Science.gov

Sample records for antimicrobial host defense

  1. Bacterial Evasion of Host Antimicrobial Peptide Defenses

    PubMed Central

    Cole, Jason N.; Nizet, Victor

    2015-01-01

    SUMMARY Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections. PMID:26999396

  2. Anti-antimicrobial peptides: folding-mediated host defense antagonists.

    PubMed

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G

    2013-07-12

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.

  3. Antimicrobial polymers as synthetic mimics of host-defense peptides.

    PubMed

    Kuroda, Kenichi; Caputo, Gregory A

    2013-01-01

    Antibiotic-resistant bacteria 'superbugs' are an emerging threat to public health due to the decrease in effective antibiotics as well as the slowed pace of development of new antibiotics to replace those that become ineffective. The need for new antimicrobial agents is a well-documented issue relating to world health. Tremendous efforts have been given to developing compounds that not only show high efficacy, but also those that are less susceptible to resistance development in the bacteria. However, the development of newer, stronger antibiotics which can overcome these acquired resistances is still a scientific challenge because a new mode of antimicrobial action is likely required. To that end, amphiphilic, cationic polymers have emerged as a promising candidate for further development as an antimicrobial agent with decreased potential for resistance development. These polymers are designed to mimic naturally occurring host-defense antimicrobial peptides which act on bacterial cell walls or membranes. Antimicrobial-peptide mimetic polymers display antibacterial activity against a broad spectrum of bacteria including drug-resistant strains and are less susceptible to resistance development in bacteria. These polymers also showed selective activity to bacteria over mammalian cells. Antimicrobial polymers provide a new molecular framework for chemical modification and adaptation to tune their biological functions. The peptide-mimetic design of antimicrobial polymers will be versatile, generating a new generation of antibiotics toward implementation of polymers in biomedical applications. Copyright © 2012 Wiley Periodicals, Inc.

  4. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    PubMed Central

    Zhang, Guolong; Sunkara, Lakshmi T.

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  5. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression

    USDA-ARS?s Scientific Manuscript database

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...

  6. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    PubMed

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  7. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections.

    PubMed

    Findlay, Fern; Proudfoot, Lorna; Stevens, Craig; Barlow, Peter G

    2016-01-01

    Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required.

  8. The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses

    PubMed Central

    Kraus, Dirk; Herbert, Silvia; Kristian, Sascha A; Khosravi, Arya; Nizet, Victor; Götz, Friedrich; Peschel, Andreas

    2008-01-01

    Background Modification of teichoic acids with D-alanine by the products of the dlt operon protects Gram-positive bacteria against major antimicrobial host defense molecules such as defensins, cathelicidins, myeloperoxidase or phospholipase. The graRS regulatory genes have recently been implicated in the control of D-alanylation in Staphylococcus aureus. Results To determine the impact of the GraRS regulatory system on resistance to antimicrobial host defense mechanisms and virulence of S. aureus, we compared inactivation of S. aureus SA113 wild type and its isogenic graRS deletion mutant by the human cathelicidin LL-37 or human neutrophil granulocytes in vitro, and the ability to cause infection in vivo. We show here that graRS deletion considerably alters bacterial surface charge, increases susceptibility to killing by human neutrophils or the defense peptide LL-37, and attenuates virulence of S. aureus in a mouse infection model. Conclusion Our results indicate that S. aureus can regulate its surface properties in order to overcome innate host defenses. PMID:18518949

  9. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.

    PubMed

    Goyal, Ravinder K; Mattoo, Autar K

    2014-11-01

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.

  10. Perspectives for clinical use of engineered human host defense antimicrobial peptides

    PubMed Central

    Pachón-Ibáñez, María Eugenia; Smani, Younes; Pachón, Jerónimo

    2017-01-01

    Abstract Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use. PMID:28521337

  11. Substance P at the neuro-immune crosstalk in the modulation of inflammation, asthma and antimicrobial host defense.

    PubMed

    Sun, Jia; Bhatia, Madhav

    2014-01-01

    Substance P, a neuropeptide belonging to the tachykinin family is a pleiotropic peptide with specific neural activities and involved in immunomodulation and antimicrobial host defense. It has been found to modulate a variety of inflammatory processes, including acute pancreatitis, sepsis, systemic inflammatory response syndrome and asthma. Also notably, substance P shares common bio-physical and -chemical properties such as low molecular mass, cathionicity and amphipathicity with antimicrobial peptides. It is therefore suggested to take part in host defense at specialized locations. The review aims to highlight undated understanding on substance P in inflammation, allergy and its antimicrobial activities with potential implications in infection and host defense. Therapeutic implications of the peptide, modulators of peptide expression and receptor signalling will be highlighted in each topic. Taken together, these topics will be of significant values for future pharmaceutical investigation and application of the field.

  12. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    PubMed Central

    Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  13. Synthetic Random Copolymers as a Molecular Platform To Mimic Host-Defense Antimicrobial Peptides.

    PubMed

    Takahashi, Haruko; Caputo, Gregory A; Vemparala, Satyavani; Kuroda, Kenichi

    2017-05-17

    Synthetic polymers have been used as a molecular platform to develop host-defense antimicrobial peptide (AMP) mimetics which are effective in killing drug-resistant bacteria. In this topical review, we will discuss the AMP-mimetic design and chemical optimization strategies as well as the biological and biophysical implications of AMP mimicry by synthetic polymers. Traditionally, synthetic polymers have been used as a chemical means to replicate the chemical functionalities and physicochemical properties of AMPs (e.g., cationic charge, hydrophobicity) to recapitulate their mode of action. However, we propose a new perception that AMP-mimetic polymers are an inherently bioactive platform as whole molecules, which mimic more than the side chain functionalities of AMPs. The tunable nature and chemical simplicity of synthetic random polymers facilitate the development of potent, cost-effective, broad-spectrum antimicrobials. The polymer-based approach offers the potential for many antimicrobial applications to be used directly in solution or attached to surfaces to fight against drug-resistant bacteria.

  14. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  15. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  16. The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota

    PubMed Central

    Liévin-Le Moal, Vanessa; Servin, Alain L.

    2006-01-01

    The intestinal tract is a complex ecosystem that combines resident microbiota and the cells of various phenotypes with complex metabolic activities that line the epithelial wall. The intestinal cells that make up the epithelium provide physical and chemical barriers that protect the host against the unwanted intrusion of microorganisms that hijack the cellular molecules and signaling pathways of the host and become pathogenic. Some of the organisms making up the intestinal microbiota also have microbicidal effects that contribute to the barrier against enteric pathogens. This review describes the two cell lineages present in the intestinal epithelium: the goblet cells and the Paneth cells, both of which play a pivotal role in the first line of enteric defense by producing mucus and antimicrobial peptides, respectively. We also analyze recent insights into the intestinal microbiota and the mechanisms by which some resident species act as a barrier to enteric pathogens. Moreover, this review examines whether the cells producing mucins or antimicrobial peptides and the resident microbiota act in partnership and whether they function individually and/or synergistically to provide the host with an effective front line of defense against harmful enteric pathogens. PMID:16614252

  17. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy.

    PubMed

    Yang, Chul-Su; Kim, Jwa-Jin; Lee, Hye-Mi; Jin, Hyo Sun; Lee, Sang-Hee; Park, Ji-Hoon; Kim, Soung Jung; Kim, Jin-Man; Han, Yong-Mahn; Lee, Myung-Shik; Kweon, Gi Ryang; Shong, Minho; Jo, Eun-Kyeong

    2014-05-01

    AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.

  18. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy

    PubMed Central

    Yang, Chul-Su; Kim, Jwa-Jin; Lee, Hye-Mi; Jin, Hyo Sun; Lee, Sang-Hee; Park, Ji-Hoon; Kim, Soung Jung; Kim, Jin-Man; Han, Yong-Mahn; Lee, Myung-Shik; Kweon, Gi Ryang; Shong, Minho; Jo, Eun-Kyeong

    2014-01-01

    AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism. PMID:24598403

  19. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense

    PubMed Central

    Jantsch, Jonathan; Schatz, Valentin; Friedrich, Diana; Schröder, Agnes; Kopp, Christoph; Siegert, Isabel; Maronna, Andreas; Wendelborn, David; Linz, Peter; Binger, Katrina J.; Gebhardt, Matthias; Heinig, Matthias; Neubert, Patrick; Fischer, Fabian; Teufel, Stefan; David, Jean-Pierre; Neufert, Clemens; Cavallaro, Alexander; Rakova, Natalia; Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang; Muller, Dominik N.; Schuler, Gerold; Uder, Michael; Bogdan, Christian; Luft, Friedrich C.; Titze, Jens

    2015-01-01

    Summary Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na+ concentrations is unknown. We found that Na+ accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na+ storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na+ content in the skin by a high-salt diet boosted activation of macrophages in an Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection. PMID:25738463

  20. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense.

    PubMed

    Jantsch, Jonathan; Schatz, Valentin; Friedrich, Diana; Schröder, Agnes; Kopp, Christoph; Siegert, Isabel; Maronna, Andreas; Wendelborn, David; Linz, Peter; Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Neubert, Patrick; Fischer, Fabian; Teufel, Stefan; David, Jean-Pierre; Neufert, Clemens; Cavallaro, Alexander; Rakova, Natalia; Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang; Muller, Dominik N; Schuler, Gerold; Uder, Michael; Bogdan, Christian; Luft, Friedrich C; Titze, Jens

    2015-03-03

    Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na(+) storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na(+) content in the skin by a high-salt diet boosted activation of macrophages in a Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Antimicrobial and host defense peptides for therapeutic use against multidrug-resistant pathogens: new hope on the horizon.

    PubMed

    Bommarius, Bettina; Kalman, Daniel

    2009-06-01

    The concept of using antimicrobial peptides (AMPs) and host defense peptides (HDPs) as therapeutics was first introduced in the late 1990s. However, an AMP drug has yet to reach the market. AMPs and HDPs have intriguing potential as therapeutics: the peptides are evolutionary conserved, and are critical components of the innate immune system of all eukaryotes; their evolution pre-dates the appearance of the adaptive immune system; and they do not readily engender bacterial resistance. Nevertheless, there are significant obstacles to the use of AMPs and HDPs in humans, including the need to conduct clinical trials to demonstrate efficacy, and the capacity to manufacture AMPs and HDPs in a cost-effective manner. Progress in both of these areas would support the exciting possibility that AMPs and HDPs could be developed as therapeutics that kill pathogens and facilitate the immune response.

  2. Salmonella utilizes zinc to subvert anti-microbial host defense of macrophages via modulation of NF-κB signaling.

    PubMed

    Wu, Aimin; Tymoszuk, Piotr; Haschka, David; Heeke, Simon; Dichtl, Stefanie; Petzer, Verena; Seifert, Markus; Hilbe, Richard; Sopper, Sieghart; Talasz, Heribert; Bumann, Dirk; Lass-Flörl, Cornelia; Theurl, Igor; Zhang, Keying; Weiss, Guenter

    2017-09-05

    Zinc sequestration by macrophages is considered a crucial host defense strategy against infection with the intracellular bacterium Salmonella Typhimurium. However, the underlying mechanisms remain elusive. In this study we found zinc to favor pathogen survival within macrophages. Salmonella-hosting macrophages contained higher free zinc levels than uninfected macrophages and cells that successfully eliminated bacteria, which was paralleled by impaired production of reactive oxygen (ROS) and nitrogen (RNS) species in bacteria-harboring cells. A profound, zinc-mediated inhibition of NF-κB p65 transcriptional activity affecting expression of the ROS- and RNS-forming enzymes phos47 and iNOS provided a mechanistic explanation for this phenomenon. Macrophages responded to infection by enhanced expression of zinc scavenging methallothioneins-1 and 2, whose genetic deletion caused a rise of free zinc levels, reduced ROS and RNS production and increased survival of Salmonella Our data suggest that Salmonella invasion of macrophages results in a bacteria-driven rise of intracellular zinc levels which weakens anti-microbial defense and the ability of macrophages to eradicate the pathogen. Thus, limitation of cytoplasmic zinc levels may help to control infection with intracellular bacteria. Copyright © 2017 Wu et al.

  3. Antimicrobial and immunomodulatory activity of host defense peptides, clavanins and LL-37, in vitro: An endodontic perspective.

    PubMed

    Lima, Stella Maris F; Freire, Mirna S; Gomes, Ana Luisa O; Cantuária, Ana Paula C; Dutra, Flávia Rodrigues P; Magalhães, Beatriz S; Sousa, Maurício Gonçalves C; Migliolo, Ludovico; Almeida, Jeeser A; Franco, Octávio L; Rezende, Taia Maria B

    2017-09-01

    Endodontic treatment is mainly based on root canal disinfection and its failure may be motivated by microbial resistance. Endodontic therapy can be benefitted by host defense peptides (HDPs), which are multifunctional molecules that act against persistent infection and inflammation. This study aimed to evaluate the antimicrobial, cytotoxic and immunomodulatory activity of several HDPs, namely clavanin A, clavanin A modified (MO) and LL-37, compared to intracanal medication Ca(OH)2. HDPs and Ca(OH)2 were evaluated by: (1) antimicrobial assays against Candida albicans and Enterococcus faecalis, (2) cytotoxicity assays and (3) cytokine tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1α, IL-6, IL-10 and IL-12 and nitric oxide (NO) production by RAW 264.7 cells incubated with or without heat-killed (HK) C. albicans or E. faecalis combined or not with interferon-γ. The minimum inhibitory concentration (MIC) was established only for E. faecalis (LL-37, 57μM). Considering cytotoxicity, clavanin MO was able to reduce cell viability in many groups and demonstrated lowest LC50. The Ca(OH)2 up-regulated the production of MCP-1, TNF-α, IL-12 and IL-6 and down-regulated IL-1α, IL-10 and NO. Clavanins up-regulated the TNF-α and NO and down-regulated IL-10 production. LL-37 demonstrated up-regulation of IL-6 and TNF-α production and down-regulation in IL-10 and NO production. In conclusion, LL-37 demonstrated better antibacterial potential. In addition, Ca(OH)2 demonstrated a proinflammatory response, while the HDPs modulated the inflammatory response from non-interference with the active cytokines in the osteoclastogenesis process, probably promoting the health of periradicular tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Application of antimicrobial polypeptide host defenses to aquaculture: Exploitation of downregulation and upregulation responses.

    PubMed

    Noga, Edward J; Ullal, Anirudh J; Corrales, Jone; Fernandes, Jorge M O

    2011-03-01

    Antimicrobial polypeptides (AMPPs), consisting of peptides and small proteins with antimicrobial activity, are an integral component of innate immunity. Their often potent properties and widespread prevalence in fish suggests that designing means of manipulating their levels has considerable potential for maintaining or improving fish health. There is evidence that a number of chronic stresses lead to significant downregulation of AMPPs and thus their monitoring could be a highly sensitive measure of health status and risk of an infectious disease outbreak. Conversely, upregulation of AMPP expression could be used to enhance disease resistance in stressful environments, as well as improve the efficacy of traditional antimicrobial drugs. However, further work is required in linking levels of a number of AMPPs to physiological function since, while a number of studies have documented the down- or upregulation of AMPPs via gene expression, relatively few studies have quantitatively examined changes in protein expression. In addition, not all AMPPs appear to be expressed at microbicidal levels in vivo, suggesting that at least some may have functions other than being directly protective. Nonetheless, in fish, there is evidence that some constitutively expressed AMPPs, such as piscidins and histone-like proteins, are expressed at microbicidal levels and that they decline with stress. Furthermore, certain AMPPs derived from hemoglobin-β are upregulated to microbicidal levels after experimental challenge. The likely widespread distribution of these three AMPP groups in fish provides the opportunity to design strategies to greatly improve the health of cultured fish populations.

  5. Fluorescence and Absorbance Spectroscopy Methods to Study Membrane Perturbations by Antimicrobial Host Defense Peptides.

    PubMed

    Arias, Mauricio; Vogel, Hans J

    2017-01-01

    Antimicrobial peptides (AMPs) are currently intensely studied because of their potential as new bactericidal and bacteriostatic agents. The mechanism of action of numerous AMPs involves the permeabilization of bacterial membranes. Several methods have been developed to study peptide-membrane interactions; in particular optical spectroscopy methods are widely used. The intrinsic fluorescence properties of the Trp indole ring in Trp-containing AMPs can be exploited by measuring the fluorescence blue shift and acrylamide-induced fluorescence quenching. One important aspect of such studies is the use of distinct models of the bacterial membrane, in most cases large unilamellar vesicles (LUVs) with different, yet well-defined, phospholipid compositions. Deploying LUVs that are preloaded with fluorescent dyes, such as calcein, also allows for the study of vesicle permeabilization by AMPs. In addition, experiments using genetically engineered live Escherichia coli cells can be used to distinguish between the effects of AMPs on the outer and inner membranes of gram-negative bacteria. In combination, these methods can provide a detailed insight into the mode of action of AMPs.

  6. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides.

    PubMed

    Epand, Raquel F; Mowery, Brendan P; Lee, Sarah E; Stahl, Shannon S; Lehrer, Robert I; Gellman, Samuel H; Epand, Richard M

    2008-05-23

    Flexible sequence-random polymers containing cationic and lipophilic subunits that act as functional mimics of host-defense peptides have recently been reported. We used bacteria and lipid vesicles to study one such polymer, having an average length of 21 residues, that is active against both Gram-positive and Gram-negative bacteria. At low concentrations, this polymer is able to permeabilize model anionic membranes that mimic the lipid composition of Escherichia coli, Staphylococcus aureus, or Bacillus subtilis but is ineffective against model zwitterionic membranes, which explains its low hemolytic activity. The polymer is capable of binding to negatively charged vesicles, inducing segregation of anionic lipids. The appearance of anionic lipid-rich domains results in formation of phase-boundary defects through which leakage can occur. We had earlier proposed such a mechanism of membrane disruption for another antimicrobial agent. Experiments with the mutant E. coli ML-35p indicate that permeabilization is biphasic: at low concentrations, the polymer permeabilizes the outer and inner membranes; at higher polymer concentrations, permeabilization of the outer membrane is progressively diminished, while the inner membrane remains unaffected. Experiments with wild-type E. coli K12 show that the polymer blocks passage of solutes into the intermembrane space at high concentrations. Cell membrane integrity in E. coli K12 and S. aureus exhibits biphasic dependence on polymer concentration. Isothermal titration calorimetry indicates that the polymer associates with the negatively charged lipopolysaccharide of Gram-negative bacteria and with the lipoteichoic acid of Gram-positive bacteria. We propose that this polymer has two mechanisms of antibacterial action, one predominating at low concentrations of polymer and the other predominating at high concentrations.

  7. Natural host defense mechanisms.

    PubMed

    Heggers, J P

    1979-10-01

    Severe injury, whether the result of a major accident, a large burn, or a complicated surgical operation, often results in sepsis. Under such conditions both specific and nonspecific host defense systems are affected. The individual facets of major concern are chemotaxis, phagocytosis, intracellular killing, complement depletion, and depression of humoral and cellular mediated immunity. The most profound changes occur in cell-mediated immunity. Within a few hours o injury, the number of circulating T cells becomes depleted, concomitantly thoracic duct lymphocytes are markedly reduced. This change is not only quantitative but functional. The clinical impact of these deficient host defense mechanisms lies in the fact that low virulent organisms may become a lethal threat to the injured patient. Currently, investigators are attempting to reverse thse deficiencies through the use of immunotherapy.

  8. Host defense peptides in skin secretions of Odorrana tiannanensis: Proof for other survival strategy of the frog than merely anti-microbial.

    PubMed

    He, Weiyu; Feng, Feifei; Huang, Yong; Guo, Huanhuan; Zhang, Songyan; Li, Zheng; Liu, Jingze; Wang, Yipeng; Yu, Haining

    2012-03-01

    Genus Odorrana, among all amphibians studied, is generally reported to have the most abundant and diversified anti-microbial peptides even from a single individual frog. In our previous work, 46 cDNA sequences encoding precursors of 22 different anti-microbial peptides (AMPs) were characterized from the skin of frog, Odorrana tiannanensis. In this work, we reported the purification of three AMPs from skin secretions of O. tiannanensis. Their amino acid sequences matched well with the sequences deduced from cDNAs and they were designated as Odorranain-C7HSa, Brevinin-1-OT2 and Odorranain-G-OT, respectively. Furthermore, we selected to analyze the four most structurally diversified sequences among the 22 AMPs that are significantly different from all reported AMPs. By structural characterization, three of them were designated as pleurain-E-OT, odorranain-G-OT, odorranain-A-OT, belonging to AMP families already identified. The forth one with a unique 14-mer sequence of AILTTLANWARKFLa and C-terminal amidation represents the prototypes of a new class of amphibian AMP, and thereby named tiannanensin. Such broad diversity in sequences and structures are consistent with other species in Genus Odorrana. Multi-functions of the synthesized four special AMPs were screened, including anti-microbial, antioxidant, cytotoxic and hemolytic activities. The results suggest that these AMPs may employ sophisticated mechanisms of action in host defense in addition to anti-microbial, although their precise contribution to host defense still seems unclear. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Allergic Host Defenses

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.

    2012-01-01

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macro-parasites. Here we present arguments to suggest that allergic immunity plays an important role in host defense against noxious environmental substances, including venoms, hematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Furthermore, we suggest that allergic hypersensitivity evolved to elicit anticipatory responses and to promote avoidance of suboptimal environments. PMID:22538607

  10. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.

  11. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  12. Host defenses against cryptococcosis.

    PubMed

    Price, Michael S; Perfect, John R

    2011-01-01

    The interaction of pathogenic Cryptococcus species with their various hosts is somewhat unique compared to other fungal pathogens such as Aspergillus fumigatus and Candida albicans. Cryptococcus shares an intimate association with host immune cells, leading to enhanced intracellular growth. Furthermore, unlike most other fungal pathogens, the signs and symptoms of cryptococcal disease are typically self-inflicted by the host during the host's attempt to clear this invader from sensitive organ systems such as the central nervous system. In this review, we will summarize the story of host-Cryptococcus interactions to date and explore strategies to exploit the current knowledge for treatment of cryptococcal infections.

  13. Host Defense Peptides in Wound Healing

    PubMed Central

    Steinstraesser, Lars; Koehler, Till; Jacobsen, Frank; Daigeler, Adrien; Goertz, Ole; Langer, Stefan; Kesting, Marco; Steinau, Hans; Eriksson, Elof; Hirsch, Tobias

    2008-01-01

    Host defense peptides are effector molecules of the innate immune system. They show broad antimicrobial action against gram-positive and -negative bacteria, and they likely play a key role in activating and mediating the innate as well as adaptive immune response in infection and inflammation. These features make them of high interest for wound healing research. Non-healing and infected wounds are a major problem in patient care and health care spending. Increasing infection rates, growing bacterial resistance to common antibiotics, and the lack of effective therapeutic options for the treatment of problematic wounds emphasize the need for new approaches in therapy and pathophysiologic understanding. This review focuses on the current knowledge of host defense peptides affecting wound healing and infection. We discuss the current data and highlight the potential future developments in this field of research. PMID:18385817

  14. Chemerin regulation and role in host defense

    PubMed Central

    Zabel, Brian A; Kwitniewski, Mateusz; Banas, Magdalena; Zabieglo, Katarzyna; Murzyn, Krzysztof; Cichy, Joanna

    2014-01-01

    Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Chemerin message is regulated by nuclear receptor agonists, metabolic signaling proteins and intermediates, and proinflammatory cytokines. Following translation chemerin is secreted as an inactive pro-protein, and its secretion can be regulated depending on cell type. Chemerin bioactivity is largely dependent on carboxyl-terminal proteolytic processing and removal of inhibitory residues. Chemerin is abundant in human epidermis where it is well-placed to provide barrier protection. In host defense, chemerin plays dual roles as a broad spectrum antimicrobial protein and as a leukocyte attractant for macrophages, dendritic cells, and NK cells. Here we review the mechanisms underlying chemerin regulation and its function in host defense. PMID:24660117

  15. The inflammasome in host defense.

    PubMed

    Chen, Gang; Pedra, Joao H F

    2010-01-01

    Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  16. Th17 cells and Mucosal Host Defense

    PubMed Central

    Aujla, Shean J.; Dubin, Patricia J.; Kolls, Jay K.

    2008-01-01

    Th17 cells are a new lineage of T-cells that are controlled by the transcription factor RORγt and develop independent of GATA-3, T-bet, Stat 4 and Stat 6. Novel effector molecules produced by these cells include IL-17A, IL-17F, IL-22, and IL-26. IL-17RA binds IL-17A and IL-17F and is critical for host defense against extracellular planktonic bacteria by regulating chemokine gradients for neutrophil emigration into infected tissue sites as well as host granulopoiesis. Moreover IL-17 and IL-22 regulate the production of antimicrobial proteins in mucosal epithelium. Although TGF-β1 and IL-6 have been shown to be critical for development of Th17 cells from naïve precursors, IL-23 is also important in regulating IL-17 release in mucosal tissues in response to infectious stimuli. Compared to Th1 cells, IL-23 and IL-17 show limited roles in controlling host defense against primary infections with intracellular bacteria such as Mycobacterium tuberculosis suggesting a predominate role of the Th17 lineage in host defense against extracellular pathogens. However in the setting of chronic biofilm infections, as that occurs with Cystic Fibrosis or bronchetctasis, Th17 cells may be key contributors of tissue injury. PMID:18054248

  17. Neonatal Host Defense against Staphylococcal Infections

    PubMed Central

    Power Coombs, Melanie R.; Kronforst, Kenny; Levy, Ofer

    2013-01-01

    Preterm infants are especially susceptible to late-onset sepsis that is often due to Gram-positive bacterial infections resulting in substantial morbidity and mortality. Herein, we will describe neonatal innate immunity to Staphylococcus spp. comparing differences between preterm and full-term newborns with adults. Newborn innate immunity is distinct demonstrating diminished skin integrity, impaired Th1-polarizing responses, low complement levels, and diminished expression of plasma antimicrobial proteins and peptides, especially in preterm newborns. Characterization of distinct aspects of the neonatal immune response is defining novel approaches to enhance host defense to prevent and/or treat staphylococcal infection in this vulnerable population. PMID:23935651

  18. Neonatal host defense against Staphylococcal infections.

    PubMed

    Power Coombs, Melanie R; Kronforst, Kenny; Levy, Ofer

    2013-01-01

    Preterm infants are especially susceptible to late-onset sepsis that is often due to Gram-positive bacterial infections resulting in substantial morbidity and mortality. Herein, we will describe neonatal innate immunity to Staphylococcus spp. comparing differences between preterm and full-term newborns with adults. Newborn innate immunity is distinct demonstrating diminished skin integrity, impaired Th1-polarizing responses, low complement levels, and diminished expression of plasma antimicrobial proteins and peptides, especially in preterm newborns. Characterization of distinct aspects of the neonatal immune response is defining novel approaches to enhance host defense to prevent and/or treat staphylococcal infection in this vulnerable population.

  19. Antimicrobial defense systems in saliva.

    PubMed

    van 't Hof, Wim; Veerman, Enno C I; Nieuw Amerongen, Arie V; Ligtenberg, Antoon J M

    2014-01-01

    The oral cavity is one of the most heavily colonized parts of our body. The warm, nutrient-rich and moist environment promotes the growth of a diverse microflora. One of the factors responsible for the ecological equilibrium in the mouth is saliva, which in several ways affects the colonization and growth of bacteria. In this paper, we discuss the various mechanisms by which the composition of the oral microflora is modulated by saliva. Saliva covers the oral hard and soft tissues with a conditioning film which governs the initial attachment of microorganisms, a crucial step in the setup of the oral microflora. It furthermore contains proteins which in the soluble phase bind to bacteria, blocking their adherence to surfaces. When the supply of nutrients is diminished, bacteria use salivary glycoproteins, especially high-molecular-weight mucins, as a source of complex carbohydrates, requiring a consortium of microorganisms for breakdown. In this way saliva promotes the complexity of the oral microflora, which in itself protects against overgrowth by few pathogenic species. Finally, saliva harbors a large panel of antimicrobial proteins which directly and indirectly inhibit uncontrolled outgrowth of bacteria. These include lactoferrin, lactoperoxidase, lysozyme and antimicrobial peptides. Under pathological conditions serum leakage occurs, and saliva mobilizes the humoral and cellular defense mechanisms in the blood. In sum, saliva favors the establishment of a highly diverse microflora, rather than a semisterile environment.

  20. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics.

    PubMed

    Alba, Annia; López-Abarrategui, Carlos; Otero-González, Anselmo J

    2012-01-01

    Host defense peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutic compounds. Also, the ability of host defense peptides to modulate immunity is an emerging therapeutic concept since its selective modulation is a novel antiinfective strategy. Their mechanisms of action and the fundamental differences between pathogens and host cells surfaces mostly lead to a not widely extended microbial resistance and to a lower toxicity toward host cells. Biological libraries and rational design are novel tools for developing such molecules with promising applications as therapeutic drugs.

  1. Functions of Cationic Host Defense Peptides in Immunity

    PubMed Central

    Hemshekhar, Mahadevappa; Anaparti, Vidyanand; Mookherjee, Neeloffer

    2016-01-01

    Cationic host defense peptides are a widely distributed family of immunomodulatory molecules with antimicrobial properties. The biological functions of these peptides include the ability to influence innate and adaptive immunity for efficient resolution of infections and simultaneous modulation of inflammatory responses. This unique dual bioactivity of controlling infections and inflammation has gained substantial attention in the last three decades and consequent interest in the development of these peptide mimics as immunomodulatory therapeutic candidates. In this review, we summarize the current literature on the wide range of functions of cationic host defense peptides in the context of the mammalian immune system. PMID:27384571

  2. How Biofilms Evade Host Defenses.

    PubMed

    Roilides, Emmanuel; Simitsopoulou, Maria; Katragkou, Aspasia; Walsh, Thomas J

    2015-06-01

    The steps involved during the biofilm growth cycle include attachment to a substrate followed by more permanent adherence of the microorganisms, microcolony arrangement, and cell detachment required for the dissemination of single or clustered cells to other organ systems. Various methods have been developed for biofilm detection and quantitation. Biofilm-producing microorganisms can be detected in tissue culture plates, using silicone tubes and staining methods, and by visual assessment using scanning electron microscopy or confocal scanning laser microscopy. Quantitative measurement of biofilm growth is determined by using methods that include dry cell weight assays, colony-forming-unit counting, DNA quantification, or XTT 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide reduction assay. Upon infection, innate immune defense strategies are able to establish an immediate response through effector mechanisms mediated by immune cells, receptors, and several humoral factors. We present an overview of the life cycle of biofilms and their diversity, detection methods for biofilm development, and host immune responses to pathogens. We then focus on current concepts in bacterial and fungal biofilm immune evasion mechanisms. This appears to be of particular importance because the use of host immune responses may represent a novel therapeutic approach against biofilms.

  3. Host defense reinforces host–parasite cospeciation

    PubMed Central

    Clayton, Dale H.; Bush, Sarah E.; Goates, Brad M.; Johnson, Kevin P.

    2003-01-01

    Cospeciation occurs when interacting groups, such as hosts and parasites, speciate in tandem, generating congruent phylogenies. Cospeciation can be a neutral process in which parasites speciate merely because they are isolated on diverging host islands. Adaptive evolution may also play a role, but this has seldom been tested. We explored the adaptive basis of cospeciation by using a model system consisting of feather lice (Columbicola) and their pigeon and dove hosts (Columbiformes). We reconstructed phylogenies for both groups by using nuclear and mitochondrial DNA sequences. Both phylogenies were well resolved and well supported. Comparing these phylogenies revealed significant cospeciation and correlated evolution of host and parasite body size. The match in body size suggested that adaptive constraints limit the range of hosts lice can use. We tested this hypothesis by transferring lice among hosts of different sizes to simulate host switches. The results of these experiments showed that lice cannot establish viable populations on novel hosts that differ in size from the native host. To determine why size matters, we measured three components of louse fitness: attachment, feeding, and escape from host defense (preening). Lice could remain attached to, and feed on, hosts varying in size by an order of magnitude. However, they could not escape from preening on novel hosts that differed in size from the native host. Overall, our results suggest that host defense reinforces cospeciation in birds and feather lice by preventing lice from switching between hosts of different sizes. PMID:14673114

  4. [Neutrophil extracellular traps: a 2-faced host defense mechanism].

    PubMed

    Camicia, Gabriela; de Larrañaga, Gabriela

    2013-01-19

    Neutrophils play a key role in the innate immune system, providing the first line of host defense. In addition to their ability to eliminate pathogens by phagocytosis and antimicrobial secretions, it has recently been shown that neutrophils can trap and kill microorganisms by the release of extracellular structures composed of DNA and antimicrobial proteins called neutrophil extracellular traps (NETs). Although physiological amounts of NETs are important as antimicrobial agents, high levels of NETs in circulation may result in severe tissue damage. Besides, the excessive generation of NETs or a disruption in their clearance mechanism might be associated with the development of certain autoimmune diseases. This review describes the structure, function and generation of NETs, and their possible implication in the initiation and/or progression of different diseases. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. Bioprospecting the American alligator (Alligator mississippiensis) host defense peptidome.

    PubMed

    Bishop, Barney M; Juba, Melanie L; Devine, Megan C; Barksdale, Stephanie M; Rodriguez, Carlos Alberto; Chung, Myung C; Russo, Paul S; Vliet, Kent A; Schnur, Joel M; van Hoek, Monique L

    2015-01-01

    Cationic antimicrobial peptides and their therapeutic potential have garnered growing interest because of the proliferation of bacterial resistance. However, the discovery of new antimicrobial peptides from animals has proven challenging due to the limitations associated with conventional biochemical purification and difficulties in predicting active peptides from genomic sequences, if known. As an example, no antimicrobial peptides have been identified from the American alligator, Alligator mississippiensis, although their serum is antimicrobial. We have developed a novel approach for the discovery of new antimicrobial peptides from these animals, one that capitalizes on their fundamental and conserved physico-chemical properties. This sample-agnostic process employs custom-made functionalized hydrogel microparticles to harvest cationic peptides from biological samples, followed by de novo sequencing of captured peptides, eliminating the need to isolate individual peptides. After evaluation of the peptide sequences using a combination of rational and web-based bioinformatic analyses, forty-five potential antimicrobial peptides were identified, and eight of these peptides were selected to be chemically synthesized and evaluated. The successful identification of multiple novel peptides, exhibiting antibacterial properties, from Alligator mississippiensis plasma demonstrates the potential of this innovative discovery process in identifying potential new host defense peptides.

  6. Bioprospecting the American Alligator (Alligator mississippiensis) Host Defense Peptidome

    PubMed Central

    Bishop, Barney M.; Juba, Melanie L.; Devine, Megan C.; Barksdale, Stephanie M.; Rodriguez, Carlos Alberto; Chung, Myung C.; Russo, Paul S.; Vliet, Kent A.; Schnur, Joel M.; van Hoek, Monique L.

    2015-01-01

    Cationic antimicrobial peptides and their therapeutic potential have garnered growing interest because of the proliferation of bacterial resistance. However, the discovery of new antimicrobial peptides from animals has proven challenging due to the limitations associated with conventional biochemical purification and difficulties in predicting active peptides from genomic sequences, if known. As an example, no antimicrobial peptides have been identified from the American alligator, Alligator mississippiensis, although their serum is antimicrobial. We have developed a novel approach for the discovery of new antimicrobial peptides from these animals, one that capitalizes on their fundamental and conserved physico-chemical properties. This sample-agnostic process employs custom-made functionalized hydrogel microparticles to harvest cationic peptides from biological samples, followed by de novo sequencing of captured peptides, eliminating the need to isolate individual peptides. After evaluation of the peptide sequences using a combination of rational and web-based bioinformatic analyses, forty-five potential antimicrobial peptides were identified, and eight of these peptides were selected to be chemically synthesized and evaluated. The successful identification of multiple novel peptides, exhibiting antibacterial properties, from Alligator mississippiensis plasma demonstrates the potential of this innovative discovery process in identifying potential new host defense peptides. PMID:25671663

  7. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease.

    PubMed

    Heimlich, Derek R; Harrison, Alistair; Mason, Kevin M

    2014-12-01

    Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.

  8. Host defenses in subcutaneous mycoses.

    PubMed

    Vera-Cabrera, Lucio; Salinas-Carmona, Mario Cesar; Waksman, Noemi; Messeguer-Pérez, Jonathan; Ocampo-Candiani, Jorge; Welsh, Oliverio

    2012-01-01

    Subcutaneous mycoses include diverse clinical syndromes, characterized by invasion of the skin and subcutaneous tissue by saprobic fungi. Individuals living in rural areas constantly suffer lesions or trauma; however, only a few of them develop disease. In this contribution, we describe recent advances in the understanding of the virulence of these organisms, focusing on the most prevalent infections, sporotrichosis, chromoblastomycosis, and mycetoma. Although these infectious diseases are considered neglected tropical diseases, modern molecular techniques have been able to identify the etiologic agents and observe variations in the former monolithic concept of the species, which was based mostly on morphologic characteristics. The complete genetic characterization of the causative agents, along with that of their host, will help in the understanding of the factors on which the development of these infections depends.

  9. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease

    PubMed Central

    Heimlich, Derek R.; Harrison, Alistair; Mason, Kevin M.

    2014-01-01

    Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host’s perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease. PMID:26029470

  10. Histones as mediators of host defense, inflammation and thrombosis.

    PubMed

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  11. Histones as mediators of host defense, inflammation and thrombosis

    PubMed Central

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects. PMID:26939619

  12. Tool developments for structure-function studies of host defense peptides.

    PubMed

    Wang, Guangshun

    2007-01-01

    Antimicrobial peptides, or host defense peptides, are universal signaling and effector molecules in host defense and innate immunity. This article highlights various tools developed for cathelicidins and defensins, ranging from peptide identification, production, and structural biology, including the eight databases for antimicrobial peptides. Novel peptides can be identified from natural sources at both gene and protein levels. Solid-phase synthesis and bacterial expression are the two important methods for peptide production. Three-dimensional structures of antimicrobial peptides, primarily determined by solution NMR techniques, are essential for an in-depth understanding of the mode of action. The introduction of octanoyl phosphatidylglycerol as a bacterial membrane-mimetic model provides new insights into peptide-lipid interactions. The incorporation of structure and activity data into the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html) will lead to an integrated understanding of these peptides via structural bioinformatics.

  13. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  14. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  15. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection

    PubMed Central

    Calhoun, Dana M.; Woodhams, Doug; Howard, Cierra; LaFonte, Bryan E.; Gregory, Jacklyn R.; Johnson, Pieter T. J.

    2016-01-01

    Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species. PMID:26911920

  16. Host Defense against Opportunist Microorganisms Following Trauma.

    DTIC Science & Technology

    1979-06-01

    selected humoral components of host defense in 4 septic and 6 non -septic burned patients during 60 days postburn. The parameters measured in all...the sera of the non -septic burned patients for the duration of the study. Concentrations of C4, C2, C3, and C5 in the sera of all of the patients...septic and non -septic burned patients for the duration of the study, and concentrations of factor B and C3bINA were normal or elevated. When the non

  17. A Review of Ribonuclease 7’s Structure, Regulation, and Contributions to Host Defense

    PubMed Central

    Becknell, Brian; Spencer, John David

    2016-01-01

    The Ribonuclease A Superfamily is composed of a group of structurally similar peptides that are secreted by immune cells and epithelial tissues. Several members of the Ribonuclease A Superfamily demonstrate antimicrobial activity, and it has been suggested that some of these ribonucleases play an essential role in host defense. Ribonuclease 7 (RNase 7) is an epithelial-derived secreted peptide with potent broad-spectrum antimicrobial activity. This review summarizes the published literature on RNase 7’s antimicrobial properties, structure, regulation, and contributions to host defense. In doing so, we conclude by highlighting key knowledge gaps that must be investigated to completely understand the potential of developing RNase 7 as a novel therapeutic for human infectious diseases. PMID:27011175

  18. Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression

    PubMed Central

    Fang, Qi; Wang, Bei-Bei; Ye, Xin-Hai; Wang, Fei; Ye, Gong-Yin

    2016-01-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom. PMID:26907346

  19. Evolution of Host Defense against Multiple Enemy Populations.

    PubMed

    Toor, Jaspreet; Best, Alex

    2016-03-01

    Natural and managed populations are embedded within complex ecological communities, where they face multiple enemies. Experimental studies have shown that the evolution of host defense mechanisms to a focal enemy is impacted by the surrounding enemy community. Theoretically, the evolution of host defenses against a single enemy population, typically parasites, has been widely studied, but only recently has the impact of community interactions on host-parasite evolution been looked at. In this article, we theoretically examine the evolutionary behavior of a host population that must allocate defenses between two enemy populations, parasites and predators, with defense against one enemy constraining defense against the other. We show that in simpler models the composition of the enemy community plays the key role in determining the defense strategy of the hosts, with the hosts building up defenses against the enemy population posing a larger threat. However, this simple driver is shown to break down when there is significant recovery and reproduction from infected hosts. Additionally, we find that most host diversity is likely to occur when there is a combined high risk of infection and predation, in common with experimental studies. Our results therefore provide vital insight into the ecological feedbacks that drive the evolution of host defense against multiple enemy populations.

  20. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα

    PubMed Central

    Kim, Jae-Sung; Yun, Jin-Seung

    2017-01-01

    Tuberculosis is a global health problem and at least one-third of the world’s population is infected with Mycobacterium tuberculosis (MTB). MTB is a successful pathogen that enhances its own intracellular survival by inhibiting inflammation and arresting phago-lysosomal fusion. We previously demonstrated that Toxoplasma gondii (T. gondii) dense granule antigen (GRA) 7 interacts with TNF receptor-associated factor 6 via Myeloid differentiation primary response gene 88, enabling innate immune responses in macrophages. To extend these studies, we found that GRA7 interacts with host proteins involved in antimicrobial host defense mechanisms as a therapeutic strategy for tuberculosis. Here, we show that protein kinase C (PKC)α-mediated phosphorylation of T. gondii GRA7-I (Ser52) regulates the interaction of GRA7 with PYD domain of apoptosis-associated speck-like protein containing a carboxy-terminal CARD, which is capable of oligomerization and inflammasome activation can lead to antimicrobial defense against MTB. Furthermore, GRA7-III interacted with the PX domain of phospholipase D1, facilitating its enzyme activity, phago-lysosomal maturation, and subsequent antimicrobial activity in a GRA7-III (Ser135) phosphorylation-dependent manner via PKCα. Taken together, these results underscore a previously unrecognized role of GRA7 in modulating antimicrobial host defense mechanism during mycobacterial infection. PMID:28125719

  1. Structural diversity and species distribution of host-defense peptides in frog skin secretions.

    PubMed

    Conlon, J Michael

    2011-07-01

    Cationic peptides that adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many frog species. These peptides often display cytolytic activities against bacteria and fungi consistent with the idea that they play a role in the host's system of defense against pathogenic microorganisms, but their importance in the survival strategy of the animal is not clearly understood. Despite the common misconception that antimicrobial peptides are synthesized in the skins of all anurans, the species distribution is sporadic, suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.

  2. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection

    PubMed Central

    Ko, Ya-Ping; Flick, Matthew J.

    2017-01-01

    Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151

  3. Antimicrobial peptide defenses against pathogens associated with global amphibian declines.

    PubMed

    Rollins-Smith, Louise A; Doersam, Jennifer K; Longcore, Joyce E; Taylor, Sharon K; Shamblin, Jessica C; Carey, Cynthia; Zasloff, Michael A

    2002-01-01

    Global declines of amphibian populations are a source of great concern. Several pathogens that can infect the skin have been implicated in the declines. The pathogen most frequently associated with recent die-offs is a chytrid fungus, Batrachochytrium dendrobatidis. A second fungus, Basidiobolus ranarum, was isolated from declining populations of Wyoming toads. A third pathogen, Aeromonas hydrophila, is an opportunistic bacterium found in healthy frogs, but capable of inducing disease. Among the immune defense mechanisms used by amphibians is the production of antimicrobial peptides in granular glands in the skin. These packets of natural antibiotics can be emptied onto the skin when the amphibian is injured. To determine whether antimicrobial skin peptides defend against these amphibian pathogens, six peptides (magainin I, magainin II, PGLa, CPF, ranalexin, and dermaseptin), from three species, and representing three structurally different families of peptides, were tested in growth inhibition assays. We show here that the peptides can kill or inhibit growth of both fungi but not Aeromonas. Although each peptide varied in its effectiveness, at least one from each species was effective against both fungi at a concentration of about 10-20 microM. This is the first direct evidence that antimicrobial peptides in the skin can operate as a first line of defense against the organisms associated with global amphibian declines. It suggests that this innate defense mechanism may play a role in preventing or limiting infection by these organisms.

  4. Antimicrobial Peptides and Innate Lung Defenses: Role in Infectious and Noninfectious Lung Diseases and Therapeutic Applications.

    PubMed

    Hiemstra, Pieter S; Amatngalim, Gimano D; van der Does, Anne M; Taube, Christian

    2016-02-01

    Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils in particular contribute to their synthesis. The relevance of antimicrobial peptides for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Importantly, antimicrobial peptides are active against microorganisms that are resistant against conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of antimicrobial peptides, enhancement of their local production, and creation of more favorable circumstances for their action. In this review, recent developments in antimicrobial peptides research in the lung and clinical applications for novel therapies of lung diseases are discussed.

  5. Involvement of mytilins in mussel antimicrobial defense.

    PubMed

    Mitta, G; Vandenbulcke, F; Hubert, F; Salzet, M; Roch, P

    2000-04-28

    Four cationic peptides were purified from mussel (Mytilus galloprovincialis) hemocytes. A combination of Edman degradation and mass spectrometry of plasma revealed (i) a previously characterized molecule, mytilin B (Charlet, M., Chernysh, S., Philippe, H., Hetrut, C., Hoffmann, J., and Bulet, P. (1996) J. Biol. Chem. 271, 21808-21813) and (ii) three new isoforms, mytilin C, D, and G1. The four molecules exhibited complementary antimicrobial properties. The cDNA sequence coding for the mytilin B precursor was obtained from a hemocyte cDNA library. This precursor contains a putative signal peptide of 22 residues, a processing peptide sequence of 34 amino acids, and a C-terminal extension of 48 residues rich in acidic residues. Distribution of mytilin B mRNA and of the corresponding peptide in various mussel tissues revealed that mytilins are synthesized and stored in a specific hemocyte subtype. Furthermore, in an experimental model of infection, we showed (i) a recruitment of hemocytes containing mytilins toward the injection site within hours following bacterial challenge, (ii) that mytilins probably play a prominent role in killing intracellular bacteria after phagocytosis, and (ii) later an increase of mytilin-like material occurred in the plasma suggesting a secondary systemic role.

