubbing with an alcohol-based agent?

    PubMed

    Gruendemann, B J; Bjerke, N B

    2001-12-01

    The practice of surgical scrubbing in perioperative settings is changing rapidly. This article presents information about eliminating the traditional scrub brush technique and using an alcohol formulation for surgical hand scrubs. Also covered are antimicrobial agents, relevant US Food and Drug Administration classifications, skin and fingernail care, and implementation of changes. The article challenges surgical team members to evaluate a new and different approach to surgical hand scrubbing.

  20. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.

    PubMed

    Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F

    2015-12-01

    Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese. © 2015 Institute of Food Technologists®

  1. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  2. Econotherapeutics.

    PubMed

    Roark, M K; Reed, W E

    1995-01-01

    A program that represents the efforts of a hospital pharmacy management company to control drug costs is described. The program, Econotherapeutics, was developed in response to a changed health care reimbursement system that focused on the costs of products rather than the revenue generated by these products. For antimicrobial agents, a hospital-specific antibiogram is used to encourage cost-effective prescribing. A pharmacist intervention program, medical staff presentations, drug usage evaluation, management systems, and educational programs for pharmacists are all essential parts of the program. Centralized data gathering has allowed cost comparison of specific antimicrobial agents so that differences between variable cost estimates and costs based on actual use can be evaluated. Actual dose and dosage interval were used to calculate average cost per treatment day in a 121-hospital sample. Our cost data support the choice of cefotaxime over ceftriaxone.

  3. Animal venoms as antimicrobial agents.

    PubMed

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  5. In vitro activities of 10 antimicrobial agents against bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women.

    PubMed

    Puapermpoonsiri, S; Watanabe, K; Kato, N; Ueno, K

    1997-10-01

    The in vitro activities of 10 antimicrobial agents against 159 bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women were determined. Clindamycin, imipenem, cefmetazole, amoxicillin, amoxicillin-clavulanate, and metronidazole were highly active against all anaerobic isolates except Prevotella bivia and Mobiluncus species, which were resistant to amoxicillin and metronidazole, respectively. Cefotiam, ceftazidime, and ofloxacin were variably effective, while cefaclor was the least effective agent.

  6. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control.

    PubMed

    Liu, Dan; Mao, Yiqin; Ding, Lijun

    2018-04-01

    Waterborne diseases significantly affect human health and are responsible for high mortality rates worldwide. Antibiotics have been known for decades for treatment of bacterial strains and their overuse and irrational applications are causing increasing bacteria resistance. Therefore, there is a strong need to find alternative ways for efficient water disinfection and microbial control. Carbon nanotubes (CNTs) have demonstrated strong antimicrobial properties due to their remarkable structure. This paper reviews the antimicrobial properties of CNTs, discusses diverse mechanisms of action against microorganisms as well as their applicability for water disinfection and microbial control. Safety concerns, challenges of CNTs as antimicrobial agents and future opportunities for their application in the water remediation process are also highlighted.

  7. Antimicrobial susceptibility pattern of clinical isolates of Burkholderia pseudomallei in Bangladesh.

    PubMed

    Dutta, Subarna; Haq, Sabah; Hasan, Mohammad Rokibul; Haq, Jalaluddin Ashraful

    2017-07-20

    Melioidosis an infectious disease, caused by a Gram negative bacterium called Burkholderia pseudomallei, is endemic in Bangladesh. This organism is sensitive to limited number of antimicrobial agents and need prolonged treatment. There is no comprehensive data on the antimicrobial susceptibility profile of B. pseudomallei isolated in Bangladesh over last several years. The present study aimed to determine the antimicrobial susceptibility pattern of B. pseudomallei isolated in a tertiary care hospital of Dhaka city from 2009 to 2015. All B. pseudomallei isolated from melioidosis patients over a period of 7 years (2009-2015) in the Department of Microbiology of a 725-bed tertiary care referral hospital in Dhaka city, Bangladesh were included in the study. B. pseudomallei was identified by Gram stain, culture, specific biochemical tests, serology and PCR using specific primers constructed from 16s rRNA region of B. pseudomallei. Antimicrobial susceptibility to specific agents was determined by disk diffusion and minimum inhibitory concentration methods. A total of 20 isolates of B. pseudomallei which were isolated from patients coming from different geographic locations of Bangladesh were included in the study. All the isolates were uniformly sensitive (100%) to ceftazidime, imipenem, piperacillin-tazobactam, amoxicillin-clavulanic acid and tetracycline by both disk diffusion and MIC methods. Two strains were resistant to trimethoprim-sulfamethoxazole by disk diffusion method but were sensitive by MIC method. The MIC 50 and MIC 90 values of the above antimicrobial agents were almost similar. All the isolates were resistant to amikacin by both MIC and disk diffusion methods. The results of the study suggest that B. pseudomallei prevalent in Bangladesh were still susceptible to all recommended antimicrobial agents used for the treatment of melioidosis. However, regular monitoring is needed to detect any emergence of resistance and shifting of MIC 50 and MIC 90 values.

  8. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  9. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  10. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan.

    PubMed

    Asai, Tetsuo; Hiki, Mototaka; Ozawa, Manao; Koike, Ryoji; Eguchi, Kaoru; Kawanishi, Michiko; Kojima, Akemi; Endoh, Yuuko S; Hamamoto, Shuichi; Sakai, Masato; Sekiya, Tatsuro

    2014-03-01

    Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.

  11. Host Defense Antimicrobial Peptides as Antibiotics: Design and Application Strategies

    PubMed Central

    Mishra, Biswajit; Reiling, Scott; Zarena, D.; Wang, Guangshun

    2017-01-01

    This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs, including biofilm). Finally, we highlight AMPs already in use or under clinical trials. PMID:28399505

  12. National Antimicrobial Resistance Monitoring System (NARMS) Program

    USDA-ARS?s Scientific Manuscript database

    The National Antimicrobial Resistance Monitoring System (NARMS) – Enteric Bacteria is a national public health surveillance system in the United States that tracks changes in the susceptibility of certain enteric bacteria to antimicrobial agents of human and veterinary medical importance. The NARMS ...

  13. Topical Antimicrobials for Burn Infections – An Update

    PubMed Central

    Sevgi, Mert; Toklu, Ani; Vecchio, Daniela; Hamblin, Michael R

    2014-01-01

    The relentless rise in antibiotic resistance among pathogenic bacteria and fungi, coupled with the high susceptibility of burn wounds to infection, and the difficulty of systemically administered antibiotics to reach damaged tissue, taken together have made the development of novel topical antimicrobials for burn infections a fertile area of innovation for researchers and companies. We previously covered the existing patent literature in this area in 2010, but the notable progress made since then, has highlighted the need for an update to bring the reader up to date on recent developments. New patents in the areas of topically applied antibiotics and agents that can potentiate the action of existing antibiotics may extend their useful lifetime. Developments have also been made in biofilm-disrupting agents. Antimicrobial peptides are nature’s way for many life forms to defend themselves against attack by pathogens. Silver has long been known to be a highly active antimicrobial but new inorganic metal derivatives based on bismuth, copper and gallium have emerged. Halogens such as chlorine and iodine can be delivered by novel technologies. A variety of topically applied antimicrobials include chitosan preparations, usnic acid, ceragenins and XF porphyrins. Natural product derived antimicrobials such as tannins and essential oils have also been studied. Novel techniques to deliver reactive oxygen species and nitric oxide in situ have been developed. Light-mediated techniques include photodynamic therapy, ultraviolet irradiation, blue light, low-level laser therapy and titania photocatalysis. Passive immunotherapy employs antibodies against pathogens and their virulence factors. Finally an interesting new area uses therapeutic microorganisms such as phages, probiotic bacteria and protozoa to combat infections. PMID:24215506

  14. Composite starch-based coatings applied to strawberries (Fragaria ananassa).

    PubMed

    García, M A; Martino, M N; Zaritzky, N E

    2001-08-01

    Starch-based coatings were used to the extend storage life of strawberries (Fragaria ananassa) stored at 0 degree C and 84.8% relative humidity. Effects of coating formulation (including starch type, plasticizer, lipid and antimicrobial agent) were analysed with respect to fruit quality. Plasticizer addition was necessary for film and coating integrity to avoid pores and cracks. Plasticizer presence reduced weight losses and maintained surface colour of fruits. Amylomaize coatings showed lower water vapour and gas permeabilities and decreased weight losses for longer periods than corn starch ones. Coatings with sorbitol showed lower permeabilities than glycerol ones. Coatings with antimicrobial agents decreased microbial counts, extending storage life of coated fruits by 10 to 14 days in comparison to the control. The addition of 2 g/l sunflower oil to the formulations decreased the water vapour permeability of starch-based films, maintained the surface colour of coated fruits and controlled effectively fruit weight losses during storage. Lipid addition minimized the effects of starch and plasticizer types. Composite starch-based coatings showed selective gas permeability (CO2 higher than O2) which helps to delay senescence of fruits.

  15. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  16. Antimicrobial Effects of Free Nitrous Acid on Desulfovibrio vulgaris: Implications for Sulfide-Induced Corrosion of Concrete

    PubMed Central

    Gao, Shu-Hong; Ho, Jun Yuan; Fan, Lu; Richardson, David J.; Yuan, Zhiguo

    2016-01-01

    ABSTRACT Hydrogen sulfide produced by sulfate-reducing bacteria (SRB) in sewers causes odor problems and asset deterioration due to the sulfide-induced concrete corrosion. Free nitrous acid (FNA) was recently demonstrated as a promising antimicrobial agent to alleviate hydrogen sulfide production in sewers. However, details of the antimicrobial mechanisms of FNA are largely unknown. Here, we report the multiple-targeted antimicrobial effects of FNA on the SRB Desulfovibrio vulgaris Hildenborough by determining the growth, physiological, and gene expression responses to FNA exposure. The activities of growth, respiration, and ATP generation were inhibited when exposed to FNA. These changes were reflected in the transcript levels detected during exposure. The removal of FNA was evident by nitrite reduction that likely involved nitrite reductase and the poorly characterized hybrid cluster protein, and the genes coding for these proteins were highly expressed. During FNA exposure, lowered ribosome activity and protein production were detected. Additionally, conditions within the cells were more oxidizing, and there was evidence of oxidative stress. Based on an interpretation of the measured responses, we present a model depicting the antimicrobial effects of FNA on D. vulgaris. These findings provide new insight for understanding the responses of D. vulgaris to FNA and will provide a foundation for optimal application of this antimicrobial agent for improved control of sewer corrosion and odor management. IMPORTANCE Hydrogen sulfide produced by SRB in sewers causes odor problems and results in serious deterioration of sewer assets that requires very costly and demanding rehabilitation. Currently, there is successful application of the antimicrobial agent free nitrous acid (FNA), the protonated form of nitrite, for the control of sulfide levels in sewers (G. Jiang et al., Water Res 47:4331–4339, 2013, http://dx.doi.org/10.1016/j.watres.2013.05.024). However, the details of the antimicrobial mechanisms of FNA are largely unknown. In this study, we identified the key responses (decreased anaerobic respiration, reducing FNA, combating oxidative stress, and shutting down protein synthesis) of Desulfovibrio vulgaris Hildenborough, a model sewer corrosion bacterium, to FNA exposure by examining the growth, physiological, and gene expression changes. These findings provide new insight and underpinning knowledge for understanding the responses of D. vulgaris to FNA exposure, thereby benefiting the practical application of FNA for improved control of sewer corrosion and odor. PMID:27371588

  17. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    PubMed

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  18. Estimation of the bacteriocin ColE7 conjugation-based "kill" - "anti-kill" antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays.

    PubMed

    Maslennikova, I L; Kuznetsova, M V; Toplak, N; Nekrasova, I V; Žgur Bertok, D; Starčič Erjavec, M

    2018-05-07

    The efficiency of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system, was assessed using real-time PCR, flow cytometry and bioluminescence. The ColE7 antimicrobial system consists of the genetically modified Escherichia coli strain Nissle 1917 harbouring a conjugative plasmid (derivative of the F-plasmid) encoding the "kill" gene (ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). On the basis of traJ gene expression in the killer donor cells, our results showed that the efficiency of the here studied antimicrobial system against target E. coli was higher at 4 than at 24 h. Flow cytometry was used to indirectly estimate DNase activity of the antimicrobial system, as lysis of target E. coli cells in the conjugative mixture with the killer donor strain led to reduction in cell cytosol fluorescence. According to a lux assay, E. coli TG1 (pXen lux + Ap r ) with constitutive luminescence were killed already after 2 h of treatment. Target sensor E. coli C600 with DNA damage SOS-inducible luminescence showed significantly lower SOS induction 6 and 24 h following treatment with the killer donor strain. Our results thus showed that bioluminescent techniques are quick and suitable for estimation of the ColE7 bacterial conjugation-based antimicrobial system antibacterial activity. Bacterial antimicrobial resistance is worldwide rising and causing deaths of thousands of patients infected with multi-drug resistant bacterial strains. In addition, there is a lack of efficient alternative antimicrobial agents. The significance of our research is the use of a number of methods (real-time PCR, flow cytometry and bioluminescence-based technique) to assess the antibacterial activity of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system. Bioluminescent techniques proved to be rapid and suitable for estimation of antibacterial activity of ColE7 bacterial conjugation-based antimicrobial system and possibly other related systems. © 2018 The Society for Applied Microbiology.

  19. Novel aminohydrazide cross-linked chitosan filled with multi-walled carbon nanotubes as antimicrobial agents.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A

    2018-04-21

    Four chemically modified chitosan derivatives 1-4 were designed and synthesized via a series of four reactions; first by reaction with benzaldehyde to protect its amino groups (Derivative 1), second by reaction with epichlorohydrine (Derivative 2), third by reaction with aminobenzhydrazide (Derivative 3), and forth by removing of benzaldehyde to restore the free amino groups on the chitosan (Derivative 4). Two multi-walled carbon nanotube (MWCNT) biocomposites based on Derivative 4 were also prepared. The structure of the prepared derivatives and MWCNT composites was elucidated using elemental analyses, FTIR, XRD, SEM and TEM. The modified chitosan derivatives and MWCNT composites showed better antimicrobial activities than that of chitosan against Enterococcus faecalis, Staphylococcus epidermidis, Escherichia coli, Aspergillus niger, Cryptococcus neoformans and Candida tropicalis as judged by their higher inhibition zone diameters using the agar well diffusion technique. These derivatives and MWCNT composites are more potent against Gram-positive bacteria than against Gram-negative bacteria. The MWCNT composites displayed comparable or even better antimicrobial activities than the reference bactericides or fungicides. Thus, structural modification of chitosan through combination with functionalized moieties and MWCNTs in one system was taken as a way to achieve promising templates for antimicrobial agents and to be appropriate candidates for medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Antimicrobial resistance and genetic profiling of Escherichia coli from a commercial beef packing plant.

    PubMed

    Aslam, Mueen; Service, Cara

    2006-07-01

    The objective of this study was to investigate the extent of antimicrobial resistance and to genetically characterize resistant Escherichia coli recovered from a commercial beef packing plant. E. coli isolates were recovered by a hydrophobic grid membrane filtration method by direct plating on SD-39 medium. A total of 284 isolates comprising 71, 36, 55, 52, and 70 isolates from animal hides, washed carcasses, conveyers, beef trimmings, and ground beef, respectively, were analyzed. The susceptibility of E. coli isolates to 15 antimicrobial agents was evaluated with an automated broth microdilution system, and the genetic characterization of these isolates was performed by the random amplified polymorphic DNA (RAPD) method. Of the 284 E. coli isolates, 56% were sensitive to all 15 antimicrobial agents. Resistance to tetracycline, ampicillin, and streptomycin was observed in 38, 9, and 6% of the isolates, respectively. Resistance to one or more antimicrobial agents was observed in 51% of the E. coli isolates recovered from the hides but in only 25% of the E. coli from the washed carcasses. Resistance to one or more antimicrobial agents was observed in 49, 50, and 37% of the isolates recovered from conveyers, beef trimmings, and ground beef, respectively. The RAPD pattern data showed that the majority of resistant E. coli isolates were genetically diverse. Only a few RAPD types of resistant strains were shared among various sample sources. The results of this study suggest that antimicrobial-resistant E. coli isolates were prevalent during all stages of commercial beef processing and that considerably higher numbers of resistant E. coli were present on conveyers, beef trimmings, and ground beef than on dressed carcasses. This stresses the need for improving hygienic conditions during all stages of commercial beef processing and meatpacking to avoid the risks of transfer of antimicrobial-resistant bacteria to humans.

  1. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections.

    PubMed

    Gil, Fernando; Paredes-Sabja, Daniel

    2016-09-01

    Alternative antimicrobial therapies based on acyldepsipeptides may hold promising results, based on the fact that they have shown to efficiently eradicate persister cells, stationary cells and cell in biofilm structures of several pathogenic bacteria from the infected host. Clostridium difficile infection is considered the result of extensive hospital use of expanded-spectrum antibiotics, which cause dysbiosis of the intestinal microbiota, enhancing susceptibility to infection and persistence. Considering the urgent need for the development of novel and efficient antimicrobial strategies against C. difficile, we review the potential application to treat C. difficile infections of acyldepsipeptides family of antibiotics, its mechanism of action and current developmental stages.

  2. Antimicrobial therapy of experimental Legionella micdadei pneumonia in guinea pigs.

    PubMed Central

    Pasculle, A W; Dowling, J N; Frola, F N; McDevitt, D A; Levi, M A

    1985-01-01

    Several antimicrobial agents were evaluated for activity against experimental Legionella micdadei pneumonia in guinea pigs. Erythromycin, rifampin, doxycycline, and sulfamethoxazole-trimethoprim produced significant reductions in mortality. Penicillin, cefazolin, cefoxitin, chloramphenicol, and gentamicin were not efficacious even though, at the doses administered, the peak concentrations of these agents in serum substantially exceeded their MICs for the test strain. It is suggested that the poor performance of the latter group of agents resulted from poor penetration into cells in which L. micdadei was multiplying. PMID:3878688

  3. Antimicrobial susceptibilities and population structure of Staphylococcus epidermidis associated with ovine mastitis.

    PubMed

    Onni, Toniangelo; Sanna, Giovanna; Larsen, Jesper; Tola, Sebastiana

    2011-02-24

    Intramammary infections are a serious problem for dairy sheep farms, and Staphylococcus epidermidis is one of the main etiological agents of ovine mastitis. In this work, 131 S. epidermidis isolates, collected from 2201 dairy Sarda sheep belonging to 14 flocks with high somatic cell count scores, were studied. The flocks were located in diverse geographical areas of Sardinia, Italy. The aim of study was to assess the susceptibility of isolates to 13 antimicrobial agents, many of which are frequently used in mastitis therapy. Oxacillin was used for detecting methicillin-resistant S. epidermidis (MRSE) by disk diffusion test. Thirty-eight percent of the isolates (n=50) were resistant to penicillin, 7.6% (n=10) were resistant to tetracycline, and 2.3% (n=3) were resistant to both penicillin and tetracycline (PTRSE). Two isolates were resistant to five antimicrobials including methicillin. Analysis of staphylococcal cassette chromosome mec (SCCmec) elements showed that both MRSE isolates harbored SCCmec type IVa. Based on pulsed-field gel electrophoresis (PFGE) typing by SmaI macrorestriction, S. epidermidis isolates were grouped into four clusters at 75% similarity level. The two multi-drug resistant MRSE isolates displayed distinct PFGE patters. This study indicates that S. epidermidis isolates from sheep milk samples may accumulate resistance markers for different antimicrobial agents. Furthermore, the occurrence of PTRSE and MRSE suggests to adopt adequate hygienic measures when handling animals with intramammary infections, in order to prevent spreading PTRSE and MRSE strains to humans through direct contact and/or consumption of contaminated food. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Antimicrobial Tolerance in Biofilms

    PubMed Central

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  5. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  6. Light activated compounds as antimicrobial agents - patently obvious?

    PubMed

    Phoenix, D A; Harris, F

    2006-06-01

    Microbial pathogens with resistance to conventional drugs are a problem of global proportions and may be viral such as HIV, bacterial as in the case of MRSA or eukaryotic as seen with the malarial parasite Plasmodium falciparum. In response, photodynamic antimicrobial chemotherapy (PACT) has been developed, which is the delivery of a non-toxic photosensitiser (PS) to the site of a microbial infection. When taken up by the pathogen, illumination of the PS by light at an appropriate wavelength can lead to inactivation of the pathogen through the production of highly reactive free radical species, which induce oxidative damage to lipid, proteins and DNA / RNA, and / or adduct formation between the PS and these microbial biomolecules. Here the photochemical and photophysical steps underlying PS antimicrobial action along with the desirable electronic and physiochemical properties of PS are briefly reviewed. The therapeutic uses of PS are then illustrated with reference to a number that have featured in recent patents, including: The induction of endogenous PS by aminolevulinic acid; phenothiazinium based PS, which are the most studied of PACT agents, psoralens and organorhodium complexes.

  7. Patterns of Antimicrobial Resistance Observed in Escherichia coli Isolates Obtained from Domestic- and Wild-Animal Fecal Samples, Human Septage, and Surface Water

    PubMed Central

    Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn

    2005-01-01

    A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342

  8. Microwave Assisted Synthesis of 1-[5-(Substituted Aryl)-1H-Pyrazol-3-yl]-3,5-Diphenyl-1H-1,2,4-Triazole as Antinociceptive and Antimicrobial Agents

    PubMed Central

    Khanage, Shantaram Gajanan; Mohite, Popat Baban; Pandhare, Ramdas Bhanudas; Raju, S. Appala

    2014-01-01

    Purpose: An efficient technique has been developed for microwave assisted synthesis of 1-[5-(substituted aryl)-1H-pyrazol-3-yl]-3,5-diphenyl-1H-1,2,4-triazole as antinociceptive and antimicrobial agents. Methods: The desired compounds (S1-S10) were synthesized by the microwave irradiation via cyclization of formerly synthesized chalcones of 3,5-diphenyl-1H-1,2,4-triazole and hydrazine hydrate in mild acidic condition. All newly synthesized compounds were subjected to study their antinociceptive and antimicrobial activity. The analgesic potential of compounds was tested by acetic acid induced writhing response and hot plate method. The MIC values for antimicrobial activity were premeditated by liquid broth method. Results: The compounds S1, S2, S4, S6 and S10 were found to be excellent peripherally acting analgesic agents when tested on mice by acetic acid induced writhing method and compounds S3, S6 and S1 at dose level of 100 mg/kg were exhibited superior centrally acting antinociceptive activity when tested by Eddy’s hot plate method. In antimicrobial activity compound S10 found to be broad spectrum antibacterial agent at MIC value of 15.62 µg/ml and compound S6 was exhibited antifungal potential at 15.62 µg/mL on both fungal strains. Conclusion: Some novel pyrazoles clubbed with 1,2,4-triazole derivatives were synthesized and evaluated as possible antimicrobial, centrally and peripherally acting analgesics. PMID:24511473

  9. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    PubMed Central

    Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian

    2014-01-01

    Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70–80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired. PMID:25023605

  10. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed Central

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-01-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents. Images PMID:2543277

  11. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-03-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents.

  12. In Situ Synthesis of Silver Nanoparticles in a Hydrogel of Carboxymethyl Cellulose with Phthalated-Cashew Gum as a Promising Antibacterial and Healing Agent.

    PubMed

    Lustosa, Ana Karina Marques Fortes; de Jesus Oliveira, Antônia Carla; Quelemes, Patrick Veras; Plácido, Alexandra; da Silva, Francilene Vieira; Oliveira, Irisdalva Sousa; de Almeida, Miguel Peixoto; Amorim, Adriany das Graças Nascimento; Delerue-Matos, Cristina; de Oliveira, Rita de Cássia Meneses; da Silva, Durcilene Alves; Eaton, Peter; de Almeida Leite, José Roberto de Souza

    2017-11-12

    Silver nanoparticles have been shown to possess considerable antibacterial activity, but in vivo applications have been limited due to the inherent, but low, toxicity of silver. On the other hand, silver nanoparticles could provide cutaneous protection against infection, due to their ability to liberate silver ions via a slow release mechanism, and their broad-spectrum antimicrobial action. Thus, in this work, we describe the development of a carboxymethyl cellulose-based hydrogel containing silver nanoparticles. The nanoparticles were prepared in the hydrogel in situ, utilizing two variants of cashew gum as a capping agent, and sodium borohydride as the reducing agent. This gum is non-toxic and comes from a renewable natural source. The particles and gel were thoroughly characterized through using rheological measurements, UV-vis spectroscopy, nanoparticles tracking analysis, and transmission electron microscopy analysis (TEM). Antibacterial tests were carried out, confirming antimicrobial action of the silver nanoparticle-loaded gels. Furthermore, rat wound-healing models were used and demonstrated that the gels exhibited improved wound healing when compared to the base hydrogel as a control. Thus, these gels are proposed as excellent candidates for use as wound-healing treatments.