  6. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    PubMed

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses.

    PubMed

    Mulvey, M A; Schilling, J D; Martinez, J J; Hultgren, S J

    2000-08-01

    Strains of uropathogenic Escherichia coli (UPEC) are the causative agents in the vast majority of all urinary tract infections. Upon entering the urinary tract, UPEC strains face a formidable array of host defenses, including the flow of urine and a panoply of antimicrobial factors. To gain an initial foothold within the bladder, most UPEC strains encode filamentous surface adhesive organelles called type 1 pili that can mediate bacterial attachment to, and invasion of, bladder epithelial cells. Invasion provides UPEC with a protective environment in which bacteria can either replicate or persist in a quiescent state. Infection with type 1-piliated E. coli can trigger a number of host responses, including cytokine production, inflammation, and the exfoliation of infected bladder epithelial cells. Despite numerous host defenses and even antibiotic treatments that can effectively sterilize the urine, recent studies demonstrate that uropathogens can persist within the bladder tissue. These bacteria may serve as a reservoir for recurrent infections, a common problem affecting millions each year.

  8. Immune defense and host life history.

    PubMed

    Zuk, Marlene; Stoehr, Andrew M

    2002-10-01

    Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.

  9. Insights from human studies into the host defense against candidiasis.

    PubMed

    Filler, Scott G

    2012-04-01

    Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections.

  10. Microbial pathogenesis and host defense in the nematode C. elegans

    PubMed Central

    Cohen, Lianne B.; Troemel, Emily R.

    2014-01-01

    Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial infection. Like many other metazoans, the nematode C. elegans lacks known professional immune cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core physiology within host cells and through autophagic defense against intracellular and extracellular pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies used against C. elegans. These findings are providing insight into the underpinnings of host/pathogen interactions in a simple animal host that can inform studies of infectious diseases in humans. PMID:25461579

  11. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  12. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  13. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    PubMed Central

    Ng, Wy Ching; Tate, Michelle D.; Brooks, Andrew G.; Reading, Patrick C.

    2012-01-01

    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease. PMID:22665991

  14. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection.

    PubMed

    Fischer, Annette; Rudel, Thomas

    2016-05-13

    Obligate intracellular bacteria entirely depend on the metabolites of their host cell for survival and generation of progeny. Due to their lifestyle inside a eukaryotic cell and the lack of any extracellular niche, they have to perfectly adapt to compartmentalized intracellular environment of the host cell and counteract the numerous defense strategies intrinsically present in all eukaryotic cells. This so-called cell-autonomous defense is present in all cell types encountering Chlamydia infection and is in addition closely linked to the cellular innate immune defense of the mammalian host. Cell type and chlamydial species-restricted mechanisms point a long-term evolutionary adaptation that builds the basis of the currently observed host and cell-type tropism among different Chlamydia species. This review will summarize the current knowledge on the strategies pathogenic Chlamydia species have developed to subvert and overcome the multiple mechanisms by which eukaryotic cells defend themselves against intracellular pathogens.

  15. Staphylococcus epidermidis Antimicrobial δ-Toxin (Phenol-Soluble Modulin-γ) Cooperates with Host Antimicrobial Peptides to Kill Group A Streptococcus

    PubMed Central

    Cogen, Anna L.; Yamasaki, Kenshi; Muto, Jun; Sanchez, Katheryn M.; Crotty Alexander, Laura; Tanios, Jackelyn; Lai, Yuping; Kim, Judy E.; Nizet, Victor; Gallo, Richard L.

    2010-01-01

    Antimicrobial peptides play an important role in host defense against pathogens. Recently, phenol-soluble modulins (PSMs) from Staphylococcus epidermidis (S. epidermidis) were shown to interact with lipid membranes, form complexes, and exert antimicrobial activity. Based on the abundance and innocuity of the cutaneous resident S. epidermidis, we hypothesized that their PSMs contribute to host defense. Here we show that S. epidermidis δ-toxin (PSMγ) is normally present in the epidermis and sparsely in the dermis of human skin using immunohistochemistry. Synthetic δ-toxin interacted with neutrophil extracellular traps (NETs) and colocalized with cathelicidin while also inducing NET formation in human neutrophils. In antimicrobial assays against Group A Streptococcus (GAS), δ-toxin cooperated with CRAMP, hBD2, and hBD3. In whole blood, addition of δ-toxin exerted a bacteriostatic effect on GAS, and in NETs, δ-toxin increased their killing capacity against this pathogen. Coimmunoprecipitation and tryptophan spectroscopy demonstrated direct binding of δ-toxin to host antimicrobial peptides LL-37, CRAMP, hBD2, and hBD3. Finally, in a mouse wound model, GAS survival was reduced (along with Mip-2 cytokine levels) when the wounds were pretreated with δ-toxin. Thus, these data suggest that S. epidermidis–derived δ-toxin cooperates with the host-derived antimicrobial peptides in the innate immune system to reduce survival of an important human bacterial pathogen. PMID:20052280

  16. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps.

    PubMed

    von Köckritz-Blickwede, Maren; Nizet, Victor

    2009-08-01

    The formation of extracellular traps (ETs) by phagocytic cells has been recognized as a novel and important mechanism of the host innate immune response against infections. ETs are formed by different host immune cells such as neutrophils, mast cells, and eosinophils after stimulation with mitogens, cytokines, or pathogens themselves, in a process dependent upon induction of a reactive-oxygen-species-mediated signaling cascade. ETs consist of nuclear or mitochondrial DNA as a backbone with embedded antimicrobial peptides, histones, and cell-specific proteases and thereby provide a matrix to entrap and kill microbes and to induce the contact system. This review summarizes the latest research on ETs and their role in innate immunity and host innate defense. Attention is also given to mechanisms by which certain leading bacterial pathogens have evolved to avoid entrapment and killing in these specialized structures.

  17. Insect Outbreaks, Host-Pathogen Interactions, and Induced Plant Defenses

    DTIC Science & Technology

    2009-09-30

    field data, first by using a field experiment to show that, in the outbreaking North American gypsy moth , induced plant defenses affect pathogen... gypsy moth (Lymantria dispar), its baculovirus, and one of the gypsy moth’s main host trees in North America, the red oak, Quercus rubra17. A previous...red oaks increases hydrolyzable tannin concentrations20, an induced defense8 that strongly affects average gypsy - moth infection risk in the

  18. Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule

    PubMed Central

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M.; Malmsten, Martin; Mörgelin, Matthias

    2013-01-01

    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity. PMID:23656734

  19. Use of experimental airborne infections for monitoring altered host defenses.

    PubMed Central

    Gardner, D E

    1982-01-01

    The success or failure of the respiratory system to defend itself against airborne infectious agents largely depends upon the efficiency of the pulmonary defenses to maintain sterility and to dispose of unwanted substances. Both specific and nonspecific host defenses cooperate in the removal and inactivation of such agents. Several studies have shown that these defenses are vulnerable to a wide range of environmental agents and that there is a good relationship between exposure to pollutant and the impaired resistance to pulmonary disease. There are numerous immunological, biochemical and physiological techniques that are routinely used to identify and to characterize individual impairments of these defenses. Based on these effects, various hypotheses are proposed as to what health consequences could be expected from these effects. The ultimate test is whether the host, with its compromised defense mechanisms, is still capable of sustaining the total injury and continuing to defend itself against opportunistic pathogens. This paper describes the use of an experimental airborne infectious disease model capable of predicting subtle changes in host defenses at concentrations below which there are any other overt toxicological effects. Such sensitivity is possible because the model measure not just a single "health" parameter, but instead is capable of reflecting the total responses caused by the test chemical. Images FIGURE 3. PMID:7060549

  20. IFN-inducible GTPases in Host Defense

    PubMed Central

    Kim, Bae-Hoon; Shenoy, Avinash R.; Kumar, Pradeep; Bradfield, Clinton J.; MacMicking, John D.

    2012-01-01

    From plants to humans, the ability to control infection at the level of an individual cell – a process termed cell-autonomous immunity – equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell’s interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic and inflammasome-related antimicrobial activities within the cytosol as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies (GWAS) and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of Guanylate Binding Proteins (GBPs) with tuberculosis susceptibility and Crohn’s colitis. PMID:23084913

  1. Evasion of host immune defenses by human papillomavirus.

    PubMed

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.

  2. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment.

    PubMed

    Gjini, Erida; Brito, Patricia H

    2016-04-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.

  3. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  4. Homology-dependent gene silencing and host defense in plants.

    PubMed

    Matzke, Marjori A; Aufsatz, Werner; Kanno, Tatsuo; Mette, M Florian; Matzke, Antonius J M

    2002-01-01

    Analyses of transgene silencing phenomena in plants and other organisms have revealed the existence of epigenetic silencing mechanisms that are based on recognition of nucleic acid sequence homology at either the DNA or RNA level. Common triggers of homology-dependent gene silencing include inverted DNA repeats and double-stranded RNA, a versatile silencing molecule that can induce both degradation of homologous RNA in the cytoplasm and methylation of homologous DNA sequences in the nucleus. Inverted repeats might be frequently associated with silencing because they can potentially interact in cis and in trans to trigger DNA methylation via homologous DNA pairing, or they can be transcribed to produce double-stranded RNA. Homology-dependent gene silencing mechanisms are ideally suited for countering natural parasitic sequences such as transposable elements and viruses, which are usually present in multiple copies and/or produce double-stranded RNA during replication. These silencing mechanisms can thus be regarded as host defense strategies to foreign or invasive nucleic acids. The high content of transposable elements and, in some cases, endogenous viruses in many plant genomes suggests that host defenses do not always prevail over invasive sequences. During evolution, slightly faulty genome defense responses probably allowed transposable elements and viral sequences to accumulate gradually in host chromosomes and to invade host genes. Possible beneficial consequences of this "foreign" DNA buildup include the establishment of genome defense-derived epigenetic control mechanisms for regulating host gene expression and acquired hereditary immunity to some viruses.

  5. IL-32 is a molecular marker of a host defense network in human tuberculosis

    PubMed Central

    Montoya, Dennis; Inkeles, Megan S.; Liu, Phillip T.; Realegeno, Susan; Teles, Rosane M. B.; Vaidya, Poorva; Munoz, Marcos A.; Schenk, Mirjam; Swindell, William R.; Chun, Rene; Zavala, Kathryn; Hewison, Martin; Adams, John S.; Horvath, Steve; Pellegrini, Matteo; Bloom, Barry R.; Modlin, Robert L.

    2014-01-01

    Tuberculosis is a leading cause of infectious disease–related death worldwide; however, only 10% of people infected with Mycobacterium tuberculosis develop disease. Factors that contribute to protection could prove to be promising targets for M. tuberculosis therapies. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify potential human candidate markers of host defense by studying gene expression profiles of macrophages, cells that, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene coexpression network analysis revealed an association between the cytokine interleukin-32 (IL-32) and the vitamin D antimicrobial pathway in a network of interferon-γ– and IL-15–induced “defense response” genes. IL-32 induced the vitamin D–dependent antimicrobial peptides cathelicidin and DEFB4 and to generate antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. In addition, the IL-15–induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent compared with active tuberculosis or healthy controls and a coexpression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15–induced gene network. As maintaining M. tuberculosis in a latent state and preventing transition to active disease may represent a form of host resistance, these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis. PMID:25143364

  6. SAR11 viruses and defensive host strains.

    PubMed

    Våge, Selina; Storesund, Julia E; Thingstad, T Frede

    2013-07-25

    Arising from Y. Zhao et al. Nature 494, 357–360 (2013). The recent findings of abundant SAR11 viruses by Zhao et al. are intriguing, and add new insight into the on-going discussion of why SAR11 bacteria are highly successful in the pelagic ocean. On the basis of high SAR11 virus abundance, Zhao et al. claim that SAR11 bacteria are competition specialists. Alternatively, we show here how their findings could be consistent with a dominance of defensive SAR11 strains. Considering their high abundance, understanding why SAR11 bacteria are so successful has important implications for the study of the pelagic ecosystem. There is a Reply to this Brief Communication Arising by Giovannoni, S., Temperton, B. & Zhao, Y. Nature 499, http://dx.doi.org/10.1038/nature12388 (2013).

  7. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides.

    PubMed

    Tang, Lingli; Chen, Jianlin; Zhou, Zhiguang; Yu, Ping; Yang, Zhangsheng; Zhong, Guangming

    2015-06-01

    Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.

  8. Defense peptides secreted by helminth pathogens: antimicrobial and/or immunomodulator molecules?

    PubMed Central

    Cotton, Sophie; Donnelly, Sheila; Robinson, Mark W.; Dalton, John P.; Thivierge, Karine

    2012-01-01

    Host defense peptides (HDPs) are an evolutionarily conserved component of the innate immune response found in all living species. They possess antimicrobial activities against a broad range of organisms including bacteria, fungi, eukaryotic parasites, and viruses. HDPs also have the ability to enhance immune responses by acting as immunomodulators. We discovered a new family of HDPs derived from pathogenic helminth (worms) that cause enormous disease in animals and humans worldwide. The discovery of these peptides was based on their similar biochemical and functional characteristics to the human defense peptide LL-37. We propose that these new peptides modulate the immune response via molecular mimicry of mammalian HDPs thus providing a mechanism behind the anti-inflammatory properties of helminth infections. PMID:22973271

  9. Postinfluenza Bacterial Pneumonia: Host Defenses Gone Awry

    PubMed Central

    Ballinger, Megan N.

    2010-01-01

    Influenza is a common respiratory pathogen causing both seasonal and pandemic disease. Influenza infection predisposes the host to secondary bacterial infection of the respiratory tract, which is a major cause of both morbidity and mortality in flu-related disease. In this review, we will discuss innate and adaptive antiviral responses during influenza infection, and review how these responses modulate protective immunity against secondary bacterial pathogens of the lung. Specific emphasis will be placed on implications of bacterial superinfection and mechanisms involved. PMID:20726789

  10. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    PubMed

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  11. Frequency and Distribution of Single-Nucleotide Polymorphisms within mprF in Methicillin-Resistant Staphylococcus aureus Clinical Isolates and Their Role in Cross-Resistance to Daptomycin and Host Defense Antimicrobial Peptides

    PubMed Central

    Bayer, Arnold S.; Mishra, Nagendra N.; Chen, Liang; Kreiswirth, Barry N.; Rubio, Aileen

    2015-01-01

    MprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance in Staphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAPs)/daptomycin-resistant (DAPr) clinical methicillin-resistant S. aureus (MRSA) strain pairs, we assessed (i) the frequencies and distribution of putative mprF gain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact of mprF SNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of the mprF SNPs identified in our DAPr strains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location of mprF SNPs in DAPr strains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAPr strains with mprF SNPs in the bifunctional domain showed higher resistance to tPMPs than DAPr strains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance in S. aureus. PMID:26055370

  12. Frequency and Distribution of Single-Nucleotide Polymorphisms within mprF in Methicillin-Resistant Staphylococcus aureus Clinical Isolates and Their Role in Cross-Resistance to Daptomycin and Host Defense Antimicrobial Peptides.

    PubMed

    Bayer, Arnold S; Mishra, Nagendra N; Chen, Liang; Kreiswirth, Barry N; Rubio, Aileen; Yang, Soo-Jin

    2015-08-01

    MprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance in Staphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAP(s))/daptomycin-resistant (DAP(r)) clinical methicillin-resistant S. aureus (MRSA) strain pairs, we assessed (i) the frequencies and distribution of putative mprF gain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact of mprF SNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of the mprF SNPs identified in our DAP(r) strains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location of mprF SNPs in DAP(r) strains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAP(r) strains with mprF SNPs in the bifunctional domain showed higher resistance to tPMPs than DAP(r) strains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance in S. aureus.

  13. Impact of Childhood Malnutrition on Host Defense and Infection.

    PubMed

    Ibrahim, Marwa K; Zambruni, Mara; Melby, Christopher L; Melby, Peter C

    2017-10-01

    The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population. Copyright © 2017 American Society for Microbiology.

  14. Antimicrobial peptides and the skin immune defense system

    PubMed Central

    Schauber, Jürgen; Gallo, Richard L.

    2009-01-01

    Our skin is constantly challenged by microbes but is rarely infected. Cutaneous production of antimicrobial peptides (AMPs) is a primary system for protection, and expression of some AMPs further increases in response to microbial invasion. Cathelicidins are unique AMPs that protect the skin through 2 distinct pathways: (1) direct antimicrobial activity and (2) initiation of a host response resulting in cytokine release, inflammation, angiogenesis, and reepithelialization. Cathelicidin dysfunction emerges as a central factor in the pathogenesis of several cutaneous diseases, including atopic dermatitis, in which cathelicidin is suppressed; rosacea, in which cathelicidin peptides are abnormally processed to forms that induce inflammation; and psoriasis, in which cathelicidin peptide converts self-DNA to a potent stimulus in an autoinflammatory cascade. Recent work identified vitamin D3 as a major factor involved in the regulation of cathelicidin. Therapies targeting control of cathelicidin and other AMPs might provide new approaches in the management of infectious and inflammatory skin diseases. PMID:18439663

  15. Airway acidification initiates host defense abnormalities in cystic fibrosis mice.

    PubMed

    Shah, Viral S; Meyerholz, David K; Tang, Xiao Xiao; Reznikov, Leah; Abou Alaiwa, Mahmoud; Ernst, Sarah E; Karp, Philip H; Wohlford-Lenane, Christine L; Heilmann, Kristopher P; Leidinger, Mariah R; Allen, Patrick D; Zabner, Joseph; McCray, Paul B; Ostedgaard, Lynda S; Stoltz, David A; Randak, Christoph O; Welsh, Michael J

    2016-01-29

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H(+) secretion by the nongastric H(+)/K(+) adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H(+); consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. Copyright © 2016, American Association for the Advancement of Science.

  16. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    PubMed Central

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  17. Antimicrobial peptides: modes of mechanism, modulation of defense responses.

    PubMed

    Rahnamaeian, Mohammad

    2011-09-01

    Complicated schemes of classical breeding and their drawbacks, environmental risks imposed by agrochemicals, decrease of arable land, and coincident escalating damages of pests and pathogens have accentuated the necessity for highly efficient measures to improve crop protection. During co-evolution of host-microbe interactions, antimicrobial peptides (AMPs) have exhibited a brilliant history in protecting host organisms against devastation by invading pathogens. Since the 1980s, a plethora of AMPs has been isolated from and characterized in different organisms. Nevertheless the AMPs expressed in plants render them more resistant to diverse pathogens, a more orchestrated approach based on knowledge of their mechanisms of action and cellular targets, structural toxic principle, and possible impact on immune system of corresponding transgenic plants will considerably improve crop protection strategies against harmful plant diseases. This review outlines the current knowledge on different modes of action of AMPs and then argues the waves of AMPs’ ectopic expression on transgenic plants’ immune system.

  18. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.

    PubMed

    Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G

    2017-01-01

    Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Sounding the Alarm: Multiple Functions of Host Defense Peptides

    PubMed Central

    Gallo, Richard L.

    2009-01-01

    The capacity of the skin and other organs to resist infection depends on the innate production of molecules known as antimicrobial peptides. Emerging evidence suggests that some of these peptides are important to immune defense by acting not only as natural antibiotics but also as cell-signaling molecules. In this issue Carretero et al. (2007) expand on these findings by demonstrating that expression of human cathelicidin alters multiple signaling pathways in a keratinocyte cell line and enhances wound re-epithelialization in ob/ob mice. PMID:18071331

  20. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine

    PubMed Central

    Caballero, Silvia; Pamer, Eric G.

    2015-01-01

    The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis. PMID:25581310

  1. Natural killer cells in host defense against veterinary pathogens.

    PubMed

    Shekhar, Sudhanshu; Yang, Xi

    2015-11-15

    Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes.

  2. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans.

    PubMed

    Urban, Constantin F; Ermert, David; Schmid, Monika; Abu-Abed, Ulrike; Goosmann, Christian; Nacken, Wolfgang; Brinkmann, Volker; Jungblut, Peter R; Zychlinsky, Arturo

    2009-10-01

    Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo.

  3. PPAR-α Activation Mediates Innate Host Defense through Induction of TFEB and Lipid Catabolism.

    PubMed

    Kim, Yi Sak; Lee, Hye-Mi; Kim, Jin Kyung; Yang, Chul-Su; Kim, Tae Sung; Jung, Mingyu; Jin, Hyo Sun; Kim, Sup; Jang, Jichan; Oh, Goo Taeg; Kim, Jin-Man; Jo, Eun-Kyeong

    2017-04-15

    The role of peroxisome proliferator-activated receptor α (PPAR-α) in innate host defense is largely unknown. In this study, we show that PPAR-α is essential for antimycobacterial responses via activation of transcription factor EB (TFEB) transcription and inhibition of lipid body formation. PPAR-α deficiency resulted in an increased bacterial load and exaggerated inflammatory responses during mycobacterial infection. PPAR-α agonists promoted autophagy, lysosomal biogenesis, phagosomal maturation, and antimicrobial defense against Mycobacterium tuberculosis or M. bovis bacillus Calmette-Guérin. PPAR-α agonists regulated multiple genes involved in autophagy and lysosomal biogenesis, including Lamp2, Rab7, and Tfeb in bone marrow-derived macrophages. Silencing of TFEB reduced phagosomal maturation and antimicrobial responses, but increased macrophage inflammatory responses during mycobacterial infection. Moreover, PPAR-α activation promoted lipid catabolism and fatty acid β-oxidation in macrophages during mycobacterial infection. Taken together, our data indicate that PPAR-α mediates antimicrobial responses to mycobacterial infection by inducing TFEB and lipid catabolism. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Current and Potential Applications of Host-Defense Peptides and Proteins in Urology

    PubMed Central

    2015-01-01

    The use of antibiotics has become increasingly disfavored as more multidrug resistant pathogens are on the rise. A promising alternative to the use of these conventional drugs includes antimicrobial peptides or host-defense peptides. These peptides typically consist of short amino acid chains with a net cationic charge and a substantial portion of hydrophobic residues. They mainly target the bacterial cell membrane but are also capable of translocating through the membrane and target intracellular components, making it difficult for bacteria to gain resistance as multiple essential cellular processes are being targeted. The use of these peptides in the field of biomedical therapies has been examined, and the different approaches to using them under various settings are constantly being discovered. In this review, we discuss the current and potential applications of these host-defense peptides in the field of urology. Besides the use of these peptides as antimicrobial agents, the value of these biological molecules has recently been expanded to their use as antitumor and anti-kidney-stone agents. PMID:25815308

  5. Crossing the Rubicon: new roads lead to host defense.

    PubMed

    Bradfield, Clinton J; Kim, Bae-Hoon; MacMicking, John D

    2012-03-15

    Rubicon is a protein known to engage the Beclin-1/Vps34-PI3K/UVRAG complex and inhibit endosome and autophagosomal fusion with lysosomes. Yang et al. (2012) uncover new roles for this adaptor protein within noncanonical p22(phox) or CARD9 complexes that regulate oxidative and cytokine responses in activated macrophages, respectively. Both complexes impact pathogen-specific host defense.

  6. Mimics of Host Defense Proteins; Strategies for Translation to Therapeutic Applications.

    PubMed

    Scott, Richard W; Tew, Gregory N

    2017-01-01

    New infection treatments are urgently needed to combat the rising threat of multi-drug resistant bacteria. Despite early clinical set-backs attention has re-focused on host defense proteins (HDPs), as potential sources for new and effective antimicrobial treatments. HDPs appear to act at multiple targets and their repertoire includes disruptive membrane and intracellular activities against numerous types of pathogens as well as immune modulatory functions in the host. Importantly, these novel activities are associated with a low potential for emergence of resistance and little crossresistance with other antimicrobial agents. Based on these properties, HDPs appear to be ideal candidates for new antibiotics; however, their development has been plagued by the many therapeutic limitations associated with natural peptidic agents. This review focuses on HDP mimetic approaches aimed to improve metabolic stability, pharmacokinetics, safety and manufacturing processes. Early efforts with β-peptide or peptoid analogs focused on recreating stable facially amphiphilic structures but demonstrated that antimicrobial activity was modulated by more, complex structural properties. Several approaches have used lipidation to increase the hydrophobicity and membrane activity. One lead compound, LTX-109, has entered clinical study as a topical agent to treat impetigo and nasal decolonization. In a more significant departure from the amino acid like peptidomimetics, considerable effort has been directed at developing amphiphilic compounds that recapitulate the structural and biological properties of HDPs on small abiotic scaffolds. The lead compound from this approach, brilacidin, has completed two phase 2 studies as an intravenous agent for skin infections.

  7. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2011-10-01

    10-1-0872 TITLE: Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides PRINCIPAL...Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides Edward Greenfield Case Western Reserve University...Cleveland, OH 44106 Host defense peptides represent a promising new approach to inhibit infection . The anti

  8. The late endosomal adaptor p14 is a macrophage host-defense factor against Salmonella infection.

    PubMed

    Taub, Nicole; Nairz, Manfred; Hilber, Diana; Hess, Michael W; Weiss, Günter; Huber, Lukas A

    2012-06-01

    The outcome of an infection depends on the balance between host resistance and bacterial virulence. Here, we show that the late endosomal adaptor p14 (also known as LAMTOR2) is one of the components for cellular host defense against the intracellular pathogen Salmonella enterica serovar Typhimurium. During Salmonella infection, the complex of p14 and MP1 is required for the accurately timed transport of Salmonella through the endolysosomal system. Loss of p14 opens a time window that allows Salmonella to populate a replication niche, in which early and late antimicrobial effector systems, comprising NADPH phagocytic oxidase and inducible nitric oxide synthase, respectively, are inappropriately activated. Thus, p14 supports the accurate transport of Salmonella through the endolysosomal system, thereby limiting bacterial replication in both, professional phagocytes and in non-phagocytic cells in vitro, and helps mice to successfully battle Salmonella infection in vivo.

  9. Novel mode of action of plant defense peptides - hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases.

    PubMed

    Slavokhotova, Anna A; Naumann, Todd A; Price, Neil P J; Rogozhin, Eugene A; Andreev, Yaroslav A; Vassilevski, Alexander A; Odintsova, Tatyana I

    2014-10-01

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes, resulting in the reinforcement of plant cell walls and the production of antimicrobial compounds. To suppress plant defense, fungi secrete effectors, including a recently discovered Zn-metalloproteinase from Fusarium verticillioides, named fungalysin Fv-cmp. This proteinase cleaves class IV chitinases, which are plant defense proteins that bind and degrade chitin of fungal cell walls. In this study, we investigated plant responses to such pathogen invasion, and discovered novel inhibitors of fungalysin. We produced several recombinant hevein-like antimicrobial peptides named wheat antimicrobial peptides (WAMPs) containing different amino acids (Ala, Lys, Glu, and Asn) at the nonconserved position 34. An additional Ser at the site of fungalysin proteolysis makes the peptides resistant to the protease. Moreover, an equal molar concentration of WAMP-1b or WAMP-2 to chitinase was sufficient to block the fungalysin activity, keeping the chitinase intact. Thus, WAMPs represent novel protease inhibitors that are active against fungal metalloproteases. According to in vitro antifungal assays WAMPs directly inhibited hyphal elongation, suggesting that fungalysin plays an important role in fungal development. A novel molecular mechanism of dynamic interplay between host defense molecules and fungal virulence factors is suggested. © 2014 FEBS.

  10. The role of antimicrobial peptides in animal defenses

    NASA Astrophysics Data System (ADS)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  11. The role of antimicrobial peptides in animal defenses.

    PubMed

    Hancock, R E; Scott, M G

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  12. The role of antimicrobial peptides in animal defenses

    PubMed Central

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-01-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections. PMID:10922046

  13. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury

    PubMed Central

    Almyroudis, Nikolaos G.; Grimm, Melissa J.; Davidson, Bruce A.; Röhm, Marc; Urban, Constantin F.; Segal, Brahm H.

    2013-01-01

    Neutrophils are armed with both oxidant-dependent and -independent pathways for killing pathogens. Activation of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase constitutes an emergency response to infectious threat and results in the generation of antimicrobial reactive oxidants. In addition, NADPH oxidase activation in neutrophils is linked to activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the release of nuclear and granular components that can target extracellular pathogens. NETosis is activated during microbial threat and in certain conditions mimicking sepsis, and can result in both augmented host defense and inflammatory injury. In contrast, apoptosis, the physiological form of neutrophil death, not only leads to non-inflammatory cell death but also contributes to alleviate inflammation. Although there are significant gaps in knowledge regarding the specific contribution of NETs to host defense, we speculate that the coordinated activation of NADPH oxidase and NETosis maximizes microbial killing. Work in engineered mice and limited patient experience point to varying susceptibility of bacterial and fungal pathogens to NADPH oxidase versus NET constituents. Since reactive oxidants and NET constituents can injure host tissue, it is important that these pathways be tightly regulated. Recent work supports a role for NETosis in both acute lung injury and in autoimmunity. Knowledge gained about mechanisms that modulate NETosis may lead to novel therapeutic approaches to limit inflammation-associated injury. PMID:23459634

  14. Innate Immunity and antimicrobial defense systems in psoriasis

    PubMed Central

    Büchau, Amanda S.; Gallo, Richard L.

    2009-01-01

    Psoriasis is a chronic inflammatory disorder that is mediated by elements of the innate and adaptive immune systems. Its characteristic features in the skin consist of inflammatory changes in both dermis and epidermis, with abnormal keratinocyte differentiation and proliferation. Despite the elucidation of many aspects of psoriasis pathogenesis, some puzzling questions remain to be answered. A major question currently debated is if psoriasis is a primary abnormality of the epidermal keratinocyte or a reflection of dysregulated bone-marrow derived immunocytes. In this review we will focus on understanding the role of the innate immune system in psoriasis and how this provides a rational solution to address the origin of this multifactorial disease. Innate immunity is non-specific and genetically-based. It protects the body against the constant risk of pathogens through the use of rapidly mobilized defenses that are able to recognize and kill a wide variety of threats (bacteria, fungi, viruses, etc.). The key mechanisms of innate immune responses are the existence of receptors to recognize pathogens, and the production of factors that kill pathogens, such as antimicrobial peptides and proteins. Any combination of excessive sensitivity of the innate detection system, or dysregulation of the response system, can manifest both an epidermal phenotype and abnormal T-cell function. Thus, the multidimensional action of the innate immune system, its triggers, and its recently understood role in T-cell function, argue for an important role for innate mechanisms of recognition and response in the pathogenesis of psoriasis. PMID:18021900

  15. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases.

    PubMed

    Lecaille, Fabien; Lalmanach, Gilles; Andrault, Pierre-Marie

    2016-03-01

    Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.

  16. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    PubMed Central

    Nowakowska, Justyna; Landmann, Regine; Khanna, Nina

    2014-01-01

    The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI) animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials. PMID:27025752

  17. Adenosine A2B Receptor Deficiency Promotes Host Defenses against Gram-Negative Bacterial Pneumonia

    PubMed Central

    Barletta, Kathryn E.; Cagnina, R. Elaine; Burdick, Marie D.; Linden, Joel

    2012-01-01

    Rationale: Activation of the adenosine A2B receptor (A2BR) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. Objectives: To test the hypothesis that absence of adenosine A2B receptor signaling promotes host defense against bacterial pneumonia. Methods: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A2BR. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. Measurements and Main Results: A2BR–/– mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow–derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A2BR–/– and wild-type mice, but A2BR–/– neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A2BR–/– mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. Conclusions: These data suggest that the absence of A2BR signaling enhances antimicrobial activity in gram-negative bacterial pneumonia. PMID:22997203

  18. Host Defense Peptides from Asian Frogs as Potential Clinical Therapies

    PubMed Central

    Kumar, Vineeth T.V.; Holthausen, David; Jacob, Joshy; George, Sanil

    2015-01-01

    Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs. They are effective against multi-drug resistant pathogens due to their unique primary target, biological membranes, and their peculiar mode of action. Even though HDPs from 60 Asian frog species belonging to 15 genera have been characterized, research into these peptides is at a very early stage. The purpose of this review is to showcase the status of peptide research in Asia. Here we provide a summary of HDPs from Asian frogs. PMID:27025618

  19. Host Defense Peptides from Asian Frogs as Potential Clinical Therapies.

    PubMed

    Kumar, Vineeth T V; Holthausen, David; Jacob, Joshy; George, Sanil

    2015-03-30

    Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs. They are effective against multi-drug resistant pathogens due to their unique primary target, biological membranes, and their peculiar mode of action. Even though HDPs from 60 Asian frog species belonging to 15 genera have been characterized, research into these peptides is at a very early stage. The purpose of this review is to showcase the status of peptide research in Asia. Here we provide a summary of HDPs from Asian frogs.

  20. Chronic pyelonephritis: Modulation of host defenses by cyclosporin A

    SciTech Connect

    Findon, G.; Miller, T.E. )

    1989-08-01

    Chronic experimental pyelonephritis is characterized by a stable level of infection, which persists for many months. Administration of cyclosporin A (CsA) reactivated previously healed renal lesions and caused a marked increase in bacterial numbers in the kidney. Studies were then carried out to compare the effects of CsA, and the nonselective cytodepletive agents irradiation and cyclophosphamide, on both host defenses and the bacteriologic status of chronically infected kidneys. Two different responses were observed. In animals treated with CsA, bacterial numbers increased markedly, although circulating neutrophil numbers were relatively unaffected. This observation was in contrast to the severe ablation of leukocyte numbers and competence needed to achieve an equivalent effect when irradiation and cyclophosphamide were used. One possible explanation for the adverse effect of CsA on the host-parasite balance in chronic pyelonephritis is that CsA affects mediators that control the inflammatory response or induces a qualitative change in a critical cellular defense compartment.

  1. Neutrophil-mediated lung permeability and host defense proteins.

    PubMed

    Kantrow, Stephen P; Shen, Zhiwei; Jagneaux, Tonya; Zhang, Ping; Nelson, Steve

    2009-10-01

    Neutrophil recruitment to the alveolar space is associated with increased epithelial permeability. The present study investigated in mice whether neutrophil recruitment to the lung leads to accumulation of plasma-derived host defense proteins in the alveolar space and whether respiratory burst contributes to this increase in permeability. Albumin, complement C1q, and IgM were increased in bronchoalveolar lavage (BAL) fluid 6 h after intratracheal LPS challenge. Neutrophil depletion before LPS treatment completely prevented this increase in BAL fluid protein concentration. Respiratory burst was not detected in neutrophils isolated from BAL fluid, and BAL proteins were increased in mice deficient in a key subunit of the respiratory burst apparatus, gp91(phox), similar to wild-type mice. Neutrophil recruitment elicited by intratracheal instillation of the chemokines macrophage inflammatory protein-2 and keratinocyte-derived chemokine was also accompanied by accumulation of albumin, C1q, and IgM. During neutrophil recruitment to the alveolar space, epithelial permeability facilitates delivery of host defense proteins. The observed increase in epithelial permeability requires recruitment of neutrophils, but not activation of the respiratory burst, and occurs with chemokine-induced neutrophil migration independent of LPS exposure.

  2. Mast cells impair host defense during murine Streptococcus pneumoniae pneumonia.

    PubMed

    van den Boogaard, Florry E; Brands, Xanthe; Roelofs, Joris J T H; de Beer, Regina; de Boer, Onno J; van 't Veer, Cornelis; van der Poll, Tom

    2014-11-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia. Mast cells (MCs) are located mainly at the host-environment interface where they function as sentinels. Our goal was to study the role of MCs during pneumonia caused by S. pneumoniae. Lung tissue of patients who had died from pneumococcal pneumonia or a nonpulmonary cause was stained for MCs and tryptase. Wild-type (WT) and MC-deficient (Kit(W-sh/W-sh)) mice were observed or sacrificed after induction of pneumonia by intranasal inoculation of S. pneumoniae. In separate experiments, WT mice were treated with doxantrazole or cromoglycate, which are MC stabilizing agents. The constitutive presence of tryptase-positive MCs was reduced in affected lungs from pneumonia patients. Kit(W-sh/W-sh) mice showed a prolonged survival during the first few days after median lethal dose (LD)100 and LD50 infection, while overall mortality did not differ from that in WT mice. Relative to WT mice, Kit(W-sh/W-sh) mice showed reduced bacterial counts with less bacterial dissemination to distant organs and less inflammation. Neither doxantrazole nor cromoglycate influenced antibacterial defense or inflammatory responses after airway infection with S. pneumoniae. MCs exhibit an unfavorable role in host defense during pneumococcal pneumonia by a mechanism independent of degranulation. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Identification of Synthetic and Natural Host Defense Peptides with Leishmanicidal Activity

    PubMed Central

    Marr, A. K.; Cen, S.; Hancock, R. E. W.

    2016-01-01

    Leishmania parasites are a major public health problem worldwide. Effective treatment of leishmaniasis is hampered by the high incidence of adverse effects to traditional drug therapy and the emergence of resistance to current therapeutics. A vaccine is currently not available. Host defense peptides have been investigated as novel therapeutic agents against a wide range of pathogens. Here we demonstrate that the antimicrobial peptide LL-37 and the three synthetic peptides E6, L-1018, and RI-1018 exhibit leishmanicidal activity against promastigotes and intramacrophage amastigotes of Leishmania donovani and Leishmania major. We also report that the Leishmania protease/virulence factor GP63 confers protection to Leishmania from the cytolytic properties of all l-form peptides (E6, L-1018, and LL-37) but not the d-form peptide RI-1018. The results suggest that RI-1018, E6, and LL-37 are promising peptides to develop further into components for antileishmanial therapy. PMID:26883699

  4. Murine models of Aspergillosis: Role of collectins in host defense.

    PubMed

    Singh, Mamta; Mahajan, Lakshna; Chaudhary, Neelkamal; Kaur, Savneet; Madan, Taruna; Sarma, P Usha

    2015-11-01

    Aspergillus fumigatus, a ubiquitous fungus, causes a wide spectrum of clinical conditions ranging from allergic to invasive aspergillosis depending upon the hosts' immune status. Several animal models have been generated to mimic the human clinical conditions in allergic and invasive aspergillosis. The onset, duration and severity of the disease developed in models varied depending on the animal strain/fungal isolate, quantity and mode of administration of fungal antigens/spores, duration of the treatment, and type of immunosuppressive agent used. These models provide insight into host and pathogen factors and prove to be useful for evaluation of diagnostic markers and effective therapies. A series of studies established the protective role of collectins in murine models of Allergic Bronchopulmonary Aspergillosis and Invasive Pulmonary Aspergillosis. Collectins, namely surfactant protein A (SP-A), surfactant protein D (SP-D) and mannan binding lectin (MBL), are pattern recognition molecules regulating both innate and adaptive immune response against pathogens. In the present review, we discussed various murine models of allergic and invasive aspergillosis and the role of collectins in host defense against aspergillosis.

  5. Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence

    PubMed Central

    Cruz, Jazmina L. G.; Sola, Isabel; Becares, Martina; Alberca, Berta; Plana, Joan; Enjuanes, Luis; Zuñiga, Sonia

    2011-01-01

    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of

  6. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense.

    PubMed

    Slazak, Blazej; Kapusta, Małgorzata; Malik, Sohaib; Bohdanowicz, Jerzy; Kuta, Elżbieta; Malec, Przemysław; Göransson, Ulf

    2016-11-01

    The distribution of cyclotides was visualized in plant cells, tissues and organs using immunohistochemistry. Finding of cyclotides in tissues potentially vulnerable to pathogen attacks supports their role as defense molecules. The cyclotide family of plant peptides is characterized by the cyclic cystine knot motif and its diverse biological activities. Given their insecticidal and antimicrobial properties, the role of cyclotides in planta is probably associated with host defense. Our current understanding of the cellular compartmentalization of cyclotides in the vacuole is based on indirect studies on transgenic model plants that do not express cyclotides naturally. Matrix-assisted laser desorption ionization (MALDI) imaging has also been used to study the distribution of cyclotides, but the technique's resolution was insufficient to determine their tissue or cell distribution. To avoid the limitations of these approaches, immunohistochemical visualization methods were used. Antibodies were raised in rabbits using cycloviolacin O2 (cyO2), and their specificity was determined by Western and dot blot experiments. Slides for immunohistochemical analysis were prepared from leaf, petiole and root fragments of Viola odorata and Viola uliginosa, and specimens were visualized using indirect epifluorescence microscopy. The antibodies against cyclotides were specific against selected bracelet cyclotides with high similarity (cyO2, cyO3, cyO8, cyO13) and suitable for immunohistochemistry. The tissue distribution of the cyclotides visualized in this way is consistent with their proposed role in host defense-relatively large quantities were observed in the leaf and petiole epidermis in both Viola species. Cyclotides were also found in vascular tissue in all the assessed plant organs. The vacuole storage of cyclotides was directly shown.

  7. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    PubMed

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  8. Granzyme A impairs host defense during Streptococcus pneumoniae pneumonia.

    PubMed

    van den Boogaard, Florry E; van Gisbergen, Klaas P J M; Vernooy, Juanita H; Medema, Jan P; Roelofs, Joris J T H; van Zoelen, Marieke A D; Endeman, Henrik; Biesma, Douwe H; Boon, Louis; Van't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2016-08-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia (CAP). Granzyme A (GzmA) is a serine protease produced by a variety of cell types involved in the immune response. We sought to determine the role of GzmA on the host response during pneumococcal pneumonia. GzmA was measured in bronchoalveolar lavage fluid (BALF) harvested from CAP patients from the infected and contralateral uninfected side and in lung tissue slides from CAP patients and controls. In CAP patients, GzmA levels were increased in BALF obtained from the infected lung. Human lungs showed constitutive GzmA expression by both parenchymal and nonparenchymal cells. In an experimental setting, pneumonia was induced in wild-type (WT) and GzmA-deficient (GzmA(-/-)) mice by intranasal inoculation of S. pneumoniae In separate experiments, WT and GzmA(-/-) mice were treated with natural killer (NK) cell depleting antibodies. Upon infection with S. pneumoniae, GzmA(-/-) mice showed a better survival and lower bacterial counts in BALF and distant body sites compared with WT mice. Although NK cells showed strong GzmA expression, NK cell depletion did not influence bacterial loads in either WT or GzmA(-/-) mice. These results implicate that GzmA plays an unfavorable role in host defense during pneumococcal pneumonia by a mechanism that does not depend on NK cells.

  9. IFN-λ determines the intestinal epithelial antiviral host defense

    PubMed Central

    Pott, Johanna; Mahlakõiv, Tanel; Mordstein, Markus; Duerr, Claudia U.; Michiels, Thomas; Stockinger, Silvia; Staeheli, Peter; Hornef, Mathias W.

    2011-01-01

    Type I and type III IFNs bind to different cell-surface receptors but induce identical signal transduction pathways, leading to the expression of antiviral host effector molecules. Despite the fact that type III IFN (IFN-λ) has been shown to predominantly act on mucosal organs, in vivo infection studies have failed to attribute a specific, nonredundant function. Instead, a predominant role of type I IFN was observed, which was explained by the ubiquitous expression of the type I IFN receptor. Here we comparatively analyzed the role of functional IFN-λ and type I IFN receptor signaling in the innate immune response to intestinal rotavirus infection in vivo, and determined viral replication and antiviral gene expression on the cellular level. We observed that both suckling and adult mice lacking functional receptors for IFN-λ were impaired in the control of oral rotavirus infection, whereas animals lacking functional receptors for type I IFN were similar to wild-type mice. Using Mx1 protein accumulation as marker for IFN responsiveness of individual cells, we demonstrate that intestinal epithelial cells, which are the prime target cells of rotavirus, strongly responded to IFN-λ but only marginally to type I IFN in vivo. Systemic treatment of suckling mice with IFN-λ repressed rotavirus replication in the gut, whereas treatment with type I IFN was not effective. These results are unique in identifying a critical role of IFN-λ in the epithelial antiviral host defense. PMID:21518880

  10. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  11. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  12. Host-Defense Peptides with Therapeutic Potential from Skin Secretions of Frogs from the Family Pipidae

    PubMed Central

    Conlon, J. Michael; Mechkarska, Milena

    2014-01-01

    Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) peptides have been isolated from norepinephrine-stimulated skin secretions from several species of Xenopus and Silurana. Hymenochirins and pseudhymenochirins have been isolated from Hymenochirus boettgeri and Pseudhymenochirus merlini. A major obstacle to the development of these peptides as anti-infective agents is their hemolytic activities against human erythrocytes. Analogs of the magainins, CPF peptides and hymenochirin-1B with increased antimicrobial potencies and low cytotoxicities have been developed that are active (MIC < 5 μM) against multidrug-resistant clinical isolates of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Klebsiella pneumoniae. Despite this, the therapeutic potential of frog skin peptides as anti-infective agents has not been realized so that alternative clinical applications as anti-cancer, anti-viral, anti-diabetic, or immunomodulatory drugs are being explored. PMID:24434793

  13. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2013-10-01

    effects of host defense peptides on macrophages in vitro and on implants infected with Staph . aureus or Acinetobacter baumannii in our murine model of... Infections by Immunomodulatory Effects of Host Defense Peptides PRINCIPAL INVESTIGATOR: Edward Greenfield, Ph D...TYPE Annual 3. DATES COVERED 15 September 201 - 14 September 201 4. TITLE AND SUBTITLE Inhibition of Orthopaedic Implant Infections by

  14. Thrombocytopenia impairs host defense during murine Streptococcus pneumoniae pneumonia.

    PubMed

    van den Boogaard, Florry E; Schouten, Marcel; de Stoppelaar, Sacha F; Roelofs, Joris J T H; Brands, Xanthe; Schultz, Marcus J; van't Veer, Cornelis; van der Poll, Tom

    2015-03-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia. In patients, thrombocytopenia is correlated with an adverse outcome of pneumonia. Platelets can modulate the host response to infection in several ways, that is, by facilitating clot formation, production of antimicrobial proteins, and interaction with neutrophils. We studied the effect of thrombocytopenia during murine pneumococcal pneumonia. Animal study. University research laboratory. Mice. Pneumonia was induced by intranasal inoculation of S. pneumoniae. Platelets were depleted by anti-mouse thrombocyte serum; controls received nonimmunogenic serum. In separate studies, mice were treated with the platelet P2Y12 receptor inhibitor clopidogrel or placebo. Thrombocytopenic mice (platelet counts < 1% of uninfected controls) showed a reduced survival during pneumococcal pneumonia (27% vs 75% among controls; p = 0.003), which was associated with higher bacterial loads in lungs, spleen, and blood. Thrombocytopenic mice showed enhanced coagulation activation (thrombin-antithrombin complexes) in plasma. Proinflammatory cytokine levels were higher in plasma but not in lungs of thrombocytopenic mice. Although clopidogrel treatment strongly prolonged the bleeding time, it did not impact on bacterial loads during pneumococcal pneumonia. Platelets play a protective role during pneumococcal pneumonia independent of their aggregation.

  15. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme.

    PubMed

    Napier, Brooke A; Band, Victor; Burd, Eileen M; Weiss, David S

    2014-09-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system.

  16. Colistin Heteroresistance in Enterobacter cloacae Is Associated with Cross-Resistance to the Host Antimicrobial Lysozyme

    PubMed Central

    Napier, Brooke A.; Band, Victor

    2014-01-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system. PMID:24982068

  17. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection.

    PubMed

    Chen, Si Min; Shen, Hui; Zhang, Teng; Huang, Xin; Liu, Xiao Qi; Guo, Shi Yu; Zhao, Jing Jun; Wang, Chun Fang; Yan, Lan; Xu, Guo Tong; Jiang, Yuan Ying; An, Mao Mao

    2017-06-28

    Candida glabrata is the second most common pathogen of severe candidiasis in immunocompromised hosts, following C. albicans. Although C. glabrata and C. albicans belong to the same genus, they are phylogenetically distinct. C-type lectin receptors (CLRs), acting as pattern-recognition receptors (PRRs), play critical roles in host defense against C. albicans infections. However, our understanding of the specific roles of CLRs in host defense against C. glabrata is limited. Here, we explored the potential roles of the C-type lectins Dectin-1 and Dectin-2 in host defense against C. glabrata. We found that both Dectin-1-deficient mice (Dectin-1(-/-)) and Dectin-2-deficient mice (Dectin-2(-/-)) are more susceptible to C. glabrata infection. Dectin-1confers host higher sensitivity for sensing C. glabrata infections, while the effect of Dectin-2 in the host defense against C. glabrata is infection dose dependent. Dectin-1 is required for host myeloid cells recognition, killing of C. glabrata, and development of subsequent Th1 and Th17 cell-mediated adaptive immune response. Significantly impaired inflammatory responses such as inflammatory cells recruitment and cytokines release that were induced by C. glabrata were manifested in Dectin-1-deficient mice. Together, our study demonstrates that Dectin-1 plays an important role in host defense against systemic Candida glabrata infections, indicating a previous unknown control mechanism for this particular type of infection in host. Our study, therefore, provides new insights into the host defense against C. glabrata.

  18. Two Human Host Defense Ribonucleases against Mycobacteria, the Eosinophil Cationic Protein (RNase 3) and RNase 7

    PubMed Central

    Pulido, David; Torrent, Marc; Andreu, David; Nogués, M. Victoria

    2013-01-01

    There is an urgent need to develop new agents against mycobacterial infections, such as tuberculosis and other respiratory tract or skin affections. In this study, we have tested two human antimicrobial RNases against mycobacteria. RNase 3, also called the eosinophil cationic protein, and RNase 7 are two small cationic proteins secreted by innate cells during host defense. Both proteins are induced upon infection displaying a wide range of antipathogen activities. In particular, they are released by leukocytes and epithelial cells, contributing to tissue protection. Here, the two RNases have been proven effective against Mycobacterium vaccae at a low micromolar level. High bactericidal activity correlated with their bacterial membrane depolarization and permeabilization activities. Further analysis on both protein-derived peptides identified for RNase 3 an N-terminus fragment that is even more active than the parental protein. Also, a potent bacterial agglutinating activity was unique to RNase 3 and its derived peptide. The particular biophysical properties of the RNase 3 active peptide are envisaged as a suitable reference for the development of novel antimycobacterial drugs. The results support the contribution of secreted RNases to the host immune response against mycobacteria. PMID:23716047

  19. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37.

    PubMed

    Barlow, Peter G; Svoboda, Pavel; Mackellar, Annie; Nash, Anthony A; York, Ian A; Pohl, Jan; Davidson, Donald J; Donis, Ruben O

    2011-01-01

    The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.

  20. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    PubMed

    Nehme, Nadine T; Quintin, Jessica; Cho, Ju Hyun; Lee, Janice; Lafarge, Marie-Céline; Kocks, Christine; Ferrandon, Dominique

    2011-03-03

    Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.

  1. CpG Oligodeoxynucleotides Enhance Host Defense during Murine Tuberculosis

    PubMed Central

    Juffermans, Nicole P.; Leemans, Jaklien C.; Florquin, Sandrine; Verbon, Annelies; Kolk, Arend H.; Speelman, Peter; van Deventer, Sander J. H.; van der Poll, Tom

    2002-01-01

    Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate immune cells to produce cytokines. CpG ODNs protect mice against infections with intracellular bacteria by the induction of a T helper 1 (Th1) response. To determine the effect of CpG ODNs in pulmonary tuberculosis, mice were treated with CpG ODNs or control ODNs at the time of intranasal infection. CpG ODNs reduced mycobacterial outgrowth for up to 5 weeks after Mycobacterium tuberculosis infection and were associated with a decrease in inflammation in lung tissue. CpG treatment was also associated with elevated levels of gamma interferon (IFN-γ) and decreased levels of interleukin 4 in the lungs and an increased capacity of splenocytes to secrete Th1-type cytokines. CpG ODNs given 2 weeks after infection were still able to reduce mycobacterial outgrowth and to enhance a Th1 response 5 weeks postinfection. Administration of CpG ODNs to IFN-γ-gene-deficient mice failed to reduce mycobacterial outgrowth. These data suggest that CpG ODNs improve host defense during pulmonary tuberculosis by an IFN-γ-dependent mechanism. PMID:11748176

  2. Recent advances in host defense mechanisms/therapies against oral infectious diseases and consequences for systemic disease.

    PubMed

    Gaffen, S L; Herzberg, M C; Taubman, M A; Van Dyke, T E

    2014-05-01

    The innate and adaptive immune systems are both crucial to oral disease mechanisms and their impact on systemic health status. Greater understanding of these interrelationships will yield opportunities to identify new therapeutic targets to modulate disease processes and/or increase host resistance to infectious or inflammatory insult. The topics addressed reflect the latest advances in our knowledge of the role of innate and adaptive immune systems and inflammatory mechanisms in infectious diseases affecting the oral cavity, including periodontitis and candidiasis. In addition, several potential links with systemic inflammatory conditions, such as cardiovascular disease, are explored. The findings elucidate some of the defense mechanisms utilized by host tissues, including the role of IL-17 in providing immunity to oral candidiasis, the antimicrobial defense of mucosal epithelial cells, and the pro-resolution effects of the natural inflammatory regulators, proresolvins and lipoxins. They also describe the role of immune cells in mediating pathologic bone resorption in periodontal disease. These insights highlight the potential for therapeutic benefit of immunomodulatory interventions that bolster or modulate host defense mechanisms in both oral and systemic disease. Among the promising new therapeutic approaches discussed here are epithelial cell gene therapy, passive immunization against immune cell targets, and the use of proresolvin agents.

  3. THE ROLES OF CUTANEOUS LIPIDS IN HOST DEFENSE

    PubMed Central

    Fischer, Carol L.; Blanchette, Derek R.; Brogden, Kim A.; Dawson, Deborah V.; Drake, David R.; Hill, Jennifer R.; Wertz, Philip W.

    2013-01-01

    Lauric acid (C12:0) and sapienic acid (C16:1Δ6) derived from human sebaceous triglycerides are potent antimicrobials found at the human skin surface. Long-chain bases (sphingosine, dihydrosphingosine and 6-hydroxysphingosine) are also potent and broad-acting antimicrobials normally present at the skin surface. These antimicrobials are generated through the action of ceramidases on ceramides from the stratum corneum. These natural antimicrobials are thought to be part of the innate immune system of the skin. Exogenously providing these lipids to the skin may provide a new therapeutic option, or could potentially provide prophylaxis in people at risk of infection. PMID:23994607

  4. Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide.

    PubMed

    Mookherjee, Neeloffer; Wilson, Heather L; Doria, Silvana; Popowych, Yurij; Falsafi, Reza; Yu, Jie Jessie; Li, Yuexin; Veatch, Sarah; Roche, Fiona M; Brown, Kelly L; Brinkman, Fiona S L; Hokamp, Karsten; Potter, Andy; Babiuk, Lorne A; Griebel, Philip J; Hancock, Robert E W

    2006-12-01

    Genomic approaches can be exploited to expose the complexities and conservation of biological systems such as the immune network across various mammalian species. In this study, temporal transcriptional expression profiles were analyzed in human and bovine monocytic cells in response to the TLR-4 agonist, LPS, in the presence or absence of their respective host defense peptides. The cathelicidin peptides, human LL-37 and bovine myeloid antimicrobial peptide-27 (BMAP-27), are homologs, yet they have diverged notably in terms of sequence similarity. In spite of their low sequence similarities, both of these cathelicidin peptides demonstrated potent, antiendotoxin activity in monocytic cells at low, physiologically relevant concentrations. Microarray studies indicated that 10 ng/ml LPS led to the up-regulation of 125 genes in human monocytes, 106 of which were suppressed in the presence of 5 mug/ml of the human peptide LL-37. To confirm and extend these data, temporal transcriptional responses to LPS were assessed in the presence or absence of the species-specific host defense peptides by quantitative real-time PCR. The transcriptional trends of 20 LPS-induced genes were analyzed in bovine and human monocytic cells. These studies demonstrated conserved trends of gene responses in that both peptides were able to profoundly suppress many LPS-induced genes. Consistent with this, the human and bovine peptides suppressed LPS-induced translocation of NF-kappaB subunits p50 and p65 into the nucleus of monocytic cells. However, there were also distinct differences in responses to LPS and the peptides; for example, treatment with 5 mug/ml BMAP-27 alone tended to influence gene expression (RELA, TNF-alpha-induced protein 2, MAPK phosphatase 1/dual specificity phosphatase 1, IkappaBkappaB, NFkappaBIL1, TNF receptor-associated factor 2) to a greater extent than did the same amount of human LL-37. We hypothesize that the immunomodulatory effects of the species-specific host

  5. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells.

    PubMed

    Goodale, Britton C; Rayack, Erica J; Stanton, Bruce A

    2017-09-15

    Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.

  7. Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa

    PubMed Central

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  8. Paracoccidioides spp. catalases and their role in antioxidant defense against host defense responses

    PubMed Central

    Tamayo, Diana; Muñoz, José F.; Almeida, Agostinho J.; Puerta, Juan D.; Restrepo, Ángela; Cuomo, Christina A.; McEwen, Juan G.; Hernández, Orville

    2017-01-01

    Dimorphic human pathogenic fungi interact with host effector cells resisting their microbicidal mechanisms. Yeast cells are able of surviving within the tough environment of the phagolysosome by expressing an antioxidant defense system that provides protection against host-derived reactive oxygen species (ROS). This includes the production of catalases (CATs). Here we identified and analyzed the role of CAT isoforms in Paracoccidioides, the etiological agent of paracoccidioidomycosis. Firstly, we found that one of these isoforms was absent in the closely related dimorphic pathogen Coccidioides and dermatophytes, but all of them were conserved in Paracoccidioides, Histoplasma and Blastomyces species. We probed the contribution of CATs in Paracoccidioides by determining the gene expression levels of each isoform through quantitative RT-qPCR, in both the yeast and mycelia phases, and during the morphological switch (transition and germination), as well as in response to oxidative agents and during interaction with neutrophils. PbCATP was preferentially expressed in the pathogenic yeast phase, and was associated to the response against exogenous H2O2. Therefore, we created and analyzed the virulence defects of a knockdown strain for this isoform, and found that CATP protects yeast cells from H2O2 generated in vitro and is relevant during lung infection. On the other hand, CATA and CATB seem to contribute to ROS homeostasis in Paracoccidioides cells, during endogenous oxidative stress. CAT isoforms in Paracoccidioides might be coordinately regulated during development and dimorphism, and differentially expressed in response to different stresses to control ROS homeostasis during the infectious process, contributing to the virulence of Paracoccidioides. PMID:28093309

  9. Paracoccidioides spp. catalases and their role in antioxidant defense against host defense responses.

    PubMed

    Tamayo, Diana; Muñoz, José F; Almeida, Agostinho J; Puerta, Juan D; Restrepo, Ángela; Cuomo, Christina A; McEwen, Juan G; Hernández, Orville

    2017-03-01

    Dimorphic human pathogenic fungi interact with host effector cells resisting their microbicidal mechanisms. Yeast cells are able of surviving within the tough environment of the phagolysosome by expressing an antioxidant defense system that provides protection against host-derived reactive oxygen species (ROS). This includes the production of catalases (CATs). Here we identified and analyzed the role of CAT isoforms in Paracoccidioides, the etiological agent of paracoccidioidomycosis. Firstly, we found that one of these isoforms was absent in the closely related dimorphic pathogen Coccidioides and dermatophytes, but all of them were conserved in Paracoccidioides, Histoplasma and Blastomyces species. We probed the contribution of CATs in Paracoccidioides by determining the gene expression levels of each isoform through quantitative RT-qPCR, in both the yeast and mycelia phases, and during the morphological switch (transition and germination), as well as in response to oxidative agents and during interaction with neutrophils. PbCATP was preferentially expressed in the pathogenic yeast phase, and was associated to the response against exogenous H2O2. Therefore, we created and analyzed the virulence defects of a knockdown strain for this isoform, and found that CATP protects yeast cells from H2O2 generated in vitro and is relevant during lung infection. On the other hand, CATA and CATB seem to contribute to ROS homeostasis in Paracoccidioides cells, during endogenous oxidative stress. CAT isoforms in Paracoccidioides might be coordinately regulated during development and dimorphism, and differentially expressed in response to different stresses to control ROS homeostasis during the infectious process, contributing to the virulence of Paracoccidioides. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense

    PubMed Central

    Zannella, Carla; Mosca, Francesco; Mariani, Francesca; Franci, Gianluigi; Folliero, Veronica; Galdiero, Marilena; Tiscar, Pietro Giorgio; Galdiero, Massimiliano

    2017-01-01

    A variety of bivalve mollusks (phylum Mollusca, class Bivalvia) constitute a prominent commodity in fisheries and aquacultures, but are also crucial in order to preserve our ecosystem’s complexity and function. Bivalve mollusks, such as clams, mussels, oysters and scallops, are relevant bred species, and their global farming maintains a high incremental annual growth rate, representing a considerable proportion of the overall fishery activities. Bivalve mollusks are filter feeders; therefore by filtering a great quantity of water, they may bioaccumulate in their tissues a high number of microorganisms that can be considered infectious for humans and higher vertebrates. Moreover, since some pathogens are also able to infect bivalve mollusks, they are a threat for the entire mollusk farming industry. In consideration of the leading role in aquaculture and the growing financial importance of bivalve farming, much interest has been recently devoted to investigate the pathogenesis of infectious diseases of these mollusks in order to be prepared for public health emergencies and to avoid dreadful income losses. Several bacterial and viral pathogens will be described herein. Despite the minor complexity of the organization of the immune system of bivalves, compared to mammalian immune systems, a precise description of the different mechanisms that induce its activation and functioning is still missing. In the present review, a substantial consideration will be devoted in outlining the immune responses of bivalves and their repertoire of immune cells. Finally, we will focus on the description of antimicrobial peptides that have been identified and characterized in bivalve mollusks. Their structural and antimicrobial features are also of great interest for the biotechnology sector as antimicrobial templates to combat the increasing antibiotic-resistance of different pathogenic bacteria that plague the human population all over the world. PMID:28629124

  11. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense.

    PubMed

    Zannella, Carla; Mosca, Francesco; Mariani, Francesca; Franci, Gianluigi; Folliero, Veronica; Galdiero, Marilena; Tiscar, Pietro Giorgio; Galdiero, Massimiliano

    2017-06-17

    A variety of bivalve mollusks (phylum Mollusca, class Bivalvia) constitute a prominent commodity in fisheries and aquacultures, but are also crucial in order to preserve our ecosystem's complexity and function. Bivalve mollusks, such as clams, mussels, oysters and scallops, are relevant bred species, and their global farming maintains a high incremental annual growth rate, representing a considerable proportion of the overall fishery activities. Bivalve mollusks are filter feeders; therefore by filtering a great quantity of water, they may bioaccumulate in their tissues a high number of microorganisms that can be considered infectious for humans and higher vertebrates. Moreover, since some pathogens are also able to infect bivalve mollusks, they are a threat for the entire mollusk farming industry. In consideration of the leading role in aquaculture and the growing financial importance of bivalve farming, much interest has been recently devoted to investigate the pathogenesis of infectious diseases of these mollusks in order to be prepared for public health emergencies and to avoid dreadful income losses. Several bacterial and viral pathogens will be described herein. Despite the minor complexity of the organization of the immune system of bivalves, compared to mammalian immune systems, a precise description of the different mechanisms that induce its activation and functioning is still missing. In the present review, a substantial consideration will be devoted in outlining the immune responses of bivalves and their repertoire of immune cells. Finally, we will focus on the description of antimicrobial peptides that have been identified and characterized in bivalve mollusks. Their structural and antimicrobial features are also of great interest for the biotechnology sector as antimicrobial templates to combat the increasing antibiotic-resistance of different pathogenic bacteria that plague the human population all over the world.

  12. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view.

    PubMed

    Bachère, Evelyne; Rosa, Rafael Diego; Schmitt, Paulina; Poirier, Aurore C; Merou, Nicolas; Charrière, Guillaume M; Destoumieux-Garzón, Delphine

    2015-09-01

    Oysters are sessile filter feeders that live in close association with abundant and diverse communities of microorganisms that form the oyster microbiota. In such an association, cellular and molecular mechanisms have evolved to maintain oyster homeostasis upon stressful conditions including infection and changing environments. We give here cellular and molecular insights into the Crassostrea gigas antimicrobial defense system with focus on antimicrobial peptides and proteins (AMPs). This review highlights the central role of the hemocytes in the modulation and control of oyster antimicrobial response. As vehicles for AMPs and other antimicrobial effectors, including reactive oxygen species (ROS), and together with epithelia, hemocytes provide the oyster with local defense reactions instead of systemic humoral ones. These reactions are largely based on phagocytosis but also, as recently described, on the extracellular release of antimicrobial histones (ETosis) which is triggered by ROS. Thus, ROS can signal danger and activate cellular responses in the oyster. From the current literature, AMP production/release could serve similar functions. We provide also new lights on the oyster genetic background that underlies a great diversity of AMP sequences but also an extraordinary individual polymorphism of AMP gene expression. We discuss here how this polymorphism could generate new immune functions, new pathogen resistances or support individual adaptation to environmental stresses.

  13. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense.

    PubMed

    Gabor, Kristin A; Fessler, Michael B

    2017-01-01

    The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.

  14. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    PubMed

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles.

  15. Host Defense Peptides and Cancer; Perspectives on Research Design and Outcomes.

    PubMed

    Otvos, Laszlo

    2017-02-02

    Antimicrobial peptides (AMP) inhibit the proliferation of bacteria and frequently protect experimental animals from bacterial challenge. If the mode of action is membrane disintegration, one would expect that AMP can also kill cancer cells whose membrane structure lies between those of normal and bacterial cells. However, an ever-increasing number of reports suggest that AMP, with their newer name, host-defense peptides (HDP), do not directly kill bacteria under in vitro conditions when small molecule antibacterials are bactericidal. The micromolar activity may be suitable for biochemical studies but does not warrant oncology drug development. Nevertheless, as HDP are also documented to act on intracellular targets, the alternative modes of action revive the belief that anti-proliferative efficacy can be obtained, indeed supported by a few successful animal efficacy studies. In addition, the passive transport properties of AMP/HDP can be utilized in the intracellular delivery of unrelated cancer drugs. Unfortunately the inherent pro-inflammatory activities of many native and designer HDP lead to oncogenic rather than anti-cancer activities in vitro and in vivo. A critical evaluation of the role of HDP in tumor development with pharmaceutically relevant animal efficacy and toxicity studies are needed before human clinical trials can be designed and initiated.

  16. A miniature mimic of host defense peptides with systemic antibacterial efficacy

    SciTech Connect

    Sarig, Hadar; Livne, Liran; Held-Kuznetsov, Victoria; Zaknoon, Fadia; Ivankin, Andrey; Gidalevitz, David; Mor, Amram

    2010-08-23

    Oligomers of acylated lysines (OAKs) are synthetic mimics of host defense peptides (HDPs) with promising antimicrobial properties. Here we challenged the OAK concept for its ability to generate both systemically efficient and economically viable lead compounds for fighting multidrug-resistant bacteria. We describe the design and characterization of a miniature OAK composed of only 3 lysyls and 2 acyls (designated C{sub 12({omega}7)}K-{beta}{sub 12}) that preferentially targets gram-positive species by a bacteriostatic mode of action. To gain insight into the mechanism of action, we examined the interaction of OAK with various potential targets, including phospholipid bilayers, using surface plasmon resonance, and Langmuir monolayers, using insertion assays, epifluorescence microscopy, and grazing incidence X-ray diffraction, in a complementary manner. Collectively, the data support the notion that C{sub 12({omega}7)}K-{beta}{sub 12} damages the plasma-membrane architecture similarly to HDPs, that is, following a near-classic 2-step interaction including high-affinity electrostatic adhesion and a subsequent shallow insertion that was limited to the phospholipid head group region. Notably, preliminary acute toxicity and efficacy studies performed with mouse models of infection have consolidated the potential of OAK for treating bacterial infections, including systemic treatments of methicillin-resistant Staphylococcus aureus. Such simple yet robust chemicals might be useful for various antibacterial applications while circumventing potential adverse effects associated with cytolytic compounds.

  17. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    PubMed

    Williams, Brett; Kabbage, Mehdi; Kim, Hyo-Jin; Britt, Robert; Dickman, Martin B

    2011-06-01

    Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the

  18. Tipping the Balance: Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment

    PubMed Central

    Williams, Brett; Kabbage, Mehdi; Kim, Hyo-Jin; Britt, Robert; Dickman, Martin B.

    2011-01-01

    Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the

  19. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack.

    PubMed

    Woodard, Anastasia M; Ervin, Gary N; Marsico, Travis D

    2012-05-01

    Defense-free space resulting from coevolutionarily naïve host plants recently has been implicated as a factor facilitating invasion success of some insect species. Host plants, however, may not be entirely defenseless against novel herbivore threats. Volatile chemical-mediated defense signaling, which allows plants to mount specific, rapid, and intense responses, may play a role in systems experiencing novel threats. Here we investigate defense responses of host plants to a native and exotic herbivore and show that (1) host plants defend more effectively against the coevolved herbivore, (2) plants can be induced to defend against a newly-associated herbivore when in proximity to plants actively defending against the coevolved species, and (3) these defenses affect larval performance. These findings highlight the importance of coevolved herbivore-specific defenses and suggest that naïveté or defense limitations can be overcome via defense signaling. Determining how these findings apply across various host-herbivore systems is critical to understand mechanisms of successful herbivore invasion.

  20. Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense.

    PubMed

    Degrandi, Daniel; Konermann, Carolin; Beuter-Gunia, Cornelia; Kresse, Alexandra; Würthner, Jan; Kurig, Stefanie; Beer, Sandra; Pfeffer, Klaus

    2007-12-01

    IFN-gamma orchestrates a potent antimicrobial host response. However, the underlying molecular basis for this immunological defense system is largely unknown. In a systematic approach to identify IFN-gamma-regulated host effector molecules, a notable number of transcripts with consensus GTP-binding motives were obtained. Further extensive transcriptome and genome analyses identified five novel family members of murine guanylate-binding proteins (mGBPs) now designated mGBP6, 7, 8, 9, and 10. Moreover, in this study, all 10 mGBP members (mGBP1-10) were extensively characterized. mGBPs are selectively up-regulated in vitro by a set of proinflammatory cytokines and TLR agonists as well as in vivo after Listeria monocytogenes and Toxoplasma gondii infection. After IFN-gamma stimulation, mGBP1, 2, 3, 6, 7, and 9 are associated with intracellular Toxoplasma parasites and, interestingly, virulent Toxoplasma interfere with mGBP recruitment. Taken together, mGBPs comprise an important set of host defense molecules.

  1. Mycoplasma genitalium Infection Activates Cellular Host Defense and Inflammation Pathways in a 3-Dimensional Human Endocervical Epithelial Cell Model

    PubMed Central

    McGowin, Chris L.; Radtke, Andrea L.; Abraham, Kyle; Martin, David H.; Herbst-Kralovetz, Melissa

    2013-01-01

    Background. Because Mycoplasma genitalium is a prevalent and emerging cause of sexually transmitted infections, understanding the mechanisms by which M. genitalium elicits mucosal inflammation is an essential component to managing lower and upper reproductive tract disease syndromes in women. Methods. We used a rotating wall vessel bioreactor system to create 3-dimensional (3-D) epithelial cell aggregates to model and assess endocervical infection by M. genitalium. Results. Attachment of M. genitalium to the host cell's apical surface was observed directly and confirmed using immunoelectron microscopy. Bacterial replication was observed from 0 to 72 hours after inoculation, during which time host cells underwent ultrastructural changes, including reduction of microvilli, and marked increases in secretory vesicle formation. Using genome-wide transcriptional profiling, we identified a host defense and inflammation signature activated by M. genitalium during acute infection (48 hours after inoculation) that included cytokine and chemokine activity and secretion of factors for antimicrobial defense. Multiplex bead-based protein assays confirmed secretion of proinflammatory cytokines, several of which are involved in leukocyte recruitment and hypothesized to enhance susceptibility to human immunodeficiency type 1 infection. Conclusions. These findings provide insight into key molecules and pathways involved in innate recognition of M. genitalium and the response to acute infection in the human endocervix. PMID:23493725

  2. Aberrant host defense against Leishmania major in the absence of SLPI

    PubMed Central

    McCartney-Francis, Nancy; Jin, Wenwen; Belkaid, Yasmine; McGrady, George; Wahl, Sharon M.

    2014-01-01

    SLPI, a potent epithelial and myeloid-derived serine protease inhibitor with antimicrobial and anti-inflammatory functions, is induced by the intracellular parasite Leishmania major, and increased SLPI expression is evident within lesions that follow L. major infection. In contrast to self-resolving infection in C57Bl/6 WT mice, Slpi−/− mice launch a strong Th1 response to L. major, yet fail to control infection and develop destructive, nonhealing lesions with systemic spread of parasites. Because SLPI is both produced by murine macrophages and antagonizes their function, we examined the contribution of macrophage polarization to the defective host response in the absence of SLPI. Slpi−/− and Slpi+/+ macrophages were first primed with either IFNγ or IL-4 to generate classically activated M1 or alternatively activated M2 macrophages. After infection with L. major, Slpi−/− M1 macrophages expressed elevated iNOS RNA, whereas arginase was more highly expressed in WT than Slpi−/− M2 macrophages. After in vivo infection, we found that both IFNγ and iNOS were persistently overexpressed in chronic lesions in Slpi−/− mice, but surprisingly, IL-4 and arginase concomitantly remained elevated. Moreover, overexpression of the negative regulators SOCS1 and IL-27 provided insight into the failure of IFNγ to clear L. major from the dermal lesions. Notably, adenoviral delivery of SLPI to L. major-infected Slpi−/− mice significantly limited the progression of infection. These studies suggest that convergence of M1 and M2 macrophage responses may influence the outcome of innate host defense against intracellular parasites and that SLPI is critical for coordinating resistance to chronic leishmaniasis. PMID:25030421

  3. Interplay between Candida albicans and the Mammalian Innate Host Defense

    PubMed Central

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  4. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack

    PubMed Central

    Woodard, Anastasia M; Ervin, Gary N; Marsico, Travis D

    2012-01-01

    Defense-free space resulting from coevolutionarily naïve host plants recently has been implicated as a factor facilitating invasion success of some insect species. Host plants, however, may not be entirely defenseless against novel herbivore threats. Volatile chemical-mediated defense signaling, which allows plants to mount specific, rapid, and intense responses, may play a role in systems experiencing novel threats. Here we investigate defense responses of host plants to a native and exotic herbivore and show that (1) host plants defend more effectively against the coevolved herbivore, (2) plants can be induced to defend against a newly-associated herbivore when in proximity to plants actively defending against the coevolved species, and (3) these defenses affect larval performance. These findings highlight the importance of coevolved herbivore-specific defenses and suggest that naïveté or defense limitations can be overcome via defense signaling. Determining how these findings apply across various host–herbivore systems is critical to understand mechanisms of successful herbivore invasion. PMID:22837849

  5. The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance.

    PubMed

    Lesho, Emil P; Waterman, Paige E; Chukwuma, Uzo; McAuliffe, Kathryn; Neumann, Charlotte; Julius, Michael D; Crouch, Helen; Chandrasekera, Ruvani; English, Judith F; Clifford, Robert J; Kester, Kent E

    2014-08-01

    Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities

    PubMed Central

    Bailey, Richard; Schönrogge, Karsten; Cook, James M.; Melika, George; Csóka, György; Thuróczy, Csaba; Stone, Graham N.

    2009-01-01

    Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal

  7. Host defense mechanisms against pneumonia due to Pseudomonas aeruginosa.

    PubMed

    Pennington, J E; Ehrie, M G; Hickey, W F

    1984-01-01

    Pneumonia due to Pseudomonas aeruginosa is associated with unusually high mortalities. Accordingly, efforts to define better the most important components of lung defenses against this infection are justified as a prelude to defining improved management strategies. In this report, a guinea pig model of experimental aspiration pseudomonas pneumonia was employed for studies of cellular and humoral mechanisms of pulmonary defense. Animals treated with cortisone acetate plus cyclophosphamide experienced decreased survival from pneumonia, and survival rates correlated directly with the degree of myelosuppression. Numbers of pulmonary macrophages and polymorphonuclear neutrophils were reduced in drug-treated animals before impairment of macrophage antibacterial function. Thus, a reduction in numbers of phagocytes alone was sufficient to markedly reduce lung defenses. In additional experiments, normal guinea pigs were vaccinated with a lipopolysaccharide pseudomonas vaccine. Improved survival from pneumonia correlated with high titers of type-specific, heat-stable opsonic antibody. It is concluded that adequate numbers of lung phagocytes, plus type-specific opsonic antibody, represent the ideal status for lung defense against P. aeruginosa infection.

  8. Biomolecules as host defense weapons against microbial pathogens.

    PubMed

    Rizza, Marco Dalla; Dellavalle, Paola Díaz; Narancio, Rafael; Cabrera, Andrea; Ferreira, Fernando

    2008-01-01

    Antimicrobial peptides have been considered a new source of biomolecules in several fields of research/innovative applications: they would adjust to an ideal behavior seeking to overcome clinician, microbiological, human-animal-plant-environmental concerns. Antimicrobial peptides can be considered as ancient weapons found in living organisms suggesting they have played a fundamental role in his successful co-evolution with pathogens. Acting on microorganism membrane or having intracellular targets, they can also act as effectors of the innate immune response resulting on non-specific mechanisms of action. Two elements have speeded the research on pathogen control alternatives: a verified increase of antibiotic resistance and the relevance of finding amenable environmental compounds in plant health. As a result of its importance, great efforts have been accomplished to find, characterize, combine and synthesize effective antimicrobial peptides. This review intends to emphasize the generation of biomolecules, whether native or synthetic analogues, that have been matter of recent patents. Development of biomolecules suitable for therapeutic scopes and agricultural use have several challenges such as intrinsic toxicity, in vivo stability and suitable formulation contemplating the cost of production. Thus, biotechnological procedures using microbial systems or transgenic crops as plant factories might help to solve these challenges.

  9. Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    PubMed Central

    Cho, Ju Hyun; Lee, Janice; Lafarge, Marie-Céline; Kocks, Christine; Ferrandon, Dominique

    2011-01-01

    Background Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. Methodology/Principal Findings In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different Gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival – independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. Conclusions/Significance Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen. PMID:21390224

  10. Novel mode of action of plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    USDA-ARS?s Scientific Manuscript database

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  11. A well protected intruder: the effective antimicrobial defense of the invasive ladybird Harmonia axyridis.

    PubMed

    Gross, Jürgen; Eben, Astrid; Müller, Ina; Wensing, Annette

    2010-11-01

    The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae) is a polyphagous predatory beetle native to Central and Eastern Asia. Since 2007 it has established all over Central Europe. In order to elucidate which defense strategy is responsible for its high resistance to diseases, we tested hemolymph as well as eleven main components of the headspace of H. axyridis for antimicrobial activity against Gram-positive (Bacillus subtilis, B. thuringiensis ssp. tenebrionis, Micrococcus luteus) and Gram-negative bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). While three of the volatile compounds weakly reduced the growth of microorganisms, hemolymph of adults and larvae of H. axyridis strongly inhibited the growth of Gram-positive and Gram-negative bacteria as well as yeast. Furthermore, we compared the antimicrobial activity in the hemolymph of H. axyridis and Coccinella septempunctata. Antimicrobial activity in H. axyridis was about a thousand times higher compared to hemolymph from C. septempunctata. In contrast to C. septempunctata, the antimicrobial activity in H. axyridis was present without prior challenge. Minimal inhibitory concentration (MIC) of the hemolymph of H. axyridis was lowest against E. coli and yeast followed by B. subtilis, and was highest against entomopathogenic B. thuringiensis ssp. tenebrionidae. Furthermore, MIC values of the hemolymph obtained from live beetles were significantly lower than from frozen insects. This suggests that the active antimicrobial compound is affected by freezing and subsequent thawing of the beetles. Potential implications of our findings for the competitive advantages of H. axyridis over C. septempunctata are discussed.

  12. Secretory IgA: Designed for Anti-Microbial Defense

    PubMed Central

    Brandtzaeg, Per

    2013-01-01

    Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion – a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein – the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor – bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer’s patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination). PMID:23964273

  13. Secretory IgA: Designed for Anti-Microbial Defense.

    PubMed

    Brandtzaeg, Per

    2013-01-01

    Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor - bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination).

  14. Increased host aggression as an induced defense against slave-making ants

    PubMed Central

    Pennings, Pleuni S.; Foitzik, Susanne

    2011-01-01

    Slave-making ants reduce the fitness of surrounding host colonies through regular raids, causing the loss of brood and frequently queen and worker death. Consequently, hosts developed defenses against slave raids such as specific recognition and aggression toward social parasites, and indeed, we show that host ants react more aggressively toward slavemakers than toward nonparasitic competitors. Permanent behavioral defenses can be costly, and if social parasite impact varies in time and space, inducible defenses, which are only expressed after slavemaker detection, can be adaptive. We demonstrate for the first time an induced defense against slave-making ants: Cues from the slavemaker Protomognathus americanus caused an unspecific but long-lasting behavioral response in Temnothorax host ants. A 5-min within-nest encounter with a dead slavemaker raised the aggression level in T. longispinosus host colonies. Contrarily, encounters with nonparasitic competitors did not elicit aggressive responses toward non-nestmates. Increased aggression can be adaptive if a slavemaker encounter reliably indicates a forthcoming attack and if aggression increases postraid survival. Host aggression was elevated over 3 days, showing the ability of host ants to remember parasite encounters. The response disappeared after 2 weeks, possibly because by then the benefits of increased aggression counterbalance potential costs associated with it. PMID:22476194

  15. Increased host aggression as an induced defense against slave-making ants.

    PubMed

    Pamminger, Tobias; Scharf, Inon; Pennings, Pleuni S; Foitzik, Susanne

    2011-03-01

    Slave-making ants reduce the fitness of surrounding host colonies through regular raids, causing the loss of brood and frequently queen and worker death. Consequently, hosts developed defenses against slave raids such as specific recognition and aggression toward social parasites, and indeed, we show that host ants react more aggressively toward slavemakers than toward nonparasitic competitors. Permanent behavioral defenses can be costly, and if social parasite impact varies in time and space, inducible defenses, which are only expressed after slavemaker detection, can be adaptive. We demonstrate for the first time an induced defense against slave-making ants: Cues from the slavemaker Protomognathus americanus caused an unspecific but long-lasting behavioral response in Temnothorax host ants. A 5-min within-nest encounter with a dead slavemaker raised the aggression level in T. longispinosus host colonies. Contrarily, encounters with nonparasitic competitors did not elicit aggressive responses toward non-nestmates. Increased aggression can be adaptive if a slavemaker encounter reliably indicates a forthcoming attack and if aggression increases postraid survival. Host aggression was elevated over 3 days, showing the ability of host ants to remember parasite encounters. The response disappeared after 2 weeks, possibly because by then the benefits of increased aggression counterbalance potential costs associated with it.

  16. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    PubMed

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.

  17. STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis.

    PubMed

    Backert, Ingo; Koralov, Sergei B; Wirtz, Stefan; Kitowski, Vera; Billmeier, Ulrike; Martini, Eva; Hofmann, Katharina; Hildner, Kai; Wittkopf, Nadine; Brecht, Katrin; Waldner, Maximilian; Rajewsky, Klaus; Neurath, Markus F; Becker, Christoph; Neufert, Clemens

    2014-10-01

    The Citrobacter rodentium model mimics the pathogenesis of infectious colitis and requires sequential contributions from different immune cell populations, including innate lymphoid cells (ILCs) and CD4(+) lymphocytes. In this study, we addressed the role of STAT3 activation in CD4(+) cells during host defense in mice against C. rodentium. In mice with defective STAT3 in CD4(+) cells (Stat3(ΔCD4)), the course of infection was unchanged during the innate lymphoid cell-dependent early phase, but significantly altered during the lymphocyte-dependent later phase. Stat3(ΔCD4) mice exhibited intestinal epithelial barrier defects, including downregulation of antimicrobial peptides, increased systemic distribution of bacteria, and prolonged reduction in the overall burden of C. rodentium infection. Immunomonitoring of lamina propria cells revealed loss of virtually all IL-22-producing CD4(+) lymphocytes, suggesting that STAT3 activation was required for IL-22 production not only in Th17 cells, but also in Th22 cells. Notably, the defective host defense against C. rodentium in Stat3(∆CD4) mice could be fully restored by specific overexpression of IL-22 through a minicircle vector-based technology. Moreover, expression of a constitutive active STAT3 in CD4(+) cells shaped strong intestinal epithelial barrier function in vitro and in vivo through IL-22, and it promoted protection from enteropathogenic bacteria. Thus, our work indicates a critical role of STAT3 activation in Th17 and Th22 cells for control of the IL-22-mediated host defense, and strategies expanding STAT3-activated CD4(+) lymphocytes may be considered as future therapeutic options for improving intestinal barrier function in infectious colitis. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. Salmonella enterica Serovar Enteritidis Antimicrobial Peptide Resistance Genes Aid in Defense against Chicken Innate Immunity, Fecal Shedding, and Egg Deposition

    PubMed Central

    McKelvey, Jessica A.; Yang, Ming; Jiang, Yanhua

    2014-01-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major etiologic agent of nontyphoid salmonellosis in the United States. S. Enteritidis persistently and silently colonizes the intestinal and reproductive tract of laying hens, resulting in contaminated poultry products. The consumption of contaminated poultry products has been identified as a significant risk factor for human salmonellosis. To understand the mechanisms S. Enteritidis utilizes to colonize and persist in laying hens, we used selective capture of transcribed sequences to identify genes overexpressed in the HD11 chicken macrophage cell line and in primary chicken oviduct epithelial cells. From the 15 genes found to be overexpressed in both cell types, we characterized the antimicrobial peptide resistance (AMPR) genes, virK and ybjX, in vitro and in vivo. In vitro, AMPR genes were required for natural morphology, motility, secretion, defense against detergents such as EDTA and bile salts, and resistance to antimicrobial peptides polymyxin B and avian β-defensins. From this, we inferred the AMPR genes play a role in outer membrane stability and/or modulation. In the intestinal tract, AMPR genes were involved in early intestinal colonization and fecal shedding. In the reproductive tract, virK was required in early colonization whereas a deletion of ybjX caused prolonged ovary colonization and egg deposition. Data from the present study indicate that AMPR genes are differentially utilized in various host environments, which may ultimately assist S. Enteritidis in persistent and silent colonization of chickens. PMID:25267840

  19. Clinical Use of Colistin Induces Cross-Resistance to Host Antimicrobials in Acinetobacter baumannii

    PubMed Central

    Napier, Brooke A.; Burd, Eileen M.; Satola, Sarah W.; Cagle, Stephanie M.; Ray, Susan M.; McGann, Patrick; Pohl, Jan; Lesho, Emil P.; Weiss, David S.

    2013-01-01

    ABSTRACT The alarming rise in antibiotic resistance has led to an increase in patient mortality and health care costs. This problem is compounded by the absence of new antibiotics close to regulatory approval. Acinetobacter baumannii is a human pathogen that causes infections primarily in patients in intensive care units (ICUs) and is highly antibiotic resistant. Colistin is one of the last-line antibiotics for treating A. baumannii infections; however, colistin-resistant strains are becoming increasingly common. This cationic antibiotic attacks negatively charged bacterial membranes in a manner similar to that seen with cationic antimicrobials of the innate immune system. We therefore set out to determine if the increasing use of colistin, and emergence of colistin-resistant strains, is concomitant with the generation of cross-resistance to host cationic antimicrobials. We found that there is indeed a positive correlation between resistance to colistin and resistance to the host antimicrobials LL-37 and lysozyme among clinical isolates. Importantly, isolates obtained before and after treatment of individual patients demonstrated that colistin use correlated with increased resistance to cationic host antimicrobials. These data reveal the overlooked risk of inducing cross-resistance to host antimicrobials when treating patients with colistin as a last-line antibiotic. PMID:23695834

  20. FGF23 signaling impairs neutrophil recruitment and host defense during CKD

    PubMed Central

    Rossaint, Jan; Oehmichen, Jessica; Van Aken, Hugo; Reuter, Stefan; Pavenstädt, Hermann J.; Meersch, Melanie; Unruh, Mark

    2016-01-01

    Chronic kidney disease (CKD) has been associated with impaired host response and increased susceptibility to infections. Leukocyte recruitment during inflammation must be tightly regulated to protect the host against pathogens. FGF23 levels are increased in blood during CKD, and levels of this hormone have been associated with a variety of adverse effects in CKD patients. Here, we have shown that CKD impairs leukocyte recruitment into inflamed tissue and host defense in mice and humans. FGF23 neutralization during CKD in murine models restored leukocyte recruitment and host defense. Intravital microscopy of animals with chronic kidney failure showed that FGF23 inhibits chemokine-activated leukocyte arrest on the endothelium, and downregulation of FGF receptor 2 (FGFR2) on PMNs rescued host defense in these mice. In vitro, FGF23 inhibited PMN adhesion, arrest under flow, and transendothelial migration. Mechanistically, FGF23 binding to FGFR2 counteracted selectin- and chemokine-triggered β2 integrin activation on PMNs by activating protein kinase A (PKA) and inhibiting activation of the small GTPase Rap1. Moreover, knockdown of PKA abolished the inhibitory effect of FGF23 on integrin activation. Together, our data reveal that FGF23 acts directly on PMNs and dampens host defense by direct interference with chemokine signaling and integrin activation. PMID:26878171

  1. FGF23 signaling impairs neutrophil recruitment and host defense during CKD.

    PubMed

    Rossaint, Jan; Oehmichen, Jessica; Van Aken, Hugo; Reuter, Stefan; Pavenstädt, Hermann J; Meersch, Melanie; Unruh, Mark; Zarbock, Alexander

    2016-03-01

    Chronic kidney disease (CKD) has been associated with impaired host response and increased susceptibility to infections. Leukocyte recruitment during inflammation must be tightly regulated to protect the host against pathogens. FGF23 levels are increased in blood during CKD, and levels of this hormone have been associated with a variety of adverse effects in CKD patients. Here, we have shown that CKD impairs leukocyte recruitment into inflamed tissue and host defense in mice and humans. FGF23 neutralization during CKD in murine models restored leukocyte recruitment and host defense. Intravital microscopy of animals with chronic kidney failure showed that FGF23 inhibits chemokine-activated leukocyte arrest on the endothelium, and downregulation of FGF receptor 2 (FGFR2) on PMNs rescued host defense in these mice. In vitro, FGF23 inhibited PMN adhesion, arrest under flow, and transendothelial migration. Mechanistically, FGF23 binding to FGFR2 counteracted selectin- and chemokine-triggered β2 integrin activation on PMNs by activating protein kinase A (PKA) and inhibiting activation of the small GTPase Rap1. Moreover, knockdown of PKA abolished the inhibitory effect of FGF23 on integrin activation. Together, our data reveal that FGF23 acts directly on PMNs and dampens host defense by direct interference with chemokine signaling and integrin activation.

  2. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.

    PubMed

    Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G; Comellas, Alejandro P; Thornell, Ian M; Ramachandran, Shyam; Karp, Philip H; Taft, Peter J; Sheets, Kelsey; Abou Alaiwa, Mahmoud H; Welsh, Michael J; Meyerholz, David K; Stoltz, David A; Zabner, Joseph

    2016-04-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. Copyright © 2016 the American Physiological Society.

  3. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections

    PubMed Central

    Han, SeungHye

    2015-01-01

    Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension–lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications. PMID:25742123

  4. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections.

    PubMed

    Han, SeungHye; Mallampalli, Rama K

    2015-05-01

    Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension-lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications.