  13. In Situ Synthesis of Silver Nanoparticles in a Hydrogel of Carboxymethyl Cellulose with Phthalated-Cashew Gum as a Promising Antibacterial and Healing Agent

    PubMed Central

    Lustosa, Ana Karina Marques Fortes; de Jesus Oliveira, Antônia Carla; Quelemes, Patrick Veras; Plácido, Alexandra; da Silva, Francilene Vieira; Oliveira, Irisdalva Sousa; de Almeida, Miguel Peixoto; Amorim, Adriany das Graças Nascimento; Delerue-Matos, Cristina; de Oliveira, Rita de Cássia Meneses; da Silva, Durcilene Alves

    2017-01-01

    Silver nanoparticles have been shown to possess considerable antibacterial activity, but in vivo applications have been limited due to the inherent, but low, toxicity of silver. On the other hand, silver nanoparticles could provide cutaneous protection against infection, due to their ability to liberate silver ions via a slow release mechanism, and their broad-spectrum antimicrobial action. Thus, in this work, we describe the development of a carboxymethyl cellulose-based hydrogel containing silver nanoparticles. The nanoparticles were prepared in the hydrogel in situ, utilizing two variants of cashew gum as a capping agent, and sodium borohydride as the reducing agent. This gum is non-toxic and comes from a renewable natural source. The particles and gel were thoroughly characterized through using rheological measurements, UV-vis spectroscopy, nanoparticles tracking analysis, and transmission electron microscopy analysis (TEM). Antibacterial tests were carried out, confirming antimicrobial action of the silver nanoparticle-loaded gels. Furthermore, rat wound-healing models were used and demonstrated that the gels exhibited improved wound healing when compared to the base hydrogel as a control. Thus, these gels are proposed as excellent candidates for use as wound-healing treatments. PMID:29137157

  14. Animal Venom Peptides: Potential for New Antimicrobial Agents.

    PubMed

    Primon-Barros, Muriel; José Macedo, Alexandre

    2017-01-01

    Microbial infections affect people worldwide, causing diseases with significant impact on public health, indicating the need for research and development of new antimicrobial agents. Animal venoms represent a vast and largely unexploited source of biologically active molecules with attractive candidates for the development of novel therapeutics. Venoms consist of complex mixtures of molecules, including antimicrobial peptides (AMPs). Since the discovery of AMPs, they have been studied as promising new antimicrobial drugs. Amongst the remarkable sources of AMPs with known antimicrobial activities are ants, bees, centipedes, cone snails, scorpions, snakes, spiders, and wasps. The antimicrobial tests against bacteria, protozoans, fungi and viruses using 170 different peptides isolated directly from crude venoms or cDNA libraries of venom glands are listed and discussed in this review, as well as hemolytic ativity. The potential of venoms as source of new compounds, including AMPs, is extensively discussed. Currently, there are six FDA-approved drugs and many others are undergoing preclinical and clinical trials. The search for antimicrobial "weapons" makes the AMPs from venoms promising candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. [Antimicrobial susceptibility testing in clinically relevant non-fermenting gram-negative bacilli: recommendations from the Antimicrobial Agents Subcommittee of the Sociedad Argentina de Bacteriología, Micología y Parasitología Clínicas, Asociación Argentina de Microbiología].

    PubMed

    Radice, Marcela; Marín, Marcelo; Giovanakis, Marta; Vay, Carlos; Almuzara, Marisa; Limansky, Adriana; Casellas, José M; Famiglietti, Angela; Quinteros, Mirta; Bantar, Carlos; Galas, Marcelo; Kovensky Pupko, Jaime; Nicola, Federico; Pasterán, Fernando; Soloaga, Rolando; Gutkind, Gabriel

    2011-01-01

    This document contains the recommendations for antimicrobial susceptibility testing of the clinically relevant non-fermenting gram-negative bacilli (NFGNB), adopted after conforming those from international committees to the experience of the Antimicrobial Agents Subcommittee members and invited experts. This document includes an update on NFGNB classification and description, as well as some specific descriptions regarding natural or frequent antimicrobial resistance and a brief account of associated resistance mechanisms. These recommendations not only suggest the antimicrobial drugs to be evaluated in each case, but also provide an optimization of the disk diffusion layout and a selection of results to be reported. Finally, this document also includes a summary of the different methodological approaches that may be used for detection and confirmation of emerging b-lactamases, such as class A and B carbapenemases.

  16. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease.

    PubMed

    Godlewska, Urszula; Brzoza, Piotr; Sroka, Aneta; Majewski, Pawel; Jentsch, Holger; Eckert, Martin; Eick, Sigrun; Potempa, Jan; Zabel, Brian A; Cichy, Joanna

    2017-01-01

    Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity.

  17. Combination Antimicrobial Nanocomposite Materials for Neutralization of Biological Threat Agents (PREPRINT)

    DTIC Science & Technology

    2008-09-01

    AFRL-RX-TY-TP-2008-4601 PREPRINT COMBINATION ANTIMICROBIAL NANOCOMPOSITE MATERIALS FOR NEUTRALIZATION OF BIOLOGICAL THREAT AGENTS...AIRBASE TECHNOLOGIES DIVISION MATERIALS AND MANUFACTURING DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND 139 BARNES DRIVE, SUITE 2...a composite material that combines the protein and inorganic components. The process can be mimicked in vitro to some degree, providing methods for

  18. Challenges in managing infections among pediatric cancer patients: Suboptimal national essential medicines lists for low and middle income countries.

    PubMed

    Kirby, Jeannette; Ojha, Rohit P; Johnson, Kyle M; Bittner, Elizabeth C; Caniza, Miguela A

    2015-02-01

    Infection management for pediatric cancer patients may be compromised in low and middle income countries (LMICs) if key antimicrobials are not included in national essential medicines lists. We screened national essential medicines lists for 81 LMICs, and assessed the frequency and corresponding 95% confidence limits (CL) of countries that included the 15 International Society of Paediatric Oncology-recommended antimicrobial agents. Only 19% (95% CL: 11%, 28%) of countries included all recommended antimicrobials in their national essential medicines lists. The selection of antimicrobial agents for national essential medicines lists in LMICs warrants attention from a pediatric cancer perspective. Pediatr Blood Cancer 2015;62:204-207. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  19. Antimicrobial topical agents used in the vagina.

    PubMed

    Frey Tirri, Brigitte

    2011-01-01

    Vaginally applied antimicrobial agents are widely used in the vagina in women with lower genital tract infections. An 'antimicrobial' is a general term that refers to a group of drugs that are effective against bacteria, fungi, viruses and protozoa. Topical treatments can be prescribed for a wide variety of vaginal infections. Many bacterial infections, such as bacterial vaginosis, desquamative inflammatory vaginitis or, as some European authors call it, aerobic vaginitis as well as infection with Staphylococcus aureus or group A streptococci, may be treated in this way. Candida vulvovaginitis is a fungal infection that is very amenable to topical treatment. The most common viral infections which can be treated with topical medications are condylomata acuminata and herpes simplex. The most often encountered protozoal vaginitis, which is caused by Trichomonas vaginalis, may be susceptible to topical medications, although this infection is treated systemically. This chapter covers the wide variety of commonly used topical antimicrobial agents for these diseases and focuses on the individual therapeutic agents and their clinical efficacy. In addition, potential difficulties that can occur in practice, as well as the usage of these medications in the special setting of pregnancy, are described in this chapter. Copyright © 2011 S. Karger AG, Basel.

  20. Application of lemon peel essential oil with edible coating agent to prolong shelf life of tofu and strawberry

    NASA Astrophysics Data System (ADS)

    Rahmawati, Della; Chandra, Mega; Santoso, Stefanus; Puteri, Maria Gunawan

    2017-01-01

    The essential oil of sweet orange, lemon, and key lime peel were analyzed for their antimicrobial activity. The antimicrobial activity of each citrus essential oil with different concentration was assessed using broth macro-dilution against Bacillus sp, Eschericia coli, Rhizopus stolonifer, and Botrytis sp which represented specific spoilage microorganism in tofu and fresh strawberry. Among all the citrus peel essential oils tested, lemon peel essential oil with 0.6% concentration showed significant activity as an antimicrobial agent against Escherichia coli and Bacillus sp. In other hand 1% of lemon peel essential oil is also considered to be the best concentration of inhibiting the Rhizopus Stolonifer and Botrytis sp. Lemon peel essential oil which has the highest antimicrobial activity was combined with two different kind of edible coating agents (cassava starch and sodium alginate) and was applied in both tofu and strawberry to observe whether it had possibility to decrease the degradation rate of tofu and strawberry. The addition of 0.6% and 1% lemon peel essential oil with each of edible coating agents was significantly able to reduce the degradation of tofu and fresh strawberry.

  1. Development of antimicrobial films for microbiological control of packaged salad.

    PubMed

    Muriel-Galet, Virginia; Cerisuelo, Josep P; López-Carballo, Gracia; Lara, Marta; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of the present work was to characterize the antimicrobial efficiency of films consisting of PP/EVOH structures with oregano essential oil and citral. Both substances are known for their antimicrobial activity based on their interaction with the cell membrane. The films developed were used to pack minimally processed salads, combining modified atmosphere technology to extend shelf-life and active packaging technology to reduce possible microbiological risks. The antimicrobial activity of the films against the pathogenic microorganisms Escherichia coli, Salmonella enterica and Listeria monocytogenes and natural microflora was investigated "in vitro" and also on the food itself. The effect of release of the antimicrobial agent on the sensory characteristics of the salad was also studied. The results showed that antimicrobial activity reduced spoilage flora on the salad as well as inhibited the growth of pathogens in contaminated salads. This effect was greater against Gram-negative bacteria. Sensory studies showed that the package that was most effective and most accepted by customers was the one containing 5% oregano essential oil. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus.

    PubMed

    Grafskaia, Ekaterina N; Polina, Nadezhda F; Babenko, Vladislav V; Kharlampieva, Daria D; Bobrovsky, Pavel A; Manuvera, Valentin A; Farafonova, Tatyana E; Anikanov, Nikolay A; Lazarev, Vassili N

    2018-04-01

    As essential conservative component of the innate immune systems of living organisms, antimicrobial peptides (AMPs) could complement pharmaceuticals that increasingly fail to combat various pathogens exhibiting increased resistance to microbial antibiotics. Among the properties of AMPs that suggest their potential as therapeutic agents, diverse peptides in the venoms of various predators demonstrate antimicrobial activity and kill a wide range of microorganisms. To identify potent AMPs, the study reported here involved a transcriptomic profiling of the tentacle secretion of the sea anemone Cnidopus japonicus. An in silico search algorithm designed to discover toxin-like proteins containing AMPs was developed based on the evaluation of the properties and structural peculiarities of amino acid sequences. The algorithm revealed new proteins of the anemone containing antimicrobial candidate sequences, and 10 AMPs verified using high-throughput proteomics were synthesized. The antimicrobial activity of the candidate molecules was experimentally estimated against Gram-positive and -negative bacteria. Ultimately, three peptides exhibited antimicrobial activity against bacterial strains, which suggests that the method can be applied to reveal new AMPs in the venoms of other predators as well.

  3. Destruction of Opportunistic Pathogens via Polymer Nanoparticle-Mediated Release of Plant-Based Antimicrobial Payloads

    PubMed Central

    Amato, Dahlia N.; Amato, Douglas V.; Mavrodi, Olga V.; Braasch, Dwaine A.; Walley, Susan E.; Douglas, Jessica R.

    2017-01-01

    The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as “solvents” for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia – an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. PMID:26946055

  4. Comparative evaluation of antimicrobial efficacy of various root canal filling materials along with aloevera used in primary teeth: a microbiological study.

    PubMed

    Kriplani, R; Thosar, N; Baliga, M S; Kulkarni, P; Shah, N; Yeluri, R

    2013-01-01

    this study was conducted to evaluate the antimicrobial effectiveness of 6 root canal filling materials and a negative control agent against 18 strains of bacteria isolated from infected root canals of primary molar teeth using agar diffusion assay. Aloevera with sterile water Zinc oxide and Eugenol, Zinc oxide-Eugenol with aloevera, Calcium hydroxide and sterile water, Calcium hydroxide with sterile water and aloevera, Calcium hydroxide and Iodoform (Metapex) and Vaseline (Control). MIC and MBC of aloevera was calculated. All materials except Vaseline showed varied antimicrobial activity against the test bacterias. The zones of inhibition were ranked into 4 inhibition categories based on the proportional distribution of the data. All the 18 bacterial isolates were classified under 2 groups based on Gram positive and Gram negative aerobes. Statistical analysis was carried out to compare the antimicrobial effectiveness between materials tested with each of the bacterial groupings. Aloevera + Sterile Water was found to have superior antimicrobial activity against most of the microorganisms followed by ZOE + Aloevera, calcium hydroxide + Aloevera, ZOE, calcium hydroxide, Metapex in the descending order and Vaseline showed no inhibition.

  5. Rapid Countermeasure Discovery against Francisella tularensis Based on a Metabolic Network Reconstruction

    PubMed Central

    Chaudhury, Sidhartha; Abdulhameed, Mohamed Diwan M.; Singh, Narender; Tawa, Gregory J.; D’haeseleer, Patrik M.; Zemla, Adam T.; Navid, Ali; Zhou, Carol E.; Franklin, Matthew C.; Cheung, Jonah; Rudolph, Michael J.; Love, James; Graf, John F.; Rozak, David A.; Dankmeyer, Jennifer L.; Amemiya, Kei; Daefler, Simon; Wallqvist, Anders

    2013-01-01

    In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of active versus tested compounds over an elapsed time period of 32 weeks, from pathogen strain identification to selection and validation of novel antimicrobial compounds. PMID:23704901

  6. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria.

    PubMed

    Guo, Mingming; Jin, Tony Z; Yadav, Madhav P; Yang, Ruijin

    2015-09-02

    Edible antimicrobial composite films from micro-emulsions containing all natural compounds were developed and their antimicrobial properties and microstructures were investigated. Chitosan, allyl isothiocyanate (AIT), barley straw arabinoxylan (BSAX), and organic acids (acetic, lactic and levulinic acids) were used as film-forming agent, antimicrobial agent, emulsifier, and solvent, respectively. Micro-emulsions were obtained using high pressure homogenization (HPH) processing at 138MPa for 3cycles. The composite films made from the micro-emulsions significantly (p<0.05) inactivated Listeria innocua in tryptic soy broth (TSB) and on the surface of ready-to-eat (RTE) meat samples, achieving microbial reductions of over 4logCFU/ml in TSB after 2days at 22°C and on meat samples after 35days at 10°C. AIT was a major contributor to the antimicrobial property of the films and HPH processing further enhanced its antimicrobial efficacy, while the increase of chitosan from 1.5% to 3%, or addition of acetic acid to the formulations didn't result in additional antimicrobial effects. This study demonstrated an effective approach to developing new edible antimicrobial films and coatings used for food applications. Published by Elsevier B.V.

  7. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    PubMed

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown.

  8. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward

    PubMed Central

    Aarestrup, Frank M.

    2015-01-01

    The purpose of this review was to provide an updated overview on the use of antimicrobial agents in livestock, the associated problems for humans and current knowledge on the effects of reducing resistance in the livestock reservoir on both human health and animal production. There is still limiting data on both use of antimicrobial agents, occurrence and spread of resistance as well as impact on human health. However, in recent years, emerging issues related to methicillin-resistant Staphylococcus aureus, Clostridium difficile, Escherichia coli and horizontally transferred genes indicates that the livestock reservoir has a more significant impact on human health than was estimated 10 years ago, where the focus was mainly on resistance in Campylobacter and Salmonella. Studies have indicated that there might only be a marginal if any benefit from the regular use of antibiotics and have shown that it is possible to substantially reduce the use of antimicrobial agents in livestock production without compromising animal welfare or health or production. In some cases, this should be done in combination with other measures such as biosecurity and use of vaccines. To enable better studies on both the global burden and the effect of interventions, there is a need for global harmonized integrated and continuous surveillance of antimicrobial usage and antimicrobial resistance, preferably associated with data on production and animal diseases to determine the positive and negative impact of reducing antimicrobial use in livestock. PMID:25918442

  9. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine.

    PubMed

    Wu, Jia; Xu, Guoqiang; Jin, Yangyang; Sun, Cong; Zhou, Li; Lin, Guodong; Xu, Rong; Wei, Ling; Fei, Hui; Wang, Dan; Chen, Jianqing; Lv, Zhengbing; Liu, Kuancheng

    2018-05-22

    The abuse of antibiotics and following rapidly increasing of antibiotic-resistant pathogens is the serious threat to our society. Natural products from microorganism are regarded as the important substitution antimicrobial agents of antibiotics. We isolated a new strain, Bacillus sp. GFP-2, from the Chiloscyllium plagiosum (Whitespotted bamboo shark) intestine, which showed great inhibitory effects on the growth of both Gram-positive and Gram-negative bacteria. Additionally, the growth of salmon was effectively promoted when fed with inactivated strain GFP-2 as the inhibition agent of pathogenic bacteria. The genes encoding antimicrobial peptides like LCI, YFGAP and hGAPDH and gene clusters for secondary metabolites and bacteriocins, such as difficidin, bacillibactin, bacilysin, surfactin, butirosin, macrolactin, bacillaene, fengycin, lanthipeptides and LCI, were predicted in the genome of Bacillus sp. GFP-2, which might be expressed and contribute to the antimicrobial activities of this strain. The gene encoding β-1,3-1,4-glucanase was successfully cloned from the genome and this protein was detected in the culture supernatant of Bacillus sp. GFP-2 by the antibody produced in rabbit immunized with the recombinant β-1,3-1,4-glucanase, indicating that this strain could express β-1,3-1,4-glucanase, which might partially contribute to its antimicrobial activities. This study can enhance a better understanding of the mechanism of antimicrobial activities in genus Bacillus and provide a useful material for the biotechnology study in antimicrobial agent development.

  10. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms

    PubMed Central

    Appiah, Theresa; Boakye, Yaw Duah

    2017-01-01

    The rapid rise of antimicrobial resistance is a worldwide problem. This has necessitated the need to search for new antimicrobial agents. Mushrooms are rich sources of potential antimicrobial agents. This study investigated the antimicrobial properties of methanol extracts of Trametes gibbosa, Trametes elegans, Schizophyllum commune, and Volvariella volvacea. Agar well diffusion, broth microdilution, and time-kill kinetic assays were used to determine the antimicrobial activity of the extracts against selected test organisms. Preliminary mycochemical screening revealed the presence of tannins, flavonoids, triterpenoids, anthraquinones, and alkaloids in the extracts. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea showed mean zone of growth inhibition of 10.00 ± 0.0 to 21.50 ± 0.84, 10.00 ± 0.0 to 22.00 ± 1.10, 9.00 ± 0.63 to 21.83 ± 1.17, and 12.00 ± 0.0 to 21.17 ± 1.00 mm, respectively. The minimum inhibitory concentration of methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea ranged from 4.0 to 20, 6.0 to 30.0, 8.0 to 10.0, and 6.0 to 20.0 mg/mL, respectively. Time-kill kinetics studies showed that the extracts possess bacteriostatic action. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea exhibited antimicrobial activity and may contain bioactive compounds which may serve as potential antibacterial and antifungal agents. PMID:29234399

  11. Current Trends of Using Antimicrobial Drugs in the ICU at a Tertiary Level Teaching Hospital in Mymensingh.

    PubMed

    Saha, S K; Shaha, K C; Haque, M F; Khatun, S; Akhter, S M; Akhter, H

    2016-10-01

    The aim of the present study was to investigate the current trends of using antimicrobial drugs in the ICU at a tertiary level teaching hospital in Mymensingh. The study of prescribing patterns seeks to monitor, evaluate and suggest modifications in clinicians prescribing habits so as to make medical care rational. It was an observational type of descriptive study, conducted in the Mymensingh medical college hospital, Mymensingh, during the study period of June 2016 to September 2016.The study was approved by the institutional ethical committee. Most patients in the ICU belonged to the older age group >60 years. Male patients were more than the female patients in ICU. Average duration of stay in ICU was 4.35 days. Admissions in ICU were common due to respiratory system related diseases and the present study showed that 31.68% of the reported cases belong to the respiratory system. Average number of drugs per prescription was 6.46. Average number of anti-microbial drugs per prescription was 1.38. Cephalosporin group and individually ceftriaxone was the most frequently prescribed antimicrobial group and agent respectively in the ICU. Most commonly used antimicrobial combination was Cephalosporin and Metronidazole (43.33%) followed by Carbapenem (Meropenem) and Metronidazole (13.33%). Most antimicrobial agents were prescribed without bacteriological culture and sensivity testing evidence. There is a need for motivating the physicians to prescribe antimicrobial agents with supportive bacteriological evidences.

  12. In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from a southern African plague focus.

    PubMed Central

    Frean, J A; Arntzen, L; Capper, T; Bryskier, A; Klugman, K P

    1996-01-01

    A limited repertoire of antimicrobial agents is currently in use for the treatment of plague. We investigated the in vitro activities of some newer antimicrobial agents against Yersinia pestis. Among the injectable agents tested, cefotaxime was the most active, and among the oral agents, both levofloxacin and ofloxacin were highly active, with MICs at which 90% of isolates are inhibited of < 0.03 microgram/ml. the susceptibilities to the ketolide RU004 and the penem faropenem warrant attention. The enhanced activities of quinolones against Y. pestis suggest that these agents should be further investigated for the treatment of human plague in the future. PMID:8913481

  13. Metal based pharmacologically active complexes of Cu(II), Ni(II) and Zn(II): synthesis, spectral, XRD, antimicrobial screening, DNA interaction and cleavage investigation.

    PubMed

    Raman, Natarajan; Mahalakshmi, Rajkumar; Arun, T; Packianathan, S; Rajkumar, R

    2014-09-05

    The present contribution reports a thorough characterization of newly obtained metallointercalators incorporating Schiff bases, formed by the condensation of N-acetoacetyl-o-toluidine with 1-amino-4-nitrobenzene (L(1))/1-amino-4-chlorobenzene (L(2)) as main ligand and 1,10-phenanthroline as co-ligand respectively. The characterization of newly formed metallointercalators has been done by (1)H NMR, UV-Vis, IR, EPR spectroscopy and molar conductivity studies. X-ray powder diffraction illustrates that they are crystalline nature. Binding interaction of these complexes with calf thymus (CT-DNA) has been investigated by emission, absorption, viscosity, cyclic voltammetry and differential pulse voltammetry. DNA binding experiments results reveal that the synthesized complexes interact with DNA through intercalative mode. The in vitro antibacterial and antifungal assay indicate that these complexes are good antimicrobial agents against various pathogens. The DNA cleavage exhibits that they act as efficient cleaving agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Antimicrobial susceptibility of Gram-negative bacteria causing intra-abdominal infections in China: SMART China 2011.

    PubMed

    Zhang, Hui; Yang, Qiwen; Xiao, Meng; Chen, Minjun; Badal, Robert E; Xu, Yingchun

    2014-01-01

    The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide. In 2011, 1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected. All isolates were tested using a panel of 12 antimicrobial agents, and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines. Among the Gram-negative pathogens causing IAIs, Escherichia coli (47.3%) was the most commonly isolated, followed by Klebsiella pneumoniae (17.2%), Pseudomonas aeruginosa (10.1%), and Acinetobacter baumannii (8.3%). Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates. Among the antimicrobial agents tested, ertapenem and imipenem were the most active agents against Enterobacteriaceae, with susceptibility rates of 95.1% and 94.4%, followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%). Susceptibility rates of ceftriaxone, cefotaxime, ceftazidime, and cefepime against Enterobacteriaceae were 38.3%, 38.3%, 61.1%, and 50.8%, respectively. The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%). The extended-spectrum β-lactamase (ESBL) rates among E. coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis were 68.8%, 38.1%, 41.2%, and 57.7%, respectively. Enterobacteriaceae were the major pathogens causing IAIs, and the most active agents against the study isolates (including those producing ESBLs) were ertapenem, imipenem, and amikacin. Including the carbapenems, most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.

  15. Interaction of Mastoparan with Model Membranes

    NASA Astrophysics Data System (ADS)

    Haloot, Justin

    2010-10-01

    The use of antimicrobial agents began during the 20th century to reduce the effects of infectious diseases. Since the 1990s, antimicrobial resistance has become an ever-increasing global problem. Our laboratory recently found that small antimicrobial peptides (AMPs) have potent antimicrobial activity against a wide range of Gram-negative and Gram-positive organisms including antibiotic resistant organisms. These AMPs are potential therapeutic agents against the growing problem of antimicrobial resistance. AMPs are small peptides produced by plants, insects and animals. Several hypotheses concede that these peptides cause some type of structural perturbations and increased membrane permeability in bacteria however, how AMPs kill bacteria remains unclear. The goal of this study was to design an assay that would allow us to evaluate and monitor the pore forming ability of an AMP, Mastoparan, on model membrane structures called liposomes. Development of this model will facilitate the study of how mastoparan and related AMPs interact with the bacterial membrane.

  16. Isolation of NDM-1-producing multidrug-resistant Pseudomonas putida from a paediatric case of acute gastroenteritis, India.