  5. Host defense peptide-derived privileged scaffolds for anti-infective drug discovery.

    PubMed

    Nigro, Ersilia; Colavita, Irene; Sarnataro, Daniela; Scudiero, Olga; Daniele, Aurora; Salvatore, Francesco; Pessi, Antonello

    2017-04-01

    'Privileged scaffolds' are molecular frameworks which have been successfully exploited for small molecule drug discovery. Peptide privileged scaffolds, featuring a strictly conserved multiple-disulfide framework and high variability in the rest of the sequence, display a broad range of biological effects, including antimicrobial and antiviral activity. Unlike small molecules, however, the cost of manufacturing these peptides is high, and their synthesis challenging. We previously described a simplified privileged scaffold corresponding to the γ-core of human β-defensin-3 (HBD3). The γ-core is a common structural signature found in virtually all host defense peptides (HDPs) stabilized by multiple disulfides, and we showed that for HBD3, it represents the evolutionary starting point of the full-length molecule and, thus, is itself a primordial HDP. Accordingly, we showed that the peptide folded rapidly and was stable in human serum, and displayed many of the biological activities of HBD3. We report here that in addition to the previously reported antibacterial activity on planktonic bacteria, the γ-core peptide is active against biofilm formation and maturation. We also show that it is readily cell penetrant, like HBD3, although with a different mechanism, which is independent from CD98. Overall, the potency of the single-disulfide, 23-amino acid γ-core is comparable with the full-length peptide across the whole spectrum of examined properties, and the peptide is not toxic to human cells. The HBD3 γ-core peptide may therefore represent the first example of an economically viable lead peptide derived from a HDP privileged scaffold. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  6. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense

    PubMed Central

    Tang, Xiao Xiao; Vargas Buonfiglio, Luis G.; Comellas, Alejandro P.; Thornell, Ian M.; Ramachandran, Shyam; Karp, Philip H.; Taft, Peter J.; Sheets, Kelsey; Abou Alaiwa, Mahmoud H.; Welsh, Michael J.; Stoltz, David A.; Zabner, Joseph

    2016-01-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl− and bicarbonate (HCO3−) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl− and HCO3− transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  7. HOST DEFENSE AGAINST BACTERIAL ENDOTOXEMIA: MECHANISM IN NORMAL ANIMALS

    PubMed Central

    Skarnes, Robert C.

    1970-01-01

    The present study defines the early response of normal rabbits to the intravenous injection of a single, sublethal dose of endotoxin. Within the first few hours following endotoxin there occurs in the circulating plasma of recipients a decrease in ionized calcium, a threefold increase in the heat-stable, organo-phosphate-resistant esterase level, and a striking increase in the endotoxin-detoxifying capacity. These results are fully consistent with the thesis that circulating plasma represents a principal site of detoxification and that plasma esterases of the nonspecific, carboxylic type are of major concern in defense against circulating endotoxins. PMID:4994446

  8. Belowground signaling and defense in host-Pythium interactions

    USDA-ARS?s Scientific Manuscript database

    Members of the genus Pythium interact with plants and microbial members of the rhizosphere using a variety of signaling mechanisms. Pythium irregulare, P. aphanidermatum and P. arrhenomanes are among the plant pathogenic species that share a common mode of infection, but vary in host range and virul...

  9. Interferon induced IFIT family genes in host antiviral defense

    USDA-ARS?s Scientific Manuscript database

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  10. IFN-inducible GTPases in host cell defense.

    PubMed

    Kim, Bae-Hoon; Shenoy, Avinash R; Kumar, Pradeep; Bradfield, Clinton J; MacMicking, John D

    2012-10-18

    From plants to humans, the ability to control infection at the level of an individual cell-a process termed cell-autonomous immunity-equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell's interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic, and inflammasome-related antimicrobial activities within the cytosol, as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of guanylate binding proteins (GBPs) with tuberculosis susceptibility and Crohn's colitis.

  11. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion

    SciTech Connect

    Himejima, Masaki; Hobson, K.R.; Otsuka, Toshikazu; Wood, D.L.; Kubo, Isao )

    1992-10-01

    The oleoresin of the ponderosa pine, Pinus ponderosa (Pinaceae) exhibited broad antimicrobial activity. In order to identify the active compounds, the oleoresin was steam distilled to give a distillate and residue. The distillate contained mainly monoterpenes and some sesquiterpenes, while the residue consisted chiefly of four structurally related diterpene acids. An antimicrobial assay with the pure compounds indicated that the monoterpenes were active primarily against fungi, but there was also some activity against gram-positive bacteria. The diterpene acids, in contrast, only exhibited activity against gram-positive bacteria. Although not all of the identified sesquiterpenes could be tested, longifolene showed activity only against gram-positive bacteria. Therefore, it appears that the oleoresin of P. ponderosa functions as a biochemical defense against microbial invasion.

  12. Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system.

    PubMed

    Erler, Silvio; Lhomme, Patrick; Rasmont, Pierre; Lattorff, H Michael G

    2014-04-01

    Selection, as a major driver for evolution in host-parasite interactions, may act on two levels; the virulence of the pathogen, and the hosts' defence system. Effectors of the host defence system might evolve faster than other genes e.g. those involved in adaptation to changes in life history or environmental fluctuations. Host-parasite interactions at the level of hosts and their specific social parasites, present a special setting for evolutionarily driven selection, as both share the same environmental conditions and pathogen pressures. Here, we study the evolution of antimicrobial peptide (AMP) genes, in six host bumblebee and their socially parasitic cuckoo bumblebee species. The selected AMP genes evolved much faster than non-immune genes, but only defensin-1 showed significant differences between host and social parasite. Nucleotide diversity and codon-by-codon analyses confirmed that purifying selection is the main selective force acting on bumblebee defence genes.

  13. Progranulin Plays a Central Role in Host Defense during Sepsis by Promoting Macrophage Recruitment.

    PubMed

    Song, Zhixin; Zhang, Xuemei; Zhang, Liping; Xu, Fang; Tao, Xintong; Zhang, Hua; Lin, Xue; Kang, Lihua; Xiang, Yu; Lai, Xaiofei; Zhang, Qun; Huang, Kun; Dai, Yubing; Yin, Yibing; Cao, Ju

    2016-11-15

    Progranulin, a widely expressed protein, has multiple physiological functions. The functional role of progranulin in the host response to sepsis remains unknown. To assess the role of progranulin in the host response to sepsis. Effects of progranulin on host response to sepsis were determined. Progranulin concentrations were significantly elevated in adult (n = 74) and pediatric (n = 26) patients with sepsis relative to corresponding healthy adult (n = 36) and pediatric (n = 17) control subjects, respectively. By using a low-lethality model of nonsevere sepsis, we observed that progranulin deficiency not only increased mortality but also decreased bacterial clearance during sepsis. The decreased host defense to sepsis in progranulin-deficient mice was associated with reduced macrophage recruitment, with correspondingly impaired chemokine CC receptor ligand 2 (CCL2) production in peritoneal lavages during the early phase of sepsis. Progranulin derived from hematopoietic cells contributed to host defense in sepsis. Therapeutic administration of recombinant progranulin not only rescued impaired host defense in progranulin-deficient mice after nonsevere sepsis but also protected wild-type mice against a high-lethality model of severe sepsis. Progranulin-mediated protection against sepsis was closely linked to improved peritoneal macrophage recruitment. In addition, CCL2 treatment of progranulin-deficient mice improved survival and decreased peritoneal bacterial loads during sepsis, at least in part through promotion of peritoneal macrophage recruitment. This proof-of-concept study supports a central role of progranulin-dependent macrophage recruitment in host defense to sepsis, opening new opportunities to host-directed therapeutic strategy that manipulate host immune response in the treatment of sepsis.

  14. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango

    PubMed Central

    Hwang, Elizabeth E.; Wang, Melinda B.; Bravo, Janis E.; Banta, Lois M.

    2015-01-01

    Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant–pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant’s recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant. PMID:25873923

  15. Neutrophils in host defense: new insights from zebrafish

    PubMed Central

    Harvie, Elizabeth A.; Huttenlocher, Anna

    2015-01-01

    Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection. PMID:25717145

  16. Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides.

    PubMed

    Rollins-Smith, Louise A; Reinert, Laura K; Burrowes, Patricia A

    2015-02-10

    The amphibian skin fungus Batrachochytrium dendrobatidis (Bd) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus Eleutherodactylus, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs E. coqui collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of Bd. Thus, it appears that E. coqui depend on other skin defenses to survive in the presence of this deadly fungus.

  17. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  18. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  19. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2012-01-01

    Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.

  20. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2012-10-01

    the murine model of orthopaedic implant infection . Appropriate concentrations of Staph . aureus were identified that reproducibly provide chronic... Infections by Immunomodulatory Effects of Host Defense Peptides PRINCIPAL INVESTIGATOR: Edward Greenfield, PhD...TYPE Annual 3. DATES COVERED 15 September 2011- 14 September 2012 4. TITLE AND SUBTITLE Inhibition of Orthopaedic Implant Infections by

  1. Reed warbler hosts fine-tune their defenses to track three decades of cuckoo decline.

    PubMed

    Thorogood, Rose; Davies, Nicholas B

    2013-12-01

    Interactions between avian hosts and brood parasites can provide a model for how animals adapt to a changing world. Reed warbler (Acrocephalus scirpaceus) hosts employ costly defenses to combat parasitism by common cuckoos (Cuculus canorus). During the past three decades cuckoos have declined markedly across England, reducing parasitism at our study site (Wicken Fen) from 24% of reed warbler nests in 1985 to 1% in 2012. Here we show with experiments that host mobbing and egg rejection defenses have tracked this decline in local parasitism risk: the proportion of reed warbler pairs mobbing adult cuckoos (assessed by responses to cuckoo mounts and models) has declined from 90% to 38%, and the proportion rejecting nonmimetic cuckoo eggs (assessed by responses to model eggs) has declined from 61% to 11%. This is despite no change in response to other nest enemies or mimetic model eggs. Individual variation in both defenses is predicted by parasitism risk during the host's egg-laying period. Furthermore, the response of our study population to temporal variation in parasitism risk can also explain spatial variation in egg rejection behavior in other populations across Europe. We suggest that spatial and temporal variation in parasitism risk has led to the evolution of plasticity in reed warbler defenses.

  2. Effects of elicitors of host plant defenses on pear psylla (Cacopsylla pyricola: Psyllidae)

    USDA-ARS?s Scientific Manuscript database

    Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), is a key pest of cultivated pear (Pyrus communis L.) in North America and Europe. We examined the effects of foliar applications of three commercially available chemical elicitors of host-plant defenses, Actigard, Employ, and ODC, ...

  3. Mechanisms and Modifications of Naturally Occurring Host Defense Peptides for Anti-HIV Microbicide Development

    PubMed Central

    Eade, Colleen R.; Wood, Matthew P.; Cole, Alexander M.

    2014-01-01

    Despite advances in the treatment of HIV infection, heterosexual transmission of HIV remains high, and vaccines to prevent HIV acquisition have been unfruitful. Vaginal microbicides, on the other hand, have demonstrated considerable potential for HIV prevention, and a variety of compounds have been screened for their activity and safety as anti-HIV microbicides. Among these are the naturally occurring host defense peptides, small peptides from diverse lineages with intrinsic antiviral activity. Naturally occurring host defense peptides with anti-HIV activity are promising candidates for vaginal microbicide development. Their structural variance and accompanying mechanistic diversity provide a wide range of inhibitors whose antiviral activity can be exerted at nearly every stage of the HIV lifecycle. Additionally, peptide modification has been explored as a method for improving the anti-HIV activity of host defense peptides. Structure- and sequence-based alterations have achieved varying success in improving the potency and specificity of anti-HIV peptides. Overall, peptides have been discovered or engineered to inhibit HIV with therapeutic indices of >1000, encouraging their advancement toward clinical trials. Here we review the naturally occurring anti-HIV host defense peptides, demonstrating their breadth of mechanistic diversity, and exploring approaches to enhance and optimize their activity in order to expedite their development as safe and effective anti-HIV vaginal microbicides. PMID:22264047

  4. Chapter 13. Physiology and ecology of host defense against microbial invaders

    USDA-ARS?s Scientific Manuscript database

    Insects mount a complex hierarchy of defenses that pathogens must overcome before successful infection is achieved. Behavioral avoidance and antiseptic behaviors by host insects reduce the degree of encounters between the insect and pathogens. Any pathogen that contacts or establishes on a potentia...

  5. Expression of proteins involved in host plant defense against greenbug infestation

    USDA-ARS?s Scientific Manuscript database

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  6. A unique host defense pathway: TRIF mediates both antiviral and antibacterial immune responses

    PubMed Central

    Hyun, Jinhee; Kanagavelu, Saravana; Fukata, Masayuki

    2012-01-01

    Both anti-viral and anti-bacterial host defense mechanisms involve TRIF signaling. TRIF provides early clearance of pathogens and coordination of a local inflammatory ensemble through an interferon cascade, while it may trigger organ damage. The multipotentiality of TRIF-mediated immune machinery may direct the fate of our continuous battle with microbes. PMID:23116944

  7. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  8. Role of the Host Defense System and Intestinal Microbial Flora in the Pathogenesis of Necrotizing Enterocolitis

    PubMed Central

    Emami, Claudia N.; Petrosyan, Mikael; Giuliani, Stefano; Williams, Monica; Hunter, Catherine; Prasadarao, Nemani V.

    2009-01-01

    Abstract Background Necrotizing enterocolitis (NEC) is a devastating disease that affects primarily the intestine of premature infants. Despite recent advances in neonatology, NEC remains a major cause of morbidity and mortality in neonates. Neonatal mucosal defenses and adherence of bacterial pathogens may play an important role in the pathogenesis of NEC. Methods Review and synthesis of pertinent literature. Results Putative factors that have been implicated in the pathogenesis of NEC include abnormal patterns of gut colonization by bacteria, immaturity of the host immune system and mucosal defense mechanisms, intestinal ischemia, formula feeding, and loss of intestinal epithelial barrier integrity. Conclusion Host defenses and intestinal microbial ecology are believed to play important roles in the pathogenesis of NEC. Commensal bacteria and probiotic therapy may be of therapeutic utility in the maintenance of the gut epithelial barrier. PMID:19943775

  9. Larvae of the parasitoid wasp Ampulex compressa sanitize their host, the American cockroach, with a blend of antimicrobials.

    PubMed

    Herzner, Gudrun; Schlecht, Anja; Dollhofer, Veronika; Parzefall, Christopher; Harrar, Klaus; Kreuzer, Andreas; Pilsl, Ludwig; Ruther, Joachim

    2013-01-22

    Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts.

  10. Larvae of the parasitoid wasp Ampulex compressa sanitize their host, the American cockroach, with a blend of antimicrobials

    PubMed Central

    Herzner, Gudrun; Schlecht, Anja; Dollhofer, Veronika; Parzefall, Christopher; Harrar, Klaus; Kreuzer, Andreas; Pilsl, Ludwig; Ruther, Joachim

    2013-01-01

    Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts. PMID:23297195

  11. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract

    PubMed Central

    Sharkey, Keith A.; Savidge, Tor C.

    2014-01-01

    Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense. PMID:24412639

  12. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses.

    PubMed

    Crow, Marni S; Lum, Krystal K; Sheng, Xinlei; Song, Bokai; Cristea, Ileana M

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.

  13. Role of eosinophil peroxidase in host defense and disease pathology.

    PubMed

    Wang, Jianguo; Slungaard, Arne

    2006-01-15

    Three unusual substrates-bromide (Br(-)), nitrite (NO(2)(-)), and thiocyanate (SCN(-))-compete for oxidation by eosinophil peroxidase (EPO) in physiologic fluids in the presence of H(2)O(2) to yield, respectively, hypobromous acid (HOBr), nitrogen dioxide (NO(2)()), or hypothiocyanous acid (HOSCN). These oxidant products have strikingly different reactivities: HOBr and NO(2)() are potent, widely reactive, membrane-lytic oxidants whereas HOSCN is a weak, SH-specific oxidant that penetrates into cells and imposes an intracellular oxidant stress that can activate kinase pathways and transcription factors that profoundly influence gene expression in host cells. All three oxidants are lethal for pathogens. SCN(-) is the strongly preferred substrate for the EPO/H(2)O(2). Specific biomarkers document that EPO-dependent oxidants are generated at sites of inflammation, but direct evidence that these oxidants cause disease is confined to the observation that an EPO knockout mouse line has dramatically less pathologic damage than do wild type animals in a murine model of ulcerative colitis.

  14. Neuroendocrine Factors Alter Host Defense by Modulating Immune Function

    PubMed Central

    Butts, Cherie L.; Sternberg, Estner M.

    2008-01-01

    An increasing body of evidence demonstrates that there is bidirectional communication between the neuroendocrine and immune systems. Interactions between these systems results in a variety of outcomes, including the well documented “sickness behavior” elicited by cytokines of the immune system that can enter the brain or activate second messengers that modify neuronal activity. Crosstalk between the neuroendocrine and immune systems can also result in production of factors by the nervous and endocrine systems that alter immune cell function and subsequent modulation of immune responses against infectious agents and other pathogens. Continued exposure to molecules produced by the neuroendocrine system has also been shown to increase susceptibility and/or severity of disease. Furthermore, neuroendocrine factors are thought to play a major role in the gender-specific difference in development of certain disorders, including autoimmune/inflammatory diseases that have a 2- to 10-fold higher incidence in females compared to males. Neuroendocrine factors can affect immune cells at the level of gene transcription but have also been shown to modify immune cell activity by interacting with intracellular signal transduction molecules, resulting in modified ability of these cells to mount a potent immune response. In this review, we will consider the various effects of the neuroendocrine system and its proteins on specific populations of immune cells and associated responses in host immunity against pathogens. We will further discuss how this modification of immune cell activity by the neuroendocrine system can contribute to susceptibility/severity of development of diseases. PMID:18329009

  15. Hyperleptinemia is associated with impaired pulmonary host defense

    PubMed Central

    Ubags, Niki D.J.; Stapleton, Renee D.; Vernooy, Juanita H.J.; Burg, Elianne; Bement, Jenna; Hayes, Catherine M.; Ventrone, Sebastian; Tavernier, Jan; Poynter, Matthew E.; Parsons, Polly E.; Dixon, Anne E.; Wargo, Matthew J.; Wouters, Emiel F.M.; Suratt, Benjamin T.

    2016-01-01

    We have previously reported that obesity attenuates pulmonary inflammation in both patients with acute respiratory distress syndrome (ARDS) and in mouse models of the disease. We hypothesized that obesity-associated hyperleptinemia, and not body mass per se, drives attenuation of the pulmonary inflammatory response and that this effect could also impair the host response to pneumonia. We examined the correlation between circulating leptin levels and risk, severity, and outcome of pneumonia in 2 patient cohorts (NHANES III and ARDSNet-ALVEOLI) and in mouse models of diet-induced obesity and lean hyperleptinemia. Plasma leptin levels in ambulatory subjects (NHANES) correlated positively with annual risk of respiratory infection independent of BMI. In patients with severe pneumonia resulting in ARDS (ARDSNet-ALVEOLI), plasma leptin levels were found to correlate positively with subsequent mortality. In obese mice with pneumonia, plasma leptin levels were associated with pneumonia severity, and in obese mice with sterile lung injury, leptin levels were inversely related to bronchoalveolar lavage neutrophilia, as well as to plasma IL-6 and G-CSF levels. These results were recapitulated in lean mice with experimentally induced hyperleptinemia. Our findings suggest that the association between obesity and elevated risk of pulmonary infection may be driven by hyperleptinemia. PMID:27347561

  16. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures

    PubMed Central

    Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E

    2013-01-01

    Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724

  17. Killing me softly: chlamydial use of proteolysis for evading host defenses.

    PubMed

    Zhong, Guangming

    2009-10-01

    Chlamydial infections in humans cause severe health problems, including blinding trachoma and sexually transmitted diseases. Although the involved pathogenic mechanisms remain unclear, the ability to replicate and maintain long-term residence in the infected cells seems to significantly contribute to chlamydial pathogenicity. These obligate intracellular parasites maintain a delicate balance between exploiting and protecting their host: they occupy intracellular space and acquire nutrients from the infected cells, but at the same time they have to maintain the integrity of the host cells for the completion of their intracellular growth. For this purpose, chlamydiae hijack certain signaling pathways that prevent the host cells from undergoing apoptosis induced by intracellular stress and protect the infected cells from recognition and attack by host defenses. Interestingly, one of the strategies that chlamydiae use for these purposes is the induction of limited proteolysis of host proteins, which is the main focus of this article.

  18. Reed Warbler Hosts Fine-Tune their Defenses to Track Three Decades of Cuckoo Decline

    PubMed Central

    Thorogood, Rose; Davies, Nicholas B

    2013-01-01

    Interactions between avian hosts and brood parasites can provide a model for how animals adapt to a changing world. Reed warbler (Acrocephalus scirpaceus) hosts employ costly defenses to combat parasitism by common cuckoos (Cuculus canorus). During the past three decades cuckoos have declined markedly across England, reducing parasitism at our study site (Wicken Fen) from 24% of reed warbler nests in 1985 to 1% in 2012. Here we show with experiments that host mobbing and egg rejection defenses have tracked this decline in local parasitism risk: the proportion of reed warbler pairs mobbing adult cuckoos (assessed by responses to cuckoo mounts and models) has declined from 90% to 38%, and the proportion rejecting nonmimetic cuckoo eggs (assessed by responses to model eggs) has declined from 61% to 11%. This is despite no change in response to other nest enemies or mimetic model eggs. Individual variation in both defenses is predicted by parasitism risk during the host’s egg-laying period. Furthermore, the response of our study population to temporal variation in parasitism risk can also explain spatial variation in egg rejection behavior in other populations across Europe. We suggest that spatial and temporal variation in parasitism risk has led to the evolution of plasticity in reed warbler defenses. PMID:24299407

  19. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells.

    PubMed

    Schrumpf, Jasmijn A; Amatngalim, Gimano D; Veldkamp, Joris B; Verhoosel, Renate M; Ninaber, Dennis K; Ordonez, Soledad R; van der Does, Anne M; Haagsman, Henk P; Hiemstra, Pieter S

    2017-02-23

    Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells (PBEC) to pro-inflammatory cytokines alters their vitamin D metabolism, antibacterial activity and expression of hCAP18/LL-37. To investigate this, PBEC were differentiated at the air-liquid interphase for 14 days in presence of the pro-inflammatory cytokines TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor (VDR) and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using qPCR, Western blot and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using non-typeable Haemophilus influenzae (NTHi). We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of NTHi. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and VDR expression remained unaffected. Furthermore, we demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was at least in part mediated by the transcription factor specific protein 1 (Sp1) and the EGFR-MAPK-pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1, and suggests that chronic inflammation impairs protective responses induced by vitamin D.

  20. Roles of MAS-related G protein coupled receptor-X2 (MRGPRX2) on mast cell-mediated host defense, pseudoallergic drug reactions and chronic inflammatory diseases

    PubMed Central

    Subramanian, Hariharan; Gupta, Kshitij; Ali, Hydar

    2016-01-01

    Mast cells (MCs), which are granulated tissue-resident cells of hematopoietic lineage, contribute to vascular homeostasis, innate/adaptive immunity and wound healing. MCs are, however, best known for their roles in allergic and inflammatory diseases such as anaphylaxis, food allergy, rhinitis, itch, urticaria, atopic dermatitis and asthma. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the largest group of membrane receptor proteins and are the most common targets of drug therapy. Antimicrobial host defense peptides (HDPs), neuropeptides (NPs), major basic protein (MBP), eosinophil peroxidase (EPO) and many FDA approved peptidergic drugs activate human MCs via a novel GPCR known as MAS-related G protein coupled receptor-X2 (MRGPRX2; formerly known as MrgX2). Unique features of MRGPRX2 that distinguish it from other GPCRs include their presence both on plasma membrane and intracellular sites and their selective expression in MCs. In this article, we review the possible roles of MRGPRX2 on host defense, drug-induced anaphylactoid reactions, neurogenic inflammation, pain, itch and chronic inflammatory diseases such as urticaria and asthma. We propose that HDPs that kill microbes directly and activate MCs via MRGPRX2 could serve as novel GPCR targets to modulate host defense against microbial infection. Furthermore, monoclonal antibodies or small molecule inhibitors of MRGPRX2 could be developed for the treatment of MC-dependent allergic and inflammatory disorders. PMID:27448446

  1. Leg massage therapy promotes psychological relaxation and reinforces the first-line host defense in cancer patients.

    PubMed

    Noto, Yuka; Kitajima, Maiko; Kudo, Mihoko; Okudera, Koichi; Hirota, Kazuyoshi

    2010-12-01

    Patients with cancer suffer a wide range of physical symptoms coupled with psychological stress. Moreover, cancer chemotherapy induces immunosuppression and consequently causes respiratory infections. Massage therapy has been reported to reduce symptoms in cancer patients via an increase in psychosocial relaxation and to enhance and/or improve immune function. In the present study, we determined whether leg massage could induce psychosocial relaxation and activate the first line of the host defense system. To assess effects of rest and leg massage, 15 healthy volunteers rested on a bed for 20 min on the first day, and 3 days later the subjects received a standardized massage of the legs for 20 min with nonaromatic oil. Twenty-nine cancer patients also received the same standardized massage of the legs. Anxiety/stress was assessed before and just after the rest or the massage using the State-Trait Anxiety Inventory (STAI-s) and visual analogue scale (VAS). To evaluate oral immune function, salivary chromogranin A (CgA) and secretory immunoglobulin A (sIgA) levels were measured. In healthy volunteers, rest significantly reduced VAS by 34% and increased sIgA by 61%. In contrast, leg massage significantly reduced both STAI-s and VAS by 24% and 63%, and increased both sIgA and CgA by 104% and 90%, respectively. In cancer patients, leg massage significantly decreased both STAI-s and VAS by 16% and 38%, and increased both salivary CgA and sIgA by 33% and 35%, respectively. Leg massage may promote psychosocial relaxation and reinforce a first-line host defense with an increase in secretion of antimicrobial peptides.

  2. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host

    PubMed Central

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-01-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of ‘arming the enemy’: bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the ‘arming the enemy’ hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts. PMID:25469169

  3. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin.

    PubMed

    Nickerson, Kourtney P; Chanin, Rachael; McDonald, Christine

    2015-01-01

    Inflammatory bowel disease (IBD) is a complex, multi-factorial disease thought to arise from an inappropriate immune response to commensal bacteria in a genetically susceptible person that results in chronic, cyclical, intestinal inflammation. Dietary and environmental factors are implicated in the initiation and perpetuation of IBD; however, a singular causative agent has not been identified. As of now, the role of environmental priming or triggers in IBD onset and pathogenesis are not well understood, but these factors appear to synergize with other disease susceptibility factors. In previous work, we determined that the polysaccharide dietary additive, maltodextrin (MDX), impairs cellular anti-bacterial responses and suppresses intestinal anti-microbial defense mechanisms. In this addendum, we review potential mechanisms for dietary deregulation of intestinal homeostasis, postulate how dietary and genetic risk factors may combine to result in disease pathogenesis, and discuss these ideas in the context of recent findings related to dietary interventions for IBD.

  4. Non-Host Defense Response in a Novel Arabidopsis-Xanthomonas citri subsp. citri Pathosystem

    PubMed Central

    An, Chuanfu; Mou, Zhonglin

    2012-01-01

    Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology. PMID:22299054

  5. Host-defense peptides of the skin with therapeutic potential: From hagfish to human.

    PubMed

    Conlon, J Michael

    2015-05-01

    It is now well established that peptides that were first identified on the basis of their ability to inhibit growth of bacteria and fungi are multifunctional and so are more informatively described as host-defense peptides. In some cases, their role in protecting the organism against pathogenic microorganisms, although of importance, may be secondary. A previous article in the journal (Peptides 2014; 57:67-77) assessed the potential of peptides present in the skin secretions of frogs for development into anticancer, antiviral, immunomodulatory and antidiabetic drugs. This review aims to extend the scope of this earlier article by focusing upon therapeutic applications of host-defense peptides present in skin secretions and/or skin extracts of species belonging to other vertebrate classes (Agnatha, Elasmobranchii, Teleostei, Reptilia, and Mammalia as represented by the human) that supplement their potential role as anti-infectives for use against multidrug-resistant microorganisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Bacterial Autophagy: Offense and Defense at the Host-Pathogen Interface.

    PubMed

    Casanova, James E

    2017-09-01

    Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response.

  7. Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans.

    PubMed

    Curt, Alexander; Zhang, Jiuli; Minnerly, Justin; Jia, Kailiang

    2014-08-01

    Salmonella typhimurium infects both intestinal epithelial cells and macrophages. Autophagy is a lysosomal degradation pathway that is present in all eukaryotes. Autophagy has been reported to limit the Salmonella replication in Caenorhabditis elegans and in mammals. However, it is unknown whether intestinal autophagy activity plays a role in host defense against Salmonella infection in C. elegans. In this study, we inhibited the autophagy gene bec-1 in different C. elegans tissues and examined the survival of these animals following Salmonella infection. Here we show that inhibition of the bec-1 gene in the intestine but not in other tissues confers susceptibility to Salmonella infection, which is consistent with recent studies in mice showing that autophagy is involved in clearance of Salmonella in the intestinal epithelial cells. Therefore, the intestinal autophagy activity is essential for host defense against Salmonella infection from C. elegans to mice, perhaps also in humans.

  8. Intracellular infections in Drosophila melanogaster: host defense and mechanisms of pathogenesis.

    PubMed

    Péan, Claire B; Dionne, Marc S

    2014-01-01

    The fruit-fly Drosophila melanogaster has emerged as a powerful model to study innate immunity against intracellular pathogens. To combat infection, the fly relies on multiple lines of defense, many of which are shared with mammals and arthropod vectors of human diseases. In addition to conserved immune pathways, the ease of performing sophisticated genetic screens has allowed the identification of novel host immune factors and novel pathogen virulence factors. Recently, some groups have exploited this to simultaneously analyze the host and pathogen genetics of intracellular infection. This review aims to unravel the Drosophila immune response against intracellular pathogens, highlighting recent discoveries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Role of Innate Host Defenses in Susceptibility to Early Onset Neonatal Sepsis

    PubMed Central

    Wynn, James L.; Levy, Ofer

    2010-01-01

    Neonatal sepsis continues to take a devastating toll globally. Although adequate to protect against invasive infection in most newborns, the distinct function of neonatal innate host defense coupled with impairments in adaptive immune responses, increases the likelihood of acquiring infection early in life with subsequent rapid dissemination and death. Unique differences exist between neonates and older populations with respect to the capacity, quantity, and quality of innate host responses to pathogens. Recent characterization of the age-dependent maturation of neonatal innate immune function has identified novel translational approaches that may lead to improved diagnostic, prophylactic and therapeutic modalities. PMID:20569810

  10. THIOCYANATE: A potentially useful therapeutic agent with host defense and antioxidant properties✩

    PubMed Central

    Chandler, Joshua D.; Day, Brian J.

    2014-01-01

    Thiocyanate (SCN) functions in host defense as part of the secreted lactoperoxidase (LPO) microbicidal pathway. SCN is the preferred substrate for LPO-driven catalytic reduction of hydrogen peroxide (H2O2) forming hypothiocyanous acid (HOSCN). HOSCN is selectively generated by many peroxidase enzymes that can utilize SCN including: eosinophil peroxidase (EPO), gastric peroxidase (GPO), myeloperoxidase (MPO), salivary peroxidase (SPO), and thyroid peroxidase (TPO). These enzymes generate HOSCN through a two-electron halogenation reaction. HOSCN is a potent microbicidal agent that kills or nullifies invading pathogens but is better tolerated by host tissue. Some controversy exists as to whether physiologic levels of HOSCN are non-toxic to host tissue, but the disagreement appears to be based on results of enzymatic generation (yielding moderate steady-state exposure) versus direct high level acute exposure in mammalian cell lines. This apparent duality is also true of other endogenous oxidants such as hydrogen peroxide and relates to the difference between physiologically relevant oxidant production versus supra-physiologic bolus dosing approaches. SCN has antioxidant properties that include the ability to protect cells against oxidizing agents such as hypochlorous acid (HOCl) and repair protein chloramines. SCN is an important endogenous molecule that has the potential to interact in complex and elegant ways with its host environment and foreign organisms. SCN’s diverse properties as both host defense and antioxidant agent make it a potentially useful therapeutic. PMID:22968041

  11. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases.

    PubMed

    Subramanian, Hariharan; Gupta, Kshitij; Ali, Hydar

    2016-09-01

    Mast cells (MCs), which are granulated tissue-resident cells of hematopoietic lineage, contribute to vascular homeostasis, innate/adaptive immunity, and wound healing. However, MCs are best known for their roles in allergic and inflammatory diseases, such as anaphylaxis, food allergy, rhinitis, itch, urticaria, atopic dermatitis, and asthma. In addition to the high-affinity IgE receptor (FcεRI), MCs express numerous G protein-coupled receptors (GPCRs), which are the largest group of membrane receptor proteins and the most common targets of drug therapy. Antimicrobial host defense peptides, neuropeptides, major basic protein, eosinophil peroxidase, and many US Food and Drug Administration-approved peptidergic drugs activate human MCs through a novel GPCR known as Mas-related G protein-coupled receptor X2 (MRGPRX2; formerly known as MrgX2). Unique features of MRGPRX2 that distinguish it from other GPCRs include their presence both on the plasma membrane and intracellular sites and their selective expression in MCs. In this article we review the possible roles of MRGPRX2 on host defense, drug-induced anaphylactoid reactions, neurogenic inflammation, pain, itch, and chronic inflammatory diseases, such as urticaria and asthma. We propose that host defense peptides that kill microbes directly and activate MCs through MRGPRX2 could serve as novel GPCR targets to modulate host defense against microbial infection. Furthermore, mAbs or small-molecule inhibitors of MRGPRX2 could be developed for the treatment of MC-dependent allergic and inflammatory disorders. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Anti-antimicrobial Peptides

    PubMed Central

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  13. Host plant shifts affect a major defense enzyme in Chrysomela lapponica

    PubMed Central

    Kirsch, Roy; Vogel, Heiko; Muck, Alexander; Reichwald, Kathrin; Pasteels, Jacques M.; Boland, Wilhelm

    2011-01-01

    Chrysomelid leaf beetles use chemical defenses to overcome predatory attack and microbial infestation. Larvae of Chrysomela lapponica that feed on willow sequester plant-derived salicin and other leaf alcohol glucosides, which are modified in their defensive glands to bioactive compounds. Salicin is converted into salicylaldehyde by a consecutive action of a β-glucosidase and salicyl alcohol oxidase (SAO). The other leaf alcohol glucosides are not oxidized, but are deglucosylated and esterified with isobutyric- and 2-methylbutyric acid. Like some other closely related Chrysomela species, certain populations of C. lapponica shift host plants from willow to salicin-free birch. The only striking difference between willow feeders and birch feeders in terms of chemical defense is the lack of salicylaldehyde formation. To clarify the impact of host plant shifts on SAO activity, we identified and compared this enzyme by cloning, expression, and functional testing in a willow-feeding and birch-feeding population of C. lapponica. Although the birch feeders still demonstrated defensive gland-specific expression, their SAO mRNA levels were 1,000-fold lower, and the SAO enzyme was nonfunctional. Obviously, the loss of catalytic function of the SAO of birch-adapted larvae is fixed at the transcriptional, translational, and enzyme levels, thus avoiding costly expression of a highly abundant protein that is not required in the birch feeders. PMID:21383196

  14. Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus.

    PubMed

    Reis, Ana Luisa; Netherton, Chris; Dixon, Linda K

    2017-03-15

    African swine fever is an acute hemorrhagic disease of pigs. Extensive recent spread in the Russian Federation and Eastern Europe has increased the risk to global pig production. The virus is a large DNA virus and is the only member of the Asfarviridae family. In pigs, the virus replicates predominantly in macrophages. We review how the virus overcomes the barriers to replication in the macrophage and the virus mechanism to inhibit key host defense pathways. Copyright © 2017 American Society for Microbiology.

  15. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans

    PubMed Central

    Smeekens, Sanne P.; Ng, Aylwin; Kumar, Vinod; Johnson, Melissa D.; Plantinga, Theo S.; van Diemen, Cleo; Arts, Peer; Verwiel, Eugéne T.P.; Gresnigt, Mark S.; Fransen, Karin; van Sommeren, Suzanne; Oosting, Marije; Cheng, Shih-Chin; Joosten, Leo A.B.; Hoischen, Alexander; Kullberg, Bart-Jan; Scott, William K.; Perfect, John R.; van der Meer, Jos W.M.; Wijmenga, Cisca; Netea, Mihai G.; Xavier, Ramnik J.

    2013-01-01

    Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here, by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defense mechanisms in humans. Candida induced significant expression of genes from the type I interferon (IFN) pathway in human peripheral blood mononuclear cells. This unexpectedly prominent role of type I IFN pathway in anti-Candida host defense was supported by additional evidence. Polymorphisms in type I IFN genes modulated Candida-induced cytokine production and were correlated with susceptibility to systemic candidiasis. In in-vitro experiments, type I IFNs skewed Candida-induced inflammation from a Th17-response toward a Th1-response. Patients with chronic mucocutaneaous candidiasis displayed defective expression of genes in the type I IFN pathway. These findings indicate that the type I IFN pathway is a main signature of Candida-induced inflammation and plays a crucial role in anti-Candida host defense in humans. PMID:23299892

  16. Androgen regulation of host defenses and response to inflammatory stimuli in the prostate gland.

    PubMed

    Quintar, Amado A; Maldonado, Cristina A

    2017-02-28

    The prostate gland is a strictly androgen-dependent organ which is also the main target of infectious and inflammatory diseases in the male reproductive tract. Host defenses and immunity of the gland have unique features to maintain a constant balance between response and tolerance to diverse antigens. In this context, the effects of reproductive hormones on the male tract are thus complex and have just started to be defined. From the classical description of "the prostatic antibacterial factor," many host defense proteins with potent microbicidal and anti-tumoral activities have been described in the organ. Indeed, it has been proposed a central role for resident cells, that is, epithelial and smooth muscle cells, in the prostatic response against injuries. However, these cells also represent the target of the inflammatory damage, leading to the development of a Proliferative Inflammatory Atrophy-like process in the epithelium and a myofibroblastic-like reactive stroma. Available data on androgen regulation of inflammation led to a model of the complex control, in which the final effect will depend on the tissue microenvironment, the cause of inflammation, and the levels of androgens among other factors. In this paper, we review the current scientific literature about the inflammatory process in the gland, the modulation of host defense proteins, and the influence of testosterone on the resolution of prostatitis. © 2017 International Federation for Cell Biology.

  17. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense.

    PubMed

    Najibi, Mehran; Labed, Sid Ahmed; Visvikis, Orane; Irazoqui, Javier Elbio

    2016-05-24

    The mechanisms that tightly control the transcription of host defense genes have not been fully elucidated. We previously identified TFEB as a transcription factor important for host defense, but the mechanisms that regulate TFEB during infection remained unknown. Here, we used C. elegans to discover a pathway that activates TFEB during infection. Gene dkf-1, which encodes a homolog of protein kinase D (PKD), was required for TFEB activation in nematodes infected with Staphylococcus aureus. Conversely, pharmacological activation of PKD was sufficient to activate TFEB. Furthermore, phospholipase C (PLC) gene plc-1 was also required for TFEB activation, downstream of Gαq homolog egl-30 and upstream of dkf-1. Using reverse and chemical genetics, we discovered a similar PLC-PKD-TFEB axis in Salmonella-infected mouse macrophages. In addition, PKCα was required in macrophages. These observations reveal a previously unknown host defense signaling pathway, which has been conserved across one billion years of evolution.

  18. CXCL1 contributes to host defense in polymicrobial sepsis via modulating T cell and neutrophil functions.

    PubMed

    Jin, Liliang; Batra, Sanjay; Douda, David Nobuhiro; Palaniyar, Nades; Jeyaseelan, Samithamby

    2014-10-01

    Severe bacterial sepsis leads to a proinflammatory condition that can manifest as septic shock, multiple organ failure, and death. Neutrophils are critical for the rapid elimination of bacteria; however, the role of neutrophil chemoattractant CXCL1 in bacterial clearance during sepsis remains elusive. To test the hypothesis that CXCL1 is critical to host defense during sepsis, we used CXCL1-deficient mice and bone marrow chimeras to demonstrate the importance of this molecule in sepsis. We demonstrate that CXCL1 plays a pivotal role in mediating host defense to polymicrobial sepsis after cecal ligation and puncture in gene-deficient mice. CXCL1 appears to be essential for restricting bacterial outgrowth and death in mice. CXCL1 derived from both hematopoietic and resident cells contributed to bacterial clearance. Moreover, CXCL1 is essential for neutrophil migration, expression of proinflammatory mediators, activation of NF-κB and MAPKs, and upregulation of adhesion molecule ICAM-1. rIL-17 rescued impaired host defenses in cxcl1(-/-) mice. CXCL1 is important for IL-17A production via Th17 differentiation. CXCL1 is essential for NADPH oxidase-mediated reactive oxygen species production and neutrophil extracellular trap formation. This study reveals a novel role for CXCL1 in neutrophil recruitment via modulating T cell function and neutrophil-related bactericidal functions. These studies suggest that modulation of CXCL1 levels in tissues and blood could reduce bacterial burden in sepsis.

  19. Learning from Host-Defense Peptides: Cationic, Amphipathic Peptoids with Potent Anticancer Activity

    PubMed Central

    Willingham, Stephen B.; Czyzewski, Ann M.; Gonzalgo, Mark L.; Weissman, Irving L.; Barron, Annelise E.

    2014-01-01

    Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance. PMID:24587350

  20. Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity.

    PubMed

    Huang, Wei; Seo, Jiwon; Willingham, Stephen B; Czyzewski, Ann M; Gonzalgo, Mark L; Weissman, Irving L; Barron, Annelise E

    2014-01-01

    Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance.

  1. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    PubMed

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  2. Is the pathogenic ergot fungus a conditional defensive mutualist for its host grass?

    PubMed

    Wäli, Pauliina P; Wäli, Piippa R; Saikkonen, Kari; Tuomi, Juha

    2013-01-01

    It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation.

  3. NLRP12 Modulates Host Defense through IL-17A-CXCL1 Axis

    PubMed Central

    Cai, Shanshan; Batra, Sanjay; Piero, Fabio Del; Jeyaseelan, Samithamby

    2015-01-01

    We used an extracellular pathogen Klebsiella pneumoniae to determine the role of NLRP12 since this bacterium is associated with devastating pulmonary infections. We found human myeloid cells (neutrophils and macrophages) and non-myeloid cells (epithelial cells) show upregulation of NLRP12 in human pneumonic lungs. NLRP12 silenced human macrophages and murine Nlrp12−/− macrophages displayed reduced activation of NF-κB and MAPK and expression of HDACs following K. pneumoniae infection. NLRP12 is important for the production of IL-1β in human and murine macrophages following K. pneumoniae infection. Furthermore, host survival, bacterial clearance and neutrophil recruitment are dependent on NLRP12 following K. pneumoniae infection. Using bone marrow chimeras, we showed that hematopoietic cell driven NLRP12 signaling predominantly contributes to host defense against K. pneumoniae. Intratracheal administration of either IL-17A+ CD4 T cells or CXCL1+ macrophages rescues host survival, bacterial clearance, and neutrophil recruitment in Nlrp12−/− mice following K. pneumoniae infection. These novel findings reveal the critical role of NLRP12-IL-17A-CXCL1 axis in host defense via modulating neutrophil recruitment against this extracellular pathogen. PMID:26349659

  4. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    PubMed

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  5. Function of Nod-like Receptors in Microbial Recognition and Host Defense

    PubMed Central

    Franchi, Luigi; Warner, Neil; Viani, Kyle; Nuñez, Gabriel

    2009-01-01

    Summary Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a specialized group of intracellular proteins that play a critical role in the regulation of the host innate immune response. NLRs act as scaffolding proteins that assemble signaling platforms that trigger nuclear factor-κB and mitogen-activated protein kinase signaling pathways and control the activation of inflammatory caspases. Importantly, mutations in several members of the NLR family have been linked to a variety of inflammatory diseases consistent with these molecules playing an important role in host-pathogen interactions and the inflammatory response. In this review, we focus on the role of Nod1 and Nod2 in host defense and in particular discuss recent finding regarding the role of Nlrc4, Nlpr1, and Nlrp3 inflammasomes in caspase-1 activation and subsequent release of proinflammatory cytokines such as interleukin-1β. PMID:19120480

  6. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  7. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition

    PubMed Central

    Ariumi, Yasuo

    2016-01-01

    Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions. PMID:27446907

  8. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition.

    PubMed

    Ariumi, Yasuo

    2016-01-01

    Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions.

  9. Triticum mosaic poacevirus enlists P1 rather than HC-Pro to suppress RNA silencing-mediated host defense

    USDA-ARS?s Scientific Manuscript database

    RNA silencing, or posttranscriptional gene silencing (PTGS) is one of the most important defense mechanisms employed by higher plants and animals to defend against viral infections. Plant viruses evolved by adopting divergent proteins, even within single virus families, to counter this host defense ...

  10. Modulation of host innate and adaptive immune defenses by cytomegalovirus: timing is everything

    PubMed Central

    Loewendorf, A.; Benedict, C. A.

    2010-01-01

    Loewendorf A, Benedict CA (La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA). Modulation of host innate and adaptive immune defenses by cytomegalovirus: timing is everything (Symposium). Human cytomegalovirus (HCMV) (HHV-5, a β-herpesvirus) causes the vast majority of infection-related congenital birth defects, and can trigger severe disease in immune suppressed individuals. The high prevalence of societal infection, the establishment of lifelong persistence and the growing number of immune-related diseases where HCMV is touted as a potential promoter is slowly heightening public awareness to this virus. The millions of years of co-evolution between CMV and the immune system of its host provides for a unique opportunity to study immune defense strategies, and pathogen counterstrategies. Dissecting the timing of the cellular and molecular processes that regulate innate and adaptive immunity to this persistent virus has revealed a complex defense network that is shaped by CMV immune modulation, resulting in a finely tuned host–pathogen relationship. PMID:20433576

  11. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon

    PubMed Central

    Fleitas, Osmel; Franco, Octávio L.

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its association with cross-resistance toward AMP effectors of the host innate immune system. In this context, the use of AMPs as a therapeutic option could be potentially hazardous, since bacteria could develop resistance toward our innate immune system. Here, we review the findings of major studies that deal with the AMP cross-resistance phenomenon. PMID:27047486

  12. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon.

    PubMed

    Fleitas, Osmel; Franco, Octávio L

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its association with cross-resistance toward AMP effectors of the host innate immune system. In this context, the use of AMPs as a therapeutic option could be potentially hazardous, since bacteria could develop resistance toward our innate immune system. Here, we review the findings of major studies that deal with the AMP cross-resistance phenomenon.

  13. Activation of Host Defense Mechanisms by Elevated Production of H2O2 in Transgenic Plants.

    PubMed Central

    Wu, G.; Shortt, B. J.; Lawrence, E. B.; Leon, J.; Fitzsimmons, K. C.; Levine, E. B.; Raskin, I.; Shah, D. M.

    1997-01-01

    Active oxygen species have been postulated to perform multiple functions in plant defense, but their exact role in plant resistance to diseases is not fully understood. We have recently demonstrated H2O2-mediated disease resistance in transgenic potato (Solanum tuberosum) plants expressing a foreign gene encoding glucose oxidase. In this study we provide further evidence that the H2O2-mediated disease resistance in potato is effective against a broad range of plant pathogens. We have investigated mechanisms underlying the H2O2-mediated disease resistance in transgenic potato plants. The constitutively elevated levels of H2O2 induced the accumulation of total salicylic acid severalfold in the leaf tissue of transgenic plants, although no significant change was detected in the level of free salicylic acid. The mRNAs of two defense-related genes encoding the anionic peroxidase and acidic chitinase were also induced. In addition, an increased accumulation of several isoforms of extracellular peroxidase, including a newly induced one, was observed. This was accompanied by a significant increase in the lignin content of stem and root tissues of the transgenic plants. The results suggest that constitutively elevated sublethal levels of H2O2 are sufficient to activate an array of host defense mechanisms, and these defense mechanisms may be a major contributing factor to the H2O2-mediated disease resistance in transgenic plants. PMID:12223817

  14. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense.

    PubMed

    Seyedmousavi, Seyedmojtaba; Netea, Mihai G; Mouton, Johan W; Melchers, Willem J G; Verweij, Paul E; de Hoog, G Sybren

    2014-07-01

    Among the melanized fungi, the so-called "black yeasts" and their filamentous relatives are particularly significant as agents of severe phaeohyphomycosis, chromoblastomycosis, and mycetoma in humans and animals. The pathogenicity and virulence of these fungi may differ significantly between closely related species. The factors which probably are of significance for pathogenicity include the presence of melanin and carotene, formation of thick cell walls and meristematic growth, presence of yeast-like phases, thermo- and perhaps also osmotolerance, adhesion, hydrophobicity, assimilation of aromatic hydrocarbons, and production of siderophores. Host defense has been shown to rely mainly on the ingestion and elimination of fungal cells by cells of the innate immune system, especially neutrophils and macrophages. However, there is increasing evidence supporting a role of T-cell-mediated immune responses, with increased interleukin-10 (IL-10) and low levels of gamma interferon (IFN-γ) being deleterious during the infection. There are no standardized therapies for treatment. It is therefore important to obtain in vitro susceptibilities of individual patients' fungal isolates in order to provide useful information for selection of appropriate treatment protocols. This article discusses the pathogenesis and host defense factors for these fungi and their severity, chronicity, and subsequent impact on treatment and prevention of diseases in human or animal hosts.

  15. IgE and mast cells in host defense against parasites and venoms

    PubMed Central

    Mukai, Kaori; Tsai, Mindy; Galli, Stephen J.

    2016-01-01

    IgE-dependent mast cell activation is a major effector mechanism underlying the pathology associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise innocuous antigens, such as those contained in certain foods and medicines. Why would such a highly “maladaptive” immune response develop in evolution, and be retained to the present day? Host defense against parasites has long been considered the only beneficial function that might be conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition to participating in host resistance to certain parasites, mast cells and IgE are critical components of innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host defense against the toxicity of certain arthropod and animal venoms, including enhancing the survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus detrimental innate and adaptive immune responses associated with mast cell activation and IgE is likely to enhance our ability to identify potential therapeutic targets in such settings, not only for reducing the pathology associated with allergic disorders but perhaps also for enhancing immune protection against pathogens and animal venoms. PMID:27225312

  16. Black Yeasts and Their Filamentous Relatives: Principles of Pathogenesis and Host Defense

    PubMed Central

    Netea, Mihai G.; Mouton, Johan W.; Melchers, Willem J. G.; Verweij, Paul E.; de Hoog, G. Sybren

    2014-01-01

    SUMMARY Among the melanized fungi, the so-called “black yeasts” and their filamentous relatives are particularly significant as agents of severe phaeohyphomycosis, chromoblastomycosis, and mycetoma in humans and animals. The pathogenicity and virulence of these fungi may differ significantly between closely related species. The factors which probably are of significance for pathogenicity include the presence of melanin and carotene, formation of thick cell walls and meristematic growth, presence of yeast-like phases, thermo- and perhaps also osmotolerance, adhesion, hydrophobicity, assimilation of aromatic hydrocarbons, and production of siderophores. Host defense has been shown to rely mainly on the ingestion and elimination of fungal cells by cells of the innate immune system, especially neutrophils and macrophages. However, there is increasing evidence supporting a role of T-cell-mediated immune responses, with increased interleukin-10 (IL-10) and low levels of gamma interferon (IFN-γ) being deleterious during the infection. There are no standardized therapies for treatment. It is therefore important to obtain in vitro susceptibilities of individual patients' fungal isolates in order to provide useful information for selection of appropriate treatment protocols. This article discusses the pathogenesis and host defense factors for these fungi and their severity, chronicity, and subsequent impact on treatment and prevention of diseases in human or animal hosts. PMID:24982320

  17. Tunicate cytokine-like molecules and their involvement in host defense responses.

    PubMed

    Raftos, D; Nair, S

    2004-01-01

    Tunicates (ascidians or sea squirts) are a large group of invertebrate chordates that are closely related to vertebrates. Their critical phylogenetic position has stimulated substantial interest in their host defense ("immune") responses. Whilst this interest has generated a wealth of knowledge regarding the humoral and cellular mechanisms that undertake defensive responses, there is less known about the regulation of those reactions. This chapter focuses on three cellular responses (cell proliferation, phagocytosis and chemotaxis) that are known to be regulated by cytophilic humoral molecules. Some of the humoral factors that affect these responses have functional and physicochemical similarities to vertebrate cytokines, like interleukin-1. However, the only regulatory molecules that have been characterized at a molecular level bear far greater similarity to C-type lectins or complement components.

  18. Autophagy Controls an Intrinsic Host Defense to Bacteria by Promoting Epithelial Cell Survival: A Murine Model

    PubMed Central

    Chang, Sun-Young; Lee, Se-Na; Yang, Jin-Young; Kim, Dong Wook; Yoon, Joo-Heon; Ko, Hyun-Jeong; Ogawa, Michinaga; Sasakawa, Chihiro; Kweon, Mi-Na

    2013-01-01

    Cell death is a critical host response to regulate the fate of bacterial infections, innate immune responses, and ultimately, disease outcome. Shigella spp. invade and colonize gut epithelium in human and nonhuman primates but adult mice are naturally resistant to intra-gastric Shigella infection. In this study, however, we found Shigella could invade the terminal ileum of the mouse small intestine by 1 hour after infection and be rapidly cleared within 24 h. These early phase events occurred shortly after oral infection resulting in epithelial shedding, degranulation of Paneth cells, and cell death in the intestine. During this process, autophagy proceeded without any signs of inflammation. In contrast, blocking autophagy in epithelial cells enhanced host cell death, leading to tissue destruction and to inflammation, suggesting that autophagic flow relieves cellular stress associated with host cell death and inflammation. Herein we propose a new concept of “epithelial barrier turnover” as a general intrinsic host defense mechanism that increases survival of host cells and inhibits inflammation against enteric bacterial infections, which is regulated by autophagy. PMID:24260541

  19. Strong down-regulation of glycophorin genes: A host defense mechanism against rotavirus infection.

    PubMed

    Salas, Antonio; Marco-Puche, Guillermo; Triviño, Juan Carlos; Gómez-Carballa, Alberto; Cebey-López, Miriam; Rivero-Calle, Irene; Vilanova-Trillo, Lucía; Rodríguez-Tenreiro, Carmen; Gómez-Rial, José; Martinón-Torres, Federico

    2016-10-01

    The mechanisms of rotavirus (RV) infection have been analyzed from different angles but the way in which RV modifies the transcriptome of the host is still unknown. Whole transcriptome shotgun sequencing of peripheral blood samples was used to reveal patterns of expression from the genome of RV-infected patients. RV provokes global changes in the transcriptome of infected cells, involving an over-expression of genes involved in cell cycle and chromatin condensation. While interferon IFI27 was hyper-activated, interferon type II was not suggesting that RV has developed mechanisms to evade the innate response by host cells after virus infection. Most interesting was the inhibition of genes of the glycophorins A and B (GYPA/B) family, which are the major sialoglycoproteins of the human erythrocyte membrane and receptor of several viruses for host invasion. RV infection induces a complex and global response in the host. The strong inhibition of glycophorins suggests a novel defense mechanism of the host to prevent viral infection, inhibiting the expression of receptors used by the virus for infection. The present results add further support to the systemic nature of RV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D)

    PubMed Central

    Raison, C L; Miller, A H

    2013-01-01

    Given the manifold ways that depression impairs Darwinian fitness, the persistence in the human genome of risk alleles for the disorder remains a much debated mystery. Evolutionary theories that view depressive symptoms as adaptive fail to provide parsimonious explanations for why even mild depressive symptoms impair fitness-relevant social functioning, whereas theories that suggest that depression is maladaptive fail to account for the high prevalence of depression risk alleles in human populations. These limitations warrant novel explanations for the origin and persistence of depression risk alleles. Accordingly, studies on risk alleles for depression were identified using PubMed and Ovid MEDLINE to examine data supporting the hypothesis that risk alleles for depression originated and have been retained in the human genome because these alleles promote pathogen host defense, which includes an integrated suite of immunological and behavioral responses to infection. Depression risk alleles identified by both candidate gene and genome-wide association study (GWAS) methodologies were found to be regularly associated with immune responses to infection that were likely to enhance survival in the ancestral environment. Moreover, data support the role of specific depressive symptoms in pathogen host defense including hyperthermia, reduced bodily iron stores, conservation/withdrawal behavior, hypervigilance and anorexia. By shifting the adaptive context of depression risk alleles from relations with conspecifics to relations with the microbial world, the Pathogen Host Defense (PATHOS-D) hypothesis provides a novel explanation for how depression can be nonadaptive in the social realm, whereas its risk alleles are nonetheless represented at prevalence rates that bespeak an adaptive function. PMID:22290120

  1. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia.

    PubMed

    Xu, Xin; Weiss, Ido D; Zhang, Hongwei H; Singh, Satya P; Wynn, Thomas A; Wilson, Mark S; Farber, Joshua M

    2014-02-15

    It was reported that host defense against pulmonary Klebsiella pneumoniae infection requires IL-22, which was proposed to be of T cell origin. Supporting a role for IL-22, we found that Il22(-/-) mice had decreased survival compared with wild-type mice after intratracheal infection with K. pneumoniae. Surprisingly, however, Rag2(-/-) mice did not differ from wild-type mice in survival or levels of IL-22 in the lungs postinfection with K. pneumoniae. In contrast, K. pneumoniae-infected Rag2(-/-)Il2rg(-/-) mice failed to produce IL-22. These data suggested a possible role for NK cells or other innate lymphoid cells in host defense and production of IL-22. Unlike NK cell-like innate lymphoid cells that produce IL-22 and display a surface phenotype of NK1.1(-)NKp46(+)CCR6(+), lung NK cells showed the conventional phenotype, NK1.1(+)NKp46(+)CCR6(-). Mice depleted of NK cells using anti-asialo GM1 showed decreased survival and higher lung bacterial counts, as well as increased dissemination of K. pneumoniae to blood and liver, compared with control-treated mice. NK cell depletion also led to decreased production of IL-22 in the lung. Within 1 d postinfection, although there was no increase in the number of lung NK cells, a subset of lung NK cells became competent to produce IL-22, and such cells were found in both wild-type and Rag2(-/-) mice. Our data suggest that, during pulmonary infection of mice with K. pneumoniae, conventional NK cells are required for optimal host defense, which includes the production of IL-22.

  2. Essential Role of Interleukin-1 Signaling in Host Defenses Against Group B Streptococcus

    PubMed Central

    Biondo, Carmelo; Mancuso, Giuseppe; Midiri, Angelina; Signorino, Giacomo; Domina, Maria; Lanza Cariccio, Veronica; Venza, Mario; Venza, Isabella; Beninati, Concetta

    2014-01-01

    ABSTRACT Signal transduction via MyD88, an adaptor protein engaged by the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) family receptors, has a crucial role in host defenses against group B streptococcus (GBS). To examine the contribution of IL-1R signaling to MyD88-dependent host defenses, we analyzed GBS infection in type I IL-1R (IL-1RI)-deficient mice. Most of these animals displayed clinical signs of sepsis and neurological disease and died after a challenge with a bacterial dose that did not cause illness or death in any of the wild-type animals. Moreover, bacterial numbers in the blood and brains of the immunodefective mice were considerably increased. The ability of blood leukocytes or bone marrow-derived macrophages to kill GBS in vitro was not affected by a lack of IL-1RI. However, it was found in a newly developed model of GBS-induced peritoneal inflammation that IL-1 signaling selectively promoted the production of the chemokines KC and MIP-1α and neutrophil recruitment. Moreover, the secretion of KC and MIP-1α, but not tumor necrosis factor alpha, by peritoneal macrophages stimulated with GBS was significantly decreased in the absence of IL-1RI. Accordingly, the number of neutrophils in the blood and the concentration of myeloperoxidase, a neutrophil marker, in infected organs were severely reduced in the immunodefective mice during GBS disease, concomitantly with a reduction in tissue KC and MIP-1α levels. In conclusion, IL-1RI plays a crucial role in host defenses against GBS by inducing the high-level production of chemokines and the subsequent recruitment of neutrophilic polymorphonuclear leukocytes to infection sites. PMID:25205091

  3. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota

    PubMed Central

    Brown, Kirsty; Zaytsoff, Sarah J. M.; Uwiera, Richard R. E.; Inglis, G. Douglas

    2016-01-01

    Antibiotics can promote growth in livestock (antimicrobial growth promoters, AGPs), however lack of knowledge regarding mechanisms has hampered the development of effective non-antibiotic alternatives. Antibiotics affect eukaryotic cells at therapeutic concentrations, yet effects of AGPs on host physiology are relatively understudied, partially due to the complexity of host-microorganism interactions within the gastrointestinal tract. To determine the direct effects of AGPs on the host, we generated Altered Schaedler Flora (ASF) mice, and administered chlortetracycline (CTC) and tylosin phosphate (TYL) in feed. Mice were challenged with Citrobacter rodentium to determine how AGPs alter host responses to physiological stress. Although CTC and TYL had inconsistent effects on the ASF taxa, AGPs protected mice from weight loss following C. rodentium inoculation. Mice treated with either CTC or TYL had lower expression of βd1 and Il17a in the intestine and had a robust induction of Il17a and Il10. Furthermore, AGP administration resulted in a lower hepatic expression of acute phase proteins (Saa1, Hp, and Cp) in liver tissue, and ameliorated C. rodentium-induced reductions in the expression of genes involved in lipogenesis (Hmgcl and Fabp1). Collectively, this indicates that AGPs directly affect host physiology, and highlights important considerations in the development of non-antibiotic alternatives. PMID:27929072

  4. The Cnes2 Locus on Mouse Chromosome 17 Regulates Host Defense against Cryptococcal Infection through Pleiotropic Effects on Host Immunity

    PubMed Central

    Shourian, Mitra; Flaczyk, Adam; Angers, Isabelle; Mindt, Barbara C.; Fritz, Jörg H.

    2015-01-01

    The genetic basis of natural susceptibility to progressive Cryptococcus neoformans infection is not well understood. Using C57BL/6 and CBA/J inbred mice, we previously identified three chromosomal regions associated with C. neoformans susceptibility (Cnes1, Cnes2, and Cnes3). To validate and characterize the role of Cnes2 during the host response, we constructed a congenic strain on the C57BL/6 background (B6.CBA-Cnes2). Phenotypic analysis of B6.CBA-Cnes2 mice 35 days after C. neoformans infection showed a significant reduction of fungal burden in the lungs and spleen with higher pulmonary expression of gamma interferon (IFN-γ) and interleukin-12 (IL-12), lower expression of IL-4, IL-5, and IL-13, and an absence of airway epithelial mucus production compared to that in C57BL/6 mice. Multiparameter flow cytometry of infected lungs also showed a significantly higher number of neutrophils, exudate macrophages, CD11b+ dendritic cells, and CD4+ cells in B6.CBA-Cnes2 than in C57BL/6 mice. The activation state of recruited macrophages and dendritic cells was also significantly increased in B6.CBA-Cnes2 mice. Taken together, these findings demonstrate that the Cnes2 interval is a potent regulator of host defense, immune responsiveness, and differential Th1/Th2 polarization following C. neoformans infection. PMID:26371125

  5. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    PubMed Central

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  6. Parasitism by Cuscuta pentagona Attenuates Host Plant Defenses against Insect Herbivores1

    PubMed Central

    Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M.

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores. PMID:18165323

  7. Neutrophils and keratinocytes in innate immunity--cooperative actions to provide antimicrobial defense at the right time and place.

    PubMed

    Borregaard, Niels; Theilgaard-Mönch, Kim; Cowland, Jack B; Ståhle, Mona; Sørensen, Ole E

    2005-04-01

    The human neutrophil is a professional phagocyte of fundamental importance for defense against microorganisms, as witnessed by the life-threatening infections occurring in patients with neutropenia or with defects that result in decreased microbicidal activity of the neutrophil. Likewise, the skin and mucosal surfaces provide important barriers against infections. Traditionally, these major defense systems, the epithelial cells and the neutrophils, have been viewed as limited in their armory: The epithelial cells provide defense by constituting a physical barrier, and the neutrophils provide instant delivery of preformed antimicrobial substances or on-the-spot assembly of the multicomponent reduced nicotinamide adenine dinucleotide phosphate oxidase from stored components for the generation of reactive oxygen metabolites. Recent research has shown that epithelial cells are highly dynamic and able to generate antimicrobial peptides in response not only to microbial infection itself but more importantly, to the growth factors that are called into play when the physical barrier is broken, and the risk of microbial infection is imminent. Likewise, the neutrophil changes its profile of actively transcribed genes when it diapedeses into wounded skin. This results in generation of signaling molecules, some of which support the growth and antimicrobial potential of keratinocytes and epithelial cells. This paper will highlight some recent advances in this field.

  8. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms.

    PubMed

    Cândido, Elizabete de Souza; Pinto, Michelle Flaviane Soares; Pelegrini, Patrícia Barbosa; Lima, Thais Bergamin; Silva, Osmar Nascimento; Pogue, Robert; Grossi-de-Sá, Maria Fátima; Franco, Octávio Luiz

    2011-10-01

    Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.

  9. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    PubMed

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Celecoxib improves host defense through prostaglandin inhibition during Histoplasma capsulatum infection.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Trindade, Bruno Caetano; Secatto, Adriana; Nicolete, Roberto; Peres-Buzalaf, Camila; Ramos, Simone Gusmão; Sadikot, Ruxana; Bitencourt, Claudia da Silva; Faccioli, Lúcia Helena

    2013-01-01

    Prostaglandins act as mediators of inflammation and, similar to cytokines, function as immune modulators during innate and adaptive immune responses. Therefore, using a pharmacological inhibitor, celecoxib, we investigated the role of prostaglandins in host defense against Histoplasma capsulatum infection in C57BL/6 mice. Our results showed that treatment with celecoxib inhibited cyclooxygenase 2, reduced the total fungal burden, and reduced the concentration of PGE2, cytokines, lymphocytes, neutrophils, and mononuclear cells in the bronchoalveolar space and lung parenchyma. In addition, celecoxib treatment increased the synthesis of nitric oxide, IFN- γ, LTB4, and the phagocytic capacity of alveolar macrophages. Moreover, celecoxib treatment increased the survival of mice after infection with a lethal inoculum of H. capsulatum. These results suggest that prostaglandins alter the host immune response and play an important role in the pathogenesis of histoplasmosis. Thus, the inhibition of prostaglandins could be a valuable immunomodulatory strategy and antifungal therapy for histoplasmosis treatment.

  11. The microbiome-immune-host defense barrier complex (microimmunosome) and developmental programming of noncommunicable diseases.

    PubMed

    Dietert, Rodney R

    2017-03-01

    Through its role as gatekeeper and filter to the external world, the microbiome affects developmental programming of physiological systems including the immune system. In turn, the immune system must tolerate, personalize, and prune the microbiome. Immune and host barrier status in early life significantly effects everything from embryo viability and pregnancy duration to the likelihood of misregulated inflammation, and risk of noncommunicable diseases (NCDs). Since the programming of and interactions among the microbiome, the host defense barrier, and the immune system can affect inflammation-driven health risks across the lifespan, a systems biology-type understanding of these three biological components may be useful. Here, I consider the potential utility of focusing on programming of a newly-defined systems biology unit termed the "microimmunosome." Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ampicillin Enhances Daptomycin- and Cationic Host Defense Peptide-Mediated Killing of Ampicillin- and Vancomycin-Resistant Enterococcus faecium

    PubMed Central

    Bayer, Arnold S.; Pogliano, Joseph; Tsuji, Brian T.; Yang, Soo-Jin; Mishra, Nagendra N.; Nizet, Victor; Yeaman, Michael R.; Moise, Pamela A.

    2012-01-01

    We studied an ampicillin- and vancomycin-resistant Enterococcus faecium (VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and an in vitro pharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive

  13. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium.

    PubMed

    Sakoulas, George; Bayer, Arnold S; Pogliano, Joseph; Tsuji, Brian T; Yang, Soo-Jin; Mishra, Nagendra N; Nizet, Victor; Yeaman, Michael R; Moise, Pamela A

    2012-02-01

    We studied an ampicillin- and vancomycin-resistant Enterococcus faecium (VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and an in vitro pharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive

  14. Identification of Mycobacterium avium genes associated with resistance to host antimicrobial peptides

    PubMed Central

    Motamedi, Nima; Danelishvili, Lia

    2014-01-01

    Antimicrobial peptides are an important component of the innate immune defence. Mycobacterium avium subsp. hominissuis (M. avium) is an organism that establishes contact with the respiratory and gastrointestinal mucosa as a necessary step for infection. M. avium is resistant to high concentrations of polymyxin B, a surrogate for antimicrobial peptides. To determine gene-encoding proteins that are associated with this resistance, we screened a transposon library of M. avium strain 104 for susceptibility to polymyxin B. Ten susceptible mutants were identified and the inactivated genes sequenced. The great majority of the genes were related to cell wall synthesis and permeability. The mutants were then examined for their ability to enter macrophages and to survive macrophage killing. Three clones among the mutants had impaired uptake by macrophages compared with the WT strain, and all ten clones were attenuated in macrophages. The mutants were also shown to be susceptible to cathelicidin (LL-37), in contrast to the WT bacterium. All but one of the mutants were significantly attenuated in mice. In conclusion, this study indicated that the M. avium envelope is the primary defence against host antimicrobial peptides. PMID:24836414

  15. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    PubMed

    Samuelson, Derrick R; Shellito, Judd E; Maffei, Vincent J; Tague, Eric D; Campagna, Shawn R; Blanchard, Eugene E; Luo, Meng; Taylor, Christopher M; Ronis, Martin J J; Molina, Patricia E; Welsh, David A

    2017-06-01

    Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these

  16. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae

    PubMed Central

    Campagna, Shawn R.; Blanchard, Eugene E.; Ronis, Martin J. J.

    2017-01-01

    Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these

  17. Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense.

    PubMed

    Morris, Otto; Liu, Xi; Domingues, Celia; Runchel, Christopher; Chai, Andrea; Basith, Shaherin; Tenev, Tencho; Chen, Haiyang; Choi, Sangdun; Pennetta, Giuseppa; Buchon, Nicolas; Meier, Pascal

    2016-09-14

    Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships.

  18. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis.

    PubMed

    Herbert, B A; Novince, C M; Kirkwood, K L

    2016-06-01

    Aggregatibacter actinomycetemcomitans is a perio-pathogenic bacteria that has long been associated with localized aggressive periodontitis. The mechanisms of its pathogenicity have been studied in humans and preclinical experimental models. Although different serotypes of A. actinomycetemcomitans have differential virulence factor expression, A. actinomycetemcomitans cytolethal distending toxin (CDT), leukotoxin, and lipopolysaccharide (LPS) have been most extensively studied in the context of modulating the host immune response. Following colonization and attachment in the oral cavity, A. actinomycetemcomitans employs CDT, leukotoxin, and LPS to evade host innate defense mechanisms and drive a pathophysiologic inflammatory response. This supra-physiologic immune response state perturbs normal periodontal tissue remodeling/turnover and ultimately has catabolic effects on periodontal tissue homeostasis. In this review, we have divided the host response into two systems: non-hematopoietic and hematopoietic. Non-hematopoietic barriers include epithelium and fibroblasts that initiate the innate immune host response. The hematopoietic system contains lymphoid and myeloid-derived cell lineages that are responsible for expanding the immune response and driving the pathophysiologic inflammatory state in the local periodontal microenvironment. Effector systems and signaling transduction pathways activated and utilized in response to A. actinomycetemcomitans will be discussed to further delineate immune cell mechanisms during A. actinomycetemcomitans infection. Finally, we will discuss the osteo-immunomodulatory effects induced by A. actinomycetemcomitans and dissect the catabolic disruption of balanced osteoclast-osteoblast-mediated bone remodeling, which subsequently leads to net alveolar bone loss.

  19. Ubiquitination of pathogen-containing vacuoles promotes host defense to Chlamydia trachomatis and Toxoplasma gondii.

    PubMed

    Coers, Jörn; Haldar, Arun K

    2015-01-01

    Many intracellular bacterial and protozoan pathogens reside within host cell vacuoles customized by the microbial invaders to fit their needs. Within such pathogen-containing vacuoles (PVs) microbes procure nutrients and simultaneously hide from cytosolic host defense systems. Among the many PV-resident human pathogens are the bacterium Chlamydia trachomatis and the protozoan Toxoplasma gondii. Immune responses directed against their PVs are poorly characterized. We reported that activation of host cells with IFNγ triggers the attachment of polyubiquitin chains to Toxoplasma- and Chlamydia-containing vacuoles and thereby marks PVs for destruction. In murine cells PV ubiquitination is dependent on IFNγ-inducible Immunity Related GTPases (IRGs). Human cells also decorate PVs with ubiquitin upon IFNγ priming; however, the molecular machinery promoting PV ubiquitination in human cells remains unknown and is likely to be distinct from the IRG-dependent pathway we described in murine cells. Thus, IFNγ-inducible PV ubiquitination constitutes a critical event in cell-autonomous immunity to C. trachomatis and T. gondii in mice and humans, but the molecular machinery underlying PV ubiquitination is expected to be multifaceted and possibly host species-specific.

  20. Ubiquitination of pathogen-containing vacuoles promotes host defense to Chlamydia trachomatis and Toxoplasma gondii

    PubMed Central

    Coers, Jörn; Haldar, Arun K

    2015-01-01

    Many intracellular bacterial and protozoan pathogens reside within host cell vacuoles customized by the microbial invaders to fit their needs. Within such pathogen-containing vacuoles (PVs) microbes procure nutrients and simultaneously hide from cytosolic host defense systems. Among the many PV-resident human pathogens are the bacterium Chlamydia trachomatis and the protozoan Toxoplasma gondii. Immune responses directed against their PVs are poorly characterized. We reported that activation of host cells with IFNγ triggers the attachment of polyubiquitin chains to Toxoplasma- and Chlamydia-containing vacuoles and thereby marks PVs for destruction. In murine cells PV ubiquitination is dependent on IFNγ-inducible Immunity Related GTPases (IRGs). Human cells also decorate PVs with ubiquitin upon IFNγ priming; however, the molecular machinery promoting PV ubiquitination in human cells remains unknown and is likely to be distinct from the IRG-dependent pathway we described in murine cells. Thus, IFNγ-inducible PV ubiquitination constitutes a critical event in cell-autonomous immunity to C. trachomatis and T. gondii in mice and humans, but the molecular machinery underlying PV ubiquitination is expected to be multifaceted and possibly host species-specific. PMID:27066178

  1. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions.

    PubMed

    Malloy, Jaret L; Veldhuizen, Ruud A W; Thibodeaux, Brett A; O'Callaghan, Richard J; Wright, Jo Rae

    2005-02-01

    Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.

  2. Neuro-immune Interactions in Inflammation and Host Defense: Implications for Transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2017-09-23

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Air Pollution and Epigenetics: Effects on SP-A and Innate Host Defense in the Lung

    PubMed Central

    Silveyra, Patricia; Floros, Joanna

    2013-01-01

    Summary An appropriate immune and inflammatory response is key to defend against harmful agents present in the environment such as pathogens, allergens, and inhaled pollutants, including ozone and particulate matter. Air pollution is a serious public health concern worldwide, and cumulative evidence revealed that air pollutants contribute to epigenetic variation in several genes, and this in turn can contribute to disease susceptibility. Several groups of experts have recently reviewed findings on epigenetics and air pollution [1–6]. Surfactant proteins play a central role in pulmonary host defense by mediating pathogen clearance, modulating allergic responses and facilitating the resolution of lung inflammation. Recent evidence indicates that surfactant proteins are subject to epigenetic regulation under hypoxia and other conditions. Oxidative stress caused by ozone, and exposure to particulate matter have been shown to affect the expression of surfactant protein A (SP-A), an important lung host defense molecule, as well as alter its functions. In this review, we discuss recent findings in the fields of epigenetics and air pollution effects on innate immunity, with focus on SP-A, and the human SP-A variants in particular. Their function may be differentially affected by pollutants and specifically by ozone-induced oxidative stress, and this in turn may differentially affect susceptibility to lung disease. PMID:22553125

  4. Transgenic tissue-type plasminogen activator expression improves host defense during Klebsiella pneumonia.

    PubMed

    Renckens, R; Roelofs, J J T H; Stegenga, M E; Florquin, S; Levi, M; Carmeliet, P; Van't Veer, C; van der Poll, T

    2008-04-01

    Severe pneumonia is associated with a local inhibition of fibrinolysis in the lung as reflected by strongly reduced pulmonary plasminogen activator activity. To study the effect of elevation of local plasminogen activator activity during pneumonia caused by the common respiratory pathogen Klebsiella pneumoniae. Female C57Bl/6 mice were inoculated intranasally with a replication-defective adenoviral vector expressing human tissue-type plasminogen activator or a control vector 24 h before intranasal infection with K. pneumoniae. Mice infected with Klebsiella via the airways developed overt pneumonia, which was accompanied by a downregulation of pulmonary tissue-type plasminogen activator levels at protein and mRNA levels. Pulmonary overexpression of human tissue-type plasminogen activator resulted in increased fibrinolytic activity in the lungs during pneumonia, as indicated by higher D-dimer levels and reduced fibrin deposition. Interestingly, overexpression of tissue-type plasminogen activator markedly improved host defense against pneumonia: mice treated with the tissue-type plasminogen activator vector displayed less bacterial growth and dissemination, attenuated distant organ injury and a reduced mortality. These data demonstrate that local elevation of plasminogen activator activity in the lungs improves host defense against severe gram-negative pneumonia and sepsis.

  5. The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis.

    PubMed

    Ifrim, Daniela C; Quintin, Jessica; Courjol, Flavie; Verschueren, Ineke; van Krieken, J Han; Koentgen, Frank; Fradin, Chantal; Gow, Neil A R; Joosten, Leo A B; van der Meer, Jos W M; van de Veerdonk, Frank; Netea, Mihai G

    2016-04-01

    Despite the fact that Candida albicans is an important human fungal pathogen and Dectin-2 is a major pattern recognition receptor for fungi, our knowledge regarding the role of Dectin-2 for the host defense against disseminated candidiasis is limited. Dectin-2 deficient (Dectin-2(-/-)) mice were more susceptible to systemic candidiasis, and the susceptibility was mirrored by an elevated fungal load in the kidneys that correlated with the presence of large inflammatory foci. Phagocytosis of Candida by the macrophages lacking the Dectin-2 receptor was moderately decreased, while production of most of the macrophage-derived cytokines from Dectin-2(-/-) mice with systemic candidiasis was decreased. No striking differences among several Candida mutants defective in mannans could be detected between naïve wild-type and Dectin-2(-/-) mice, apart from the β-mannan-deficient bmt1Δ/bmt2Δ/bmt5Δ triple mutant, suggesting that β-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2. Deciphering the mechanisms responsible for host defense against the majority of C. albicans strains represents an important step in understanding the pathophysiology of systemic candidiasis, which might lead to the development of novel immunotherapeutic strategies.

  6. Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.

    PubMed

    Yang, Zhiping; Chiou, Terry Ting-Yu; Stossel, Thomas P; Kobzik, Lester

    2015-07-01

    Plasma gelsolin (pGSN) functions as part of the "extracellular actin-scavenging system," but its potential to improve host defense against infection has not been studied. In a mouse model of primary pneumococcal pneumonia, recombinant human pGSN (rhu-pGSN) caused enhanced bacterial clearance, reduced acute inflammation, and improved survival. In vitro, rhu-pGSN rapidly improved lung macrophage uptake and killing of bacteria (Streptococcus pneumoniae, Escherichia coli, and Francisella tularensis). pGSN triggers activating phosphorylation (Ser(1177)) of macrophage nitric oxide synthase type III (NOS3), an enzyme with important bactericidal functions in lung macrophages. rhu-pGSN failed to enhance bacterial killing by NOS3(-/-) macrophages in vitro or bacterial clearance in NOS3(-/-) mice in vivo. Prophylaxis with immunomodulators may be especially relevant for patients at risk for secondary bacterial pneumonia, e.g., after influenza. Treatment of mice with pGSN challenged with pneumococci on postinfluenza day 7 (the peak of enhanced susceptibility to secondary infection) caused a ∼15-fold improvement in bacterial clearance, reduced acute neutrophilic inflammation, and markedly improved survival, even without antibiotic therapy. pGSN is a potential immunomodulator for improving lung host defense against primary and secondary bacterial pneumonia.

  7. Hydroxychloroquine-Inhibited Dengue Virus Is Associated with Host Defense Machinery

    PubMed Central

    Wang, Li-Fong; Lin, You-Sheng; Huang, Nan-Chieh; Yu, Chia-Yi; Tsai, Wei-Lun; Chen, Jih-Jung; Kubota, Toru; Matsuoka, Mayumi; Chen, Siang-Ru; Yang, Chih-Shiang; Lu, Ruo-Wei; Lin, Yi-Ling

    2015-01-01

    Hydroxychloroquine (HCQ) is an antimalarial drug also used in treating autoimmune diseases. Its antiviral activity was demonstrated in restricting HIV infection in vitro; however, the clinical implications remain controversial. Infection with dengue virus (DENV) is a global public health problem, and we lack an antiviral drug for DENV. Here, we evaluated the anti-DENV potential of treatment with HCQ. Immunofluorescence assays demonstrated that HCQ could inhibit DENV serotype 1–4 infection in vitro. RT-qPCR analysis of HCQ-treated cells showed induced expression of interferon (IFN)-related antiviral proteins and certain inflammatory cytokines. Mechanistic study suggested that HCQ activated the innate immune signaling pathways of IFN-β, AP-1, and NFκB. Knocking down mitochondrial antiviral signaling protein (MAVS), inhibiting TANK binding kinase 1 (TBK1)/inhibitor-κB kinase ɛ (IKKɛ), and blocking type I IFN receptor reduced the efficiency of HCQ against DENV-2 infection. Furthermore, HCQ significantly induced cellular production of reactive oxygen species (ROS), which was involved in the host defense system. Suppression of ROS production attenuated the innate immune activation and anti-DENV-2 effect of HCQ. In summary, HCQ triggers the host defense machinery by inducing ROS- and MAVS-mediated innate immune activation against DENV infection and may be a candidate drug for DENV infection. PMID:25321315

  8. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host anti-microbial peptides

    PubMed Central

    Phattarataratip, Ekarat; Olson, Bonny; Broffitt, Barbara; Qian, Fang; Brogden, Kim A.; Drake, David R.; Levy, Steven M.; Banas, Jeffrey A.

    2011-01-01

    SUMMARY Antimicrobial peptides (AMPs) are among the repertoire of host innate immune defenses. In the oral cavity, several AMPs are present in saliva and have antimicrobial activities against oral bacteria, including Streptococcus mutans, a primary etiologic agent of dental caries. In this study, we hypothesized that unique S. mutans strains as determined by DNA fingerprinting from sixty 13 year-old subjects with or without caries experience would have different susceptibilities to α-defensins-1-3 (HNP-1-3), β-defensins-2-3 (HBD-2-3) and LL-37. The salivary levels of these peptides in subjects also were measured by enzyme-linked immunosorbent assays (ELISA). We found that S. mutans strains from caries-active subjects showed greater resistance to salivary HNP-1-2, HBD-2-3 and LL-37 at varying concentrations than those from caries-free subjects. In addition, combinations of these peptides increased their antimicrobial activity against S. mutans either additively or synergistically. The salivary levels of these peptides were highly variable among subjects with no correlation to host caries experience. However, the levels of a number of these peptides in saliva appeared to be positively correlated within an individual. Our findings suggest that the relative ability of S. mutans to resist host salivary AMPs may be considered a potential virulence factor for this species such that S. mutans strains that are more resistant to these peptides may have an ecological advantage to preferentially colonize within dental plaque and increase the risk of dental caries. PMID:21545696

  9. Intestinal Epithelium-Specific MyD88 Signaling Impacts Host Susceptibility to Infectious Colitis by Promoting Protective Goblet Cell and Antimicrobial Responses

    PubMed Central

    Bhinder, Ganive; Stahl, Martin; Sham, Ho Pan; Crowley, Shauna M.; Morampudi, Vijay; Dalwadi, Udit; Ma, Caixia; Jacobson, Kevan

    2014-01-01

    Intestinal epithelial cells (IECs), including secretory goblet cells, form essential physiochemical barriers that separate luminal bacteria from underlying immune cells in the intestinal mucosa. IECs are common targets for enteric bacterial pathogens, with hosts responding to these microbes through innate toll-like receptors that predominantly signal through the MyD88 adaptor protein. In fact, MyD88 signaling confers protection against several enteric bacterial pathogens, including Salmonella enterica serovar Typhimurium and Citrobacter rodentium. Since IECs are considered innately hyporesponsive, it is unclear whether MyD88 signaling within IECs contributes to this protection. We infected mice lacking MyD88 solely in their IECs (IEC-Myd88−/−) with S. Typhimurium. Compared to wild-type (WT) mice, infected IEC-Myd88−/− mice suffered accelerated tissue damage, exaggerated barrier disruption, and impaired goblet cell responses (Muc2 and RELMβ). Immunostaining revealed S. Typhimurium penetrated the IECs of IEC-Myd88−/− mice, unlike in WT mice, where they were sequestered to the lumen. When isolated crypts were assayed for their antimicrobial actions, crypts from IEC-Myd88−/− mice were severely impaired in their antimicrobial activity against S. Typhimurium. We also examined whether MyD88 signaling in IECs impacted host defense against C. rodentium, with IEC-Myd88−/− mice again suffering exaggerated tissue damage, impaired goblet cell responses, and reduced antimicrobial activity against C. rodentium. These results demonstrate that MyD88 signaling within IECs plays an important protective role at early stages of infection, influencing host susceptibility to infection by controlling the ability of the pathogen to reach and survive at the intestinal mucosal surface. PMID:24958710

  10. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes

    PubMed Central

    Cassady, Katherine R.; Noga, Edward J.

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44–46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  11. Relationships among CFTR expression, HCO3− secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies

    PubMed Central

    Shah, Viral S.; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H.; Parker, Connor P.; Ostedgaard, Lynda S.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10–50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl− secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3− secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3− at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR+/− or CFTR+/∆F508) expressed CFTR and secreted HCO3− at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3− secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl− secretion, the amount of CFTR is rate-limiting for HCO3− secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers. PMID:27114540

  12. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis.

    PubMed

    Haag, Andreas F; Baloban, Mikhail; Sani, Monica; Kerscher, Bernhard; Pierre, Olivier; Farkas, Attila; Longhi, Renato; Boncompagni, Eric; Hérouart, Didier; Dall'angelo, Sergio; Kondorosi, Eva; Zanda, Matteo; Mergaert, Peter; Ferguson, Gail P

    2011-10-01

    Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.

  13. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope*

    PubMed Central

    Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel

    2015-01-01

    The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716

  14. Chemical defenses of cryptic and aposematic Gastropterid molluscs feeding on their host sponge Dysidea granulosa.

    PubMed

    Becerro, Mikel A; Starmer, John A; Paul, Valerie J

    2006-07-01

    Numerous opisthobranchs are known to sequester chemical defenses from their prey and use them for their own defense. Information on feeding biology is critical for understanding the ecology and evolution of molluscs, yet information on feeding biology is still scarce for many groups. Gastropterid molluscs are often found on sponges, but there is controversy as to whether they are true sponge feeders. On Guam, we found the gastropterids Sagaminopteron nigropunctatum and S. psychedelicum on the sponge Dysidea granulosa. They seem to rely on contrasting defense strategies as S. psychedelicum has vivid colors, consistent with the warning coloration found in many chemically defended opisthobranchs, whereas S. nigropunctatum is highly cryptic on the sponge. S. nigropunctatum is avoided by the pufferfish Canthigaster solandri in aquarium assays. We analyzed the secondary metabolites of the two species and found that both share polybrominated diphenyl ethers (BDEs) with their host sponge D. granulosa. S. psychedelicum and S. nigropunctatum sequester the major BDE in the sponge and accumulate it in the mantle at approximately the same concentration as in the sponge (4.03 and 2.37%, respectively), and concentrate it in their parapodia at over twice the sponge concentration (7.97 and 10.10%, respectively). We also detected trace amounts in the mucus secretion of S. psychedelicum, and quantified significant amounts in the mucus (1.84%) and egg masses (2.22%) of S. nigropunctatum. Despite contrasting color patterns displayed by the two gastropterid species, they seem to share a similar chemical defense strategy, i.e., they feed on D. granulosa and accumulate the major BDE of the sponge in their tissues.

  15. Insect inducible antimicrobial peptides and their applications.

    PubMed

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  16. Transcriptome of Dickeya dadantii Infecting Acyrthosiphon pisum Reveals a Strong Defense against Antimicrobial Peptides

    PubMed Central

    Costechareyre, Denis; Chich, Jean-François; Strub, Jean-Marc; Rahbé, Yvan; Condemine, Guy

    2013-01-01

    The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP. PMID:23342088

  17. Induction of Porcine Host Defense Peptide Gene Expression by Short-Chain Fatty Acids and Their Analogs

    PubMed Central

    Zeng, Xiangfang; Sunkara, Lakshmi T.; Jiang, Weiyu; Bible, Megan; Carter, Scott; Ma, Xi; Qiao, Shiyan; Zhang, Guolong

    2013-01-01

    Dietary modulation of the synthesis of endogenous host defense peptides (HDPs) represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2), pBD3, epididymis protein 2 splicing variant C (pEP2C), and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3–8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs. PMID:24023657

  18. Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens.

    PubMed

    Chairatana, Phoom; Nolan, Elizabeth M

    2014-09-24

    Human α-defensin 6 (HD6) is a 32-aa cysteine-rich peptide of the innate immune system. Although HD6 is a member of an antimicrobial peptide family, it exhibits negligible antibacterial activity in vitro. Rather, HD6 possesses a unique innate immune mechanism whereby it self-assembles into oligomers that capture pathogens to prevent microbial invasion of the intestinal epithelium and subsequent dissemination. Molecular-level understanding for why HD6 functions differently from other human defensins remains unclear. To further elucidate the HD6 self-assembly process and its biological activity, we developed robust protocols for obtaining native and mutant HD6 in high purity from overexpression in Escherichia coli. We combined biophysical characterization with biological assays to probe HD6 structure and function. We report that native HD6 readily self-assembles into elongated fibrils observable by transmission electron microscopy, agglutinates both Gram-negative and -positive bacteria, and prevents the human gastrointestinal pathogen Listeria monocytogenes from invading cultured mammalian cells. Mutation of hydrophobic residues (F2A, I22T, V25T, F29A) perturbs self-assembly and results in attenuated biological activity. In particular, the F2A and F29A mutants do not form fibrils under our experimental conditions and neither agglutinate bacteria nor prevent L. monocytogenes invasion. In total, our results demonstrate that the hydrophobic effect is essential for promoting HD6 self-assembly and innate immune function, and indicate that HD6 may provide host defense against Listeria in the gut. This investigation provides a timely description of how variations in amino acid sequence confer diverse physiological functions to members of the defensin family.

  19. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    PubMed

    Zeng, Xiangfang; Sunkara, Lakshmi T; Jiang, Weiyu; Bible, Megan; Carter, Scott; Ma, Xi; Qiao, Shiyan; Zhang, Guolong

    2013-01-01

    Dietary modulation of the synthesis of endogenous host defense peptides (HDPs) represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2), pBD3, epididymis protein 2 splicing variant C (pEP2C), and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  20. pH-Dependent Solution Structure and Activity of a Reduced Form of the Host-Defense Peptide Myticin C (Myt C) from the Mussel Mytilus galloprovincialis

    PubMed Central

    Martinez-Lopez, Alicia; Encinar, Jose Antonio; Medina-Gali, Regla Maria; Balseiro, Pablo; Garcia-Valtanen, Pablo; Figueras, Antonio; Novoa, Beatriz; Estepa, Amparo

    2013-01-01

    Myticin C (Myt C) is a highly variable host-defense peptide (HDP) associated to the immune response in the mediterranean mussel (Mytilus galloprovincialis), which has shown to be active across species due to its strong antiviral activity against a fish rhabdovirus found in fish cells overexpressing this HDP. However, the potential antimicrobial properties of any synthetic analogue of Myt C has not yet been analysed. Thus, in this work we have synthesised the sequence of the mature peptide of Myt C variant c and analysed the structure activity relationships of its reduced (non-oxidized) form (red-MytCc). In contrast to results previously reported for oxidized isoforms of mussel myticins, red-MytCc was not active against bacteria at physiological pH and showed a moderate antiviral activity against the viral haemorrhagic septicaemia (VHS) rhabdovirus. However, its chemotactic properties remained active. Structure/function studies in neutral and acid environments by means of infrared spectroscopy indicated that the structure of red-MytCc is pH dependent, with acid media increasing its alpha-helical content. Furthermore, red-MytCc was able to efficiently aggregate artificial phospholipid membranes at low pH, as well as to inhibit the Escherichia coli growth, suggesting that this activity is attributable to its more structured form in an acidic environment. All together, these results highlight the dynamic and environmentally sensitive behavior of red-Myt C in solution, and provide important insights into Myt C structure/activity relationships and the requirements to exert its antimicrobial/immunomodulatory activities. On the other hand, the pH-dependent direct antimicrobial activity of Myt C suggests that this HDP may be a suitable template for the development of antimicrobial agents that would function selectively in specific pH environments, which are sorely needed in this “antibiotic-resistance era”. PMID:23880927

  1. pH-dependent solution structure and activity of a reduced form of the host-defense peptide myticin C (Myt C) from the mussel Mytilus galloprovincialis.