    PubMed

    Bhattacharya, D; Dey, S; Kadam, S; Kalal, S; Jali, S; Koley, H; Sinha, R; Nag, D; Kholkute, S D; Roy, S

    2015-05-01

    Pseudomonas putida is an uncommon opportunistic pathogen, usually susceptible to antimicrobial agents. Data concerning resistance to antimicrobial agents in clinical P. putida isolates are limited. To the best of our knowledge we report for the first time the isolation of NDM-1-producing multidrug-resistant P. putida from a case of acute gastroenteritis. The isolate showed resistance to a wide range of antimicrobials, including fluoroquinolones, third-generation cephalosporins and carbapenems. The isolate also exhibited multiple mutations in the quinolone resistance determining region and showed the presence of qepA, bla TEM , bla OXA1 and bla OXA7 genes. The present study highlights the importance of looking for the relatively rare aetiological agents in clinical samples that do not yield common pathogens.

  17. Isolation of NDM-1-producing multidrug-resistant Pseudomonas putida from a paediatric case of acute gastroenteritis, India

    PubMed Central

    Bhattacharya, D.; Dey, S.; Kadam, S.; Kalal, S.; Jali, S.; Koley, H.; Sinha, R.; Nag, D.; Kholkute, S.D.; Roy, S.

    2015-01-01

    Pseudomonas putida is an uncommon opportunistic pathogen, usually susceptible to antimicrobial agents. Data concerning resistance to antimicrobial agents in clinical P. putida isolates are limited. To the best of our knowledge we report for the first time the isolation of NDM-1-producing multidrug-resistant P. putida from a case of acute gastroenteritis. The isolate showed resistance to a wide range of antimicrobials, including fluoroquinolones, third-generation cephalosporins and carbapenems. The isolate also exhibited multiple mutations in the quinolone resistance determining region and showed the presence of qepA, blaTEM, blaOXA1 and blaOXA7 genes. The present study highlights the importance of looking for the relatively rare aetiological agents in clinical samples that do not yield common pathogens. PMID:25893095

  18. [Revised Japanese guidelines for the clinical management of bacterial meningitis].

    PubMed

    Ishikawa, Harumi; Kamei, Satoshi

    2014-01-01

    Improvement of outcomes represents the most important problem in the treatment of bacterial meningitis. To achieve such improvement, revision of the guidelines for the clinical management of bacterial meningitis in Japan has been carried out, and these revised Japanese guidelines will soon be published. The choice of specific antimicrobial agents for initial treatment in bacterial meningitis is influenced by a number of factors, including patient age, systemic symptoms, and local patterns of bacterial resistance. In the revised Japanese guidelines, antimicrobial agents based on current knowledge of the epidemiology in Japan are recommended. Bacterial meningitis is a medical emergency, and patients with this disease require immediate medical assessment and appropriate treatment. Rapid diagnosis and treatment of bacterial meningitis reduces mortality and neurological sequelae. We describe the revised Japanese guidelines for the clinical management of bacterial meningitis 2014, with a focus on adults.

  19. Top 1% of Inpatients Administered Antimicrobial Agents Comprising 50% of Expenditures: A Descriptive Study and Opportunities for Stewardship Intervention.

    PubMed

    Dela-Pena, Jennifer; Kerstenetzky, Luiza; Schulz, Lucas; Kendall, Ron; Lepak, Alexander; Fox, Barry

    2017-03-01

    OBJECTIVE To characterize the top 1% of inpatients who contributed to the 6-month antimicrobial budget in a tertiary, academic medical center and identify cost-effective intervention opportunities targeting high-cost antimicrobial utilization. DESIGN Retrospective cohort study. PATIENTS Top 1% of the antimicrobial budget from July 1 through December 31, 2014. METHODS Patients were identified through a pharmacy billing database. Baseline characteristics were collected through a retrospective medical chart review. Patients were presented to the antimicrobial stewardship team to determine appropriate utilization of high-cost antimicrobials and potential intervention opportunities. Appropriate use was defined as antimicrobial therapy that was effective, safe, and most cost-effective compared with alternative agents. RESULTS A total of 10,460 patients received antimicrobials in 6 months; 106 patients accounted for $889,543 (47.2%) of the antimicrobial budget with an antimicrobial cost per day of $219±$192 and antimicrobial cost per admission of $4,733±$7,614. Most patients were immunocompromised (75%) and were followed by the infectious disease consult service (80%). The most commonly prescribed antimicrobials for treatment were daptomycin, micafungin, liposomal amphotericin B, and meropenem. Posaconazole and valganciclovir accounted for most of the prophylactic therapy. Cost-effective opportunities (n=71) were present in 57 (54%) of 106 patients, which included dose optimization, de-escalation, dosage form conversion, and improvement in transitions of care. CONCLUSION Antimicrobial stewardship oversight is important in implementing cost-effective strategies, especially in complex and immunocompromised patients who require the use of high-cost antimicrobials. Infect Control Hosp Epidemiol 2017;38:259-265.

  20. Using sound for microbial eradication--light at the end of the tunnel?

    PubMed

    Harris, Frederick; Dennison, Sarah R; Phoenix, David A

    2014-07-01

    Sonodynamic antimicrobial chemotherapy (SACT) is a novel modality, which uses ultrasound to kill bacteria by the activation of molecules termed sonosensitisers (SS) to produce reactive oxygen species that are toxic to microorganism although microbial resistance to this modality has been reported. There are a growing number of SS being reported with the dual ability to be activated by both ultrasound and light, and we hypothesis that a novel antimicrobial strategy, potentially known as sonophotodynamic antimicrobial chemotherapy (SPACT), could be developed based on these agents. SPACT offers advantages over SACT and could constitute a new weapon in the fight against the growing global threat posed by microbial infections. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Antimicrobials in animal production: usage and practices among livestock farmers in Oyo and Kaduna States of Nigeria.

    PubMed

    Ojo, Olufemi Ernest; Fabusoro, Eniola; Majasan, Ademola Adetokunbo; Dipeolu, Morenike Atinuke

    2016-01-01

    Antimicrobials have proven to be important for sustainable livestock production by their use as growth promoters and in the control of animal infections. However, injudicious use of antimicrobials could accelerate the emergence and spread of resistant bacterial strains with attendant socioeconomic and public health issues. This work assessed antimicrobial usage in animal production with emphasis on usage and practices by livestock producers in Oyo and Kaduna States of Nigeria. Data on antimicrobial usage were collected through interviews, questionnaire and focus group discussions. Four hundred and fifty-four farmers in 11 communities within 11 Local Government Areas of Oyo and Kaduna States of Nigeria were sampled in a multi-stage sampling procedure. The study showed that antimicrobial agents were widely distributed, readily accessible and commonly used in animal production. Fluoroquinolones and other critically important antimicrobials for human medicine were widely used in animals as prophylactics. Potentially harmful antimicrobials including furazolidones and chloramphenicol already banned for use in humans and animals were freely marketed and used in livestock production. Most of the respondents believed that veterinarians should be responsible for the administration of antimicrobials to animals, but in practice, they buy and administer antimicrobials without consulting veterinary professionals. It was observed that the ready availability of antimicrobial agents promoted the use of antimicrobials in livestock production and may encourage non-adherence to hygienic principles and management laxity in farm operations. The non-involvement of veterinary professionals and laboratory investigations in disease diagnosis prior to antimicrobial use could lead to improper usage that contribute to the development of antimicrobial resistance in bacterial strains. Responsible antimicrobial stewardship and strict regulations are vital to prolonging the benefits derivable from the use of antimicrobials.

  2. Public health and policy.

    PubMed

    Nunnery, Jennifer; Angulo, Frederick J; Tollefson, Linda

    2006-02-24

    Antimicrobial agent usage data are essential for focusing efforts to reduce misuse and overuse of antimicrobial agents in food producing animals because these practices may select for resistance in bacteria of animals. Transfer of resistant bacteria from animals to humans can lead to human infection caused by resistant pathogens. Resistant infections can lead to treatment failures, resulting in prolonged or more severe illness. Multiple World Health Organization (WHO) reports have concluded that both antimicrobial resistance and antimicrobial usage should be monitored on the national level. The system for collecting antimicrobial usage data should be clear and transparent to facilitate trend analysis and comparison within and among countries. Therapeutic, prophylactic and growth promotion use should be recorded, along with route of administration and animal species and/or production class treated. The usage data should be compared to resistance data, and the comparison should be made available in a timely manner. In the United States, surveillance of antimicrobial resistance in foodborne bacteria is performed by the National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria, however, the United States still lacks a mechanism for collecting antimicrobial usage data. Combined with antimicrobial resistance information from NARMS, antimicrobial usage data will help to direct education efforts and policy decisions, minimizing the risk that people will develop antimicrobial resistant infections as a result of eating food of animal origin. Ultimately mitigation strategies guided by usage data will be more effective in maintaining antimicrobial drugs for appropriate veterinary use and in protecting human health.

  3. Colloid particle formulations for antimicrobial applications.

    PubMed

    Halbus, Ahmed F; Horozov, Tommy S; Paunov, Vesselin N

    2017-11-01

    Colloidal particles are being extensively studied in various antimicrobial applications due to their small size to volume ratio and ability to exhibit a wide spectrum of antibacterial, antifungal, antialgal and antiviral action. The present review focuses on various nanoparticles (NPs) of inorganic, organic and hybrid materials, and discusses some of the methods for their preparation as well as mechanisms of their antimicrobial action. We consider the antimicrobial applications of metal oxide nanoparticles (ZnO, MgO, CuO, Cu 2 O, Al 2 O 3 , TiO 2 , CeO 2 and Y 2 O 3 ), metal nanoparticles (NPs), such as copper, silver and gold, metal hydroxide NPs such as Mg(OH) 2 as well as hybrid NPs made from biodegradable materials, such as chitosan, lignin and dextran, loaded with other antimicrobial agents. Recent developments for targeted delivery of antimicrobials by using colloid antibodies for microbial cell shape and surface recognition are also discussed. We also consider recent advances in the functionalization of nanoparticles and their potential antimicrobial applications as a viable alternative of conventional antibiotics and antiseptic agents which can help to tackle antimicrobial resistance. The review also covers the recently developed environmentally benign NPs (EbNPs) as a "safer-by-design" green chemistry solution of the post use fate of antimicrobial nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. First report on rapid screening of nanomaterial-based antimicrobial agents against β-lactamase resistance using pGLO plasmid transformed Escherichia coli HB 101 K-12

    NASA Astrophysics Data System (ADS)

    Raj, M. Alpha; Muralidhar, Y.; Sravanthi, M.; Prasad, T. N. V. K. V.; Nissipriya, M.; Reddy, P. Sirisha; Neelima, T. Shoba; Reddy, G. Dilip; Adilaxmamma, K.; Kumar, P. Anand; Krishna, T. Giridhara

    2016-08-01

    Combating antibiotic resistance requires discovery of novel antimicrobials effective against resistant bacteria. Herein, we present for the first time, pGLO plasmid transformed Escherichia coli HB 101 K 12 as novel model for screening of nanomaterial-based antimicrobial agents against β-lactamase resistance. E. coli HB 101 was transformed by pGLO plasmid in the presence of calcium chloride (50 mM; pH 6.1) aided by heat shock (0-42-0 °C). The transformed bacteria were grown on Luria-Bertani agar containing ampicillin (amp) and arabinose (ara). The transformed culture was able to grow in the presence of ampicillin and also exhibited fluorescence under UV light. Both untransformed and transformed bacteria were used for screening citrate-mediated nanosilver (CNS), aloin-mediated nanosilver (ANS), 11-α-keto-boswellic acid (AKBA)-mediated nanosilver (BNS); nanozinc oxide, nanomanganese oxide (NMO) and phytochemicals such as aloin and AKBA. Minimum inhibitory concentrations (MIC) were obtained by microplate method using ρ-iodo nitro tetrazolium indicator. All the compounds were effective against transformed bacteria except NMO and AKBA. Transformed bacteria exhibited reverse cross resistance against aloin. ANS showed the highest antibacterial activity with a MIC of 0.32 ppm followed by BNS (10.32 ppm), CNS (20.64 ppm) and NZO (34.83 ppm). Thus, pGLO plasmid can be used to induce resistance against β-lactam antibiotics and the model can be used for rapid screening of new antibacterial agents effective against resistant bacteria.

  5. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    PubMed Central

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  6. The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix.

    PubMed

    Bie, Pingping; Liu, Peng; Yu, Long; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2013-10-15

    An antimicrobial material with a slow release property was developed based on poly(lactic acid)/starch/chitosan blends, in which chitosan acted as an antimicrobial agent while PLA and starch together were used as a slow-releasing device. An increase in the starch content drastically improved the hydrophilicity of the blends, which was favorable for the diffusion of the embedded chitosan. Moreover, the release of chitosan was observed to occur in two stages, with a very fast release stage initially and a slow but durable release stage as the latter. These two stages exhibited the effectiveness and long residual action of antimicrobial property of the blends respectively, demonstrating the suitability to be used for foods with high water activity, such as fresh meat. The tensile and thermal properties further verified the promising use of the blend material in packaging. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment.

    PubMed

    Phaechamud, Thawatchai; Jantadee, Takron; Mahadlek, Jongjan; Charoensuksai, Purin; Pichayakorn, Wiwat

    2017-02-01

    Eudragit RS (ERS), a quaternary polyacrylate positively charged polymer, exhibits a very low permeability and swells in aqueous media independently of pH without dissolving. Owing to its high solubility in N-methyl pyrrolidone (NMP), it was interesting to apply as polymer matrix for solvent-exchanged in situ forming gel. The aim of this research was to prepare in situ forming gels from ERS to deliver the antimicrobial agents (doxycycline hyclate, metronidazole, and benzoyl peroxide) for periodontitis treatment. They were evaluated for viscosity and rheology, gel formation, syringeability, drug release, and antimicrobial activities. The solvent exchange between NMP and an external aqueous simulated gingival crevicular fluid stimulated the dissolved ERS transforming into the opaque rigid gel. Antimicrobial agent loaded ERS systems exhibited Newtonian flow with acceptable syringeability. The higher-loaded ERS promoted the more prolongation of drug release because of the retardation of water diffusion into the precipitated matrix. Antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis depended on type of drugs and test microorganisms. Doxycycline hyclate loaded ERS systems showed these activities greater than the others; however, all of them could inhibit all test microorganisms. Thus, the solvent exchange-induced in situ forming gels comprising ERS-antimicrobial drugs exhibited potential use as localized delivery systems for periodontitis treatment.

  8. Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol.

    PubMed

    Yogiara; Hwang, S J; Park, S; Hwang, J-K; Pan, J-G

    2015-05-01

    Preservative agents determining the shelf life of cosmetic products must have effective antimicrobial activity while meeting safety requirements for topical use. In this study, we determined the antimicrobial activity of 1,2-hexanediol against several Gram-positive and Gram-negative bacteria. Antimicrobial susceptibility tests have shown that 1,2-hexanediol exhibits broad-spectrum activity against Gram-positive and Gram-negative bacteria with MICs of 0·5-2% (v/v). The bactericidal concentration of 1,2-hexanediol was ranging from 1 to 2 × MIC as demonstrated by time-kill curve assay. A membrane depolarization assay showed that 1,2-hexanediol disrupted the cytoplasmic membrane potential. A checkerboard assay indicated that the effective concentration of 1,2-hexanediol was reduced up to 0·25-0·5 × MIC when combined with macelignan and octyl gallate against Gram-positive bacteria. However, this combination was not effective against Gram-negative bacteria. A turbidity reduction assay demonstrated that the combination of a high concentration of 1,2-hexanediol with food-grade antimicrobial compounds could trigger lytic activity towards Bacillus cereus cells. The remaining cell turbidity was 24·6 and 22·2% when 2% of 1,2-hexanediol was combined with 8 mg l(-1) octyl gallate or with 32 mg l(-1) macelignan respectively. This study showed that food-grade antimicrobial compounds may be used in combination with 1,2-hexanediol to increase its efficacy as a preservative agent in cosmetics. The antimicrobial activity of 1,2-hexanediol against Gram-positive and Gram-negative bacteria was potentiated with food-grade antimicrobials including xanthorrhizol, macelignan, panduratin A and octyl gallate, which have already been reported to display anti-inflammatory and other beneficial activities related to cosmetics. Therefore, the combination of 1,2-hexanediol and these food-grade antimicrobial agents would have benefits not only for increasing the antimicrobial activity but also in cosmetics use. © 2015 The Society for Applied Microbiology.

  9. Determination of Antimicrobial Activity of Sorrel (Hibiscus sabdariffa) on Esherichia coli O157:H7 Isolated from Food, Veterinary, and Clinical Samples

    PubMed Central

    Fullerton, Marjorie; Khatiwada, Janak; Johnson, Jacqueline U.; Davis, Shurrita

    2011-01-01

    Abstract The use of medicinal plants as natural antimicrobial agents is gaining popularity. Sorrel (Hibiscus sabdariffa) is widely used for the treatment of diseases. The objective of this study was to investigate the antimicrobial activity of sorrel on Escherichia coli O157:H7 isolates from food, veterinary, and clinical samples. Phenolics of the calyces were extracted from 10 g of ground, freeze-dried samples using 100 mL of 80% aqueous methanol. Concentrations of 10%, 5%, and 2.5% methanol extract of sorrel were investigated for its antimicrobial activity. Inhibition zones were indicated by a lack of microbial growth due to inhibitory concentrations of sorrel diffused into semisolid culture medium beneath the sorrel-impregnated disk. The results of this experiment showed that the most potent sorrel concentration was 10%, then 5%, and finally 2.5%. The overall mean zone of inhibition for the sorrel extract was 12.66 mm for 10%, 10.75 mm for 5%, and 8.9 mm for 2.5%. The highest inhibition zones (11.16 mm) were observed in veterinary samples, and the lowest (10.57 mm) in the food samples. There were significant (P<.05) differences among mean zones of inhibition found in the food, veterinary, and clinical sources. Based on the source of samples and concentration of sorrel extract, the lowest mean inhibition was 7.00±0.04 mm from clinical samples, and the highest was 15.37±0.61 mm from a food source. These findings indicated that sorrel was effective at all levels in inhibiting E. coli O157:H7; thus it possesses antimicrobial activity and hold great promise as an antimicrobial agent. PMID:21548802

  10. Multi drug resistance and Extended Spectrum Beta Lactamases in clinical isolates of Shigella: A study from New Delhi, India.

    PubMed

    Aggarwal, Prabhav; Uppal, Beena; Ghosh, Roumi; Krishna Prakash, S; Chakravarti, Anita; Jha, Arun Kumar; Rajeshwari, Krishnan

    2016-01-01

    Shigella is an important cause of gastroenteritis in local Indian population, as well as of traveler's diarrhea in the international visitors to India. These patients often require appropriate antimicrobial therapy; however, rapid development of antimicrobial resistance poses a major hurdle in achieving this goal. A prospective study was conducted during 2009-12 in New Delhi, India, including 6339 stool samples from gastroenteritis patients. 121 Shigella strains were identified on the basis of colony morphology, biochemical reactions, serotyping and ipaH gene based PCR. Antimicrobial susceptibility testing by disc diffusion, MIC determination by Vitek(®) 2 and phenotypic tests for ESBL/AmpC production were done. Nineteen percent strains (23/121) were found to be resistant to third generation cephalosporins and all were phenotypically confirmed to be ESBL producers; one strain was positive for AmpC. ESBL producing strains were also found to be significantly more resistant (p < 0.05) to several other antimicrobials agents in comparison to ESBL non-producers, [ampicillin (100% vs. 62.2%), ampicillin/sulbactam (100% vs. 30.6%), cotrimoxazole (100% vs. 77.6%), ciprofloxacin (87.0% vs. 49.0%), ofloxacin (87.0% vs. 52.0%) and gentamicin (30.4% vs. 7.1%)]. Multidrug resistance was seen in 76% strains. Inappropriate use of antimicrobial agents puts high selection pressure on the higher-end antibiotics. Multi-drug resistance and high rates of ESBL production by Shigella is a matter of concern for the local population as well as international travelers. Therefore, better national level antimicrobial management programs are the priority needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Escherichia coli O157:H7 isolated from food, veterinary, and clinical samples.

    PubMed

    Fullerton, Marjorie; Khatiwada, Janak; Johnson, Jacqueline U; Davis, Shurrita; Williams, Leonard L

    2011-09-01

    The use of medicinal plants as natural antimicrobial agents is gaining popularity. Sorrel (Hibiscus sabdariffa) is widely used for the treatment of diseases. The objective of this study was to investigate the antimicrobial activity of sorrel on Escherichia coli O157:H7 isolates from food, veterinary, and clinical samples. Phenolics of the calyces were extracted from 10 g of ground, freeze-dried samples using 100 mL of 80% aqueous methanol. Concentrations of 10%, 5%, and 2.5% methanol extract of sorrel were investigated for its antimicrobial activity. Inhibition zones were indicated by a lack of microbial growth due to inhibitory concentrations of sorrel diffused into semisolid culture medium beneath the sorrel-impregnated disk. The results of this experiment showed that the most potent sorrel concentration was 10%, then 5%, and finally 2.5%. The overall mean zone of inhibition for the sorrel extract was 12.66 mm for 10%, 10.75 mm for 5%, and 8.9 mm for 2.5%. The highest inhibition zones (11.16 mm) were observed in veterinary samples, and the lowest (10.57 mm) in the food samples. There were significant (P<.05) differences among mean zones of inhibition found in the food, veterinary, and clinical sources. Based on the source of samples and concentration of sorrel extract, the lowest mean inhibition was 7.00±0.04 mm from clinical samples, and the highest was 15.37±0.61 mm from a food source. These findings indicated that sorrel was effective at all levels in inhibiting E. coli O157:H7; thus it possesses antimicrobial activity and hold great promise as an antimicrobial agent.

  12. Antibiotics: from prehistory to the present day.

    PubMed

    Gould, Kate

    2016-03-01

    Antimicrobials have been in use for many thousands of years in a variety of formats. In this article, I trace how we have moved from ingenious use of agents available in the environment to chemically engineered agents. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent.

    PubMed

    Escárcega-González, Carlos Enrique; Garza-Cervantes, J A; Vázquez-Rodríguez, A; Montelongo-Peralta, Liliana Zulem; Treviño-González, M T; Díaz Barriga Castro, E; Saucedo-Salazar, E M; Chávez Morales, R M; Regalado Soto, D I; Treviño González, F M; Carrazco Rosales, J L; Cruz, Rocío Villalobos; Morones-Ramírez, José Rubén

    2018-01-01

    One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared. We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative ( Escherichia coli , Pseudomonas aeruginosa , and a clinical multidrug-resistant strain of P. aeruginosa ) and Gram-positive ( Bacillus subtilis ) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models. Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains.

  14. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent

    PubMed Central

    Escárcega-González, Carlos Enrique; Garza-Cervantes, JA; Vázquez-Rodríguez, A; Montelongo-Peralta, Liliana Zulem; Treviño-González, MT; Díaz Barriga Castro, E; Saucedo-Salazar, EM; Chávez Morales, RM; Regalado Soto, DI; Treviño González, FM; Carrazco Rosales, JL; Cruz, Rocío Villalobos; Morones-Ramírez, José Rubén

    2018-01-01

    Introduction One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. Purpose In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. Materials and methods The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet–visible, and Fourier transform infrared. Results We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and a clinical multidrug-resistant strain of P. aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models. Conclusion Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains. PMID:29713166

  15. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens

    PubMed Central

    Wales, Andrew D.; Davies, Robert H.

    2015-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations. PMID:27025641

  16. An in vivo comparison of commonly used topical antimicrobials on skin graft healing after full-thickness burn injury.

    PubMed

    Abbas, Ozan L; Borman, Huseyin; Bahar, Taner; Ertaş, Nilgün M; Haberal, Mehmet

    2015-01-01

    Topical antimicrobials are frequently used for local control of infections in burn patients. It has been postulated that these agents retard wound healing. There are limited data about the effects of topical antimicrobial agents on skin graft healing. In this study, we aimed to evaluate the effects of nitrofurazone, 1% silver sulfadiazine, and povidone-iodine on skin graft healing. Forty male rats were used in this study. A meshed skin graft, placed on an excised burn wound, was used as a model to compare topical agents with a control group. Skin graft survival rates, closure of meshed graft interstices (based on physical parameters, namely epithelialization and wound contraction), and histological changes were analyzed. Graft take was more than 85% in all groups. There was no difference between the mean values of the percent graft survival for each group (P > .05). Epithelialization occurred significantly earlier in animals in the nitrofurazone group (P < .05). There was no significant difference between groups in wound contraction rates (P >.05). There was no histological difference between the biopsy specimens of skin grafts. In specimens obtained from the interstices of the meshed graft, no significant differences were found among the groups regarding the wound healing parameters (P > .05). We found that nitrofurazone, silver sulfadiazine, and povidone-iodine had no negative effect on graft healing and take in noncontaminated burn wounds.

  17. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review.