    PubMed

    Martinez-Lopez, Alicia; Encinar, Jose Antonio; Medina-Gali, Regla Maria; Balseiro, Pablo; Garcia-Valtanen, Pablo; Figueras, Antonio; Novoa, Beatriz; Estepa, Amparo

    2013-07-04

    Myticin C (Myt C) is a highly variable host-defense peptide (HDP) associated to the immune response in the mediterranean mussel (Mytilus galloprovincialis), which has shown to be active across species due to its strong antiviral activity against a fish rhabdovirus found in fish cells overexpressing this HDP. However, the potential antimicrobial properties of any synthetic analogue of Myt C has not yet been analysed. Thus, in this work we have synthesised the sequence of the mature peptide of Myt C variant c and analysed the structure activity relationships of its reduced (non-oxidized) form (red-MytCc). In contrast to results previously reported for oxidized isoforms of mussel myticins, red-MytCc was not active against bacteria at physiological pH and showed a moderate antiviral activity against the viral haemorrhagic septicaemia (VHS) rhabdovirus. However, its chemotactic properties remained active. Structure/function studies in neutral and acid environments by means of infrared spectroscopy indicated that the structure of red-MytCc is pH dependent, with acid media increasing its alpha-helical content. Furthermore, red-MytCc was able to efficiently aggregate artificial phospholipid membranes at low pH, as well as to inhibit the Escherichia coli growth, suggesting that this activity is attributable to its more structured form in an acidic environment. All together, these results highlight the dynamic and environmentally sensitive behavior of red-Myt C in solution, and provide important insights into Myt C structure/activity relationships and the requirements to exert its antimicrobial/immunomodulatory activities. On the other hand, the pH-dependent direct antimicrobial activity of Myt C suggests that this HDP may be a suitable template for the development of antimicrobial agents that would function selectively in specific pH environments, which are sorely needed in this "antibiotic-resistance era".

  2. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  3. Host-Microbe Interactions and Defense Mechanisms in the Development of Amoebic Liver Abscesses

    PubMed Central

    Santi-Rocca, Julien; Rigothier, Marie-Christine; Guillén, Nancy

    2009-01-01

    Summary: Amoebiasis by Entamoeba histolytica is a major public health problem in developing countries and leads to several thousand deaths per year. The parasite invades the intestine (provoking diarrhea and dysentery) and the liver, where it forms abscesses (amoebic liver abscesses [ALAs]). The liver is the organ responsible for filtering blood coming from the intestinal tract, a task that implies a particular structure and immune features. Amoebae use the portal route and break through the sinusoidal endothelial barrier to reach the hepatic parenchyma. When faced with systemic and cell-mediated defenses, trophozoites adapt to their new environment and modulate host responses, leading to parasite survival and the formation of inflammatory foci. Cytopathogenic effects and the onset of inflammation may be caused by diffusible products originating from parasites and/or immune cells either by their secretion or by their release after cell death. Liver infection thus results from the interplay between E. histolytica and hepatic cells. Despite its importance in terms of public health burden, the lack of integrated data on ALA genesis means that we have only an incomplete description of the initiation and development of hepatic amoebiasis. Here, we review the main steps of ALA development as well as the responses triggered in both the host and the parasite. Transcriptome studies highlighted parasite factors involved in adherence to human cells, cytopathogenic effects, and adaptative and stress responses. An understanding of their role in ALA development will help to unravel the host-pathogen interactions and their evolution throughout the infection. PMID:19136434

  4. Inbreeding compromises host plant defense gene expression and improves herbivore survival

    PubMed Central

    Portman, Scott L; Kariyat, Rupesh R; Johnston, Michelle A; Stephenson, Andrew G; Marden, James H

    2015-01-01

    Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants – suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of LIPOXYGENEASE-D (LoxD) and 12-OXOPHYTODIENOATE REDUCTASE-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants. PMID:26039489

  5. The Hypervariable Amino-Terminus of P1 Protease Modulates Potyviral Replication and Host Defense Responses

    PubMed Central

    Pasin, Fabio; Simón-Mateo, Carmen; García, Juan Antonio

    2014-01-01

    The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity. PMID:24603811

  6. Peripheral blood leukocyte count as an index of defense status in the leukopenic host

    SciTech Connect

    Cawley, S.; Findon, G.; Miller, T.E.

    1988-07-01

    These experimental studies have investigated the reliability of the peripheral blood leukocyte count to predict whether the leukopenic host can contain or eliminate infection. Additionally, we have investigated the possibility that determination of leukocyte recruitment, supplementary to peripheral blood leukocyte counts, might allow individuals with neutropenia at risk from serious infection to be distinguished with greater certainty. Varying doses of radiation, cyclophosphamide, and methylprednisolone were used to induce distinct levels of leukopenia in rats. Leukocyte recruitment was measured by quantifying the response of neutropenic animals to evocative, subcutaneous stimuli, and the results of this assay were then compared with circulating leukocyte counts in the same individuals. Six models of experimentally induced infection were used to compare circulating and recruitable leukocytes as indicators of the susceptibility of the leukopenic host to infection. Response curves relating leukocyte numbers to host resistance were similar when circulating or recruitable leukocytes were used as an index of defense capability. These findings support the use of peripheral blood leukocyte numbers as an index of resistance to infection in individuals with leukopenia and suggest that functional analyses such as leukocyte recruitment are unlikely to provide additional information.

  7. Acute radiation syndrome (ARS) – treatment of the reduced host defense

    PubMed Central

    Heslet, Lars; Bay, Christiane; Nepper-Christensen, Steen

    2012-01-01

    Background The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS). The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes. Methods Review of the current literature. Results The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage’s important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS. Recommendation Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least <2 Gy by prompt dosing of 250–400 μg GM-CSF/m2 or 5 μg/kg G-CSF administered systemically and concomitant inhalation of GM-CSF < 300 mcg per day for at least 14–21 days. Conclusion The present United States standard for prevention and treatment of ARS standard intervention should consequently be modified into the combined systemic administration of growth factors and

  8. Host-specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize.

    PubMed

    Louis, Joe; Peiffer, Michelle; Ray, Swayamjit; Luthe, Dawn S; Felton, Gary W

    2013-07-01

    Plants turn on induced defenses upon insect herbivory. In the current study, we evaluated the role of European corn borer (ECB) elicitors (molecules secreted by herbivores) that either induce/suppress defenses in Solanum lycopersicum (tomato) and Zea mays (maize), two very important crop plants that are grown for food and/or fuel throughout the world. We used a combination of molecular, biochemical, confocal and scanning electron microscopy, caterpillar spinneret ablation/cauterization, and conventional insect bioassay methods to determine the role of ECB elicitors in modulating defenses in both tomato and maize crop plants. Our results clearly demonstrate that the components present in the ECB saliva induce defense-related proteinase inhibitors in both tomato (PIN2) and maize (MPI). Presence of glucose oxidase in the ECB saliva induced defenses in tomato, but not in maize. However, ECB saliva induced genes present in the jasmonic acid biosynthesis pathway in both tomato and maize. Although ECB saliva can induce defenses in both tomato and maize, our results suggest that host-specific salivary components are responsible for inducing host plant defenses. Proteomic analysis of ECB salivary elicitors and plant receptors/signaling mechanisms involved in recognizing different ECB elicitors remains to be determined. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Regulation of lung immunity and host defense by the intestinal microbiota.

    PubMed

    Samuelson, Derrick R; Welsh, David A; Shellito, Judd E

    2015-01-01

    Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI) microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal "dysbiosis" affects lung health.

  10. New development in studies of formyl-peptide receptors: critical roles in host defense

    PubMed Central

    Li, Liangzhu; Chen, Keqiang; Xiang, Yi; Yoshimura, Teizo; Su, Shaobo; Zhu, Jianwei; Bian, Xiu-wu; Wang, Ji Ming

    2016-01-01

    Formyl-peptide receptors are a family of 7 transmembrane domain, Gi-protein-coupled receptors that possess multiple functions in many pathophysiologic processes because of their expression in a variety of cell types and their capacity to interact with a variety of structurally diverse, chemotactic ligands. Accumulating evidence demonstrates that formyl-peptide receptors are critical mediators of myeloid cell trafficking in the sequential chemotaxis signal relays in microbial infection, inflammation, and immune responses. Formyl-peptide receptors are also involved in the development and progression of cancer. In addition, one of the formyl-peptide receptor family members, Fpr2, is expressed by normal mouse-colon epithelial cells, mediates cell responses to microbial chemotactic agonists, participates in mucosal development and repair, and protects against inflammation-associated tumorigenesis. These novel discoveries greatly expanded the current understanding of the role of formyl-peptide receptors in host defense and as potential molecular targets for the development of therapeutics. PMID:26701131

  11. Neurogenic Inflammation – The Peripheral Nervous System’s Role in Host Defense and Immunopathology

    PubMed Central

    Chiu, Isaac M.; von Hehn, Christian A.; Woolf, Clifford J.

    2012-01-01

    The peripheral nervous and immune systems are traditionally thought of as serving separate functions. This line is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells and in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows for rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also appear to play a significant role in immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology. PMID:22837035

  12. A Bacterial Inhibitor of Host Programmed Cell Death Defenses is an E3 Ubiquitin Ligase

    SciTech Connect

    Janjusevic,R.; Abramovitch, R.; Martin, G.; Stebbins, C.

    2005-01-01

    The Pseudomonas syringae protein AvrPtoB is translocated into plant cells, where it inhibits immunity-associated programmed cell death (PCD). The structure of a C-terminal domain of AvrPtoB that is essential for anti-PCD activity reveals an unexpected homology to the U-box and RING-finger components of eukaryotic E3 ubiquitin ligases, and we show that AvrPtoB has ubiquitin ligase activity. Mutation of conserved residues involved in the binding of E2 ubiquitin-conjugating enzymes abolishes this activity in vitro, as well as anti-PCD activity in tomato leaves, which dramatically decreases virulence. These results show that Pseudomonas syringae uses a mimic of host E3 ubiquitin ligases to inactivate plant defenses.

  13. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus.

    PubMed

    Arezes, João; Jung, Grace; Gabayan, Victoria; Valore, Erika; Ruchala, Piotr; Gulig, Paul A; Ganz, Tomas; Nemeth, Elizabeta; Bulut, Yonca

    2015-01-14

    Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia.

  14. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology.

    PubMed

    Chiu, Isaac M; von Hehn, Christian A; Woolf, Clifford J

    2012-07-26

    The peripheral nervous and immune systems are traditionally thought of as serving separate functions. The line between them is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells, and, in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also seem to contribute to immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology.

  15. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    PubMed Central

    Li, Hao; Anuwongcharoen, Nuttapat; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E. S.; Nantasenamat, Chanin

    2016-01-01

    Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs. PMID:27376281

  16. Regulation of lung immunity and host defense by the intestinal microbiota

    PubMed Central

    Samuelson, Derrick R.; Welsh, David A.; Shellito, Judd E.

    2015-01-01

    Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI) microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal “dysbiosis” affects lung health. PMID:26500629

  17. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides.

    PubMed

    Li, Hao; Anuwongcharoen, Nuttapat; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-06-30

    Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  18. Dynamic optimization of host defense, immune memory, and post-infection pathogen levels in mammals.

    PubMed

    Shudo, Emi; Iwasa, Yoh

    2004-05-07

    When attacked by pathogens, higher vertebrates produce specific immune cells that fight against them. We here studied the host's optimal schedule of specific immune cell production. The damage caused by the pathogen increases with the pathogen amount in the host integrated over time. On the other hand, there is also a cost incurred by the production of specific immune cells, not only in terms of the energy needed to produce and maintain the cells, but also with respect to damages sustained by the host's body as a result of immune activity. The optimal strategy of the host is the one that minimizes the total cost, defined as a weighted sum of the damage caused by pathogens and the costs caused by the specific immune cells. The problem is solved by using Pontryagin's maximum principle and dynamic programming. The optimal defense schedule is typically as follows: In the initial phase after infection, immune cells are produced at the fastest possible rate. The amount of pathogen increases temporarily but is eventually suppressed. When the pathogen amount is suppressed to a sufficiently low level, the immune cell number decreases and converges to a low steady level, which is maintained by alternately switching between fastest production and no production. We examine the effect of time delay required to have fully active immune cells by comparing cases with different number of rate limiting steps before producing immune cells. We examine the effect of the duration of time (time delay) required before full-scale production of active immune cells by comparing cases with different numbers of rate-limiting steps before immune-cell production. We also discuss the role of immune memory based on the results of the optimal immune reaction.

  19. Parasitic aphrodisiacs: manipulation of the hosts' behavioral defenses by sexually transmitted parasites.

    PubMed

    Adamo, Shelley A

    2014-07-01

    Animals have a number of behavioral defenses against infection. For example, they typically avoid sick conspecifics, especially during mating. Most animals also alter their behavior after infection and thereby promote recovery (i.e., sickness behavior). For example, sick animals typically reduce the performance of energetically demanding behaviors, such as sexual behavior. Finally, some animals can increase their reproductive output when they face a life-threatening immune challenge (i.e., terminal reproductive investment). All of these behavioral responses probably rely on immune/neural communication signals for their initiation. Unfortunately, this communication channel is prone to manipulation by parasites. In the case of sexually transmitted infections (STIs), these parasites/pathogens must subvert some of these behavioral defenses for successful transmission. There is evidence that STIs suppress systemic signals of immune activation (e.g., pro-inflammatory cytokines). This manipulation is probably important for the suppression of sickness behavior and other behavioral defenses, as well as for the prevention of attack by the host's immune system. For example, the cricket, Gryllus texensis, is infected with an STI, the iridovirus IIV-6/CrIV. The virus attacks the immune system, which suffers a dramatic decline in its ability to make proteins important for immune function. This attack also hampers the ability of the immune system to activate sickness behavior. Infected crickets cannot express sickness behavior, even when challenged with heat-killed bacteria. Understanding how STIs suppress sickness behavior in humans and other animals will significantly advance the field of psychoneuroimmunology and could also provide practical benefits.

  20. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa.

    PubMed

    Mohanty, Tirthankar; Sjögren, Jonathan; Kahn, Fredrik; Abu-Humaidan, Anas H A; Fisker, Niels; Assing, Kristian; Mörgelin, Matthias; Bengtsson, Anders A; Borregaard, Niels; Sørensen, Ole E

    2015-10-29

    Neutrophils are essential for host defense at the oral mucosa and neutropenia or functional neutrophil defects lead to disordered oral homeostasis. We found that neutrophils from the oral mucosa harvested from morning saliva had released neutrophil extracellular traps (undergone NETosis) in vivo. The NETosis was mediated through intracellular signals elicited by binding of sialyl Lewis(X) present on salival mucins to l-selectin on neutrophils. This led to rapid loss of nuclear membrane and intracellular release of granule proteins with subsequent neutrophil extracellular trap (NET) release independent of elastase and reduced NAD phosphate-oxidase activation. The saliva-induced NETs were more DNase-resistant and had higher capacity to bind and kill bacteria than NETs induced by bacteria or by phorbol-myristate acetate. Furthermore, saliva/sialyl Lewis(X) mediated signaling enhanced intracellular killing of bacteria by neutrophils. Saliva from patients with aphthous ulcers and Behçet disease prone to oral ulcers failed to induce NETosis, but for different reasons it demonstrated that disordered homeostasis in the oral cavity may result in deficient saliva-mediated NETosis.

  1. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses.

    PubMed

    Holthausen, David J; Lee, Song Hee; Kumar, Vineeth Tv; Bouvier, Nicole M; Krammer, Florian; Ellebedy, Ali H; Wrammert, Jens; Lowen, Anice C; George, Sanil; Pillai, Madhavan Radhakrishna; Jacob, Joshy

    2017-04-18

    Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Host defense function in neutrophils from the American bison (Bison bison).

    PubMed

    Swain, S D; Nelson, L K; Hanson, A J; Siemsen, D W; Quinn, M T

    2000-10-01

    Selected host defense functions of neutrophils isolated from American bison (Bison bison) were characterized and compared with those of cattle (Bos taurus). Bison neutrophils had a robust chemotactic response to both IL-8 and LTB(4), with maximal responses occurring at 10(-7) M (IL-8) and 10(-8) M (LTB(4)). The magnitude of the chemotactic response to IL-8 was similar in bison and bovine neutrophils (except at 10(-7) M IL-8, where bison had a stronger response). In response to LTB(4), bison neutrophils had a much stronger chemotaxis at both 10(-8) and 10(-7) M than did bovine cells. Production of reactive oxygen species (ROS) in response to phorbol myristate acetate (PMA) and opsonized zymosan (OpZ) was similar between bison and bovine neutrophils. However, the production of ROS in bison neutrophils stimulated with OpZ was primarily intracellular, while extracellular release of ROS was evident in bovine neutrophils stimulated with OpZ. Like bovine neutrophils, bison neutrophils did not generate a respiratory burst in response to fMLF. Granules prepared from bison neutrophils had potent direct killing action on the Gram-negative bacteria Escherichia coli but failed to kill the Gram-positive bacteria Staphylococcus aureus and, at intermediate doses, actually had a permissive effect for this bacteria. Thus, bison neutrophils have potent host defense capabilities similar in quality to those of bovine neutrophils; however, unique differences are present, which may allow bison neutrophils to respond to the distinct immunological challenges that bison encounter.

  3. Pulmonary collectins play distinct roles in host defense against Mycobacterium avium.

    PubMed

    Ariki, Shigeru; Kojima, Takashi; Gasa, Shinsei; Saito, Atsushi; Nishitani, Chiaki; Takahashi, Motoko; Shimizu, Takeyuki; Kurimura, Yuichiro; Sawada, Norimasa; Fujii, Nobuhiro; Kuroki, Yoshio

    2011-09-01

    Pulmonary collectins, surfactant protein A (SP-A) and surfactant protein D (SP-D), play important roles in the innate immunity of the lung. Mycobacterium avium is one of the well-known opportunistic pathogens that can replicate within macrophages. We examined the effects of pulmonary collectins in host defense against M. avium infection achieved via direct interaction between bacteria and collectins. Although both pulmonary collectins bound to M. avium in a Ca(2+)-dependent manner, these collectins revealed distinct ligand-binding specificity and biological activities. SP-A and SP-D bound to a methoxy group containing lipid and lipoarabinomannan, respectively. Binding of SP-D but not SP-A resulted in agglutination of M. avium. A chimeric protein with the carbohydrate recognition domain of SP-D, which chimera revealed a bouquet-like arrangement similar to SP-A, also agglutinated M. avium. The ligand specificity of the carbohydrate recognition domain of SP-D seems to be necessary for agglutination activity. The binding of SP-A strongly inhibited the growth of M. avium in culture media. Although pulmonary collectins did not increase membrane permeability of M. avium, they attenuated the metabolic rate of the bacteria. Observations under a scanning electron microscope revealed that SP-A almost completely covers bacterial surfaces, whereas SP-D binds to certain areas like scattered dots. These observations suggest that a distinct binding pattern of collectins correlates with the difference of their biological activities. Furthermore, the number of bacteria phagocytosed by macrophages was significantly increased in the presence of SP-D. These data indicate that pulmonary collectins play critical roles in host defense against M. avium.

  4. Protection of Sinorhizobium against Host Cysteine-Rich Antimicrobial Peptides Is Critical for Symbiosis

    PubMed Central

    Sani, Monica; Kerscher, Bernhard; Pierre, Olivier; Farkas, Attila; Longhi, Renato; Boncompagni, Eric; Hérouart, Didier; Dall’Angelo, Sergio; Kondorosi, Eva; Zanda, Matteo; Mergaert, Peter; Ferguson, Gail P.

    2011-01-01

    Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections. PMID:21990963

  5. Essential role of interleukin-1 signaling in host defenses against group B streptococcus.

    PubMed

    Biondo, Carmelo; Mancuso, Giuseppe; Midiri, Angelina; Signorino, Giacomo; Domina, Maria; Lanza Cariccio, Veronica; Venza, Mario; Venza, Isabella; Teti, Giuseppe; Beninati, Concetta

    2014-09-09

    Signal transduction via MyD88, an adaptor protein engaged by the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) family receptors, has a crucial role in host defenses against group B streptococcus (GBS). To examine the contribution of IL-1R signaling to MyD88-dependent host defenses, we analyzed GBS infection in type I IL-1R (IL-1RI)-deficient mice. Most of these animals displayed clinical signs of sepsis and neurological disease and died after a challenge with a bacterial dose that did not cause illness or death in any of the wild-type animals. Moreover, bacterial numbers in the blood and brains of the immunodefective mice were considerably increased. The ability of blood leukocytes or bone marrow-derived macrophages to kill GBS in vitro was not affected by a lack of IL-1RI. However, it was found in a newly developed model of GBS-induced peritoneal inflammation that IL-1 signaling selectively promoted the production of the chemokines KC and MIP-1α and neutrophil recruitment. Moreover, the secretion of KC and MIP-1α, but not tumor necrosis factor alpha, by peritoneal macrophages stimulated with GBS was significantly decreased in the absence of IL-1RI. Accordingly, the number of neutrophils in the blood and the concentration of myeloperoxidase, a neutrophil marker, in infected organs were severely reduced in the immunodefective mice during GBS disease, concomitantly with a reduction in tissue KC and MIP-1α levels. In conclusion, IL-1RI plays a crucial role in host defenses against GBS by inducing the high-level production of chemokines and the subsequent recruitment of neutrophilic polymorphonuclear leukocytes to infection sites. Group B streptococcus (GBS) is a serious and frequent human pathogen. Experimental infection with this bacterium has been widely used to understand the mechanism whereby the body's first line of defense, represented by cells and molecules of the innate immune system, fights infections. In both humans and mice, defective

  6. Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice.

    PubMed

    de Stoppelaar, Sacha F; van 't Veer, Cornelis; Claushuis, Theodora A M; Albersen, Bregje J A; Roelofs, Joris J T H; van der Poll, Tom

    2014-12-11

    Thrombocytopenia is a common finding in sepsis and associated with a worse outcome. We used a mouse model of pneumonia-derived sepsis caused by the human pathogen Klebsiella pneumoniae to study the role of platelets in host response to sepsis. Platelet counts (PCs) were reduced to less than a median of 5 × 10(9)/L or to 5 to 13 × 10(9)/L by administration of a depleting antibody in mice infected with Klebsiella via the airways. Thrombocytopenia was associated with strongly impaired survival during pneumonia-derived sepsis proportional to the extent of platelet depletion. Thrombocytopenic mice demonstrated PC-dependent enhanced bacterial growth in lungs, blood, and distant organs. Severe thrombocytopenia resulted in hemorrhage at the primary site of infection, but not in distant organs. PCs of 5 to 13 × 10(9)/L were sufficient to largely maintain hemostasis in infected lungs. Thrombocytopenia did not influence lung inflammation or neutrophil recruitment and did not attenuate local or systemic activation of coagulation or the vascular endothelium. PCs <5 × 10(9)/L even resulted in enhanced coagulation and endothelial cell activation, which coincided with increased proinflammatory cytokine levels. In accordance, low PCs in whole blood enhanced Klebsiella-induced cytokine release in vitro. These data suggest that platelets play an important role in host defense to Klebsiella pneumosepsis.

  7. Thrombocytopenia impairs host defense in gram-negative pneumonia–derived sepsis in mice

    PubMed Central

    van ’t Veer, Cornelis; Claushuis, Theodora A. M.; Albersen, Bregje J. A.; Roelofs, Joris J. T. H.; van der Poll, Tom

    2014-01-01

    Thrombocytopenia is a common finding in sepsis and associated with a worse outcome. We used a mouse model of pneumonia-derived sepsis caused by the human pathogen Klebsiella pneumoniae to study the role of platelets in host response to sepsis. Platelet counts (PCs) were reduced to less than a median of 5 × 109/L or to 5 to 13 × 109/L by administration of a depleting antibody in mice infected with Klebsiella via the airways. Thrombocytopenia was associated with strongly impaired survival during pneumonia-derived sepsis proportional to the extent of platelet depletion. Thrombocytopenic mice demonstrated PC-dependent enhanced bacterial growth in lungs, blood, and distant organs. Severe thrombocytopenia resulted in hemorrhage at the primary site of infection, but not in distant organs. PCs of 5 to 13 × 109/L were sufficient to largely maintain hemostasis in infected lungs. Thrombocytopenia did not influence lung inflammation or neutrophil recruitment and did not attenuate local or systemic activation of coagulation or the vascular endothelium. PCs <5 × 109/L even resulted in enhanced coagulation and endothelial cell activation, which coincided with increased proinflammatory cytokine levels. In accordance, low PCs in whole blood enhanced Klebsiella-induced cytokine release in vitro. These data suggest that platelets play an important role in host defense to Klebsiella pneumosepsis. PMID:25301709

  8. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia.

    PubMed Central

    Laichalk, L L; Kunkel, S L; Strieter, R M; Danforth, J M; Bailie, M B; Standiford, T J

    1996-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine which has recently been shown to have beneficial effects in the setting of acquired host immunity. However, the role of TNF in innate immune responses, as in the setting of bacterial pneumonia, has been incompletely characterized. To determine the role of TNF in gram-negative bacterial pneumonia, CBA/J mice were challenged with 10(2) CFU of Klebsiella pneumoniae intratracheally, resulting in the time-dependent expression of TNF MRNA and protein within the lung. Passive immunization of animals with a soluble TNF receptor-immunoglobulin (Ig) construct (sTNFR:Fc) intraperitoneally 2 h prior to K. pneumoniae inoculation resulted in a significant reduction in bronchoalveolar lavage neutrophils, but not macrophages, at 48 h, as compared with animals receiving control IgG1. Furthermore, treatment with sTNFR:Fc resulted in 19.6- and 13.5-fold increases in K. pneumoniae CFU in lung homogenates and plasma, respectively, as compared with animals receiving control IgG1. Finally, treatment of Klebsiella-infected mice with sTNFR:Fc markedly decreased both short- and long-term survival of these animals. In conclusion, our studies indicate that endogenous TNF is a critical component of antibacterial host defense in murine Klebsiella pneumonia. PMID:8945568

  9. Soluble human complement receptor type 1 inhibits complement-mediated host defense.

    PubMed

    Swift, A J; Collins, T S; Bugelski, P; Winkelstein, J A

    1994-09-01

    Soluble complement receptor type 1 (sCR1) is a powerful inhibitor of complement activation. Because of this ability, sCR1 may prove to be an important therapeutic agent that can be used to block the immunopathologic effects of uncontrolled complement activation in a variety of clinically significant disorders. Although several previous studies have examined the ability of sCR1 to inhibit complemented-mediated immunopathologic damage, there is no information on its ability to interfere with the host's defense against infection. In the current experiments sCR1 exerted a concentration-dependent inhibitory effect on the phagocytosis of Streptococcus pneumoniae by human polymorphonuclear leukocytes in vitro. Not only di sCR1 inhibit complement-dependent opsonization of the pneumococcus but at higher concentrations it also inhibited the ingestion of bacteria which had been previously opsonized. Furthermore, when rats were injected with sCR1, it inhibited both their serum hemolytic activity and serum opsonic activity in a dose-dependent fashion. Finally, for rats treated with sCR1, the 50% lethal dose was S. pneumoniae and Pseudomonas aeruginosa. These data demonstrate that sCR1 significantly inhibits complement-mediated host against bacterial infection.

  10. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection.

    PubMed

    Gladiator, André; Wangler, Nicolette; Trautwein-Weidner, Kerstin; LeibundGut-Landmann, Salomé

    2013-01-15

    IL-17-mediated immunity has emerged as a crucial host defense mechanism against fungal infections. Although Th cells are generally thought to act as the major source of IL-17 in response to Candida albicans, we show that fungal control is mediated by IL-17-secreting innate lymphoid cells (ILCs) and not by Th17 cells. By using a mouse model of oropharyngeal candidiasis we found that IL-17A and IL-17F, which are both crucial for pathogen clearance, are produced promptly upon infection in an IL-23-dependent manner, and that ILCs in the oral mucosa are the main source for these cytokines. Ab-mediated depletion of ILCs in RAG1-deficient mice or ILC deficiency in retinoic acid-related orphan receptor c(-/-) mice resulted in a complete failure to control the infection. Taken together, our data uncover the cellular basis for the IL-23/IL-17 axis, which acts right at the onset of infection when it is most needed for fungal control and host protection.

  11. [Mechanisms of pathogenicity and host defense in infections by intracellular parasitic microbes].

    PubMed

    Mitsuyama, M; Suzuki, K

    2000-09-01

    Mycobacterium tuberculosis is one of the intracellular parasitic bacteria escaping the intracellular killing inside macrophages. The aim of this symposium was to get some insight into the mechanism of pathogenicity and host defense in M. tuberculosis infection, which has not yet been elucidated well, by the presentation of up-to-date knowledge on these aspect in infection with different intracellular parasitic microbes. Dr. Yoshikai (Nagoya Univ.) indicated that TLR is involved in the initial response of host against S. choleraesuis. Among the cytokines contributing to the induction of specific immunity, the importance of IL-15 was emphasized, based on their own experimental data using IL-15 transgenic mice and the application of anti-IL-15 antibody in vivo. Dr. Yoshida (Kyushu Univ.) reviewed the mechanisms of intracellular growth of Legionellae. Several genes so far identified as essential genes in intra-macrophage growth appeared to be similar to those encoding type 3 secretion system observed in Shigellae. There is a significant strain difference in the growth of L. pneumophila inside macrophages and such difference seemed to be under the control of a gene at chromosome 13, Lgn 1. The investigation of difference in the mode of escape among various Legionella. spp. may provide a novel mechansim in bacterial invasion and escape. Dr. Kawamura (Kyoto Univ.) summarized some new reports on the molecular mechanism of the inhibition of P-L fusion by M. tuberculosis. He emphasized the importance of the alteration in phagosomal maturation as indicated by the accumulation of TACO protein. The possible involvement of TLR in the recognition of Mycobacterial cells and its LAM was discussed. Dr. Kawakami (Ryukyu Univ.) first discussed the possibility that Cryptococcus neoformans, a fungal pathogen, could be regarded as one of the intracellular parasitic microbes. His presentation mainly focused on the TH1-Th2 balance in the expression of host defense against C. neoformans in

  12. Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems.

    PubMed

    Rosenzweig, Jason A; Chopra, Ashok K

    2013-01-01

    Like other pathogenic bacteria, Yersinia and Aeromonas species have been continuously co-evolving with their respective hosts. Although the former is a bonafide human pathogen, the latter has gained notararity as an emerging disease-causing agent. In response to immune cell challenges, bacterial pathogens have developed diverse mechanism(s) enabling their survival, and, at times, dominance over various host immune defense systems. The bacterial type three secretion system (T3SS) is evolutionarily derived from flagellar subunits and serves as a vehicle by which microbes can directly inject/translocate anti-host factors/effector proteins into targeted host immune cells. A large number of Gram-negative bacterial pathogens possess a T3SS empowering them to disrupt host cell signaling, actin cytoskeleton re-arrangements, and even to induce host-cell apoptotic and pyroptotic pathways. All pathogenic yersiniae and most Aeromonas species possess a T3SS, but they also possess T2- and T6-secreted toxins/effector proteins. This review will focus on the mechanisms by which the T3SS effectors Yersinia outer membrane protein J (YopJ) and an Aeromonas hydrophila AexU protein, isolated from the diarrheal isolate SSU, mollify host immune system defenses. Additionally, the mechanisms that are associated with host cell apoptosis/pyroptosis by Aeromonas T2SS secreted Act, a cytotoxic enterotoxin, and Hemolysin co-regulated protein (Hcp), an A. hydrophila T6SS effector, will also be discussed.

  13. [Host defense peptides and peptidomimetics as new weapons for cancer treatment].

    PubMed

    Lapis, Károly

    2010-03-01

    Host defence peptides (HDP) produced by almost all species of living organisms and widely recognized as antimicrobial antibiotics have also proved to be capable of killing a wide variety of cancer cells. In this respect they have many advantages over conventional cytotoxic chemotherapeutic agents. They seem to kill cancer cells by effects on plasma membranes and/or the membranes of mitochondria. They are often effective against multidrug-resistant cells. They have a broad spectrum of activity in that their killing effects are not restricted to particular kinds of cancer. Above all they commonly have few side effects in that they do not have the same detrimental effects on normal cells as they do on cancer cells. It has been demonstrated that HDP can be used as effective adjuvants to conventional chemotherapeutic agents. In addition they have effects on neo-angiogenesis which is important in relation to tumour growth. HDP have been shown to be powerful immunomodulators in a number of circumstances and in this respect they are believed to be instrumental in strengthening immunological host defence against cancer cells. Importantly it has also been shown that certain HDP have the capability to alter the capacity of cells to import Ca ions by affecting the location and thus function of calreticulin. Such changes it has been argued are significant in facilitating the killing of tumour cells by immunogical means. HDP constitute a novel class of anticancer agents for which, as we develop better knowledge of their pharmacokinetic profiles and learn better how to tailor their administration, hold high promise to augment or even replace the currently available cytotoxic anticancer chemotherapeutic agents most of which owe their efficacy to their capacity to bind to and damage target cell DNA.

  14. The Cutaneous Microbiome and Aspects of Skin Antimicrobial Defense System Resist Acute Treatment with Topical Skin Cleansers.

    PubMed

    Two, Aimee M; Nakatsuji, Teruaki; Kotol, Paul F; Arvanitidou, Evangelia; Du-Thumm, Laurence; Hata, Tissa R; Gallo, Richard L

    2016-10-01

    The human skin microbiome has been suggested to play an essential role in maintaining health by contributing to innate defense of the skin. These observations have inspired speculation that the use of common skin washing techniques may be detrimental to the epidermal antibacterial defense system by altering the microbiome. In this study, several common skin cleansers were used to wash human forearms and the short-term effect on the abundance of the antimicrobial peptide LL-37 and the abundance and diversity of bacterial DNA was measured. Despite small but significant decreases in the amount of LL-37 on the skin surface shortly after washing, no significant change in the bacterial community was detected. Furthermore, Group A Streptococcus did not survive better on the skin after washing. In contrast, the addition of antimicrobial compounds such as benzalkonium chloride or triclocarban to soap before washing decreased the growth of Group A Streptococcus applied after rinse. These results support prior studies that hand washing techniques in the health care setting are beneficial and should be continued. Additional research is necessary to better understand the effects of chronic washing and the potential impact of skin care products on the development of dysbiosis in some individuals. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.

  16. Processing of laminin α chains generates peptides involved in wound healing and host defense.

    PubMed

    Senyürek, Ilknur; Kempf, Wolfgang E; Klein, Gerd; Maurer, Andreas; Kalbacher, Hubert; Schäfer, Luisa; Wanke, Ines; Christ, Christina; Stevanovic, Stefan; Schaller, Martin; Rousselle, Patricia; Garbe, Claus; Biedermann, Tilo; Schittek, Birgit

    2014-01-01

    Laminins play a fundamental role in basement membrane architecture and function in human skin. The C-terminal laminin G domain-like (LG) modules of laminin α chains are modified by proteolysis to generate LG1-3 and secreted LG4-5 tandem modules. In this study, we provide evidence that skin-derived cells process and secrete biologically active peptides from the LG4-5 module of the laminin α3, α4 and α5 chain in vitro and in vivo. We show enhanced expression and processing of the LG4-5 module of laminin α3 in keratinocytes after infection and in chronic wounds in which the level of expression and further processing of the LG4-5 module correlated with the speed of wound healing. Furthermore, bacterial or host-derived proteases promote processing of laminin α3 LG4-5. On a functional level, we show that LG4-5-derived peptides play a role in wound healing. Moreover, we demonstrate that LG4-derived peptides from the α3, α4 and α5 chains have broad antimicrobial activity and possess strong chemotactic activity to mononuclear cells. Thus, the data strongly suggest a novel multifunctional role for laminin LG4-5-derived peptides in human skin and its involvement in physiological processes and pathological conditions such as inflammation, chronic wounds and skin infection.

  17. Delayed Hypersensitivity: Indicator of Acquired Failure of Host Defenses in Sepsis and Trauma

    PubMed Central

    Meakins, Jonathan L.; Pietsch, John B.; Bubenick, Oldrich; Kelly, Ralph; Rode, Harold; Gordon, Julius; MacLean, Lloyd D.

    1977-01-01

    Primary failure of host defense mechanisms has been associated with increased infection and mortality. Anergy, the failure of delayed hypersensitivity response, has been shown to identify surgical patients at increased risk for sepsis and related mortality. The anergic and relatively anergic patients whose skin tests failed to improve had a mortality rate of 74.4%, whereas those who improved their responses had a mortality rate of 5.1% (P < 0.001). This study documents abnormalities of neutrophil chemotaxis, T-lymphocyte rosetting in anergic patients and the effect of autologous serum. These abnormalities may account for the increased infection and mortality rates in anergic patients. Skin testing with five standard antigens has identified 110 anergic (A) or relatively anergic (RA) patients in whom neutrophil chemotaxis (CTX) and bactericidal function (NBF), T-lymphocyte rosettes, mixed lymphocyte culture (MLC), cell-mediated lympholysis (CML), and blastogenic factor (BF) were studied. The MLC, CML and BF were normal in the patients studied, and were not clinically helpful. Neutrophil CTX in 19 controls was 117.5 ± 1.6 u whereas in 40 A patients, neutrophils migrated 81.7 ± 2.3 u and in 15 RA patients 97.2 ± 3.8 u (P < 0.01). In 14 patients whose skin tests converted to normal, neutrophil migration improved from 78.2 ± 5.4 u to 107.2 ± 4.0 u (P < 0.01). Incubation of A or control neutrophils in A serum reduced migration in A patients from 93 ± 3.7 u to 86.2 ± 3.5 u (P < 0.01) and in normals from 121.2 ± 1.6 u to 103.6 ± 2.6 u (P < 0.001). The per cent rosette forming cells in 66 A patients was 42.5 ± 3.1 compared to 53.6 ± 2.8 in normal responders (P < 0.02). Incubation of normal lymphocytes in anergic serum further reduced rosetting by 30%. Restoration of delayed hypersensitivity responses and concurrent improvement in cellular and serum components of host defense were correlated with maintenance of adequate nutrition and aggressive surgical drainage

  18. Microbial Pathogens Trigger Host DNA Double-Strand Breaks Whose Abundance Is Reduced by Plant Defense Responses

    PubMed Central

    Song, Junqi; Bent, Andrew F.

    2014-01-01

    Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues. PMID:24699527

  19. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice.

    PubMed

    Yin, Fangfang; Banerjee, Rebecca; Thomas, Bobby; Zhou, Ping; Qian, Liping; Jia, Ting; Ma, Xiaojing; Ma, Yao; Iadecola, Costantino; Beal, M Flint; Nathan, Carl; Ding, Aihao

    2010-01-18

    Progranulin (PGRN) is a widely expressed protein involved in diverse biological processes. Haploinsufficiency of PGRN in the human causes tau-negative, ubiquitin-positive frontotemporal dementia (FTD). However, the mechanisms are unknown. To explore the role of PGRN in vivo, we generated PGRN-deficient mice. Macrophages from these mice released less interleukin-10 and more inflammatory cytokines than wild type (WT) when exposed to bacterial lipopolysaccharide. PGRN-deficient mice failed to clear Listeria monocytogenes infection as quickly as WT and allowed bacteria to proliferate in the brain, with correspondingly greater inflammation than in WT. PGRN-deficient macrophages and microglia were cytotoxic to hippocampal cells in vitro, and PGRN-deficient hippocampal slices were hypersusceptible to deprivation of oxygen and glucose. With age, brains of PGRN-deficient mice displayed greater activation of microglia and astrocytes than WT, and their hippocampal and thalamic neurons accumulated cytosolic phosphorylated transactivation response element DNA binding protein-43. Thus, PGRN is a key regulator of inflammation and plays critical roles in both host defense and neuronal integrity. FTD associated with PGRN insufficiency may result from many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation.

  20. Lifestyle and host defense mechanisms of the dung beetle, Euoniticellus intermedius: the toll signaling pathway.

    PubMed

    Hull, Rodney; Alaouna, Mohamed; Khanyile, Lucky; Byrne, Marcus; Ntwasa, Monde

    2013-01-01

    The dung beetle, Euoniticellus intermedius (Reiche) (Coleoptera: Scarabaeidae) is an important ecological and agricultural agent. Their main activity, the burying of dung, improves quality of the soil and reduces pests that could cause illness in animals. E. intermedius are therefore important for agriculture and for good maintenance of the environment, and are regarded as effective biological control agents for parasites of the gastrointestinal tract in livestock. The ability of E. intermedius to co-exist comfortably with many microorganisms, some of which are important human pathogens, stimulated our interest in its host defense strategies. The aim of this study was to investigate the Toll signaling pathway, which is strongly activated by fungi. Gene expression associated with fungal infection was analyzed by using 2-D gel electrophoresis and mass spectroscopy. Furthermore, the partial adult transcriptome was investigated for the presence of known immune response genes by using high-throughput sequencing and bioinformatics. The results presented here suggest that E. intermedius responds to fungal challenge via the Toll signaling pathway.

  1. Assessment of safety of lactobacillus strains based on resistance to host innate defense mechanisms.

    PubMed

    Asahara, Takashi; Takahashi, Masatoshi; Nomoto, Koji; Takayama, Hiroo; Onoue, Masaharu; Morotomi, Masami; Tanaka, Ryuichiro; Yokokura, Teruo; Yamashita, Naoya

    2003-01-01

    Seven Lactobacillus strains belonging to four species were evaluated for pathogenicity as well as for in vitro sensitivity to the bactericidal mechanisms of macrophages in a rabbit infective endocarditis (IE) model. Two bacteremia-associated strains, L. rhamnosus PHLS A103/70 and L. casei PHLS A357/84, as well as the L. rhamnosus type strain and the probiotic L. rhamnosus strain ATCC 53103, showed moderate infectivity, and the virulence of the probiotic L. casei strain Shirota and type strains such as L. acidophilus ATCC 4356(T) and L. gasseri DSM 20243(T) in the model was negligible. The strains that showed pathogenic potential in the rabbit IE model (PHLS A357/84, PHLS A103/70, and ATCC 53103) were more resistant than strain Shirota to intracellular killing activity by mouse macrophages in vitro and also to bactericidal nitrogen intermediates, such as nitric oxide and NO(2)(-) ions. These results suggest that resistance to host innate defense systems, which would function at inflammatory lesions, should be considered in the safety assessment of Lactobacillus strains.

  2. New development in studies of formyl-peptide receptors: critical roles in host defense.

    PubMed

    Li, Liangzhu; Chen, Keqiang; Xiang, Yi; Yoshimura, Teizo; Su, Shaobo; Zhu, Jianwei; Bian, Xiu-wu; Wang, Ji Ming

    2016-03-01

    Formyl-peptide receptors are a family of 7 transmembrane domain, Gi-protein-coupled receptors that possess multiple functions in many pathophysiologic processes because of their expression in a variety of cell types and their capacity to interact with a variety of structurally diverse, chemotactic ligands. Accumulating evidence demonstrates that formyl-peptide receptors are critical mediators of myeloid cell trafficking in the sequential chemotaxis signal relays in microbial infection, inflammation, and immune responses. Formyl-peptide receptors are also involved in the development and progression of cancer. In addition, one of the formyl-peptide receptor family members, Fpr2, is expressed by normal mouse-colon epithelial cells, mediates cell responses to microbial chemotactic agonists, participates in mucosal development and repair, and protects against inflammation-associated tumorigenesis. These novel discoveries greatly expanded the current understanding of the role of formyl-peptide receptors in host defense and as potential molecular targets for the development of therapeutics. © Society for Leukocyte Biology.

  3. Host defenses to Rickettsia rickettsii infection contribute to increased microvascular permeability in human cerebral endothelial cells.

    PubMed

    Woods, Michael E; Olano, Juan P

    2008-03-01

    Rickettsiae are arthropod-borne intracellular bacterial pathogens that primarily infect the microvascular endothelium leading to systemic spread of the organisms and the major pathophysiological effect, increased microvascular permeability, and edema in vital organs such as the lung and brain. Much work has been done on mechanisms of immunity to rickettsiae, as well as the responses of endothelial cells to rickettsial invasion. However, to date, no one has described the mechanisms of increased microvascular permeability during acute rickettsiosis. We sought to establish an in vitro model of human endothelial-target rickettsial infection using the etiological agent of Rocky Mountain spotted fever, Rickettsia rickettsii, and human cerebral microvascular endothelial cells. Endothelial cells infected with R. rickettsii exhibited a dose-dependent decrease in trans-endothelial electrical resistance, which translates into increased monolayer permeability. Additionally, we showed that the addition of pro-inflammatory stimuli essential to rickettsial immunity dramatically enhanced this effect. This increase in permeability correlates with dissociation of adherens junctions between endothelial cells and is not dependent on the presence of nitric oxide. Taken together, these results demonstrate for the first time that increased microvascular permeability associated with rickettsial infection is partly attributable to intracellular rickettsiae and partly attributable to the immune defenses that have evolved to protect the host from rickettsial spread.

  4. Host Defense Proteins Derived from Human Saliva Bind to Staphylococcus aureus

    PubMed Central

    Heo, Seok-Mo; Choi, Kyoung-Soo; Kazim, Latif A.; Reddy, Molakala S.; Haase, Elaine M.; Scannapieco, Frank A.

    2013-01-01

    Proteins in human saliva are thought to modulate bacterial colonization of the oral cavity. Yet, information is sparse on how salivary proteins interact with systemic pathogens that transiently or permanently colonize the oral environment. Staphylococcus aureus is a pathogen that frequently colonizes the oral cavity and can cause respiratory disease in hospitalized patients at risk. Here, we investigated salivary protein binding to this organism upon exposure to saliva as a first step toward understanding the mechanism by which the organism can colonize the oral cavity of vulnerable patients. By using fluorescently labeled saliva and proteomic techniques, we demonstrated selective binding of major salivary components by S. aureus to include DMBT1gp-340, mucin-7, secretory component, immunoglobulin A, immunoglobulin G, S100-A9, and lysozyme C. Biofilm-grown S. aureus strains bound fewer salivary components than in the planctonic state, particularly less salivary immunoglobulins. A corresponding adhesive component on the S. aureus surface responsible for binding salivary immunoglobulins was identified as staphylococcal protein A (SpA). However, SpA did not mediate binding of nonimmunoglobulin components, including mucin-7, indicating the involvement of additional bacterial surface adhesive components. These findings demonstrate that a limited number of salivary proteins, many of which are associated with various aspects of host defense, selectively bind to S. aureus and lead us to propose a possible role of saliva in colonization of the human mouth by this pathogen. PMID:23403559

  5. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  6. Burn wound sepsis may be promoted by a failure of local antibacterial host defenses.

    PubMed Central

    Deitch, E A; Bridges, R M; Dobke, M; McDonald, J C

    1987-01-01

    Little attention has been focused on the local burn wound environment, even though burn wound sepsis is a common cause of death in the burn victim. To characterize the effect of the local burn wound environment on neutrophil function and metabolism, the opsonic activity of blister fluid specimens against Pseudomonas aeruginosa was measured as was the effect of blister fluid on control neutrophil oxygen consumption using preopsonized zymosan and f-met-leu-phe (FMLP) as stimuli. Blister fluid did not support the killing of P. aeruginosa by normal neutrophils as well as normal serum. Additionally, blister fluid inhibited zymosan-stimulated, but not FMLP-stimulated, neutrophil oxygen consumption. The inhibitory effect of blister fluid on zymosan-stimulated oxygen consumption correlated with the extent of complement activation, measured as C3d or C3AI (p less than 0.01). That blister fluid did not inhibit the FMLP-mediated respiratory burst supports the concept that the blister fluid inhibitory effect on the zymosan-mediated respiratory burst was mediated through the complement receptor. These findings that blister fluid can affect the bactericidal and metabolic activity of normal neutrophils support the concept that cellular function can be altered by the microenvironment in which the cells are bathed. This potential impairment of host defenses within the burn wound could predispose the burn victim to burn wound sepsis. PMID:3115207

  7. Lifestyle and Host Defense Mechanisms of the Dung Beetle, Euoniticellus intermedius: The Toll Signaling Pathway

    PubMed Central

    Hull, Rodney; Alaouna, Mohamed; Khanyile, Lucky; Byrne, Marcus; Ntwasa, Monde

    2013-01-01

    The dung beetle, Euoniticellus intermedius (Reiche) (Coleoptera: Scarabaeidae) is an important ecological and agricultural agent. Their main activity, the burying of dung, improves quality of the soil and reduces pests that could cause illness in animals. E. intermedius are therefore important for agriculture and for good maintenance of the environment, and are regarded as effective biological control agents for parasites of the gastrointestinal tract in livestock. The ability of E. intermedius to co-exist comfortably with many microorganisms, some of which are important human pathogens, stimulated our interest in its host defense strategies. The aim of this study was to investigate the Toll signaling pathway, which is strongly activated by fungi. Gene expression associated with fungal infection was analyzed by using 2-D gel electrophoresis and mass spectroscopy. Furthermore, the partial adult transcriptome was investigated for the presence of known immune response genes by using high-throughput sequencing and bioinformatics. The results presented here suggest that E. intermedius responds to fungal challenge via the Toll signaling pathway. PMID:24735102

  8. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    PubMed Central

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  9. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense.

    PubMed

    Ricklin, Daniel; Reis, Edimara S; Mastellos, Dimitrios C; Gros, Piet; Lambris, John D

    2016-11-01

    As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hepcidin-Induced Hypoferremia Is a Critical Host Defense Mechanism Against the Siderophilic Bacterium Vibrio vulnificus

    PubMed Central

    Arezes, João; Jung, Grace; Gabayan, Victoria; Valore, Erika; Ruchala, Piotr; Gulig, Paul A.; Ganz, Tomas; Nemeth, Elizabeta; Bulut, Yonca

    2014-01-01

    SUMMARY Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus, and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth, and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia. PMID:25590758

  11. The blood platelets contribution to innate host defense - what they have learned from their big brothers.

    PubMed

    Zander, Dorit M W; Klinger, Matthias

    2009-06-01

    Bactericidal effects of blood platelets have been known for more than 120 years, but the underlying mechanisms are largely obscure. Keeping in mind structural and functional analogies of platelets to neutrophils, three different mechanisms are thinkable: Engulfment of pathogens, release of microbicidal proteins, and production of reactive oxygen species (ROS). Here, we focus on the release of ROS and a possible contribution of blood plasma and thrombin to the bactericidal effects. Killing of bacteria was evaluated by DNA fluorescence labeling and electron microscopy. Release of ROS by platelets was measured photometrically by cytochrome C and phenol red/peroxidase assays and was further evaluated by topological methods. We found that (i) platelets produce 1500 times less O(2) (-) and 4000 times less H(2)O(2) compared to neutrophils, (ii) ROS do not affect the killing rates, and (iii) no local enrichment of ROS was detectable. On the other hand, thrombin and plasma proteins with a molecular mass of >100 kDa are essential for bactericidal effects. We suggest that platelets contribute to the innate host defense by providing a catalytical surface for synthesis of thrombin. In the presence of a heat-instable plasma protein, thrombin may generate a strong bactericidal complex, which is only effective in close vicinity to the platelet membrane.

  12. Simultaneous infection with gammaherpes and influenza viruses enhances the host immune defense.

    PubMed

    Ančicová, L; Wágnerová, M; Janulíková, J; Chalupková, A; Hrabovská, Z; Kostolanský, F; Varečková, E; Mistríková, J

    2015-12-01

    We have studied the impact of simultaneous infection of mice with murine gammaherpesvirus (MHV) and influenza A virus (IAV) on the immune response and pathogenesis of both infections. After a persistent MHV-68 herpesviral infection had been established, the same mice were super-infected with IAV. Individual parameters of MHV infection (viral DNA detection in organs and blood) and numbers of leukocytes in lungs and spleens were determined. With regard to the assumed reactivation of MHV-68 (mainly in lungs, spleen, thymus and peritoneal exudate cells) we focused our attention on the detection of transcripts, typical either for lytic infection (ORF50) and/or for latency (ORF73). Herpesviral DNA was detected in above mentioned organs in several intervals during the acute phase of IAV co-infection, but the expression of monitored transcripts was lower, i.e. it has decreased. Though the reason for such limited expression during acute influenza superinfection remains unclear, it is unambiguous that lower MHV-68 expression was detected in lungs and peritoneal exudate cells (PECs) from 3rd to 10th day after co-infection with IAV. Furthermore, our study showed that the ongoing gammaherpesvirus latency in co-infected mice affected the number of cytotoxic T-lymphocytes and neutrophils during the acute IAV infection and lowered their deviations from that of non-infected mice. Therefore, we suppose that co-infection with herpes and influenza viruses could be mutually beneficial for the host by promoting its defense against both viruses.

  13. Host defense proteins derived from human saliva bind to Staphylococcus aureus.

    PubMed

    Heo, Seok-Mo; Choi, Kyoung-Soo; Kazim, Latif A; Reddy, Molakala S; Haase, Elaine M; Scannapieco, Frank A; Ruhl, Stefan

    2013-04-01

    Proteins in human saliva are thought to modulate bacterial colonization of the oral cavity. Yet, information is sparse on how salivary proteins interact with systemic pathogens that transiently or permanently colonize the oral environment. Staphylococcus aureus is a pathogen that frequently colonizes the oral cavity and can cause respiratory disease in hospitalized patients at risk. Here, we investigated salivary protein binding to this organism upon exposure to saliva as a first step toward understanding the mechanism by which the organism can colonize the oral cavity of vulnerable patients. By using fluorescently labeled saliva and proteomic techniques, we demonstrated selective binding of major salivary components by S. aureus to include DMBT1(gp-340), mucin-7, secretory component, immunoglobulin A, immunoglobulin G, S100-A9, and lysozyme C. Biofilm-grown S. aureus strains bound fewer salivary components than in the planctonic state, particularly less salivary immunoglobulins. A corresponding adhesive component on the S. aureus surface responsible for binding salivary immunoglobulins was identified as staphylococcal protein A (SpA). However, SpA did not mediate binding of nonimmunoglobulin components, including mucin-7, indicating the involvement of additional bacterial surface adhesive components. These findings demonstrate that a limited number of salivary proteins, many of which are associated with various aspects of host defense, selectively bind to S. aureus and lead us to propose a possible role of saliva in colonization of the human mouth by this pathogen.

  14. Normal host defense during systemic candidiasis in mannose receptor-deficient mice.

    PubMed

    Lee, Sena J; Zheng, Nai-Ying; Clavijo, Monica; Nussenzweig, Michel C

    2003-01-01

    Pathogen pattern recognition receptors (PRRs) recognize common structural and molecular motifs present on microbial surfaces and contribute to induction of innate immune responses. The mannose receptor (MR), a carbohydrate-binding receptor expressed on subsets of macrophages, is considered one such PRR. In vitro experiments have implicated the MR in phagocytosis of mannose-bearing microbes, including Candida albicans, and enhancement of antifungal response by macrophages. However, the significance of the MR's contribution to immune response during systemic C. albicans infection has never been directly demonstrated. Using MR-deficient mice in an in vivo infection experiment, we examined the role of the MR in immune response during disseminated candidiasis. MR(-/-) and wild-type control mice were challenged intraperitoneally with C. albicans, and the survival rates, tissue fungal burden, inflammatory cell recruitment, and specific antibody production after infection were evaluated. We found no significant difference in survival between the two mouse strains. MR(-/-) mice had higher average fungal burdens in some of the organs on days 7 and 21 but exhibited competence in inflammatory cell recruitment and antibody production. We also observed in vitro that MR(-/-) peritoneal cavity macrophages were equally capable of C. albicans uptake and that phagocytosis could be blocked with beta-glucan. We conclude that the MR is not required for the normal host defense during disseminated candidiasis or for the phagocytosis of C. albicans and that a beta-glucan receptor may be required for C. albicans phagocytosis.

  15. Obesity and respiratory infections: does excess adiposity weigh down host defense?

    PubMed

    Mancuso, Peter

    2013-08-01

    The number of overweight and obese individuals has dramatically increased in the US and other developed nations during the past 30 years. While type II diabetes and cardiovascular disease are well recognized co-morbid conditions associated with obesity, recent reports have demonstrated a greater severity of illness in obese patients due to influenza during the 2009 H1N1 pandemic. Consistent with these reports, diet-induced obesity has been shown to impair anti-viral host defense in murine models of influenza infection. However, the impact of obesity on the risk of community-acquired and nosocomial pneumonia in human patients is not clear. Relatively few studies have evaluated the influence of diet-induced obesity in murine models of bacterial infections of the respiratory tract. Obese leptin deficient humans and leptin and leptin-receptor deficient mice exhibit greater susceptibility to respiratory infections suggesting a requirement for leptin in the pulmonary innate and adaptive immune response to infection. In contrast to these studies, we have observed that obese leptin receptor signaling mutant mice are resistant to pneumococcal pneumonia highlighting the complex interaction between leptin receptor signaling and immune function. Given the increased prevalence of obesity and poor responsiveness of obese individuals to vaccination against influenza, the development of novel immunization strategies for this population is warranted. Additional clinical and animal studies are needed to clarify the relationship between increased adiposity and susceptibility to community-acquired and nosocomial pneumonia.

  16. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.).

    PubMed

    Koramutla, Murali Krishna; Kaur, Amandeep; Negi, Manisha; Venkatachalam, Perumal; Bhattacharya, Ramcharan

    2014-07-01

    The productivity of Brassica oilseeds is severely affected by its major pest: aphids. Unavailability of resistance source within the crossable germplasms has stalled the breeding efforts to derive aphid resistant cultivars. In this study, jasmonate-mediated host defense in Indian mustard Brassica juncea (L.) Czern. was evaluated and compared with regard to its elicitation in response to mustard aphid Lipaphis erysimi (Kalt.) and the defense elicitor methyl jasmonate (MeJ). Identification of jasmonate-induced unigenes in B. juncea revealed that most are orthologous to aphid-responsive genes, identified in taxonomically diverse plant-aphid interactions. The unigenes largely represented genes related to signal transduction, response to biotic and abiotic stimuli and homeostasis of reactive oxygen species (ROS), in addition to genes related to cellular and metabolic processes involved in cell organization, biogenesis, and development. Gene expression studies revealed induction of the key jasmonate biosynthetic genes (LOX, AOC, 12-OPDR), redox genes (CAT3 and GST6), and other downstream defense genes (PAL, ELI3, MYR, and TPI) by several folds, both in response to MeJ and plant-wounding. However, interestingly aphid infestation even after 24 h did not elicit any activation of these genes. In contrast, when the jasmonate-mediated host defense was elicited by exogenous application of MeJ the treated B. juncea plants showed a strong antibiosis effect on the infesting aphids and reduced the growth of aphid populations. The level of redox enzymes CAT, APX, and SOD, involved in ROS homeostasis in defense signaling, and several defense enzymes viz. POD, PPO, and PAL, remained high in treated plants. We conclude that in B. juncea, the jasmonate activated endogenous-defense, which is not effectively activated in response to mustard aphids, has the potential to reduce population growth of mustard aphids.

  17. A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids.

    PubMed

    Mechkarska, Milena; Prajeep, Manju; Leprince, Jérôme; Vaudry, Hubert; Meetani, Mohammed A; Evans, Ben J; Conlon, J Michael

    2013-07-01

    Peptidomic analysis was used to compare the diversity of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of Xenopus laevis and Xenopus borealis (Pipidae). Skin secretions of hybrids with maternal X. laevis (XLB) contained 12 antimicrobial peptides (AMPs), comprising 8 from X. laevis and 4 from X. borealis. Magainin-B1, XPF-B1, PGLa-B1 CPF-B2, CPF-B3 and CPF-B4 from X. borealis and XPF-1, XPF-2, and CPF-6 from X. laevis were not detected and CPF-1 and CPF-7 were present in low concentration. The secretions contained caerulein and caerulein-B1 derived from both parents but lacked X. laevis xenopsin and X. borealis caerulein-B2. Skin secretions of hybrids with maternal X. borealis (XBL) contained 14 AMPs comprising 6 from X. borealis and 8 from X. laevis. Magainin-B1, XPF-B1, PGLa-B1, CPF-B2, XPF-1, CPF-5, and CPF-7 were absent and CPF-B3, CPF-B4, CPF-1 and CPF-6 were present only in low concentration. Xenopsin and caerulein were identified in the secretions but caerulein-B2 was absent and caerulein-B1 was present in low concentration. No peptides were identified in secretions of either XLB or XBL hybrids that were not present in the parental species. The data indicate that hybridization between X. laevis and X. borealis results in increased diversity of host-defense peptides in skin secretions but point to extensive AMP gene silencing compared with previously studied female X. laevis×X. muelleri F1 hybrids and no novel peptide expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Role of Osteopontin in Murine Lyme Arthritis and Host Defense against Borrelia burgdorferi

    PubMed Central

    Potter, Melissa R.; Rittling, Susan R.; Denhardt, David T.; Roper, Randall J.; Weis, John H.; Teuscher, Cory; Weis, Janis J.

    2002-01-01

    Several genetic loci in the mouse have been identified that regulate the severity of Lyme arthritis. The region of chromosome 5 including the osteopontin (OPN) gene (Opn) has been identified in intercross populations of C3H/HeN × C57BL/6 and C3H/HeJ × BALB/cAnN mice. OPN is of particular interest as it is involved in the maintenance and remodeling of tissue during inflammation, it regulates production of interleukin-10 (IL-10) and IL-12 (cytokines implicated in Lyme arthritis), it is necessary for host control of certain bacterial infections, and mice displaying different severities of Lyme arthritis possess different alleles of the OPN gene. Macrophages and splenocytes from OPN-deficient mice on mixed C57BL/6J-129S or inbred 129S backgrounds were stimulated with the Pam3Cys modified lipoprotein from Borrelia burgdorferi, OspA. OPN was not required for OspA-induced cytokine production; however, macrophages from 129S-Opn−/− mice displayed a reduced level of IL-10 production. OPN was also not required for resistance to severe arthritis, as B. burgdorferi-infected 129S-Opn−/− mice developed mild arthritis, as did their wild-type littermates. Arthritis was more severe in OPN-deficient mice on the mixed C57BL/6J-129S backgrounds than in inbred mice of either strain. This increase was most likely due to a gene(s) closely linked to Opn on chromosome 5 in conjunction with other randomly assorting genes. Deficiency in OPN did not influence the numbers of spirochetes in tissues from B. burgdorferi-infected mice, indicating OPN is not part of the host defense to this pathogen. Interestingly, there was no alteration in the B. burgdorferi-specific antibody isotypes in OPN-deficient mice, indicating that its effect on helper T-cell responses is not relevant to the host response to B. burgdorferi. PMID:11854223

  19. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators

    PubMed Central

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A.

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  20. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.

    PubMed

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  1. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors.

    PubMed

    Ruhe, Jonas; Agler, Matthew T; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  2. White spot syndrome virus protein kinase 1 defeats the host cell's iron-withholding defense mechanism by interacting with host ferritin.

    PubMed

    Lin, Shin-Jen; Lee, Der-Yen; Wang, Hao-Ching; Kang, Shih-Ting; Hwang, Pung-Pung; Kou, Guang-Hsiung; Huang, Ming-Fen; Chang, Geen-Dong; Lo, Chu-Fang

    2015-01-15

    Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. Proteins such as ferritin regulate the iron levels in a cell, and in the event of a pathogenic invasion, the host can use an iron-withholding mechanism to restrict the availability of this essential nutrient to the invading pathogens. However, pathogens use various strategies to overcome this host defense. In this study, we demonstrated that white spot syndrome virus (WSSV) protein kinase 1 (PK1) interacted with shrimp ferritin in the yeast two-hybrid system. A pulldown assay and 27-MHz quartz crystal microbalance (QCM) analysis confirmed the interaction between PK1 and both ferritin and apoferritin. PK1 did not promote the release of iron ions from ferritin, but it prevented apoferritin from binding ferrous ions. When PK1 was overexpressed in Sf9 cells, the cellular labile iron pool (LIP) levels were elevated significantly. Immunoprecipitation and atomic absorption spectrophotometry (AAS) further showed that the number of iron ions bound by ferritin decreased significantly at 24 h post-WSSV infection. Taken together, these results suggest that PK1 prevents apoferritin from iron loading, and thus stabilizes the cellular LIP levels, and that WSSV uses this novel mechanism to counteract the host cell's iron-withholding defense mechanism. We show here that white spot syndrome virus (WSSV) ensures the availability of iron by using a previously unreported mechanism to defeat the host cell's iron-withholding defense mechanism. This defense is often implemented by ferritin, which can bind up to 4,500 iron atoms and acts to sequester free iron within the cell. WSSV's novel counterstrategy is mediated by a direct protein-protein interaction between viral protein kinase 1 (PK1) and host ferritin. PK1 interacts with both ferritin and apoferritin, suppresses apoferritin's ability to sequester free iron ions, and maintains the intracellular labile iron pool (LIP), and thus the

  3. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection

    PubMed Central

    HICKLING, DUANE R.; SUN, TUNG-TIEN; WU, XUE-RU

    2015-01-01

    The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person’s lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3–5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the

  4. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection.

    PubMed

    Hickling, Duane R; Sun, Tung-Tien; Wu, Xue-Ru

    2015-08-01

    The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the

  5. Modulation of host antimicrobial peptide (beta-defensins 1 and 2) expression during gastritis.

    PubMed

    Bajaj-Elliott, M; Fedeli, P; Smith, G V; Domizio, P; Maher, L; Ali, R S; Quinn, A G; Farthing, M J G

    2002-09-01

    to the surface epithelium of the gastric glands. Modulation of beta-defensin expression by pathogenic and/or inflammatory stimuli and their cellular localisation places these antimicrobial peptides in the front line of innate host defence in the human stomach.

  6. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  7. Saliva-Induced Clotting Captures Streptococci: Novel Roles for Coagulation and Fibrinolysis in Host Defense and Immune Evasion

    PubMed Central

    Mohanty, Tirthankar; Karlsson, Christofer; Mörgelin, Matthias; Frick, Inga-Maria; Malmström, Johan; Björck, Lars

    2016-01-01

    Streptococcal pharyngitis is among the most common bacterial infections, but the molecular mechanisms involved remain poorly understood. Here we investigate the interactions among three major players in streptococcal pharyngitis: streptococci, plasma, and saliva. We find that saliva activates the plasma coagulation system through both the extrinsic and the intrinsic pathways, entrapping the bacteria in fibrin clots. The bacteria escape the clots by activating host plasminogen. Our results identify a potential function for the intrinsic pathway of coagulation in host defense and a corresponding role for fibrinolysis in streptococcal immune evasion. PMID:27456827

  8. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors

    PubMed Central

    Ruhe, Jonas; Agler, Matthew T.; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M.

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  9. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis.

    PubMed

    Holden, Whitney M; Reinert, Laura K; Hanlon, Shane M; Parris, Matthew J; Rollins-Smith, Louise A

    2015-01-01

    Amphibian species face the growing threat of extinction due to the emerging fungal pathogen Batrachochytrium dendrobatidis, which causes the disease chytridiomycosis. Antimicrobial peptides (AMPs) produced in granular glands of the skin are an important defense against this pathogen. Little is known about the ontogeny of AMP production or the impact of AMPs on potentially beneficial symbiotic skin bacteria. We show here that Rana (Lithobates) sphenocephala produces a mixture of four AMPs with activity against B. dendrobatidis, and we report the minimum inhibitory concentration (MIC) of synthesized replicates of these four AMPs tested against B. dendrobatidis. Using mass spectrometry and protein quantification assays, we observed that R. sphenocephala does not secrete a mature suite of AMPs until approximately 12 weeks post-metamorphosis, and geographically disparate populations produce a different suite of peptides. Use of norepinephrine to induce maximal secretion significantly reduced levels of culturable skin bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Glandular β-glucosidases in juvenile Chrysomelina leaf beetles support the evolution of a host-plant-dependent chemical defense.

    PubMed

    Rahfeld, Peter; Haeger, Wiebke; Kirsch, Roy; Pauls, Gerhard; Becker, Tobias; Schulze, Eva; Wielsch, Natalie; Wang, Ding; Groth, Marco; Brandt, Wolfgang; Boland, Wilhelm; Burse, Antje

    2015-03-01

    Plant-feeding insects are spread across the entire plant kingdom. Because they chew externally on leaves, leaf beetle of the subtribe Chrysomelina sensu stricto are constantly exposed to life-threatening predators and parasitoids. To counter these pressures, the juveniles repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors. The autonomous production of iridoids pre-dates the evolution of phytochemical-based defense strategies. Both strategies include hydrolysis of the secreted non-toxic glycosides in the defensive exudates. By combining in vitro as well as in vivo experiments, we show that iridoid de novo producing as well as sequestering species rely on secreted β-glucosidases to cleave the pre-toxins. Our phylogenetic analyses support a common origin of chrysomeline β-glucosidases. The kinetic parameters of these β-glucosidases demonstrated substrate selectivity which reflects the adaptation of Chrysomelina sensu stricto to the chemistry of their hosts during the course of evolution. However, the functional studies also showed that the broad substrate selectivity allows building a chemical defense, which is dependent on the host plant, but does not lead to an "evolutionary dead end". Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Antimicrobial mechanisms of fish leukocytes.

    PubMed

    Rieger, Aja M; Barreda, Daniel R

    2011-12-01

    Early activation and coordination of innate defenses are critical for effective responses against infiltrating pathogens. Rapid engagement of immune cells provides a critical first line of defense soon after pathogen infiltration. Activation leads to a well-orchestrated set of events that sees the induction and regulation of intracellular and extracellular antimicrobial defenses. An array of regulatory mediators, highly toxic soluble molecules, degradative enzymes and antimicrobial peptides provides maximal protection against a wide range of pathogens while limiting endogenous damage to host tissues. In this review we highlight recent advances in our understanding of innate cellular antimicrobial responses of teleost fish and discuss their implications to cell survival, immunomodulation and death. The evolutionary conservation of these responses is a testament to their effectiveness against pathogen infiltration and their commitment to effective maintenance of host homeostasis. Importantly, recent developments in teleost fish systems have identified novel host defense strategies that may be unique to this lower vertebrate group or may point to previously unknown innate mechanisms that also play a significant role in higher vertebrate host immunity.

  12. Chronic ethanol feeding increases the severity of Staphylococcus aureus skin infections by altering local host defenses

    PubMed Central

    Parlet, Corey P.; Kavanaugh, Jeffrey S.; Horswill, Alexander R.; Schlueter, Annette J.

    2015-01-01

    Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b+ myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection. PMID:25605871

  13. Chronic ethanol feeding increases the severity of Staphylococcus aureus skin infections by altering local host defenses.

    PubMed

    Parlet, Corey P; Kavanaugh, Jeffrey S; Horswill, Alexander R; Schlueter, Annette J

    2015-04-01

    Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b(+) myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection.

  14. Systems engineering meets quantitative systems pharmacology: from low-level targets to engaging the host defenses.

    PubMed

    Androulakis, Ioannis P

    2015-01-01

    Quantitative systems pharmacology aims at systematizing, in a model-based manner, the integration of systems biology and pharmacology in an effort to rationalize the process of assessing the ability of a drug to enhance well-being by off-setting the effects of a disease. Systems engineering, on the other hand, has enabled us to develop principles and methodologies for designing and operating engineered networks of structures exploring the integration of the underlying governing (design) laws. Although the computational tools which have resulted in major advances in the design, analysis, and operation of complex engineered structures have had tremendous success in the analysis of systems pharmacology models, it is argued in this opinion paper, that exploring the underlying conceptual foundation of complex systems engineering will enable us to move toward integrated models at the host level to explore, and possibly, induce synergies between low-level drug targets and higher level, systemic, defense mechanisms. This is an approach which would require refocusing of the key activities; however, it is likely the more promising approach as we enter the new era of personalized and precision medicine. We finally argue for the development of an allostatic approach to quantitative systems pharmacology and the development of an integrated framework for considering drugs in their broader context, beyond their local site of action. WIREs Syst Biol Med 2015, 7:101-112. doi: 10.1002/wsbm.1294 For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2015 Wiley Periodicals, Inc.

  15. DEPRESSION AS SICKNESS BEHAVIOR? A TEST OF THE HOST DEFENSE HYPOTHESIS IN A HIGH PATHOGEN POPULATION

    PubMed Central

    Stieglitz, Jonathan; Trumble, Benjamin C.; Thompson, Melissa Emery; Blackwell, Aaron D.; Kaplan, Hillard; Gurven, Michael

    2015-01-01

    Sadness is an emotion universally recognized across cultures, suggesting it plays an important functional role in regulating human behavior. Numerous adaptive explanations of persistent sadness interfering with daily functioning (hereafter “depression”) have been proposed, but most do not explain frequent bidirectional associations between depression and greater immune activation. Here we test several predictions of the host defense hypothesis, which posits that depression is part of a broader coordinated evolved response to infection or tissue injury (i.e. “sickness behavior”) that promotes energy conservation and reallocation to facilitate immune activation. In a high pathogen population of lean and relatively egalitarian Bolivian foragerhorticulturalists, we test whether depression and its symptoms are associated with greater baseline concentration of immune biomarkers reliably associated with depression in Western populations (i.e. tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], interleukin-6 [IL-6], and C-reactive protein [CRP]). We also test whether greater pro-inflammatory cytokine responses to ex vivo antigen stimulation are associated with depression and its symptoms, which is expected if depression facilitates immune activation. These predictions are largely supported in a sample of older adult Tsimane (mean±SD age=53.2±11.0, range=34-85, n=649) after adjusting for potential confounders. Emotional, cognitive and somatic symptoms of depression are each associated with greater immune activation, both at baseline and in response to ex vivo stimulation. The association between depression and greater immune activation is therefore not unique to Western populations. While our findings are not predicted by other adaptive hypotheses of depression, they are not incompatible with those hypotheses and future research is necessary to isolate and test competing predictions. PMID:26044086

  16. Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells following Streptococcus uberis Infection of Sheep

    PubMed Central

    Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano

    2013-01-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals. PMID:23774600

  17. Interleukin-1 receptor-associated kinase M-deficient mice demonstrate an improved host defense during Gram-negative pneumonia.

    PubMed

    Hoogerwerf, Jacobien J; van der Windt, Gerritje J W; Blok, Dana C; Hoogendijk, Arie J; De Vos, Alex F; van 't Veer, Cornelis; Florquin, Sandrine; Kobayashi, Koichi S; Flavell, Richard A; van der Poll, Tom

    2012-09-25

    Pneumonia is a common cause of morbidity and mortality and the most frequent source of sepsis. Bacteria that try to invade normally sterile body sites are recognized by innate immune cells through pattern recognition receptors, among which toll-like receptors (TLRs) feature prominently. Interleukin-1 receptor (IL-1R)-associated kinase (IRAK)-M is a proximal inhibitor of TLR signaling expressed by epithelial cells and macrophages in the lung. To determine the role of IRAK-M in host defense against bacterial pneumonia, IRAK-M-deficient (IRAK-M(-/-)) and normal wild-type (WT) mice were infected intranasally with Klebsiella pneumoniae. IRAK-M mRNA was upregulated in lungs of WT mice with Klebsiella pneumonia, and the absence of IRAK-M resulted in a strongly improved host defense as reflected by reduced bacterial growth in the lungs, diminished dissemination to distant body sites, less peripheral tissue injury and better survival rates. Although IRAK-M(-/-) alveolar macrophages displayed enhanced responsiveness toward intact K. pneumoniae and Klebsiella lipopolysaccharide (LPS) in vitro, IRAK-M(-/-) mice did not show increased cytokine or chemokine levels in their lungs after infection in vivo. The extent of lung inflammation was increased in IRAK-M(-/-) mice shortly after K. pneumoniae infection, as determined by semiquantitative scoring of specific components of the inflammatory response in lung tissue slides. These data indicate that IRAK-M impairs host defense during pneumonia caused by a common gram-negative respiratory pathogen.

  18. Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis.

    PubMed

    Balaji, Vasudevan; Sessa, Guido; Smart, Christine D

    2011-03-01

    Clavibacter michiganensis subsp. michiganensis is an actinomycete, causing bacterial wilt and canker disease of tomato (Solanum lycopersicum). We used virus-induced gene silencing (VIGS) to identify genes playing a role in host basal defense response to C. michiganensis subsp. michiganensis infection using Nicotiana benthamiana as a model plant. A preliminary VIGS screen comprising 160 genes from tomato known to be involved in defense-related signaling identified a set of 14 genes whose suppression led to altered host-pathogen interactions. Expression of each of these genes and three additional targets was then suppressed in larger-scale VIGS experiments and the effect of silencing on development of wilt disease symptoms and bacterial growth during an N. benthamiana-C. michiganensis subsp. michiganensis compatible interaction was determined. Disease susceptibility and in planta bacterial population size were enhanced by silencing genes encoding N. benthamiana homologs of ubiquitin activating enzyme, snakin-2, extensin-like protein, divinyl ether synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase 2, and Pto-like kinase. The identification of genes having a role in the host basal defense-response to C. michiganensis subsp. michiganensis advances our understanding of the plant responses activated by C. michiganensis subsp. michiganensis and raises possibilities for devising novel and effective molecular strategies to control bacterial canker and wilt in tomato.

  19. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins.

    PubMed

    Yan, Xiuwen; Liu, Huan; Yang, Xuening; Che, Qiaolin; Liu, Rui; Yang, Hailong; Liu, Xiuhong; You, Dewen; Wang, Aili; Li, Jianxu; Lai, Ren

    2012-07-01

    Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs.

  20. Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly

    PubMed Central

    2013-01-01

    Background Wheat – Hessian fly interaction follows a typical gene-for-gene model. Hessian fly larvae die in wheat plants carrying an effective resistance gene, or thrive in susceptible plants that carry no effective resistance gene. Results Gene sets affected by Hessian fly attack in resistant plants were found to be very different from those in susceptible plants. Differential expression of gene sets was associated with differential accumulation of intermediates in defense pathways. Our results indicated that resources were rapidly mobilized in resistant plants for defense, including extensive membrane remodeling and release of lipids, sugar catabolism, and amino acid transport and degradation. These resources were likely rapidly converted into defense molecules such as oxylipins; toxic proteins including cysteine proteases, inhibitors of digestive enzymes, and lectins; phenolics; and cell wall components. However, toxicity alone does not cause immediate lethality to Hessian fly larvae. Toxic defenses might slow down Hessian fly development and therefore give plants more time for other types of defense to become effective. Conclusion Our gene expression and metabolic profiling results suggested that remodeling and fortification of cell wall and cuticle by increased deposition of phenolics and enhanced cross-linking were likely to be crucial for insect mortality by depriving Hessian fly larvae of nutrients from host cells. The identification of a large number of genes that were differentially expressed at different time points during compatible and incompatible interactions also provided a foundation for further research on the molecular pathways that lead to wheat resistance and susceptibility to Hessian fly infestation. PMID:23800119

  1. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death.

    PubMed

    Boubakri, Hatem; Wahab, Mohamed Ali; Chong, Julie; Bertsch, Christophe; Mliki, Ahmed; Soustre-Gacougnolle, Isabelle

    2012-08-01

    Recently, thiamine (VitaminB1) has been shown to induce resistance against Pseudomonas syringae in Arabidopsis plants through priming of defense responses. In this paper, we have demonstrated the efficiency of thiamine to induce resistance against downy mildew caused by the oomycete Plasmopara viticola in a susceptible Vitis vinifera cultivar "Chardonnay" under glasshouse controlled conditions by providing a dual mode of action involving direct antifungal activity and elicitation of host-defense responses. Thiamine-induced defense responses included the generation of hydrogen peroxide (H(2)O(2)) in both grapevine suspension cultured cells (SCC) and plant leaves, upregulation of an array of defense-related genes and the induction of other defense responses at subcellular level such as callose deposition in stomata cells, phenolic compounds accumulation and hypersensitive response (HR) like-cell death. Epifluorescence microscopy studies revealed dramatic changes in P. viticola individual developmental stages during its colonization of the intercellular space of the leaf mesophyll in thiamine-treated plants. Collectively, our report evidenced the efficiency of thiamine in the control of downy mildew in grapevine by direct and indirect effects, suggesting that thiamine could be an attractive alternative to chemical fungicides in disease management in vineyards. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  3. AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense

    PubMed Central

    Lai, Yuping; Gallo, Richard L.

    2009-01-01

    Antimicrobial peptides (AMPs) are widely expressed and rapidly induced at epithelial surfaces to repel assault from diverse infectious agents including bacteria, viruses, fungi and parasites. Much information suggests that AMPs act by mechanisms that extend beyond their capacity to serve as gene-encoded antibiotics. For example, some AMPs alter the properties of the mammalian membrane or interact with its receptors to influence diverse cellular processes including cytokine release, chemotaxis, antigen presentation, angiogenesis and wound healing. These functions complement their antimicrobial action and favor resolution of infection and repair of damaged epithelia. Opposing this, some microbes have evolved mechanisms to inactivate or avoid AMPs and subsequently become pathogens. Thus, AMPs are multifunctional molecules that have a central role in infection and Inflammation. PMID:19217824

  4. The use of ECAS in plant protection: a green and efficient antimicrobial approach that primes selected defense genes.

    PubMed

    Zarattini, Marco; De Bastiani, Morena; Bernacchia, Giovanni; Ferro, Sergio; De Battisti, Achille

    2015-11-01

    The use of highly polluting chemicals for plant and crop protection is one of the components of the negative environmental impact of agricultural activities. In the present paper, an environmentally friendly alternative to pesticide application has been studied, based on the so-called electrochemically activated solutions (ECAS). Experiments have been carried out, by applying ECAS having different contents of active ingredients, on tobacco plants at a laboratory scale and on apple trees at fruit garden scale. The results, accumulated during a couple of years, have shown that properly selected dilute solutions of chlorides, once activated by an electrochemical treatment, exhibit a very effective protecting action of plants, irrespective of their nature. Extension of the research has shown that the observed effect is the result of two distinct factors: the expected anti-microbial action of the electrochemically synthesized oxidants, and an unexpected priming of immune plant defenses, which is clearly due to the treatment with ECAS. Interestingly, the repetition of ECAS application triggers an even stronger activation of defense genes. No oxidative damages, due to the use of the activated solutions, could be detected.

  5. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Deep sequencing analysis reveals a TMV mutant with a poly(A) tract reduces host defense responses in Nicotiana benthamiana.

    PubMed

    Guo, Song; Wong, Sek-Man

    2017-07-15

    Tobacco mosaic virus (TMV) possesses an upstream pseudoknotted domain (UPD), which is important for replication. After substituting the UPD with an internal poly(A) tract (43 nt), a mutant TMV-43A was constructed. TMV-43A replicated slower than TMV and induced a non-lethal mosaic symptom in Nicotiana benthamiana. In this study, deep sequencing was performed to detect the differences of small RNA profiles between TMV- and TMV-43A-infected N. benthamiana. The results showed that TMV-43A produced lesser amount of virus-derived interfering RNAs (vsiRNAs) than that of TMV. However, the distributions of vsiRNAs generation hotspots between TMV and TMV-43A were similar. Expression of genes related to small RNA biogenesis in TMV-43A-infected N. benthamiana was significantly lower than that of TMV, which leads to generation of lesser vsiRNAs. The expressions of host defense response genes were up-regulated after TMV infection, as compared to TMV-43A-infected plants. Host defense response to TMV-43A infection was lower than that to TMV. The absence of UPD might contribute to the reduced host response to TMV-43A. Our study provides valuable information in the role of the UPD in eliciting host response genes after TMV infection in N. benthamiana. (187 words). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses

    SciTech Connect

    Dong, Na; Zhu, Yongqun; Lu, Qiuhe; Hu, Liyan; Zheng, Yuqing; Shao, Feng

    2012-10-10

    Rab GTPases are frequent targets of vacuole-living bacterial pathogens for appropriate trafficking of the vacuole. Here we discover that bacterial effectors including VirA from nonvacuole Shigella flexneri and EspG from extracellular Enteropathogenic Escherichia coli (EPEC) harbor TBC-like dual-finger motifs and exhibits potent RabGAP activities. Specific inactivation of Rab1 by VirA/EspG disrupts ER-to-Golgi trafficking. S. flexneri intracellular persistence requires VirA TBC-like GAP activity that mediates bacterial escape from autophagy-mediated host defense. Rab1 inactivation by EspG severely blocks host secretory pathway, resulting in inhibited interleukin-8 secretion from infected cells. Crystal structures of VirA/EspG-Rab1-GDP-aluminum fluoride complexes highlight TBC-like catalytic role for the arginine and glutamine finger residues and reveal a 3D architecture distinct from that of the TBC domain. Structure of Arf6-EspG-Rab1 ternary complex illustrates a pathogenic signaling complex that rewires host Arf signaling to Rab1 inactivation. Structural distinctions of VirA/EspG further predict a possible extensive presence of TBC-like RabGAP effectors in counteracting various host defenses.

  8. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice

    PubMed Central

    Samuelson, D. R.; Assouline, B.; Morre, M.; Shellito, J. E.

    2015-01-01

    Pneumocystis pneumonia (PCP) is a major cause of morbidity and mortality in patients with HIV infection. CD4+ T lymphocytes are critical for host defense against this infection, but in the absence of CD4+ T lymphocytes, CD8+ T lymphocytes may provide limited host defense. The cytokine interleukin-7 (IL-7) functions to enhance lymphocyte proliferation, survival, and recruitment of immune cells to sites of infection. However, there is little known about the role of IL-7 in PCP or its potential use as an immunotherapeutic agent. We hypothesized that treatment with recombinant human IL-7 (rhIL-7) would augment host defense against Pneumocystis and accelerate pathogen clearance in CD4-depleted mice. Control and CD4-depleted mice were infected with Pneumocystis, and rhIL-7 was administered via intraperitoneal injection. Our studies indicate that endogenous murine IL-7 is part of the normal host response to Pneumocystis murina and that administration of rhIL-7 markedly enhanced clearance of Pneumocystis in CD4-depleted mice. Additionally, we observed increased recruitment of CD8+ T lymphocytes to the lungs and decreased apoptosis of pulmonary CD8+ T lymphocytes in rhIL-7-treated animals compared to those in untreated mice. The antiapoptotic effect of rhIL-7 was associated with increased levels of Bcl-2 protein in T lymphocytes. rhIL-7 immunotherapy in CD4-depleted mice also increased the number of gamma interferon (IFN-γ)-positive CD8+ central memory T lymphocytes in the lungs. We conclude that rhIL-7 has a potent therapeutic effect in the treatment of murine Pneumocystis pneumonia in CD4-depleted mice. This therapeutic effect is mediated through enhanced recruitment of CD8+ T cells and decreased apoptosis of lung T lymphocytes, with a preferential action on central memory CD8+ T lymphocytes. PMID:26483405

  9. Hematopoietic but Not Endothelial Cell MyD88 Contributes to Host Defense during Gram-negative Pneumonia Derived Sepsis

    PubMed Central

    van Lieshout, Miriam H. P.; Anas, Adam A.; Florquin, Sandrine; Hou, Baidong; van't Veer, Cornelis; de Vos, Alex F.; van der Poll, Tom

    2014-01-01

    Klebsiella pneumoniae is an important cause of sepsis. The common Toll-like receptor adapter myeloid differentiation primary response gene (MyD)88 is crucial for host defense against Klebsiella. Here we investigated the role of MyD88 in myeloid and endothelial cells during Klebsiella pneumosepsis. Mice deficient for MyD88 in myeloid (LysM-Myd88−/−) and myeloid plus endothelial (Tie2-Myd88−/−) cells showed enhanced lethality and bacterial growth. Tie2-Myd88−/− mice reconstituted with control bone marrow, representing mice with a selective MyD88 deficiency in endothelial cells, showed an unremarkable antibacterial defense. Myeloid or endothelial cell MyD88 deficiency did not impact on lung pathology or distant organ injury during late stage sepsis, while LysM-Myd88−/− mice demonstrated a strongly attenuated inflammatory response in the airways early after infection. These data suggest that myeloid but not endothelial MyD88 is important for host defense during gram-negative pneumonia derived sepsis. PMID:25254554

  10. Potent Inducers of Endogenous Antimicrobial Peptides for Host Directed Therapy of Infections

    NASA Astrophysics Data System (ADS)

    Ottosson, H.; Nylén, F.; Sarker, P.; Miraglia, E.; Bergman, P.; Gudmundsson, G. H.; Raqib, R.; Agerberth, B.; Strömberg, R.

    2016-11-01

    A new concept for treatment of infections is induction of our own antimicrobial peptides and the presented novel class of inducer, aroylated phenylenediamines (APDs), gives up to 20 to 30-fold induction of the human antimicrobial peptide LL-37, in vitro. In addition, oral administration of an APD in a rabbit model of Shigellosis resulted in recovery from the infection in a few days implying that APD’s are promising candidates for treatment of infections.

  11. Potent Inducers of Endogenous Antimicrobial Peptides for Host Directed Therapy of Infections

    PubMed Central

    Ottosson, H.; Nylén, F.; Sarker, P.; Miraglia, E.; Bergman, P.; Gudmundsson, G. H.; Raqib, R.; Agerberth, B.; Strömberg, R.

    2016-01-01

    A new concept for treatment of infections is induction of our own antimicrobial peptides and the presented novel class of inducer, aroylated phenylenediamines (APDs), gives up to 20 to 30-fold induction of the human antimicrobial peptide LL-37, in vitro. In addition, oral administration of an APD in a rabbit model of Shigellosis resulted in recovery from the infection in a few days implying that APD’s are promising candidates for treatment of infections. PMID:27827460

  12. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.

    PubMed

    Nuri, Reut; Shprung, Tal; Shai, Yechiel

    2015-11-01

    Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  13. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing

  14. Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy

    PubMed Central

    Inkeles, Megan S.; Teles, Rosane M.B.; Pouldar, Delila; Andrade, Priscila R.; Madigan, Cressida A.; Ambrose, Mike; Sarno, Euzenir N.; Rea, Thomas H.; Ochoa, Maria T.; Iruela-Arispe, M. Luisa; Swindell, William R.; Ottenhoff, Tom H.M.; Geluk, Annemieke; Bloom, Barry R.

    2016-01-01

    Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease. PMID:27699251

  15. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    PubMed

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

  16. NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?

    PubMed

    Machado, Joao P B; Brustolini, Otavio J B; Mendes, Giselle C; Santos, Anésia A; Fontes, Elizabeth P B

    2015-11-01

    NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.

  17. Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs.

    PubMed

    Warburton, Elizabeth M; Kam, Michael; Bar-Shira, Enav; Friedman, Aharon; Khokhlova, Irina S; Koren, Lee; Asfur, Mustafa; Geffen, Eli; Kiefer, Daniel; Krasnov, Boris R; Degen, A Allan

    2016-09-01

    Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.

  18. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  19. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    PubMed

    Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  20. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.

    PubMed

    Sully, Erin K; Malachowa, Natalia; Elmore, Bradley O; Alexander, Susan M; Femling, Jon K; Gray, Brian M; DeLeo, Frank R; Otto, Michael; Cheung, Ambrose L; Edwards, Bruce S; Sklar, Larry A; Horswill, Alexander R; Hall, Pamela R; Gresham, Hattie D

    2014-06-01

    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in

  1. Interleukin-1 Receptor–Associated Kinase M–Deficient Mice Demonstrate an Improved Host Defense during Gram-negative Pneumonia

    PubMed Central

    Hoogerwerf, Jacobien J; van der Windt, Gerritje JW; Blok, Dana C; Hoogendijk, Arie J; de Vos, Alex F; van ‘t Veer, Cornelis; Florquin, Sandrine; Kobayashi, Koichi S; Flavell, Richard A; van der Poll, Tom

    2012-01-01

    Pneumonia is a common cause of morbidity and mortality and the most frequent source of sepsis. Bacteria that try to invade normally sterile body sites are recognized by innate immune cells through pattern recognition receptors, among which toll-like receptors (TLRs) feature prominently. Interleukin-1 receptor (IL-1R)–associated kinase (IRAK)-M is a proximal inhibitor of TLR signaling expressed by epithelial cells and macrophages in the lung. To determine the role of IRAK-M in host defense against bacterial pneumonia, IRAK-M-deficient (IRAK-M−/−) and normal wild-type (WT) mice were infected intranasally with Klebsiella pneumoniae. IRAK-M mRNA was upregulated in lungs of WT mice with Klebsiella pneumonia, and the absence of IRAK-M resulted in a strongly improved host defense as reflected by reduced bacterial growth in the lungs, diminished dissemination to distant body sites, less peripheral tissue injury and better survival rates. Although IRAK-M−/− alveolar macrophages displayed enhanced responsiveness toward intact K. pneumoniae and Klebsiella lipopolysaccharide (LPS) in vitro, IRAK-M−/− mice did not show increased cytokine or chemokine levels in their lungs after infection in vivo. The extent of lung inflammation was increased in IRAK-M−/− mice shortly after K. pneumoniae infection, as determined by semiquantitative scoring of specific components of the inflammatory response in lung tissue slides. These data indicate that IRAK-M impairs host defense during pneumonia caused by a common gram-negative respiratory pathogen. PMID:22729155

  2. Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance

    PubMed Central

    Sully, Erin K.; Malachowa, Natalia; Elmore, Bradley O.; Alexander, Susan M.; Femling, Jon K.; Gray, Brian M.; DeLeo, Frank R.; Otto, Michael; Cheung, Ambrose L.; Edwards, Bruce S.; Sklar, Larry A.; Horswill, Alexander R.; Hall, Pamela R.; Gresham, Hattie D.