    PubMed

    Farrugia, Cher; Camilleri, Josette

    2015-04-01

    It has been reported that complete caries removal from cavities during restoration of teeth is difficult. Furthermore with the tissue saving approach it is expected that more of the saved affected tissue will possibly harbor more residual bacteria. Antimicrobial restorative filling materials would be ideal to prevent the spread of caries after completion of tooth restoration, thus preventing recurrent decay and eventually restoration failure. This paper reviews the literature on the antimicrobial properties of dental restorative filling materials. Pubmed searches on the antibacterial properties of restorative materials were carried out. Keywords were chosen to assess antibacterial properties of conventional filling materials. Methods of introducing antimicrobial agents in restorative materials were also reviewed together with the methodology used to assess antimicrobial activity. 174 articles from 1983 till 2014 were included. Adhesive materials have decreased antimicrobial activity when compared to amalgams and zinc oxides. Several techniques have been employed in order to increase the antimicrobial activity of restorative materials. Although antimicrobial activity of restorative materials is important, the introduction of antimicrobial agents/techniques should not be at the expense of other material properties. Environmental changes within a material may affect the bacterial response to the antimicrobial. Bacterial adhesion to the restorative materials should be assessed. Long term assessment of antimicrobial activity is important and is clinically relevant. The use of antimicrobial dental materials is important unless such characteristics are gained to the detriment of other material properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. New treatment options for lower respiratory tract infections.

    PubMed

    Kocsis, Bela; Szabo, Dora

    2017-09-01

    Community-acquired pneumonia (CAP) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are among the most frequent lower respiratory tract infections (LRTIs). They represent an increased morbidity and mortality rate in adults. Areas covered: This review describes recent advances regarding solithromycin, zabofloxacin and delafoxacin antibacterial agents that have been recently developed for treatment of CAP and in AECOPD. All of them have been introduced into phase III clinical trials. We will be summarising chemical structures, pharmacokinetics, antibacterial efficacy and toxicity of these agents. The manuscript has been prepared based on available scientific publications. Expert opinion: Novel agents of known antimicrobial classes have been developed that demonstrate treatment options in CAP and in AECOPD. Antimicrobials discussed in this review showed bactericide effect against major respiratory tract pathogens. Each has multiple targets in bacteria, thus enabling them for more potency, even against strains exhibiting resistance to commonly used antibiotics. Solithromycin, delafloxacin and zabofloxcian demonstrate broad-spectrum antibacterial activity together with other beneficial features like intracellular accumulation, anti-inflammatory effect and inhibition of biofilm production. These agents showed moderately severe or mild adverse events and demonstrated favourable tissue penetration. These features can make solithromycin, zabofloxacin and delafloxacin treatment options in LRTIs.

  19. Estimated Incidence of Antimicrobial Drug–Resistant Nontyphoidal Salmonella Infections, United States, 2004–2012

    PubMed Central

    Gu, Weidong; Mahon, Barbara E.; Judd, Michael; Folster, Jason; Griffin, Patricia M.; Hoekstra, Robert M.

    2017-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004–2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted. PMID:27983506

  20. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents.

    PubMed

    Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu

    2016-01-01

    Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties.

  1. Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria.

    PubMed

    Gull, Iram; Sohail, Maria; Aslam, Muhammad Shahbaz; Amin Athar, Muhammad

    2013-12-01

    The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics.

  2. Phytochemical, toxicological and antimicrobial evaluation of lawsonia inermis extracts against clinical isolates of pathogenic bacteria

    PubMed Central

    2013-01-01

    Background The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. Methods In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Results Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. Conclusion In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics. PMID:24289297

  3. The substantivity of a number of oral hygiene products determined by the duration of effects on salivary bacteria.

    PubMed

    Elworthy, A; Greenman, J; Doherty, F M; Newcombe, R G; Addy, M

    1996-06-01

    The persistence of action, or substantivity, of antimicrobial agents in the mouth appears to be a major variable influencing plaque inhibition. Such substantivity can be assessed by measuring the duration and magnitude of suppression of salivary bacterial numbers produced by antimicrobial agents. Although this has been determined for some agents, there is little information on the substantivity of the numerous products which contain these and other antimicrobial agents. This study was commissioned on the basis that efficacy cannot be assumed merely because a product contains a known active agent. Nine formulations or products were chosen: 2 rinses containing chlorhexidine or C31G, 4 rinses containing cetylpyridinium chloride (CPC) (with and without fluoride and/or alcohol), a minus-CPC control rinse, and 2 toothpastes with and without stannous fluoride. Additionally, water was used as a placebo control. Twenty health dentate volunteers took part in this blind, 10 cell randomized, single rinse, cross-over study, which was balanced for carryover. Mouthrinses were 15 ml volumes and toothpastes 3 gm in 10 ml water slurries rinsed for 60 seconds. On the day of each study volunteers suspended oral hygiene habits and at approximately 9:00 a.m. rinsed with the allocated formulation. Unstimulated saliva samples were obtained immediately before and 30, 60, 180, 300, and 420 minutes after rinsing. The samples were immediately processed for total anaerobic bacterial counts. All rinses except water and the minus CPC control rinse produced significant falls in counts to 30 minutes. Of more relevance in this inter-treatment comparison-designed study, the C31G rinse showed significant substantivity compared to water only for 60 minutes. C31G was highly significantly less substantive than chlorhexidine from 30 minutes to 420 minutes. The CPC rinses were similar and significantly more substantive than their control rinse to between 180 and 300 minutes. The stannous fluoride and control pastes were similarly substantive to 300 minutes, with the stannous fluoride paste remaining substantive compared to water to 430 minutes. Based on antimicrobial action these formulations varied considerably in substantivity and this is likely to reflect their comparative plaque inhibitory properties.

  4. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine.

    PubMed

    Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco

    2016-06-11

    Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases).

  5. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System

    PubMed Central

    May, Holly C.; Yu, Jieh-Juen; Guentzel, M. N.; Chambers, James P.; Cap, Andrew P.; Arulanandam, Bernard P.

    2018-01-01

    As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity. PMID:29556223

  6. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  7. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana.

    PubMed

    Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro

    2017-02-12

    The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.

  8. Development of non-natural flavanones as antimicrobial agents.

    PubMed

    Fowler, Zachary L; Shah, Karan; Panepinto, John C; Jacobs, Amy; Koffas, Mattheos A G

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.

  9. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations.

    PubMed

    Varma, Jay K; Molbak, Kåre; Barrett, Timothy J; Beebe, James L; Jones, Timothy F; Rabatsky-Ehr, Therese; Smith, Kirk E; Vugia, Duc J; Chang, Hwa-Gan H; Angulo, Frederick J

    2005-02-15

    Nontyphoidal Salmonella is a leading cause of foodborne illness. Few studies have explored the health consequences of antimicrobial-resistant Salmonella. The National Antimicrobial Resistance Monitoring System (NARMS) performs susceptibility testing on nontyphoidal Salmonella isolates. The Foodborne Diseases Active Surveillance Network (FoodNet) ascertains outcomes for patients with culture-confirmed Salmonella infection, in 9 states, each of which participates in NARMS. We analyzed the frequency of bloodstream infection and hospitalization among patients with resistant infections. Isolates defined as resistant to a clinically important agent were resistant to 1 or more of the following agents: ampicillin, ceftriaxone, ciprofloxacin, gentamicin, and/or trimethoprim-sulfamethoxazole. During 1996-2001, NARMS received 7370 serotyped, nontyphoidal Salmonella isolates from blood or stool. Bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted odds ratio [OR], 1.6; 95% confidence interval [CI], 1.2-2.1), compared with patients with pansusceptible infection. During 1996-2001, FoodNet staff ascertained outcomes for 1415 patients who had isolates tested in NARMS. Hospitalization with bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted OR, 3.1; 95% CI, 1.4-6.6), compared with patients with pansusceptible infection. Patients with antimicrobial-resistant nontyphoidal Salmonella infection were more likely to have bloodstream infection and to be hospitalized than were patients with pansusceptible infection. Mitigation of antimicrobial resistance in Salmonella will likely benefit human health.

  10. Development of Non-Natural Flavanones as Antimicrobial Agents

    PubMed Central

    Fowler, Zachary L.; Shah, Karan; Panepinto, John C.; Jacobs, Amy; Koffas, Mattheos A. G.

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells. PMID:22039419

  11. Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents.

    PubMed

    Kim, Jaeeun; Hahn, Ji-Sook; Franklin, Michael J; Stewart, Philip S; Yoon, Jeyong

    2009-01-01

    The aim of the study was to determine the susceptibility of active and dormant cell populations from Pseudomonas aeruginosa biofilms to non-antibiotic antimicrobial agents such as chlorine, hydrogen peroxide and silver ions in comparison with antibiotics. Active cells in colony biofilm were differentially labelled by induction of a green fluorescent protein (GFP). Active and dormant cells were sorted in phosphate buffered solution by flow cytometry. Reductions in viability were determined with plate counts. The spatial pattern of metabolic activity in colony biofilm was verified, and the active and dormant cells were successfully sorted according to the GFP intensity. Active cells had bigger cell size and higher intracellular density than dormant cells. While dormant cells were more tolerant to tobramycin and silver ions, active cells were more tolerant to chlorine. Metabolically active cells contain denser intracellular components that can react with highly reactive oxidants such as chlorine, thereby reducing the available concentrations of chlorine. In contrast, the concentrations of silver ions and hydrogen peroxide were constant during treatment. Aerobically grown stationary cells were significantly more tolerant to chlorine unlike other antimicrobial agents. Chlorine was more effective in inactivation of metabolically inactive dormant cells and also more effective under anaerobic conditions. The high oxidative reactivity and rapid decay of chlorine might influence the different antimicrobial actions of chlorine compared with antibiotics. This study contributes to understanding the effects of dormancy and the presence of oxygen on the susceptibility of P. aeruginosa biofilm to a wide range of antimicrobial agents.

  12. High mortality among patients infected with hypervirulent antimicrobial-resistant capsular type K1 Klebsiella pneumoniae strains in Taiwan.

    PubMed

    Lin, Yi-Tsung; Cheng, Yi-Hsiang; Juan, Chih-Han; Wu, Ping-Feng; Huang, Yi-Wei; Chou, Sheng-Hua; Yang, Tsuey-Ching; Wang, Fu-Der

    2018-06-12

    Capsular type K1 Klebsiella pneumoniae, highly virulent strains which are common in Asian countries, can cause pyogenic infections. These hypervirulent strains are usually susceptible to most antimicrobials, except for ampicillin. Little is known regarding the clinical and molecular characteristics of antimicrobial-resistant K1 K. pneumoniae strains. This retrospective study evaluated patients infected with capsular type K1 K. pneumoniae strains in a Taiwanese medical centre between April 2013 and March 2016. Antimicrobial-resistant strains were defined based on non-susceptibility to antimicrobial agents except ampicillin. We compared the clinical outcome of patients infected with and without antimicrobial-resistant strains. The in vivo virulence, genetic relatedness, and resistance mechanisms of these hypervirulent antimicrobial-resistant strains were also investigated. A total of 182 capsular type K1 K. pneumoniae strains were identified, including 18 antimicrobial-resistant strains. The 28-day mortality rate among the 18 cases caused by antimicrobial-resistant strains was significantly higher than that among 164 cases caused by antimicrobial-sensitive strains (50% vs. 10.4%, p < 0.001). Infection with antimicrobial-resistant strain independently increased the 28-day mortality risk. Most antimicrobial -resistant strains were not clonally related, and they exhibited high in vivo virulence in a mouse lethality experiment. The major resistance mechanisms involved the presence of β-lactamases and the overexpression of efflux pumps. In conclusion, hypervirulent antimicrobial-resistant capsular type K1 K. pneumoniae strains can predispose to a fatal outcome. These strains may represent an emerging threat to public health in Taiwan. Copyright © 2018. Published by Elsevier B.V.

  13. Quantitative Assessment of Combination Antimicrobial Therapy against Multidrug-Resistant Acinetobacter baumannii▿

    PubMed Central

    Lim, Tze-Peng; Ledesma, Kimberly R.; Chang, Kai-Tai; Hou, Jing-Guo; Kwa, Andrea L.; Nikolaou, Michael; Quinn, John P.; Prince, Randall A.; Tam, Vincent H.

    2008-01-01

    Treatment of multidrug-resistant bacterial infections poses a therapeutic challenge to clinicians; combination therapy is often the only viable option for multidrug-resistant infections. A quantitative method was developed to assess the combined killing abilities of antimicrobial agents. Time-kill studies (TKS) were performed using a multidrug-resistant clinical isolate of Acinetobacter baumannii with escalating concentrations of cefepime (0 to 512 mg/liter), amikacin (0 to 256 mg/liter), and levofloxacin (0 to 64 mg/liter). The bacterial burden data in single and combined (two of the three agents with clinically achievable concentrations in serum) TKS at 24 h were mathematically modeled to provide an objective basis for comparing various antimicrobial agent combinations. Synergy and antagonism were defined as interaction indices of <1 and >1, respectively. A hollow-fiber infection model (HFIM) simulating various clinical (fluctuating concentrations over time) dosing exposures was used to selectively validate our quantitative assessment of the combined killing effect. Model fits in all single-agent TKS were satisfactory (r2 > 0.97). An enhanced combined overall killing effect was seen in the cefepime-amikacin combination (interactive index, 0.698; 95% confidence interval [CI], 0.675 to 0.722) and the cefepime-levofloxacin combination (interactive index, 0.929; 95% CI, 0.903 to 0.956), but no significant difference in the combined overall killing effect for the levofloxacin-amikacin combination was observed (interactive index, 0.994; 95% CI, 0.982 to 1.005). These assessments were consistent with observations in HFIM validation studies. Our method could be used to objectively rank the combined killing activities of two antimicrobial agents when used together against a multidrug-resistant A. baumannii isolate. It may offer better insights into the effectiveness of various antimicrobial combinations and warrants further investigations. PMID:18505848

  14. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    PubMed

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P < 0.05) differences in frequency of resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  15. Evaluation of antimicrobial resistance phenotypes for predicting multidrug-resistant Salmonella recovered from retail meats and humans in the United States.

    PubMed

    Whichard, Jean M; Medalla, Felicita; Hoekstra, Robert M; McDermott, Patrick F; Joyce, Kevin; Chiller, Tom; Barrett, Timothy J; White, David G

    2010-03-01

    Although multidrug-resistant (MDR) non-Typhi Salmonella (NTS) strains are a concern in food production, determining resistance to multiple antimicrobial agents at slaughter or processing may be impractical. Single antimicrobial resistance results for predicting multidrug resistance are desirable. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were used to determine each antimicrobial agent's ability to predict MDR phenotypes of human health significance: ACSSuT (resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline) in NTS isolates, and MDR-AmpC-SN (resistance to ACSSuT, additional resistance to amoxicillin-clavulanate and to ceftiofur, and decreased susceptibility [MIC >= 2 microg/ml] to ceftriaxone) in NTS serotype Newport. The U.S. National Antimicrobial Resistance Monitoring System determined MICs to 15 or more antimicrobial agents for 9,955 NTS isolates from humans from 1999 to 2004 and 689 NTS isolates from retail meat from 2002 to 2004. A total of 847 (8.5%) human and 26 (3.8%) retail NTS isolates were ACSSuT; 995 (10.0%) human and 16 (2.3%) retail isolates were serotype Newport. Among Salmonella Newport, 204 (20.5%) human and 9 (56.3%) retail isolates were MDR-AmpC-SN. Chloramphenicol resistance provided the highest PPVs for ACSSuT among human (90.5%; 95% confidence interval, 88.4 to 92.3) and retail NTS isolates (96.3%; 95% confidence interval, 81.0 to 99.9). Resistance to ceftiofur and to amoxicillin-clavulanate and decreased susceptibility to ceftriaxone provided the highest PPVs (97.1, 98.1, and 98.6%, respectively) for MDR-AmpC-SN from humans. High PPVs for these agents applied to retail meat MDR-AmpC-SN, but isolate numbers were lower. Variations in MIC results may complicate ceftriaxone's predictive utility. Selecting specific antimicrobial resistance offers practical alternatives for predicting MDR phenotypes. Chloramphenicol resistance works best for ACSSuT-NTS, and resistance to ceftiofur, amoxicillin-clavulanate, or chloramphenicol works best for MDR-AmpC-SN.

  16. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.

    PubMed

    Amin Yavari, S; Loozen, L; Paganelli, F L; Bakhshandeh, S; Lietaert, K; Groot, J A; Fluit, A C; Boel, C H E; Alblas, J; Vogely, H C; Weinans, H; Zadpoor, A A

    2016-07-13

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make them promising candidates for combating peri-operative implant-associated infections.

  17. A potential photocatalytic, antimicrobial and anticancer activity of chitosan-copper nanocomposite.

    PubMed

    Arjunan, Nithya; Singaravelu, Chandra Mohan; Kulanthaivel, Jeganathan; Kandasamy, Jothivenkatachalam

    2017-11-01

    In this study, chitosan-copper (CS-Cu) nanocomposite was synthesized without the aid of any external chemical reducing agents. The optical, structural, spectral, thermal and morphological analyses were carried out by several techniques. The prepared nanocomposite acts as a photocatalyst for the removal of Rhodamine B (RhB) and Conge red (CR) dyes under visible light irradiation. The pseudo first order kinetics was derived according to Langmuir-Hinshelwood (L-H) model. The nanocomposite also proved to be an excellent antimicrobial agent against Gram-positive and Gram-negative bacteria; and also show activity against fungus. The advanced material was used for the major research areas which include photocatalytic materials for waste water treatment; biological applications in the development of drug resistant antimicrobials and anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents.

    PubMed

    Wang, Chongwen; Zhang, Kehan; Zhou, Zhe; Li, Qingjun; Shao, Liting; Hao, Rong Zhang; Xiao, Rui; Wang, Shengqi

    2017-01-01

    Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe 3 O 4 @SiO 2 @Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe 3 O 4 @SiO 2 @Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe 3 O 4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe 3 O 4 @SiO 2 @Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus , with minimum inhibitory concentrations of 10 and 20 μg mL -1 , respectively. The microflowers also showed enhanced effect compared with bare Fe 3 O 4 @SiO 2 @Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe 3 O 4 @SiO 2 @Ag microflowers exhibit promising applications in the antibacterial fields.

  19. Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents

    PubMed Central

    Wang, Chongwen; Zhang, Kehan; Zhou, Zhe; Li, Qingjun; Shao, Liting; Hao, Rong Zhang; Xiao, Rui; Wang, Shengqi

    2017-01-01

    Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe3O4@SiO2@Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe3O4@SiO2@Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe3O4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe3O4@SiO2@Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentrations of 10 and 20 μg mL−1, respectively. The microflowers also showed enhanced effect compared with bare Fe3O4@SiO2@Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe3O4@SiO2@Ag microflowers exhibit promising applications in the antibacterial fields. PMID:28450783

  20. Sonorensin: an Antimicrobial Peptide, Belonging to the Heterocycloanthracin Subfamily of Bacteriocins, from a New Marine Isolate, Bacillus sonorensis MT93

    PubMed Central

    Chopra, Lipsy; Singh, Gurdeep; Choudhary, Vikas

    2014-01-01

    Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized. PMID:24610839

  1. Sonorensin: an antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93.

    PubMed

    Chopra, Lipsy; Singh, Gurdeep; Choudhary, Vikas; Sahoo, Debendra K

    2014-05-01

    Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized.

  2. Minimizing human infection from Escherichia coli O157:H7 using GUMBOS

    PubMed Central

    Cole, Marsha R.; Li, Min; Jadeja, Ravirajsinh; El-Zahab, Bilal; Hayes, Daniel; Hobden, Jeffery A.; Janes, Marlene E.; Warner, Isiah M.

    2013-01-01

    Objectives Reduction in faecal shedding of Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) in food-producing animals is a viable strategy to minimize human disease initiated by exposure to these microorganisms. To this end, an intervention strategy involving the electrostatic hybridization of two commonly used anti-infective agents for veterinary practice (i.e. chlorhexidine and ampicillin) was evaluated to curtail EHEC-transmitted disease from ruminant sources. Chlorhexidine di-ampicillin is a novel group of uniform material based on organic salts (GUMBOS) with inherent in vitro antibacterial activity that comes from its parent antimicrobial ions, chlorhexidine and ampicillin. Methods Antibacterial activities for chlorhexidine diacetate, sodium ampicillin, chlorhexidine di-ampicillin and stoichiometrically equivalent 1 : 2 chlorhexidine diacetate : sodium ampicillin were assessed using the serial 2-fold dilution method and time–kill studies against seven isolates of E. coli O157:H7 and one non-pathogenic E. coli 25922. Further studies to investigate synergistic interactions of reacted and stoichiometrically equivalent unreacted antimicrobial agents at MICs and possible mechanisms were also investigated. Results Synergism and in vitro antibacterial activities against EHEC were observed in this study, which suggests chlorhexidine di-ampicillin could be a useful reagent in reducing EHEC transmission and minimizing EHEC-associated infections. Likewise, chlorhexidine di-ampicillin reduced HeLa cell toxicity as compared with chlorhexidine diacetate or the stoichiometric combination of antimicrobial agents. Further results suggest that the mechanisms of action of chlorhexidine di-ampicillin and chlorhexidine diacetate against E. coli O157:H7 are similar. Conclusions Reacting antimicrobial GUMBOS as indicated in this study may enhance the approach to current combination drug therapeutic strategies for EHEC disease control and prevention. PMID:23447139

  3. Minimizing human infection from Escherichia coli O157:H7 using GUMBOS.

    PubMed

    Cole, Marsha R; Li, Min; Jadeja, Ravirajsinh; El-Zahab, Bilal; Hayes, Daniel; Hobden, Jeffery A; Janes, Marlene E; Warner, Isiah M

    2013-06-01

    Reduction in faecal shedding of Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) in food-producing animals is a viable strategy to minimize human disease initiated by exposure to these microorganisms. To this end, an intervention strategy involving the electrostatic hybridization of two commonly used anti-infective agents for veterinary practice (i.e. chlorhexidine and ampicillin) was evaluated to curtail EHEC-transmitted disease from ruminant sources. Chlorhexidine di-ampicillin is a novel group of uniform material based on organic salts (GUMBOS) with inherent in vitro antibacterial activity that comes from its parent antimicrobial ions, chlorhexidine and ampicillin. Antibacterial activities for chlorhexidine diacetate, sodium ampicillin, chlorhexidine di-ampicillin and stoichiometrically equivalent 1 : 2 chlorhexidine diacetate : sodium ampicillin were assessed using the serial 2-fold dilution method and time-kill studies against seven isolates of E. coli O157:H7 and one non-pathogenic E. coli 25922. Further studies to investigate synergistic interactions of reacted and stoichiometrically equivalent unreacted antimicrobial agents at MICs and possible mechanisms were also investigated. Synergism and in vitro antibacterial activities against EHEC were observed in this study, which suggests chlorhexidine di-ampicillin could be a useful reagent in reducing EHEC transmission and minimizing EHEC-associated infections. Likewise, chlorhexidine di-ampicillin reduced HeLa cell toxicity as compared with chlorhexidine diacetate or the stoichiometric combination of antimicrobial agents. Further results suggest that the mechanisms of action of chlorhexidine di-ampicillin and chlorhexidine diacetate against E. coli O157:H7 are similar. Reacting antimicrobial GUMBOS as indicated in this study may enhance the approach to current combination drug therapeutic strategies for EHEC disease control and prevention.

  4. [Recommendations for selecting antimicrobial agents for in vitro susceptibility studies using automatic and semiautomatic systems].

    PubMed

    Cantón, Rafael; Alós, Juan Ignacio; Baquero, Fernando; Calvo, Jorge; Campos, José; Castillo, Javier; Cercenado, Emilia; Domínguez, M Angeles; Liñares, Josefina; López-Cerezo, Lorena; Marco, Francesc; Mirelis, Beatriz; Morosini, María-Isabel; Navarro, Ferran; Oliver, Antonio; Pérez-Trallero, Emilio; Torres, Carmen; Martínez-Martínez, Luis

    2007-01-01

    The number of clinical microbiology laboratories that have incorporated automatic susceptibility testing devices has increased in recent years. The majority of these systems determine MIC values using microdilution panels or specific cards, with grouping into clinical categories (susceptible, intermediate or resistant) and incorporate expert systems to infer resistance mechanisms. This document presents the recommendations of a group of experts designated by Grupo de Estudio de los Mecanismos de Acción y Resistencia a los Antimicrobianos (GEMARA, Study group on mechanisms of action and resistance to antimicrobial agents) and Mesa Española de Normalización de la Sensibilidad y Resistencia a los Antimicrobianos (MENSURA, Spanish Group for Normalizing Antimicrobial Susceptibility and Antimicrobial Resistance), with the aim of including antimicrobial agents and selecting concentrations for the susceptibility testing panels of automatic systems. The following have been defined: various antimicrobial categories (A: must be included in the study panel; B: inclusion is recommended; and C: inclusion is secondary, but may facilitate interpretative reading of the antibiogram) and groups (0: not used in therapeutics but may facilitate the detection of resistance mechanisms; 1: must be studied and always reported; 2: must be studied and selectively reported; 3: must be studied and reported at a second level; and 4: should be studied in urinary tract pathogens isolated in urine and other specimens). Recommended antimicrobial concentrations are adapted from the breakpoints established by EUCAST, CLSI and MENSURA. This approach will lead to more accurate susceptibility testing results with better detection of resistance mechanisms, and allowing to reach the clinical goal of the antibiogram.

  5. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward.

    PubMed

    Aarestrup, Frank M

    2015-06-05

    The purpose of this review was to provide an updated overview on the use of antimicrobial agents in livestock, the associated problems for humans and current knowledge on the effects of reducing resistance in the livestock reservoir on both human health and animal production. There is still limiting data on both use of antimicrobial agents, occurrence and spread of resistance as well as impact on human health. However, in recent years, emerging issues related to methicillin-resistant Staphylococcus aureus, Clostridium difficile, Escherichia coli and horizontally transferred genes indicates that the livestock reservoir has a more significant impact on human health than was estimated 10 years ago, where the focus was mainly on resistance in Campylobacter and Salmonella. Studies have indicated that there might only be a marginal if any benefit from the regular use of antibiotics and have shown that it is possible to substantially reduce the use of antimicrobial agents in livestock production without compromising animal welfare or health or production. In some cases, this should be done in combination with other measures such as biosecurity and use of vaccines. To enable better studies on both the global burden and the effect of interventions, there is a need for global harmonized integrated and continuous surveillance of antimicrobial usage and antimicrobial resistance, preferably associated with data on production and animal diseases to determine the positive and negative impact of reducing antimicrobial use in livestock. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.

    PubMed

    Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-10-01

    With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2015-01-01

    Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.

  8. Antimicrobial Susceptibility to Azithromycin among Salmonella enterica Isolates from the United States▿

    PubMed Central

    Sjölund-Karlsson, Maria; Joyce, Kevin; Blickenstaff, Karen; Ball, Takiyah; Haro, Jovita; Medalla, Felicita M.; Fedorka-Cray, Paula; Zhao, Shaohua; Crump, John A.; Whichard, Jean M.

    2011-01-01

    Due to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasive Salmonella infections. In the present study, 696 isolates of non-Typhi Salmonella collected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-two Salmonella enterica serotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-Typhi Salmonella isolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. Among Salmonella serotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-type Salmonella of ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin and Salmonella enterica. PMID:21690279

  9. Short-term Dynamics and Retention of Triclosan in the Lower Hudson River Estuary

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a antimicrobial agent present in a wide array of consumer based goods such as soaps, skin creams and dental care products. Triclosan is only partially removed by most wastewater treatment processes, with the remainder being ...

  10. Temporal Trends of Triclosan in Sediment Cores Collected from Two Urbanized Estuaries

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a antimicrobial agent present in a wide array of consumer based goods such as soaps, skin creams and dental care products. It has also been incorporated into consumer textiles and plastics due to its effectiveness as a bioci...

  11. Clinical outcomes of nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal salmonella infections compared with pansusceptible infections in FoodNet sites, 2006-2008.

    PubMed

    Krueger, Amy L; Greene, Sharon A; Barzilay, Ezra J; Henao, Olga; Vugia, Duc; Hanna, Samir; Meyer, Stephanie; Smith, Kirk; Pecic, Gary; Hoefer, Dina; Griffin, Patricia M

    2014-05-01

    Nontyphoidal Salmonella causes an estimated 1.2 million infections, 23,000 hospitalizations, and 450 deaths annually in the United States. Most illnesses are self-limited; however, treatment with antimicrobial agents can be life-saving for invasive infections. The Foodborne Diseases Active Surveillance Network and the National Antimicrobial Resistance Monitoring System collaborated on a prospective cohort study of patients with nontyphoidal Salmonella bloodstream and gastrointestinal infections to determine differences in the clinical outcomes of resistant compared with pansusceptible infections. Interviews were conducted within 85 days of specimen collection date. Of 875 nontyphoidal Salmonella isolates, 705 (81%) were pansusceptible, 165 (19%) were resistant to at least 1 agent, and 5 (0.6%) had only intermediate resistance. The most common pattern, found in 51 (31%) of resistant isolates, was resistance to at least ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline (ACSSuT); 88% of isolates with this pattern were serotype Typhimurium or Newport. Fourteen (52%) of the 27 ceftriaxone-resistant isolates were also ACSSuT resistant. Adjusted for age and serotype, bloodstream infection was significantly more common among patients infected with strains resistant to only two, only three, or only five antimicrobial classes, to ACSSuT with or without other agents, to ACSSuT only, or to nalidixic acid with or without other agents than among patients with pansusceptible isolates. Adjusted for age, serotype, and bloodstream infection, hospitalization was significantly more common among patients infected with strains resistant to only three agents or to ceftriaxone (all ceftriaxone-resistant isolates were resistant to other agents) than among patients with pansusceptible isolates. This study extends evidence that patients with antimicrobial-resistant nontyphoidal Salmonella infections have more severe outcomes. Prevention efforts are needed to reduce unnecessary antimicrobial use in patient care settings and in food animals to help prevent the emergence of resistance and infections with resistant nontyphoidal Salmonella.

  12. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    DTIC Science & Technology

    2013-08-01

    antimicrobial nanoparticles, chelating agents, and peptides . ACKNOWLEDGMENTS We thank Stephanie A. Brown and Hunter Radetsky for technical support. Funding...AUG 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial activity of nanoemulsion in combination with...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Antimicrobial Activity of Nanoemulsion in Combination

  13. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives

    PubMed Central

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-01-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283

  14. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives.

    PubMed

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-04-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Kinetics of decamethoxine, an antimicrobial agent].

    PubMed

    Paliĭ, G K; Nazarchuk, A A; Kulakov, A I; Nazarchuk, G G; Paliĭ, D V; Bereza, B N; Oleĭnik, D P

    2014-01-01

    The kinetics of decamethoxine liberation from medical antimicrobial textiles was studied. The elution of decamethoxine was shown to be a complicated diffusive-kinetic process dependent on the exposure and concentration of decamethoxine.

  16. Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics†

    PubMed Central

    Li, Yali; Hindi, Khadijah; Watts, Kristin M.; Taylor, Jane B.; Zhang, Ke; Li, Zicheng

    2010-01-01

    Amphiphilic polymer nanoparticles loaded with silver cations or/and N-heterocyclic carbene–silver complexes were assessed as antimicrobial agents against Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa. PMID:20024313

  17. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas.

    PubMed

    Waites, Ken B; Crabb, Donna M; Duffy, Lynn B

    2003-12-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were < or =1 microg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms.

  18. In vitro activity of ABT-492 against anaerobic bacteria.

    PubMed

    Sillerström, E; Wahlund, E; Nord, C E

    2004-06-01

    The purpose of the study was to determine the in vitro activity of ABT-492 compared with that of other antimicrobial agents against anaerobic bacteria. The activity of ABT-492 was investigated against 369 clinical isolates of anaerobic bacteria by the agar dilution method and was compared with that of moxifloxacin, piperacillin, cefoxitin, imipenem, clindamycin and metronidazole. ABT-492 and imipenem were the most active antimicrobial agents tested.

  19. Comparative In Vitro Susceptibilities and Bactericidal Activities of Investigational Fluoroquinolone ABT-492 and Other Antimicrobial Agents against Human Mycoplasmas and Ureaplasmas

    PubMed Central

    Waites, Ken B.; Crabb, Donna M.; Duffy, Lynn B.

    2003-01-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were ≤1 μg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms. PMID:14638513

  20. Effective Treatment of Folliculitis Decalvans Using Selected Antimicrobial Agents

    PubMed Central

    Sillani, Caulloo; Bin, Zhang; Ying, Zhao; Zeming, Cai; Jian, Yang; Xingqi, Zhang

    2010-01-01

    Folliculitis Decalvans (FD) is a rare neutrophilic infammation of the scalp characterized by painful, recurrent purulent follicular exudation resulting in primary cicatricial alopecia. However, unclear etiology makes FD treatment a difficult task. A wide variety of topical and systemic agents have been tried previously, with varied results. We present here a case series report of a set of 13 patients with FD on antimicrobial therapy. PMID:21188019

  1. A Review of Antibacterial Agents in Endodontic Treatment

    PubMed Central

    Rahimi, Saeed; Janani, Maryam; Lotfi, Mehrdad; Shahi, Shahriar; Aghbali, Amirala; Vahid Pakdel, Mahdi; Salem Milani, Amin; Ghasemi, Negin

    2014-01-01

    Microorganisms play a major role in initiation and perpetuation of pulpal and periapical diseases. Therefore, elimination of the microorganisms present in the root canal system is the fundamental objective of endodontic treatment. The use of mechanical debridement, chemical irrigation or other antimicrobial protocols and intra-canal medicaments are critical to attain this goal. The aim of this article was to review the antimicrobial agents and their properties in endodontics. PMID:25031587

  2. Impact of an Anticaries Mouthrinse on In Vitro Remineralization and Microbial Control

    PubMed Central

    Sun, Frank C.; Engelman, E. Eric; McGuire, James A.; Kosmoski, Gabrielle; Carratello, Lauren; Ricci-Nittel, Danette; Zhang, Jane Z.; Schemehorn, Bruce R.; Gambogi, Robert J.

    2014-01-01

    Objective. The objective of this research was to evaluate the caries control potential of a new fluoride mouthrinse that also contained antimicrobial agents and a biofilm disrupting agent using different in vitro models. Methods. Four in vitro studies were conducted to assess the performance of this three pronged approach to caries control: (1) traditional enamel fluoride uptake, (2) surface microhardness study using pH cycling model and subsequent fluoride uptake, (3) a salivary biofilm flow-through study to determine the anti-microbial activity, and (4) a single species biofilm model measuring effect on biofilm matrix disruption. Results. The data showed that a LISTERINE rinse with fluoride, essential oils and xylitol was superior in promoting enamel fluoride uptake and in enhancing antimicrobial activity over traditional commercially available fluoridated products. An increase of the surface microhardness was observed when the LISTERINE rinse was used in combination with fluoridated toothpaste versus the fluoridated toothpaste alone. Finally, it was demonstrated that xylitol solutions disrupted and reduced the biovolume of biofilm matrix of mature Streptococcus mutans. Conclusion. These in vitro studies demonstrated that a fluoride mouthrinse with antimicrobial agent and biofilm matrix disrupting agent provided multifaceted and enhanced anti-caries efficacy by promoting remineralization, reducing acidogenic bacteria and disrupting biofilm matrix. PMID:24648842

  3. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  4. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.

    PubMed

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.

  5. Application of Gelidium corneum edible films containing carvacrol for ham packages.

    PubMed

    Lim, G O; Hong, Y H; Song, K B

    2010-01-01

    We prepared an edible film of Gelidium corneum (GC) containing carvacrol as an antimicrobial and antioxidative agent. The GC film containing carvacrol significantly decreased the WVP, while TS and %E values were increased, compared to the film without carvacrol. Increasing amounts of an antimicrobial agent increased antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes. Application of the film to ham packaging successfully inhibited the microbial growth and lipid oxidation of ham during storage. Our results indicate that GC film can be a useful edible packaging material for food products, and the incorporation of carvacrol in the GC film may extend the shelf life.

  6. In Vitro Antimicrobial Susceptibility Testing of Helicobacter felis, H. bizzozeronii, and H. salomonis

    PubMed Central

    Van den Bulck, K.; Decostere, A.; Gruntar, I.; Baele, M.; Krt, B.; Ducatelle, R.; Haesebrouck, F.

    2005-01-01

    The susceptibilities of Helicobacter felis (15 strains), H. bizzozeronii (7 strains), and H. salomonis (3 strains) to 10 antimicrobial agents were investigated by determination of the MIC using the agar dilution method. No consistent differences were noticed between the different Helicobacter species, which were all highly susceptible to ampicillin, clarithromycin, tetracycline, tylosin, enrofloxacin, gentamicin, and neomycin, as demonstrated by low MICs. Higher MICs were obtained for lincomycin (up to 8 μg/ml) and spectinomycin (up to 4 μg/ml). Two H. felis strains showed a MIC of 16 μg/ml for metronidazole, suggesting acquired resistance to this antimicrobial agent. PMID:15980383

  7. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    PubMed

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  8. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    PubMed Central

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  9. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease

    PubMed Central

    Godlewska, Urszula; Brzoza, Piotr; Sroka, Aneta; Majewski, Pawel; Jentsch, Holger; Eckert, Martin; Eick, Sigrun; Potempa, Jan; Zabel, Brian A.; Cichy, Joanna

    2017-01-01

    Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity. PMID:28424689

  10. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-03-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  11. Synthesis and Evaluation of Ester Derivatives of 10-Hydroxycanthin-6-one as Potential Antimicrobial Agents.

    PubMed

    Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru

    2016-03-21

    As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents.

  12. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-06-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  13. Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives.

    PubMed

    Karahan, Hüseyin Enis; Wiraja, Christian; Xu, Chenjie; Wei, Jun; Wang, Yilei; Wang, Liang; Liu, Fei; Chen, Yuan

    2018-03-05

    Graphene materials (GMs), such as graphene, graphene oxide (GO), reduced GO (rGO), and graphene quantum dots (GQDs), are rapidly emerging as a new class of broad-spectrum antimicrobial agents. This report describes their state-of-the-art and potential future covering both fundamental aspects and biomedical applications. First, the current understanding of the antimicrobial mechanisms of GMs is illustrated, and the complex picture of underlying structure-property-activity relationships is sketched. Next, the different modes of utilization of antimicrobial GMs are explained, which include their use as colloidal dispersions, surface coatings, and photothermal/photodynamic therapy agents. Due to their practical relevance, the examples where GMs function as synergistic agents or release platforms for metal ions and/or antibiotic drugs are also discussed. Later, the applicability of GMs in the design of wound dressings, infection-protective coatings, and antibiotic-like formulations ("nanoantibiotics") is assessed. Notably, to support our assessments, the existing clinical applications of conventional carbon materials are also evaluated. Finally, the key hurdles of the field are highlighted, and several possible directions for future investigations are proposed. We hope that the roadmap provided here will encourage researchers to tackle remaining challenges toward clinical translation of promising research findings and help realize the potential of GMs in antimicrobial nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    PubMed

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  15. Antimicrobial food packaging: potential and pitfalls

    PubMed Central

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  16. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat.

    PubMed

    Mateus-Vargas, Rafael H; Atanassova, Viktoria; Reich, Felix; Klein, Günter

    2017-05-01

    The increasing number of antimicrobial resistant Enterobacteriaceae both in veterinary and human medicine, the dissemination of these bacteria in several environments and their possible repercussions on human health is causing concern. Game meat is usually seen as free of antimicrobial resistant bacteria. The objective of this study was to evaluate the current antimicrobial susceptibility status in generic Escherichia coli isolated from packed frozen game meat from a game handling establishment in Germany. A total of 229 E. coli isolates were obtained from cuts of red deer, roe deer and wild boar. The susceptibility to 12 antimicrobial agents was evaluated by a broth microdilution method according to ISO 20776-1:2006. Minimal Inhibitory Concentration (MIC) values were compared to breakpoints and cut-off values published by the EUCAST. Isolates showing MICs above the reference values were further studied for associated resistance determinants and phylogrouping by PCR. Overall, 16 E. coli isolates (7.0%) showed resistance (microbiological or clinical) to at least one antimicrobial agent tested. Clinical resistance was recorded to ampicillin (5/229) and chloramphenicol (4/229), whereas the MIC of 9 isolates exceeded the epidemiological cut-off value for doxycycline. One of the ampicillin-resistant isolates showed resistance to the β-lactam antibiotic derivatives tested, cephalosporines and aztreonam. Three of 9 non-wild-type isolates for doxycycline were positive for tet (B) genes. The ß-lactam-resistant isolate was found to harbour bla CTX-M-1 gene. These data show a low prevalence of resistant E. coli in packed game meat compared to studies on conventional meat. Although isolates obtained in this study may also be originating from the processing environment and not necessarily from animals, based on our results, it is important to monitor the development of antimicrobial resistance in game animals and products in order to identify future threats for the consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ocular surface infections in northeastern state of malaysia: a 10-year review of bacterial isolates and antimicrobial susceptibility.

    PubMed

    Rahman, Zaidah A; Harun, Azian; Hasan, Habsah; Mohamed, Zeehaida; Noor, Siti S Md; Deris, Zakuan Z; Ismail, Nabilah; Hassan, Asma S; Ahmad, Fadzhilah; Yaakub, Azhany

    2013-09-01

    Ocular surface infections that include infections of conjunctiva, adnexa, and cornea have the potential risk of causing blindness within a given population. Empirical antibiotic therapy is usually initiated based on epidemiological data of common causative agents. Thus, the aims of this study were to determine the bacterial agents and their susceptibility patterns of isolates from ocular surface specimens in our hospital. This is a retrospective analysis and records of bacterial isolates from ocular surface specimens in Hospital Universiti Sains Malaysia from January 2001 to December 2010 were examined. Specimens were processed according to standard laboratory procedures. Antimicrobial susceptibility testing was conducted based on Clinical and Laboratory Standards Institute recommendations. Only single, nonrepetitive isolates were included in the analysis. A total of 1,267 isolates were obtained during the study period, which comprised Staphylococcus aureus (n = 299, 23.6%), Pseudomonas aeruginosa (n = 194, 15.3%), Streptococcus pneumoniae (n = 108, 8.5%), Haemophilus influenzae (n = 100, 7.9%), Haemophilus parainfluenzae (n = 84, 6.6%), and Enterobacter spp. (n = 81, 6.4%). Fungi contributed to 4.4% of the total isolates. The antimicrobial susceptibility testing demonstrated that gram-positive bacteria were generally resistant to gentamicin (19%-57%), whereas gram-negative bacteria were resistant to chloramphenicol (27%-58%). Based on the above results, knowledge of the initial Gram stain findings is imperative before the commencement of empirical antibiotic therapy. Therefore, a simple Gram staining for all eye specimens is highly recommended.

  18. End-functionalized ROMP polymers for Biomedical Applications

    PubMed Central

    Madkour, Ahmad E.; Koch, Amelie H. R.; Lienkamp, Karen; Tew, Gregory N.

    2010-01-01

    We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs’ third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated. PMID:21499549

  19. In vitro drug susceptibility of 40 international reference rapidly growing mycobacteria to 20 antimicrobial agents

    PubMed Central

    Pang, Hui; Li, Guilian; Wan, Li; Jiang, Yi; Liu, Haican; Zhao, Xiuqin; Zhao, Zhongfu; Wan, Kanglin

    2015-01-01

    Rapidly growing mycobacteria (RGM) are human pathogens that are relatively easily identified by acid-fast staining but are proving difficult to treat in the clinic. In this study, we performed susceptibility testing of 40 international reference RGM species against 20 antimicrobial agents using the cation-adjusted Mueller-Hinton (CAMH) broth microdilution based on the minimum inhibitory concentration (MIC) assay recommended by the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The results demonstrated that RGM organisms were resistant to the majority of first-line antituberculous agents but not to second-line fluoroquinolones or aminoglycosides. Three drugs (amikacin, tigecycline and linezolid) displayed potent antimycobacterial activity against all tested strains. Capreomycin, levofloxacin and moxifloxacin emerged as promising candidates for the treatment of RGM infections, and cefoxitin and meropenem were active against most strains. Mycobacterium chelonae (M. chelonae), M. abscessus, M. bolletii, M. fortuitum, M. boenickei, M. conceptionense, M. pseudoshottsii, M. septicum and M. setense were the most resistant RGM species. These results provide significant insight into the treatment of RGM species and will assist optimization of clinical criteria. PMID:26629031

  20. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-02-15

    The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and decrease in multidrug resistance among Salmonella strains, United States, 1996-2009.

    PubMed

    Medalla, Felicita; Hoekstra, Robert M; Whichard, Jean M; Barzilay, Ezra J; Chiller, Tom M; Joyce, Kevin; Rickert, Regan; Krueger, Amy; Stuart, Andrew; Griffin, Patricia M

    2013-04-01

    Salmonella is a major bacterial pathogen transmitted commonly through food. Increasing resistance to antimicrobial agents (e.g., ceftriaxone, ciprofloxacin) used to treat serious Salmonella infections threatens the utility of these agents. Infection with antimicrobial-resistant Salmonella has been associated with increased risk of severe infection, hospitalization, and death. We describe changes in antimicrobial resistance among nontyphoidal Salmonella in the United States from 1996 through 2009. The Centers for Disease Control and Prevention's National Antimicrobial Resistance Monitoring System conducts surveillance of resistance among Salmonella isolated from humans. From 1996 through 2009, public health laboratories submitted isolates for antimicrobial susceptibility testing. We used interpretive criteria from the Clinical and Laboratory Standards Institute and defined isolates with ciprofloxacin resistance or intermediate susceptibility as nonsusceptible to ciprofloxacin. Using logistic regression, we modeled annual data to assess changes in antimicrobial resistance. From 1996 through 2009, the percentage of nontyphoidal Salmonella isolates resistant to ceftriaxone increased from 0.2% to 3.4% (odds ratio [OR]=20, 95% confidence interval [CI] 6.3-64), and the percentage with nonsusceptibility to ciprofloxacin increased from 0.4% to 2.4% (OR=8.3, 95% CI 3.3-21). The percentage of isolates that were multidrug resistant (resistant to ≥3 antimicrobial classes) decreased from 17% to 9.6% (OR=0.6, 95% CI 0.5-0.7), which was driven mainly by a decline among serotype Typhimurium. However, multidrug resistance increased from 5.9% in 1996 to a peak of 31% in 2001 among serotype Newport and increased from 12% in 1996 to 26% in 2009 (OR=2.6, 95% CI 1.1-6.2) among serotype Heidelberg. We describe an increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and an overall decline in multidrug resistance. Trends varied by serotype. Because of evidence that antimicrobial resistance among Salmonella is predominantly a consequence of antimicrobial use in food animals, efforts are needed to reduce unnecessary use, especially of critically important agents.

  2. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells

    NASA Astrophysics Data System (ADS)

    Mejías Carpio, Isis E.; Santos, Catherine M.; Wei, Xin; Rodrigues, Debora F.

    2012-07-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields. Electronic supplementary information (ESI) available: Bacterial OD600 absorbance growth curves, representative LIVE/DEAD images and percent of inactive cells after treatment with the most toxic concentrations of nanomaterials, bacterial OD540 nm biofilm absorbance, percent toxicity on the ITO-modified surfaces, additional TEM/SEM images of the nanomaterials and B. subtilis, NIH 3T3 fibroblast cells percent toxicity. See DOI: 10.1039/c2nr30774j

  3. Destruction of Opportunistic Pathogens via Polymer Nanoparticle-Mediated Release of Plant-Based Antimicrobial Payloads.

    PubMed

    Amato, Dahlia N; Amato, Douglas V; Mavrodi, Olga V; Braasch, Dwaine A; Walley, Susan E; Douglas, Jessica R; Mavrodi, Dmitri V; Patton, Derek L

    2016-05-01

    The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as "solvents" for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia - an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microbial response to environmental gradients in a ceramic-based diffusion system.

    PubMed

    Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M

    2008-05-01

    A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.

  5. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    PubMed

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  6. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties.

    PubMed

    Ferreira, Susana; Domingues, Fernanda

    2016-10-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phytoalexin synthesized by plants in response to stress. This compound has several beneficial documented properties, namely anti-inflammatory, antioxidant, neuroprotective and antimicrobial activities. In this study the antimicrobial activity of resveratrol against Listeria monocytogenes and Listeria innocua was investigated. Resveratrol had a minimum inhibitory concentration of 200 µg mL(-1) for the tested strains, with time-kill curves demonstrating bacteriostatic activity. Inhibition of biofilm formation was also assessed, with resveratrol strongly inhibiting biofilm formation by both species even at subinhibitory concentrations. Overall, resveratrol showed antimicrobial properties on planktonic cells and on biofilm formation ability. Considering the potential use of resveratrol as a food preservative, the antimicrobial efficacy of resveratrol in food was studied in milk, lettuce leaf model and chicken juice. Resveratrol retained greater efficacy in both lettuce leaf model and chicken juice, but milk had a negative impact on its antilisterial activity, indicating a possible reduction of resveratrol availability in milk. This study reinforces resveratrol as an antimicrobial agent, pointing out its antibiofilm activity and its potential use as preservative in some food matrices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System.

    PubMed

    Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola

    2016-12-01

    Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nosocomial bloodstream infections in a Turkish university hospital: study of Gram-negative bacilli and their sensitivity patterns.

    PubMed

    Köseoğlu , O; Kocagöz, S; Gür, D; Akova, M

    2001-06-01

    Treatment of nosocomial bacteraemia is usually governed by the surveillance results of the particular unit. Such results are especially important when antimicrobial resistance rates are high. Multiresistant isolates including Gram-negatives producing extended-spectrum beta-lactamases have been frequently reported in tertiary care units in Turkey. In this study, antimicrobial susceptibilities of Gram-negative blood isolates (n=348) were determined by microbroth dilution tests. The results showed carbapenems (meropenem and imipenem) to be uniformly more potent in vitro than any other drug against the Enterobacteriaceae. Quinolone antibiotics were more active in vitro than aminoglycosides against a range of bacteria. Gram-negative bloodstream isolates were highly resistant to many antimicrobial agents in the hospital. In order to prevent hospital infection and antimicrobial resistance, surveillance of aetiological agents must be performed regularly.

  9. Emerging Resistance, New Antimicrobial Agents  …  but No Tests! The Challenge of Antimicrobial Susceptibility Testing in the Current US Regulatory Landscape.

    PubMed

    Humphries, R M; Hindler, J A

    2016-07-01

    Accurate and timely performance of antimicrobial susceptibility testing (AST) by the clinical laboratory is paramount to combating antimicrobial resistance. The ability of laboratories in the United States to effectively perform ASTs is challenged by several factors. Some, such as new resistance mechanisms and the associated evolution of testing recommendations and breakpoints, are inevitable. Others are entirely man-made. These include unnecessarily strict US Food and Drug Administration (FDA) limitations on how commercial AST systems can be used for diagnostic testing, the absence of up-to-date performance data on these systems, and the lack of commercially available FDA-cleared tests for newer antimicrobial agents or for older agents with updated breakpoints. This viewpoint will highlight contemporary AST challenges faced by the clinical laboratory, and propose some solutions. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.

    PubMed

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-05-03

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries.

  11. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yaqiong; Wu, Haifan; Teng, Peng

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, aremore » more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.« less

  12. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus.

    PubMed

    Salehzadeh, Ali; Asadpour, Leila; Naeemi, Akram Sadat; Houshmand, Elham

    2014-01-01

    Increase in the emergence of drug -resistant pathogens led to the development of natural antimicrobials. In this study the antimicrobial effect of methanolic extracts of Sambucus ebulus and Urtica dioica on 16 skin and wound infections isolates of methicillin resistant S. aureus have been studied. Solvent extraction procedure was done using soxhlet apparatus for extracting antimicrobial agents from freeze dried plants. Antibacterial activity was measured using agar well diffusion method. The MIC of Sambucus ebulus and Urtica dioica extracts against the standard strain of S. aureus ATCC 6538 were determined using the micro dilution method at 15 mg and 20 mg respectively. All the test bacteria were found sensitive to the Sambucus ebulus extract and only one isolate was resistant to Urtica dioica extract. Extracts of Sambucus ebulus and Urtica dioica possess antibacterial potency against MRSA isolates and may be used as a natural antiseptics and antimicrobial agents in medicine.

  13. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.

    PubMed

    Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G

    2013-10-01

    Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.

  14. Antimicrobial Substances for Food Packaging Products: The Current Situation.

    PubMed

    Pellerito, Alessandra; Ameen, Sara M; Micali, Maria; Caruso, Giorgia

    2018-04-04

    Antimicrobial substances are widely used in many anthropic activities, including sanitary and military services for the human population. These compounds are also known to be used in food production, agricultural activities, and partially correlated industrial sectors. However, there are concerns regarding the link between the abuse of antimicrobial agents in these ambits and the possible detection of antibiotic-resistant microorganisms. Modern food and beverage products are generally found on the market as prepackaged units, with several exceptions. Consequently, positive and negative features of a specific food or beverage should be considered as the result of the synergic action of different components, including the container (or the assembled sum of packaging materials). At present, the meaning of food container also includes the creation and development of new packaging materials that are potentially able to interact with the contained food. "Active" packaging systems can be realized with antimicrobial substances. On the other hand, a careful evaluation of risks and advantages correlated with antimicrobial agents is needed because of possible negative and/or unexpected failures.

  15. The Establishment of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS): A Pilot Project on Poultry Farms, Slaughterhouses and Retail Market.

    PubMed

    Donado-Godoy, P; Castellanos, R; León, M; Arevalo, A; Clavijo, V; Bernal, J; León, D; Tafur, M A; Byrne, B A; Smith, W A; Perez-Gutierrez, E

    2015-04-01

    The development of antimicrobial resistance among bacteria (AMR) is currently one of the world's most pressing public health problems. The use of antimicrobial agents in humans and animals has resulted in AMR which has narrowed the potential use of antibiotics for the treatment of infections in humans. To monitor AMR and to develop control measures, some countries, such as the USA, Canada and Denmark, have established national integrated surveillance systems (FDA, , CIPARS, 2007, DANMAP,2002). The components of these programs monitor changes in susceptibility/resistance to antimicrobial agents of selected zoonotic pathogens and commensal organisms recovered from animals, retail meats and humans. The rapid development of Colombia's animal production industry has raised food safety issues including the emergence of antibiotic resistance. The Colombian Integrated Surveillance Program for Antimicrobial Resistance (COIPARS) was established as a pilot project to monitor AMR on poultry farms, slaughter houses and retail markets. © 2015 Blackwell Verlag GmbH.

  16. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  17. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity.

    PubMed

    Serna, Naroa; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio

    2017-09-15

    The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria.

    PubMed

    Hwang, In Young; Koh, Elvin; Kim, Hye Rim; Yew, Wen Shan; Chang, Matthew Wook

    2016-07-01

    The discovery of antimicrobial drugs and their subsequent use has offered an effective treatment option for bacterial infections, reducing morbidity and mortality over the past 60 years. However, the indiscriminate use of antimicrobials in the clinical, community and agricultural settings has resulted in selection for multidrug-resistant bacteria, which has led to the prediction of possible re-entrance to the pre-antibiotic era. The situation is further exacerbated by significantly reduced antimicrobial drug discovery efforts by large pharmaceutical companies, resulting in a steady decline in the number of new antimicrobial agents brought to the market in the past several decades. Consequently, there is a pressing need for new antimicrobial therapies that can be readily designed and implemented. Recently, it has become clear that the administration of broad-spectrum antibiotics can lead to collateral damage to the human commensal microbiota, which plays several key roles in host health. Advances in genetic engineering have opened the possibility of reprogramming commensal bacteria that are in symbiotic existence throughout the human body to implement antimicrobial drugs with high versatility and efficacy against pathogenic bacteria. In this review, we discuss recent advances and potentialities of engineered bacteria in providing a novel antimicrobial strategy against antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  20. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  1. Antibacterial and Antifungal Activities of Spices

    PubMed Central

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-01-01

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716

  2. Antibacterial and Antifungal Activities of Spices.

    PubMed

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-06-16

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices-such as clove, oregano, thyme, cinnamon, and cumin-possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens , pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives.

  3. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects.

    PubMed

    Tuli, Hardeep Singh; Kashyap, Dharambir; Bedi, Simranjeet Kaur; Kumar, Pardeep; Kumar, Gaurav; Sandhu, Sardul Singh

    2015-12-15

    Metal oxide nanoparticles (MO-NPs) are the multidisciplinary nano-scaled molecules which are being used in the diagnosis and treatment of the challenging diseases including cancer. Evidence suggest that antimicrobial formulations in the form of MO-NPs can be possibly used as effective antimicrobial agents. In addition, MO-NPs are known to target various cellular signaling pathways associated with apoptosis, angiogenesis, metastasis and inflammation of cancer. In combination with other chemotherapeutic/anticancer agents, MO-NPs not only increase their bioavailability and efficacy but also lower down the requirement of active dosages. To date, to our knowledge there is no single comprehensive report on cellular and molecular interactions of MO-NPs which have been well elaborated in this review. Also we highlight various action mechanisms through which MO-NPs act as antimicrobial, anticancer, antioxidant and anti-inflammatory agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam - epidemiology, laboratory detection and treatment implications.

    PubMed

    Sherry, Norelle; Howden, Benjamin

    2018-04-01

    Multidrug-resistant (MDR) and extensively-drug-resistant (XDR) Gram-negative bacteria have emerged as a major threat to human health globally. This has resulted in the 're-discovery' of some older antimicrobials and development of new agents, however resistance has also rapidly emerged to these agents. Areas covered: Here we describe recent developments in resistance to three of the most important last-line antimicrobials for treatment of MDR and XDR Gram negatives: fosfomycin, colistin and ceftazidime-avibactam. Expert commentary: A key challenge for microbiologists and clinicians using these agents for treating patients with MDR and XDR Gram negative infections is the need to ensure appropriate reference methods are being used to test susceptibility to these agents, especially colistin and fosfomycin. These methods are not available in all laboratories meaning accurate results are either delayed, or potentially inaccurate as non-reference methods are employed. Combination therapy for MDR and XDR Gram negatives is likely to become more common, and future studies should focus on the clinical effects of monotherapy vs combination therapy, as well as validation of synergy testing methods. Effective national and international surveillance systems to detect and respond to resistance to these last line agents are also critical.

  5. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  6. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  7. Disk diffusion antimicrobial susceptibility testing of members of the family Legionellaceae including erythromycin-resistant variants of Legionella micdadei.

    PubMed Central

    Dowling, J N; McDevitt, D A; Pasculle, A W

    1984-01-01

    Disk diffusion antimicrobial susceptibility testing of members of the family Legionellaceae was accomplished on buffered charcoal yeast extract agar by allowing the bacteria to grow for 6 h before placement of the disks, followed by an additional 42-h incubation period before the inhibitory zones were measured. This system was standardized by comparing the zone sizes with the MICs for 20 antimicrobial agents of nine bacterial strains in five Legionella species and of 19 laboratory-derived, erythromycin-resistant variants of Legionella micdadei. A high, linear correlation between zone size and MIC was found for erythromycin, trimethoprim, penicillin, ampicillin, carbenicillin, cephalothin, cefamandole, cefoxitin, moxalactam, chloramphenicol, vancomycin, and clindamycin. Disk susceptibility testing could be employed to screen Legionella isolates for resistance to any of these antimicrobial agents, of which only erythromycin is known to be efficacious in the treatment of legionellosis. With selected antibiotics, disk susceptibility patterns also appeared to accurately identify to the species level the legionellae. The range of the MICs of the legionellae for rifampin and the aminoglycosides was too small to determine whether the correlation of zone size with MIC was linear. However, laboratory-derived, high-level rifampin-resistant variants of L. micdadei demonstrated no inhibition zone around the rifampin disk, indicating that disk susceptibility testing would likely identify a rifampin-resistant clinical isolate. Of the antimicrobial agents tested, the only agents for which disk susceptibility testing was definitely not possible on buffered charcoal yeast extract agar were oxacillin, the tetracyclines, and the sulfonamides. PMID:6565706

  8. Rapid method for determination of antimicrobial susceptibilities pattern of urinary bacteria

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chapelle, E. W.; Barza, M. J.; Weinstein, L.; Tuttle, S. A.; Vellend, H.

    1975-01-01

    Method determines bacterial sensitivity to antimicrobial agents by measuring level of adenosine triphosphate remaining in the bacteria. Light emitted during reaction of sample with a mixture of luciferase and luciferin is measured.

  9. The Global Challenge of Antimicrobial Resistance: Insights from Economic Analysis

    PubMed Central

    Eggleston, Karen; Zhang, Ruifang; Zeckhauser, Richard J.

    2010-01-01

    The prevalence of antimicrobial resistance (AR) limits the therapeutic options for treatment of infections, and increases the social benefit from disease prevention. Like an environmental resource, antimicrobials require stewardship. The effectiveness of an antimicrobial agent is a global public good. We argue for greater use of economic analysis as an input to policy discussion about AR, including for understanding the incentives underlying health behaviors that spawn AR, and to supplement other methods of tracing the evolution of AR internationally. We also discuss integrating antimicrobial stewardship into global health governance. PMID:20948953

  10. Pharmacist-driven antimicrobial stewardship in intensive care units in East China: A multicenter prospective cohort study.

    PubMed

    Li, Zhongwang; Cheng, Baoli; Zhang, Kai; Xie, Guohao; Wang, Yan; Hou, Jinchao; Chu, Lihua; Zhao, Jialian; Xu, Zhijun; Lu, Zhongqiu; Sun, Huaqin; Zhang, Jian; Wang, Zhiyi; Wu, Haiya; Fang, Xiangming

    2017-09-01

    Antimicrobial stewardship programs, particularly pharmacist-driven programs, help reduce the unnecessary use of antimicrobial agents. The objective of this study was to assess the influence of pharmacist-driven antimicrobial stewardship on antimicrobial use, multidrug resistance, and patient outcomes in adult intensive care units in China. We conducted a multicenter prospective cohort study with a sample of 577 patients. A total of 353 patients were included under a pharmacist-driven antimicrobial stewardship program, whereas the remaining 224 patients served as controls. The primary outcome was all-cause hospital mortality. The pharmacist-driven antimicrobial stewardship program had a lower hospital mortality rate compared with the nonpharmacist program (19.3% vs 29.0%; P = .007). Furthermore, logistic regression analysis indicated that the pharmacist-driven program independently predicted hospital mortality (odds ratio, 0.57; 95% confidence interval, 0.36-0.91; P = .017) after adjustment. Meanwhile, this strategy had a lower rate of multidrug resistance (23.8% vs 31.7%; P = .037). Moreover, the strategy optimized antimicrobial use, such as having a shorter duration of empirical antimicrobial therapy (2.7 days; interquartile range [IQR], 1.7-4.6 vs 3.0; IQR, 1.9-6.2; P = .002) and accumulated duration of antimicrobial treatment (4.0; IQR, 2.0-7.0 vs 5.0; IQR, 3.0-9.5; P = .030). Pharmacist-driven antimicrobial stewardship in an intensive care unit decreased patient mortality and the emergence of multidrug resistance, and optimized antimicrobial agent use. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay

    PubMed Central

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product’s activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate. Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium. The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds. PMID:29845058

  12. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    PubMed

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  13. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  14. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low concentrations of nanoparticles incorporated into the polymer. The incorporation of LDH modified by sodium benzoate further improved the mechanical properties in comparison with unmodified LDH, which may be due to the increased compatibility between PHBV and nanoparticles and the larger basal distance between nanolayers after modification. The concentration of benzoate anions in LDH nanoparticles was another factor which affected the properties of PHBV composite films. The PHBV film with 2% modified LDH with 20.9 % w/w of benzoate anions in LDH had the best mechanical and thermomechanical properties. Apparent glass transition temperature increased with the addition of modified LDH but did not change with the addition of unmodified LDH. Moreover, the effect of nanoparticles on thermal properties as well as crystallization of PHBV composites was dependent on the type of nanoparticles. A comparison of mechanical properties and release kinetics of antimicrobial agents directly dispersed in PHBV and modified in LDH and then dispersed in PHBV was made. The results indicated that mechanical properties increased and release rate decreased in the latter case. The release of benzoate and gallate into DI water from PHBV composite films with LDH modified by benzoate and gallate followed pseudo-Fickian behavior fitted with a power law model. The release of benzoate from PHBV composite films with LDH modified by benzoate was also fitted with a Weibull model indicating Fickian behavior in fractal substrate morphologically similar to the percolation cluster. The concentration of modified LDH and the loading of benzoate in modified LDH showed a significant effect on the release kinetics of benzoate. The diffusivities of benzoate at 21 °C ranged from 3.41 to14.97 x 10-16 m 2/s. The slowest release rate was achieved by the PHBV film containing 5 % w/w of modified LDH with medium loading of benzoate (21 % w/w of benzoate) in nanoparticles. The release of gallate from PHBV was much faster than that of benzoate. The effective diffusivity of benzoate increased with increase of temperature and the activation energy Ea for benzoate diffusion was calculated as 66.4 kJ/mol. It will be thus possible to design biodegradable polymeric nanocomposites with a tunable release of active molecules for various applications. (Abstract shortened by UMI.).

  15. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review

    NASA Astrophysics Data System (ADS)

    Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu

    2016-04-01

    This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.

  16. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita.

    PubMed

    Mishra, Prabhakar; R S, Suresh Kumar; Jerobin, Jayakumar; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-01-01

    Presence of several biochemical constituents in neem makes it an efficient antimicrobial agent for pathogenic diseases. The current investigation was aimed to assess the therapeutic potential of neem nanoemulsion as a control measure for Pseudomonas aeruginosa infection in freshwater fish Labeo rohita. The median lethal concentration (LC50) for the neem oil and neem nanoemulsion was 73.9 and 160.3 mg/L, respectively. The biomarker enzymes of treated fish tissues showed a significant difference in the level of glutathione reductase, catalase, and lipid peroxidation in neem oil-treated samples than in neem nanoemulsion-treated samples at P<0.05. The results were corroborative with histopathology and ultrastructural analysis. The bacterial infection of P. aeruginosa treated using neem nanoemulsion was more effective in both in vitro and in vivo methods. Present findings suggest that neem-based nanoemulsion has negligible toxicity to Rohu fishes. This makes neem-based nanoemulsion as an efficient therapeutic agent against P. aeruginosa infection, leading to its possible usage in the aquaculture industry. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  17. Re-evolution of the 2-phenylquinolines: ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance.

    PubMed

    Sabatini, Stefano; Gosetto, Francesca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Sancineto, Luca; Manfroni, Giuseppe; Tabarrini, Oriana; Dimovska, Mirjana; Kaatz, Glenn W; Cecchetti, Violetta

    2013-06-27

    Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of antimicrobial agents that are substrates. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, biocides, and dyes, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 2-phenylquinoline derivatives was designed by means of ligand-based pharmacophore modeling in an attempt to identify improved S. aureus NorA efflux pump inhibitors (EPIs). Most of the 2-phenylquinoline derivatives displayed potent EPI activity against the norA overexpressing strain SA-1199B. The antibacterial activity of ciprofloxacin, when used in combination with some of the synthesized compounds, was completely restored in SA-1199B and SA-K2378, a strain overexpressing norA from a multicopy plasmid. Compounds 3m and 3q also showed potent synergistic activity with the ethidium bromide dye in a strain overexpressing the MepA MDR efflux pump.

  18. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis.

    PubMed

    Santos, A L S; Sodre, C L; Valle, R S; Silva, B A; Abi-Chacra, E A; Silva, L V; Souza-Goncalves, A L; Sangenito, L S; Goncalves, D S; Souza, L O P; Palmeira, V F; d'Avila-Levy, C M; Kneipp, L F; Kellett, A; McCann, M; Branquinha, M H

    2012-01-01

    Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.

  19. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents.

    PubMed

    Chung, Shin-Hye; Cho, Soha; Kim, Kyungsun; Lim, Bum-Soon; Ahn, Sug-Joon

    2017-03-01

    To compare the antimicrobial and physical properties of experimental primers containing chlorhexidine (CHX) or ursolic acid (UA) with a commercial primer. Two antibacterial agents, 3 mg each of CHX and UA were incorporated respectively into 1 ml of Transbond XT primer (TX) to form antibacterial primers, TX-CHX and TX-UA. The antimicrobial activity of the three primers (TX, TX-CHX, and TX-UA) against Streptococcus mutans in both planktonic and biofilm phases was analyzed by determining minimum inhibitory and bactericidal concentrations and by performing growth and biofilm assays. Growth and biofilm assays were performed in both the absence and presence of thermocycling in a water tank to analyze the effects of water aging on the antimicrobial activities of primers. After bonding brackets onto bovine incisors using the primers, shear bond strength and mode of fracture were analyzed to compare physical properties. TX-CHX had stronger antimicrobial activity against S. mutans in the planktonic and biofilm phases than did TX or TX-UA. When applied, TX-CHX completely inhibited the growth and biofilm formation of S. mutans . In addition, the antimicrobial activity of TX-CHX was maintained after thermocycling. However, TX-UA did not show significant antimicrobial activity compared with TX. There was no significant difference in either shear bond strength or bond failure interface among the primers. Incorporation of CHX into an orthodontic primer may help prevent enamel demineralization around surfaces without compromising its physical properties.

  20. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Bathini, Raju; Manga, Vijjulatha

    2018-04-01

    The present study demonstrated the synthesis of new series of coumarin-1,2,3-triazole hybrids under microwave irradiation method. Several dimers of coumarin based 1,2,3-triazole derivatives were synthesized and their antimycobacterial and antimicrobial activities were investigated. The antimycobacterial activity screening results revealed that compounds 6i and 6j were the most active against Mycobacterium tuberculosis H37Rv strain. The active compounds were further evaluated for cytotoxicity with HEK cell lines and exhibited less % of inhibition. The same synthetic hybrids were evaluated for their antimicrobial activity against various bacterial strains and fungal strains and compounds 6e, 6h, 6i and 6j were found to be the most promising antimicrobial potent molecules. Furthermore, the active compounds against Mycobacterium tuberculosis were evaluated for their molecular docking studies against pantothenate synthetase (PS) enzyme of MTB and the docking results are in well agreement with the antitubercular evaluation results.

  1. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing.

    PubMed

    Bezuidenhout, Martin B; Dimitrov, Dimitar M; van Staden, Anton D; Oosthuizen, Gert A; Dicks, Leon M T

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.

  2. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing

    PubMed Central

    Bezuidenhout, Martin B.; Dimitrov, Dimitar M.; van Staden, Anton D.; Oosthuizen, Gert A.; Dicks, Leon M. T.

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research. PMID:26504776

  3. Antimicrobial resistance of Listeria spp. recovered from processed bison.

    PubMed

    Li, Q; Sherwood, J S; Logue, C M

    2007-01-01

    The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.

  4. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents

    PubMed Central

    Baranwal, Anupriya; Srivastava, Ananya; Kumar, Pradeep; Bajpai, Vivek K.; Maurya, Pawan K.; Chandra, Pranjal

    2018-01-01

    Nanostructured materials (NSMs) have increasingly been used as a substitute for antibiotics and additives in various products to impart microbicidal effect. In particular, use of silver nanoparticles (AgNPs) has garnered huge researchers' attention as potent bactericidal agent due to the inherent antimicrobial property of the silver metal. Moreover, other nanomaterials (carbon nanotubes, fullerenes, graphene, chitosan, etc.) have also been studied for their antimicrobial effects in order ensure their application in widespread domains. The present review exclusively emphasizes on materials that possess antimicrobial activity in nanoscale range and describes their various modes of antimicrobial action. It also entails broad classification of NSMs along with their application in various fields. For instance, use of AgNPs in consumer products, gold nanoparticles (AuNPs) in drug delivery. Likewise, use of zinc oxide nanoparticles (ZnO-NPs) and titanium dioxide nanoparticles (TiO2-NPs) as additives in consumer merchandises and nanoscale chitosan (NCH) in medical products and wastewater treatment. Furthermore, this review briefly discusses the current scenario of antimicrobial nanostructured materials (aNSMs), limitations of current research and their future prospects. To put various perceptive insights on the recent advancements of such antimicrobials, an extended table is incorporated, which describes effect of NSMs of different dimensions on test microorganisms along with their potential widespread applications. PMID:29593676

  5. In Vitro Studies on a Microfluidic Sensor with Embedded Obstacles Using New Antibacterial Synthetic Compounds (1-TDPPO) Mixed Prop-2-en-1-one with Difluoro Phenyl.

    PubMed

    Roh, Changhyun; Lee, Jaewoong; Kinger, Mayank; Kang, Chankyu

    2017-04-08

    This paper describes the use of an analytical microfluidic sensor for accelerating chemo-repellent response and strong anti-bacterial 1-(Thien-2-yl)-3-(2, 6-difluoro phenyl) prop-2-en-1-one (1-TDPPO). The chemically-synthesized antimicrobial agent, which included prop-2-en-1-one and difluoro phenyl groups, was moving through an optically transparent polydimethylsiloxane (PDMS) microfluidic sensor with circular obstacles arranged evenly. The response, growth and distribution of fluorescent labeling Pseudomonas aeruginosa PAO1 against the antimicrobial agent were monitored by confocal laser scanning microscope (CLSM). The microfluidic sensor along with 1-TDPPOin this study exhibits the following advantages: (i) Real-time chemo-repellent responses of cell dynamics; (ii) Rapid eradication of biofilm by embedded obstacles and powerful antibacterial agents, which significantly reduce the response time compared to classical methods; (iii) Minimal consumption of cells and antimicrobial agents; and (iv) Simplifying the process of the normalization of the fluorescence intensity and monitoring of biofilm by captured images and datasets.

  6. 76 FR 4120 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... susceptibility of enteric bacteria to antimicrobial agents of medical importance. The NARMS program, established... infected with these bacteria, resulting in tens of thousands of hospitalizations and hundreds of deaths...

  7. Microbiological aspects of an in situ model to study effects of antimicrobial agents on dental plaque ecology.

    PubMed

    Giertsen, E; Guggenheim, B; Thurnheer, T; Gmür, R

    2000-10-01

    This study validates an in situ model for ecological studies of dental plaque exposed to various antimicrobial agents with different modes of action on plaque bacteria. Eleven subjects wore two acrylic appliances, each containing two bovine enamel discs, during two 1-wk test periods. Using a split-mouth crossover design, the appliances were dipped twice daily for 1 min into water (control; treatment A), fluoride (26.3 mM NaF; B), zinc acetate (20.0 mM; C), or fluoride plus zinc acetate (D). Four of the subjects used also chlorhexidine diacetate (2.2 mM; E) and chlorhexidine plus fluoride (F). At the end of each period, plaque was collected from the discs, after which the microbiota were analyzed by culture, automated quantitative immunofluorescence, and a viability fluorescence stain. As compared to control, treatments B, C, and D resulted in a significant reduction of individual taxa as detected by immunofluorescence, whereas similar bacterial viability and total bacterial numbers were observed. In contrast, chlorhexidine significantly reduced bacterial viability, total cell numbers, and the abundance of most of the enumerated taxa. We conclude that this in situ model is well suited to study effects of antimicrobial agents on dental plaque ecology. Combined with viability testing, immunofluorescence is obviously superior to culture in detecting taxa-specific shifts caused by antimicrobial agents.

  8. Species of Genus Ganoderma (Agaricomycetes) Fermentation Broth: A Novel Antioxidant and Antimicrobial Agent.

    PubMed

    Cilerdzic, Jasmina; Kosanic, Marijana; Stajić, Mirjana; Vukojevic, Jelena; Ranković, Branislav

    2016-01-01

    The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 μg gallic acid equivalents/mL) and flavonoids (42.20 μg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps.

  9. Synthesis of Some Benzofuran Derivatives Containing Pyrimidine Moiety as Potent Antimicrobial Agents.

    PubMed

    Venkatesh, Talavara; Bodke, Yadav Dasharathrao; Joy, Muthipeedika Nibin; Dhananjaya, Bhadrapura Lakkappa; Venkataraman, Sivaramakrishnan

    2018-01-01

    In this investigation, the synthesis of 2-substituted pyrimidines by the reaction of benzofuran chalcones (3a-d) with urea, thiourea and guanidine hydrochloride was reported. The structures of title compounds (4a-d), (5a-d) and (6a-d) were established on the basis of analytical and spectral data. The synthesized compounds were screened for antimicrobial activity and molecular docking studies. Some of the compounds displayed excellent antimicrobial activity. The molecular docking analysis revealed that compounds 5a and 5c with the lowest binding energy in comparison to others suggesting its potential as best inhibitor of GluN-6-P. Consequently, it is confirmed from the above analysis that the compounds 5a and 5c might serve as a useful backbone scaffold for rational design, adaptation and investigation of more active analogs as potential broad spectrum antimicrobial agents.

  10. The Impact of an Antimicrobial Utilization Program on Antimicrobial Use at a Large Teaching Hospital: A Randomized Controlled Trial

    PubMed Central

    Camins, Bernard C.; King, Mark D.; Wells, Jane B.; Googe, Heidi L.; Patel, Manish; Kourbatova, Ekaterina V.; Blumberg, Henry M.

    2009-01-01

    Background Multidisciplinary antimicrobial utilization teams (AUT) have been proposed as a mechanism for improving antimicrobial use, but data on their efficacy remain limited. Objective To determine the impact of an AUT on antimicrobial use at a teaching hospital. Design Randomized controlled intervention trial. Setting A 953-bed public university-affiliated urban teaching hospital. Patients Patients who were prescribed selected antimicrobial agents (piperacillin-tazobactam, levofloxacin, or vancomycin) by internal medicine ward teams. Intervention Twelve internal medicine teams were randomized monthly: 6 teams to intervention group (academic detailing by the AUT), and 6 teams to a control group given indication-based guidelines for prescription of broad spectrum antimicrobials (standard of care) during a 10-month study period. Measurements Proportion of appropriate empiric, definitive (therapeutic), and end antimicrobial (overall) usage. Results A total of 784 new prescriptions of piperacillin-tazobactam, levofloxacin, and vancomycin were reviewed. The proportion of appropriate antimicrobial prescriptions written by the intervention teams was significantly higher than prescribed by the control teams: 82% vs. 73% for empiric (RR=1.14, 95% CI 1.04–1.24), 82% vs. 43% for definitive (RR=1.89, 95% CI 1.53–2.33), and 94% vs. 70% for end antimicrobial usage (RR=1.34, 95% CI 1.25–1.43). In a multivariate analysis, teams that received feedback from the AUT alone (aRR=1.37, 95% CI 1.27–1.48) or from both the AUT and the ID consult service (aRR=2.28, 95% CI 1.64–3.19) were significantly more likely to prescribe end antimicrobial usage appropriately compared to control teams. Conclusions A multidisciplinary AUT which provides feedback to prescribing physicians was an effective method in improving antimicrobial use. PMID:19712032

  11. Determining Multiple Responses of Pseudomonas aeruginosa PAO1 to an Antimicrobial Agent, Free Nitrous Acid.

    PubMed

    Gao, Shu-Hong; Fan, Lu; Peng, Lai; Guo, Jianhua; Agulló-Barceló, Míriam; Yuan, Zhiguo; Bond, Philip L

    2016-05-17

    Free nitrous acid (FNA) has recently been demonstrated as an antimicrobial agent on a range of micro-organisms, especially in wastewater-treatment systems. However, the antimicrobial mechanism of FNA is largely unknown. Here, we report that the antimicrobial effects of FNA are multitargeted. The response of a model denitrifier, Pseudomnas aeruginosa PAO1 (PAO1), common in wastewater treatment, was investigated in the absence and presence of inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. This was achieved through coupling gene expression analysis, by RNA sequencing, and with a suite of physiological analyses. Various transcripts exhibited significant changes in abundance in the presence of FNA. Respiration was likely inhibited because denitrification activity was severely depleted, and decreased transcript levels of most denitrification genes occurred. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in the FNA-exposed cultures. Meanwhile, during FNA exposure, PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product as a possible survival mechanism. Additionally, protein synthesis was significantly decreased, and ribosome preservation was evident. These findings improve our understanding of PAO1 in response to FNA and contribute toward the potential application for use of FNA as an antimicrobial agent.

  12. Microbioassay of Antimicrobial Agents

    PubMed Central

    Simon, Harold J.; Yin, E. Jong

    1970-01-01

    A previously described agar-diffusion technique for microbioassay of antimicrobial agents has been modified to increase sensitivity of the technique and to extend the range of antimicrobial agents to which it is applicable. This microtechnique requires only 0.02 ml of an unknown test sample for assay, and is capable of measuring minute concentrations of antibiotics in buffer, serum, and urine. In some cases, up to a 20-fold increase in sensitivity is gained relative to other published standardized methods and the error of this method is less than ±5%. Buffer standard curves have been established for this technique, concurrently with serum standard curves, yielding information on antimicrobial serum-binding and demonstrating linearity of the data points compared to the estimated regression line for the microconcentration ranges covered by this technique. This microassay technique is particularly well suited for pediatric research and for other investigations where sample volumes are small and quantitative accuracy is desired. Dilution of clinical samples to attain concentrations falling with the range of this assay makes the technique readily adaptable and suitable for general clinical pharmacological studies. The microassay technique has been standardized in buffer solutions and in normal human serum pools for the following antimicrobials: ampicillin, methicillin, penicillin G, oxacillin, cloxacillin, dicloxacillin, cephaloglycin, cephalexin, cephaloridine, cephalothin, erythromycin, rifamycin amino methyl piperazine, kanamycin, neomycin, streptomycin, colistin, polymyxin B, doxycycline, minocycline, oxytetracycline, tetracycline, and chloramphenicol. PMID:4986725

  13. Dramatic effects of a new antimicrobial stewardship program in a rural community hospital.

    PubMed

    Libertin, Claudia R; Watson, Stephanie H; Tillett, William L; Peterson, Joy H

    2017-09-01

    New Joint Commission antimicrobial stewardship requirements took effect on January 1, 2017, promoted as a central strategy for coping with the emerging problems of antimicrobial resistance and Clostridium difficile infection. Our objective was to measure the effects of a new antimicrobial stewardship program (ASP) in a rural community hospital with no prior ASP, in the context of having a new infectious disease specialist on staff. An ASP team was formed to implement a prospective audit with health care provider feedback and targeting 12 antimicrobial agents in a rural hospital in Georgia. An educational grand rounds lecture series was provided before implementation of the ASP to all prescribers. After implementation, algorithms to aid the selection of empirical antibiotics for specific infectious disease syndromes based on local antibiograms were provided to prescribers to improve this selection. Rates of C difficile infections, total targeted antimicrobial costs, and drug utilization rates were calculated for 1 year pre-ASP implementation (2013) and 1 year post-ASP implementation (October 2014-December 2015). The patient safety metric of C difficile infections decreased from 3.35 cases per 1,000 occupied bed days (OBDs) in 2013 to 1.35 cases per 1,000 OBDs in 2015. Total targeted antimicrobial costs decreased 50% from $16.93 per patient day in 2013 to $8.44 per patient day in 2015. Overall antimicrobial use decreased 10% from before the ASP initiative to 1 year after it. Annualized savings were $280,000 in 1 year, based on drug savings only. Judicious use of antimicrobials and resources can improve a patient safety metric and decrease costs dramatically in rural institutions where the average hospital census is <100 patients per day. The savings would allow the institutions to spend better while improving the use of antimicrobials. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Considering a new domain for antimicrobial stewardship: Topical antibiotics in the open surgical wound.

    PubMed

    Edmiston, Charles E; Leaper, David; Spencer, Maureen; Truitt, Karen; Litz Fauerbach, Loretta; Graham, Denise; Johnson, Helen Boehm

    2017-11-01

    The global push to combat the problem of antimicrobial resistance has led to the development of antimicrobial stewardship programs (ASPs), which were recently mandated by The Joint Commission and the Centers for Medicare and Medicaid Services. However, the use of topical antibiotics in the open surgical wound is often not monitored by these programs nor is it subject to any evidence-based standardization of care. Survey results indicate that the practice of using topical antibiotics intraoperatively, in both irrigation fluids and powders, is widespread. Given the risks inherent in their use and the lack of evidence supporting it, the practice should be monitored as a core part of ASPs, and alternative agents, such as antiseptics, should be considered. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Nanoparticle-based Therapies for Wound Biofilm Infection: Opportunities and Challenges

    PubMed Central

    Kim, Min-Ho

    2016-01-01

    Clinical data from human chronic wounds implicates biofilm formation with the onset of wound chronicity. Despite the development of novel antimicrobial agents, the cost and complexity of treating chronic wound infections associated with biofilms remain a serious challenge, which necessitates the development of new and alternative approaches for effective anti-biofilm treatment. Recent advancement in nanotechnology for developing a new class of nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of biofilm infections. Over the last decade, nanoparticle-based approaches against wound biofilm infection have been directed toward developing nanoparticles with intrinsic antimicrobial properties, utilizing nanoparticles for controlled antimicrobials delivery, and applying nanoparticles for antibacterial hyperthermia therapy. In addition, a strategy to functionalize nanoparticles towards enhanced penetration through the biofilm matrix has been receiving considerable interest recently by means of achieving an efficient targeting to the bacterial cells within biofilm matrix. This review summarizes and highlights the recent development of these nanoparticle-based approaches as potential therapeutics for controlling wound biofilm infection, along with current challenges that need to be overcome for their successful clinical translation. PMID:26955044

  16. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014-2016: Study for monitoring antimicrobial resistance trend report.

    PubMed

    Veeraraghavan, Balaji; Jesudason, Mark Ranjan; Prakasah, John Antony Jude; Anandan, Shalini; Sahni, Rani Diana; Pragasam, Agila Kumari; Bakthavatchalam, Yamuna Devi; Selvakumar, Rajesh Joseph; Dhole, T N; Rodrigues, Camilla; Roy, Indranil; Joshi, Sangeetha; Chaudhuri, Bhaskar Narayan; Chitnis, D S

    2018-01-01

    The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR) in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014-2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205) followed by 25% of Klebsiella pneumoniae (n = 676) and 11% of Pseudomonas aeruginosa (n = 308). Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL)-positive isolates were ranged from 66%-77% in E. coli to 61%-72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that carbapenems, amikacin and colistin continue to be the best agents available to treat drug-resistant infections. Thus continuous monitoring of susceptibility profile of the clinically important Gram-negative pathogens is of great importance to guide effective antimicrobial therapy.

  17. Antimicrobial resistance profile of urinary tract infection at a secondary care hospital in Medan, Indonesia

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Saragih, R. H.; Nainggolan, R.

    2018-03-01

    Urinary tract infection (UTI) is a considerable health problem which ranks as the second leading cause of infection after respiratory tract one. Antimicrobial resistance in UTI has become a burden in the management of the disease due to high usage of antibiotics. A comprehensive understanding of the etiology and the antimicrobial resistance of the uropathogenic bacteria is essential to provide adequate treatment. This study aims to determine the etiologic agents and their susceptibility pattern in UTI patients. The analysis was performed retrospectively on culture isolates obtained from urine samples received at the Department of Microbiology, Dr.Pirngadi General Hospital, Medan, Indonesia in the period from January 2015 until December 2016. Higher prevalence of UTI was found in female participants of the study in comparison with males. Enterobacter (64.58%) was the most common bacteria revealed as the etiologic agent, followed by E. coli (11.46%), Citrobacter and Klebsiella (9.38% each). Amikacin and meropenem were the most sensitive antimicrobial agents for Enterobacter, E. coli, Citrobacter, and Klebsiella, showing low resistance rate. This study showed that Enterobacter was the most dominant bacterial pathogen of UTI. Amikacin and meropenem were the antibiotics with high sensitivity for UTI treatment.

  18. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    PubMed

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Pheno- and genotypic analysis of antimicrobial resistance properties of Yersinia ruckeri from fish.

    PubMed

    Huang, Yidan; Michael, Geovana Brenner; Becker, Roswitha; Kaspar, Heike; Mankertz, Joachim; Schwarz, Stefan; Runge, Martin; Steinhagen, Dieter

    2014-07-16

    Enteric red-mouth disease, caused by Yersinia ruckeri, is an important disease in rainbow trout aquaculture. Antimicrobial agents are frequently used in aquaculture, thereby causing a selective pressure on bacteria from aquatic organisms under which they may develop resistance to antimicrobial agents. In this study, the distribution of minimal inhibitory concentrations (MICs) of antimicrobial agents for 83 clinical and non-clinical epidemiologically unrelated Y. ruckeri isolates from north west Germany was determined. Antimicrobial susceptibility was conducted by broth microdilution at 22 ± 2°C for 24, 28 and 48 h. Incubation for 24h at 22 ± 2°C appeared to be suitable for susceptibility testing of Y. ruckeri. In contrast to other antimicrobial agents tested, enrofloxacin and nalidixic acid showed a bimodal distribution of MICs, with one subpopulation showing lower MICs for enrofloxacin (0.008-0.015 μg/mL) and nalidixic acid (0.25-0.5 μg/mL) and another subpopulation exhibiting elevated MICs of 0.06-0.25 and 8-64 μg/mL, respectively. Isolates showing elevated MICs revealed single amino acid substitutions in the quinolone resistance-determining region (QRDR) of the GyrA protein at positions 83 (Ser83-Arg or -Ile) or 87 (Asn87-Tyr), which raised the MIC values 8- to 32-fold for enrofloxacin or 32- to 128-fold for nalidixic acid. An isolate showing elevated MICs for sulfonamides and trimethoprim harbored a ∼ 8.9 kb plasmid, which carried the genes sul2, strB and a dfrA14 gene cassette integrated into the strA gene. These observations showed that Y. ruckeri isolates were able to develop mutations that reduce their susceptibility to (fluoro)quinolones and to acquire plasmid-borne resistance genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evaluation of Antioxidant, Antimicrobial, and Antiurolithiatic Potential of Different Solvent Extracts of Aerva lanata Linn Flowers

    PubMed Central

    Behera, Padma Charan; Ghosh, Manik

    2018-01-01

    Introduction: Aerva lanata (Linn) of family Amaranthaceae is an important and commonly used plant for its medicinal and pharmacological properties and proving the traditional uses of flowers of A. lanata Linn. Objective: All extracts of A. lanata were further evaluated for antioxidant, antimicrobial, and antiurolithiatic potential to scientifically prove the traditional uses. Materials and Methods: In the present investigation, different solvent extracts of flowers were obtained using a Soxhlet extractor. Microorganisms were obtained from IMTECH, Chandigarh. Antiurolithiatic study was carried out in Albino Research and Training Centre, Hyderabad. Results: Regardless of the antioxidant studied, the methanolic extract presented the highest antioxidant activity and the aqueous extracts offered the lowest, following the order: methanolic extract > ethyl acetate > chloroform > aqueous. The results of this antimicrobial study indicate that methanolic extract of A. lanata could be used as antimicrobial agents. Overall, the methanolic flower extract of A. lanata (Linn) was significantly more promising as antiurolithiatic spectrum. This result also suggested the potential usefulness of the methanolic extract as an antiurolithiatic agent. Conclusion: Henceforward, this research can be acknowledged as a prime new report that focuses on the application of A. lanata (Linn) as an antioxidant, antimicrobial, and antiurolithiatic agent. SUMMARY Overall, methanolic flower extract of Aerva lanata Linn showed promising antioxidant activityAdditionally, methanolic flower extract of A. lanata Linn exhibited remarkable antimicrobial and antiurolithiatic potential. Abbreviations used: IMTECH Chandigarh: Institute of Microbial Technology, Chandigarh; IMMT: Institute of Mineral and Material Technology; CSIR: Council of Scientific & Industrial Research; DPPH: 1,1-diphenyl-2-picrylhydrazyl; MTCC: Microbial Type Culture Collection; BHT: Butylated Hydroxyl Toluene. PMID:29576701

  1. Antimicrobial susceptibility, serotypes and genotypes of Pasteurella multocida isolates associated with swine pneumonia in Taiwan.

    PubMed

    Yeh, Jih-Ching; Lo, Dan-Yuan; Chang, Shao-Kuang; Chou, Chi-Chung; Kuo, Hung-Chih

    2017-09-21

    Pasteurella multocida (PM) can cause progressive atrophic rhinitis and suppurative bronchopneumonia in pigs. The present study performed antimicrobial susceptibility testing and serotype and genotype identification on the 62 PM strains isolated from the lungs of diseased pigs with respiratory symptoms. Antimicrobial susceptibility testing examined 13 antimicrobial agents (amoxicillin, cefazolin, doxycycline, flumequine, enrofloxacin, florfenicol, kanamycin, lincomycin, Linco-Spectin (lincomycin and spectinomycin), erythromycin, tylosin, tilmicosin and tiamulin). Antimicrobial resistance ratios were over 40% in all of the antimicrobial agents except for cefazolin. The highest levels of resistance (100%) were found for kanamycin, erythromycin and tylosin. The majority of isolated strains was serotype D:L6 (n=35) followed by A:L3 (n=17). Comparison of the antimicrobial resistance levels between the two serotypes showed that the antimicrobial resistance rates were higher in D:L6 than in A:L3 for all the tested antimicrobials except for tylosin and tilmicosin. For PM with erm (B), erm (T) or erm (42), the results showed no significant difference compared with non-resistance gene strains in phenotype. Pulsed-field gel electrophoresis genotyping using Apa I restriction digestion of the genomic DNA demonstrated that there were 17 distinct clusters with a similarity of 85% or more, and the genotyping result was similar to that of serotyping. The results of the present study demonstrated that the PM isolated from diseased pigs in Taiwan was resistant to multiple antimicrobials, and the distribution of antimicrobial resistance was associated with pulsotype and serotype. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria.

    PubMed

    Medina, Eva; Pieper, Dietmar Helmut

    With the advent of the antibiotic era, the overuse and inappropriate consumption and application of antibiotics have driven the rapid emergence of multidrug-resistant pathogens. Antimicrobial resistance increases the morbidity, mortality, length of hospitalization and healthcare costs. Among Gram-positive bacteria, Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Mycobacterium tuberculosis, and among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBLs)-producing bacteria have become a major global healthcare problem in the 21st century. The pressure to use antibiotics guarantees that the spread and prevalence of these as well as of future emerging multidrug-resistant pathogens will be a persistent phenomenon. The unfeasibility of reversing antimicrobial resistance back towards susceptibility and the critical need to treat bacterial infection in modern medicine have burdened researchers and pharmaceutical companies to develop new antimicrobials effective against these difficult-to-treat multidrug-resistant pathogens. However, it can be anticipated that antibiotic resistance will continue to develop more rapidly than new agents to treat these infections become available and a better understanding of the molecular, evolutionary and ecological mechanisms governing the spread of antibiotic resistance is needed. The only way to curb the current crisis of antimicrobial resistance will be to develop entirely novel strategies to fight these pathogens such as combining antimicrobial drugs with other agents that counteract and obstruct the antibiotic resistant mechanisms expressed by the pathogen. Furthermore, as many antibiotics are often inappropriately prescribed, a more personalized approach based on precise diagnosis tools will ensure that proper treatments can be promptly applied leading to more targeted and effective therapies. However, in more general terms, also the overall use and release of antibiotics in the environment needs to be better controlled.

  3. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei

    PubMed Central

    Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T

    2006-01-01

    Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542

  4. In Vitro Activities of the Everninomicin SCH 27899 and Other Newer Antimicrobial Agents against Borrelia burgdorferi

    PubMed Central

    Dever, Lisa L.; Torigian, Christine V.; Barbour, Alan G.

    1999-01-01

    The in vitro activity of the everninomicin antibiotic SCH 27899 against 17 isolates of Borrelia spp. was investigated. MICs ranged from 0.06 to 0.5 μg/ml. Time-kill studies with the B31 strain of B. burgdorferi demonstrated ≥3-log10-unit killing after 72 h with concentrations representing four times the MIC. The in vitro activity of four other newer antimicrobial agents, meropenem, cefepime, quinupristin-dalfopristin, and linezolid, was also tested against the B31 strain. Meropenem was the most potent of the latter agents, with an MIC of 0.125 μg/ml. PMID:10390242

  5. Bio-Contamination Control for Spacesuit Garments - A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Korona, Adam; Orndoff, Evelyn; Ott, Mark; Poritz, Darwin

    2010-01-01

    This paper outlines a preliminary study to review, test, and improve upon the current state of spacesuit bio-contamination control. The study includes an evaluation of current and advanced suit materials, ground and on-orbit cleaning methods, and microbial test and analysis methods. The first aspect of this study was to identify potential anti-microbial textiles and cleaning agents, and to review current microbial test methods. The anti-microbial cleaning agent and textile market survey included a review of current commercial-off-the-shelf (COTS) products that could potentially be used as future space flight hardware. This review included replacements for any of the softgood layers that may become contaminated during an extravehicular activity (EVA), including the pressure bladder, liquid cooling garment, and ancillary comfort undergarment. After a series of COTS anti-microbial textiles and clean ing agents were identified, a series of four tests were conducted: (1) a stacked configuration test that was conducted in order to review how bio-contamination would propagate through the various suit layers, (2) a individual materials test that evaluated how well each softgood layer either promoted or repressed growth, (3) a cleaning agent test that evaluated the efficacy on each of the baseline bladders, and (4) an evaluation of various COTS anti-microbial textiles. All antimicrobial COTS materials tested appeared to control bacteria colony forming unit (CFU) growth better than the Thermal Comfort Undergarment (TCU) and ACES Liquid Cooling Garment (LCG)/EMU Liquid Cooling Ventilation Garment (LCVG) materials currently in use. However, a comparison of fungi CFU growth in COTS to current suit materials appeared to vary per material. All cleaning agents tested in this study appeared to inhibit the level of bacteria and fungi growth to acceptable levels for short duration tests. While several trends can be obtained from the current analysis, a series of test improvements are described for future microbial testing.

  6. An empirical comparison of isolate-based and sample-based definitions of antimicrobial resistance and their effect on estimates of prevalence.

    PubMed

    Humphry, R W; Evans, J; Webster, C; Tongue, S C; Innocent, G T; Gunn, G J

    2018-02-01

    Antimicrobial resistance is primarily a problem in human medicine but there are unquantified links of transmission in both directions between animal and human populations. Quantitative assessment of the costs and benefits of reduced antimicrobial usage in livestock requires robust quantification of transmission of resistance between animals, the environment and the human population. This in turn requires appropriate measurement of resistance. To tackle this we selected two different methods for determining whether a sample is resistant - one based on screening a sample, the other on testing individual isolates. Our overall objective was to explore the differences arising from choice of measurement. A literature search demonstrated the widespread use of testing of individual isolates. The first aim of this study was to compare, quantitatively, sample level and isolate level screening. Cattle or sheep faecal samples (n=41) submitted for routine parasitology were tested for antimicrobial resistance in two ways: (1) "streak" direct culture onto plates containing the antimicrobial of interest; (2) determination of minimum inhibitory concentration (MIC) of 8-10 isolates per sample compared to published MIC thresholds. Two antibiotics (ampicillin and nalidixic acid) were tested. With ampicillin, direct culture resulted in more than double the number of resistant samples than the MIC method based on eight individual isolates. The second aim of this study was to demonstrate the utility of the observed relationship between these two measures of antimicrobial resistance to re-estimate the prevalence of antimicrobial resistance from a previous study, in which we had used "streak" cultures. Boot-strap methods were used to estimate the proportion of samples that would have tested resistant in the historic study, had we used the isolate-based MIC method instead. Our boot-strap results indicate that our estimates of prevalence of antimicrobial resistance would have been considerably lower in the historic study had the MIC method been used. Finally we conclude that there is no single way of defining a sample as resistant to an antimicrobial agent. The method used greatly affects the estimated prevalence of antimicrobial resistance in a sampled population of animals, thus potentially resulting in misleading results. Comparing methods on the same samples allows us to re-estimate the prevalence from other studies, had other methods for determining resistance been used. The results of this study highlight the importance of establishing what the most appropriate measure of antimicrobial resistance is, for the proposed purpose of the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    PubMed

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review.

    PubMed

    Pareek, Vikram; Gupta, Rinki; Panwar, Jitendra

    2018-09-01

    The unprecedented increase in antibiotic resistance in this era has resuscitated the attention of scientific community to exploit silver and its various species as antimicrobial agents. Plenty of studies have been done to measure the antimicrobial potential of silver species (cationic silver, metallic Ag 0 or silver nanoparticles, silver oxide particulates etc.) and indicated that membrane damage, oxidative stress, protein dysfunction and DNA damage to be the possible cause of injury to the microbial cell. However, the precise molecular mechanism of their mode of action has remained unclear, which makes an obstacle towards the generation of potential antibacterial agent against various pathogenic and multidrug resistant (MDR) bacteria. In order to endeavor this issue, one should first have the complete understanding about the resistance mechanisms present in bacteria that can be a therapeutic target for the silver-based drug formulations. Apart from this, in-depth understanding of the interactions of various silver species (with the biological media) is a probable deciding factor for the synthesis of silver-based drug formulations because the particular form and physico-chemical properties of silver can ultimately decide their antimicrobial action. In context to above mentioned serious concerns, the present article aims to discuss the mechanisms behind the confrontation of bacteria against various drugs and the effect of physico-chemical properties of silver species on their bactericidal action as well as critically evaluates the available reports on bacterial transcriptomic and proteomic profiles upon the exposure of various silver species. Further, this review state the mechanism of action that needs to be followed for the complete understanding of toxic potential of silver nanoparticles, which will open a possibility to synthesize new silver nanoparticle based antimicrobial systems with desired properties to ensure their safe use, exposure over extended period and fate in human body and environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    PubMed Central

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era. PMID:27809281

  10. Biofilm disruption with rotating microrods enhances antimicrobial efficacy

    NASA Astrophysics Data System (ADS)

    Mair, Lamar O.; Nacev, Aleksandar; Hilaman, Ryan; Stepanov, Pavel Y.; Chowdhury, Sagar; Jafari, Sahar; Hausfeld, Jeffrey; Karlsson, Amy J.; Shirtliff, Mark E.; Shapiro, Benjamin; Weinberg, Irving N.

    2017-04-01

    Biofilms are a common and persistent cause of numerous illnesses. Compared to planktonic microbes, biofilm residing cells often demonstrate significant resistance to antimicrobial agents. Thus, methods for dislodging cells from the biofilm may increase the antimicrobial susceptibility of such cells, and serve as a mechanical means of increasing antimicrobial efficacy. Using Aspergillus fumigatus as a model microbe, we magnetically rotate microrods in and around biofilm. We show that such rods can improve the efficacy of antimicrobial Amphotericin B treatments in vitro. This work represents a first step in using kinetic magnetic particle therapy for disrupting fungal biofilms.

  11. Benefits and risks of antimicrobial use in food-producing animals

    PubMed Central

    Hao, Haihong; Cheng, Guyue; Iqbal, Zahid; Ai, Xiaohui; Hussain, Hafiz I.; Huang, Lingli; Dai, Menghong; Wang, Yulian; Liu, Zhenli; Yuan, Zonghui

    2014-01-01

    Benefits and risks of antimicrobial drugs, used in food-producing animals, continue to be complex and controversial issues. This review comprehensively presents the benefits of antimicrobials drugs regarding control of animal diseases, protection of public health, enhancement of animal production, improvement of environment, and effects of the drugs on biogas production and public health associated with antimicrobial resistance. The positive and negative impacts, due to ban issue of antimicrobial agents used in food-producing animals, are also included in the discussion. As a double-edged sword, use of these drugs in food-animals persists as a great challenge. PMID:24971079

  12. Development of New Therapeutics Targeting Biofilm Formation by the Opportunistic Pulmonary Pathogens Pseudomonas aeruginosa and Aspergillus Fumigatus

    DTIC Science & Technology

    2017-10-01

    antibacterial activity . The unexpected departure of PDF Perrin Baker Page 26 of 36 in early June 2017 and the delay in recruiting his replacement...characterize the ability of recombinant GH enzymes to enhance the activity of antimicrobial agents against PA and AF in vitro (2) Perform...FOR YEAR 1: Specific Aim 1: To characterize the ability of the hydrolases to enhance the activity of antimicrobial agents in vitro. Major Task 1

  13. Genotypic Analysis of Escherichia coli Strains from Poultry Carcasses and Their Susceptibilities to Antimicrobial Agents

    PubMed Central

    Geornaras, Ifigenia; Hastings, John W.; von Holy, Alexander

    2001-01-01

    Plasmid profiling and amplified fragment length polymorphism (AFLP) analysis were used to genotype 50 Escherichia coli strains from poultry carcasses. Thirty different plasmid profiles were evident, and clustering of the AFLP data showed that they were a distinctly heterogeneous group of strains. Susceptibility testing against five antimicrobial agents used in the South African poultry industry showed all strains to be susceptible to danofloxacin and colistin, while the majority (96%) were resistant to two tetracyclines. PMID:11282652

  14. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence.

    PubMed

    Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Falcigno, Lucia; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Neglia, Gianluca; Anastasio, Aniello

    2016-11-15

    Recently there has been growing interest in the discovery of new antimicrobial agents to increase safety and shelf-life of food products. Here, we developed an innovative approach by introducing the concept that mitochondrial targeting peptides (MTP) can interact and disrupt bacterial membranes, acting as antimicrobial agents. As proof-of-principle, we used a multidisciplinary strategy by combining in silico predictions, docking simulations and antimicrobial assays, to identify two peptides, MTP1 and MTP2, which were structurally and functionally characterized. Both compounds appeared effective against Listeria monocytogenes, one of the most important foodborne pathogens. Specifically, a significant bactericidal activity was evidenced with EC50 values of 16.8±1.2μM for MTP1 and 109±7.0μM for MTP2. Finally, NMR structure determinations suggested that MTP1 would be oriented into the membrane bilayer, while the molecular shape of MTP2 could indicate porin-mediated antimicrobial mechanisms, as predicted using molecular docking analysis. Therefore, MTPs represent alternative sources to design new potential bio-preservatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Antimicrobial resistance of Shigella spp. from humans in Shanghai, China, 2004-2011.

    PubMed

    Zhang, Jianmin; Jin, Huiming; Hu, Jiayu; Yuan, Zhengan; Shi, Weimin; Yang, Xiaowei; Xu, Xuebin; Meng, Jianghong

    2014-03-01

    A retrospective study conducted on patients with diarrhea in Shanghai, China from 2004-2011, indicated that of 77,600 samples collected, 1,635 (2.1%) tested positive for Shigella. Species isolated included S. sonnei (1,066, 65.1%), S. flexneri (569, 34.7%), and S. boydii (3, 0.2%). Most of the Shigella isolates were found to be resistant to streptomycin (98.7%), trimethoprim (98.0%), ampicillin (92.1%), and nalidixic acid (91.7%). Additionally, many isolates were resistant to tetracycline (86.9%), trimethoprim + sulfamethoxazole (80.1%), sulfisoxazole (76.8%) and gentamicin (55.5%). Approximately 80% of the isolates were resistant to at least eight antimicrobial agents, 14% to at least ten antimicrobials tested and 10 isolates to fourteen antimicrobials, including sulfonamides, fluoroquinolones, tetracyclines, aminoglycosides and β-lactamases. Importantly, co-resistance to fluoroquinolones and the third- and fourth-generation cephalosporins was also identified. The high levels of resistance to antimicrobial agents commonly used in clinical medicine presents a great challenge to treating patients with shigellosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics.

    PubMed

    Falanga, Annarita; Nigro, Ersilia; De Biasi, Margherita Gabriella; Daniele, Aurora; Morelli, Giancarlo; Galdiero, Stefania; Scudiero, Olga

    2017-07-20

    Cyclic peptides are receiving significant attention thanks to their antimicrobial activity and high serum stability, which is useful to develop and design novel antimicrobial agents. Antimicrobial peptides appear to be key components of innate defences against bacteria, viruses, and fungi. Among the others, defensins possess a strong microbicidial activity. Defensins are cationic and amphipathic peptides with six cysteine residues connected by three disulfide bonds found in plants, insects, and mammals; they are divided in three families: α-, β-, and θ-defensins. α-Defensins are contained in the primary granules of human neutrophils; β-defensins are expressed in human epithelia; and θ-defensins are pseudo-cyclic defensins not found in humans, but in rhesus macaques. The structural diversities among the three families are reflected in a different antimicrobial action as well as in serum stability. The engineering of these peptides is an exciting opportunity to obtain more functional antimicrobial molecules highlighting their potential as therapeutic agents. The present review reports the most recent advances in the field of cyclic peptides with a specific regard to defensin analogs.

  17. Immune-based therapies.

    PubMed

    Lein, B

    1995-12-01

    Several immune-based HIV therapy studies presented at the Interscience Conference on Antimicrobial Agents Chemotherapy (ICAAC) are summarized. These studies involve the following therapies: HIV-IT, a gene therapy approach to augmenting the body's anti-HIV responses; interferon-alpha n3, a new formulation of alpha interferon with fewer toxicities; transfer of immune responses from one individual to another, also called passive immune therapy; and interleukin-2 (IL-2) in combination with protease inhibitors.

  18. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  19. Antimicrobial Drug Prescription and Neisseria gonorrhoeae Susceptibility, United States, 2005–2013

    PubMed Central

    Bartoces, Monina G.; Soge, Olusegun O.; Riedel, Stefan; Kubin, Grace; Del Rio, Carlos; Papp, John R.; Hook, Edward W.; Hicks, Lauri A.

    2017-01-01

    We investigated whether outpatient antimicrobial drug prescribing is associated with Neisseria gonorrhoeae antimicrobial drug susceptibility in the United States. Using susceptibility data from the Gonococcal Isolate Surveillance Project during 2005–2013 and QuintilesIMS data on outpatient cephalosporin, macrolide, and fluoroquinolone prescribing, we constructed multivariable linear mixed models for each antimicrobial agent with 1-year lagged annual prescribing per 1,000 persons as the exposure and geometric mean MIC as the outcome of interest. Multivariable models did not demonstrate associations between antimicrobial drug prescribing and N. gonorrhoeae susceptibility for any of the studied antimicrobial drugs during 2005–2013. Elucidation of epidemiologic factors contributing to resistance, including further investigation of the potential role of antimicrobial drug use, is needed. PMID:28930001

  20. Prevalence and Antimicrobial Resistance of Enterobacteriaceae in Shell Eggs from Small-Scale Poultry Farms and Farmers' Markets.

    PubMed

    Kilonzo-Nthenge, A; Nahashon, S N; Godwin, S; Liu, S; Long, D

    2016-12-01

    Public health concerns over the emergence of antimicrobial resistant bacteria have increased recently. The purpose of this study was to investigate the prevalence of antimicrobial resistant Enterobacteriaceae in shell eggs purchased from small poultry farms and farmers' markets. A total of 504 eggs were pooled to make 252 composite samples, consisting of 2 eggs per composite. The microbial quality of shell eggs was determined by standard quantitative, biochemical, and PCR techniques. Susceptibility to 13 antimicrobial agents was determined by the Kirby-Bauer disk diffusion technique, and results were interpreted based on Clinical and Laboratory Standards Institute values. Shell eggs and egg contents were positive for Escherichia coli (11.9 and 5.2%, respectively), Enterobacter (9.1 and 7.9%), and Serratia (11.5 and 4.8%). Salmonella was isolated from 3.6% of egg shells but not from egg contents. Mean (±SD) Enterobacteriaceae levels (4.4 ± 2.0 log CFU per eggshell) on shell eggs from poultry farms was significantly higher (P ≤ 0.05) than that on shell eggs from farmers' markets (2.1 ± 1.3 log CFU per eggshell). Of the 134 isolates recovered, resistance among isolates from farm and market shell eggs to erythromycin was most common (48.5 and 32.8%, respectively) followed by ampicillin (44.8 and 17.2%), and tetracycline (29.9 and 17.2%). The multiple antibiotic resistance index value for E. coli and Pantoea was 0.62, and that for Salmonella and Klebsiella terrigena was 0.08, indicating that Enterobacteriaceae in shell eggs can be resistant to multiple antimicrobial agents. These data reveal that shell eggs from small poultry farms and farmers' markets can harbor antimicrobial resistant pathogenic and commensal bacteria. Thus, failure to properly handle shell eggs poses a potential health hazard to consumers.

  1. Microbiologic aspects of dental plaque and dental caries.

    PubMed

    Marsh, P D

    1999-10-01

    Dental plaque is an example of a microbial biofilm with a diverse microbial composition; it is found naturally on teeth and confers advantages to the host, for example, by preventing colonization by exogenous, and often pathogenic, micro-organisms. In individuals with a high frequency sugar diet, or with a severely compromised saliva flow, the levels of potentially cariogenic bacteria (acid-producing and acid-tolerating species) can increase beyond those compatible with enamel health. This article discusses antimicrobial strategies to control dental caries, including; reducing plaque levels, in general or specific cariogenic bacteria in particular, by antiplaque or antimicrobial agents; reducing bacterial acid production by replacing fermentable carbohydrates in the diet with sugar substitutes, or by interfering with bacterial metabolism with fluoride or antimicrobial agents.

  2. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

    PubMed Central

    Singh, Shriti; Singh, Santosh Kumar; Chowdhury, Indrajit; Singh, Rajesh

    2017-01-01

    A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms. PMID:28553416

  3. Antimicrobial Properties of Natural Phenols and Related Compounds

    PubMed Central

    Jurd, L.; King, A. D.; Mihara, K.; Stanley, W. L.

    1971-01-01

    Obtusastyrene (4-cinnamylphenol) displays effective antimicrobial activity in vitro against a variety of gram-positive bacteria, yeasts, and molds. The activity of obtusastyrene is not appreciably affected by pH, and its minimal inhibitory concentrations, 12 to 25 μg/ml for bacteria and 12 to 100 μg/ml for fungi, compare favorably with those of a number of synthetic, phenolic antimicrobial agents. PMID:5553287

  4. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    PubMed

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.

    PubMed

    Piotrowska, Urszula; Sobczak, Marcin; Oledzka, Ewa

    2017-12-01

    Micro-organism resistance is an important challenge in modern medicine due to the global uncontrolled use of antibiotics. Natural and synthetic antimicrobial peptides (AMPs) symbolize a new family of antibiotics, which have stimulated research and clinical interest as new therapeutic options for infections. They represent one of the most promising antimicrobial substances, due to their broad spectrum of biological activity, against bacteria, fungi, protozoa, viruses, yeast and even tumour cells. Besides, being antimicrobial, AMPs have been shown to bind and neutralize bacterial endotoxins, as well as possess immunomodulatory, anti-inflammatory, wound-healing, angiogenic and antitumour properties. In contrast to conventional antibiotics, which have very defined and specific molecular targets, host cationic peptides show varying, complex and very rapid mechanisms of actions that make it difficult to form an effective antimicrobial defence. Importantly, AMPs display their antimicrobial activity at micromolar concentrations or less. To do this, many peptide-based drugs are commercially available for the treatment of numerous diseases, such as hepatitis C, myeloma, skin infections and diabetes. Herein, we present an overview of the general mechanism of AMPs action, along with recent developments regarding carriers of AMPs and their potential applications in medical fields. © 2017 John Wiley & Sons A/S.

  6. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    PubMed Central

    Choudhary, Alka; Naughton, Lynn M.; Montánchez, Itxaso

    2017-01-01

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds. PMID:28846659

  8. Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides

    PubMed Central

    Brand, Guilherme D.; Magalhães, Mariana T. Q.; Tinoco, Maria L. P.; Aragão, Francisco J. L.; Nicoli, Jacques; Kelly, Sharon M.; Cooper, Alan; Bloch, Carlos

    2012-01-01

    Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources. PMID:23029273

  9. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds.

    PubMed

    Elena, Poverenov; Miri, Klein

    2018-05-16

    Different synthetic strategies for the formation of contact active antimicrobial materials utilizing covalent linkage of quaternary ammonium compounds (QACs) were reviewed. There is a demand to find methods that will prevent bacterial fouling without the release of antimicrobial agents, because biocides cause environment pollution and promote the development of bacteria resistance mechanisms. The contact active antimicrobial surfaces may provide a useful tool for this purpose. The covalent surface grafting of QACs seems to be a feasible and promising approach for the formation of safe and effective antimicrobial materials that could be utilized for medical devices, food industry, water treatment systems and other applications. This manuscript reviews covalent attachment of QACs to form contact active antimicrobial materials based on glass, metals, synthetic and natural polymers. The review emphasizes the description of different synthetic methods that are used for the covalent linkage. Direct covalent linkage of QACs to the material surfaces, a linkage via auxiliary nanoparticles (NPs), or spacers, controlled radical polymerization techniques and a linkage to pre-activated surfaces are discussed. The physico-chemical properties and biological activity of the modified surfaces are also described. This review does not cover non-covalent grafting of QACs and incorporation of QACs into a bulk material. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus.

    PubMed

    Tran, Phat L; Hammond, Adrienne A; Mosley, Thomas; Cortez, Janette; Gray, Tracy; Colmer-Hamood, Jane A; Shashtri, Mayank; Spallholz, Julian E; Hamood, Abdul N; Reid, Ted W

    2009-06-01

    Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.

  11. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... antimicrobial agent, as defined in § 170.3(o)(2) of this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following quantities, based on the weight of the raw cane: Component Parts per...

  12. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... antimicrobial agent, as defined in § 170.3(o)(2) of this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following quantities, based on the weight of the raw cane: Component Parts per...

  13. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... antimicrobial agent, as defined in § 170.3(o)(2) of this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following quantities, based on the weight of the raw cane: Component Parts per...

  14. Temporal Rends of Triclorosan in Dated Sediment Cores from Four Urbanized Estuaries: Evidence of Preservation and Accumulation

    EPA Science Inventory

    Triclosan is an antimicrobial agent present in a wide array of consumer based goods such as soaps, skin creams and dental care products. It has also been incorporated into textiles and plastics due to its effectiveness as a biocide in solid material. It is introduced into munic...

  15. Antimicrobial Prescribing Practices Following Publication of Guidelines for the Prevention of Infections Associated With Combat-Related Injuries

    PubMed Central

    Tribble, David R.; Lloyd, Bradley; Weintrob, Amy; Ganesan, Anuradha; Murray, Clinton K.; Li, Ping; Bradley, William; Fraser, Susan; Warkentien, Tyler; Gaskins, Lakisha J.; Seillier-Moiseiwitsch, Françoise; Millar, Eugene V.; Hospenthal, Duane R.

    2018-01-01

    Background Timely and limited antibiotic prophylaxis (postinjury antimicrobial therapy) targeting specific traumatic injuries is a well-recognized measure to lessen posttraumatic infection. Modern military combat injuries raise significant challenges because of complex multiple injuries and limited data derived directly from well-controlled trials to base recommendations. Expert consensus review of available evidence led to published guidance for selection and duration of antimicrobial therapy for combat-related trauma infection prevention. This analysis evaluates antibiotic-prescribing practices by military physicians in the operational theater relative to the published guidance. Methods Trauma history and infectious disease-specific inpatient care information is captured through the Joint Theater Trauma Registry along with a supplemental infectious disease module. Injury patterns are classified based on documented International Classification of Diseases-9th Revision codes with a composite assessment of each patient’s injury pattern. Antimicrobial use categorized as prophylaxis is prescribed within the first 48 hours postinjury. Adherence to published guidance is reported along with patient characteristics and injury severity to assess for potential explanations of nonadherence. Results During June to November 2009, 75% of the 610 eligible trauma patients received antimicrobial prophylaxis. Adherence to the recommended antibiotic agent on the day of injury was in the range of 46% to 50% for the most common extremity injury patterns and 10% in penetrating abdominal injuries. Antibiotics were given in 39% of patients sustaining injuries that are recommendations to not receive antimicrobial prophylaxis. Conclusions This first evaluation of combat trauma-related antibiotic prophylaxis shows adherence levels comparable or superior to reported rates in civilian settings despite the austere, frequently mass casualty environment. Areas for interval surveillance and education-based strategies for improved adherence to practice guidance are identified. PMID:21814096

  16. Synthesis, Characterization, and In Vivo Efficacy of Shell Cross-Linked Nanoparticle Formulations Carrying Silver Antimicrobials as Aerosolized Therapeutics

    PubMed Central

    2014-01-01

    The use of nebulizable, nanoparticle-based antimicrobial delivery systems can improve efficacy and reduce toxicity for treatment of multi-drug-resistant bacteria in the chronically infected lungs of cystic fibrosis patients. Nanoparticle vehicles are particularly useful for applying broad-spectrum silver-based antimicrobials, for instance, to improve the residence time of small-molecule silver carbene complexes (SCCs) within the lung. Therefore, we have synthesized multifunctional, shell cross-linked knedel-like polymeric nanoparticles (SCK NPs) and capitalized on the ability to independently load the shell and core with silver-based antimicrobial agents. We formulated three silver-loaded variants of SCK NPs: shell-loaded with silver cations, core-loaded with SCC10, and combined loading of shell silver cations and core SCC10. All three formulations provided a sustained delivery of silver over the course of at least 2–4 days. The two SCK NP formulations with SCC10 loaded in the core each exhibited excellent antimicrobial activity and efficacy in vivo in a mouse model of Pseudomonas aeruginosa pneumonia. SCK NPs with shell silver cation-load only, while efficacious in vitro, failed to demonstrate efficacy in vivo. However, a single dose of core SCC10-loaded SCK NPs (0.74 ± 0.16 mg Ag) provided a 28% survival advantage over sham treatment, and administration of two doses (0.88 mg Ag) improved survival to 60%. In contrast, a total of 14.5 mg of Ag+ delivered over 5 doses at 12 h intervals was necessary to achieve a 60% survival advantage with a free-drug (SCC1) formulation. Thus, SCK NPs show promise for clinical impact by greatly reducing antimicrobial dosage and dosing frequency, which could minimize toxicity and improve patient adherence. PMID:23718195

  17. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  18. Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus.

    PubMed

    Ramis, Ivy B; Vianna, Júlia S; Reis, Ana Júlia; von Groll, Andrea; Ramos, Daniela F; Viveiros, Miguel; da Silva, Pedro E Almeida

    2018-06-18

    New drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus ; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus . Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism. Georg Thieme Verlag KG Stuttgart · New York.

  19. Physiological actions of preservative agents: prospective of use of modern microbiological techniques in assessing microbial behaviour in food preservation.

    PubMed

    Brul, Stanley; Coote, Peter; Oomes, Suus; Mensonides, Femke; Hellingwerf, Klaas; Klis, Frans

    2002-11-15

    In this mini-review, various aspects of homeostasis of microbial cells and its perturbation by antimicrobial agents will be discussed. First, outlining the position that the physiological studies on microbial behaviour using the modern molecular tools should have in food science sets the scene for the studies. Subsequently, the advent of functional genomics is discussed that allows full coverage of cellular reactions at unprecedented levels. Examples of weak organic acid resistance, the stress response against natural antimicrobial agents and responses against physicochemical factors show how we can now "open the black box" that microbes are, look inside and begin to understand how different cellular signalling cables are wired together. Using the analogy with machines, it will be indicated how the use of various signalling systems depends on the availability of substrates "fuel" to let the systems act in the context of the minimum energetic requirement cells have to let their housekeeping systems run. The outlook illustrates how new insights might be used to device knowledge-based rather than empirical combinations of preservation systems and how risk assessment models might be deviced that link the mechanistic insight to risk distributions of events in food manufacturing.

  20. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: in vitro and in vivo studies.

    PubMed

    Hassan, Sherif T S; Berchová, Kateřina; Šudomová, Miroslava

    In the last few decades, Hibiscus sabdariffa L. (Malvaceae; H. sabdariffa) has gained much attention in research field because of its potentially useful bioactivity as well as a great safety and tolerability. For decades, microbial, parasitic and cancer diseases remain a serious threat to human health and animals as well. To treat such diseases, a search for new sources such as plants that provide various bioactive compounds useful in the treatment of several physiological conditions is urgently needed, since most of the drugs currently used in the therapy have several undesirable side effects, toxicity, and drug resistance. In this paper, we aim to present an updated overview of in vitro and in vivo studies that show the significant therapeutic properties of the crude extracts and phytochemicals derived from H. sabdariffa as antimicrobial, antiparasitic, and anticancer agents. The future directions of the use of H. sabdariffa in clinical trials will be discussed. Hibiscus sabdariffa L. antimicrobial agents cancer preventive agents antiparasitic drugs natural products.

Top