    2014-01-01

    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in

  3. In defense of skin: antimicrobial peptides have their day. Interview by Hannah Branch.

    PubMed

    Gallo, Richard L

    2013-07-01

    Professor Richard L Gallo completed an undergraduate degree in Biology at the University of Chicago (IL, USA). He then went on to receive his MD degree and PhD in Radiation Biology and Biophysics from the University of Rochester School of Medicine (NY, USA). He completed an internship in Pediatrics at Johns Hopkins Hospital (MD, USA) before training in Dermatology and completing a postdoctoral fellowship in Cell and Developmental Biology at Harvard Medical School (MA, USA). While working as an Assistant Professor at Harvard Medical School, Professor Gallo made a landmark discovery by identifying the presence of antimicrobial peptides in mammalian skin. In 1999, he became an Associate Professor of Medicine and Pediatrics at the University of California, San Diego (CA, USA), and Chief of Dermatology at the VA San Diego (CA, USA). Currently, he is a Professor of Medicine and Pediatrics and Chief of the Division of Dermatology at the University of California, San Diego. His research is focused on the role of the human innate immune system in skin, with a particular interest in antimicrobial peptides and the basic functions of the skin microbiome. To date, Professor Gallo has been involved in several important observations demonstrating the physiologic relevance of innate immunity in mice and the role of these pathways in several human diseases, work that has been published in a number of prestigious journals. He has received numerous awards for his research including the Montagna, Sulzberger, CERIES, Mertz, Nobel and Rene' Touraine Lectureships, and he has been elected to the American Society of Clinical Investigation and Association of American Physicians. His research is supported by grants from the NIH, the Veterans Administration and private foundations.

  4. Membrane-active host defense peptides – Challenges and perspectives for the development of novel anticancer drugs

    PubMed Central

    Riedl, Sabrina; Zweytick, Dagmar; Lohner, Karl

    2011-01-01

    Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means. Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various

  5. Colorado potato beetles show differential digestive compensatory responses to host plants expressing distinct sets of defense proteins.

    PubMed

    Rivard, Daniel; Cloutier, Conrad; Michaud, Dominique

    2004-03-01

    Herbivorous insects fed plants expressing proteinase inhibitors (PIs) compensate for the loss of digestive proteolytic functions by producing novel proteinases. We assessed here whether such compensatory responses represent a general, non-specific adaptation to defense-related proteins in host plant tissues, or if distinct responses occur depending on the stress exerted on the plant. As a model, growth, development, and digestive proteases of the Colorado potato beetle (Leptinotarsa decemlineata Say) were monitored after feeding larvae with plants pre-treated with either methyl jasmonate or arachidonic acid, two compounds inducing different sets of defense genes in potato. In brief, larvae fed plants treated with jasmonate or arachidonate were negatively affected compared to larvae fed non-treated plants, suggesting the potency of both molecules to induce partial resistance to potato beetles in potato. On the other hand, larvae fed treated plants partially compensated for the presence of defense-related proteins by adapting their digestive proteolytic system, both quantitatively and qualitatively. These compensatory processes varied depending on the treatment, the larvae fed arachidonate-treated plants showing the most dramatic response. Compensation to jasmonate and arachidonate was also influenced by a cysteine PI from rice expressed in the plant, pointing out the possible indirect effects of recombinant defense proteins on naturally-occurring plant-insect interactions. These observations, while showing the potential of jasmonate and arachidonate as inducers of partial resistance to the potato beetle in potato, also suggest that digestive compensation in herbivorous insects is determined, at least in part, by defense-related compounds found in the plant in response to different stress stimuli or as a result of ectopic expression in transgenic plants. Copyright 2004 Wiley-Liss, Inc.

  6. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  7. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins.

    PubMed

    Chatzidaki-Livanis, Maria; Coyne, Michael J; Comstock, Laurie E

    2014-12-01

    Bacteroidales are the most abundant Gram-negative bacteria of the human intestinal microbiota comprising more than half of the bacteria in many individuals. Some of the factors that these bacteria use to establish and maintain themselves in this ecosystem are beginning to be identified. However, ecological competition, especially interference competition where one organism directly harms another, is largely unexplored. To begin to understand the relevance of this ecological principle as it applies to these abundant gut bacteria and factors that may promote such competition, we screened Bacteroides fragilis for the production of antimicrobial molecules. We found that the production of extracellularly secreted antimicrobial molecules is widespread in this species. The first identified molecule, described in this manuscript, contains a membrane attack complex/perforin (MACPF) domain present in host immune molecules that kill bacteria and virally infected cells by pore formation, and mutations affecting key residues of this domain abrogated its activity. This antimicrobial molecule, termed BSAP-1, is secreted from the cell in outer membrane vesicles and no additional proteins are required for its secretion, processing or immunity of the producing cell. This study provides the first insight into secreted molecules that promote competitive interference among Bacteroidales strains of the human gut. © 2014 John Wiley & Sons Ltd.

  8. The clearance of hidden cestode infection triggered by an independent activation of host defense in a teleost fish.

    PubMed

    Wedekind, Claus; Little, Tom J

    2004-12-01

    Parasites often elude effective recognition or attack (or both) by the host immune system, for example, though a tegument that possesses nonimmunogenic features. However, a general activation of host defense due to independent stimuli may increase immune activity to a level where such disguises are no longer effective, resulting in the clearance of an infection. We experimentally infected three-spined sticklebacks (Gasterosteus aculeatus) with the cestode Schistocephalus solidus. To independently foster a general immune response a few days later, we cut the tips of spines in some fish and sham-treated other fish. Cutting spines significantly reduced the prevalence of the infection. The injury evoked a physiological reaction that helped to clear a hidden parasite infection.

  9. Emerging Roles of the Host Defense Peptide LL-37 in Human Cancer and its Potential Therapeutic Applications

    PubMed Central

    Wu, William K.K.; Wang, Guangshun; Coffelt, Seth B.; Betancourt, Aline M.; Lee, Chung W.; Fan, Daiming; Wu, Kaichun; Yu, Jun; Sung, Joseph J.Y.; Cho, Chi H.

    2010-01-01

    Human cathelicidin LL-37, a host defense peptide derived from leukocytes and epithelial cells, plays a crucial role in innate and adaptive immunity. Not only does it eliminate pathogenic microbes directly, LL-37 also modulates host immune responses. Emerging evidence from tumor biology studies indicates that LL-37 plays a prominent and complex role in carcinogenesis. While overexpression of LL-37 has been implicated in the development or progression of many human malignancies, including breast, ovarian and lung cancers, LL-37 suppresses tumorigenesis in gastric cancer. These data are beginning to unveil the intricate and contradictory functions of LL-37. The reasons for the tissue-specific function of LL-37 in carcinogenesis remain to be elucidated. Here, we review the relationship between LL-37, its fragments and cancer progression as well as discuss the potential therapeutic implications of targeting this peptide. PMID:20521250

  10. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications.

    PubMed

    Wu, William K K; Wang, Guangshun; Coffelt, Seth B; Betancourt, Aline M; Lee, Chung W; Fan, Daiming; Wu, Kaichun; Yu, Jun; Sung, Joseph J Y; Cho, Chi H

    2010-10-15

    Human cathelicidin LL-37, a host defense peptide derived from leukocytes and epithelial cells, plays a crucial role in innate and adaptive immunity. Not only does LL-37 eliminate pathogenic microbes directly but also modulates host immune responses. Emerging evidence from tumor biology studies indicates that LL-37 plays a prominent and complex role in carcinogenesis. Although overexpression of LL-37 has been implicated in the development or progression of many human malignancies, including breast, ovarian and lung cancers, LL-37 suppresses tumorigenesis in gastric cancer. These data are beginning to unveil the intricate and contradictory functions of LL-37. The reasons for the tissue-specific function of LL-37 in carcinogenesis remain to be elucidated. Here, we review the relationship between LL-37, its fragments and cancer progression as well as discuss the potential therapeutic implications of targeting this peptide.

  11. Antimicrobial AApeptides

    PubMed Central

    Sang, Peng; Shi, Yan; Teng, Peng; Cao, Annie; Xu, Hai; Li, Qi; Cai, Jianfeng

    2017-01-01

    Antibiotic resistance is one of the biggest public concerns in the 21st century. Host-defense peptides (HDPs) can potentially mitigate the problem through bacterial membrane disruption; however, they suffer from moderate activity and low stability. We recently developed a new class of peptidomimetics termed “AApeptides”. This class of peptidomimetics can mimic the mechanism of action of HDPs, and effectively arrest the growth of multidrug resistant Gram-positive and Gram-negative bacteria. As they are built on unnatural backbone, they are resistant to proteolytic degradation. In this review, we summarize the development of this class of antimicrobial peptidomimetics, and discuss the future perspective on how they can move forward on combating antibiotic resistance. PMID:27758686

  12. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses.

    PubMed

    Gay, Gabrielle; Braun, Laurence; Brenier-Pinchart, Marie-Pierre; Vollaire, Julien; Josserand, Véronique; Bertini, Rose-Laurence; Varesano, Aurélie; Touquet, Bastien; De Bock, Pieter-Jan; Coute, Yohann; Tardieux, Isabelle; Bougdour, Alexandre; Hakimi, Mohamed-Ali

    2016-08-22

    An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii-targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ-stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1(+) inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ-mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism.

  13. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ–mediated host defenses

    PubMed Central

    Brenier-Pinchart, Marie-Pierre; Bertini, Rose-Laurence; Varesano, Aurélie; De Bock, Pieter-Jan

    2016-01-01

    An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii–targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ–stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1+ inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ–mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism. PMID:27503074

  14. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    USDA-ARS?s Scientific Manuscript database

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...

  15. Host Defense Peptide Resistance Contributes to Colonization and Maximal Intestinal Pathology by Crohn's Disease-Associated Adherent-Invasive Escherichia coli

    PubMed Central

    McPhee, Joseph B.; Small, Cherrie L.; Reid-Yu, Sarah A.; Brannon, John R.; Le Moual, Hervé

    2014-01-01

    Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and β-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut. PMID:24866805

  16. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response.

    PubMed

    Binda-Rossetti, Simona; Mastore, Maristella; Protasoni, Marina; Brivio, Maurizio F

    2016-01-01

    Relationships between parasites and hosts can be drastic, depending on the balance between parasite strategies and the efficiency of the host immune response. In the case of entomopathogenic nematodes and their insect hosts, we must also consider the role of bacterial symbionts, as the interaction among them is tripartite and each component plays a critical role in death or survival. We analyzed the effects induced by the nematode-bacteria complex Steinernema carpocapsae, against red palm weevil (RPW) larvae, Rhynchophorus ferrugineus. We examined the antimicrobial response of the insect when in the presence of nematocomplexes or of its symbionts, Xenorhabdus nematophila. In detail, we investigated the potential interference of live and dead S. carpocapsae, their isolated cuticles, live or dead bacterial symbionts and their lipopolysaccharides, on the synthesis and activity of host antimicrobial peptides. Our data indicate that both live nematodes and live bacterial symbionts are able to depress the host antimicrobial response. When nematodes or symbionts were killed, they lacked inhibitory properties, as detected by the presence of antimicrobial peptides (AMPs) in the host hemolymph and by assays of antimicrobial activity. Moreover, we isolated S. carpocapsae cuticles; when cuticles were injected into hosts they revealed evasive properties because they were not immunogenic and were not recognized by the host immune system. We observed that weevil AMPs did not damage X. nematophila, and the lipopolysaccharides purified from symbionts seemed to be non-immunogenic. We believe that our data provide more information on the biology of entomopathogenic nematodes, in particular concerning their role and the activity mediated by symbionts in the relationship with insect hosts.

  17. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition.

    PubMed

    Wu, Benedict; Capilato, Joseph; Pham, Michelle P; Walker, Jean; Spur, Bernd; Rodriguez, Ana; Perez, Lark J; Yin, Kingsley

    2016-06-01

    Bacterial infections can quickly turn into sepsis, with its attendant clinical sequelae of inflammation, tissue injury, and organ failure. Paradoxically, sustained inflammation in sepsis may lead to immune suppression, because of which the host is unable to clear the existing infection. Use of agents that suppress the inflammatory response may accelerate host immune suppression, whereas use of traditional antibiotics does not significantly affect inflammation. In this study, we investigated whether lipoxin A4 (LXA4), a specialized, proresolution lipid mediator, could increase neutrophil phagocytic activity as well as reduce bacterial virulence. Using the mouse cecal ligation and puncture (CLP) model of sepsis, the administration of LXA4 (7 μg/kg i.v.) 1 h after surgery increased neutrophil phagocytic ability and Fcγ receptor I (CD64) expression. Ex vivo studies have confirmed that the direct addition of LXA4 to CLP neutrophils increased phagocytic ability but not CD64 expression. LXA4 did not affect neutrophils taken from control mice in which CD64 expression was minimal. Taken together with in vivo data, these results suggest that LXA4 directly augments CD64-mediated neutrophil phagocytic ability but does not directly increase neutrophil CD64 expression. Bacterial communication and virulence is regulated by quorum sensing inducers. In Pseudomonas aeruginosa, virulence is induced with release of various virulence factors, by N-3-oxododecanolyl homoserine lactone binding to the quorum sensing receptor, LasR. We show that LXA4 is an inhibitor of LasR in P. aeruginosa and that it decreases the release of pyocyanin exotoxin. These results suggest that LXA4 has the novel dual properties of increasing host defense and decreasing pathogen virulence by inhibiting quorum sensing.-Wu, B., Capilato, J., Pham, M. P., Walker, J., Spur, B., Rodriguez, A., Perez, L. J., Yin, K. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through

  18. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin

    PubMed Central

    Jann, Naja J.; Schmaler, Mathias; Kristian, Sascha A.; Radek, Katherine A.; Gallo, Richard L.; Nizet, Victor; Peschel, Andreas; Landmann, Regine

    2009-01-01

    Neutrophils kill invading pathogens by AMPs, including cathelicidins, ROS, and NETs. The human pathogen Staphylococcus aureus exhibits enhanced resistance to neutrophil AMPs, including the murine cathelicidin CRAMP, in part, as a result of alanylation of teichoic acids by the dlt operon. In this study, we took advantage of the hypersusceptible phenotype of S. aureus ΔdltA against cationic AMPs to study the impact of the murine cathelicidin CRAMP on staphylococcal killing and to identify its key site of action in murine neutrophils. We demonstrate that CRAMP remained intracellular during PMN exudation from blood and was secreted upon PMA stimulation. We show first evidence that CRAMP was recruited to phagolysosomes in infected neutrophils and exhibited intracellular activity against S. aureus. Later in infection, neutrophils produced NETs, and immunofluorescence revealed association of CRAMP with S. aureus in NETs, which similarly killed S. aureus wt and ΔdltA, indicating that CRAMP activity was reduced when associated with NETs. Indeed, the presence of DNA reduced the antimicrobial activity of CRAMP, and CRAMP localization in response to S. aureus was independent of the NADPH oxidase, whereas killing was partially dependent on a functional NADPH oxidase. Our study indicates that neutrophils use CRAMP in a timed and locally coordinated manner in defense against S. aureus. PMID:19638500

  19. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores

    Treesearch

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (

  20. Evidence for alteration of fungal endophyte community assembly by host defense compounds.

    PubMed

    Saunders, Megan; Kohn, Linda Myra

    2009-01-01

    * Plant defense compounds are common stressors encountered by endophytes. Fungi readily evolve tolerance to these compounds, yet few studies have addressed the influence of intraspecific variation in defense compound production on endophyte colonization. We compared the influence of defense compound production on the composition of fungal endophyte communities in replicated field experiments. * Maize (Zea mays) produces benzoxazinoids (BXs), compounds with antifungal byproducts persistent in the environment. Fungi were isolated from leaf and root tissue of two maize genotypes that produce BXs, and a natural mutant that does not. Isolates representing the species recovered were tested for tolerance to 2-benzoxazolinone (BOA), a toxic BX byproduct. * In seedling roots and mature leaves, the community proportion with low BOA tolerance was significantly greater in BX nonproducers than producers. Mean isolation frequency of Fusarium species was up to 35 times higher in mature leaves of BX producers than nonproducers. * Fungal species with relatively high tolerance to BOA are more abundant in BX producing than BX nonproducing maize. Production of BXs may increase colonization by Fusarium species in maize, including agents of animal toxicosis and yield-reducing disease in maize. Overall, results indicate that production of defense compounds can significantly alter endophyte community assembly.

  1. Antimicrobial Polymers: Mimicking Amino Acid Functionali ty, Sequence Control and Three-dimensional Structure of Host-defen se Peptides.

    PubMed

    Hartlieb, Matthias; Williams, Elizabeth G L; Kuroki, Agnès; Perrier, Sébastien; Locock, Katherine E S

    2017-01-01

    Peptides and proteins control and direct all aspects of cellular function and communication. Having been honed by nature for millions of years, they also typically display an unsurpassed specificity for their biological targets. This underlies the continued focus on peptides as promising drug candidates. However, the development of peptides into viable drugs is hampered by their lack of chemical and pharmacokinetic stability and the cost of large scale production. One method to overcome such hindrances is to develop polymer systems that are able to retain the important structural features of these biologically active peptides, while being cheaper and easier to produce and manipulate chemically. This review illustrates these principles using examples of polymers designed to mimic antimicrobial host-defence peptides. The host-defence peptides have been identified as some of the most important leads for the next generation of antibiotics as they typically exhibit broad spectrum antimicrobial ability, low toxicity toward human cells and little susceptibility to currently known mechanisms of bacterial resistance. Their movement from the bench to clinic is yet to be realised, however, due to the limitations of these peptides as drugs. The literature provides a number of examples of polymers that have been able to mimic these peptides through all levels of structure, starting from specific amino acid sidechains, through to more global features such as overall charge, molecular weight and threedimensional structure (e.g. α-helical). The resulting optimised polymers are able retain the activity profile of the peptides, but within a synthetic macromolecular construct that may be better suited to the development of a new generation of antimicrobial therapeutics. Such work has not only produced important new leads to combat the growing threat of antibiotic resistance, but may also open up new ways for polymers to mimic other important classes of biologically active peptides

  2. Attachment, penetration and early host defense mechanisms during the infection of filamentous brown algae by Eurychasma dicksonii.

    PubMed

    Tsirigoti, Amerssa; Beakes, Gordon W; Hervé, Cécile; Gachon, Claire M M; Katsaros, Christos

    2015-05-01

    Eurychasma dicksonii is one of the most common and widespread marine pathogens and attacks a broad spectrum of more than 45 brown algal species. The present study focuses on the mechanism used by the pathogen to attach on the host cell wall and force its way into algal cells. Ultrastructural examination revealed a needle-like structure which develops within the attached spore and extends along its main axis. Particular cell wall modifications are present at the basal part of the spore (adhesorium pad) and guide the needle-like tool to penetrate perpendicularly the host cell wall. The unique injection mechanism is shared with Haptoglossa species which suggests that this is an important characteristic of early diverging oomycetes. Furthermore, the encystment and adhesion mechanism of E. dicksonii shows significant similarities with other oomycetes, some of which are plant pathogens. Staining and immunolabelling techniques showed the deposition of β-1,3-glucans on the host cell wall at the pathogen penetration site, a strategy similar to physical responses previously described only in infected plant cells. It is assumed that the host defense in terms of callose-like deposition is an ancient response to infection.

  3. Amoebal Endosymbiont Neochlamydia Genome Sequence Illuminates the Bacterial Role in the Defense of the Host Amoebae against Legionella pneumophila

    PubMed Central

    Ishida, Kasumi; Sekizuka, Tsuyoshi; Hayashida, Kyoko; Matsuo, Junji; Takeuchi, Fumihiko; Kuroda, Makoto; Nakamura, Shinji; Yamazaki, Tomohiro; Yoshida, Mitsutaka; Takahashi, Kaori; Nagai, Hiroki; Sugimoto, Chihiro; Yamaguchi, Hiroyuki

    2014-01-01

    Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown. In this study, we found that the host amoeba could completely evade Legionella infection. The draft genome sequence of Neochlamydia S13 revealed several defects in essential metabolic pathways, as well as unique molecules with leucine-rich repeats (LRRs) and ankyrin domains, responsible for protein-protein interaction. Neochlamydia S13 lacked an intact tricarboxylic acid cycle and had an incomplete respiratory chain. ADP/ATP translocases, ATP-binding cassette transporters, and secretion systems (types II and III) were well conserved, but no type IV secretion system was found. The number of outer membrane proteins (OmcB, PomS, 76-kDa protein, and OmpW) was limited. Interestingly, genes predicting unique proteins with LRRs (30 genes) or ankyrin domains (one gene) were identified. Furthermore, 33 transposases were found, possibly explaining the drastic genome modification. Taken together, the genomic features of Neochlamydia S13 explain the intimate interaction with the host amoeba to compensate for bacterial metabolic defects, and illuminate the role of the endosymbiont in the defense of the host amoebae against Legionella infection. PMID:24747986

  4. Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission.

    PubMed

    Salvaudon, Lucie; De Moraes, Consuelo M; Yang, Jun-Yi; Chua, Nam-Hai; Mescher, Mark C

    2013-03-01

    Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)--a phytohormone involved in plant defense against whiteflies--and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects.

  5. Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission

    PubMed Central

    Salvaudon, Lucie; De Moraes, Consuelo M.; Yang, Jun-Yi; Chua, Nam-Hai; Mescher, Mark C.

    2013-01-01

    Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)—a phytohormone involved in plant defense against whiteflies—and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects. PMID:23299332

  6. Viral modulators of cullin RING ubiquitin ligases: culling the host defense.

    PubMed

    Barry, Michele; Früh, Klaus

    2006-05-16

    Cullin RING ubiquitin ligases (CRULs) are found in all eukaryotes and play an essential role in targeting proteins for ubiquitin-mediated destruction, thus regulating a plethora of cellular processes. Viruses manipulate CRULs by redirecting this destruction machinery to eliminate unwanted host cell proteins, thus allowing viruses to slip past host immune barriers. Depending on the host organism, virus-modified CRULs can perform an amazing range of tasks, including the elimination of crucial signal transduction molecules in the human interferon pathway and suppression of virus-induced gene silencing in plants. This Perspective summarizes recent advances in our understanding of how viral proteins manipulate the function of CRULs.

  7. Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense

    PubMed Central

    Castillo-González, Claudia; Liu, Xiuying; Huang, Changjun; Zhao, Changjiang; Ma, Zeyang; Hu, Tao; Sun, Feng; Zhou, Yijun; Zhou, Xueping; Wang, Xiu-Jie; Zhang, Xiuren

    2015-01-01

    Transcriptional gene silencing (TGS) can serve as an innate immunity against invading DNA viruses throughout Eukaryotes. Geminivirus code for TrAP protein to suppress the TGS pathway. Here, we identified an Arabidopsis H3K9me2 histone methyltransferase, Su(var)3-9 homolog 4/Kryptonite (SUVH4/KYP), as a bona fide cellular target of TrAP. TrAP interacts with the catalytic domain of KYP and inhibits its activity in vitro. TrAP elicits developmental anomalies phenocopying several TGS mutants, reduces the repressive H3K9me2 mark and CHH DNA methylation, and reactivates numerous endogenous KYP-repressed loci in vivo. Moreover, KYP binds to the viral chromatin and controls its methylation to combat virus infection. Notably, kyp mutants support systemic infection of TrAP-deficient Geminivirus. We conclude that TrAP attenuates the TGS of the viral chromatin by inhibiting KYP activity to evade host surveillance. These findings provide new insight on the molecular arms race between host antiviral defense and virus counter defense at an epigenetic level. DOI: http://dx.doi.org/10.7554/eLife.06671.001 PMID:26344546

  8. Foxp3+ regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens

    PubMed Central

    Rowe, Jared H.; Ertelt, James M.; Aguilera, Marijo N.; Farrar, Michael A.; Way, Sing Sing

    2011-01-01

    SUMMARY Although pregnancy confers unique susceptibility to infection, the pregnancy-associated immune defects that erode host defense remain largely undefined. Herein, we demonstrate that expansion of immune-suppressive Foxp3+ regulatory T cells (Tregs) which occurs physiologically during pregnancy or when experimentally induced in transgenic mice each caused enhanced susceptibility to prenatal pathogens including Listeria and Salmonella species. Reciprocally, infection susceptibility was uniformly reduced with Treg-ablation. Importantly however, the sustained expansion of maternal Tregs was essential for maintaining immune tolerance to the developing fetus because even partial transient ablation of Foxp3-expressing cells fractured maternal tolerance to fetal antigen and triggered fetal resorption. Interestingly, Foxp3 cell-intrinsic defects in the immune suppressive cytokine IL-10 alone were sufficient to override Treg-mediated infection susceptibility, while IL-10 was non-essential for sustaining pregnancy. Thus, maternal Treg expansion required for sustaining pregnancy creates naturally occurring holes in host defense that confers prenatal infection susceptibility. PMID:21767812

  9. Single immunoglobulin interleukin-1 receptor-related molecule impairs host defense during pneumonia and sepsis caused by Streptococcus pneumoniae.

    PubMed

    Blok, Dana C; van Lieshout, Miriam H P; Hoogendijk, Arie J; Florquin, Sandrine; de Boer, Onno J; Garlanda, Cecilia; Mantovani, Alberto; van't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2014-01-01

    Streptococcus pneumoniae is a common cause of pneumonia and sepsis. Toll-like receptors (TLRs) play a pivotal role in the host defense against infection. In this study, we sought to determine the role of single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR a.k.a. TIR8), a negative regulator of TLR signaling, in pneumococcal pneumonia and sepsis. Wild-type and SIGIRR-deficient (sigirr-/-) mice were infected intranasally (to induce pneumonia) or intravenously (to induce primary sepsis) with S. pneumoniae and euthanized after 6, 24, or 48 h for analyses. Additionally, survival studies were performed. sigirr-/- mice showed delayed mortality during lethal pneumococcal pneumonia. Accordingly, sigirr-/- mice displayed lower bacterial loads in lungs and less dissemination of the infection 24 h after the induction of pneumonia. SIGIRR deficiency was associated with increased interstitial and perivascular inflammation in lung tissue early after infection, with no impact on neutrophil recruitment or cytokine production. sigirr-/- mice also demonstrated reduced bacterial burdens at multiple body sites during S. pneumoniae sepsis. sigirr-/- alveolar macrophages and neutrophils exhibited an increased capacity to phagocytose viable pneumococci. These results suggest that SIGIRR impairs the antibacterial host defense during pneumonia and sepsis caused by S. pneumoniae. © 2014 S. Karger AG, Basel.

  10. The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Aphelinus glycinis versus Aphelinus atriplicis

    USDA-ARS?s Scientific Manuscript database

    Endosymbiont interactions with hosts have important affects on fitness, including the fitness of many pest and beneficial species. Among these interactions, facultative endosymbiotic bacteria can protect aphid species from parasitoids. APHIS CRACCIVORA and ACYRTHOSIPHON PISUM harbor the symbiotic ...

  11. Peptidomic analysis of skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae): Insight into the origin of host-defense peptides within the Pipidae and characterization of a proline-arginine-rich peptide.

    PubMed

    Conlon, J Michael; Guilhaudis, Laure; Leprince, Jérôme; Coquet, Laurent; Mangoni, Maria Luisa; Attoub, Samir; Jouenne, Thierry; King, Jay D

    2017-09-23

    The Mexican burrowing toad Rhinophrynus dorsalis is the sole extant representative of the Rhinophrynidae. United in the superfamily Pipoidea, the Rhinophrynidae is considered to be the sister-group to the extant Pipidae which comprises Hymenochirus, Pipa, Pseudhymenochirus and Xenopus. Cationic, α-helical host-defense peptides of the type found in Hymenochirus, Pseudhymenochirus, and Xenopus species (hymenochirins, pseudhymenochirins, magainins, and peptides related to PGLa, XPF, and CPF) were not detected in norepinephrine-stimulated skin secretions of R. dorsalis. Skin secretions of representatives of the genus Pipa also do not contain cationic α-helical host-defense peptides which suggest, as the most parsimonious hypothesis, that the ability to produce such peptides by frogs within the Pipidae family arose in the common ancestor of (Hymenochirus+Pseudhymenochirus)+Xenopus after divergence from the line of evolution leading to extant Pipa species. Peptidomic analysis of the R. dorsalis secretions led to the isolation of rhinophrynin-27, a proline-arginine-rich peptide with the primary structure ELRLPEIARPVPEVLPARLPLPALPRN, together with rhinophrynin-33 containing the C-terminal extension KMAKNQ. Rhinophrynin-27 shows limited structural similarity to the porcine multifunctional peptide PR-39 but it lacks antimicrobial and cytotoxic activities. Like PR-39, the peptide adopts a poly-l-proline helix but some changes in the circular dichroism spectrum were observed in the presence of anionic sodium dodecylsulfate micelles consistent with the stabilization of turn structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lung and salivary scavenger receptor glycoprotein-340 contribute to the host defense against influenza A viruses.

    PubMed

    Hartshorn, Kevan L; White, Mitchell R; Mogues, Tirsit; Ligtenberg, Toon; Crouch, Erika; Holmskov, Uffe

    2003-11-01

    The lung scavenger receptor-rich protein glycoprotein-340 (gp-340) is present in bronchoalveolar lavage (BAL) fluids and saliva and mediates specific adhesion to and aggregation of bacteria. It also binds to surfactant proteins A and D (SP-A and -D). Prior studies demonstrated that SP-A and SP-D contribute to innate defense against influenza A virus (IAV). We now show that lung and salivary gp-340 inhibit the hemagglutination activity and infectivity of IAV and agglutinate the virions through a mechanism distinct from that of SP-D. As in the case of SP-A, the antiviral effects of gp-340 are mediated by noncalcium-dependent interactions between the virus and sialic acid-bearing carbohydrates on gp-340. Gp-340 inhibits IAV strains that are resistant to SP-D. Concentrations of gp-340 present in saliva and BAL fluid of healthy donors are sufficient to bind to IAV and inhibit viral infectivity. On the basis of competition experiments using competing saccharide ligands, it appears that SP-D does not entirely mediate that anti-IAV activity of BAL fluid and contributes little to that of saliva. Furthermore, removal of gp-340 from BAL fluid and saliva significantly reduced anti-IAV activity. Hence, gp-340 contributes to defense against IAV and may be particularly relevant to defense against SP-D-resistant viral strains.

  13. Link between mast cells and bacteria: Antimicrobial defense, function and regulation by cytokines.

    PubMed

    Conti, Pio; Carinci, Francesco; Caraffa, Alessandro; Ronconi, Gianpaolo; Lessiani, Gianfranco; Theoharides, Theoharis C

    2017-09-01

    Bacteria and their products, such as LPS, act on mast cells (MCs) to induce the secretion of multiple cytokines, including IL-1, TNF, IL-18 and IL-33, which can be dosed in the site of infected tissues. Antigen-binding IgE cross-links FcεRI on mast cells involves the generation and activation of PKCδ, ERK, tyrosine kinases (Syk and Lyn) and mitogen-activated protein kinases (MAPKs), inducing the release of chemical mediators which provoke inflammation and hypersensitive reaction. Other stimuli, including, cytokines, neuropeptides, chemical and physical activators, can also act on MCs to release a plethora of inflammatory compounds. Activated MCs produce a broad spectrum of inflammatory cytokines, chemokines, lipid compounds and vasoactive amines, all involved in immune response. By producing TNF, MCs have an antibacterial defense and a protective function; while pathogenic bacteria and their products, such as LPS, have an inflammatory response through MC activation. LPS binding TLR4 produce MC generation IL-1 family members, and chemokines, which may recruit inflammatory cells at the infection site; whereas in Kit(W/W-v) mice, where MCs are genetically absent, the inflammatory effect is not present. We report for the first time a link between MCs and bacteria emphasizing the mediation of inflammatory cytokines/chemokines. We can conclude that mast cells fight bacteria, and their immune response is perfectly integrated in the immune network. We hope that the understanding of microbial and mast cell interaction leads to more efficient therapeutic development in relation to microbial resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37.

    PubMed

    Moffatt, Jennifer H; Harper, Marina; Mansell, Ashley; Crane, Bethany; Fitzsimons, Timothy C; Nation, Roger L; Li, Jian; Adler, Ben; Boyce, John D

    2013-03-01

    Infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious global health problem. We have shown previously that A. baumannii can become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother. 54:4971-4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficient A. baumannii stimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficient A. baumannii was not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistant A. baumannii shows significantly altered activation of the host innate immune inflammatory response.

  15. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    PubMed Central

    2012-01-01

    Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for

  16. Effects of treatment with antimicrobial agents on the human colonic microflora

    PubMed Central

    Rafii, Fatemeh; Sutherland, John B; Cerniglia, Carl E

    2008-01-01

    Antimicrobial agents are the most valuable means available for treating bacterial infections. However, the administration of therapeutic doses of antimicrobial agents to patients is a leading cause of disturbance of the normal gastrointestinal microflora. This disturbance results in diminishing the natural defense mechanisms provided by the colonic microbial ecosystem, making the host vulnerable to infection by commensal microorganisms or nosocomial pathogens. In this minireview, the impacts of antimicrobials, individually and in combinations, on the human colonic microflora are discussed. PMID:19337440

  17. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms.

    PubMed

    Libardo, M Daben J; Bahar, Ali A; Ma, Buyong; Fu, Riqiang; McCormick, Laura E; Zhao, Jun; McCallum, Scott A; Nussinov, Ruth; Ren, Dacheng; Angeles-Boza, Alfredo M; Cotten, Myriam L

    2017-09-11

    Host-defense peptides (HDPs) feature evolution-tested potency against life-threatening pathogens. While piscidin 1 (p1) and piscidin 3 (p3) are homologous and potent fish HDPs, only p1 is strongly membranolytic. Here, we hypothesize that another mechanism imparts p3 strong potency. We demonstrate that the N-termini of both peptides coordinate Cu(2+) and p3-Cu cleaves isolated DNA at a rate on par with free Cu(2+) but significantly faster than p1-Cu. On planktonic bacteria, p1 is more antimicrobial but only p3 features copper-dependent DNA cleavage. On biofilms and persister cells, p3-Cu is more active than p1-Cu, commensurate with stronger peptide-induced DNA damage. Molecular dynamics and NMR show that more DNA-peptide interactions exist with p3 than p1, and the peptides adopt conformations simultaneously poised for metal- and DNA-binding. These results generate several important conclusions. First, homologous HDPs cannot be assumed to have identical mechanisms since p1 and p3 eradicate bacteria through distinct relative contributions of membrane and DNA-disruptive effects. Second, the nuclease and membrane activities of p1 and p3 show that naturally occurring HDPs can inflict not only physicochemical but also covalent damage. Third, strong nuclease activity is essential for biofilm and persister cell eradication, as shown by p3, the homolog more specific toward bacteria and more expressed in vascularized tissues. Fourth, p3 combines several physicochemical properties (e.g., Amino Terminal Copper and Nickel binding motif; numerous arginines; moderate hydrophobicity) that confer low membranolytic effects, robust copper-scavenging capability, strong interactions with DNA, and fast nuclease activity. This new knowledge could help design novel therapeutics active against hard-to-treat persister cells and biofilms. © 2017 Federation of European Biochemical Societies.

  18. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment

    PubMed Central

    Wikel, Stephen

    2013-01-01

    Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg), B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission? PMID:24312085

  19. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense

    PubMed Central

    Fischer, Annette; Harrison, Kelly S; Ramirez, Yesid; Auer, Daniela; Chowdhury, Suvagata Roy; Prusty, Bhupesh K; Sauer, Florian; Dimond, Zoe; Kisker, Caroline; Scott Hefty, P; Rudel, Thomas

    2017-01-01

    Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique α-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl-1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNγ and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a deubiquitinating activity exerting a function in selective stabilization of host proteins and protection from host defense. DOI: http://dx.doi.org/10.7554/eLife.21465.001 PMID:28347402

  20. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses.

    PubMed

    Plano, Gregory V; Schesser, Kurt

    2013-12-01

    Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.

  1. Increased Host Investment in Extrafloral Nectar (EFN) Improves the Efficiency of a Mutualistic Defensive Service

    PubMed Central

    González-Teuber, Marcia; Silva Bueno, Juan Carlos; Heil, Martin; Boland, Wilhelm

    2012-01-01

    Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained. PMID:23056362

  2. Antimicrobial films based on cellulose-derived hydrocolloids. A synergetic effect of host-guest interactions on quality and functionality.

    PubMed

    Rutenberg, Roi; Bernstein, Solange; Paster, Nachman; Fallik, Eli; Poverenov, Elena

    2016-01-01

    A series of active films based on biodegradable cellulose-derived hydrocolloids capable of controlled release of antimicrobial propionic acid (PA) was prepared. β-Cyclodextrin (β-CD), usually used for encapsulation of lipophilic compounds, was utilized in this research to host the hydrophilic PA. It was found that addition of β-CD to the film forming solutions notably enhanced the hydrocolloid matrix capacity and resulted in up to a ten-fold increase in the amount of uploaded PA. In addition, β-CD resulted in a two-fold prolongation of the effective PA release duration. β-CD alone caused undesired effects on the physical, mechanical and morphological properties of the hydrocolloid films. Interestingly, when β-CD was combined with PA in the film formulation, its undesired effects were significantly subdued. The antifungal activity of the films was demonstrated on fresh harvested wheat grains. Films containing β-CD and PA were found to be effective in preventing fungal growth on wheat grains. Thus, incorporation of β-CD and PA in hydrocolloids matrices demonstrated a synergetic effect and resulted in the formation of biodegradable active films that benefit good physical and mechanical properties, high active agent content, prolonged release ability and effective antimicrobial properties.

  3. Identification and characterization of novel host defense peptides from the skin secretion of the fungoid frog, Hydrophylax bahuvistara (Anura: Ranidae).

    PubMed

    Vineeth Kumar, Thundi Parambil Vasanth Kumar; Asha, Radhamony; Shyla, Gopal; George, Sanil

    2017-01-10

    Two novel peptides (brevinin1 HYba1 and brevinin1 HYba2) were identified from the skin secretion of the frog Hydrophylax bahuvistara, endemic to Western Ghats, India, and their amino acid sequences were confirmed using cDNA cloning and LC/MS/MS. Antibacterial, hemolytic, and cytotoxic activities of brevinin1 peptides and their synthetic analogs (amidated C-terminus) were investigated and compared. All the peptides except the acidic forms showed antibacterial activity against all tested Gram-positive and Gram-negative bacteria. They exhibited low hemolysis on human erythrocytes and showed potent cytotoxic activity against Hep 3B cancer cell line. Upon amidation, the peptides showed increased activity against the tested microbes without altering their hemolytic and cytotoxic properties. The study also emphasizes the need for screening endemic amphibian fauna of Western Ghats, as a potential source of host defense peptides with possible therapeutic applications in the future. © 2017 John Wiley & Sons A/S.

  4. Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae).

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Kolodziejek, Jolanta; Leprince, Jérôme; Coquet, Laurent; Jouenne, Thierry; Vaudry, Hubert; Nowotny, Norbert; King, Jay D

    2015-10-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from the octoploid Mawa clawed frog Xenopus boumbaensis Loumont, 1983 led to the identification and characterization of 15 host-defense peptides belonging to the magainin (two peptides), peptide glycine-leucine-amide (PGLa; three peptides), xenopsin precursor fragment (XPF; three peptides), caerulein precursor fragment (CPF; two peptides), and caerulein precursor fragment-related peptide (CPF-RP; five peptides) families. In addition, caerulein and three peptides with structural similarity to the trefoil factor family (TFF) peptides, xP2 and xP4 from Xenopus laevis were also present in the secretions. Consistent with data from comparisons of the nucleotides sequence of mitochondrial and nuclear genes, the primary structures of the peptides suggest a close phylogenetic relationship between X. boumbaensis and the octoploid frogs Xenopus amieti and Xenopus andrei. As the three species occupy disjunct ranges within Cameroon, it is suggested that they diverged from a common ancestor by allopatric speciation.

  5. A Family of Helminth Molecules that Modulate Innate Cell Responses via Molecular Mimicry of Host Antimicrobial Peptides

    PubMed Central

    Hutchinson, Andrew T.; To, Joyce; Taylor, Nicole L.; Norton, Raymond S.; Perugini, Matthew A.

    2011-01-01

    Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly α-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation. PMID:21589904

  6. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine.

    PubMed

    Ruiz, Jose; Kanagavelu, Saravana; Flores, Claudia; Romero, Laura; Riveron, Reldy; Shih, David Q; Fukata, Masayuki

    2015-01-01

    Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr-1(hi) cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.

  7. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes

    PubMed Central

    Liu, Mingyong; Chen, Keqiang; Yoshimura, Teizo; Liu, Ying; Gong, Wanghua; Wang, Aimin; Gao, Ji-Liang; Murphy, Philip M.; Wang, Ji Ming

    2012-01-01

    Listeria monocytogenes (Listeria) causes opportunistic infection in immunocompromised hosts with high mortality. Resistance to Listeria depends on immune responses and recruitment of neutrophils of the immune system into infected sites is an early and critical step. Mouse neutrophils express two G protein-coupled formylpeptide receptor subtypes Fpr1 and Fpr2 that recognize bacterial and host-derived chemotactic molecules including Listeria peptides for cell migration and activation. Here we report deficiency in Fprs exacerbated the severity of the infection and increased the mortality of infected mice. The mechanism involved impaired early neutrophil recruitment to the liver with Fpr1 and Fpr2 being sole receptors for neutrophils to sense Listeria chemoattractant signals and for production of bactericidal superoxide. Thus, Fprs are essential sentinels to guide the first wave of neutrophil infiltration in the liver of Listeria-infected mice for effective elimination of the invading pathogen. PMID:23139859

  8. Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling.

    PubMed

    Xu, Pinglong; Bailey-Bucktrout, Samantha; Xi, Ying; Xu, Daqi; Du, Dan; Zhang, Qian; Xiang, Weiwen; Liu, Jianming; Melton, Andrew; Sheppard, Dean; Chapman, Harold A; Bluestone, Jeffrey A; Derynck, Rik

    2014-12-18

    TGF-β signaling is essential in many processes, including immune surveillance, and its dysregulation controls various diseases, including cancer, fibrosis, and inflammation. Studying the innate host defense, which functions in most cell types, we found that RLR signaling represses TGF-β responses. This regulation is mediated by activated IRF3, using a dual mechanism of IRF3-directed suppression. Activated IRF3 interacts with Smad3, thus inhibiting TGF-β-induced Smad3 activation and, in the nucleus, disrupts functional Smad3 transcription complexes by competing with coregulators. Consequently, IRF3 activation by innate antiviral signaling represses TGF-β-induced growth inhibition, gene regulation and epithelial-mesenchymal transition, and the generation of Treg effector lymphocytes from naive CD4(+) lymphocytes. Conversely, silencing IRF3 expression enhances epithelial-mesenchymal transition, TGF-β-induced Treg cell differentiation upon virus infection, and Treg cell generation in vivo. We present a mechanism of regulation of TGF-β signaling by the antiviral defense, with evidence for its role in immune tolerance and cancer cell behavior.

  9. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    SciTech Connect

    Pelletier, Dale A; Morrell-Falvey, Jennifer L; Karve, Abhijit A; Lu, Tse-Yuan S; Tschaplinski, Timothy J; Tuskan, Gerald A; Chen, Jay; Martin, Madhavi Z; Jawdy, Sara; Weston, David; Doktycz, Mitchel John; Schadt, Christopher Warren

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  10. Chlamydial lung infection induces transient IL-9 production which is redundant for host defense against primary infection.

    PubMed

    Peng, Ying; Gao, Xiaoling; Yang, Jie; Shekhar, Sudhanshu; Wang, Shuhe; Fan, Yijun; Yang, Xi

    2015-01-01

    IL-9/Th9 responses are recently found to be important for innate and adaptive immunity particularly in parasitic infections. To date, the study on the role of IL-9 in bacterial infections is limited and the reported data are contradictory. One reported function of IL-9/Th9 is to modulate Th1/Th17 responses. Since our and others' previous work has shown a critical role of Th1 and Th17 cells in host defense against chlamydial lung infection, we here examined the role of IL-9 responses in Chlamydia muridarum (Cm) lung infection, particularly its effect on Th1 and Th17 responses and outcome infection. Our data showed quick but transient IL-9 production in the lung following infection, peaking at day 3 and back to baseline around day 7. CD4+ T cell was the major source of IL-9 production in the lung infection. Blockade of endogenous IL-9 using neutralizing antibody failed to change Interferon-γ (IFN-γ) and IL-17 production by cultured spleen mononuclear cells isolated from Cm infected mice. Similarly, in vivo neutralization of IL-9 failed to show significant effect on T cell (Th1 and Th17) and antibody responses (IgA, IgG1 and IgG2a). Consistently, the neutralization of IL-9 had no significant effect on disease process, including body weight change, bacterial burden and histopathological score. The data suggest that IL-9 production following chlamydial lung infection is redundant for host defense against the intracellular bacteria.

  11. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.

    PubMed

    Walters, Edgar T

    2014-08-01

    Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain.

  12. Holistic Network Defense: Fusing Host and Network Features for Attack Classification

    DTIC Science & Technology

    2011-03-01

    viruses and worms, a bot is a self- propagating application that infects vulnerable hosts through direct exploitation or Trojan insertion. However, bots...of zombie computing assets employed for a variety of illicit activities, including information and computing resource theft, SPAM production...aware of. By finding software vulnerabilities before the software’s manufacturers, a programmer can create a virus or worm that exploits that

  13. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine

    PubMed Central

    Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P.; Frye, Jeanetta W.; Casero, Robert A.; Wilson, Keith T.

    2013-01-01

    The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. Overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production. PMID:23820617

  14. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine.

    PubMed

    Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P; Frye, Jeanetta W; Casero, Robert A; Wilson, Keith T

    2014-03-01

    The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. The overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg up