Science.gov

Sample records for antimicrobial peptide gomesin

  1. Interaction of the antimicrobial peptide gomesin with model membranes: a calorimetric study.

    PubMed

    Domingues, Tatiana M; Mattei, Bruno; Seelig, Joachim; Perez, Katia R; Miranda, Antonio; Riske, Karin A

    2013-07-01

    Gomesin is a potent cationic antimicrobial peptide (z = +6) isolated from the Brazilian spider Acanthoscurria gomesiana . The interaction of gomesin with large unilamellar vesicles composed of a 1:1 mixture of zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) phospholipids is studied with isothermal titration calorimetry (ITC). In parallel, light scattering and optical microscopy are used to assess peptide-induced vesicle aggregation. The ability of gomesin to permeabilize the membrane is examined with fluorescence spectroscopy of the leakage of 5,6-carboxyfluorescein (CF). Vesicles coated with 3 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PE-PEG) lipids are also investigated to assess the influence of peptide-induced vesicle aggregation in the activity of gomesin. The ITC and light scattering titrations are done in two ways: lipid into peptide and peptide into lipid injections. Although some differences arise between the two setups, the basic interaction of gomesin with anionic vesicles is preserved. A surface partition model combined with the Gouy-Chapman theory is put forward to fit the ITC results. The intrinsic binding constant of gomesin is found to be K ≈ 10(3) M(-1). The interaction of gomesin with anionic membranes is highly exothermic and enthalpy-driven. Binding of gomesin is virtually always accompanied by vesicle aggregation and changes in membrane permeability, leading to CF leakage. Addition of PE-PEG to the membrane strongly attenuates vesicle aggregation but does not significantly change the mode of action of gomesin. The results point to a strong interaction of gomesin with the membrane surface, causing membrane rupture without a deep penetration into the bilayer core.

  2. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  3. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  4. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  5. Antimicrobial peptides.

    PubMed

    Bahar, Ali Adem; Ren, Dacheng

    2013-11-28

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill "superbugs" emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).

  6. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  7. Resistance to Degradation and Cellular Distribution are Important Features for the Antitumor Activity of Gomesin

    PubMed Central

    Buri, Marcus V.; Domingues, Tatiana M.; Paredes-Gamero, Edgar J.; Casaes-Rodrigues, Rafael L.; Rodrigues, Elaine Guadelupe; Miranda, Antonio

    2013-01-01

    Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr2,6,11,15]-Gm, and [Ser2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr2,6,11,15, Pro9]-D-Gm, and [Thr2,6,11,15, D-Pro9]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity. PMID:24312251

  8. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  9. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  10. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  11. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  12. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  13. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  14. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  15. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  16. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  17. How antimicrobial peptides disrupt lipid bilayers?

    NASA Astrophysics Data System (ADS)

    Sengupta, Durba

    2011-03-01

    The molecular basis for the activity of cyclic and linear antimicrobial peptides is analysed. We performed multi-scale molecular dynamics simulations and biophysical measurements to probe the interaction of antimicrobial peptides with model membranes. Two linear antimicrobial peptides, magainin and melittin and a cyclic one, BPC194 have been studied. We test different models to determine the generic and specific forces that lead to bilayer disruption. We probe whether interfacial stress or local membrane perturbation is more likely to lead to the porated state. We further analyse the reasons that determine specificity and increase of activity in antimicrobial peptides. The results provide detailed insight in the mode of action of antimicrobial peptides.

  18. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  19. Insect inducible antimicrobial peptides and their applications.

    PubMed

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  20. Antimicrobial Properties of Amyloid Peptides

    PubMed Central

    Kagan, Bruce L.; Jang, Hyunbum; Capone, Ricardo; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2011-01-01

    More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids are not only toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function. PMID:22081976

  1. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  2. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  3. Antimicrobial peptides in the brain.

    PubMed

    Su, Yanhua; Zhang, Kai; Schluesener, Hermann J

    2010-10-01

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

  4. Human antimicrobial peptides and proteins.

    PubMed

    Wang, Guangshun

    2014-05-13

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat

  5. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  6. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  7. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  8. Combination Effects of Antimicrobial Peptides

    PubMed Central

    Yu, Guozhi; Baeder, Desiree Y.; Regoes, Roland R.

    2016-01-01

    Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms. PMID:26729502

  9. Antimicrobial peptides important in innate immunity.

    PubMed

    Cederlund, Andreas; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2011-10-01

    Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.

  10. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  11. Ultrashort Antimicrobial Peptides with Antiendotoxin Properties

    PubMed Central

    Chih, Ya-Han; Lin, Yen-Shan; Yip, Bak-Sau; Wei, Hsiu-Ju; Chu, Hung-Lun; Yu, Hui-Yuan; Cheng, Hsi-Tsung

    2015-01-01

    Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK. PMID:26033727

  12. [Antimicrobial peptide in dentisty. Literature review].

    PubMed

    Sato, F Simain; Rompen, E; Heinen, E

    2009-12-01

    The use of antimicrobial substances has contributed to the development of multiple antimicrobial resistances (1), challenging the pharmaceutical industry to develop with new, innovative, and effective molecules. Discovered around 1980, molecules called natural antimicrobial peptides (AMPs) appear to hold great potential for the treatment of infections. These cationic peptides are able to stop the bacterial development and to control infections. The purpose of this review is to help improve the understanding of the way AMPs operate in the context of the development of new cures against viruses, bacteria, and mushrooms found in the human body in general and in the oral cavity in particular. PMID:20143750

  13. [Application on food preservative of antimicrobial peptides].

    PubMed

    Zhao, Hongyan; Mu, Yu; Zhao, Baohua

    2009-07-01

    Antimicrobial peptides are an integral component of the innate immune system, it can counteract outer membrane pathogen such as bacteria, fungi, viruses, protozoan and so on. Owing to the sterilization and innocuity, it has the potential to be crude food preservative. In this paper the uses of antibacterial peptides in the food preservative were analyzed.

  14. Boosting salt resistance of short antimicrobial peptides.

    PubMed

    Chu, Hung-Lun; Yu, Hui-Yuan; Yip, Bak-Sau; Chih, Ya-Han; Liang, Chong-Wen; Cheng, Hsi-Tsung; Cheng, Jya-Wei

    2013-08-01

    The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid β-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine end-tagged variants were less affected.

  15. Antimicrobial cyclic peptides for plant disease control.

    PubMed

    Lee, Dong Wan; Kim, Beom Seok

    2015-03-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  16. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  17. Insect Antimicrobial Peptides and Their Applications

    PubMed Central

    Yi, Hui-Yu; Chowdhury, Munmun; Huang, Ya-Dong; Yu, Xiao-Qiang

    2014-01-01

    Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications. PMID:24811407

  18. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  19. Antimicrobial peptides in innate immune responses.

    PubMed

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  20. Two novel antimicrobial peptides from centipede venoms.

    PubMed

    Peng, Kanfu; Kong, Yi; Zhai, Lei; Wu, Xiongfei; Jia, Peng; Liu, Jingze; Yu, Haining

    2010-01-01

    Centipede venoms are complex mixtures of biochemically and pharmacologically active components such as peptides and proteins. Very few are known about their pharmacological actions. The present work reports the structural and functional characterization of two antimicrobial peptides (scolopin 1 and -2) identified from centipede venoms of Scolopendra subspinipes mutilans by Sephadex gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). The amino acid sequences of scolopin 1 and -2 were FLPKMSTKLRVPYRRGTKDYH and GILKKFMLHRGTKVYKMRTLSKRSH determined by Edman degradation and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Both scolopin 1 and -2 showed strong antimicrobial activities against tested microorganisms including Gram-positive/negative bacteria and fungi. They also showed moderate hemolytic activity against both human and rabbit red cells. This is the first report of antimicrobial peptides from centipedes.

  1. Antimicrobial peptides and plant disease control.

    PubMed

    Montesinos, Emilio

    2007-05-01

    Several diseases caused by viruses, bacteria and fungi affect plant crops, resulting in losses and decreasing the quality and safety of agricultural products. Plant disease control relies mainly on chemical pesticides that are currently subject to strong restrictions and regulatory requirements. Antimicrobial peptides are interesting compounds in plant health because there is a need for new products in plant protection that fit into the new regulations. Living organisms secrete a wide range of antimicrobial peptides produced through ribosomal (defensins and small bacteriocins) or non-ribosomal synthesis (peptaibols, cyclopeptides and pseudopeptides). Several antimicrobial peptides are the basis for the design of new synthetic analogues, have been expressed in transgenic plants to confer disease protection or are secreted by microorganisms that are active ingredients of commercial biopesticides.

  2. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  3. Antimicrobial Peptides in Innate Immunity against Mycobacteria.

    PubMed

    Shin, Dong-Min; Jo, Eun-Kyeong

    2011-10-01

    Antimicrobial peptides/proteins are ancient and naturallyoccurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.

  4. Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization

    PubMed Central

    Maccari, Giuseppe; Di Luca, Mariagrazia; Nifosí, Riccardo; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Bifone, Angelo

    2013-01-01

    Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues. PMID:24039565

  5. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160595

  6. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  7. Antimicrobial peptides: successes, challenges and unanswered questions.

    PubMed

    Wimley, William C; Hristova, Kalina

    2011-01-01

    Multidrug antibiotic resistance is an increasingly serious public health problem worldwide. Thus, there is a significant and urgent need for the development of new classes of antibiotics that do not induce resistance. To develop such antimicrobial compounds, we must look toward agents with novel mechanisms of action. Membrane-permeabilizing antimicrobial peptides (AMPs) are good candidates because they act without high specificity toward a protein target, which reduces the likelihood of induced resistance. Understanding the mechanism of membrane permeabilization is crucial for the development of AMPs into useful antimicrobial agents. Various models, some phenomenological and others more quantitative or semimolecular, have been proposed to explain the action of AMPs. While these models explain many aspects of AMP action, none of the models captures all of the experimental observations, and significant questions remain unanswered. Here, we discuss the state of the field and pose some questions that, if answered, could speed the discovery of clinically useful peptide antibiotics.

  8. Design and Application of Antimicrobial Peptide Conjugates

    PubMed Central

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  9. Antimicrobial peptides in echinoderm host defense.

    PubMed

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads.

  10. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  11. Classification of antimicrobial peptides with imbalanced datasets

    NASA Astrophysics Data System (ADS)

    Camacho, Francy L.; Torres, Rodrigo; Ramos Pollán, Raúl

    2015-12-01

    In the last years, pattern recognition has been applied to several fields for solving multiple problems in science and technology as for example in protein prediction. This methodology can be useful for prediction of activity of biological molecules, e.g. for determination of antimicrobial activity of synthetic and natural peptides. In this work, we evaluate the performance of different physico-chemical properties of peptides (descriptors groups) in the presence of imbalanced data sets, when facing the task of detecting whether a peptide has antimicrobial activity. We evaluate undersampling and class weighting techniques to deal with the class imbalance with different classification methods and descriptor groups. Our classification model showed an estimated precision of 96% showing that descriptors used to codify the amino acid sequences contain enough information to correlate the peptides sequences with their antimicrobial activity by means of learning machines. Moreover, we show how certain descriptor groups (pseudoaminoacid composition type I) work better with imbalanced datasets while others (dipeptide composition) work better with balanced ones.

  12. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  13. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  14. Therapeutic antimicrobial peptides may compromise natural immunity.

    PubMed

    Habets, Michelle G J L; Brockhurst, Michael A

    2012-06-23

    Antimicrobial peptides (AMPs) have been proposed as a promising new class of antimicrobials despite warnings that therapeutic use could drive the evolution of pathogens resistant to our own immunity peptides. Using experimental evolution, we demonstrate that Staphylococcus aureus rapidly evolved resistance to pexiganan, a drug-candidate for diabetic leg ulcer infections. Evolved resistance was costly in terms of impaired growth rate, but costs-of-resistance were completely ameliorated by compensatory adaptation. Crucially, we show that, in some populations, experimentally evolved resistance to pexiganan provided S. aureus with cross-resistance to human-neutrophil-defensin-1, a key component of the innate immune response to infection. This unintended consequence of therapeutic use could drastically undermine our innate immune system's ability to control and clear microbial infections. Our results therefore highlight grave potential risks of AMP therapies, with implications for their development.

  15. Antimicrobial Peptides, Skin Infections and Atopic Dermatitis

    PubMed Central

    Hata, Tissa R.; Gallo, Richard L.

    2008-01-01

    The innate immune system evolved over 2 billion years ago to first recognize pathogens then eradicate them. Several distinct defects in this ancient but rapidly responsive element of human immune defense account for the increased incidence of skin infections in atopics. These defects include abnormalities in the physical barrier of the epidermis, alterations in microbial pattern recognition receptors such as toll receptors and NOD, and a diminished capacity to increase the expression of antimicrobial peptides during inflammation. Several antimicrobial peptides are affected including; cathelicidin, HBD-2, and HBD-3, which are lower in lesional skin of atopics compared to other inflammatory skin diseases, and dermcidin, which is decreased in sweat. Other defects in the immune defense barrier of atopics include a relative deficiency in plasmacytoid dendritic cells. In the future, understanding the cause of these defects may allow therapeutic intervention to reduce the incidence of infection in atopic individuals and potentially decrease the severity of this disorder. PMID:18620136

  16. Peptide design for antimicrobial and immunomodulatory applications.

    PubMed

    Haney, Evan F; Hancock, Robert E W

    2013-11-01

    The increasing threat of antibiotic resistance in pathogenic bacteria and the dwindling supply of antibiotics available to combat these infections poses a significant threat to human health throughout the world. Antimicrobial peptides (AMPs) have long been touted as the next generation of antibiotics capable of filling the anti-infective void. Unfortunately, peptide-based antibiotics have yet to realize their potential as novel pharmaceuticals, in spite of the immense number of known AMP sequences and our improved understanding of their antibacterial mechanism of action. Recently, the immunomodulatory properties of certain AMPs have become appreciated. The ability of small synthetic peptides to protect against infection in vivo has demonstrated that modulation of the innate immune response is an effective strategy to further develop peptides as novel anti-infectives. This review focuses on the screening methods that have been used to assess novel peptide sequences for their antibacterial and immunomodulatory properties. It will also examine how we have progressed in our ability to identify and optimize peptides with desired biological characteristics and enhanced therapeutic potential. In addition, the current challenges to the development of peptides as anti-infectives are examined and the strategies being used to overcome these issues are discussed.

  17. Antimicrobial peptide resistance in Neisseria meningitidis.

    PubMed

    Tzeng, Yih-Ling; Stephens, David S

    2015-11-01

    Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  18. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  19. Structure of the antimicrobial peptide tachystatin A.

    PubMed

    Fujitani, Naoki; Kawabata, Shun-ichiro; Osaki, Tsukasa; Kumaki, Yasuhiro; Demura, Makoto; Nitta, Katsutoshi; Kawano, Keiichi

    2002-06-28

    The solution structure of antimicrobial peptide tachystatin A from the Japanese horseshoe crab (Tachypleus tridentatus) was determined by two-dimensional nuclear magnetic resonance measurements and distance-restrained simulated annealing calculations. The correct pairs of disulfide bonds were also confirmed in this study. The obtained structure has a cysteine-stabilized triple-stranded beta-sheet as a dominant secondary structure and shows an amphiphilic folding observed in many membrane-interactive peptides. Interestingly, tachystatin A shares structural similarities with the calcium channel antagonist omega-agatoxin IVA isolated from spider toxin and mammalian defensins, and we predicted that omega-agatoxin IVA also have the antifungal activity. These structural comparisons and functional correspondences suggest that tachystatin A and omega-agatoxin IVA may exert the antimicrobial activity in a manner similar to defensins, and we have confirmed such activity using fungal culture assays. Furthermore, tachystatin A is a chitin-binding peptide, and omega-agatoxin IVA also showed chitin-binding activities in this study. Tachystatin A and omega-agatoxin IVA showed no structural homology with well known chitin-binding motifs, suggesting that their structures belong to a novel family of chitin-binding peptides. Comparison of their structures with those of cellulose-binding proteins indicated that Phe(9) of tachystatin A might be an essential residue for binding to chitin.

  20. Peptides and proteins with antimicrobial activity.

    PubMed

    Coutinho, Henrique Douglas Melo; Lôbo, Katiuscia Menezes; Bezerra, Denise Aline Casimiro; Lôbo, Inalzuir

    2008-01-01

    The increase of microbial resistance to antibiotics has led to a continuing search for newer and more effective drugs. Antimicrobial peptides are generally found in animals, plants, and microorganisms and are of great interest to medicine, pharmacology, and the food industry. These peptides are capable of inhibiting pathogenic microorganisms. They can attack parasites, while causing little or no harm to the host cells. The defensins are peptides found in granules in the polymorphonuclear neutrophils (PMNs) and are responsible for the defense of the organism. Several animal defensins, like dermaseptin, antileukoprotease, protegrin, and others, have had their activities and efficacy tested and been shown to be effective against bacteria, fungi, and protists; there are also specific defensins from invertebrates, e.g., drosomycin and heliomicin; from plants, e.g., the types A and B; and the bacteriocins, e.g., acrocin, marcescin, etc. The aim of the present work was to compile a comprehensive bibliographic review of the diverse potentially antimicrobial peptides in an effort to systematize the current knowledge on these substances as a contribution for further researches. The currently available bibliography does not give a holistic approach on this subject. The present work intends to show that the mechanism of defense represented by defensins is promising from the perspective of its application in the treatment of infectious diseases in human, animals and plants.

  1. Susceptibility to Infectious Diseases Based on Antimicrobial Peptide Production▿

    PubMed Central

    Rivas-Santiago, Bruno; Serrano, Carmen J.; Enciso-Moreno, J. Antonio

    2009-01-01

    In the last few years, the great impact of antimicrobial peptides on infectious disease susceptibility and natural resistance has been reported. In some cases, susceptibility to diseases is related to antimicrobial peptide polymorphisms and gene copy numbers, but for the vast majority of infectious diseases, these phenomena need to be elucidated. This review is focused on the current knowledge about susceptibility and resistance conferred by genetic variations in antimicrobial peptide expression in infectious diseases. PMID:19703980

  2. Susceptibility to infectious diseases based on antimicrobial peptide production.

    PubMed

    Rivas-Santiago, Bruno; Serrano, Carmen J; Enciso-Moreno, J Antonio

    2009-11-01

    In the last few years, the great impact of antimicrobial peptides on infectious disease susceptibility and natural resistance has been reported. In some cases, susceptibility to diseases is related to antimicrobial peptide polymorphisms and gene copy numbers, but for the vast majority of infectious diseases, these phenomena need to be elucidated. This review is focused on the current knowledge about susceptibility and resistance conferred by genetic variations in antimicrobial peptide expression in infectious diseases.

  3. Susceptibility to infectious diseases based on antimicrobial peptide production.

    PubMed

    Rivas-Santiago, Bruno; Serrano, Carmen J; Enciso-Moreno, J Antonio

    2009-11-01

    In the last few years, the great impact of antimicrobial peptides on infectious disease susceptibility and natural resistance has been reported. In some cases, susceptibility to diseases is related to antimicrobial peptide polymorphisms and gene copy numbers, but for the vast majority of infectious diseases, these phenomena need to be elucidated. This review is focused on the current knowledge about susceptibility and resistance conferred by genetic variations in antimicrobial peptide expression in infectious diseases. PMID:19703980

  4. Amphibian skin: a promising resource for antimicrobial peptides.

    PubMed

    Barra, D; Simmaco, M

    1995-06-01

    Amphibian skin is a rich source of biologically active compounds that are assumed to have diverse physiological and defence functions. In addition to the range of pharmacologically active peptides present, some of which have mammalian homologues, skin secretions contain a broad spectrum of antimicrobial peptides. As yet, such peptides from only a few species have been studied, and screening of other species is expected to yield further new antimicrobial activities. Natural antimicrobial peptides isolated from amphibian skin could provide lead structures for either the chemical, or rDNA synthesis of novel antimicrobials.

  5. Resistance to Antimicrobial Peptides in Vibrios

    PubMed Central

    Destoumieux-Garzón, Delphine; Duperthuy, Marylise; Vanhove, Audrey Sophie; Schmitt, Paulina; Wai, Sun Nyunt

    2014-01-01

    Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space. PMID:27025756

  6. Interaction of antimicrobial peptide protegrin with biomembranes

    PubMed Central

    Gidalevitz, David; Ishitsuka, Yuji; Muresan, Adrian S.; Konovalov, Oleg; Waring, Alan J.; Lehrer, Robert I.; Lee, Ka Yee C.

    2003-01-01

    The antimicrobial peptide protegrin-1 (PG-1) interacts with membranes in a manner that strongly depends on membrane lipid composition. In this research we use an approach representing the outer layers of bacterial and red blood cell membranes with lipid monolayers and using a combination of insertion assay, epifluorescence microscopy, and surface x-ray scattering to gain a better understanding of antimicrobial peptide's mechanism of action. We find that PG-1 inserts readily into anionic dipalmitoyl-phosphatidylglycerol, palmitoyl-oleoyl-phosphatidylglycerol, and lipid A films, but significantly less so into zwitterionic dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylcholine, and dipalmitoyl-phosphatidylethanolamine monolayers under similar experimental conditions. Epifluorescence microscopy shows that the insertion of PG-1 into the lipid layer results in the disordering of lipid packing; this disordering effect is corroborated by grazing incidence x-ray diffraction data. X-ray reflectivity measurements further point to the location of the peptide in the lipid matrix. In a pathologically relevant example we show that PG-1 completely destabilizes monolayer composed of lipid A, the major component in the outer membrane of Gram-negative bacteria, which is likely to be the mechanism by which PG-1 disrupts the outer membrane, thus allowing it to reach the target inner membrane. PMID:12738879

  7. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  8. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    PubMed

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource.

  9. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    PubMed

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource. PMID:24652097

  10. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  11. Plant antimicrobial peptides as potential anticancer agents.

    PubMed

    Guzmán-Rodríguez, Jaquelina Julia; Ochoa-Zarzosa, Alejandra; López-Gómez, Rodolfo; López-Meza, Joel E

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.

  12. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  13. Membrane Disruption Mechanism by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.

    2011-03-01

    Antimicrobial peptides (AMPs) are a class of small (less than100 residues) host defense peptides that induce selective membrane lytic activity against microbes. To understand the mechanism of membrane disruption by AMPs, we investigated, via atomic force microscopy, topological changes in supported phospholipid bilayers induced by protegrin-1 (PG-1). We have observed that PG-1 induces structural transformations, progressing from fingerlike instabilities at bilayer edges, to the formation of sievelike nanoporous structures and finally to a network of stripelike structures in a zwitterionic dimyristoylphosphatidylcholine (DMPC) model membrane in buffer, with increasing PG-1 concentration. Our results suggest that AMPs act to lower the interfacial energy of the bilayer in a way similar to detergents. By varying the lipid composition, temperature and using AMPs with different secondary structures, we are able to identify factors other than electrostatics that are important for the efficacy of AMPs.

  14. Antimicrobial Peptides, Infections and the Skin Barrier.

    PubMed

    Clausen, Maja-Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and transported to the stratum corneum, where they play a vital role in the first line of defense against potential pathogens. Numerous AMPs exist, and they have a broad antibiotic-like activity against bacteria, fungi and viruses. They also act as multifunctional effector molecules, linking innate and adaptive immune responses. AMPs play an essential part in maintaining an optimal and functional skin barrier - not only by direct killing of pathogens, but also by balancing immune responses and interfering in wound healing, cell differentiation, reepithelialization and their synergistic interplay with the skin microflora. PMID:26844896

  15. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    PubMed Central

    Mihajlovic, Maja

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or closes if glutamines in the N-termini are not located within the pore. On the other hand, when a melittin tetramer is embedded in toroidal pore or in a cylindrical pore, at the end of the simulation the pore is lined both with peptides and lipid headgroups, and, thus, can be classified as a toroidal pore. These observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores. Both alamethicin and melittin form amphiphilic helices in the presence of membranes, but their net charge differs; at pH ~7, the net charge of alamethicin is −1 whereas that of melittin is +5. This gives rise to stronger electrostatic interactions of melittin with membranes than those of alamethicin. The melittin tetramer interacts more strongly with lipids in the toroidal pore than in the cylindrical one, due to more favorable electrostatic interactions. PMID:20403332

  16. Safety and Efficacy of Antimicrobial Peptides against Naturally Acquired Leishmaniasis

    PubMed Central

    Alberola, J.; Rodríguez, A.; Francino, O.; Roura, X.; Rivas, L.; Andreu, D.

    2004-01-01

    Leishmaniases, which are important causes of morbidity and mortality in humans and dogs, are extremely difficult to treat. Antimicrobial peptides are rarely used as alternative treatments for naturally acquired parasitic diseases. Here we report that the acylated synthetic antimicrobial peptide Oct-CA(1-7)M(2-9) is safe and effective for treating naturally acquired canine leishmaniasis. PMID:14742227

  17. Antimicrobial activity of mosquito cecropin peptides against Francisella.

    PubMed

    Kaushal, Akanksha; Gupta, Kajal; Shah, Ruhee; van Hoek, Monique L

    2016-10-01

    Francisella tularensis is the cause of the zoonotic disease tularemia. In Sweden and Scandinavia, epidemiological studies have implicated mosquitoes as a vector. Prior research has demonstrated the presence of Francisella DNA in infected mosquitoes but has not shown definitive transmission of tularemia from a mosquito to a mammalian host. We hypothesized that antimicrobial peptides, an important component of the innate immune system of higher organisms, may play a role in mosquito host-defense to Francisella. We established that Francisella sp. are susceptible to two cecropin antimicrobial peptides derived from the mosquito Aedes albopictus as well as Culex pipiens. We also demonstrated induced expression of Aedes albopictus antimicrobial peptide genes by Francisella infection C6/36 mosquito cell line. We demonstrate that mosquito antimicrobial peptides act against Francisella by disrupting the cellular membrane of the bacteria. Thus, it is possible that antimicrobial peptides may play a role in the inability of mosquitoes to establish an effective natural transmission of tularemia. PMID:27235883

  18. Antimicrobial Peptides Targeting Gram-Positive Bacteria.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  19. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  20. Functions of antimicrobial peptides in host defense and immunity.

    PubMed

    Beisswenger, Christoph; Bals, Robert

    2005-06-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system. AMPs have a broad antimicrobial spectrum and lyse microbial cells by interaction with biomembranes. Besides their direct antimicrobial function, they have multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis, immune induction, and protease-antiprotease balance. Furthermore, AMPs qualify as prototypes of innovative drugs that may be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation. This review summarizes the current knowledge about the basic and applied biology of antimicrobial peptides and discusses features of AMPs in host defense and inflammation.

  1. Friend or foe? Antimicrobial peptides trigger pathogen virulence.

    PubMed

    Bishop, Jennifer L; Finlay, B Brett

    2006-01-01

    In an age of antibiotic-resistant pathogens, antimicrobial peptides have emerged as novel therapeutics hailed for their bactericidal and immunomodulatory properties. However, a recent paper by Bader et al. demonstrates that these molecules also trigger bacteria to arm themselves against host immune responses. The authors show that the two-component regulatory system PhoP-PhoQ of Salmonella is activated not only in cation-deficient environments as previously thought, but also by binding to antimicrobial peptides, thus promoting gene transcription necessary for Salmonella survival within the host. Thus, the antimicrobial peptide might be a double-edged sword, promoting antibacterial immunity while simultaneously triggering pathogen virulence.

  2. Three new antimicrobial peptides from the scorpion Pandinus imperator.

    PubMed

    Zeng, Xian-Chun; Zhou, Lingli; Shi, Wanxia; Luo, Xuesong; Zhang, Lei; Nie, Yao; Wang, Jinwei; Wu, Shifen; Cao, Bin; Cao, Hanjun

    2013-07-01

    Three novel cysteine-free venom peptides, which were referred to as Pantinin-1, Pantinin-2 and Pantinin-3, respectively, have been identified from the scorpion Pandinus imperator by cDNA cloning strategy. The precursor of each peptide consists of a signal peptide, a mature peptide with no disulfide bridges, and an acidic propeptide with a typical processing signal. Each of the three peptides is an α-helical, cationic and amphipathic molecule with 13 or 14 amino acid residues. Their amino acid sequences are homologous to those of some 13-mer antimicrobial peptides isolated from scorpions. Antimicrobial assay showed that all the three peptides possess relatively strong activities against Gram-positive bacteria and a fungus, but have very weak antimicrobial activities against Gram-negative bacteria. Toxicity assay showed that the three peptides exhibit very low or mild hemolytic activities against human red blood cells. It is interesting to see that Pantinin-3 is able to potently inhibit the growth of vancomycin-resistant Enterococcus (VRE) S13, a pathogen that can cause a number of human infections; this suggests that Pantinin-3 has great potential to be applied in the treatment of VRE infections. Our findings gain new insights into the structure/function relationships of the small linear cationic antimicrobial peptides from scorpions, and provide new templates for designing of antimicrobial agents targeting antibiotic-resistant pathogenic bacteria.

  3. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined.

  4. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined. PMID:27450805

  5. The role of antimicrobial peptides in chronic inflammatory skin diseases.

    PubMed

    Marcinkiewicz, Małgorzata; Majewski, Sławomir

    2016-02-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system of the skin. They present an activity against a broad spectrum of Gram-positive and Gram-negative bacteria as well as some fungi, parasites and enveloped viruses. Several inflammatory skin diseases including psoriasis, atopic dermatitis, acne vulgaris and rosacea are characterized by a dysregulated expression of AMPs. Antimicrobial peptides are excessively produced in lesional psoriatic scales or rosacea in contrast to the atopic skin that shows lower AMP levels when compared with psoriasis. The importance of the AMPs contribution to host immunity is indisputable as alterations in the antimicrobial peptide expression have been associated with various pathologic processes. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin and their role in the pathogenesis of inflammatory skin diseases. PMID:26985172

  6. The role of antimicrobial peptides in chronic inflammatory skin diseases

    PubMed Central

    Majewski, Sławomir

    2016-01-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system of the skin. They present an activity against a broad spectrum of Gram-positive and Gram-negative bacteria as well as some fungi, parasites and enveloped viruses. Several inflammatory skin diseases including psoriasis, atopic dermatitis, acne vulgaris and rosacea are characterized by a dysregulated expression of AMPs. Antimicrobial peptides are excessively produced in lesional psoriatic scales or rosacea in contrast to the atopic skin that shows lower AMP levels when compared with psoriasis. The importance of the AMPs contribution to host immunity is indisputable as alterations in the antimicrobial peptide expression have been associated with various pathologic processes. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin and their role in the pathogenesis of inflammatory skin diseases. PMID:26985172

  7. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  8. Characterization and performance of short cationic antimicrobial peptide isomers.

    PubMed

    Juba, Melanie; Porter, Devin; Dean, Scott; Gillmor, Susan; Bishop, Barney

    2013-07-01

    Cationic antimicrobial peptides (CAMPs) represent an ancient defense mechanism against invading bacteria, with peptides such as the cathelicidins being essential elements of vertebrate innate immunity. CAMPs are typically associated with broad-spectrum antimicrobial potency and limited bacterial resistance. The cathelicidin identified from the elapid snake Naja atra (NA-CATH) contains a semi-conserved repeated 11-residue motif (ATRA motif) with a sequence pattern consistent with formation of an amphipathic helical conformation. Short peptide amides (ATRA-1, -1A, -1P, and -2) generated based on the pair of ATRA motifs in NA-CATH exhibited varied antimicrobial potencies. The small size of the ATRA peptides, coupled with their varied antimicrobial performances, make them interesting models to study the impact various physico-chemical properties have on antimicrobial performance in helical CAMPs. Accordingly, the D- and L-enantiomers of the peptide ATRA-1A, which in earlier studies had shown both good antimicrobial performance and strong helical character, were investigated in order to assess the impact peptide stereochemistry has on antimicrobial performance and interaction with chiral membranes. The ATRA-1A isomers exhibit varied potencies against four bacterial strains, and their conformational properties in the presence of mixed zwitterionic/anionic liposomes are influenced by anionic lipid content. These studies reveal subtle differences in the properties of the peptide isomers. Differences are also seen in the abilities of the ATRA-1A isomers to induce liposome fusion/aggregation, bilayer rearrangement and lysing through turbidity studies and fluorescence microscopy. The similarities and differences in the properties of the ATRA-1A isomers could aid in efforts to develop D-peptide-based therapeutics using high-performing L-peptides as templates.

  9. The role of antimicrobial peptides in cardiovascular physiology and disease.

    PubMed

    Li, Yifeng

    2009-12-18

    Antimicrobial peptides are natural peptide antibiotics, existing ubiquitously in both plant and animal kingdoms. They exhibit broad-spectrum antimicrobial activity and play an important role in host defense against invading microbes. Recently, these peptides have been shown to possess activities unrelated to direct microbial killing and be involved in the complex network of immune responses and inflammation. Thus, their role has now broadened beyond that of endogenous antibiotics. Because of their wide involvement in inflammatory response and the emerging role of inflammation in atherosclerosis, antimicrobial peptides have been proposed to represent an important link between inflammation and the pathogenesis of atherosclerotic cardiovascular diseases. This review highlights recent findings that support a role of these peptides in cardiovascular physiology and disease.

  10. Antimicrobial peptides: Possible anti-infective agents.

    PubMed

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.

  11. DRAMP: a comprehensive data repository of antimicrobial peptides

    PubMed Central

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  12. DRAMP: a comprehensive data repository of antimicrobial peptides.

    PubMed

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  13. Antimicrobial Peptides as Infection Imaging Agents: Better Than Radiolabeled Antibiotics

    PubMed Central

    Akhtar, Muammad Saeed; Imran, Muhammad Babar; Nadeem, Muhammad Afzal; Shahid, Abubaker

    2012-01-01

    Nuclear medicine imaging techniques offer whole body imaging for localization of number and site of infective foci inspite of limitation of spatial resolution. The innate human immune system contains a large member of important elements including antimicrobial peptides to combat any form of infection. However, development of antibiotics against bacteria progressed rapidly and gained popularity over antimicrobial peptides but even powerful antimicrobials failed to reduce morbidity and mortality due to emergence of mutant strains of bacteria resulting in antimicrobial resistance. Differentiation between infection and inflammation using radiolabeled compounds with nuclear medicine techniques has always been a dilemma which is still to be resolved. Starting from nonspecific tracers to specific radiolabeled tracers, the question is still unanswered. Specific radiolabeled tracers included antibiotics and antimicrobial peptides which bind directly to the bacteria for efficient localization with advanced nuclear medicine equipments. However, there are merits and demerits attributed to each. In the current paper, radiolabeled antibiotics and radiolabeled peptides for infection localization have been discussed starting with the background of primitive nonspecific tracers. Radiolabeled antimicrobial peptides have certain merits compared with labeled antibiotics which make them superior agents for localization of infective focus. PMID:22675369

  14. Synthetic Mimics of Antimicrobial Peptides From Triaryl Scaffolds

    PubMed Central

    Thaker, Hitesh D.; Sgolastra, Federica; Clements, Dylan; Scott, Richard W.; Tew, Gregory N.

    2011-01-01

    In this report, we describe the synthesis of a new series of small amphiphilic aromatic compounds, which mimic the essential properties of cationic antimicrobial peptides using Suzuki-Miyaura coupling. The new design allowed the easy tuning of the conformational restriction, controlled by introduction of intramolecular hydrogen bonds, and the overall hydrophobicity by modifications to the central ring and the side chains. This approach allowed us to better understand the influence of these features on the antimicrobial activity and selectivity. We found that the overall hydrophobicity had a more significant impact on antimicrobial and hemolytic activity than the conformational stiffness. A novel compound was discovered with antimicrobial activity similar to the well known antimicrobial peptide, MSI-78, which have MICs of 0.78 μg/mL against S. aureus and 6.25 μg/mL against E. coli. PMID:21388190

  15. Nanomechanical Response of Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Parg, Richard; Dutcher, John

    2014-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides: polymyxin B and polymyxin B nonapeptide. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  16. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  17. Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides

    PubMed Central

    Wang, Guangshun

    2015-01-01

    Peptides with diverse amino acid sequences, structures and functions are essential players in biological systems. The construction of well-annotated databases not only facilitates effective information management, search and mining, but also lays the foundation for developing and testing new peptide algorithms and machines. The antimicrobial peptide database (APD) is an original construction in terms of both database design and peptide entries. The host defense antimicrobial peptides (AMPs) registered in the APD cover the five kingdoms (bacteria, protists, fungi, plants, and animals) or three domains of life (bacteria, archaea, and eukaryota). This comprehensive database (http://aps.unmc.edu/AP) provides useful information on peptide discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics. The APD enables effective search, prediction, and design of peptides with antibacterial, antiviral, antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, immune modulation, or anti-oxidative properties. A universal classification scheme is proposed herein to unify innate immunity peptides from a variety of biological sources. As an improvement, the upgraded APD makes predictions based on the database-defined parameter space and provides a list of the sequences most similar to natural AMPs. In addition, the powerful pipeline design of the database search engine laid a solid basis for designing novel antimicrobials to combat resistant superbugs, viruses, fungi or parasites. This comprehensive AMP database is a useful tool for both research and education. PMID:25555720

  18. Improved methods for classification, prediction, and design of antimicrobial peptides.

    PubMed

    Wang, Guangshun

    2015-01-01

    Peptides with diverse amino acid sequences, structures, and functions are essential players in biological systems. The construction of well-annotated databases not only facilitates effective information management, search, and mining but also lays the foundation for developing and testing new peptide algorithms and machines. The antimicrobial peptide database (APD) is an original construction in terms of both database design and peptide entries. The host defense antimicrobial peptides (AMPs) registered in the APD cover the five kingdoms (bacteria, protists, fungi, plants, and animals) or three domains of life (bacteria, archaea, and eukaryota). This comprehensive database ( http://aps.unmc.edu/AP ) provides useful information on peptide discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics. The APD enables effective search, prediction, and design of peptides with antibacterial, antiviral, antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, immune modulation, or antioxidative properties. A universal classification scheme is proposed herein to unify innate immunity peptides from a variety of biological sources. As an improvement, the upgraded APD makes predictions based on the database-defined parameter space and provides a list of the sequences most similar to natural AMPs. In addition, the powerful pipeline design of the database search engine laid a solid basis for designing novel antimicrobials to combat resistant superbugs, viruses, fungi, or parasites. This comprehensive AMP database is a useful tool for both research and education.

  19. Synthetic Mimics of Antimicrobial Peptides with Immunomodulatory Responses

    PubMed Central

    Thaker, Hitesh D.; Som, Abhigyan; Ayaz, Furkan; Scott, Richard W.; Anguita, Juan; Tew, Gregory N.

    2012-01-01

    A new series of aryl-based SMAMPs with antimicrobial activity and selectivity have been developed via systematic tuning of aromatic groups and charge. The addition of a pendant aromatic group improved the antimicrobial activity against gram-negative bacteria, while the addition of charge improved the selectivity. SMAMP 4, with six charges and a naphthalene central ring, demonstrated a selectivity of 200 against both S. aureus and E. coli, compared to a selectivity of 8 for the peptide MSI-78. In addition to the direct antimicrobial activity, SMAMP 4 exhibited specific immunomodulatory activities in macrophages both in the presence and absence of LPS, a TLR agonist. SMAMP 4 also induced the production of the neutrophil chemo-attractant, murine KC, in mouse primary cells. This is the first, non-peptidic SMAMP demonstrating both good antimicrobial and immunomodulatory activity. PMID:22697149

  20. De Novo Designed Synthetic Mimics of Antimicrobial Peptides

    PubMed Central

    Scott, Richard W.; DeGrado, William F.; Tew, Gregory N.

    2008-01-01

    Summary Antimicrobial peptides are small cationic amphiphiles that play an important role in the innate immune system. Given their broad specificity, they appear to be ideal therapeutic agents. As a result, over the last decade, there has been considerable interest in developing them as intravenously administered antibiotics. However, it has proven difficult to accomplish this goal with peptide-based structures. While it has been possible to solve some relatively simple problems such as susceptibility to proteolysis, more severe problems have included the expense of the materials, toxicity, limited efficacy, and limited tissue distribution. As a result, we developed small synthetic oligomers designed to adopt amphiphilic conformations and exhibit potent antimicrobial activity while being non-toxic to host cells. One class of these synthetic mimics of antimicrobial peptides (SMAMPs) is being developed as intravenous antibiotics PMID:18996193

  1. Immunotherapy for pulmonary TB: antimicrobial peptides and their inducers.

    PubMed

    Rivas-Santiago, Cesar Enrique; Hernández-Pando, Rogelio; Rivas-Santiago, Bruno

    2013-10-01

    TB is an infectious disease that still has an enormous impact on public health worldwide. With the continuous increasing epidemic of multidrug-resistant TB, new drugs and vaccines are urgently needed. In the last decade there has been a broad advance in the knowledge of innate immunity in TB. Together with the growing research regarding immunomodulators, new promising insights have been developed that can contribute in the control of TB. This is the case of antimicrobial peptides, which can be potential therapeutic or adjuvant agents. The current high cost of antimicrobial peptide synthesis may be a current deterrent for treatment; antimicrobial peptide-inducers can be an alternative for low-cost treatment and/or adjuvants.

  2. Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity.

    PubMed

    Auvynet, Constance; Rosenstein, Yvonne

    2009-11-01

    The term 'antimicrobial peptides' refers to a large number of peptides first characterized on the basis of their antibiotic and antifungal activities. In addition to their role as endogenous antibiotics, antimicrobial peptides, also called host defense peptides, participate in multiple aspects of immunity (inflammation, wound repair, and regulation of the adaptive immune system) as well as in maintaining homeostasis. The possibility of utilizing these multifunctional molecules to effectively combat the ever-growing group of antibiotic-resistant pathogens has intensified research aimed at improving their antibiotic activity and therapeutic potential, without the burden of an exacerbated inflammatory response, but conserving their immunomodulatory potential. In this minireview, we focus on the contribution of small cationic antimicrobial peptides - particularly human cathelicidins and defensins - to the immune response and disease, highlighting recent advances in our understanding of the roles of these multifunctional molecules.

  3. [Insect antimicrobial peptides: structures, properties and gene regulation].

    PubMed

    Wang, Yi-Peng; Lai, Ren

    2010-02-01

    Insect antimicrobial peptides (AMPs) are an important group of insect innate immunity effectors. Insect AMPs are cationic and contain less than 100 amino acid residues. According to structure, insect AMPs can be divided into a limited number of families. The diverse antimicrobial spectrum of insect AMPs may indicate different modes of action. Research on the model organism Drosophila indicate that insect AMPs gene regulation involves multiple signaling pathways and a large number of signaling molecules.

  4. A Novel Peptide Hydrogel for an Antimicrobial Bandage Contact Lens.

    PubMed

    Gallagher, Andrew G; Alorabi, Jamal A; Wellings, Donald A; Lace, Rebecca; Horsburgh, Mal J; Williams, Rachel L

    2016-08-01

    A peptide hydrogel with an antimicrobial activity is developed as a bandage contact lens. The antimicrobial activity is enhanced with the addition of the biomolecules penicillin G or poly-ε-lysine and is positive against Staphylococcus aureus and Escherichia coli. The lens is also noncytotoxic toward a human corneal epithelial cell line and as a consequence is of great potential as a drug-eluting bandage lens replacing conventional corneal ulcer treatment. PMID:27276231

  5. Insights into Antimicrobial Peptides from Spiders and Scorpions.

    PubMed

    Wang, Xiuqing; Wang, Guangshun

    2016-01-01

    The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses. PMID:27165405

  6. Acne Inversa: Evaluating Antimicrobial Peptides and Proteins

    PubMed Central

    Sand, Michael; Skrygan, Marina; Kreuter, Alexander; Altmeyer, Peter; Gambichler, Thilo

    2012-01-01

    Background Acne inversa is a chronic, suppurative relapsing inflammatory skin disease that primarily affects the axillae, perineum and inframammary regions. Evidence suggests that the innate immune system is involved in the pathogenesis of acne inversa. Objective To investigate the role of the innate immune system in acne inversa. Methods Skin biopsies were obtained from inflammatory skin lesions (n=17) and from non-lesional skin (intraindividual control, n=17) of patients with acne inversa. Additional skin lesions were taken from patients with chronic venous leg ulcers (interindividual control, n=5). Quantitative real-time reverse transcription-polymerase chain reaction was used to determine the mRNA levels of antimicrobial peptides and proteins (AMPs), including human β-defensin (hBD)-1, hBD-2 and hBD-3, LL-37 (cathelicidin) and Ribonuclease 7 (RNase 7). mRNA levels were also determined for inflammatory and anti-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-1 (MMP1), interleukin (IL)-1β, IL-6, IL-8 and IL-10. Results The mRNA levels of hBD-2, LL-37, IL-1β, IL-6, IL-8, IL-10 and MMP1 were significantly higher in acne inversa lesions compared to non-lesional skin (p<0.05). A significant positive correlation expression was observed between hBD-2 mRNA expression and LL-37 (ρ=0.53, p=0.03), and between hBD-2 and RNAse 7 (ρ=0.68, p=0.006). When compared to the chronic venous leg ulcer lesions, acne inversa lesions showed a significantly higher expression of RNase 7 mRNA, while IL-1 β, IL-6, IL-8, TNF-α and MMP1 mRNA expression was significantly higher in the chronic venous leg ulcer lesions (p<0.05). Conclusion The AMP, cytokine milieu and tissue proteases in acne inversa lesions differ significantly from non-lesional skin and chronic venous leg ulcers. The positively correlating up-regulation of AMPs in acne inversa indicates an important role of the innate immune system in the pathogenesis of this disorder

  7. CAMP: a useful resource for research on antimicrobial peptides

    PubMed Central

    Thomas, Shaini; Karnik, Shreyas; Barai, Ram Shankar; Jayaraman, V. K.; Idicula-Thomas, Susan

    2010-01-01

    Antimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been developed for advancement of the present understanding on antimicrobial peptides. It is manually curated and currently holds 3782 antimicrobial sequences. These sequences are divided into experimentally validated (patents and non-patents: 2766) and predicted (1016) datasets based on their reference literature. Information like source organism, activity (MIC values), reference literature, target and non-target organisms of AMPs are captured in the database. The experimentally validated dataset has been further used to develop prediction tools for AMPs based on the machine learning algorithms like Random Forests (RF), Support Vector Machines (SVM) and Discriminant Analysis (DA). The prediction models gave accuracies of 93.2% (RF), 91.5% (SVM) and 87.5% (DA) on the test datasets. The prediction and sequence analysis tools, including BLAST, are integrated in the database. CAMP will be a useful database for study of sequence-activity and -specificity relationships in AMPs. CAMP is freely available at http://www.bicnirrh.res.in/antimicrobial. PMID:19923233

  8. LPS interactions with immobilized and soluble antimicrobial peptides.

    PubMed

    Gustafsson, Anna; Olin, Anders I; Ljunggren, Lennart

    2010-04-19

    A promising approach in sepsis therapy is the use of peptides truncated from serum- and membrane-proteins with binding domains for LPS: antimicrobial peptides (AMPs). AMPs can be useful in combination with conventional antibiotics to increase killing and neutralize LPS. Although many AMPs show a high specificity towards bacterial membranes, they can also exhibit toxicity, i.e. non-specific membrane lysis, of mammalian cells such as erythrocytes and therefore, unsuitable as systemic drugs. A way to overcome this problem may be an extracorporeal therapy with immobilized peptides. This study will compare neutralization of LPS using different AMPs in solution and when immobilized on to solid phases. The peptides ability to neutralize LPS-induced cytokine release in whole blood will also be tested. The peptides are truncated derivates from the known AMPs LL-37, SC4, BPI, S3 Delta and CEME. Two different methods were used to immobilize peptides, biomolecular interaction analysis, and Pierce SulfoLink Coupling Gel. To investigate LPS binding in solution the LAL test was used. After whole blood incubation with LPS and AMPs ELISA was used to measure TNFalpha, IL-1 beta and IL-6 production. The results suggest that immobilization of antimicrobial peptides does not inhibit their capacity to neutralize LPS, although there are differences between the peptides tested. Thus, peptides derived from LL-37 and CEME were more efficient both in LPS binding and neutralizing LPS-induced cytokine production. PMID:20233038

  9. NMR and computational data of two novel antimicrobial peptides.

    PubMed

    Falcigno, Lucia; Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Campanile, Giuseppe; Anastasio, Aniello

    2016-09-01

    Here we report details on the design and conformational analysis of two novel peptides showing antimicrobial properties, as reported in the research article, "New antimicrobial peptides against foodborne pathogens: from in silico design to experimental evidence" G. Palmieri, M. Balestrieri, Y.T.R. Proroga, L. Falcigno, A. Facchiano, A. Riccio, F. Capuano, R. Marrone, G. Campanile, A. Anastasio (2016) [1]. NMR data, such as chemical shifts in two different solvents as well as aCH protons deviations from random coil values and NOE patterns, are shown together with the statistics of structural calculations. Strategy and particulars of molecular design are presented. PMID:27508217

  10. Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin.

    PubMed

    Zhu, Shunyi; Aumelas, André; Gao, Bin

    2011-02-24

    Antimicrobial activity and solution structures of four 13-amino acid peptides derived from the fusion domain of viral hemagglutinin proteins are presented. The results show that carboxyl-terminal amidation is a key factor to switch a viral fusion domain-derived sequence into an antimicrobial peptide. Optimization of amphiphilic balance on the amidated analogue largely improves efficacy and enlarges antimicrobial spectra of these peptides. Our work indicates that viral fusion domains have potential to be engineered into potent antimicrobial peptides.

  11. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  12. SMALL CYSTEINE-RICH PEPTIDES RESEMBLING ANTIMICROBIAL PEPTIDES HAVE BEEN UNDER-PREDICTED IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multicellular organisms produce small cysteine-rich anti-microbial peptides as an innate defense against pathogens. While defensins, a well-known class of such peptides, are common among eukaryotes, there are classes restricted to the plant kingdom. These include thionins, lipid transfer proteins,...

  13. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages.

    PubMed

    Joerger, R D

    2003-04-01

    Bacteriocins, antimicrobial peptides, and bacteriophage have attracted attention as potential substitutes for, or as additions to, currently used antimicrobial compounds. This publication will review research on the potential application of these alternative antimicrobial agents to poultry production and processing. Bacteriocins are proteinaceous compounds of bacterial origin that are lethal to bacteria other than the producing strain. It is assumed that some of the bacteria in the intestinal tract produce bacteriocins as a means to achieve a competitive advantage, and bacteriocin-producing bacteria might be a desirable part of competitive exclusion preparations. Purified or partially purified bacteriocins could be used as preservatives or for the reduction or elimination of certain pathogens. Currently only nisin, produced by certain strains of Lactococcus lactis subsp. lactis, has regulatory approval for use in certain foods, and its use for poultry products has been studied extensively. Exploration of the application of antimicrobial peptides from sources other than bacteria to poultry has not yet commenced to a significant extent. Evidence for the ability of chickens to produce such antimicrobial peptides has been provided, and it is likely that these peptides play an important role in the defense against various pathogens. Bacteriophages have received renewed attention as possible agents against infecting bacteria. Evidence from several trials indicates that phage therapy can be effective under certain circumstances. Numerous obstacles for the use of phage as antimicrobials for poultry or poultry products remain. Chiefly among them are the narrow host range of many phages, the issue of phage resistance, and the possibility of phage-mediated transfer of genetic material to bacterial hosts. Regulatory issues and the high cost of producing such alternative antimicrobial agents are also factors that might prevent application of these agents in the near future

  14. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae.

    PubMed

    Rollins-Smith, Louise A; Reinert, Laura K; Miera, Verma; Conlon, J Michael

    2002-09-20

    Populations of the Tarahumara frog Rana tarahumarae have decreased markedly in recent years in the northern part of their range. Infection by the chytrid fungus Batrachochytrium dendrobatidis has been implicated in these declines. To determine whether antimicrobial peptides in the skin provide protection against this pathogen, norepinephrine-stimulated skin secretions were tested for their ability to inhibit growth of B. dendrobatidis in vitro. After concentration, crude mixtures of skin peptides inhibited the growth of the chytrid in a concentration-dependent manner. Proteomic analysis led to the identification and characterization of three peptides belonging to the brevinin-1 family of antimicrobial peptides and three belonging to the ranatuerin-2 family. The two most abundant peptides, ranatuerin-2TRa (GIMDSIKGAAKEIAGHLLDNLKCKITGC) and brevinin-1TRa (FLPVIAGIAANVLPKLFCKLTKRC), were active against B. dendrobatidis (MIC of 50 microM for ranatuerin-2TRa and 12.5 microM for brevinin-1TRa against zoospores). These data clearly show that antimicrobial peptides in the skin secretions of the Tarahumara frog are active against B. dendrobatidis and should provide some protection against infection. Therefore, the observed susceptibility of these frogs to this pathogen in the wild may be due to the effects of additional environmental factors that impair this innate defense mechanism, leading to the observed population declines.

  15. Identification of candidate antimicrobial peptides derived from abalone hemocyanin.

    PubMed

    Zhuang, Jun; Coates, Christopher J; Zhu, Hongtao; Zhu, Ping; Wu, Zujian; Xie, Lianhui

    2015-03-01

    Hemocyanins present in invertebrate hemolymph are multifunctional proteins, responsible for oxygen transport and contributing to innate immunity through phenoloxidase-like activity. In arthropods, hemocyanin has been identified as a source of broad-spectrum antimicrobial peptides during infection. Conversely, no hemocyanin-derived antimicrobial peptides have been reported for molluscs. The present study describes a putative antimicrobial region, termed haliotisin, located within the linking sequence between the α-helical domain and β-sheet domain of abalone (Haliotis tuberculata) hemocyanin functional unit E. A series of synthetic peptides based on overlapping fragments of the haliotisin region were tested for their bactericidal potential. Incubating Gram-positive and Gram-negative bacteria in the presence of certain haliotisin peptides, notably peptides 3-4-5 (DTFDYKKFGYRYDSLELEGRSISRIDELIQQRQEKDRTFAGFLLKGFGTSAS) led to reductions in microbial growth. Furthermore, transmission electron micrographs of haliotisin-treated bacteria revealed damages to the microbial cell wall. Data discussed here provides the first evidence to suggest that molluscan hemocyanin may act as a source of anti-infective peptides. PMID:25445903

  16. Antimicrobial activity of cationic peptides in endodontic procedures

    PubMed Central

    Winfred, Sofi Beaula; Meiyazagan, Gowri; Panda, Jiban J.; Nagendrababu, Venkateshbabu; Deivanayagam, Kandaswamy; Chauhan, Virander S.; Venkatraman, Ganesh

    2014-01-01

    Objectives: The present study aimed to investigate the antimicrobial and biofilm inhibition activity of synthetic antimicrobial peptides (AMPs) against microbes such as Enterococcus faecalis, Staphylococcus aureus, and Candida albicans which are involved in endodontic infections. Materials and Methods: Agar diffusion test was done to determine the activity of peptides. The morphological changes in E. faecalis and reduction in biofilm formation after treatment with peptides were observed using scanning electron microscope. The efficacy of peptides using an ex vivo dentinal model was determined by polymerase chain reaction and confocal laser scanning microscopy. Platelet aggregation was done to determine the biocompatibility of peptides. Results: Among 11 peptides, two of the amphipathic cationic peptides were found to be highly active against E. faecalis, S. aureus, C. albicans. Efficacy results using dentinal tubule model showed significant reduction in microbial load at 400 μm depth. The peptides were also biocompatible. Conclusion: These results suggest that synthetic AMPs have the potential to be developed as antibacterial agents against microorganisms involved in dental infections and thus could prevent the spread and persistence of endodontic infections improving treatment outcomes and teeth preservation. PMID:24966779

  17. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect.

    PubMed

    Boge, Lukas; Bysell, Helena; Ringstad, Lovisa; Wennman, David; Umerska, Anita; Cassisa, Viviane; Eriksson, Jonny; Joly-Guillou, Marie-Laure; Edwards, Katarina; Andersson, Martin

    2016-05-01

    The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded

  18. Amplifying renal immunity: the role of antimicrobial peptides in pyelonephritis.

    PubMed

    Becknell, Brian; Schwaderer, Andrew; Hains, David S; Spencer, John David

    2015-11-01

    Urinary tract infections (UTIs), including pyelonephritis, are among the most common and serious infections encountered in nephrology practice. UTI risk is increased in selected patient populations with renal and urinary tract disorders. As the prevalence of antibiotic-resistant uropathogens increases, novel and alternative treatment options will be needed to reduce UTI-associated morbidity. Discoveries over the past decade demonstrate a fundamental role for the innate immune system in protecting the urothelium from bacterial challenge. Antimicrobial peptides, an integral component of this urothelial innate immune system, demonstrate potent bactericidal activity toward uropathogens and might represent a novel class of UTI therapeutics. The urothelium of the bladder and the renal epithelium secrete antimicrobial peptides into the urinary stream. In the kidney, intercalated cells--a cell-type involved in acid-base homeostasis--have been shown to be an important source of antimicrobial peptides. Intercalated cells have therefore become the focus of new investigations to explore their function during pyelonephritis and their role in maintaining urinary tract sterility. This Review provides an overview of UTI pathogenesis in the upper and lower urinary tract. We describe the role of intercalated cells and the innate immune response in preventing UTI, specifically highlighting the role of antimicrobial peptides in maintaining urinary tract sterility.

  19. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.

    PubMed

    Kooi, Cora; Sokol, Pamela A

    2009-09-01

    Burkholderia cenocepacia secretes two zinc-dependent metalloproteases, designated ZmpA and ZmpB. Previously, ZmpA and ZmpB have been shown to cleave several proteins important in host defence. In this study, the ability of ZmpA and ZmpB to digest and inactivate antimicrobial peptides involved in innate immunity was examined. ZmpB but not ZmpA cleaved beta-defensin-1. ZmpA but not ZmpB cleaved the cathelicidin LL-37. Both enzymes cleaved elafin and secretory leukocyte inhibitor, which are antimicrobial peptides as well as neutrophil elastase inhibitors. Both ZmpA and ZmpB cleaved protamine, a fish antimicrobial peptide, and a zmpA zmpB mutant was more sensitive to protamine killing than the parental strain. ZmpA or ZmpB cleavage of elafin inactivated its anti-protease activity. The effect of ZmpA and ZmpB on the neutrophil proteases elastase and cathepsin G was also examined but neither enzyme was active against these host proteases. These studies suggest that ZmpA and ZmpB may influence the resistance of B. cenocepacia to host antimicrobial peptides as well as alter the host protease/anti-protease balance in chronic respiratory infections.

  20. Selected antimicrobial peptides inhibit in vitro growth of Campylobacter spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism where they h...

  1. [Cationic antimicrobial peptides as molecular immunity factors: multi-functionality].

    PubMed

    Kokriakov, V N; Koval'chuk, L V; Aleshina, G M; Shamova, O V

    2006-01-01

    Cationic antimicrobial peptides (AMP) of mammals (defensins, cathelicidins, protegrins and many others) are regarded as important components of congenital immunity. AMP are multifunctional molecules, capable of killing microorganisms directly by acting as endogenic, natural antibiotics ("immediate immunity"); in addition, they may take part in congenital and adaptive immune reactions (immunoregulation) and function as signal molecules, involved into tissue reparation, inflammation (including sepsis), blood coagulation and other important processes in the body. The molecular mechanisms of the direct antimicrobial action of AMP are considered. In addition to antimicrobial and immunoregulating action, AMP have influence on immunoneuroendocrine interactions, taking part in the pathogenesis of stress reactions (corticostatic action), as well as play the role of regulatory peptides of adaptogenic action. The many-sided character of the action of AMP opens prospects to the creation of new medicinal remedies on their basis. Such requirements are met by the Russian preparation "Superlymph" (a complex of natural cytokines), containing protegrin-like AMP.

  2. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  3. Antimicrobial β-peptides and α-peptoids.

    PubMed

    Godballe, Troels; Nilsson, Line L; Petersen, Pernille D; Jenssen, Håvard

    2011-02-01

    The field of drug discovery and development has seen tremendous activity over the past decade to better tackle the increasing occurrence of drug-resistant bacterial infections and to alleviate some of the pressure we put on the last-resort drugs on the market. One of the new and promising drug candidates is derived from naturally occurring antimicrobial peptides. However, despite promising results in early-stage clinical trials, these molecules have faced some difficulties securing FDA approval, which can be linked to their poor metabolic stability. Hence, mimetics of these antimicrobial peptides have been suggested as new templates for antibacterial compound design, because these mimetics are resistant against degradation by proteases. This review will discuss the structural features of two different types of mimetics, β-peptides and α-peptoids, in relation to their antibacterial activity and conclude on their potential as new candidates for bacterial intervention. PMID:21266014

  4. Antimicrobial peptides: natural templates for synthetic membrane-active compounds.

    PubMed

    Giuliani, A; Pirri, G; Bozzi, A; Di Giulio, A; Aschi, M; Rinaldi, A C

    2008-08-01

    The innate immunity of multicellular organisms relies in large part on the action of antimicrobial peptides (AMPs) to resist microbial invasion. Crafted by evolution into an extremely diversified array of sequences and folds, AMPs do share a common amphiphilic 3-D arrangement. This feature is directly linked with a common mechanism of action that predominantly (although not exclusively) develops upon interaction of peptides with cell membranes of target cells. This minireview reports on current understanding of the modes of interaction of AMPs with biological and model membranes, especially focusing on recent insights into the folding and oligomerization requirements of peptides to bind and insert into lipid membranes and exert their antibiotic effects. Given the potential of AMPs to be developed into a new class of anti-infective agents, emphasis is placed on how the information on peptide-membrane interactions could direct the design and selection of improved biomimetic synthetic peptides with antibiotic properties.

  5. Design and Engineering Strategies for Synthetic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Tossi, Alessandro

    Thousands of antimicrobial peptides (AMPs) of prokaryotic, fungal, plant, or animal origin have been identified, and their potential as lead compounds for the design of novel therapeutic agents in the treatment of infection, for stimulating the immune system, or in countering septic shock has been widely recognized. Added to this is their possible use in prophylaxis of infectious diseases for animal or plant protection, for disinfection of surgical instruments or industrial surfaces, and for food preservation among other commercially important applications. Since the early eighties, AMPs have been subject to a vast number of studies aimed at understanding what determines their potency and spectrum of activities against bacterial or fungal pathogens, and at maximizing these while limiting cytotoxic activities toward host cells. Much research has also been directed toward understanding specific mechanisms of action underlying the antimicrobial activity and selectivity, to be able to redesign the peptides for optimal performance. A central theme in the mode of action of many AMPs is their dynamic interaction with biological membranes, which involves various properties of these peptides such as, among others, surface hydrophobicity and polarity, charge, structure, and induced conformational variations. These features are often intimately interconnected so that engineering peptides to independently adjust any one property in particular is not an easy task. However, solid-phase peptide synthesis allows the use of a large repertoire of nonproteinogenic amino acids that can be used in the rational design of peptides to finely tune structural and physicochemical properties and precisely probe structure-function relationships.

  6. Antimicrobial peptides from the skins of North American frogs.

    PubMed

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert

    2009-08-01

    North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.

  7. The role of antimicrobial peptides in animal defenses

    NASA Astrophysics Data System (ADS)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  8. Bacterial resistance to antimicrobial peptides: an evolving phenomenon.

    PubMed

    Fleitas, Osmel; Agbale, Caleb M; Franco, Octavio L

    2016-01-01

    Bacterial resistance to conventional antibiotics is currently a real problem all over the world, making novel antimicrobial compounds a real research priority. Some of the most promising compounds found to date are antimicrobial peptides (AMPs). The benefits of these drugs include their broad spectrum of activity that affects several microbial processes, making the emergence of resistance less likely. However, bacterial resistance to AMPs is an evolving phenomenon that compromises the therapeutic potential of these compounds. Therefore, it is mandatory to understand bacterial mechanisms of resistance to AMPs in depth, in order to develop more powerful AMPs that overcome the bacterial resistance response.

  9. Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering.

    PubMed

    Wang, Guangshun

    2012-02-01

    Natural antimicrobial peptides (AMPs) are gene-coded defense molecules discovered in all the three life domains: Eubacteria, Archaea, and Eukarya. The latter covers protists, fungi, plants, and animals. It is now recognized that amino acid composition, peptide sequence, and post-translational modifications determine to a large extent the structure and function of AMPs. This article systematically describes post-translational modifications of natural AMPs annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Currently, 1147 out of 1755 AMPs in the database are modified and classified into more than 17 types. Through chemical modifications, the peptides fold into a variety of structural scaffolds that target bacterial surfaces or molecules within cells. Chemical modifications also confer desired functions to a particular peptide. Meanwhile, these modifications modulate other peptide properties such as stability. Elucidation of the relationship between AMP property and chemical modification inspires peptide engineering. Depending on the objective of our design, peptides may be modified in various ways so that the desired features can be enhanced whereas unwanted properties can be minimized. Therefore, peptide design plays an essential role in developing natural AMPs into a new generation of therapeutic molecules.

  10. The roles of antimicrobial peptides in innate host defense.

    PubMed

    Diamond, Gill; Beckloff, Nicholas; Weinberg, Aaron; Kisich, Kevin O

    2009-01-01

    Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents.

  11. Identification of multiple antimicrobial peptides from the skin of fine-spined frog, Hylarana spinulosa (Ranidae).

    PubMed

    Yang, Xiaolong; Hu, Yuhong; Xu, Shiqi; Hu, Yonghong; Meng, Hao; Guo, Chao; Liu, Yuliang; Liu, Jingze; Yu, Zhijun; Wang, Hui

    2013-12-01

    In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.

  12. Role of acetylation and charge in antimicrobial peptides based on human beta-defensin-3.

    PubMed

    Papanastasiou, Emilios Andrew; Hua, Quyen; Sandouk, Aline; Son, U Hyon; Christenson, Andrew James; Van Hoek, Monique Louise; Bishop, Barney Michael

    2009-07-01

    Cationic antimicrobial peptides are an evolutionarily ancient and essential element of innate immunity in higher organisms. The precise mechanism by which these peptides exert their antimicrobial activity on bacteria is not well understood. Decapeptides based on the C-terminus of human beta-defensin-3 were designed and evaluated to study the role of charge in defining the antimicrobial activity and selectivity of these peptides against Escherichia coli. Acetylated derivatives of these peptides were prepared in order to further evaluate how positively charged primary amines contribute to potency in these small antimicrobial peptides. These peptides enabled us to explore the relationship between net charge, charge distribution and antimicrobial activity. While the results indicate that net charge is a major factor in antimicrobial activity in these peptides, the actual relationship between charge and potency appears to be more complex.

  13. Antimicrobial peptides and proteins of the horse - insights into a well-armed organism

    PubMed Central

    2011-01-01

    Antimicrobial peptides play a pivotal role as key effectors of the innate immune system in plants and animals and act as endogenous antibiotics. The molecules exhibit an antimicrobial activity against bacteria, viruses, and eukaryotic pathogens with different specificities and potencies depending on the structure and amino-acid composition of the peptides. Several antimicrobial peptides were comprehensively investigated in the last three decades and some molecules with remarkable antimicrobial properties have reached the third phase of clinical studies. Next to the peptides themselves, numerous organisms were examined and analyzed regarding their repertoire of antimicrobial peptides revealing a huge number of candidates with potencies and properties for future medical applications. One of these organisms is the horse, which possesses numerous peptides that are interesting candidates for therapeutical applications in veterinary medicine. Here we summarize investigations and knowledge on equine antimicrobial peptides, point to interesting candidates, and discuss prospects for therapeutical applications. PMID:21888650

  14. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity.

    PubMed

    Ramírez-Carreto, Santos; Jiménez-Vargas, Juana María; Rivas-Santiago, Bruno; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto

    2015-11-01

    The antimicrobial potential of two new non-disulfide bound peptides, named VpAmp1.0 (LPFFLLSLIPSAISAIKKI, amidated) and VpAmp2.0 (FWGFLGKLAMKAVPSLIGGNKSSSK) is here reported. These are 19- and 25-aminoacid-long peptides with +2 and +4 net charges, respectively. Their sequences correspond to the predicted mature regions from longer precursors, putatively encoded by cDNAs derived from the venom glands of the Mexican scorpion Vaejovis punctatus. Both peptides were chemically synthesized and assayed against a variety of microorganisms, including pathogenic strains from clinical isolates and strains resistant to conventional antibiotics. Two shorter variants, named VpAmp1.1 (FFLLSLIPSAISAIKKI, amidated) and VpAmp2.1 (FWGFLGKLAMKAVPSLIGGNKK), were also synthesized and tested. The antimicrobial assays revealed that the four synthetic peptides effectively inhibit the growth of both Gram-positive (Staphylococcus aureus and Streptococcus agalactiaea) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria, with MICs in the range of 2.5-24.0 μM; yeasts (Candida albicans and Candida glabrata) with MICs of 3.1-50.0 μM; and two clinically isolated strains of Mycobacterium tuberculosis-including a multi-drug resistant one- with MICs in the range of 4.8-30.5 μM. A comparison between the activities of the original peptides and their derivatives gives insight into the structural/functional role of their distinctive residues.

  15. Host defense peptides and their antimicrobial-immunomodulatory duality.

    PubMed

    Steinstraesser, Lars; Kraneburg, Ursula; Jacobsen, Frank; Al-Benna, Sammy

    2011-03-01

    Host defence peptides (HDPs) are short cationic molecules produced by the immune systems of most multicellular organisms and play a central role as effector molecules of innate immunity. Host defence peptides have a wide range of biological activities from direct killing of invading pathogens to modulation of immunity and other biological responses of the host. HDPs have important functions in multiple, clinically relevant disease processes and their imbalanced expression is associated with pathology in different organ systems and cell types. Furthermore, HDPs are now evaluated as model molecules for the development of novel natural antibiotics and immunoregulatory compounds. This review provides an overview of HDPs focused on their antimicrobial-immunomodulatory duality.

  16. A Large-Scale Structural Classification of Antimicrobial Peptides

    PubMed Central

    Lee, Chen-Che; Yang, Je-Ruei; Lai, Jim Z. C.

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbial organisms such as bacteria, fungi, parasites, and viruses. AMPs have abundant sequences and structures, two fundamental resources for bioinformatics researches, but analyses on how they associate with each other are either nonexistent or limited to partial classification and data. We thus present A Database of Anti-Microbial peptides (ADAM), which contains 7,007 unique sequences and 759 structures, to systematically establish comprehensive associations between AMP sequences and structures through structural folds and to provide an easy access to view their relationships. 30 distinct AMP structural fold clusters with more than one structure are detected and about a thousand AMPs are associated with at least one structural fold cluster. According to ADAM, AMP structural folds are limited—AMPs only cover about 3% of the overall protein fold space. PMID:26000295

  17. Salivary Antimicrobial Peptides in Early Detection of Periodontitis

    PubMed Central

    Güncü, Güliz N.; Yilmaz, Dogukan; Könönen, Eija; Gürsoy, Ulvi K.

    2015-01-01

    In the pathogenesis of periodontitis, an infection-induced inflammatory disease of the tooth-supporting tissues, there is a complex interaction between the subgingival microbiota and host tissues. A periodontal diagnostic tool for detecting the initiation and progression of the disease, monitoring the response to therapy, or measuring the degree of susceptibility to future disease progression has been of interest for a long time. The value of various enzymes, proteins, and immunoglobulins, which are abundant constituents of saliva, as potential biomarkers has been recognized and extensively investigated for periodontal diseases. Gingival defensins and cathelicidins are small cationic antimicrobial peptides that play an important role in innate immune response. However, their applicability as salivary biomarkers is still under debate. The present review focuses on proteomic biomarkers and antimicrobial peptides, in particular, to be used at early phases of periodontitis. PMID:26734583

  18. Context Mediates Antimicrobial Efficacy of Kinocidin Congener Peptide RP-1

    PubMed Central

    Yount, Nannette Y.; Cohen, Samuel E.; Kupferwasser, Deborah; Waring, Alan J.; Ruchala, Piotr; Sharma, Shantanu; Wasserman, Karlman; Jung, Chun-Ling; Yeaman, Michael R.

    2011-01-01

    Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible (S) or resistant (R) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized STS and CA strains at both pH, whereas permeabilization was modest for STR or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH– and target–cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context–specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity. PMID:22073187

  19. Nanomechanical Response of Bacterial Cells to Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Parg, Richard; Dutcher, John

    2015-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and we have developed an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of bacterial cells upon exposure to antimicrobial peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different antimicrobial concentrations, revealed large changes to the viscoelastic parameters including a distinctive signature for the loss of integrity of the bacterial cell envelope. Our previous experiments have focused on Pseudomonas aeruginosaPAO1 bacterial cells in Milli-Q water, for which the cells can withstand the large osmotic pressure. In the present study we have focused on performing the measurements in buffer to obtain more biologically relevant results. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  20. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Sun, Yue; Shang, Dejing

    2015-01-01

    Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade. PMID:26612970

  1. Sphingolipids and Antimicrobial Peptides: Function and Roles in Atopic Dermatitis

    PubMed Central

    Park, Kyungho; Lee, Sinhee; Lee, Yong-Moon

    2013-01-01

    Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin. PMID:24244808

  2. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    PubMed Central

    Zhang, Guolong; Sunkara, Lakshmi T.

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  3. Diversity, evolution and medical applications of insect antimicrobial peptides.

    PubMed

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  4. Diversity, evolution and medical applications of insect antimicrobial peptides.

    PubMed

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160593

  5. Biohybrid polymer-antimicrobial peptide medium against Enterococcus faecalis.

    PubMed

    Eckhard, Lea H; Sol, Asaf; Abtew, Ester; Shai, Yechiel; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2014-01-01

    Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti-E. faecalis activity.

  6. Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus faecalis

    PubMed Central

    Eckhard, Lea H.; Sol, Asaf; Abtew, Ester; Shai, Yechiel; Domb, Abraham J.

    2014-01-01

    Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti- E. faecalis activity. PMID:25279943

  7. Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria

    PubMed Central

    Chernysh, Sergey; Gordya, Natalia; Suborova, Tatyana

    2015-01-01

    In recent decades much attention has been paid to antimicrobial peptides (AMPs) as natural antibiotics, which are presumably protected from resistance development in bacteria. However, experimental evolution studies have revealed prompt resistance increase in bacteria to any individual AMP tested. Here we demonstrate that naturally occurring compounds containing insect AMP complexes have clear advantage over individual peptide and small molecule antibiotics in respect of drug resistance development. As a model we have used the compounds isolated from bacteria challenged maggots of Calliphoridae flies. The compound isolated from blow fly Calliphora vicina was found to contain three distinct families of cell membrane disrupting/permeabilizing peptides (defensins, cecropins and diptericins), one family of proline rich peptides and several unknown antimicrobial substances. Resistance changes under long term selective pressure of the compound and reference antibiotics cefotaxime, meropenem and polymyxin B were tested using Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii clinical strains. All the strains readily developed resistance to the reference antibiotics, while no signs of resistance growth to the compound were registered. Similar results were obtained with the compounds isolated from 3 other fly species. The experiments revealed that natural compounds containing insect AMP complexes, in contrast to individual AMP and small molecule antibiotics, are well protected from resistance development in bacteria. Further progress in the research of natural AMP complexes may provide novel solutions to the drug resistance problem. PMID:26177023

  8. A synthetic peptide adhesion epitope as a novel antimicrobial agent.

    PubMed

    Kelly, C G; Younson, J S; Hikmat, B Y; Todryk, S M; Czisch, M; Haris, P I; Flindall, I R; Newby, C; Mallet, A I; Ma, J K; Lehner, T

    1999-01-01

    The earliest step in microbial infection is adherence by specific microbial adhesins to the mucosa of the oro-intestinal, nasorespiratory, or genitourinary tract. We inhibited binding of a cell surface adhesin of Streptococcus mutans to salivary receptors in vitro, as measured by surface plasmon resonance, using a synthetic peptide (p1025) corresponding to residues 1025-1044 of the adhesin. Two residues within p1025 that contribute to binding (Q1025, E1037) were identified by site-directed mutagenesis. In an in vivo human streptococcal adhesion model, direct application of p1025 to the teeth prevented recolonization of S. mutans but not Actinomyces, as compared with a control peptide or saline. This novel antimicrobial strategy, applying competitive peptide inhibitors of adhesion, may be used against other microorganisms in which adhesins mediate colonization of mucosal surfaces.

  9. Expression systems for heterologous production of antimicrobial peptides.

    PubMed

    Parachin, Nádia Skorupa; Mulder, Kelly Cristina; Viana, Antônio Américo Barbosa; Dias, Simoni Campos; Franco, Octávio Luiz

    2012-12-01

    Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.

  10. Transmembrane Pores Formed by Human Antimicrobial Peptide LL-37

    SciTech Connect

    Qian, Shuo

    2011-01-01

    Human LL-37 is a multifunctional cathelicidin peptide that has shown a wide spectrum of antimicrobial activity by permeabilizing microbial membranes similar to other antimicrobial peptides; however, its molecular mechanism has not been clarified. Two independent experiments revealed LL-37 bound to membranes in the {alpha}-helical form with the axis lying in the plane of membrane. This led to the conclusion that membrane permeabilization by LL-37 is a nonpore carpet-like mechanism of action. Here we report the detection of transmembrane pores induced by LL-37. The pore formation coincided with LL-37 helices aligning approximately normal to the plane of the membrane. We observed an unusual phenomenon of LL-37 embedded in stacked membranes, which are commonly used in peptide orientation studies. The membrane-bound LL-37 was found in the normal orientation only when the membrane spacing in the multilayers exceeded its fully hydrated value. This was achieved by swelling the stacked membranes with excessive water to a swollen state. The transmembrane pores were detected and investigated in swollen states by means of oriented circular dichroism, neutron in-plane scattering, and x-ray lamellar diffraction. The results are consistent with the effect of LL-37 on giant unilamellar vesicles. The detected pores had a water channel of radius 2333 {angstrom}. The molecular mechanism of pore formation by LL-37 is consistent with the two-state model exhibited by magainin and other small pore-forming peptides. The discovery that peptide-membrane interactions in swollen states are different from those in less hydrated states may have implications for other large membrane-active peptides and proteins studied in stacked membranes.

  11. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  12. Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree Model

    PubMed Central

    Lira, Felipe; Perez, Pedro S.; Baranauskas, José A.

    2013-01-01

    Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools. PMID:23455341

  13. Antimicrobial peptides: key components of the innate immune system.

    PubMed

    Pasupuleti, Mukesh; Schmidtchen, Artur; Malmsten, Martin

    2012-06-01

    Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.

  14. The Role of Antimicrobial Peptides at the Ocular Surface

    PubMed Central

    McDermott, Alison M.

    2009-01-01

    Antimicrobial peptides (AMPs) such as defensins and cathelicidins are small peptides with broad-spectrum activity against bacteria, fungi and viruses. In addition, several AMPs modulate mammalian cell behaviours including migration, proliferation and cytokine production. This review describes findings from recent studies showing the presence of various AMPs at the human ocular surface and discusses their mechanism of antimicrobial action and potential non-microbicidal roles. Corneal and conjunctival epithelial cells produce β-defensins and the cathelicidin LL-37, whereas neutrophils, infiltrating in response to a specific stimulus, supply additional LL-37 as well as α-defensins. In vitro studies suggest that LL-37 and human β-defensin-3 are the most likely to have significant independent antimicrobial activity, while other AMPs may act synergistically to help protect the ocular surface from invading pathogens. Current evidence also supports a role for some AMPs in modulating wound healing responses. Although yet to be brought to fruition, AMPs hold significant potential as therapeutic agents for the prophylaxis and treatment of infection, promotion of wound healing and immune modulation. PMID:19122467

  15. Diversity, evolution and medical applications of insect antimicrobial peptides

    PubMed Central

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160593

  16. Identification and characterization of antimicrobial peptides from the skin of the endangered frog Odorrana ishikawae.

    PubMed

    Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi; Okimoto, Aiko; Soga, Miyuki; Okada, Genya; Sano, Naomi; Fujii, Tamotsu; Sugawara, Yoshiaki; Sumida, Masayuki

    2011-04-01

    The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus. PMID:21193000

  17. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  18. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts.

    PubMed

    Katzenback, Barbara A

    2015-09-25

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18-46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent-the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.

  19. Controlling the release of peptide antimicrobial agents from surfaces.

    PubMed

    Shukla, Anita; Fleming, Kathleen E; Chuang, Helen F; Chau, Tanguy M; Loose, Christopher R; Stephanopoulos, Gregory N; Hammond, Paula T

    2010-03-01

    Medical conditions are often exacerbated by the onset of infection caused by hospital dwelling bacteria such as Staphylococcus aureus. Antibiotics taken orally or intravenously can require large and frequent doses, further contributing to the sharp rise in resistant bacteria observed over the past several decades. These existing antibiotics are also often ineffective in preventing biofilm formation, a common cause of medical device failure. Local delivery of new therapeutic agents that do not allow bacterial resistance to occur, such as antimicrobial peptides, could alleviate many of the problems associated with current antibacterial treatments. By taking advantage of the versatility of layer-by-layer assembly of polymer thin films, ponericin G1, an antimicrobial peptide known to be highly active against S. aureus, was incorporated into a hydrolytically degradable polyelectrolyte multilayer film. Several film architectures were examined to obtain various drug loadings that ranged from 20 to 150 microg/cm2. Release was observed over approximately ten days, with varying release profiles, including burst as well as linear release. Results indicated that film-released peptide did not suffer any loss in activity against S. aureus and was able to inhibit bacteria attachment, a necessary step in preventing biofilm formation. Additionally, all films were found to be biocompatible with the relevant wound healing cells, NIH 3T3 fibroblasts and human umbilical vein endothelial cells. These films provide the level of control over drug loading and release kinetics required in medically relevant applications including coatings for implant materials and bandages, while eliminating susceptibility to bacterial resistance.

  20. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    PubMed Central

    Katzenback, Barbara A.

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  1. Antimicrobial Peptides as Anti-Infectives against Staphylococcus epidermidis.

    PubMed

    Agarwal, Sangya; Sharma, Garima; Dang, Shweta; Gupta, Sanjay; Gabrani, Reema

    2016-01-01

    Staphylococcus epidermidis has emerged as the main causative agent for graft-related and nosocomial infections. Rampant use of antibiotics and biofilm formed by the organism results in poor penetration of the drug and further aggravates the antibiotic resistance, emphasizing an urgent need to explore alternative treatment modalities. Antimicrobial peptides (AMPs), produced as effector molecules of the innate immunity of living organisms, have therapeutic potential that can be used to inhibit the growth of microbes. In addition, the susceptibility of a microbe to become resistant to an AMP is relatively low. The AMPs are amphipathic peptides of 12-100 residues, which have broad-spectrum activity against microbes. There are scattered reports of AMPs listed against S. epidermidis and there is an urgent need to systematically study the AMPs. Various natural AMPs as well as synthetic peptides have been investigated against S. epidermidis. These peptides have been shown to inhibit both planktonic culture and S. epidermidis biofilm effectively. The multiple modes of action in killing the organism minimize the chances for the development of resistance. This review focused on various natural and synthetic peptides that demonstrate activity against S. epidermidis.

  2. Antimicrobial peptides bind more strongly to membrane pores

    PubMed Central

    Mihajlovic, Maja

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize bacterial membranes. Understanding their mechanism of action might help design better antibiotics. Using an implicit membrane model, modified to include pores of different shapes, we show that four AMPs (alamethicin, melittin, a magainin analogue, MG-H2, and piscidin 1) bind more strongly to membrane pores, consistent with the idea that they stabilize them. The effective energy of alamethicin in cylindrical pores is similar to that in toroidal pores, whereas the effective energy of the other three peptides is lower in toroidal pores. Only alamethicin intercalates into the membrane core; MG-H2, melittin and piscidin are located exclusively at the hydrophobic/hydrophilic interface. In toroidal pores, the latter three peptides often bind at the edge of the pore, and are in an oblique orientation. The calculated binding energies of the peptides are correlated with their hemolytic activities. We hypothesize that one distinguishing feature of AMPs may be the fact that they are imperfectly amphipathic which allows them to bind more strongly to toroidal pores. An initial test on a melittin-based mutant seems to support this hypothesis. PMID:20188066

  3. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  4. Antimicrobial peptides as an opportunity against bacterial diseases.

    PubMed

    Galdiero, Stefania; Falanga, Annarita; Berisio, Rita; Grieco, Paolo; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-01-01

    Antimicrobial peptides (AMPs) are an heterogeneous group of small amino acidic molecules produced by the innate immune system of a variety of organisms encompassing all orders of life from eukaryotes to amphibians, insects and plants. Numerous AMPs have been isolated from natural sources and many others have been de novo designed and synthetically produced. AMPs have antimicrobial activity in the micromolar range and compared with traditional antibiotics, they kill bacteria very rapidly. They act, principally, by the electrostatic attraction to negatively charged bacterial cells and consequently membrane disruption, but their antibacterial activity may also involve interference with metabolic processes or different cytoplasmic targets. AMPs are a group of unique and incredible compounds that may be directed to a therapeutic use either alone or in combination with existing antibiotics.

  5. Design of host defence peptides for antimicrobial and immunity enhancing activities.

    PubMed

    McPhee, Joseph B; Scott, Monisha G; Hancock, Robert E W

    2005-05-01

    Host defense peptides are a vital component of the innate immune systems of humans, other mammals, amphibians, and arthropods. The related cationic antimicrobial peptides are also produced by many species of bacteria and function as part of the antimicrobial arsenal to help the producing organism reduce competition for resources from sensitive species. The antimicrobial activities of many of these peptides have been extensively characterized and the structural requirements for these activities are also becoming increasingly clear. In addition to their known antimicrobial role, many host defense peptides are also involved in a plethora of immune functions in the host. In this review, we examine the role of structure in determining antimicrobial activity of certain prototypical cationic peptides and ways that bacteria have evolved to usurp these activities. We also review recent literature on what structural components are related to these immunomodulatory effects. It must be stressed however that these studies, and the area of peptide research, are still in their infancy.

  6. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms.

  7. Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration.

    PubMed

    Sharma, V K; Mamontov, E; Tyagi, M; Qian, S; Rai, D K; Urban, V S

    2016-07-01

    The mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.

  8. Antimicrobial peptides and wound healing: biological and therapeutic considerations.

    PubMed

    Mangoni, Maria Luisa; McDermott, Alison M; Zasloff, Michael

    2016-03-01

    Repair of tissue wounds is a fundamental process to re-establish tissue integrity and regular function. Importantly, infection is a major factor that hinders wound healing. Multicellular organisms have evolved an arsenal of host-defense molecules, including antimicrobial peptides (AMPs), aimed at controlling microbial proliferation and at modulating the host's immune response to a variety of biological or physical insults. In this brief review, we provide the evidence for a role of AMPs as endogenous mediators of wound healing and their promising therapeutic potential for the treatment of non-life-threatening skin and other epithelial injuries. PMID:26738772

  9. Structure and Biological Functions of β-Hairpin Antimicrobial Peptides

    PubMed Central

    Panteleev, P. V.; Bolosov, I. A.; Balandin, S. V.; Ovchinnikova, T. V.

    2015-01-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient factors of the innate immune system that serve as a crucial first line of defense for humans, animals, and plants against infection. This review focuses on the structural organization, biosynthesis, and biological functions of AMPs that possess a β-hairpin spatial structure. Representatives of this class of AMPs are among the most active antibiotic molecules of animal origin. Due to their wide spectrum of activity and resistance to internal environmental factors, natural β-hairpin AMPbased compounds might become the most promising drug candidates. PMID:25927000

  10. Sequence diversity and evolution of antimicrobial peptides in invertebrates.

    PubMed

    Tassanakajon, Anchalee; Somboonwiwat, Kunlaya; Amparyup, Piti

    2015-02-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.

  11. Challenges and Limits Using Antimicrobial Peptides in Boar Semen Preservation.

    PubMed

    Schulze, M; Grobbel, M; Müller, K; Junkes, C; Dathe, M; Rüdiger, K; Jung, M

    2015-07-01

    Antibiotics are of great importance for the preservation of ejaculates for livestock breading. The use of antibiotics, however, is not an appropriate compensation for a lack of hygiene standards in artificial insemination (AI) centres. Sophisticated hygiene management and the proper identification of hygienic critical control points (HCCPs) at AI centres provide the basis for counteracting the development of antibiotic resistance in contaminant bacteria and their settlement in AI centres. In recent years, efforts have been made to use antimicrobial peptides (AMPs) in the preservation of boar semen. Investigations have included the testing of synthetic magainin derivatives and cyclic hexapeptides. One prerequisite for the application of AMPs is that they have a minor impact on eukaryotic cells. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and mechanisms including synergistic interaction with conventional antibiotics have made cyclic hexapeptides highly promising candidates for potential application as peptide antibiotics for semen preservation. PMID:26174913

  12. The Amazing World of Peptide Engineering: the Example of Antimicrobial Peptides from Frogs and Their Analogues.

    PubMed

    Guimarães, Aline B; Costa, Fabiano J Q; Pires, Osmindo R; Fontes, Wagner; Castro, Mariana S

    2016-01-01

    This review discusses the importance and properties of antimicrobial peptides from frogs and their synthetic analogues as potential therapeutic alternatives in fighting not only bacterial infections, but also protozoans involved with the major neglected diseases, which afflict human populations (e.g., Chagas disease, African sleeping sickness, Leishmaniasis and malaria). Here, we emphasize their multifunctional properties such as promising broad-spectrum drugs that target protozoan parasites too. PMID:27262306

  13. Expression profiles of seven channel catfish antimicrobial peptides in response to Edwardsiella ictaluri infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR technique, the relative transcriptional levels of seven channel catfish antimicrobial peptide (AMP) genes [NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, bactericidal permeability-increasing protein (BPI), cathepsin D, hepcidin, and liver-expressed antimicrobial peptide 2 ...

  14. Searching for Synthetic Antimicrobial Peptides: An Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Vasquez, Thomas E., Jr.; Saldan~a, Cristina; Muzikar, Katy A.; Mashek, Debra; Liu, Jane M.

    2016-01-01

    This laboratory experiment provides undergraduate students enrolled in organic chemistry the opportunity to design and synthesize their own peptide, which is then tested for antimicrobial activity. After reading a primary scientific paper on antimicrobial peptides, students design and synthesize their own hexapeptide that they hypothesize will…

  15. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    PubMed

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. PMID:26210039

  16. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates.

    PubMed

    Faccone, Diego; Veliz, Omar; Corso, Alejandra; Noguera, Martin; Martínez, Melina; Payes, Cristian; Semorile, Liliana; Maffía, Paulo Cesar

    2014-01-01

    Antibiotic resistance is one of the main problems concerning public health or clinical practice. Antimicrobial peptides appear as good candidates for the development of new therapeutic drugs. In this study we de novo designed a group of cationic antimicrobial peptides, analyzed its physicochemical properties, including its structure by circular dichroism and studied its antimicrobial properties against a panel of clinical isolates expressing different mechanisms of resistance. Three cationic alpha helical peptides exhibited antimicrobial activity comparable to, or even better than the comparator omiganan (MBI-226).

  17. Insect antimicrobial peptides act synergistically to inhibit a trypanosome parasite.

    PubMed

    Marxer, Monika; Vollenweider, Vera; Schmid-Hempel, Paul

    2016-05-26

    The innate immune system provides protection from infection by producing essential effector molecules, such as antimicrobial peptides (AMPs) that possess broad-spectrum activity. This is also the case for bumblebees, Bombus terrestris, when infected by the trypanosome, Crithidia bombi Furthermore, the expressed mixture of AMPs varies with host genetic background and infecting parasite strain (genotype). Here, we used the fact that clones of C. bombi can be cultivated and kept as strains in medium to test the effect of various combinations of AMPs on the growth rate of the parasite. In particular, we used pairwise combinations and a range of physiological concentrations of three AMPs, namely Abaecin, Defensin and Hymenoptaecin, synthetized from the respective genomic sequences. We found that these AMPs indeed suppress the growth of eight different strains of C. bombi, and that combinations of AMPs were typically more effective than the use of a single AMP alone. Furthermore, the most effective combinations were rarely those consisting of maximum concentrations. In addition, the AMP combination treatments revealed parasite strain specificity, such that strains varied in their sensitivity towards the same mixtures. Hence, variable expression of AMPs could be an alternative strategy to combat highly variable infections.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160603

  18. Antimicrobial peptides and cell processes tracking endosymbiont dynamics.

    PubMed

    Masson, Florent; Zaidman-Rémy, Anna; Heddi, Abdelaziz

    2016-05-26

    Many insects sustain long-term relationships with intracellular symbiotic bacteria that provide them with essential nutrients. Such endosymbiotic relationships likely emerged from ancestral infections of the host by free-living bacteria, the genomes of which experience drastic gene losses and rearrangements during the host-symbiont coevolution. While it is well documented that endosymbiont genome shrinkage results in the loss of bacterial virulence genes, whether and how the host immune system evolves towards the tolerance and control of bacterial partners remains elusive. Remarkably, many insects rely on a 'compartmentalization strategy' that consists in secluding endosymbionts within specialized host cells, the bacteriocytes, thus preventing direct symbiont contact with the host systemic immune system. In this review, we compile recent advances in the understanding of the bacteriocyte immune and cellular regulators involved in endosymbiont maintenance and control. We focus on the cereal weevils Sitophilus spp., in which bacteriocytes form bacteriome organs that strikingly evolve in structure and number according to insect development and physiological needs. We discuss how weevils track endosymbiont dynamics through at least two mechanisms: (i) a bacteriome local antimicrobial peptide synthesis that regulates endosymbiont cell cytokinesis and helps to maintain a homeostatic state within bacteriocytes and (ii) some cellular processes such as apoptosis and autophagy which adjust endosymbiont load to the host developmental requirements, hence ensuring a fine-tuned integration of symbiosis costs and benefits.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  19. Expression of tracheal antimicrobial peptide in bovine mammary epithelial cells.

    PubMed

    López-Meza, Joel E; Gutiérrez-Barroso, Angelina; Ochoa-Zarzosa, Alejandra

    2009-08-01

    The production of antimicrobial peptides is an important key of innate immunity. Tracheal antimicrobial peptide (TAP) expression has been reported in bovine tracheal epithelial cells and it can be modulated by bacterial infection or bacterial components. In mammary gland TAP expression has been reported, but the cell type that produces it is unknown. The objective of this work was to evaluate if bovine mammary epithelial cells (bMEC) express TAP mRNA, and evaluate the regulation of its expression in response to Staphylococcus aureus infection, bovine prolactin (bPRL) or acetyl salicylic acid (ASA). By retrotranscription and PCR, we demonstrated that bMEC express TAP mRNA. bMEC infected with live S. aureus down-regulates TAP expression, whereas the challenge with gentamicin-killed S. aureus up-regulates it. Also, bPRL do not significantly modify TAP expression, but in the presence of 5 mM ASA it was down-regulated, suggesting that nuclear factor kappaB (NF-kappaB) pathway can be involved in its regulation. PMID:19181355

  20. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  1. Antimicrobial peptides and cell processes tracking endosymbiont dynamics.

    PubMed

    Masson, Florent; Zaidman-Rémy, Anna; Heddi, Abdelaziz

    2016-05-26

    Many insects sustain long-term relationships with intracellular symbiotic bacteria that provide them with essential nutrients. Such endosymbiotic relationships likely emerged from ancestral infections of the host by free-living bacteria, the genomes of which experience drastic gene losses and rearrangements during the host-symbiont coevolution. While it is well documented that endosymbiont genome shrinkage results in the loss of bacterial virulence genes, whether and how the host immune system evolves towards the tolerance and control of bacterial partners remains elusive. Remarkably, many insects rely on a 'compartmentalization strategy' that consists in secluding endosymbionts within specialized host cells, the bacteriocytes, thus preventing direct symbiont contact with the host systemic immune system. In this review, we compile recent advances in the understanding of the bacteriocyte immune and cellular regulators involved in endosymbiont maintenance and control. We focus on the cereal weevils Sitophilus spp., in which bacteriocytes form bacteriome organs that strikingly evolve in structure and number according to insect development and physiological needs. We discuss how weevils track endosymbiont dynamics through at least two mechanisms: (i) a bacteriome local antimicrobial peptide synthesis that regulates endosymbiont cell cytokinesis and helps to maintain a homeostatic state within bacteriocytes and (ii) some cellular processes such as apoptosis and autophagy which adjust endosymbiont load to the host developmental requirements, hence ensuring a fine-tuned integration of symbiosis costs and benefits.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160600

  2. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160602

  3. Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy.

    PubMed

    Yang, Kewei; Gitter, Burkhard; Rüger, Ronny; Wieland, Gerhard D; Chen, Ming; Liu, Xiangli; Albrecht, Volker; Fahr, Alfred

    2011-10-01

    Photodynamic antimicrobial chemotherapy (PACT) and antimicrobial peptides (AMPs) are two promising strategies to combat the increasing prevalence of antibiotic-resistant bacteria. To take advantage of these two strategies, we integrated a novel antimicrobial peptide (WLBU2) and a potent generation II photosensitizer (temoporfin) into liposomes by preparing WLBU2-modified liposomes, aiming at bacteria targeted delivery of temoporfin for PACT. WLBU2 was successfully coupled to temoporfin-loaded liposomes using a functional phospholipid. The delivery of temoporfin to bacteria was confirmed by fluorescence microscopy and flow cytometry, thus demonstrating that more temoporfin was delivered to bacteria by WLBU2-modified liposomes than by unmodified liposomes. Consequently, the WLBU2-modified liposomes eradicated all methicillin-resistant Staphylococcus aureus (MRSA) and induced a 3.3 log(10) reduction of Pseudomonas aeruginosa in the in vitro photodynamic inactivation test. These findings demonstrate that the use of AMP-modified liposomes is promising for bacteria-targeted delivery of photosensitizers and for improving the PACT efficiency against both gram-positive and gram-negative bacteria in the local infections.

  4. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  5. Suppression of Antimicrobial Peptide Expression by Ureaplasma Species

    PubMed Central

    Crabb, Donna M.; Dai, Yuling; Chen, Yuying; Waites, Ken B.; Atkinson, T. Prescott

    2014-01-01

    Ureaplasma species commonly colonize the adult urogenital tract and are implicated in invasive diseases of adults and neonates. Factors that permit the organisms to cause chronic colonization or infection are poorly understood. We sought to investigate whether host innate immune responses, specifically, antimicrobial peptides (AMPs), are involved in determining the outcome of Ureaplasma infections. THP-1 cells, a human monocytoid tumor line, were cocultured with Ureaplasma parvum and U. urealyticum. Gene expression levels of a variety of host defense genes were quantified by real-time PCR. In vitro antimicrobial activities of synthetic AMPs against Ureaplasma spp. were determined using a flow cytometry-based assay. Chromosomal histone modifications in host defense gene promoters were tested by chromatin immunoprecipitation (ChIP). DNA methylation status in the AMP promoter regions was also investigated. After stimulation with U. parvum and U. urealyticum, the expression of cell defense genes, including the AMP genes (DEFB1, DEFA5, DEFA6, and CAMP), was significantly downregulated compared to that of TNFA and IL-8, which were upregulated. In vitro flow cytometry-based antimicrobial assay revealed that synthetic peptides LL-37, hBD-3, and hBD-1 had activity against Ureaplasma spp. Downregulation of the AMP genes was associated with chromatin modification alterations, including the significantly decreased histone H3K9 acetylation with U. parvum infection. No DNA methylation status changes were detected upon Ureaplasma infection. In conclusion, AMPs have in vitro activity against Ureaplasma spp., and suppression of AMP expression might be important for the organisms to avoid this aspect of the host innate immune response and to establish chronic infection and colonization. PMID:24491573

  6. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  7. Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides.

    PubMed

    Forbes, Sarah; McBain, Andrew J; Felton-Smith, Susan; Jowitt, Thomas A; Birchenough, Holly L; Dobson, Curtis B

    2013-07-01

    Medical device infection remains a major clinical concern. Biocidal compounds have been incorporated into medical device materials ideally to inhibit bacterial colonisation whilst exhibiting relatively low cytotoxicity. We compared the antibacterial activity, anti-biofilm efficacy and cytotoxicity of a novel peptide derivative of human apolipoprotein E (apoEdpL-W) to that of commonly used biocides, before and after coating onto a range of standard polymers. Since the antimicrobial function of most biocides frequently involves associations with cellular membranes, we have also studied the detailed interactions of the test antimicrobials with phospholipid bilayers, using the quartz crystal microbalance device combined with dual-polarisation interferometry. ApoEdpL-W displayed broad-spectrum antibacterial activity and marked efficacy against nascent Staphylococcus aureus biofilms. Compounds showed better antimicrobial activity when combined with hydrogel materials than with non-porous materials. The membrane interactions of apoEdpL-W were most similar to that of PHMB, with both agents appearing to readily bind and insert into lipid bilayers, possibly forming pores. However apoEdpL-W showed lower cytotoxicity than PHMB, its efficacy was less affected by the presence of serum, and it demonstrated the highest level of biocompatibility of all the biocides, as indicated by our measurement of its antimicrobial biocompatibility index. This work shows the potential of apoEdpL-W as an effective antiseptic coating agent. PMID:23623325

  8. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, E A; Odintsova, T I; Khadeeva, N V; Grishin, E V; Egorov, Ts A

    2012-08-01

    Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.

  9. Computational studies of protegrin antimicrobial peptides: a review

    PubMed Central

    Bolintineanu, Dan S.; Kaznessis, Yiannis N.

    2010-01-01

    Antimicrobial peptides (AMPs) are small, naturally-occurring peptides that exhibit strong antibacterial properties generally believed to be a result of selective bacterial membrane disruption. As a result, there has been significant interest in the development of therapeutic antibiotics based on AMPs; however, the poor understanding of the fundamental mechanism of action of these peptides has largely hampered such efforts. We present a summary of computational and theoretical investigations of protegrin, a particularly potent peptide that is both an excellent model for the mechanism of action of AMPs and a promising therapeutic candidate. Experimental investigations have shed light on many of the key steps in the action of protegrin: protegrin monomers are known to dimerize in various lipid environments; protegrin peptides interact strongly with lipid bilayer membranes, particularly anionic lipids; protegrins have been shown to form pores in lipid bilayers, which results in uncontrolled ion transport and may be a key factor in bacterial death. In this work, we present a comprehensive review of the computational and theoretical studies that have complemented and extended the information obtained from experimental work with protegrins, as well as a brief survey of the experimental biophysical studies that are most pertinent to such computational work. We show that a consistent, mechanistic description of the bactericidal mechanism of action of protegrins is emerging, and briefly outline areas where the current understanding is deficient. We hope that the research reviewed herein offers compelling evidence of the benefits of computational investigations of protegrins and other AMPs, as well as providing a useful guide to future work in this area. PMID:20946928

  10. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    PubMed

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. PMID:25753641

  11. Proteinase-activated receptors induce nonoxidative, antimicrobial peptides and increased antimicrobial activity in human mononuclear phagocytes.

    PubMed

    Lippuner, Nadine; Morell, Bernhard; Schaffner, Andreas; Schaer, Dominik J

    2007-02-01

    As thrombin and SFLLRNPNDKYEPF (SFLLRN-14), a synthetic ligand, mainly of the proteinase-activated receptor-1 (PAR-1), induce in monocytes the synthesis and secretion of chemokines, the PAR pathway can be viewed as a mononuclear phagocyte-activating principle. Classically, antimicrobial activity of mononuclear phagocytes is the measure for activation. Here, we investigated whether thrombin or SFLLRN-14 increases the antimicrobial activity of human monocytes and compared these effects to those of IFN-gamma. Furthermore, we measured the effects of these agents on the secretion of reactive oxygen intermediates and the antimicrobial activity of acid peptide extracts from monocytes. Human monocytes were exposed to maximally active concentrations of thrombin, SFLLRN-14, and IFN-gamma. Human monocytes treated with thrombin or SFLLRN-14 and then challenged with Salmonella enterica serovar typhimurium, including its attenuated mutant phoP, or Listeria monocytogenes killed, within 3 h, significantly more bacteria than control cells, an effect comparable with or surpassing the effect of IFN-gamma. This finding establishes the proteinase-PAR pathway as a potent, alternate activation pathway of mononuclear phagocytes. Thrombin and SFLLRN-14 had no significant effects on the amount of H(2)O(2) secreted by monocytes. This was in contrast to IFN-gamma, which as expected, increased the secretion of H(2)O(2) by approximately fourfold. Thrombin and SFLLRN-14, but not IFN-gamma, however, significantly increased the antimicrobial activity of acid peptide extracts of monocytes in a radial diffusion assay. Taken together, these findings suggest that IFN-gamma and thrombin differentially regulate oxidative and nonoxidative killing systems of human monocytes. PMID:17095611

  12. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Go, Hye-Jin; Kim, Yeon Jun; Park, Nam Gyu

    2014-02-01

    A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high sequence homology with the YFGAP (Yellowfin tuna Glyceraldehyde-3-phosphate dehydrogenase-related Antimicrobial Peptide); thus, this peptide was identified as the skipjack tuna GAPDH-related antimicrobial peptide (SJGAP). SJGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL), and against Candida albicans (MEC, 16.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide is heat-stable but salt-sensitive. According to the secondary structural prediction and the homology modeling, this peptide consists of three secondary structural motifs, including one α-helix and two parallel β-strands, and forms an amphipathic structure. This peptide showed neither membrane permeabilization ability nor killing ability, but did display a small degree of leakage ability. These results suggest that SJGAP acts through a bacteriostatic process rather than bactericidal one. SJGAP is another GAPDH-related antimicrobial peptide isolated from skipjack tuna and likely plays an important role for GAPDH in the innate immune defense of tuna fish.

  13. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Go, Hye-Jin; Kim, Yeon Jun; Park, Nam Gyu

    2014-02-01

    A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high sequence homology with the YFGAP (Yellowfin tuna Glyceraldehyde-3-phosphate dehydrogenase-related Antimicrobial Peptide); thus, this peptide was identified as the skipjack tuna GAPDH-related antimicrobial peptide (SJGAP). SJGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL), and against Candida albicans (MEC, 16.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide is heat-stable but salt-sensitive. According to the secondary structural prediction and the homology modeling, this peptide consists of three secondary structural motifs, including one α-helix and two parallel β-strands, and forms an amphipathic structure. This peptide showed neither membrane permeabilization ability nor killing ability, but did display a small degree of leakage ability. These results suggest that SJGAP acts through a bacteriostatic process rather than bactericidal one. SJGAP is another GAPDH-related antimicrobial peptide isolated from skipjack tuna and likely plays an important role for GAPDH in the innate immune defense of tuna fish. PMID:24412436

  14. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  15. Effects of antimicrobial peptide revealed by simulations: translocation, pore formation, membrane corrugation and euler buckling.

    PubMed

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-04-11

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling.

  16. Antimicrobial peptides as novel anti-tuberculosis therapeutics.

    PubMed

    Silva, João P; Appelberg, Rui; Gama, Francisco Miguel

    2016-01-01

    Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed. PMID:27235189

  17. Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy

    PubMed Central

    Chang, William K.; Wimley, William C.; Searson, Peter C.; Hristova, Kalina; Merzlyakov, Mikhail

    2008-01-01

    Summary Electrochemical impedance spectroscopy performed on surface-supported bilayer membranes allows for the monitoring of changes in membrane properties, such as thickness, ion permeability, and homogeneity, after exposure to antimicrobial peptides (AMPs). We show that two model cationic peptides, very similar in sequence but different in activity, induce dramatically different changes in membrane properties as probed by impedance spectroscopy. Moreover, the impedance results excluded the “barrel-stave” and the “toroidal pore” models of AMP mode of action, and are more consistent with the “carpet” and the “detergent” models. The impedance data provide important new insights about the kinetics and the scale of the peptide action which currently are not addressed by the “carpet” and the “detergent” models. The method presented not only provides additional information about the mode of action of a particular AMP, but offers a means of characterizing AMP activity in reproducible, well-defined quantitative terms. PMID:18657512

  18. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides.

    PubMed

    Rolff, Jens; Schmid-Hempel, Paul

    2016-05-26

    Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our

  19. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides.

    PubMed

    Rolff, Jens; Schmid-Hempel, Paul

    2016-05-26

    Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our

  20. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  1. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    PubMed

    Blower, Ryan J; Barksdale, Stephanie M; van Hoek, Monique L

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  2. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease

    PubMed Central

    Heimlich, Derek R.; Harrison, Alistair; Mason, Kevin M.

    2014-01-01

    Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host’s perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease. PMID:26029470

  3. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects.

    PubMed

    Ponnappan, Nisha; Budagavi, Deepthi Poornima; Yadav, Bhoopesh Kumar; Chugh, Archana

    2015-03-01

    Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.

  4. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  5. A maritime pine antimicrobial peptide involved in ammonium nutrition.

    PubMed

    Canales, Javier; Avila, Concepción; Cánovas, Francisco M

    2011-09-01

    A large family of small cysteine-rich antimicrobial peptides (AMPs) is involved in the innate defence of plants against pathogens. Recently, it has been shown that AMPs may also play important roles in plant growth and development. In previous work, we have identified a gene of the AMP β-barrelin family that was differentially regulated in the roots of maritime pine (Pinus pinaster Ait.) in response to changes in ammonium nutrition. Here, we present the molecular characterization of two AMP genes, PpAMP1 and PpAMP2, showing different molecular structure and physicochemical properties. PpAMP1 and PpAMP2 displayed different expression patterns in maritime pine seedlings and adult trees. Furthermore, our expression analyses indicate that PpAMP1 is the major form of AMP in the tree, and its relative abundance is regulated by ammonium availability. In contrast, PpAMP2 is expressed at much lower levels and it is not regulated by ammonium. To gain new insights into the function of PpAMP1, we over-expressed the recombinant protein in Escherichia coli and demonstrated that PpAMP1 strongly inhibited yeast growth, indicating that it exhibits antimicrobial activity. We have also found that PpAMP1 alters ammonium uptake, suggesting that it is involved in the regulation of ammonium ion flux into pine roots.

  6. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  7. Bio-inspired stable antimicrobial peptide coatings for dental applications.

    PubMed

    Holmberg, Kyle V; Abdolhosseini, Mahsa; Li, Yuping; Chen, Xi; Gorr, Sven-Ulrik; Aparicio, Conrado

    2013-09-01

    We developed a novel titanium coating that has applications for preventing infection-related implant failures in dentistry and orthopedics. The coating incorporates an antimicrobial peptide, GL13K, derived from parotid secretory protein, which has been previously shown to be bactericidal and bacteriostatic in solution. We characterized the resulting physicochemical properties, resistance to degradation, activity against Porphyromonas gingivalis and in vitro cytocompatibility. Porphyromonas gingivalis is a pathogen associated with dental peri-implantitis, an inflammatory response to bacteria resulting in bone loss and implant failure. Our surface modifications obtained a homogeneous, highly hydrophobic and strongly anchored GL13K coating that was resistant to mechanical, thermochemical and enzymatic degradation. The GL13K coatings had a bactericidal effect and thus significantly reduced the number of viable bacteria compared to control surfaces. Finally, adequate proliferation of osteoblasts and human gingival fibroblasts demonstrated the GL13K coating's cytocompatibility. The robustness, antimicrobial activity and cytocompatibility of GL13K-biofunctionalized titanium make it a promising candidate for sustained inhibition of bacterial biofilm growth. This surface chemistry provides a basis for development of multifunctional bioactive surfaces to reduce patient morbidities and improve long-term clinical efficacy of metallic dental and orthopedic implants.

  8. The proteome targets of intracellular targeting antimicrobial peptides.

    PubMed

    Shah, Pramod; Hsiao, Felix Shih-Hsiang; Ho, Yu-Hsuan; Chen, Chien-Sheng

    2016-04-01

    Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.

  9. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa).

    PubMed

    Rollins-Smith, Louise A; Woodhams, Douglas C; Reinert, Laura K; Vredenburg, Vance T; Briggs, Cheryl J; Nielsen, Per F; Conlon, J Michael

    2006-01-01

    The mountain yellow-legged frog (Rana muscosa) inhabits high elevation lakes in California that are largely undisturbed by human activities. In spite of this habitation in remote sites, populations continue to decline. Although predation by non-native fish is one cause for declines, some isolated populations in fishless lakes are suffering new declines. One possible cause of the current wave of declines is the introduction of the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) which invades the adult skin to cause chytridiomycosis. In many amphibian species, the skin is protected by antimicrobial peptides secreted into the mucous. Here we show that R. muscosa produces three previously unknown antimicrobial peptides belonging to the ranatuerin-2 and temporin-1 families of antimicrobial peptides. These three peptides, along with bradykinin, are the most abundant peptides in the skin secretions detected by mass spectrometry. Natural mixtures of peptides and individual purified peptides strongly inhibit chytrid growth. The concentration of total peptides recovered from the skin of frogs following a mild norepinephrine induction is sufficient to inhibit chytrid growth in vitro. A comparison of the species susceptibility to chytridiomycosis and the antichytrid activity of peptides between R. muscosa and R. pipiens suggest that although R. muscosa produces more total skin peptides, it appears to be more vulnerable to B. dendrobatidis in nature. Possible differences in the antimicrobial peptide repertoires and life history traits of the two species that may account for differences in susceptibility are discussed.

  10. Characterization of antimicrobial peptides isolated from the skin of the Chinese frog, Rana dybowskii.

    PubMed

    Jin, Li-Li; Li, Qiang; Song, Shu-Sen; Feng, Kai; Zhang, Dian-Bao; Wang, Qiu-Yu; Chen, Yu-Hua

    2009-10-01

    The skins of amphibians secrete small antimicrobial peptides that fight infection and are being explored as potential alternatives to conventional antibiotics. In this study we combined mass spectrometry with cDNA sequencing to examine antimicrobial peptides in skin secretions from the Chinese frog Rana dybowskii. Thirteen peptides having precursor sequences that resemble known antimicrobial peptides from this genus were identified, ten of which were members of previously described peptide families based on their primary structures; i.e., brevinin-1, Japonicin-1, brevinin-2 and temporin. The other three peptides from R. dybowskii, which were named dybowskin-1CDYa, dybowskin-2 CDYa and dybowskin-2CDYb, had different amino acid compositions and little sequence similarity to known antimicrobial peptides. The carboxyl terminus of dybowskin-1CDY lacked amidation and is therefore clearly distinct from temporin peptides, whereas dybowskin-2CDYa and dybowskin-2CDYb consisted of 18 amino acids and were rich in Arg residues. Chemically synthesized peptides corresponding to mature dybowskin-1CDYa and dybowskin-2CDYa had strong antimicrobial activity and caused little hemolysis of human erythrocytes, suggesting they may serve as interesting templates for the development of novel antibiotics. PMID:19539775

  11. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera.

    PubMed

    Casanova-Torres, Ángel M; Goodrich-Blair, Heidi

    2013-09-01

    Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests.

  12. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera

    PubMed Central

    Casanova-Torres, Ángel M.; Goodrich-Blair, Heidi

    2013-01-01

    Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests. PMID:25861461

  13. Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lienkamp, Karen; Madkour, Ahmad E.; Tew, Gregory N.

    Polymer-based peptidomimetics, or proteinomimetics, are a relatively young and dynamic field of research. The ability to successfully mimic the biochemical activity of antimicrobial peptides (AMPs) has been demonstrated by several groups. This has been accomplished by careful tuning of the molecule's hydrophobicity and charge density. At the same time, many important questions remain to be answered, including the role of backbone rigidity, details of membrane insertion, and the role of curvature in the self-assemblies between these novel peptidemimetics and phospholipids. As the biological properties of polymeric synthetic mimics of AMPs (SMAMPs) result from the interplay of many parameters, it is not yet possible to predict the exact properties of such molecules from their mere chemical structure. However, as demonstrated here, the effect of certain design features such as charge and hydrophobicity on the properties across a polymer series is understood. Compared to the mechanistic specifics that are known about the interactions of AMPs or small antibacterial molecules with membranes and cells, relatively little is known concerning the interaction of polymeric SMAMPs with membranes. Beyond SMAMPs, numerous opportunities exist and protein transduction domain mimics are an active area of research in the Tew laboratory. These two examples, one quite new and the other studied for almost a decade, demonstrate that it is possible to teach synthetic polymers to behave like peptides, despite their lack of sequence specificity and secondary structure.

  14. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides.

    PubMed

    Rashid, Rafi; Veleba, Mark; Kline, Kimberly A

    2016-01-01

    Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction. PMID:27376064

  15. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides

    PubMed Central

    Rashid, Rafi; Veleba, Mark; Kline, Kimberly A.

    2016-01-01

    Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction. PMID:27376064

  16. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

    PubMed Central

    Nawrocki, Kathryn L.; Crispell, Emily K.; McBride, Shonna M.

    2014-01-01

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. PMID:25419466

  17. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata.

    PubMed

    Ma, Yufang; Liu, Cunbao; Liu, Xiuhong; Wu, Jing; Yang, Hailong; Wang, Yipeng; Li, Jianxu; Yu, Haining; Lai, Ren

    2010-01-01

    Much attention has been paid on amphibian peptides for their wide-ranging pharmacological properties, clinical potential, and gene-encoded origin. More than 300 antimicrobial peptides (AMPs) from amphibians have been studied. Peptidomics and genomics analysis combined with functional test including microorganism killing, histamine-releasing, and mast cell degranulation was used to investigate antimicrobial peptide diversity. Thirty-four novel AMPs from skin secretions of Rana nigrovittata were identified in current work, and they belong to 9 families, including 6 novel families. Other three families are classified into rugosin, gaegurin, and temporin family of amphibian AMP, respectively. These AMPs share highly conserved preproregions including signal peptides and spacer acidic peptides, while greatly diversified on mature peptides structures. In this work, peptidomics combined with genomics analysis was confirmed to be an effective way to identify amphibian AMPs, especially novel families. Some AMPs reported here will provide leading molecules for designing novel antimicrobial agents. PMID:19778602

  18. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides

    PubMed Central

    Tavares, Letícia S.; Silva, Carolina S. F.; de Souza, Vinicius C.; da Silva, Vânia L.; Diniz, Cláudio G.; Santos, Marcelo O.

    2013-01-01

    The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome

  19. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA.

    PubMed Central

    Diamond, G; Zasloff, M; Eck, H; Brasseur, M; Maloy, W L; Bevins, C L

    1991-01-01

    Extracts of the bovine tracheal mucosa have an abundant peptide with potent antimicrobial activity. The 38-amino acid peptide, which we have named tracheal antimicrobial peptide (TAP), was isolated by a sequential use of size-exclusion, ion-exchange, and reverse-phase chromatographic fractionations using antimicrobial activity as a functional assay. The yield was approximately 2 micrograms/g of wet mucosa. The complete peptide sequence was determined by a combination of peptide and cDNA analysis. The amino acid sequence of TAP is H-Asn-Pro-Val-Ser-Cys-Val-Arg-Asn-Lys-Gly-Ile-Cys-Val-Pro-Ile-Arg-Cys-Pr o- Gly-Ser-Met-Lys-Gln-Ile-Gly-Thr-Cys-Val-Gly-Arg-Ala-Val-Lys-Cys-Cys-Arg- Lys-Lys - OH. Mass spectral analysis of the isolated peptide was consistent with this sequence and indicated the participation of six cysteine residues in the formation of intramolecular disulfide bonds. The size, basic charge, and presence of three intramolecular disulfide bonds is similar to, but clearly distinct from, the defensins, a well-characterized class of antimicrobial peptides from mammalian circulating phagocytic cells. The putative TAP precursor is predicted to be relatively small (64 amino acids), and the mature peptide resides at the extreme carboxyl terminus and is bracketed by a short putative propeptide region and an inframe stop codon. The mRNA encoding this peptide is more abundant in the respiratory mucosa than in whole lung tissue. The purified peptide had antibacterial activity in vitro against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa. In addition, the peptide was active against Candida albicans, indicating a broad spectrum of activity. This peptide appears to be, based on structure and activity, a member of a group of cysteine-rich, cationic, antimicrobial peptides found in animals, insects, and plants. The isolation of TAP from the mammalian respiratory mucosa may provide insight into our understanding of host defense of

  20. Antimicrobial Peptides and Innate Lung Defenses: Role in Infectious and Noninfectious Lung Diseases and Therapeutic Applications.

    PubMed

    Hiemstra, Pieter S; Amatngalim, Gimano D; van der Does, Anne M; Taube, Christian

    2016-02-01

    Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils in particular contribute to their synthesis. The relevance of antimicrobial peptides for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Importantly, antimicrobial peptides are active against microorganisms that are resistant against conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of antimicrobial peptides, enhancement of their local production, and creation of more favorable circumstances for their action. In this review, recent developments in antimicrobial peptides research in the lung and clinical applications for novel therapies of lung diseases are discussed.

  1. The Cooperative Behaviour of α-Helical Antimicrobial Peptides in Different Environments

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Wang, Janping; Mura, Manuela; Zhou, Yuhua; Zvelindovsky, Andrei; Dennison, Sarah; Phoenix, David

    2014-03-01

    A systematic analysis of the antimicrobial peptides (AMPs) cooperative action is performed by means of a full atomistic molecular dynamics simulation. The following peptide analogues: Aurein 2.5-COOH, Aurein 2.6-COOH and Aurein 3.1-COOH are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. Simulations conducted for monomer and trimer peptide highlight the importance of the cooperative behaviour and reveal the different mechanisms of antimicrobial peptides action in different lipid bilayers.

  2. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside.

    PubMed

    Maria-Neto, Simone; de Almeida, Keyla Caroline; Macedo, Maria Ligia Rodrigues; Franco, Octávio Luiz

    2015-11-01

    Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. PMID:25724815

  3. Using antimicrobial host defense peptides as anti-infective and immunomodulatory agents.

    PubMed

    Kruse, Thomas; Kristensen, Hans-Henrik

    2008-12-01

    Virtually all life forms express short antimicrobial cationic peptides as an important component of their innate immune defenses. They serve as endogenous antibiotics that are able to rapidly kill an unusually broad range of bacteria, fungi and viruses. Consequently, considerable efforts have been expended to exploit the therapeutic potential of these antimicrobial peptides. Within the last couple of years, it has become increasingly clear that many of these peptides, in addition to their direct antimicrobial activity, also have a wide range of functions in modulating both innate and adaptive immunity. For one class of antimicrobial peptides, such as the human defensins, their primary role may even be as immunomodulators. These properties potentially provide entirely new therapeutic approaches to anti-infective therapy.

  4. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside.

    PubMed

    Maria-Neto, Simone; de Almeida, Keyla Caroline; Macedo, Maria Ligia Rodrigues; Franco, Octávio Luiz

    2015-11-01

    Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  5. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella.

    PubMed

    Amer, Lilian S; Bishop, Barney M; van Hoek, Monique L

    2010-05-28

    Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung's host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (microM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50=50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection. PMID:20399752

  6. Euler buckling, membrane corrugation and pore formation induced by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Jia, Nana; Fang, Weihai

    2014-03-01

    Antimicrobial peptides serve as defense weapons against bacteria. They are secreted by organisms of plants and animals and have a wide variety in composition and structure. In this study, we theoretically explore the effects of the antimicrobial peptides on the lipid bilayer membrane by using analytic arguments and the coarse grained dissipative particle dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. Such buckled membrane states have been indeed seen in a number of experiments with bacteria affected by peptide, yet this is the first theoretical study addressing these phenomena more deeply.

  7. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications.

    PubMed

    Bastos, M C F; Ceotto, H; Coelho, M L V; Nascimento, J S

    2009-01-01

    Bacteriocins are bacterial antimicrobial peptides with bactericidal activity against other bacteria. Staphylococcins are bacteriocins produced by staphylococci, which are Gram-positive bacteria with medical and veterinary importance. Most bacteriocins produced by staphylococci are either lantibiotics (e.g., Pep5, epidermin, epilancin K7, epicidin 280, staphylococcin C55/BacR1, and nukacin ISK-1) or class II bacteriocins (e.g., aureocins A70 and 53). Only one staphylococcin belonging to class III, lysostaphin, has been described so far. Production of staphylococcins is a self-protection mechanism that helps staphylococci to survive in their natural habitats. However, since these substances generally have a broad spectrum of activity, inhibiting several human and animal pathogens, they have potential biotechnological applications either as food preservatives or therapeutic agents. Due to the increasing consumer awareness of the risks derived not only from food-borne pathogens, but also from the artificial chemical preservatives used to control them, the interest in the discovery of natural food preservatives has increased considerably. The emergence and dissemination of antibiotic resistance among human and animal pathogens and their association with the use of antibiotics constitute a serious problem worldwide requiring effective measures for controlling their spread. Staphylococcins may be used, solely or in combination with other chemical agents, to avoid food contamination or spoilage and to prevent or treat bacterial infectious diseases. The use of combinations of antimicrobials is common in the clinical setting and expands the spectrum of organisms that can be targeted, prevents the emergence of resistant organisms, decreases toxicity by allowing lower doses of both agents and can result in synergistic inhibition. PMID:19149589

  8. Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications.

    PubMed

    Gomes, A P; Mano, J F; Queiroz, J A; Gouveia, I C

    2015-01-01

    A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log-6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.

  9. Inducible Resistance of Fish Bacterial Pathogens to the Antimicrobial Peptide Cecropin B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cecropin B is a cationic antimicrobial peptide originally isolated from the diapausing pupae of the giant silk moth, Hylphora cecropia. Cecropin B elicits its antimicrobial effects through disruption of the anionic cell membranes of gram-negative bacteria. Previous work by our laboratory demonstra...

  10. The promotion of antimicrobial activity on silicon substrates using a "click" immobilized short peptide.

    PubMed

    Wang, Lin; Chen, Junjian; Shi, Lin; Shi, Zhifeng; Ren, Li; Wang, Yingjun

    2014-01-28

    We demonstrated, for the first time, that the short antimicrobial peptide Tet213 could be conjugated onto the silicon surface by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The modified surface exhibited excellent antimicrobial activity against S. aureus and E. coli, and low cytotoxicity to rat bone mesenchymal stem cells (rBMSCs).

  11. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity.

    PubMed

    Spitzer, Philipp; Condic, Mateja; Herrmann, Martin; Oberstein, Timo Jan; Scharin-Mehlmann, Marina; Gilbert, Daniel F; Friedrich, Oliver; Grömer, Teja; Kornhuber, Johannes; Lang, Roland; Maler, Juan Manuel

    2016-01-01

    Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer's disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system. PMID:27624303

  12. Design of Embedded-Hybrid Antimicrobial Peptides with Enhanced Cell Selectivity and Anti-Biofilm Activity

    PubMed Central

    Xu, Wei; Zhu, Xin; Tan, Tingting; Li, Weizhong; Shan, Anshan

    2014-01-01

    Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents. PMID:24945359

  13. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity

    PubMed Central

    Spitzer, Philipp; Condic, Mateja; Herrmann, Martin; Oberstein, Timo Jan; Scharin-Mehlmann, Marina; Gilbert, Daniel F.; Friedrich, Oliver; Grömer, Teja; Kornhuber, Johannes; Lang, Roland; Maler, Juan Manuel

    2016-01-01

    Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer’s disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system. PMID:27624303

  14. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  15. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus)

    PubMed Central

    Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  16. Five novel antimicrobial peptides from skin secretions of the frog, Amolops loloensis.

    PubMed

    Wang, Meijuan; Wang, Ying; Wang, Aili; Song, Yuzhu; Ma, Dongying; Yang, Hailong; Ma, Yufang; Lai, Ren

    2010-01-01

    While investigating antimicrobial peptide diversity of Amolops loloensis, five novel antimicrobial peptides belonging to two families were identified from skin secretions of this frog. The first family including two members is esculentin-2-AL (esculentin-2-ALa and -ALb); the second family including three members is temporin-AL (temporin-ALd to -ALf). The family of esculentin-2-AL is composed of 37 amino acid residues (aa); the family of temporin-AL is composed of 16, 13 and 10 aa, respectively. All of these antimicrobial peptides showed antimicrobial activities against tested microorganisms. cDNAs encoding precursors of esculentin-2-ALs and temporin-ALs were cloned from the skin cDNA library of A. loloensis. All the precursors share similar overall structures. There is a typical prohormone processing signal (Lys-Arg) located between the acidic propiece and the mature peptide. The antimicrobial peptide family of esculentin-2 is firstly reported in the genus of Amolops. Combined with previous reports, a total of four antimicrobial peptide families have been identified from the genus of Amolops; three of them are also found in the genus of Rana. These results suggest the possible evolutionary connection between the genera Amolops and Rana. PMID:19843479

  17. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species.

  18. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity†

    PubMed Central

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.

    2016-01-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure–property–activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. PMID:26524425

  19. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  20. Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties.

    PubMed

    Rapsch, Karsten; Bier, Frank F; Tadros, Monier; von Nickisch-Rosenegk, Markus

    2014-02-19

    Bacterial accumulation on solid material displays a major source of biomaterial associated infections, cross contamination, and spreading. To overcome these problems, different investigations on surface modifications for the containment of bacterial adhesion have been done. The aim of this research is the development of a rapid and efficient screening procedure to identify and investigate biologically active peptides in an immobilized state in order to produce an antimicrobial surface coating. We figured out that the antimicrobial mode of action is the most important parameter because only peptides with pronounced membrane disruption abilities displayed meaningful activity in an immobilized state. In addition, we highlighted the influence of the coupling reaction chemistry on the activity and amount of the immobilized peptide. Thereupon we developed an optimized antimicrobial surface coating with unrestricted antimicrobial properties by adjusting the immobilization strategy in combination with lowering the necessary peptide amount. Moreover we demonstrated that this antimicrobial surface coating displayed no cytotoxic activity against a eukaryotic cell line and thereby indicates a promising biocompatibility. Furthermore, different antimicrobial peptides obtained either by chemical peptide synthesis or by recombinant DNA technology were used in this study and their activities as well as their potential applications were discussed. PMID:24372365

  1. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells

    PubMed Central

    Lu, Yan; Zhang, Teng-Fei; Shi, Yue; Zhou, Han-Wei; Chen, Qi; Wei, Bu-Yun; Wang, Xi; Yang, Tian-Xin; Chinn, Y. Eugene; Kang, Jian; Fu, Cai-Yun

    2016-01-01

    LF11-322 (PFWRIRIRR-NH2) (PFR peptide), a nine amino acid-residue peptide fragment derived from human lactoferricin, possesses potent cytotoxicity against bacteria. We report here the discovery and characterization of its antitumor activity in leukemia cells. PFR peptide inhibited the proliferation of MEL and HL-60 leukemia cells by inducing cell death in the absence of the classical features of apoptosis, including chromatin condensation, Annexin V staining, Caspase activation and increase of abundance of pro-apoptotic proteins. Instead, necrotic cell death as evidenced by increasing intracellular PI staining and LDH release, inducing membrane disruption and up-regulating intracellular calcium level, was observed following PFR peptide treatment. In addition to necrotic cell death, PFR peptide also induced G0/G1 cell cycle arrest. Moreover, PFR peptide exhibited favorable antitumor activity and tolerability in vivo. These findings thus provide a new clue of antimicrobial peptides as a potential novel therapy for leukemia. PMID:26860588

  2. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    PubMed

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings. PMID:27180309

  3. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    PubMed

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings.

  4. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria.

    PubMed

    Li, Wenyi; Tailhades, Julien; O'Brien-Simpson, Neil M; Separovic, Frances; Otvos, Laszlo; Hossain, M Akhter; Wade, John D

    2014-10-01

    The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.

  5. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    PubMed

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the

  6. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  7. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.

    PubMed

    Hollmann, Axel; Martínez, Melina; Noguera, Martín E; Augusto, Marcelo T; Disalvo, Anibal; Santos, Nuno C; Semorile, Liliana; Maffía, Paulo C

    2016-05-01

    Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells. PMID:26896660

  8. A novel antifungal peptide designed from the primary structure of a natural antimicrobial peptide purified from Argopecten purpuratus hemocytes.

    PubMed

    Arenas, Gloria; Guzmán, Fanny; Cárdenas, Constanza; Mercado, Luis; Marshall, Sergio H

    2009-08-01

    We have isolated and purified a natural antimicrobial peptide from Argopecten purpuratus hemocytes. 47 residues were determined from its primary structure representing the N-terminal of the complete sequence. This peptide of 5100.78Da was chemically synthesized and named Ap. The peptide has 25% of hydrophobic amino acids with a net charge of +1, and partial homology with known active antimicrobial peptides. Based on that sequence, a new peptide was designed and modeled to increase hydrophobicity and cationicity. The designed 30-residue peptide was chemically synthesized resulting in a novel 38% hydrophobic molecule named peptide Ap-S, with a net charge of +5 and 3028Da. A secondary structure was shown by circular dichroism, thus exposing a hydrophobic epitope toward the N-terminus and a hydrophilic one toward the C-terminus, improving amphipathicity. Ap-S was much more active than the parental Ap. Ap-S up to 100microM has no cytotoxic effect against fish cell line CHSE-214. We demonstrated that the chemical modification of a natural peptide and the chemical synthesis of derived molecules may be a powerful tool for obtaining substitutes to conventional antibiotics, displaying the many advantages of antimicrobial peptides and overcoming the limitations of natural peptides for large-scale production and application, such as the low specific activity and the minute amounts recovered in vivo. This peptide may have a relevant application in aquaculture by controlling Saprolegna sp., a parasitic pathogen fungus that attacks the culture of fish in different stages of their growth, from egg to adult. PMID:19481126

  9. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.

    PubMed

    Yu, Kai; Lo, Joey C Y; Mei, Yan; Haney, Evan F; Siren, Erika; Kalathottukaren, Manu Thomas; Hancock, Robert E W; Lange, Dirk; Kizhakkedathu, Jayachandran N

    2015-12-30

    Bacterial infection associated with indwelling medical devices and implants is a major clinical issue, and the prevention or treatment of such infections is challenging. Antimicrobial coatings offer a significant step toward addressing this important clinical problem. Antimicrobial coatings based on tethered antimicrobial peptides (AMPs) on hydrophilic polymer brushes have been shown to be one of the most promising strategies to avoid bacterial colonization and have demonstrated broad spectrum activity. Optimal combinations of the functionality of the polymer-brush-tethered AMPs are essential to maintaining long-term AMP activity on the surface. However, there is limited knowledge currently available on this topic. Here we report the development of potent antimicrobial coatings on implant surfaces by elucidating the roles of polymer brush chemistry and peptide structure on the overall antimicrobial activity of the coatings. We screened several combinations of polymer brush coatings and AMPs constructed on nanoparticles, titanium surfaces, and quartz slides on their antimicrobial activity and bacterial adhesion against Gram-positive and Gram-negative bacteria. Highly efficient killing of planktonic bacteria by the antimicrobial coatings on nanoparticle surfaces, as well as potent killing of adhered bacteria in the case of coatings on titanium surfaces, was observed. Remarkably, the antimicrobial activity of AMP-conjugated brush coatings demonstrated a clear dependence on the polymer brush chemistry and peptide structure, and optimization of these parameters is critical to achieving infection-resistant surfaces. By analyzing the interaction of polymer-brush-tethered AMPs with model lipid membranes using circular dichroism spectroscopy, we determined that the polymer brush chemistry has an influence on the extent of secondary structure change of tethered peptides before and after interaction with biomembranes. The peptide structure also has an influence on the density

  10. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  11. Biotic stress resistance in agriculture through antimicrobial peptides.

    PubMed

    Sarika; Iquebal, M A; Rai, Anil

    2012-08-01

    Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates. AMPs can be classified as cationic or anionic, based on net charges. Large number of databases and tools are available in the public domain which can be used for development of new genetically modified disease resistant varieties/breeds for agricultural production. The results of the biotechnological research as well as genetic engineering related to AMPs have shown high potential for reduction of economic losses of agricultural produce due to pathogens. In this article, an attempt has been made to introduce the role of AMPs in relation to plants and animals. Their functional and structural characteristics have been described in terms of its role in agriculture. Different sources of AMPs and importance of these sources has been reviewed in terms of its availability. This article also reviews the bioinformatics resources including different database tools and algorithms available in public domain. References of promising biotechnology research in relation to AMPs, prospects of AMPs for further development of genetically modified varieties/breeds are highlighted. AMPs are valuable resource for students, researchers, educators and medical and industrial personnel.

  12. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    PubMed

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  13. Resistance to antimicrobial peptides in Gram-negative bacteria.

    PubMed

    Gruenheid, Samantha; Le Moual, Hervé

    2012-05-01

    Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.

  14. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection

    PubMed Central

    Calhoun, Dana M.; Woodhams, Doug; Howard, Cierra; LaFonte, Bryan E.; Gregory, Jacklyn R.; Johnson, Pieter T. J.

    2016-01-01

    Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species. PMID:26911920

  15. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides.

    PubMed

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-01-01

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women's body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI. PMID:26978373

  16. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases.

    PubMed

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  17. Antimicrobial peptides and gut microbiota in homeostasis and pathology

    PubMed Central

    Ostaff, Maureen J; Stange, Eduard Friedrich; Wehkamp, Jan

    2013-01-01

    We survive because we adapted to a world of microorganisms. All our epithelial surfaces participate in keeping up an effective barrier against microbes while not initiating ongoing inflammatory processes and risking collateral damage to the host. Major players in this scenario are antimicrobial peptides (AMPs). Such broad-spectrum innate antibiotics are in part produced by specialized cells but also widely sourced from all epithelia as well as circulating inflammatory cells. AMPs belong to an ancient defense system found in all organisms and participated in a preservative co-evolution with a complex microbiome. Particularly interesting interactions between host barrier and microbiota can be found in the gut. The intestinal cell lining not only has to maintain a tightly regulated homeostasis during its high-throughput regeneration, but also a balanced relationship towards an extreme number of mutualistic or commensal inhabitants. Recent research suggests that advancing our understanding of the circumstances of such balanced and sometimes imbalanced interactions between gut microbiota and host AMPs should have therapeutic implications for different intestinal disorders. PMID:24039130

  18. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa?

    PubMed Central

    Kopp, Zoë A.; Jain, Umang; Van Limbergen, Johan; Stadnyk, Andrew W.

    2015-01-01

    It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation. PMID:25688244

  19. The antimicrobial peptide-sensing system aps of Staphylococcus aureus.

    PubMed

    Li, Min; Cha, David J; Lai, Yuping; Villaruz, Amer E; Sturdevant, Daniel E; Otto, Michael

    2007-12-01

    Staphylococcus aureus is a leading cause of hospital-associated and, more recently, community-associated infections caused by highly virulent methicillin-resistant strains (CA-MRSA). S. aureus survival in the human host is largely defined by the ability to evade attacks by antimicrobial peptides (AMPs) and other mechanisms of innate host defence. Here we show that AMPs induce resistance mechanisms in CA-MRSA via the aps AMP sensor/regulator system, including (i) the d-alanylation of teichoic acids, (ii) the incorporation of lysyl-phosphatidylglycerol in the bacterial membrane and a concomitant increase in lysine biosynthesis, and (iii) putative AMP transport systems such as the vraFG transporter, for which we demonstrate a function in AMP resistance. In contrast to the aps system of S. epidermidis, induction of the aps response in S. aureus was AMP-selective due to structural differences in the AMP binding loop of the ApsS sensor protein. Finally, using a murine infection model, we demonstrate the importance of the aps regulatory system in S. aureus infection. This study shows that while significant interspecies differences exist in the AMP-aps interaction, the AMP sensor system aps is functional and efficient in promoting resistance to a variety of AMPs in a clinically relevant strain of the important human pathogen S. aureus.

  20. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides

    PubMed Central

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-01-01

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women’s body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI. PMID:26978373

  1. Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria

    PubMed Central

    Leptihn, Sebastian; Har, Jia Yi; Chen, Jianzhu; Ho, Bow; Wohland, Thorsten; Ding, Jeak Ling

    2009-01-01

    Background Antimicrobial peptides are found in all kingdoms of life. During the evolution of multicellular organisms, antimicrobial peptides were established as key elements of innate immunity. Most antimicrobial peptides are thought to work by disrupting the integrity of cell membranes, causing pathogen death. As antimicrobial peptides target the membrane structure, pathogens can only acquire resistance by a fundamental change in membrane composition. Hence, the evolution of pathogen resistance has been a slow process. Therefore antimicrobial peptides are valuable alternatives to classical antibiotics against which multiple drug-resistant bacteria have emerged. For potential therapeutic applications as antibiotics a thorough knowledge of their mechanism of action is essential. Despite the increasingly comprehensive understanding of the biochemical properties of these peptides, the actual mechanism by which antimicrobial peptides lyse microbes is controversial. Results Here we investigate how Sushi 1, an antimicrobial peptide derived from the horseshoe crab (Carcinoscorpius rotundicauda), induces lysis of Gram-negative bacteria. To follow the entire process of antimicrobial action, we performed a variety of experiments including transmission electron microscopy and fluorescence correlation spectroscopy as well as single molecule tracking of quantum dot-labeled antimicrobial peptides on live bacteria. Since in vitro measurements do not necessarily correlate with the in vivo action of a peptide we developed a novel fluorescent live bacteria lysis assay. Using fully functional nanoparticle-labeled Sushi 1, we observed the process of antimicrobial action at the single-molecule level. Conclusion Recently the hypothesis that many antimicrobial peptides act on internal targets to kill the bacterium has been discussed. Here, we demonstrate that the target sites of Sushi 1 are outer and inner membranes and are not cytosolic. Further, our findings suggest four successive

  2. Biosynthesis of the Polycyclic Antimicrobial Peptides Lacticin 481, Haloduracin, and Cinnamycin

    ERIC Educational Resources Information Center

    Cooper, Lisa E.

    2009-01-01

    Lantibiotics are bacterial-derived polycyclic antimicrobial peptides. They are genetically encoded and ribosomally synthesized as precursor peptides containing a structural region that undergoes post-translational modification and a leader sequence that is not modified. Specific serine and threonine residues in the pre-lantibiotic structural…

  3. Rational Evolution of Antimicrobial Peptides Containing Unnatural Amino Acids to Combat Burn Wound Infections.

    PubMed

    Xiong, Meng; Chen, Ming; Zhang, Jue

    2016-09-01

    Antimicrobial peptides have long been raised as a promising strategy to combat bacterial infection in burn wounds. Here, we attempted to rationally design small antimicrobial peptides containing unnatural amino acids by integrating in silico analysis and in vitro assay. Predictive quantitative sequence-activity models were established and validated rigorously based on a large panel of nonamer antimicrobial peptides with known antibacterial activity. The best quantitative sequence-activity model predictor was employed to guide genetic evolution of a peptide population. In the evolution procedure, a number of unnatural amino acids with desired physicochemical properties were introduced, resulting in a genetic evolution-improved population, from which seven peptide candidates with top scores, containing 1-3 unnatural amino acids, and having diverse structures were successfully identified, and their antibacterial potencies against two antibiotic-resistant bacterial strains isolated from infected burn wounds were measured using in vitro susceptibility test. Consequently, four (WL-Orn-LARKIV-NH2 , ARKRWF-Dab-FL-NH2 , KFI-Hag-IWR-Orn-R-NH2 and YW-Hag-R-Cit-RF-Orn-N-NH2 ) of the seven tested peptides were found to be more potent than reference Bac2A, the smallest naturally occurring broad spectrum antimicrobial peptide. Molecular dynamics simulations revealed that the designed peptides can fold into amphipathic helical structure that allows them to interact directly with microbial membranes. PMID:27062533

  4. Secretory production of antimicrobial peptides in Escherichia coli using the catalytic domain of a cellulase as fusion partner.

    PubMed

    Yu, Huili; Li, Haoran; Gao, Dongfang; Gao, Cuijuan; Qi, Qingsheng

    2015-11-20

    Antimicrobial peptides (AMPs) are small molecules which serve as essential components of the innate immune system in various organisms. AMPs possess a broad spectrum of antimicrobial activities. However, the scaled production of such peptides in Escherichia coli faces many difficulties because of their small size and toxicity to the host. Here, we described a new fusion strategy to extracellularly produce significant amounts of these antimicrobial peptides in recombinant E. coli at significant amount. Employing the catalytic domain of a cellulase (Cel-CD) from Bacillus subtilis KSM-64 as the fusion partner, five recombinant antimicrobial peptides were confirmed to accumulate in the culture medium at concentrations ranging from 184 mg/L to 297 mg/L. The radical diffusion experiment demonstrated that the released model antimicrobial peptide, bombinin, had antibacterial activities against both E. coli and Staphylococcus aureus. This strategy will be suitable for the production of antimicrobial peptides and other toxicity proteins.

  5. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1.

    PubMed

    Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik

    2015-08-01

    In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses.

  6. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1.

    PubMed

    Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik

    2015-08-01

    In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. PMID:26129676

  7. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria.

    PubMed

    Li, A; Lee, P Y; Ho, B; Ding, J L; Lim, C T

    2007-03-01

    The antibacterial effect of the endotoxin-binding Sushi peptides against Gram-negative bacteria (GNB) is investigated in this study. Similar characteristics observed for Atomic force microscopy (AFM) images of peptide-treated Escherichia coli and Pseudomonas aeruginosa suggest that the Sushi peptides (S3) evoke comparable mechanism of action against different strains of GNB. The results also indicate that the Sushi peptides appear to act in three stages: damage of the bacterial outer membrane, permeabilization of the inner membrane and disintegration of both membranes. The AFM approach has provided vivid and detailed close-up images of the GNB undergoing various stages of antimicrobial peptide actions at the nanometer scale. The AFM results support our hypothesis that the S3 peptide perturbs the GNB membrane via the "carpet-model" and thus, provide important insights into their antimicrobial mechanisms.

  8. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide

    PubMed Central

    Singh, Madhuri; Mukhopadhyay, Kasturi

    2014-01-01

    The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent. PMID:25140322

  9. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides.

    PubMed

    Cao, Yu; Yu, Rong Qing; Liu, Yi; Zhou, Huo Xiang; Song, Ling Ling; Cao, Yi; Qiao, Dai Rong

    2010-09-01

    In order to evaluate their antibacterial activities and toxicities, the cecropins-melittin hybrid antimicrobial peptide, CA(1-7)-M(4-11) (CAM) and CB(1-7)-M(4-11) (CBM), were designed by APD2 database. The recombinant hybrid antimicrobial peptides were successfully expressed and purified in Pichia pastoris. Antimicrobial activity assay showed that both of the two hybrid antimicrobial peptides had strong antibacterial abilities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Bacillus thuringiensis, and Salmonella derby. The potency of CAM and CBM to E. coli 25922 were 0.862 and 0.849, respectively, slightly lower than Amp's 0.957. The hemolytic assays indicated CAM and CBM had no hemolytic in vivo and in vitro, and so they had a good application prospect. PMID:20111863

  10. Characterization of novel antimicrobial peptides from the skin of the endangered frog Odorrana ishikawae by shotgun cDNA cloning.

    PubMed

    Iwakoshi-Ukena, Eiko; Soga, Miyuki; Okada, Genya; Fujii, Tamotsu; Sumida, Masayuki; Ukena, Kazuyoshi

    2011-09-01

    We recently reported the primary structures, antimicrobial activities and cDNA precursors of nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorranaishikawae. Their cDNA clones revealed a highly conserved approximately 60 bp region upstream of the start codon. This conserved region was used in the "shotgun" cDNA cloning method to reveal additional cDNAs encoding novel antimicrobial peptides of O.ishikawae. After sequencing 344 clones, we identified novel 13 cDNAs encoding dermal peptides in addition to the previously identified nine antimicrobial peptides. These 13 unique cDNAs encoded precursor proteins each containing a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg/Lys processing site and a dermal peptide at the C-terminus. The dermal peptides were members of the palustrin-2 (two peptides; termed palustrin-2ISc and palustrin-2ISd), nigrocin-2 (one peptide; nigrocin-2ISc), brevinin-1 (one peptide; brevinin-1ISa), odorranain-M (one peptide; odorranain-MISa) and entirely novel peptides (eight peptides; ishikawain-1-8). Although palustrin-2ISd and odorranain-MISa had few antimicrobial activities, palustrin-2ISc and nigrocin-2ISc possessed a broad-spectrum of growth inhibition against bacteria. Brevinin-1ISa had the most potent antimicrobial activities against the Gram-positive bacteria and the fungus but not the Gram-negative bacterium, Escherichiacoli. However, eight novel peptides showed no growth inhibition against these microorganisms. PMID:21867685

  11. Antimicrobial peptides present in mammalian skin and gut are multifunctional defence molecules.

    PubMed

    Metz-Boutigue, Marie-Hélène; Shooshtarizadeh, Peiman; Prevost, Gilles; Haikel, Youssef; Chich, Jean-François

    2010-01-01

    Antimicrobial peptides are major components of the innate immune defence. They are well conserved along evolution, non-toxic and they ensure potent defences against a large number of pathogens. They act by direct killing of microorganisms and they possess additional roles in the regulation of adaptive immune responses, by recruting or stimulating immune cells. Skin and gut are positioned at the interface of internal milieu and external environment. They represent a physical and chemical barrier against pathogens invasion and the antimicrobial peptides limit pathogen growth in normal conditions. During infection or injury, some of these peptides are overexpressed and disrupt microbial membranes and/or stimulate immune cell recruitment, allowing to return to homeostasis or to increase inflammation. Antimicrobial peptides expression is altered in several diseases: alpha-defensins deficiency is related with Crohn's disease and in skin, cathelicidin LL-37 and beta-defensin-2 are overexpressed in psoriasis, while in atopic dermatitis, their expression is decreased. The present review provides an up-to-date summary of the expression and the biological roles of the antimicrobial peptides found in the skin and gastrointestinal mucosa of the host, in normal and pathological conditions. The involvement of these natural antimicrobial peptides in inflammation, is also discussed.

  12. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    PubMed

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  13. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents.

    PubMed

    Mosca, Simone; Keller, Janos; Azzouz, Nahid; Wagner, Stefanie; Titz, Alexander; Seeberger, Peter H; Brezesinski, Gerald; Hartmann, Laura

    2014-05-12

    We introduce a novel class of membrane active peptidomimetics, the amphiphilic cationic β(3R3)-peptides, and evaluate their potential as antimicrobial agents. The design criteria, the building block and oligomer synthesis as well as a detailed structure-activity relationship (SAR) study are reported. Specifically, infrared reflection absorption spectroscopy (IRRAS) was employed to investigate structural features of amphiphilic cationic β(3R3)-peptide sequences at the hydrophobic/hydrophilic air/liquid interface. Furthermore, Langmuir monolayers of anionic and zwitterionic phospholipids have been used to model the interactions of amphiphilic cationic β(3R3)-peptides with prokaryotic and eukaryotic cellular membranes in order to predict their membrane selectivity and elucidate their mechanism of action. Lastly, antimicrobial activity was tested against Gram-positive M. luteus and S. aureus as well as against Gram-negative E. coli and P. aeruginosa bacteria along with testing hemolytic activity and cytotoxicity. We found that amphiphilic cationic β(3R3)-peptide sequences combine high and selective antimicrobial activity with exceptionally low cytotoxicity in comparison to values reported in the literature. Overall, this study provides further insights into the SAR of antimicrobial peptides and peptidomimetics and indicates that amphiphilic cationic β(3R3)-peptides are strong candidates for further development as antimicrobial agents with high therapeutic index.

  14. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGESBeta

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  15. The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity.

    PubMed

    Shooshtarizadeh, Peiman; Zhang, Dan; Chich, Jean-François; Gasnier, Claire; Schneider, Francis; Haïkel, Youssef; Aunis, Dominique; Metz-Boutigue, Marie-Hélène

    2010-11-30

    Chromogranins/secretogranins are members of the granin family present in secretory vesicles of nervous, endocrine and immune cells. In chromaffin cells, activation of nicotinic cholinergic receptors induces the release, with catecholamines, of bioactive peptides resulting from a natural processing. During the past decade, our laboratory has characterized new antimicrobial chromogranin-derived peptides in the secretions of stimulated bovine chromaffin cells. They act at the micromolar range against bacteria, fungi, yeasts, and are non-toxic for the mammalian cells. They are recovered in several biological fluids involved in defence mechanisms (human serum, neutrophil secretions and saliva). These new antimicrobial peptides demonstrate the major role of the adrenal medulla in innate immunity. In this review we focus on the antimicrobial peptides derived from human and bovine chromogranin A (CGA), chromogranin B (CGB) and secretogranin II (SGII) emphasizing their direct action against pathogens and their effects on immune cells.

  16. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  17. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle.

    PubMed

    Pal, Indrani; Brahmkhatri, Varsha P; Bera, Swapna; Bhattacharyya, Dipita; Quirishi, Yasrib; Bhunia, Anirban; Atreya, Hanudatta S

    2016-12-01

    The conjugation of nanoparticles with antimicrobial peptides (AMP) is emerging as a promising route to achieve superior antimicrobial activity. However, the nature of peptide-nanoparticle interactions in these systems remains unclear. This study describes a system consisting of a cysteine containing antimicrobial peptide conjugated with silver nanoparticles, in which the two components exhibit a dynamic interaction resulting in a significantly enhanced stability and biological activity compared to that of the individual components. This was investigated using NMR spectroscopy in conjunction with other biophysical techniques. Using fluorescence assisted cell sorting and membrane mimics we carried out a quantitative comparison of the activity of the AMP-nanoparticle system and the free peptide. Taken together, the study provides new insights into nanoparticle-AMP interactions at a molecular level and brings out the factors that will be useful for consideration while designing new conjugates with enhanced functionality. PMID:27585423

  18. The emerging role of peptides and lipids as antimicrobial epidermal barriers and modulators of local inflammation

    PubMed Central

    Brogden, N.K.; Mehalick, L.; Fischer, C.L.; Wertz, P.W.; Brogden, K.A.

    2012-01-01

    Skin is complex and comprised of distinct layers, each layer with unique architecture and immunologic functions. Cells within these layers produce differing amounts of antimicrobial peptides and lipids (sphingoid bases and sebaceous fatty acids) that limit colonization of commensal and opportunistic microorganisms. Furthermore, antimicrobial peptides and lipids have distinct, concentration-dependent ancillary innate and adaptive immune functions. At 0.1-2.0 μM, antimicrobial peptides induce cell migration and adaptive immune responses to co-administered antigens. At 2.0-6.0 μM, they induce cell proliferation and enhance wound healing. At 6.0-12.0 μM, antimicrobial peptides can regulate chemokine and cytokine production and at their highest concentrations of 15.0-30.0 μM, antimicrobial peptides can be cytotoxic. At 1-100 nM, lipids enhance cell migration induced by chemokines, suppress apoptosis, and optimize T cell cytotoxicity and at 0.3-1.0 μM, they inhibit cell migration and attenuate chemokine and pro-inflammatory cytokine responses. Recently many antimicrobial peptides and lipids at 0.1-2.0 μM have been found to attenuate the production of chemokines and pro-inflammatory cytokines to microbial antigens. Together, both the antimicrobial and the anti-inflammatory activities of these peptides and lipids may serve to create a strong, overlapping immunologic barrier that not only controls the concentrations of cutaneous commensal flora but also the extent to which they induce a localized inflammatory response. PMID:22538862

  19. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans.

    PubMed

    Conlon, J Michael

    2011-01-01

    Cationic peptides with the propensity to adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many species of anurans (frogs and toads). These peptides frequently display cytolytic activities against a range of pathogenic bacteria and fungi consistent with the idea that they play a role in the host's system of innate immunity. However, the importance of the peptides in the survival strategy of the animal is not clearly understood. It is a common misconception that antimicrobial peptides are synthesized in the skins of all anurans. In fact, the species distribution is sporadic suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. Although growth inhibitory activity against the chytrid fungus Batrachochytrium dendrobatidis, responsible for anuran population declines worldwide, has been demonstrated in vitro, the ability of frog skin antimicrobial peptides to protect the animal in the wild appears to be limited and there is no clear correlation between their production by a species and its resistance to fatal chytridiomycosis. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.

  20. A lesson from Bombinins H, mildly cationic diastereomeric antimicrobial peptides from Bombina skin.

    PubMed

    Mangoni, Maria Luisa

    2013-12-01

    Gene-encoded peptide antibiotics represent fascinating molecules for the development of new antimicrobials with a new mode of action: and one of the richest sources is amphibian skin. In particular, the skin of the fire-bellied toad Bombina genus contains mildly cationic antimicrobial peptides (AMPs), named bombinins H, with attractive properties. Indeed, some members of this peptide family coexist in skin secretions as isomers in which a single D-amino acid (alloisoleucine or leucine) is incorporated as a result of a post-translational modification of the respective gene-encoded Lamino acid. Here, a brief overview of the genes coding for these peptides, their spectrum of antimicrobial activities, mechanism of action and interactions with biological or model membranes is reported. Remarkably, a single D-amino acid substitution represents a unique approach developed by Nature not only to modulate the peptide stability in vivo, but also to confer the all-L peptide and its diastereomer distinctive biological features. Overall, such findings should assist in the generation of new peptide-based anti-infective agents, which are urgently needed because of the growing emergence of microbial strains resistant to conventional antimicrobials.

  1. Targeted Killing of Streptococcus mutans by a Pheromone-Guided “Smart” Antimicrobial Peptide

    PubMed Central

    Eckert, Randal ; He, Jian; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Within the repertoire of antibiotics available to a prescribing clinician, the majority affect a broad range of microorganisms, including the normal flora. The ecological disruption resulting from antibiotic treatment frequently results in secondary infections or other negative clinical consequences. To address this problem, our laboratory has recently developed a new class of pathogen-selective molecules, called specifically (or selectively) targeted antimicrobial peptides (STAMPs), based on the fusion of a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide domain. In the current study, we focused on achieving targeted killing of Streptococcus mutans, a cavity-causing bacterium that resides in a multispecies microbial community (dental plaque). In particular, we explored the possibility of utilizing a pheromone produced by S. mutans, namely, the competence stimulating peptide (CSP), as a STAMP targeting domain to mediate S. mutans-specific delivery of an antimicrobial peptide domain. We discovered that STAMPs constructed with peptides derived from CSP were potent against S. mutans grown in liquid or biofilm states but did not affect other oral streptococci tested. Further studies showed that an 8-amino-acid region within the CSP sequence is sufficient for targeted delivery of the antimicrobial peptide domain to S. mutans. The STAMPs presented here are capable of eliminating S. mutans from multispecies biofilms without affecting closely related noncariogenic oral streptococci, indicating the potential of these molecules to be developed into “probiotic” antibiotics which could selectively eliminate pathogens while preserving the protective benefits of a healthy normal flora. PMID:17060534

  2. Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva.

    PubMed

    Pei, Zhihua; Sun, Xiaoning; Tang, Yan; Wang, Kai; Gao, Yunhang; Ma, Hongxia

    2014-10-01

    Musca domestica (Diptera: Muscidae), the housefly, exhibits unique immune defences and can produce antimicrobial peptides upon stimulation with bacteria. Based on the cDNA library constructed using the suppression subtractive hybridization (SSH) method, a 198-bp antimicrobial peptide gene, which we named MDAP-2, was amplified by rapid amplification of cDNA ends (RACE) from M. domestica larvae stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In the present study, the full-length MDAP-2 gene was cloned and inserted into a His-tagged Escherichia coli prokaryotic expression system to enable production of the recombinant peptide. The recombinant MDAP-2 peptide was purified using Ni-NTA HisTrap FF crude column chromatography. The bacteriostatic activity of the recombinant purified MDAP-2 protein was assessed. The results indicated that MDAP-2 had in vitro antibacterial activity against all of the tested Gram- bacteria from clinical isolates, including E. coli (Enterobacteriaceae: Escherichia), one strain of S. pullorum (Enterobacteriaceae: Salmonella), and one strain of Pasteurella multocida. DNA sequencing and BLAST analysis showed that the MDAP-2 antimicrobial peptide gene was not homologous to any other antimicrobial peptide genes in GenBank. The antibacterial mechanisms of the newly discovered MDAP-2 peptide warrant further study.

  3. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries.

  4. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries. PMID:27141850

  5. On the Functional Overlap between Complement and Anti-Microbial Peptides.

    PubMed

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M

    2014-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  6. Prokaryotic expression and antimicrobial mechanism of XPF-St7-derived α-helical peptides.

    PubMed

    Yi, Tonghui; Huang, Yibing; Chen, Yuxin

    2015-01-01

    XPF-St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α-helical segment of XPF-St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram-negative and Gram-positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6-fold and 6.7-fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane.

  7. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia.

    PubMed

    Loutet, Slade A; Valvano, Miguel A

    2011-01-01

    Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.

  8. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia.

    PubMed

    Loutet, Slade A; Valvano, Miguel A

    2011-01-01

    Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. PMID:21811491

  9. Antimicrobial peptide-based treatment for endodontic infections--biotechnological innovation in endodontics.

    PubMed

    Lima, Stella Maris de Freitas; de Pádua, Gabriela Martins; Sousa, Maurício Gonçalves da Costa; Freire, Mirna de Souza; Franco, Octávio Luiz; Rezende, Taia Maria Berto

    2015-01-01

    The presence/persistence of microorganisms in the pulp and periapical area corresponds to the maintenance of an exacerbated immune response that leads to the start of periradicular bone resorption and its perpetuation. In endodontic treatment, the available intracanal medications do not have all the desirable properties in the context of endodontic infection and apical periodontitis; they need to include not only strong antimicrobial performance but also an immunomodulatory and reparative activity, without host damage. In addition, there are various levels of resistance to root canal medications. Thus, antimicrobial agents that effectively eliminate resistant species in root canals could potentially improve endodontic treatment. In the emergence of new therapies, an increasing number of studies on antimicrobial peptides (AMPs) have been seen over the past few years. AMPs are defense biomolecules produced in response to infection, and they have a wide spectrum of action against many oral microorganisms. There are some studies that correlate peptides and oral infections, including oral peptides, neuropeptides, and bacterial, fish, bovine and synthetic peptides. So far, there are around 120 published studies correlating endodontic microbiota with AMPs but, according to our knowledge, there are no registered patents in the American patent database. There are a considerable number of AMPs that exhibit excellent antimicrobial activity against endodontic microbiota at a small inhibitory concentration and modulate an exacerbated immune response, down-regulating bone resorption. All these reasons indicate the antimicrobial peptide-based endodontic treatment as an emerging and promising option.

  10. On the Functional Overlap between Complement and Anti-Microbial Peptides

    PubMed Central

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J.; Stover, Cordula M.

    2015-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  11. Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmembrane proteins.

    PubMed Central

    Tencza, S B; Douglass, J P; Creighton, D J; Montelaro, R C; Mietzner, T A

    1997-01-01

    We have previously described a conserved set of peptides derived from lentiviral envelope transmembrane proteins that are similar to the natural antimicrobial peptides cecropins and magainins in overall structure but bear no sequence homology to them or other members of their class. We describe here an evaluation of the antimicrobial properties of these virally derived peptides, designated lentivirus lytic peptides (LLPs). The results of this study demonstrate that they are potent and selective antibacterial peptides: the prototype sequence, LLP1, is bactericidal to both gram-positive and gram-negative organisms at micromolar concentrations in 10 mM phosphate buffer. Furthermore, LLP1 kills bacteria quite rapidly, causing a 1,000-fold reduction in viable organisms within 50 s. Peptides corresponding to sequences from three lentivirus envelope proteins were synthesized and characterized. Several of these peptides are selective, killing bacteria at concentrations 50- to 100-fold lower than those required to lyse erythrocytes. Development of antimicrobial agents based on these peptides may lead to improved therapeutics for the management of a variety of infectious diseases. PMID:9371339

  12. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.

    PubMed Central

    Corzo, G; Escoubas, P; Villegas, E; Barnham, K J; He, W; Norton, R S; Nakajima, T

    2001-01-01

    Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms. PMID:11563967

  13. Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor.

    PubMed

    Yang, Hong-Ling; Shen, Zhi-Qiang; Liu, Xuan; Kong, Yi

    2016-04-01

    Amphibian skin contains rich bioactive peptides. Especially, a large amount of antimicrobial peptides have been identified from amphibian skin secretions. Antimicrobial peptides display potent cytolytic activities against a range of pathogenic bacteria and fungi and play important defense roles. No antimicrobial peptides have been reported from toads belonging to the family of Pelobatidae. In this work, two novel antimicrobial peptides (Megin 1 and Megin 2) were purified and characterized from the skin venoms of spadefoot toad Megophrys minor (Pelobatidae, Anura, Amphibia). Megin 1 had an amino acid sequence of FLKGCWTKWYSLKPKCPF-NH2, which was composed of 18 amino acid residues and contained an intra-molecular disulfide bridge and an amidated C-terminus. Megin 2 had an amino acid sequence of FFVLKFLLKWAGKVGLEHLACKFKNWC, which was composed of 27 amino acid residues and contained an intra-molecular disulfide bridge. Both Megin 1 and Megin 2 showed potential antimicrobial abilities against bacteria and fungi. The MICs of Megin 1 against Escherichia coli, Bacillus dysenteriae, Staphylococcus aureus, Bacillus subtilis, and Candida albicans were 25, 3, 6.25, 3, and 50 μg·mL(-1), respectively. The corresponding MICs for Megin 2 were 6.25, 1.5, 12.5, 1.5, and 12.5 μg·mL(-1), respectively. They also exerted strong hemolytic activity against human and rabbit red cells. The results suggested that megin peptides in the toad skin of M. minor displayed toxic effects on both eukaryotes and prokaryotes. This was the first report of antimicrobial peptides from amphibians belonging to the family of Pelobatidae. PMID:27114317

  14. Progressive Structuring of a Branched Antimicrobial Peptide on the Path to the Inner Membrane Target*

    PubMed Central

    Bai, Yang; Liu, Shouping; Li, Jianguo; Lakshminarayanan, Rajamani; Sarawathi, Padmanabhan; Tang, Charles; Ho, Duncun; Verma, Chandra; Beuerman, Roger W.; Pervushin, Konstantin

    2012-01-01

    In recent years, interest has grown in the antimicrobial properties of certain natural and non-natural peptides. The strategy of inserting a covalent branch point in a peptide can improve its antimicrobial properties while retaining host biocompatibility. However, little is known regarding possible structural transitions as the peptide moves on the access path to the presumed target, the inner membrane. Establishing the nature of the interactions with the complex bacterial outer and inner membranes is important for effective peptide design. Structure-activity relationships of an amphiphilic, branched antimicrobial peptide (B2088) are examined using environment-sensitive fluorescent probes, electron microscopy, molecular dynamics simulations, and high resolution NMR in solution and in condensed states. The peptide is reconstituted in bacterial outer membrane lipopolysaccharide extract as well as in a variety of lipid media mimicking the inner membrane of Gram-negative pathogens. Progressive structure accretion is observed for the peptide in water, LPS, and lipid environments. Despite inducing rapid aggregation of bacteria-derived lipopolysaccharides, the peptide remains highly mobile in the aggregated lattice. At the inner membranes, the peptide undergoes further structural compaction mediated by interactions with negatively charged lipids, probably causing redistribution of membrane lipids, which in turn results in increased membrane permeability and bacterial lysis. These findings suggest that peptides possessing both enhanced mobility in the bacterial outer membrane and spatial structure facilitating its interactions with the membrane-water interface may provide excellent structural motifs to develop new antimicrobials that can overcome antibiotic-resistant Gram-negative pathogens. PMID:22700968

  15. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    USGS Publications Warehouse

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  16. Investigating the antimicrobial peptide 'window of activity' using cationic lipopeptides with hydrocarbon and fluorinated tails.

    PubMed

    Findlay, Brandon; Zhanel, George G; Schweizer, Frank

    2012-07-01

    To probe the effect of carbon-fluorine bonds on antimicrobial peptide-membrane interactions, 24 cationic lipopeptides were created. The collection of lipopeptides was built from two different peptide sequences, KGK and KKK, with a variety of different lipids selected to probe the effectiveness of both hydrocarbon and fluorinated tails. The antimicrobial activity of each peptide was tested against a mixture of pathogenic and reference bacterial strains, with the cationic disinfectant benzalkonium chloride as a positive control. Non-specific interactions with hydrophobic proteins were assessed by repeating antimicrobial testing in the presence of bovine serum albumin (BSA), and the toxicity of the lipopeptides was assessed by measuring lysis of ovine erythrocytes. Peptide sequence had a moderate effect on activity, with the most active peptide (C16-KGK) inhibiting the growth of two Staphylococcus epidermidis strains at ≤ 0.25 μg/mL. Tail composition was less important than the overall hydrophobicity, with the most active fluorinated tails equivalent to moderately active hydrocarbon tails. The activity of all peptides was significantly reduced by the presence of BSA, and haemolysis was closely correlated with antimicrobial activity.

  17. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  18. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli.

    PubMed

    Harrison, S J; McManus, A M; Marcus, J P; Goulter, K C; Green, J L; Nielsen, K J; Craik, D J; Maclean, D J; Manners, J M

    1999-03-01

    MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens.

  19. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli.

    PubMed

    Harrison, S J; McManus, A M; Marcus, J P; Goulter, K C; Green, J L; Nielsen, K J; Craik, D J; Maclean, D J; Manners, J M

    1999-03-01

    MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. PMID:10049672

  20. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  1. Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus.

    PubMed

    Gonzalez-Curiel, Irma; Castañeda-Delgado, Julio; Lopez-Lopez, Nallely; Araujo, Zaida; Hernandez-Pando, Rogelio; Gandara-Jasso, Benjamin; Macias-Segura, Noe; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2011-08-01

    Tuberculosis (TB) is one of the most important infectious diseases, causing 1.8 million deaths annually worldwide. This problem has increased because of the association with human immmunodeficiency virus and diabetes mellitus type 2, mainly in developing countries. In the past few years it has been highlighted the significance of antimicrobial peptides in the immunopathogenesis of TB ex vivo and in experimental models studies. In this study we analyzed the expression of CAMP, DEFA1, DEFB4, and DEFB103A in patients with latent TB and progressive TB with and without comorbidity with diabetes mellitus type 2. Antimicrobial peptide gene expression increased during progressive TB, which could be used as a biomarker for reactivation. By contrast, patients with diabetes mellitus type 2 have lower antimicrobial peptides gene expression, suggesting that the lack of its proper production in these patients contribute to enhance the risk for TB reactivation.

  2. Airway Epithelial Cells are the Site of Expression of a Mammalian Antimicrobial Peptide Gene

    NASA Astrophysics Data System (ADS)

    Diamond, Gill; Jones, Douglas E.; Bevins, Charles L.

    1993-05-01

    We previously reported the isolation and characterization of a broad-spectrum antimicrobial peptide from the bovine tracheal mucosa, which we called tracheal antimicrobial peptide (TAP). We now show the TAP gene is expressed throughout the adult conducting airway, from nasal to bronchiolar tissue, but not in tissues other than airway mucosa, as determined by Northern blot analysis. In situ hybridization of airway sections localizes TAP mRNA to columnar cells of the pseudostratified epithelium. We report the structural organization of the TAP gene and show that TAP is a member of a large family of related sequences with high nucleotide identity in the 5'exon. The data support the hypothesis that antimicrobial peptides contribute to host defense of the respiratory tract.

  3. C- and N-truncated antimicrobial peptides from LFampin 265 – 284: Biophysical versus microbiology results

    PubMed Central

    Adão, Regina; Nazmi, Kamran; Bolscher, Jan G.M.; Bastos, Margarida

    2011-01-01

    Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its antimicrobial properties, efforts have been made to find peptides derived from this protein showing antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B, obtained from the protein by digestion with pepsin. More recently, a new family of antimicrobial peptides (AMPs) derived from Lactoferrin was discovered by Bolcher et al, and named Lactoferrampin (LFampin). The original sequence of LFampin contained residues 268 – 284 from the N1 domain of Lactoferrin. From this peptide, the Bolscher’s group synthesized a collection of peptides obtained by extension and / or truncation at the C or N-terminal sides, in order to unravel the main structural features responsible for antimicrobial action. Here, we present results for three of these peptides, namely LFampin 265 – 284, LFampin 265 — 280, and LFampin 270 – 284. The peptides were tested against bacteria (E. coli and S. sanguinis), fungi (C. albicans), and model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG), and their mixtures at a ratio of 3 : 1 (DMPC : DMPG (3 : 1)). The ability to adopt a helical conformation was followed by a circular dichroism (CD), and the perturbation of the gel to the liquid-crystalline phase transition of the membrane was characterized by differential scanning calorimetry (DSC). Distinct behavior was observed in the three peptides, both from the microbiology and model membrane studies, with the biophysical results showing excellent correlation with the microbiology activity studies. LFampin 265 – 284 was the most active peptide toward the tested microorganisms, and in the biophysical studies it showed the highest ability to form an α-helix and the strongest interaction with model membranes, followed by LFampin 265 – 280. LFampin 270 – 284 was inactive

  4. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    SciTech Connect

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M.; Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R.; Castanho, Miguel A.R.B.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  5. Medusins: a new class of antimicrobial peptides from the skin secretions of phyllomedusine frogs.

    PubMed

    Xi, Xinping; Li, Renjie; Jiang, Yingchun; Lin, Yan; Wu, Yuxin; Zhou, Mei; Xu, Jie; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2013-06-01

    Natural drug discovery represents an area of research with vast potential. The investigation into the use of naturally-occurring peptides as potential therapeutic agents provides a new "chemical space" for the procurement of drug leads. Intensive and systematic studies on the broad-spectrum antimicrobial peptides found in amphibian skin secretions are of particular interest in the quest for new antibiotics to treat multiple drug-resistant bacterial infections. Here we report the molecular cloning of the biosynthetic precursor-encoding cDNAs and respective mature peptides representing a novel group of antimicrobial peptides from the skin secretions of representative species of phyllomedusine leaf frogs: the Central American red-eyed leaf frog (Agalychnis callidryas), the South American orange-legged leaf frog (Phyllomedusa hypochondrialis) and the Giant Mexican leaf frog (Pachymedusa dacnicolor). Each novel peptide possessed the highly-conserved sequence, LGMIPL/VAISAISA/SLSKLamide, and each exhibited activity against the Gram-positive bacterium, Staphylococcus aureus and the yeast, Candida albicans, but all were devoid of haemolytic effects at concentrations up to and including the MICs for both organisms. The novel peptide group was named medusins, derived from the name of the hylid frog sub-family, Phyllomedusinae, to which all species investigated belong. These data clearly demonstrate that comparative studies of the skin secretions of phyllomedusine frogs can continue to produce novel peptides that have the potential to be leads in the development of new and effective antimicrobials.

  6. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    PubMed

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation. PMID:27681920

  7. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    PubMed

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  8. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides

    PubMed Central

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1–35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation. PMID:27681920

  9. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides

    PubMed Central

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1–35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  10. Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond.

    PubMed

    Avitabile, C; Capparelli, R; Rigano, M M; Fulgione, A; Barone, A; Pedone, C; Romanelli, A

    2013-04-01

    Cysteine-containing antimicrobial peptides of diverse phylogeny share a common structural signature, the γ core, characterized by a strong polarization of charges in two antiparallel β sheets. In this work, we analyzed peptides derived from the tomato defensin SolyC07g007760 corresponding to the protein γ core and demonstrated that cyclization of the peptides, which results in segregation of positive charges to the turn region, produces peptides very active against Gram negative bacteria, such as Salmonella enterica and Helicobacter pylori. Interestingly, these peptides show very low hemolytic activity and thus represent a scaffold for the design of new antimicrobial peptides.

  11. Caseins from bovine colostrum and milk strongly bind piscidin-1, an antimicrobial peptide from fish.

    PubMed

    Kütt, Mary-Liis; Stagsted, Jan

    2014-09-01

    A model system of bovine colostrum and piscidin, a fish-derived antimicrobial peptide, was developed to study potential interactions of antimicrobial peptides in colostrum. We did not detect any antimicrobial activity of colostrum using the radial plate diffusion assay; in fact colostrum completely abrogated activity of added piscidin. This could not be explained by degradation of piscidin by colostrum, which was less than ten percent. We found that colostrum even protected piscidin against degradation by added proteases. We further observed that colostrum and milk rapidly quenched the fluorescence of fluorescein-piscidin but not that of fluorescein. This effect was not seen with BSA and the specific quenching of fluorescein-piscidin by colostrum was saturably inhibited with unlabeled piscidin. Size exclusion chromatography indicated that fluorescein-piscidin bound to casein micelles with no apparent binding to IgG or whey proteins. Further, addition of pure caseins was able to quench fluorescence of fluorescein-piscidin and to inhibit the antimicrobial activity of piscidin. The interaction between caseins and piscidin could be dissociated by guanidine hydrochloride and recovered piscidin had antimicrobial activity against bacteria. Based on our results we propose that caseins could be carriers for antimicrobial peptides in colostrum and milk. PMID:25036607

  12. Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    PubMed Central

    2008-01-01

    Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents. PMID:18850741

  13. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments.

    PubMed

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity. PMID:27450123

  14. Nanomechanical Response of Pseudomonas aeruginosa PAO1 Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Dutcher, John

    2013-03-01

    We have used an atomic force microscopy (AFM)-based creep deformation technique to study changes to the viscoelastic properties of individual Gram-negative Pseudomonas aeruginosa PAO1 cells as a function of time of exposure to two cationic peptides: polymyxin B (PMB), a cyclic antimicrobial peptide, and the structurally-related compound, polymyxin B nonapeptide (PMBN). The measurements provide a direct measure of the mechanical integrity of the bacterial cell envelope, and the results can be understood in terms of simple viscoelastic models of arrangements of springs and dashpots, which can be ascribed to different components within the bacterial cell. Time-resolved creep deformation experiments reveal abrupt changes to the viscoelastic properties of P. aeruginosa bacterial cells after exposure to both PMB and PMBN, with quantitatively different changes for the two cationic peptides. These measurements provide new insights into the kinetics and mechanism of action of antimicrobial peptides on bacterial cells.

  15. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers.

    PubMed

    Gontsarik, Mark; Buhmann, Matthias T; Yaghmur, Anan; Ren, Qun; Maniura-Weber, Katharina; Salentinig, Stefan

    2016-09-01

    Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures. PMID:27541048

  16. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development.

  17. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development. PMID:25907065

  18. Ranatuerins: antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana.

    PubMed

    Goraya, J; Knoop, F C; Conlon, J M

    1998-09-29

    Nine peptides, termed ranatuerins 1-9, with antimicrobial activity towards Staphylococcus aureus, were isolated from an extract of the skin of the adult American bullfrog, Rana catesbeiana. In common with other cytolytic peptides from Ranid frogs, (e.g. ranalexin, gaegurins, brevinins), ranatuerins 1 and 4 contain an intramolecular disulfide bridge forming a heptapeptide ring whereas in ranatuerins 2 and 3 the disulfide bridge forms a hexapeptide ring. The structurally related ranatuerins 5-9 comprise 12 - 14 amino acids and show sequence similarity towards the hemolytic peptides A1 and B9 previously isolated from the skin of Rana esculenta. Of the peptides purified, ranatuerin 1 (SMLSVLKNLGKVGLG FVACKINKQC) showed the broadest spectrum of antimicrobial action with inhibitory activity against S. aureus, Escherichia coli and Candida albicans.

  19. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties.

    PubMed

    Bruschi, Michela; Pirri, Giovanna; Giuliani, Andrea; Nicoletto, Silvia Fabiole; Baster, Izabela; Scorciapino, Mariano Andrea; Casu, Mariano; Rinaldi, Andrea C

    2010-08-01

    Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an amino valeric acid chain. Here, we report on its synthesis, NMR characterization, antimicrobial activity, and LPS-interaction properties. The peptide was especially active against Gram-negative strains, with a potency comparable (on molar basis) to that of lipopeptides colistin and polymixin B, but it also displayed some activity against selected Gram-positive strains. Following these indications, we investigated the efficacy of SB041 in binding Escherichia coli and Pseudomonas aeruginosa LPS in vitro and counteracting its biological effects in RAW-Blue cells, derived from RAW 264.7 macrophages. SB041 strongly bound purified LPS, especially that of E. coli, as proved by fluorescent displacement assay, and readily penetrated into LPS monolayers. However, the killing activity of SB041 against E. coli was not inhibited by increasing concentrations of LPS added to the medium. Checking the SB041 effect on LPS-induced activation of pattern recognition receptors (PRRs) in Raw-Blue cells revealed that while the peptide gave a statistically significant decrease in PRRs stimulation when RAW-Blue cells were challenged with P. aeruginosa LPS, the same was not seen when E. coli LPS was used to activate innate immune defense-like responses. Thus, as previously seen for other antimicrobial peptides, also for SB041 binding to LPS did not translate necessarily into LPS-neutralizing activity, suggesting that SB041-LPS interactions must be of complex nature.

  20. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.

    PubMed

    Rollins-Smith, Louise A

    2009-08-01

    Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.

  1. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus

    PubMed Central

    Mohamed, Mohamed F.; Abdelkhalek, Ahmed; Seleem, Mohamed N.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  2. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane.

  3. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane. PMID:25462167

  4. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation.

    PubMed

    De Brucker, Katrijn; Delattin, Nicolas; Robijns, Stijn; Steenackers, Hans; Verstraeten, Natalie; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Dovgan, Barbara; Fröhlich, Mirjam; Michiels, Jan; Vanderleyden, Jos; Cammue, Bruno P A; Thevissen, Karin

    2014-09-01

    We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 μM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 μM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants. PMID:24982087

  5. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus.

    PubMed

    Mohamed, Mohamed F; Abdelkhalek, Ahmed; Seleem, Mohamed N

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  6. Genome-wide analysis of the response of Dickeya dadantii 3937 to plant antimicrobial peptides.

    PubMed

    Rio-Alvarez, Isabel; Rodríguez-Herva, Jose J; Cuartas-Lanza, Raquel; Toth, Ian; Pritchard, Leighton; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-04-01

    Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.

  7. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications.

    PubMed

    Azevedo Calderon, Leonardo de; Silva, Alexandre de Almeida E; Ciancaglini, Pietro; Stábeli, Rodrigo Guerino

    2011-01-01

    Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator-prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a "treasure store" of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.

  8. Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin.

    PubMed

    Falcao, Loeni L; Silva-Werneck, Joseilde O; Ramos, Alessandra de R; Martins, Natalia F; Bresso, Emmanuel; Rodrigues, Magali A; Bemquerer, Marcelo P; Marcellino, Lucilia H

    2016-05-01

    The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC=40μM and MIC=127μM, respectively), as well as for P. pastoris (MIC=20μM and MIC=127μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi. PMID:26996966

  9. New cationic antimicrobial peptide screened from boiled-dried anchovies by immobilized bacterial membrane liposome chromatography.

    PubMed

    Tang, Wenting; Zhang, Hui; Wang, Li; Qian, Haifeng

    2014-02-19

    An efficient immobilized bacterial membrane liposome chromatography method was used to screen potential antimicrobial peptides from boiled-dried anchovies. A novel cationic antimicrobial peptide (Apep10) was successfully isolated by one-step chromatography. The sequence of Apep10 was identified as GLARCLAGTL by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry (MALDI-Q-TOF MS). The antimicrobial activity assessment indicated that Apep10 inhibited the growth of the reference bacteria (Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Bacillus subtilis, and Streptococcus pneumoniae), with minimal inhibitory concentration (MIC) values ranging from 8 to 64 μg/mL. Almost no cytotoxicity against mouse erythrocytes was observed at concentrations below 20 μg/mL. Nucleotide leakage induced by Apep10 showed that the peptide exhibited permeable activity on the cytoplasmic membrane. Alterations in morphology were observed by scanning electronic microscopy (SEM). Membrane disruption was confirmed by confocal laser scanning microscopy (CLSM) with propidium iodide (PI). The results demonstrate that immobilized bacterial membrane liposome chromatography is a straightforward technique for screening unknown antimicrobial peptides with cell-membrane-interacting activities from boiled-dried anchovies.

  10. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system.

    PubMed

    Yadavalli, Srujana S; Carey, Jeffrey N; Leibman, Rachel S; Chen, Annie I; Stern, Andrew M; Roggiani, Manuela; Lippa, Andrew M; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP-QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  11. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  12. In vitro growth of growth of campylobacter spp. inhibited by selected antimicrobial peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism...

  13. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide.

    PubMed

    Schroeder, B O; Ehmann, D; Precht, J C; Castillo, P A; Küchler, R; Berger, J; Schaller, M; Stange, E F; Wehkamp, J

    2015-05-01

    Defensins protect human barriers from commensal and pathogenic microorganisms. Human α-defensin 6 (HD-6) is produced exclusively by small intestinal Paneth cells but, in contrast to other antimicrobial peptides (AMPs) for HD-6, no direct antibacterial killing activity has been detected so far. Herein, we systematically tested how environmental factors, like pH and reducing conditions, affect antimicrobial activity of different defensins against anaerobic bacteria of the human intestinal microbiota. Remarkably, by mimicking the intestinal milieu we detected for the first time antibacterial activity of HD-6. Activity was observed against anaerobic gut commensals but not against some pathogenic strains. Antibiotic activity was attributable to the reduced peptide and independent of free cysteines or a conserved histidine residue. Furthermore, the oxidoreductase thioredoxin, which is also expressed in Paneth cells, is able to reduce a truncated physiological variant of HD-6. Ultrastructural analyses revealed that reduced HD-6 causes disintegration of cytoplasmic structures and alterations in the bacterial cell envelope, while maintaining extracellular net-like structures. We conclude that HD-6 is an antimicrobial peptide. Our data suggest two distinct antimicrobial mechanisms by one peptide: HD-6 kills specific microbes depending on the local environmental conditions, whereas known microbial trapping by extracellular net structures is independent of the reducing milieu.

  14. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide

    PubMed Central

    Schroeder, B O; Ehmann, D; Precht, J C; Castillo, P A; Küchler, R; Berger, J; Schaller, M; Stange, E F; Wehkamp, J

    2015-01-01

    Defensins protect human barriers from commensal and pathogenic microorganisms. Human α-defensin 6 (HD-6) is produced exclusively by small intestinal Paneth cells but, in contrast to other antimicrobial peptides (AMPs) for HD-6, no direct antibacterial killing activity has been detected so far. Herein, we systematically tested how environmental factors, like pH and reducing conditions, affect antimicrobial activity of different defensins against anaerobic bacteria of the human intestinal microbiota. Remarkably, by mimicking the intestinal milieu we detected for the first time antibacterial activity of HD-6. Activity was observed against anaerobic gut commensals but not against some pathogenic strains. Antibiotic activity was attributable to the reduced peptide and independent of free cysteines or a conserved histidine residue. Furthermore, the oxidoreductase thioredoxin, which is also expressed in Paneth cells, is able to reduce a truncated physiological variant of HD-6. Ultrastructural analyses revealed that reduced HD-6 causes disintegration of cytoplasmic structures and alterations in the bacterial cell envelope, while maintaining extracellular net-like structures. We conclude that HD-6 is an antimicrobial peptide. Our data suggest two distinct antimicrobial mechanisms by one peptide: HD-6 kills specific microbes depending on the local environmental conditions, whereas known microbial trapping by extracellular net structures is independent of the reducing milieu. PMID:25354318

  15. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control

    PubMed Central

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H.; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-01-01

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections. PMID:26144972

  16. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides.

    PubMed

    Dong, Zong-Mu; Zhao, Guang-Chao

    2015-05-01

    A novel label-free strategy for the detection of bacteria was developed by using a specific antimicrobial peptide (AMP)-functionalized quartz crystal microbalance (QCM) electrode. This electrode interface was successfully applied to detect pathogenic Escherichia coli O157:H7 based on the specific affinity between the small synthetic antimicrobial peptide and the bacterial cell of pathogenic E. coli O157:H7. The concentrations of pathogenic E. coli O157:H7 were sensitively measured by the frequency response of the QCM with a detection limit of 0.4 cfu μL(-1). The detection can be fulfilled within 10 min because it does not require germiculture process. On the other hand, if the specific antimicrobial peptides were immobilized on a gold electrode, this label-free strategy can also be performed by electrochemical impedance spectroscopy (EIS). Compared with QCM technique, the EIS measurement gives a lower sensitivity and needs a longer assay time. The combination of antimicrobial peptides with the real-time responses of QCM, as well as electronic read-out monitoring of EIS, may open a new way for the direct detection of bacteria.

  17. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system

    PubMed Central

    Yadavalli, Srujana S.; Carey, Jeffrey N.; Leibman, Rachel S.; Chen, Annie I.; Stern, Andrew M.; Roggiani, Manuela; Lippa, Andrew M.; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP–QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  18. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine.

    PubMed

    Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco

    2016-01-01

    Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases). PMID:27294909

  19. Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide.

    PubMed

    Torres, Allan M; Bansal, Paramjit; Koh, Jennifer M S; Pagès, Guilhem; Wu, Ming J; Kuchel, Philip W

    2014-05-01

    The three-dimensional structure of a chemically synthesized peptide that we have called 'intermediate' defensin-like peptide (Int-DLP), from the platypus genome, was determined by nuclear magnetic resonance (NMR) spectroscopy; and its antimicrobial activity was investigated. The overall structural fold of Int-DLP was similar to that of the DLPs and β-defensins, however the presence of a third antiparallel β-strand makes its structure more similar to the β-defensins than the DLPs. Int-DLP displayed potent antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The four arginine residues at the N-terminus of Int-DLP did not affect the overall fold, but were important for its antimicrobial potency. PMID:24694388

  20. Rational design of alpha-helical antimicrobial peptides: do's and don'ts.

    PubMed

    Uggerhøj, Lars Erik; Poulsen, Tanja Juul; Munk, Jens Kristian; Fredborg, Marlene; Sondergaard, Teis Esben; Frimodt-Moller, Niels; Hansen, Paul Robert; Wimmer, Reinhard

    2015-01-19

    Antimicrobial peptides (AMPs) are promising candidates for battling multiresistant bacteria. Despite extensive research, structure-activity relationships of AMPs are not fully understood, and there is a lack of structural data relating to AMPs in lipids. Here we present the NMR structure of anoplin (GLLKRIKTLL-NH2 ) in a micellar environment. A vast library of substitutions was designed and tested for antimicrobial and hemolytic activity, as well as for changes in structure and lipid interactions. This showed that improvement of antimicrobial activity without concomitant introduction of strong hemolytic activity can be achieved through subtle increases in the hydrophobicity of the hydrophobic face or through subtle increases in the polarity of the hydrophilic face of the helix, or-most efficiently-a combination of both. A set of guidelines based on the results is given, for assistance in how to modify cationic α-helical AMPs in order to control activity and selectivity. The guidelines are finally tested on a different peptide.

  1. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄.

    PubMed

    Macháň, Radek; Jurkiewicz, Piotr; Olżyńska, Agnieszka; Olšinová, Marie; Cebecauer, Marek; Marquette, Arnaud; Bechinger, Burkhard; Hof, Martin

    2014-06-01

    Positioning of peptides with respect to membranes is an important parameter for biological and biophysical studies using model systems. Our experiments using five different membrane peptides suggest that the time-dependent fluorescence shift (TDFS) of Laurdan can help when distinguishing between peripheral and integral membrane binding and can be a useful, novel tool for studying the impact of transmembrane peptides (TMP) on membrane organization under near-physiological conditions. This article focuses on LAH4, a model α-helical peptide with high antimicrobial and nucleic acid transfection efficiencies. The predominantly helical peptide has been shown to orient in supported model membranes parallel to the membrane surface at acidic and, in a transmembrane manner, at basic pH. Here we investigate its interaction with fully hydrated large unilamellar vesicles (LUVs) by TDFS and fluorescence correlation spectroscopy (FCS). TDFS shows that at acidic pH LAH4 does not influence the glycerol region while at basic pH it makes acyl groups at the glycerol level of the membrane less mobile. TDFS experiments with antimicrobial peptides alamethicin and magainin 2, which are known to assume transmembrane and peripheral orientations, respectively, prove that changes in acyl group mobility at the glycerol level correlate with the orientation of membrane-associated peptide molecules. Analogous experiments with the TMPs LW21 and LAT show similar effects on the mobility of those acyl groups as alamethicin and LAH4 at basic pH. FCS, on the same neutral lipid bilayer vesicles, shows that the peripheral binding mode of LAH4 is more efficient in bilayer permeation than the transmembrane mode. In both cases, the addition of LAH4 does not lead to vesicle disintegration. The influence of negatively charged lipids on the bilayer permeation is also addressed.

  2. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis.

    PubMed

    Chaparro, E; da Silva, P I

    2016-09-01

    Antimicrobial activities have previously been described by traditional Eastern medicine in Chilopoda body extracts, but until now no bioactive peptides have been described. In this study, a novel antimicrobial peptide, lacrain, was isolated from the body extract of the Brazilian Chilopoda Scolopendra viridicornis. The peptide was isolated by reverse-phase high-performance liquid chromatography (RP-HPLC). Its activity was tested using a liquid growth inhibition assay and the peptide was characterised using mass spectrometry. Lacrain has a sequence composed of eight amino acid residues and a molecular mass of 925.5 Da. A synthetic peptide of the native lacrain had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against Gram-negative bacteria, showing strong bactericidal activity. Moreover, the peptide did not present haemolytic activity against human erythrocytes. Lacrain represents a novel molecule with powerful antibacterial activity that could be used as a new template for the development of drugs against clinically resistant bacterial strains.

  3. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis.

    PubMed

    Chaparro, E; da Silva, P I

    2016-09-01

    Antimicrobial activities have previously been described by traditional Eastern medicine in Chilopoda body extracts, but until now no bioactive peptides have been described. In this study, a novel antimicrobial peptide, lacrain, was isolated from the body extract of the Brazilian Chilopoda Scolopendra viridicornis. The peptide was isolated by reverse-phase high-performance liquid chromatography (RP-HPLC). Its activity was tested using a liquid growth inhibition assay and the peptide was characterised using mass spectrometry. Lacrain has a sequence composed of eight amino acid residues and a molecular mass of 925.5 Da. A synthetic peptide of the native lacrain had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against Gram-negative bacteria, showing strong bactericidal activity. Moreover, the peptide did not present haemolytic activity against human erythrocytes. Lacrain represents a novel molecule with powerful antibacterial activity that could be used as a new template for the development of drugs against clinically resistant bacterial strains. PMID:27451089

  4. Chemoselective surface attachment of antimicrobial peptides and its effects on interfacial behavior

    NASA Astrophysics Data System (ADS)

    North, Stella H.; So, Christopher; Fears, Kenan; Taitt, Chris R.

    2014-06-01

    Peptide-based biological recognition elements are valuable tools for detection in biodefense systems. The utilization of such biomolecules for detection purposes relies on the ability to immobilize them on the surface of a detection platform in a predictable and reliable manner that facilitates target binding. Numerous immobilization methods have been used to improve the performance of peptide-based biosensors; however, the molecular details of how surface attachment affects structure and activity require further investigation to establish general approaches for obtaining consistent sensor surfaces. This has been largely due to the lack of analytical techniques. Using surface spectroscopy techniques, we examined the secondary structure of peptides tethered to solid support. Different tethering parameters were investigated by substituting a cysteine residue to the N-terminus or C-terminus in cationic antimicrobial peptides, and its effects on antimicrobial activity against gram-negative bacteria, E. coli. Spectroscopic analysis showed that surface immobilization drives transition of peptides secondary structures, resulting in different interfacial behaviors that may influence the secondary structure of the peptides once they interact with the bacterial cells. We have begun to gain insight into how surface attachment may have direct implications for peptide presentation and function and is an important advance in preparing a robust sensing interface.

  5. Identification, synthesis and characterization of a novel antimicrobial peptide HKPLP derived from Hippocampus kuda Bleeker.

    PubMed

    Sun, Dandan; Wu, Songqing; Jing, Chenfeng; Zhang, Ning; Liang, Dong; Xu, Anlong

    2012-03-01

    A novel gene encoding 55 amino-acid residues has been identified from the brooding pouch cDNA library of Hippocampus kuda Bleeker. The deduced amino-acid sequence is highly homologous to several pleurocidin-like peptides from the winter flounder and comprises a signal peptide, a pro-peptide and a mature peptide. The glycine-rich mature peptide, designated HKPLP, contains 24 amino-acid residues and has been synthesized by solid-phase peptide synthesis. The purified HKPLP exhibits antimicrobial activity against several Gram-positive and Gram-negative bacterial strains at low concentrations (MIC 1.5-7.5 μM). Thermal stability assay data show good heat stability. CD spectroscopy experiments indicate that the dominant contents are anti-parallel and parallel sheets, which may have β-sheet or β-strand motif. It is inferred that HKPLP participates in the host defense during egg fertilization and embryo development as an antimicrobial peptide in brooding pouch.

  6. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    PubMed

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties. PMID:27174622

  7. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming

    2008-03-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).

  8. Lipid membrane structure and dynamics in the presence of tamoxifen and antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel; Khadka, Nawal; Pan, Jianjun

    2015-03-01

    Lipids are organic molecules composed of hydrophobic fatty acid tails and hydrophilic head groups that can form a multitude of structures, including lipid vesicles which provides an excellent model representing cell membranes. In this study, we examine the effects of antimicrobial peptides and drugs on lipid vesicles. Fourier transform infrared spectroscopy measurements are performed with and without the antimicrobial peptide. A change in absorbance corresponding to the wavenumber regimes associated with the stretching of the carbonyl and phosphate groups is observed. Also, a dye leakage assay is performed with vesicles composed of neutral and charged lipids. Calcein dye is enclosed within these vesicles in solution. Different concentrations of the active and inactive antimicrobial peptides, and tamoxifen are incubated with the vesicles. Concentration dependent dye leakage is determined by measuring fluorescence intensity before and after the addition of the peptides and tamoxifen. Different leakage behavior is observed for the active and inactive peptides, and the lipid composition of the vesicle is found to have a large effect. Supported by an NSF grant.

  9. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    PubMed

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  10. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides.

    PubMed

    Leptihn, Sebastian; Har, Jia Yi; Wohland, Thorsten; Ding, Jeak Ling

    2010-11-01

    Antimicrobial peptides are key elements of the innate immune system. Many of them interact with membranes of bacteria leading to perturbation of the lipid bilayer and eventually to inactivation of the pathogen. The emergence of multidrug-resistant bacteria has necessitated innovations of new and more powerful classes of antimicrobials. Here we present the in-depth study of an antimicrobial peptide, MIRIAM, derived from Sushi1 (S1), a well-characterized peptide from the horseshoe crab. MIRIAM interacts strongly with negatively charged lipids, forming an α-helical structure. MIRIAM was found to neutralize LPS and kill Gram-negative bacteria with high efficiency, while not releasing LPS. The promising therapeutic potential of MIRIAM is shown by hemolytic assays, which demonstrate that eukaryotic membranes are unaffected at bactericidal concentrations. Nanoparticle-conjugated MIRIAM used in single-molecule fluorescence and electron microscopy experiments showed that MIRIAM targets bacterial membranes to kill bacteria similarly to parental S1. Furthermore, fragments derived from MIRIAM and S1 provided insights on their molecular mechanisms of action, in particular, the relationships of functional motifs comprised by charge, hydrophobicity, and structure within each peptide. We conclude that the combination of charge, hydrophobicity, and length of the peptide is important. A close interaction of amino acids in a single molecule in a carefully balanced ensemble of sequence position and secondary structure is crucial.

  11. Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae).

    PubMed

    Dang, X L; Wang, Y S; Huang, Y D; Yu, X Q; Zhang, W Q

    2010-11-01

    The house fly, Musca domestica L. (Diptera: Muscidae), is involved in phoretic movement of pathogenic agents, but it has a very efficient defense mechanism against infection. It is believed that antimicrobial peptides play a significant role in the defense system of the house fly. Here, we isolated a peptide from the immunized house fly pupae, measured its molecular mass (3987.6 Da) by matrix-assisted laser desorption ionization/time of flight-mass spectrometry, and determined its amino acid sequence by using the Procise Protein Sequencing System (Applied Biosystems, Foster City, CA). The peptide was confirmed as a member of the insect defensin family. It displayed high activity against gram-positive bacteria but lower activity against gram-negative bacteria and fungi. Reverse transcription-polymerase chain reaction showed that the house fly defensin gene was constitutively expressed in naive pupae and strongly up-regulated after immunization. House fly defensin is an amphiphilic peptide with a structure similar to that of the CSalphabeta scaffold of insect defensin A from the flesh fly, Phormia terraenovae Robineau-Desvoidy. To our knowledge, this is the first isolated and characterized house fly antimicrobial peptide, and our work may provide useful information for developing pharmacologically active antimicrobial agents.

  12. Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10.

    PubMed

    Xiao, Yao; Meng, Fanlu; Qiu, Dewen; Yang, Xiufen

    2012-06-01

    Symbiotic bacteria, which are carried in the intestinal vesicle of the infective stage of juvenile entomopathogenic nematodes, produce broad-spectrum antibiotics. In this study, we aimed to isolate the antimicrobial peptides from the culture of the entomopathogenic bacterium Xenorhabdus budapestensis NMC-10. By screening chromatography columns and optimizing flow rate, pH, salinity and other purification conditions, we identified the final purification procedures which consisted of Q ion-exchange chromatography, gel filtration chromatography and two-step reverse-phase chromatography. Two novel antimicrobial peptides were identified via Q-TOF-TOF and de novo sequencing, and designated as GP-19 and EP-20. Both natural and synthetic peptides demonstrated broad-spectrum antimicrobial activities. The synthetic GP-19 peptide was active against Verticillium dahlia with EC(50) values of 17.54 μg/ml and highly inhibited the growth of a variety of bacteria, while the synthetic EP-20 peptide was highly active against Phytophthora capsici with EC(50) values of 3.14 μg/ml. PMID:22497806

  13. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    PubMed

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties.

  14. Induction of Cationic Chicken Liver-Expressed Antimicrobial Peptide 2 in Response to Salmonella enterica Infection

    PubMed Central

    Townes, Claire L.; Michailidis, Georgios; Nile, Christopher J.; Hall, Judith

    2004-01-01

    Cationic antimicrobial peptides constitute part of the innate immune system and provide an essential role in the defense against infection. At present there is a paucity of information regarding the antimicrobial profile of the chicken (Gallus gallus). Using in silico studies, an expressed sequence tag (EST) clone was identified which encodes a novel cationic antimicrobial peptide, chicken liver-expressed antimicrobial peptide 2 (cLEAP-2). The predicted amino acid sequence composed a prepropeptide, and the active peptide contained four conserved cysteine amino acids. The gene was localized to chromosome 13, and analysis of the genome revealed three exons separated by two introns. The cLEAP-2 gene was expressed in a number of chicken epithelial tissues including the small intestine, liver, lung, and kidney. Northern analysis identified liver-specific cLEAP-2 splice variants, suggesting some degree of tissue-specific regulation. To investigate whether cLEAP-2 expression was constitutive or induced in response to microbial infection, 4-day-old birds were orally infected with Salmonella. Analyses of cLEAP-2 expression by semiquantitative reverse transcription-PCR indicated that cLEAP-2 mRNA was upregulated significantly in the small intestinal tissues and the liver, indicative of direct and systemic responses. The antimicrobial activity of cLEAP-2 against Salmonella was analyzed in vitro with a time-kill assay and recombinant cLEAP-2. Interestingly Salmonella enterica serovar Typhimurium SL1344 showed increased susceptibility to the active cationic peptide (amino acids 37 to 76) compared to S. enterica serovar Typhimurium C5 and Salmonella enteritidis. Taken together, these data suggest that cationic cLEAP-2 is part of the innate host defense mechanisms of the chicken. PMID:15557621

  15. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs.

    PubMed

    Yang, Xinwang; Lee, Wen-Hui; Zhang, Yun

    2012-01-01

    Peptide agents are regarded as hopeful candidates to solve life-threatening resistance of pathogenic microorganisms to classic antibiotics due to their unique action mechanisms. Peptidomic and genomic investigation of natural antimicrobial peptides (AMPs) from amphibian skin secretions can provide a large amount of structure-functional information to design peptide antibiotics with therapeutic potential. In the present study, we identified a large number of AMPs from the skins of nine kinds of Chinese odorous frogs. Eighty AMPs were purified from three different odorous frogs and confirmed by peptidomic analysis. Our results indicated that post-translational modification of AMPs rarely happened in odorous frogs. cDNAs encoding precursors of 728 AMPs, including all the precursors of the confirmed 80 native peptides, were cloned from the constructed AMP cDNA libraries of nine Chinese odorous frogs. On the basis of the sequence similarity of deduced mature peptides, these 728 AMPs were grouped into 97 different families in which 71 novel families were identified. Out of these 728 AMPs, 662 AMPs were novel and 28 AMPs were reported previously in other frog species. Our results revealed that identical AMPs were widely distributed in odorous frogs; 49 presently identified AMPs could find their identical molecules in different amphibian species. Purified peptides showed strong antimicrobial activities against 4 tested microbe strains. Twenty-three deduced peptides were synthesized and their bioactivities, including antimicrobial, antioxidant, hemolytic, immunomodulatory and insulin-releasing activities, were evaluated. Our findings demonstrate the extreme diversity of AMPs in amphibian skins and provide plenty of templates to develop novel peptide antibiotics.

  16. Detection and classification of related lipopolysaccharides via a small array of immobilized antimicrobial peptides.

    PubMed

    Uzarski, Joshua R; Mello, Charlene M

    2012-09-01

    A small array of antimicrobial peptides comprising three cysteine-terminated natural sequences covalently immobilized to pendant surface maleimide groups are used to bind and successfully discriminate five types of lipopolysaccharide (LPS) molecules. Using surface plasmon resonance, LPSs isolated from four strains of Escherichia coli and one strain of Pseudomonas aeruginosa yield distinct binding profiles to the three immobilized peptides. Linear discriminant analysis generated 100% training set and 80% validation set classification success for the 40 samples evaluated. This work demonstrates the discriminatory binding capabilities of immobilized antimicrobial peptides toward LPS molecules and alludes to their use as probes in pathogen sensing devices potentially superior to the current state-of-the-art. PMID:22881053

  17. Three novel antimicrobial peptides from the skin of the Indian bronzed frog Hylarana temporalis (Anura: Ranidae).

    PubMed

    Reshmy, V; Preeji, V; Parvin, A; Santhoshkumar, K; George, S

    2011-05-01

    Amphibian skin secretion is considered as a rich source of bioactive peptides. The present work describes the successful identification of three novel peptides named brevinin-1TEa, brevinin-2TEa and brevinin-2TEb present in the skin secretion of Indian bronzed frog Hylarana temporalis. The deduced open reading frame encoding the biosynthetic precursor of brevinin-1TEa consisted of 70 amino acid residues and brevinin-2TEa and brevinin-2TEb consisted of 71 and 72 amino acids, respectively. All the three peptides showed higher antimicrobial activity against Gram-negative than against Gram-positive bacteria. On the basis of the antibacterial and haemolytic activity, brevinin-2TEb is the most potent peptide reported in the present study. Further research on these peptides may provide potential clue towards newer drug development to combat various microbial diseases.

  18. Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers.

    PubMed

    Weiss, Thomas M; Yang, Lin; Ding, Lai; Waring, Alan J; Lehrer, Robert I; Huang, Huey W

    2002-08-01

    RTD-1 is a recently discovered cyclic peptide that, like other well-studied antimicrobial peptides, appears to bind to the lipid matrix of cell membrane in the initial stage of activity. We studied the states of RTD-1 bound to lipid bilayers by two methods: oriented circular dichroism and X-ray diffraction. RTD-1 shows two physically distinct bound states in lipid bilayers like magainins, protegrins, alamethicin, and melittin that were previously studied. However, the nature of transition between the two states is different for RTD-1 as compared with the aforementioned peptides. In one of the two states, RTD-1 is oriented with its backbone ring parallel to the plane of the bilayer. Only in this state RTD-1 induces membrane thinning. But the effect of membrane thinning is much weaker than all other peptides, suggesting that the mechanism of RTD-1 may be different from the other peptides. PMID:12146971

  19. Antimicrobial function of SHβAP, a novel hemoglobin β chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Jung, Hyun-Gyo; Go, Hye-Jin; Kim, Young Ja; Park, Nam Gyu

    2014-03-01

    A 2.3 kDa of antimicrobial peptide was purified from an acidified liver extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the amino acid sequence of the purified peptide with those of other known polypeptides revealed high homology with the C-terminus of hemoglobin β-chain; thus, this peptide was designated as the Skipjack Hemoglobin β chain-related Antimicrobial Peptide (SHβAP). SHβAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 6.5-57.0 μg/mL), Gram-negative bacteria, such as Escherichia coli D31, Pseudomonas aeruginosa, Salmonella enterica, Shigella sonnei, and two Vibrio parahaemolyticus species (MECs, 2.0-19.0 μg/mL), and against Candida albicans (MEC; 12.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide was heatstable and pH resistant but is sensitive to proteases and salt. SHβAP did not show membrane permeabilization and killing ability. The secondary structural prediction and the homology modeling expected that this peptide formed an amphipathic α-helical structure. This is the first report the purification of a novel antimicrobial peptide related to the C-terminus of hemoglobin β-chain from marine fish.

  20. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin.

    PubMed

    Bandyopadhyay, Susmita; Ng, Boon Yee; Chong, Charmaine; Lim, Ming Zhen; Gill, Sonia Kiran; Lee, Ke Hui; Sivaraman, J; Chatterjee, Chiradip

    2014-10-01

    Brevinin-2-related peptide (BR-II), a novel antimicrobial peptide isolated from the skin of frog, Rana septentrionalis, shows a broad spectrum of antimicrobial activity with low haemolytic activity. It has also been shown to have antiviral activity, specifically to protect cells from infection by HIV-1. To understand the active conformation of the BR-II peptide in membranes, we have investigated the interaction of BR-II with the prokaryotic and eukaryotic membrane-mimetic micelles such as sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N-terminus tryptophan residue of BR-II interacts with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane-mimetic micelles induce an α-helix conformation in BR-II. We have also determined the solution structures of BR-II in DPC and SDS micelles using NMR spectroscopy. The structural comparison of BR-II in the presence of SDS and DPC micelles showed significant conformational changes in the residues connecting the N-terminus and C-terminus helices. The ability of BR-II to bind DNA was elucidated by agarose gel retardation and fluorescence experiments. The structural differences of BR-II in zwitterionic versus anionic membrane mimics and the DNA binding ability of BR-II collectively contribute to the general understanding of the pharmacological specificity of this peptide towards prokaryotic and eukaryotic membranes and provide insights into its overall antimicrobial mechanism.

  1. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin.

    PubMed

    Bandyopadhyay, Susmita; Ng, Boon Yee; Chong, Charmaine; Lim, Ming Zhen; Gill, Sonia Kiran; Lee, Ke Hui; Sivaraman, J; Chatterjee, Chiradip

    2014-10-01

    Brevinin-2-related peptide (BR-II), a novel antimicrobial peptide isolated from the skin of frog, Rana septentrionalis, shows a broad spectrum of antimicrobial activity with low haemolytic activity. It has also been shown to have antiviral activity, specifically to protect cells from infection by HIV-1. To understand the active conformation of the BR-II peptide in membranes, we have investigated the interaction of BR-II with the prokaryotic and eukaryotic membrane-mimetic micelles such as sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N-terminus tryptophan residue of BR-II interacts with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane-mimetic micelles induce an α-helix conformation in BR-II. We have also determined the solution structures of BR-II in DPC and SDS micelles using NMR spectroscopy. The structural comparison of BR-II in the presence of SDS and DPC micelles showed significant conformational changes in the residues connecting the N-terminus and C-terminus helices. The ability of BR-II to bind DNA was elucidated by agarose gel retardation and fluorescence experiments. The structural differences of BR-II in zwitterionic versus anionic membrane mimics and the DNA binding ability of BR-II collectively contribute to the general understanding of the pharmacological specificity of this peptide towards prokaryotic and eukaryotic membranes and provide insights into its overall antimicrobial mechanism. PMID:25044683

  2. Purification, characterisation and cDNA cloning of an antimicrobial peptide from Macadamia integrifolia.

    PubMed

    Marcus, J P; Goulter, K C; Green, J L; Harrison, S J; Manners, J M

    1997-03-15

    An antimicrobial peptide with no significant amino acid sequence similarity to previously described peptides has been isolated from the nut kernels of Macadcamia integrifolia. The peptide, termed MiAMP1, is highly basic with an estimated pI of 10.1, a mass of 8.1 kDa and contains 76 amino acids including 6 cysteine residues. A cDNA clone containing the entire coding region corresponding to the peptide was obtained. The deduced amino acid sequence of the cDNA indicated a 26-amino-acid signal peptide at the N-terminus of the preprotein. Purified MiAMP1 inhibited the growth of a variety of fungal, oomycete and gram-positive bacterial phytopathogens in vitro. Some pathogens exhibited close to 100% inhibition in less than 1 microM peptide (5 microg/ml). Antimicrobial activity was diminished against most, but not all, microbes in the presence of calcium and potassium chloride salts (1 mM and 50 mM, respectively). MiAMP1 was active against bakers yeast, was inactive against Escherichia coli and was non-toxic to plant and mammalian cells. Analysis of genomic DNA indicated that MiAMP1 was encoded on a single copy gene containing no introns. The MiAMP1 gene may prove useful in genetic manipulations to increase disease resistance in transgenic plants.

  3. Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish.

    PubMed

    Douglas, Susan E; Gallant, Jeffrey W; Liebscher, Ryan S; Dacanay, Andrew; Tsoi, Stephen C M

    2003-01-01

    Antimicrobial peptides play a crucial role as the first line of defense against invading pathogens. Several types of antimicrobial peptides have been isolated from fish, mostly of the cationic alpha-helical variety. Here, we present the cDNA sequences of five highly disulphide-bonded hepcidin-like peptides from winter flounder, Pseudopleuronectes americanus (Walbaum) and two from Atlantic salmon, Salmo salar (L.). These hepcidin-like molecules consist of a 24 amino acid signal peptide and an acidic propiece of 38-40 amino acids in addition to the mature processed peptide of 19-27 amino acids. Exhaustive data mining of GenBank with these sequences revealed that similar peptides are encoded in the genomes of Japanese flounder, rainbow trout, hybrid striped bass and medaka, indicating that they are widespread among fish. Southern hybridization analysis suggests that closely related hepcidin-like genes are present in other flatfish species, and that they exist as a multigene family clustered on the winter flounder genome. Hepcidin variants are differentially expressed during bacterial challenge, during larval development of P. americanus and in different tissues of adult fish.

  4. pH Dependence of microbe sterilization by cationic antimicrobial peptides.

    PubMed

    Walkenhorst, William F; Klein, J Wolfgang; Vo, Phuong; Wimley, William C

    2013-07-01

    We recently described a family of cationic antimicrobial peptides (CAMPs) selected from a combinatorial library that exhibited potent, broad-spectrum activity at neutral pH and low ionic strength. To further delimit the utility and activity profiles of these peptides, we investigated the effects of solution conditions, such as pH and ionic strength, on the efficacy of the peptide antimicrobials against a panel of microorganisms. Peptide minimum sterilizing concentrations (MSCs) varied linearly with pH for each subtype within our family of CAMPs for all organisms tested. The peptides were much less effective against Gram-negative bacteria at high pH, consistent with a decrease in net positive charge on the peptides. A similar trend was observed for the fungus Candida albicans. Surprisingly, the opposite pH trend was observed with the Gram-positive Staphylococcus aureus. In addition, an additive ionic strength effect was observed with increasing buffer strengths at identical pH values. The extreme difference in the observed pH behavior between Gram-negative and Gram-positive organisms is attributed to the presence of native charged molecules in the much thicker peptidoglycan layer of the Gram-positive organism. The novel species-specific effects of pH observed here have important implications for applications using CAMPs and for the design of novel CAMPs.

  5. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    SciTech Connect

    Wu, Guoqiu; Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao; Shen, Zilong

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  6. Interactions between chensinin-1, a natural antimicrobial peptide derived from Rana chensinensis, and lipopolysaccharide.

    PubMed

    Dong, Weibing; Sun, Yue; Shang, Dejing

    2015-12-01

    Lipopolysaccharide (LPS) plays a critical role in the pathogenesis of sepsis caused by gram-negative bacterial infections. Therefore, LPS-neutralizing molecules would have important clinical applications. Chensinin-1, a novel antimicrobial peptide with atypical structural features, was found in the skin secretions of the Chinese brown frog Rana chensinensis. To understand the role of LPS in the bacterial susceptibility to chensinin-1 and to investigate its anti-endotoxin effects, the interactions of chensinin-1 with LPS were investigated in this study using circular dichroism, in situ IR, isothermal titration calorimetry, and zeta potential. This study is the first to use in situ IR spectroscopy to evaluate the secondary structural changes of this peptide. The capacity of chensinin-1 to block the LPS-dependent cytokine secretion of macrophages was also investigated. Our results show that chensinin-1 can form α-helical structures in LPS suspensions. LPS can affect the antimicrobial activity of chensinin-1, and chensinin-1 was able to mitigate the effects of LPS. These data may facilitate the development of antimicrobial peptides with potent antimicrobial and anti-endotoxin activities. PMID:26340228

  7. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties

    PubMed Central

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.

    2015-01-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP’s), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis, and E. coli. In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up

  8. Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options

    PubMed Central

    Wang, Jianghui; Wong, Emily S. W.; Whitley, Jane C.; Li, Jian; Stringer, Jessica M.; Short, Kirsty R.; Renfree, Marilyn B.

    2011-01-01

    Background To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens. PMID:21912615

  9. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi

    PubMed Central

    Yacoub, Haitham A.; Elazzazy, Ahmed M.; Abuzinadah, Osama A. H.; Al-Hejin, Ahmed M.; Mahmoud, Maged M.; Harakeh, Steve M.

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic. PMID:25941665

  10. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi.

    PubMed

    Yacoub, Haitham A; Elazzazy, Ahmed M; Abuzinadah, Osama A H; Al-Hejin, Ahmed M; Mahmoud, Maged M; Harakeh, Steve M

    2015-01-01

    Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

  11. Buforins: histone H2A-derived antimicrobial peptides from toad stomach.

    PubMed

    Cho, Ju Hyun; Sung, Bong Hyun; Kim, Sun Chang

    2009-08-01

    Antimicrobial peptides (AMPs) constitute an important component of the innate immune system in a variety of organisms. Buforin I is a 39-amino acid AMP that was first isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. Buforin II is a 21-amino acid peptide that is derived from buforin I and displays an even more potent antimicrobial activity than its parent AMP. Both peptides share complete sequence identity with the N-terminal region of histone H2A that interacts directly with nucleic acids. Buforin I is generated from histone H2A by pepsin-directed proteolysis in the cytoplasm of gastric gland cells. After secretion into the gastric lumen, buforin I remains adhered to the mucous biofilm that lines the stomach, thus providing a protective antimicrobial coat. Buforins, which house a helix-hinge-helix domain, kill a microorganism by entering the cell without membrane permeabilization and thus binding to nucleic acids. The proline hinge is crucial for the cell penetrating activity of buforins. Buforins also are known to possess anti-endotoxin and anticancer activities, thus making these peptides attractive reagents for pharmaceutical applications. This review describes the role of buforins in innate host defense; future research paradigms; and use of these agents as human therapeutics.

  12. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections.

    PubMed

    Findlay, Fern; Proudfoot, Lorna; Stevens, Craig; Barlow, Peter G

    2016-01-01

    Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required. PMID:27315342

  13. Trichoplaxin - a new membrane-active antimicrobial peptide from placozoan cDNA.

    PubMed

    Simunić, Juraj; Petrov, Dražen; Bouceba, Tahar; Kamech, Nédia; Benincasa, Monica; Juretić, Davor

    2014-05-01

    A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.

  14. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections.

    PubMed

    Findlay, Fern; Proudfoot, Lorna; Stevens, Craig; Barlow, Peter G

    2016-01-01

    Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required.

  15. Antimicrobial peptide, hdMolluscidin, purified from the gill of the abalone, Haliotis discus.

    PubMed

    Seo, Jung-Kil; Go, Hye-Jin; Kim, Chan-Hee; Nam, Bo-Hye; Park, Nam Gyu

    2016-05-01

    A 4.7 kDa antimicrobial peptide was purified from the acidified gill extract of the Abalone, Haliotis discus, by cation-exchange and C18 reversed-phase high performance liquid chromatography (HPLC). Comparison of the amino acid sequences and molecular weight of this peptide with those of other known antimicrobial peptides revealed that this antimicrobial peptide have high sequence homology with that of cgMolluscidin and was designated hdMolluscidin. hdMolluscidin is composed of 46 amino acid residues containing several dibasic residue repeats like KK or K-R. hdMolluscidin showed potent antimicrobial activity against both Gram-positive bacteria including Bacillus subtilis and Staphylococcus aureus (minimal effective concentrations [MECs]; 0.8-19.0 μg/mL) and Gram-negative bacteria including Aeromonas hydrophila, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Shigella flexneri, and Vibrio parahemolyticus ([MECs]; 1.0-4.0 μg/mL) without hemolytic activity. However, hdMolluscidin did not show any significant activity against Candida albicans. The secondary structural prediction suggested that hdMolluscidin might not form an ordered or an amphipathic structure. hdMolluscidin did not show membrane permeabilization or leakage ability. The full-length hdMolluscidin cDNA contained 566-bp, including a 5'-untranslated region (UTR) of 63-bp, a 3'-UTR of 359-bp, and an open reading frame of 144-bp encoding 47 amino acids (containing Met). cDNA study of hdMolluscidin suggests that it is expressed as a mature peptide. Our results indicate that hdMolluscidin could relate to the innate immune defenses in abalone and it may not act directly on bacterial membrane. PMID:27033467

  16. Antimicrobial peptide, hdMolluscidin, purified from the gill of the abalone, Haliotis discus.

    PubMed

    Seo, Jung-Kil; Go, Hye-Jin; Kim, Chan-Hee; Nam, Bo-Hye; Park, Nam Gyu

    2016-05-01

    A 4.7 kDa antimicrobial peptide was purified from the acidified gill extract of the Abalone, Haliotis discus, by cation-exchange and C18 reversed-phase high performance liquid chromatography (HPLC). Comparison of the amino acid sequences and molecular weight of this peptide with those of other known antimicrobial peptides revealed that this antimicrobial peptide have high sequence homology with that of cgMolluscidin and was designated hdMolluscidin. hdMolluscidin is composed of 46 amino acid residues containing several dibasic residue repeats like KK or K-R. hdMolluscidin showed potent antimicrobial activity against both Gram-positive bacteria including Bacillus subtilis and Staphylococcus aureus (minimal effective concentrations [MECs]; 0.8-19.0 μg/mL) and Gram-negative bacteria including Aeromonas hydrophila, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Shigella flexneri, and Vibrio parahemolyticus ([MECs]; 1.0-4.0 μg/mL) without hemolytic activity. However, hdMolluscidin did not show any significant activity against Candida albicans. The secondary structural prediction suggested that hdMolluscidin might not form an ordered or an amphipathic structure. hdMolluscidin did not show membrane permeabilization or leakage ability. The full-length hdMolluscidin cDNA contained 566-bp, including a 5'-untranslated region (UTR) of 63-bp, a 3'-UTR of 359-bp, and an open reading frame of 144-bp encoding 47 amino acids (containing Met). cDNA study of hdMolluscidin suggests that it is expressed as a mature peptide. Our results indicate that hdMolluscidin could relate to the innate immune defenses in abalone and it may not act directly on bacterial membrane.

  17. Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides.

    PubMed

    Sandreschi, Stefania; Piras, Anna Maria; Batoni, Giovanna; Chiellini, Federica

    2016-07-01

    Antimicrobial peptides (AMPs) are a class of promising anti-infective molecules but their therapeutic application is opposed by their poor bioavailability, susceptibility to protease degradation and potential toxicity. The advancement of nanoformulation technologies offers encouraging perspectives for the development of novel therapeutic strategies based on AMPs to treat antibiotic resistant microbial infections. Additionally, the use of polymers endowed per-se with antibacterial properties, stands out as an innovative approach for the development of a new generation of drug delivery systems in which an enhanced antimicrobial action could be obtained by the synergic combination of bioactive polymer matrices and drugs. Herein, the latest AMPs drug delivery research is discussed. PMID:27348155

  18. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides

    PubMed Central

    Dallas, David C.; Guerrero, Andres; Khaldi, Nora; Castillo, Patricia A.; Martin, William F.; Smilowitz, Jennifer T.; Bevins, Charles L.; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.

    2013-01-01

    Milk is traditionally considered an ideal source of the basic elemental nutrients required by infants. More detailed examination is revealing that milk represents a more functional ensemble of components with benefits to both infants and mothers. A comprehensive peptidomics method was developed and used to analyze human milk yielding an extensive array of protein products present in the fluid. Over 300 milk peptides were identified originating from major and many minor protein components of milk. As expected, the majority of peptides derived from β-casein, however no peptide fragments from the major milk proteins lactoferrin, α-lactalbumin and secretory immunoglobulin A were identified. Proteolysis in the mammary gland is selective—released peptides were drawn only from specific proteins and typically from only select parts of the parent sequence. A large number of the peptides showed significant sequence overlap with peptides with known antimicrobial or immunomodulatory functions. Antibacterial assays showed the milk peptide mixtures inhibited the growth of Escherichia coli and Staphylococcus aureus. The pre-digestion of milk proteins and the consequent release antibacterial peptides may provide a selective advantage through evolution by protecting both the mother's mammary gland and her nursing offspring from infection. PMID:23586814

  19. Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides.

    PubMed

    Rollins-Smith, Louise A; Reinert, Laura K; Burrowes, Patricia A

    2015-02-10

    The amphibian skin fungus Batrachochytrium dendrobatidis (Bd) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus Eleutherodactylus, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs E. coqui collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of Bd. Thus, it appears that E. coqui depend on other skin defenses to survive in the presence of this deadly fungus.

  20. Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides.

    PubMed

    Rollins-Smith, Louise A; Reinert, Laura K; Burrowes, Patricia A

    2015-02-10

    The amphibian skin fungus Batrachochytrium dendrobatidis (Bd) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus Eleutherodactylus, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs E. coqui collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of Bd. Thus, it appears that E. coqui depend on other skin defenses to survive in the presence of this deadly fungus. PMID:25667340

  1. A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity.

    PubMed

    Aboye, Teshome L; Strömstedt, Adam A; Gunasekera, Sunithi; Bruhn, Jan G; El-Seedi, Hesham; Rosengren, K Johan; Göransson, Ulf

    2015-05-01

    Naturally occurring cystine knot peptides show a wide range of biological activity, and as they have inherent stability they represent potential scaffolds for peptide-based drug design and biomolecular engineering. Here we report the discovery, sequencing, chemical synthesis, three-dimensional solution structure determination and bioactivity of the first cystine knot peptide from Cactaceae (cactus) family: Ep-AMP1 from Echinopsis pachanoi. The structure of Ep-AMP1 (35 amino acids) conforms to that of the inhibitor cystine knot (or knottin) family but represents a novel diverse sequence; its activity was more than 500 times higher against bacterial than against eukaryotic cells. Rapid bactericidal action and liposome leakage implicate membrane permeabilisation as the mechanism of action. Sequence homology places Ec-AMP1 in the plant C6-type of antimicrobial peptides, but the three dimensional structure is highly similar to that of a spider neurotoxin.

  2. Enzymatic fractionation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk-protein based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin...

  3. Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface.

    PubMed

    Hiemstra, Pieter S

    2015-11-01

    Antimicrobial peptides and complement components contribute to host defense as well as inflammation and tissue injury in the respiratory tract. The airway epithelial surface is the main site of action of these immune effectors, and airway epithelial cells contribute markedly to their local production. Whereas both antimicrobial peptides and complement display overlapping functions, it is increasingly clear that both effector mechanisms also interact. Furthermore, excessive or uncontrolled release of antimicrobial peptides as well as complement activation may contribute to inflammatory lung diseases. Therefore, further knowledge of interactions between these systems may provide more insight into the pathogenesis of a range of lung diseases. In this review, recent findings on the functions, collaborations and other interactions between antimicrobial peptides and complement are discussed with a specific focus on the airway epithelium.

  4. Versatile interactions of the antimicrobial peptide novispirin with detergents and lipids.

    PubMed

    Wimmer, Reinhard; Andersen, Kell K; Vad, Brian; Davidsen, Mads; Mølgaard, Søren; Nesgaard, Lise W; Kristensen, Hans H; Otzen, Daniel E

    2006-01-17

    Novispirin G-10 is an 18-residue designed cationic peptide derived from the N-terminal part of an antimicrobial peptide from sheep. This derivative is more specific for bacteria than the parent peptide. We have analyzed Novispirin's interactions with various amphipathic molecules and find that a remarkably wide variety of conditions induce alpha-helical structure. Optimal structure induction by lipids occurs when the vesicles contain 40-80% anionic lipid, while pure anionic lipid vesicles induce aggregation. SDS also forms aggregates with Novispirin at submicellar concentrations but induces alpha-helical structures above the cmc. Both types of aggregates contain significant amounts of beta-sheet structure, highlighting the peptide's structural versatility. The cationic detergent LTAC has a relatively strong affinity for the cationic peptide despite the peptide's net positive charge of +7 at physiological pH and total lack of negatively charged side chains. Zwitterionic and nonionic detergents induce alpha-helical structures at several hundred millimolar detergent. We have solved the peptide structure in SDS and LTAB by NMR and find subtle differences compared to the structure in TFE, which we ascribe to the interaction with an amphiphilic environment. Novispirin is largely buried in the SDS-micelle, whereas it does not enter the LTAC-micelle but merely forms a dynamic equilibrium between surface-bound and nonbound Novispirin. Thus, electrostatic repulsion can be overruled by relatively high-detergent concentrations or by deprotonating a single critical side chain, despite the fact that Novispirin's ability to bind to amphiphiles and form alpha-helical structure is sensitive to the electrostatics of the amphiphilic environment. This emphasizes the versatility of cationic antimicrobial peptides' interactions with amphiphiles.

  5. Amino acid substitutions in an alpha-helical antimicrobial arachnid peptide affect its chemical properties and biological activity towards pathogenic bacteria but improves its therapeutic index.

    PubMed

    Rodríguez, A; Villegas, E; Satake, H; Possani, L D; Corzo, Gerardo

    2011-01-01

    Four variants of the highly hemolytic antimicrobial peptide Pin2 were chemically synthesized with the aim to investigate the role of the proline residue in this peptide, by replacing it with the motif glycine-valine-glycine [GVG], which was found to confer low hemolytic activity in a spider antimicrobial peptide. The proline residue in position 14 of Pin2 was substituted by [V], [GV], [VG] and [GVG]. Only the peptide variant with the proline substituted for [GVG] was less hemolytic compared to that of all other variants. The peptide variant [GVG] kept its antimicrobial activity in Muller-Hilton agar diffusion assays, whereas the other three variants were less effective. However, all Pin2 antimicrobial peptide variants, were active when challenged against a Gram-positive bacteria in Muller-Hilton broth assays suggesting that chemical properties of the antimicrobial peptides such as hydrophobicity is an important indication for antimicrobial activity in semi-solid environments.

  6. APD3: the antimicrobial peptide database as a tool for research and education

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2016-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education. PMID:26602694

  7. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  8. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis

    PubMed Central

    Pearson, C. Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj

    2016-01-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of “database filtering” bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created. PMID:26902758

  9. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis.

    PubMed

    Pearson, C Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj; McDonough, Kathleen A; Belfort, Georges

    2016-05-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of "database filtering" bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created.

  10. APD3: the antimicrobial peptide database as a tool for research and education.

    PubMed

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2016-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education. PMID:26602694

  11. APD3: the antimicrobial peptide database as a tool for research and education.

    PubMed

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2016-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education.

  12. The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds.

    PubMed

    Duplantier, Allen J; van Hoek, Monique L

    2013-01-01

    Diabetic patients often have ulcers on their lower-limbs that are infected by multiple biofilm-forming genera of bacteria, and the elimination of the biofilm has proven highly successful in resolving such wounds in patients. To that end, antimicrobial peptides have shown potential as a new anti-biofilm approach. The single human cathelicidin peptide LL-37 has been shown to have antimicrobial and anti-biofilm activity against multiple Gram-positive and Gram-negative human pathogens, and have wound-healing effects on the host. The combination of the anti-biofilm effect and wound-healing properties of LL-37 may make it highly effective in resolving polymicrobially infected wounds when topically applied. Such a peptide or its derivatives could be a platform from which to develop new therapeutic strategies to treat biofilm-mediated infections of wounds. This review summarizes known mechanisms that regulate the endogenous levels of LL-37 and discusses the anti-biofilm, antibacterial, and immunological effects of deficient vs. excessive concentrations of LL-37 within the wound environment. Here, we review recent advances in understanding the therapeutic potential of this peptide and other clinically advanced peptides as a potential topical treatment for polymicrobial infected wounds.

  13. Effect of synthetic antimicrobial peptides on Naegleria fowleri trophozoites.

    PubMed

    Tiewcharoen, Supathra; Phurttikul, Watchara; Rabablert, Jundee; Auewarakul, Prasert; Roytrakul, Sittiruk; Chetanachan, Pruksawan; Atithep, Thassanant; Junnu, Virach

    2014-05-01

    We evaluated the effect of tritrpticin, lactoferrin, killer decapeptide and scrambled peptide in vitro against Naegleria fowleri trophozoites compared with amphotericin B. Tritrpticin (100 microg/ml) caused apoptosis of N. fowleri trophozoites (2x10(5) cells/ml), while lactoferrin, killer decapeptide and scrambled peptide did not. On Gormori trichrome staining, tritrpticin affected the elasticity of the surface membrane and reduced the size of the nuclei of N. fowleri trophozoites. The ultrastructure surface membrane and food cup formation of the trophozoites were 100% inhibited. These results are consistent with inhibition of the nfa1, Mp2CL5 of the treated trophozoite, which plays a role in food cup formation. Tritrpticin 100 microg/ml was not toxic against SK-N-MC cells. Our findings suggest tritrpticin has activity against the surface membrane and nfa1 and Mp2CL5 of N. fowleri trophozoites and could be developed as a potential therapeutic agent. PMID:24974637

  14. Effect of synthetic antimicrobial peptides on Naegleria fowleri trophozoites.

    PubMed

    Tiewcharoen, Supathra; Phurttikul, Watchara; Rabablert, Jundee; Auewarakul, Prasert; Roytrakul, Sittiruk; Chetanachan, Pruksawan; Atithep, Thassanant; Junnu, Virach

    2014-05-01

    We evaluated the effect of tritrpticin, lactoferrin, killer decapeptide and scrambled peptide in vitro against Naegleria fowleri trophozoites compared with amphotericin B. Tritrpticin (100 microg/ml) caused apoptosis of N. fowleri trophozoites (2x10(5) cells/ml), while lactoferrin, killer decapeptide and scrambled peptide did not. On Gormori trichrome staining, tritrpticin affected the elasticity of the surface membrane and reduced the size of the nuclei of N. fowleri trophozoites. The ultrastructure surface membrane and food cup formation of the trophozoites were 100% inhibited. These results are consistent with inhibition of the nfa1, Mp2CL5 of the treated trophozoite, which plays a role in food cup formation. Tritrpticin 100 microg/ml was not toxic against SK-N-MC cells. Our findings suggest tritrpticin has activity against the surface membrane and nfa1 and Mp2CL5 of N. fowleri trophozoites and could be developed as a potential therapeutic agent.

  15. Purification and characterization of a novel antimicrobial peptide from sheep reproductive tract.

    PubMed

    Chen, Chen; Ku, Chaofeng; Bo, Xinwen; Wang, Xinhua

    2015-02-01

    A novel antimicrobial peptide, SRTAP-40 has been purified and characterized from sheep reproductive tract. The isolation procedure entailed acetic acid extraction, gel filtration chromatography, and HPLC. SRTAP-40 is composed of 40 amino acid residues with a MW of 4,820.47 Da from MALDI-TOF-MS. Its N-terminal sequence was AYVLDEPKP. SRTAP-40 cDNA was cloned by 3'-RACE. SRTAP-40 showed activity against E. coli Staphylococcus aureus, Streptococcus sp. and, Candida albicans with MIC values of 12, 12, 24, 6 μg/ml, respectively. By BLAST search, SRTAP-40 had no significant similarity to any known peptide. PMID:25257597

  16. One step at a time: action mechanism of Sushi 1 antimicrobial peptide and derived molecules.

    PubMed

    Leptihn, Sebastian; Guo, Lin; Frecer, Vladimir; Ho, Bow; Ding, Jeak Ling; Wohland, Thorsten

    2010-01-01

    Antimicrobial peptides (AMPs) are a crucial part of the innate immune system of eukaryotes and present a possible alternative to common antibiotics. It is therefore of great importance to understand their modes of action. Using a single-molecule approach in combination with high resolution imaging and bio-functional assays we were able to determine the different steps occurring during the action of the α-helical AMP Sushi 1 during bacterial lysis in spatial and temporal resolution in a biologically relevant context. Furthermore, we comment on the use of Sushi 1 as a template for new peptides to learn more about structure-function relationship of AMPs.

  17. Characterization of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura:Ranidae).

    PubMed

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert; Leprince, Jérôme; Vaudry, Hubert; Coquet, Laurent; Jouenne, Thierry; King, Jay D

    2008-09-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from Hose's rock frog Odorrana hosii (Boulenger, 1891) led to the isolation of 8 peptides with differential antibacterial activities. Structural characterization demonstrated that the peptides belonged to the esculentin-1 (1 peptide), esculentin-2 (1 peptide), brevinin-1 (2 peptides), brevinin-2 (2 peptides), and nigrocin-2 (2 peptides) families of antimicrobial peptides. Similar analysis of skin secretions from the Malaysian fire frog Hylarana picturata (Boulenger, 1920) led to the isolation and characterization of peptides belonging to the brevinin-1 (2 peptides), brevinin-2 (5 peptides), and temporin (1 peptide) families. The differences in antimicrobial activities of paralogous peptides provide insight into structure-activity relationships, emphasizing the importance of cationicity in determining potency. The substitution Lys11-->Gln in brevinin-1HSa (FLPAVLRVAAKIVPTVFCAISKKC) from O. hosii abolishes growth inhibitory activity against Escherichia coli but has no effect on the high potency (MIC = 8 microg/ml) against Staphylococcus aureus. In contrast, the substitution (Gly4-->Asp) in brevinin-2PTb (GFKGAFKNVMFGIAKSAGKSALNALACKIDKSC) from H. picturata reduces activity against both E. coli and S. aureus. Cladistic analysis based upon the amino acid sequences of the brevinin-2 peptides from Asian frogs provides evidence for sister taxon relationships between O. hosii and O. livida and between H. picturata and H. güntheri. PMID:18621071

  18. The role of biophysical parameters in the antilipopolysaccharide activities of antimicrobial peptides from marine fish.

    PubMed

    Gopal, Ramamourthy; Seo, Chang Ho; Park, Yoonkyung

    2014-03-01

    Numerous antimicrobial peptides (AMPs) from marine fish have been identified, isolated and characterized. These peptides act as host defense molecules that exert antimicrobial effects by targeting the lipopolysaccharide (LPS) of Gram-negative bacteria. The LPS-AMP interactions are driven by the biophysical properties of AMPs. In this review, therefore, we will focus on the physiochemical properties of AMPs; that is, the contributions made by their sequences, net charge, hydrophobicity and amphipathicity to their mechanism of action. Moreover, the interactions between LPS and fish AMPs and the structure of fish AMPs with LPS bound will also be discussed. A better understanding of the biophysical properties will be useful in the design of AMPs effective against septic shock and multidrug-resistant bacterial strains, including those that commonly produce wound infections. PMID:24633250

  19. Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides.

    PubMed

    Walkenhorst, William F

    2016-05-01

    The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  20. Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides.

    PubMed

    Walkenhorst, William F

    2016-05-01

    The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26751595

  1. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells.

    PubMed

    Wang, Kairong; Dang, Wen; Xie, Junqiu; Zhu, Ranran; Sun, Mengyang; Jia, Fengjing; Zhao, Yanyan; An, Xiaoping; Qiu, Shuai; Li, Xiaoyuan; Ma, Zelin; Yan, Wenjin; Wang, Rui

    2015-10-01

    Candidiasis is often observed in immunocompromised patients and is the 4th most common cause of bloodstream infections. However, antifungals are limited, so novel antifungal agents are urgently needed. Antimicrobial peptides (AMPs) are considered as potential alternatives of conventional antibiotics. In the present study, antimicrobial peptide protonectin was chemically synthesized and its antifungal activity and mode of action were studied. Our results showed that protonectin has potent antifungal activity and fungicidal activity against the tested fungi cells. Its action mode involved the disruption of the membrane integrity and the inducing of the production of cellular ROS. Furthermore, protonectin could inhibit the formation of biofilm and kill the adherent fungi cells. In conclusion, with the increase of fungal infection, protonectin may offer a new strategy and be considered as a potential therapeutic agent against fungal disease. PMID:26209560

  2. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    PubMed

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. PMID:26680221

  3. The role of biophysical parameters in the antilipopolysaccharide activities of antimicrobial peptides from marine fish.

    PubMed

    Gopal, Ramamourthy; Seo, Chang Ho; Park, Yoonkyung

    2014-03-01

    Numerous antimicrobial peptides (AMPs) from marine fish have been identified, isolated and characterized. These peptides act as host defense molecules that exert antimicrobial effects by targeting the lipopolysaccharide (LPS) of Gram-negative bacteria. The LPS-AMP interactions are driven by the biophysical properties of AMPs. In this review, therefore, we will focus on the physiochemical properties of AMPs; that is, the contributions made by their sequences, net charge, hydrophobicity and amphipathicity to their mechanism of action. Moreover, the interactions between LPS and fish AMPs and the structure of fish AMPs with LPS bound will also be discussed. A better understanding of the biophysical properties will be useful in the design of AMPs effective against septic shock and multidrug-resistant bacterial strains, including those that commonly produce wound infections.

  4. The use of versatile plant antimicrobial peptides in agribusiness and human health.

    PubMed

    de Souza Cândido, Elizabete; e Silva Cardoso, Marlon Henrique; Sousa, Daniel Amaro; Viana, Juliane Cançado; de Oliveira-Júnior, Nelson Gomes; Miranda, Vívian; Franco, Octávio Luiz

    2014-05-01

    Plant immune responses involve a wide diversity of physiological reactions that are induced by the recognition of pathogens, such as hypersensitive responses, cell wall modifications, and the synthesis of antimicrobial molecules including antimicrobial peptides (AMPs). These proteinaceous molecules have been widely studied, presenting peculiar characteristics such as conserved domains and a conserved disulfide bond pattern. Currently, many AMP classes with diverse modes of action are known, having been isolated from a large number of organisms. Plant AMPs comprise an interesting source of studies nowadays, and among these there are reports of different classes, including defensins, albumins, cyclotides, snakins and several others. These peptides have been widely used in works that pursue human disease control, including nosocomial infections, as well as for agricultural purposes. In this context, this review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.

  5. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    PubMed

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option.

  6. Regulation and function of antimicrobial peptides in immunity and diseases of the lung.

    PubMed

    Seiler, Frederik; Lepper, Philipp Moritz; Bals, Robert; Beisswenger, Christoph

    2014-04-01

    Cationic antimicrobial peptides (AMPs) are among the best studied antimicrobial factors expressed in the respiratory tract. AMPs are released by epithelial cells and immune cells into the airway surface liquid covering the epithelial surfaces of the lung where they act as endogenous antibiotics. Plenty of studies showed that AMPs possess additional, often immunomodulatory functions besides their antimicrobial activities. AMPs are chemotactic for immune cells and modulate cellular mechanisms, such as proliferation of epithelial cells, epithelial regeneration, and angiogenesis. The expression and activity of AMPs are impacted by lung diseases and AMPs can have adverse effects in lung diseases. In this review, we discuss the regulation and functions of AMPs in host defense and respiratory tract diseases.

  7. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    PubMed

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  8. Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile.

    PubMed

    McBride, Shonna M; Sonenshein, Abraham L

    2011-01-01

    Clostridium difficile causes chronic intestinal disease, yet little is understood about how the bacterium interacts with and survives in the host. To colonize the intestine and cause persistent disease, the bacterium must circumvent killing by host innate immune factors, such as cationic antimicrobial peptides (CAMPs). In this study, we investigated the effect of model CAMPs on growth and found that C. difficile is not only sensitive to these compounds but also responds to low levels of CAMPs by expressing genes that lead to CAMP resistance. By plating the bacterium on medium containing the CAMP nisin, we isolated a mutant capable of growing in three times the inhibitory concentration of CAMPs. This mutant also showed increased resistance to the CAMPs gallidermin and polymyxin B, demonstrating tolerance to different types of antimicrobial peptides. We identified the mutated gene responsible for the resistance phenotype as CD1352. This gene encodes a putative orphan histidine kinase that lies adjacent to a predicted ABC transporter operon (CD1349 to CD1351). Transcriptional analysis of the ABC transporter genes revealed that this operon was upregulated in the presence of nisin in wild-type cells and was more highly expressed in the CD1352 mutant. The insertional disruption of the CD1349 gene resulted in significant decreases in resistance to the CAMPs nisin and gallidermin but not polymyxin B. Because of their role in cationic antimicrobial peptide resistance, we propose the designation cprABC for genes CD1349 to CD1351 and cprK for the CD1352 gene. These results provide the first evidence of a C. difficile gene associated with antimicrobial peptide resistance. PMID:20974818

  9. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host.

    PubMed

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-09-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of 'arming the enemy': bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the 'arming the enemy' hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts.

  10. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence.

    PubMed

    Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Falcigno, Lucia; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Neglia, Gianluca; Anastasio, Aniello

    2016-11-15

    Recently there has been growing interest in the discovery of new antimicrobial agents to increase safety and shelf-life of food products. Here, we developed an innovative approach by introducing the concept that mitochondrial targeting peptides (MTP) can interact and disrupt bacterial membranes, acting as antimicrobial agents. As proof-of-principle, we used a multidisciplinary strategy by combining in silico predictions, docking simulations and antimicrobial assays, to identify two peptides, MTP1 and MTP2, which were structurally and functionally characterized. Both compounds appeared effective against Listeria monocytogenes, one of the most important foodborne pathogens. Specifically, a significant bactericidal activity was evidenced with EC50 values of 16.8±1.2μM for MTP1 and 109±7.0μM for MTP2. Finally, NMR structure determinations suggested that MTP1 would be oriented into the membrane bilayer, while the molecular shape of MTP2 could indicate porin-mediated antimicrobial mechanisms, as predicted using molecular docking analysis. Therefore, MTPs represent alternative sources to design new potential bio-preservatives. PMID:27283665

  11. Activity of an Antimicrobial Peptide Mimetic against Planktonic and Biofilm Cultures of Oral Pathogens▿ †

    PubMed Central

    Beckloff, Nicholas; Laube, Danielle; Castro, Tammy; Furgang, David; Park, Steven; Perlin, David; Clements, Dylan; Tang, Haizhong; Scott, Richard W.; Tew, Gregory N.; Diamond, Gill

    2007-01-01

    Antimicrobial peptides (AMPs) are naturally occurring, broad-spectrum antimicrobial agents that have recently been examined for their utility as therapeutic antibiotics. Unfortunately, they are expensive to produce and are often sensitive to protease digestion. To address this problem, we have examined the activity of a peptide mimetic whose design was based on the structure of magainin, exhibiting its amphiphilic structure. We demonstrate that this compound, meta-phenylene ethynylene (mPE), exhibits antimicrobial activity at nanomolar concentrations against a variety of bacterial and Candida species found in oral infections. Since Streptococcus mutans, an etiological agent of dental caries, colonizes the tooth surface and forms a biofilm, we quantified the activity of this compound against S. mutans growing under conditions that favor biofilm formation. Our results indicate that mPE can prevent the formation of a biofilm at nanomolar concentrations. Incubation with 5 nM mPE prevents further growth of the biofilm, and 100 nM mPE reduces viable bacteria in the biofilm by 3 logs. Structure-function analyses suggest that mPE inhibits the bioactivity of lipopolysaccharide and binds DNA at equimolar ratios, suggesting that it may act both as a membrane-active molecule, similar to magainin, and as an intracellular antibiotic, similar to other AMPs. We conclude that mPE and similar molecules display great potential for development as therapeutic antimicrobials. PMID:17785509

  12. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.

    PubMed

    Schmitt, Paulina; Rosa, Rafael D; Destoumieux-Garzón, Delphine

    2016-05-01

    Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26498397

  13. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry

    PubMed Central

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-01-01

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries. PMID:27153059

  14. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.

    PubMed

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-01-01

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries. PMID:27153059

  15. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host.

    PubMed

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-09-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of 'arming the enemy': bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the 'arming the enemy' hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts. PMID:25469169

  16. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids.

    PubMed

    Carmona, G; Rodriguez, A; Juarez, D; Corzo, G; Villegas, E

    2013-08-01

    Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a D-diastereomer of Pandinin 2, D-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of L- and D-Pin2 were to some extent similar, an important reduction in D-Pin2 hemolytic activity (30-40 %) was achieved compared to that of L-Pin2 over human erythrocytes. Furthermore, D-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of L-Pin2. Nevertheless, the antimicrobial activity of D-Pin2 was equally effective as that of L-Pin2 in microdilution assays. Yet, when D- and L-Pin2 were incubated with trypsin, elastase and whole human serum, only D-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, L- and D-Pin2 maintained similar peptide stability. Finally, when L- and D-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, D-Pin2 kept its antibiotic activity while L-Pin2 was not effective.

  17. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.

    PubMed

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  18. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides

    PubMed Central

    Porto, William F.; Pires, Állan S.; Franco, Octavio L.

    2012-01-01

    The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at and runs on any Linux machine. PMID:23240023

  19. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    SciTech Connect

    Wada, Akihiro; Wong, Pooi-Fong; Hojo, Hironobu; Hasegawa, Makoto; Ichinose, Akitoyo; Llanes, Rafael; Kubo, Yoshinao; Senba, Masachika; Ichinose, Yoshio

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  20. Scavenger receptor B protects shrimp from bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides.

    PubMed

    Bi, Wen-Jie; Li, Dian-Xiang; Xu, Yi-Hui; Xu, Sen; Li, Jing; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-07-01

    Scavenger receptors (SRs) are involved in innate immunity through recognizing pathogen-associated molecular patterns (PAMPs) and in pathogenesis of diseases through interactions with damage-associated molecular patterns (DAMPs). The roles of SRs in invertebrate innate immunity still need to be elucidated. Here we identify a class B scavenger receptor from kuruma shrimp, Marsupenaeus japonicus, designated MjSR-B1. The recombinant MjSR-B1 agglutinated bacteria in a calcium dependent manner and bound lipopolysaccharide and lipoteichoic acid. After knockdown of MjSR-B1, both the bacterial clearance and phagocytotic ability of M. japonicus against V. anguillarum and S. aureus were impaired, and several phagocytosis related genes were downregulated. The expression levels of antimicrobial peptides were also downregulated. Overexpression of MjSR-B1 led to enhanced bacterial clearance, phagocytosis rate and upregulation of phagocytosis-related and antimicrobial peptide genes. However, overexpression of mutant MjSR-B1ΔC, which lacks the carboxyl tail of MjSR-B1, had none of these effects. Our results indicate that MjSR-B1 can protect shrimp from bacteria by promoting phagocytosis and by enhancing the expression of antimicrobial peptides.

  1. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria

    PubMed Central

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  2. AP-57/C10orf99 is a new type of multifunctional antimicrobial peptide.

    PubMed

    Yang, Meijia; Tang, Mei; Ma, Xianjun; Yang, Lijia; He, Jiangpeng; Peng, Xirui; Guo, Gang; Zhou, Liangxue; Luo, Na; Yuan, Zhu; Tong, Aiping

    2015-02-13

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune response that provides host defence at skin and mucosal surfaces. Here, we report the identification and characterization of a new type human AMPs, termed AP-57 (Antimicrobial Peptide with 57 amino acid residues), which is also known as C10orf99 (chromosome 10 open reading frame 99). AP-57 is a short basic amphiphilic peptide with four cysteines and a net charge +14 (MW = 6.52, PI = 11.28). The highest expression of AP-57 were detected in the mucosa of stomach and colon through immunohistochemical assay. Epithelium of skin and esophagus show obvious positive staining and strong positive staining were also observed in some tumor and/or their adjacent tissues, such as esophagus cancer, hepatocellular carcinoma, squamous cell carcinoma and invasive ductal carcinoma. AP-57 exhibited broad-spectrum antimicrobial activities against Gram-positive Staphylococcus aureus, Actinomyce, and Fungi Aspergillus niger as well as mycoplasma and lentivirus. AP-57 also exhibited DNA binding capacity and specific cytotoxic effects against human B-cell lymphoma Raji. Compared with other human AMPs, AP-57 has its distinct characteristics, including longer sequence length, four cysteines, highly cationic character, cell-specific toxicity, DNA binding and tissue-specific expressing patterns. Together, AP-57 is a new type of multifunctional AMPs worthy further investigation.

  3. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Go, Hye-Jin; Park, Tae Hyun; Park, Nam Gyu

    2012-10-01

    A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of the yellowfin tuna, Thunnus albacares, by preparative acid-urea-polyacrylamide gel electrophoresis and C(18) reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high homology with the N-terminus of glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thus, this peptide was designated as the yellowfin tuna GAPDH-related antimicrobial peptide (YFGAP). YFGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), and Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL) without significant hemolytic activity. According to the secondary structural prediction and the homology modeling, this peptide forms an amphipathic structure and consists of three secondary structural motifs including one α-helix and two parallel β-strands. This peptide did not show membrane permeabilization ability and its activity was bacteriostatic rather than bactericidal. This is the first report of the isolation of an antimicrobial peptide from a tuna species and the first description of the antimicrobial function of the N-terminus of GAPDH of an animal species. PMID:22771964

  4. Acipensins – Novel Antimicrobial Peptides from Leukocytes of the Russian Sturgeon Acipenser gueldenstaedtii

    PubMed Central

    Shamova, O. V.; Orlov, D. S.; Balandin, S. V.; Shramova, E. I.; Tsvetkova, E. V.; Panteleev, P. V.; Leonova, Yu. F.; Tagaev, A. A.; Kokryakov, V. N.; Ovchinnikova, T. V.

    2014-01-01

    Antimicrobial peptides (AMPs) play an important role in the innate defense mechanisms in humans and animals. We have isolated and studied a set of antimicrobial peptides from leukocytes of the Russian sturgeon Acipenser gueldenstaedtii belonging to a subclass of chondrosteans, an ancient group of bony fish. Structural analysis of the isolated peptides, designated as acipensins (Ac), revealed in leukocytes of the Russian sturgeon six novel peptides with molecular masses of 5336.2 Da, 3803.0 Da, 5173.0 Da, 4777.5 Da, 5449.4 Da, and 2740.2 Da, designated as Ac1–Ac6, respectively. Complete primary structures of all the isolated peptides were determined, and the biological activities of three major components – Ac1, Ac2, and Ac6 – were examined. The peptides Ac1, Ac2, Ac3, Ac4, and Ac5 were found to be the N-terminal acetylated fragments 1–0, 1–5, 1–9, 1–4, and 1–1 of the histone H2A, respectively, while Ac6 was shown to be the 62–5 fragment of the histone H2A. The peptides Ac1 and Ac2 displayed potent antimicrobial activity towards Gram-negative and Gram-positive bacteria (Escherichia coli ML35p, Listeria monocytogenes EGD, MRSA ATCC 33591) and the fungus Candida albicans 820, while Ac6 proved effective only against Gram-negative bacteria. The efficacy of Ac 1 and Ac2 towards the fungus and MRSA was reduced upon an increase in the ionic strength of the solution. Ac1, Ac2, and Ac6, at concentrations close to their minimum inhibitory concentrations, enhanced the permeability of the E.coli ML35p outer membrane to the chromogenic marker, but they did not affect appreciably the permeability of the bacterial inner membrane in comparison with a potent pore-forming peptide, protegrin 1. Ac1, Ac2, and Ac6 revealed no hemolytic activity against human erythrocytes at concentrations of 1 to 40 μM and had no cytotoxic effect (1 to 20 μM) on K-562 and U-937 cells in vitro. Our findings suggest that histone-derived peptides serve as important anti-infective host

  5. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  6. Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

    PubMed Central

    Manzo, Giorgia; Scorciapino, Mariano A.; Wadhwani, Parvesh; Bürck, Jochen; Montaldo, Nicola Pietro; Pintus, Manuela; Sanna, Roberta; Casu, Mariano; Giuliani, Andrea; Pirri, Giovanna; Luca, Vincenzo; Ulrich, Anne S.; Rinaldi, Andrea C.

    2015-01-01

    SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which

  7. Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity.

    PubMed

    Perregaux, David G; Bhavsar, Kanan; Contillo, Len; Shi, Jishu; Gabel, Christopher A

    2002-03-15

    Human monocytes stimulated with LPS produce large quantities of prointerleukin-1beta, but little of this cytokine product is released extracellularly as the mature biologically active species. To demonstrate efficient proteolytic cleavage and export, cytokine-producing cells require a secondary effector stimulus. In an attempt to identify agents that may serve as initiators of IL-1beta posttranslational processing in vivo, LPS-activated human monocytes were treated with several individual antimicrobial peptides. Two peptides derived from porcine neutrophils, protegrin (PTG)-1 and PTG-3, promoted rapid and efficient release of mature IL-1beta. The PTG-mediated response engaged a mechanism similar to that initiated by extracellular ATP acting via the P2X(7) receptor. Thus, both processes were disrupted by a caspase inhibitor, both were sensitive to ethacrynic acid and CP-424,174, two pharmacological agents that suppress posttranslational processing, and both were negated by elevation of extracellular potassium. Moreover, the PTGs, like ATP, promoted a dramatic change in monocyte morphology and a loss of membrane latency. The PTG response was concentration dependent and was influenced profoundly by components within the culture medium. In contrast, porcine neutrophil antimicrobial peptides PR-26 and PR-39 did not initiate IL-1beta posttranslational processing. The human defensin HNP-1 and the frog peptide magainin 1 elicited export of 17-kDa IL-1beta, but these agents were less efficient than PTGs. As a result of this ability to promote release of potent proinflammatory cytokines such as IL-1beta, select antimicrobial peptides may possess important immunomodulatory functions that extend beyond innate immunity.

  8. Effects of linear cationic x-helical antimicrobial peptides on immune-relevant genes in trout macrophages.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing evidence of the potential role of antimicrobial peptides in the regulation of immune responses in mammalian species. However, the effects of these peptides in fish have yet to be investigated. In this study, we examined the transcriptional expression profile of representative i...

  9. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3

    PubMed Central

    Baindara, Piyush; Chaudhry, Vasvi; Mittal, Garima; Liao, Luciano M.; Matos, Carolina O.; Khatri, Neeraj; Franco, Octavio L.; Patil, Prabhu B.

    2015-01-01

    Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide. PMID:26574006

  10. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.

  11. What is the role of antimicrobial peptides (AMP) in acne vulgaris?

    PubMed

    Harder, Jürgen; Tsuruta, Daisuke; Murakami, Masamoto; Kurokawa, Ichiro

    2013-06-01

    Acne vulgaris is the most common disorder of the pilosebaceous unit leading to inflamed skin characterized by the formation of comedones, papules, pustules and scarring. There is increasing evidence that the abundance of Propionibacterium acnes (P. acnes) in the inflamed acne lesions triggers inflammation. Therefore, in addition to treatment with retinoids, the use of antimicrobial agents has been established as a treatment option for acne. This indicates that antimicrobial mechanisms to control the growth of P. acnes may have an important influence on the severity of inflammatory acne. One import antimicrobial innate defense system comprises the production of antimicrobial peptides (AMP), small molecules with a broad spectrum of antimicrobial activity as well as immunomodulatory properties. Although the role of AMP in acne is still emerging, there is increasing evidence that AMP may be of importance in acne. The aim of this viewpoint is to provide some hypotheses about the potential function of AMP in the pathogenesis of acne and to discuss potential AMP-based therapies for the treatment of acne.

  12. The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

    PubMed Central

    Soscia, Stephanie J.; Kirby, James E.; Washicosky, Kevin J.; Tucker, Stephanie M.; Ingelsson, Martin; Hyman, Bradley; Burton, Mark A.; Goldstein, Lee E.; Duong, Scott; Tanzi, Rudolph E.; Moir, Robert D.

    2010-01-01

    Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies. PMID:20209079

  13. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  14. Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin.

    PubMed

    Bai, Yang; Liu, Shouping; Jiang, Ping; Zhou, Lei; Li, Jing; Tang, Charles; Verma, Chandra; Mu, Yuguang; Beuerman, Roger W; Pervushin, Konstantin

    2009-08-01

    Defensins are small (3-5 kDa) cysteine-rich cationic proteins found in both vertebrates and invertebrates constituting the front line of host innate immunity. Despite intensive research, bactericidal and cytotoxic mechanisms of defensins are still largely unknown. Moreover, we recently demonstrated that small peptides derived from defensins are even more potent bactericidal agents with less toxicity toward host cells. In this paper, structures of three C-terminal (R36-K45) analogues of human beta-defensin-3 were studied by 1H NMR spectroscopy and extensive molecular dynamics simulations. Because of indications that these peptides might target the inner bacterial membrane, they were reconstituted in dodecylphosphocholine or dodecylphosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] mixed micelles, and lipid bicelles mimicking the phospholipid-constituted bilayer membrane of mammalian and bacterial cells. The results show that the binding affinity and partitioning into the lipid phase and the ability to dimerize and accrete well-defined structures upon interactions with lipid membranes contribute to compactization of positive charges within peptide oligomers. The peptide charge density, mediated by corresponding three-dimensional structures, was found to directly correlate with the antimicrobial activity. These novel observations may provide a new rationale for the design of improved antimicrobial agents.

  15. Purification and modeling amphipathic alpha helical antimicrobial peptides from skin secretions of Euphlyctis cyanophlyctis.

    PubMed

    Asoodeh, Ahmad; Sepahi, Samaneh; Ghorani-Azam, Adel

    2014-04-01

    Antimicrobial peptides as ancient immune system are found in almost all types of living organisms. Amphibian's skin is an important source of bioactive peptides with strong antibacterial, antiviral, and antitumor properties. They have important role in inducing apoptosis as well as cancer therapy in vitro. In this study, we extracted and purified antimicrobial peptides from skin secretions of Euphlyctis cyanophlyctis and named them brevinin-Eu and cyanophlyctin β. They showed favorable antibacterial properties on both Gram-positive and Gram-negative bacteria with ignorable hemolytic activity of <1.9% and 0.7% at very high concentrations of brevinin-Eu and cyanophlyctin β, respectively. For antibacterial activity and MIC determination, two Gram-positive (Staphylococcus aureus PTCC1431 and B. cereus PTCC1247) and two Gram-negative bacteria (Escherichia coli HP101BA 7601c and Klebsiella pneumoniae PTCC1388) were assayed. MIC values of extracted peptides demonstrated that they can inhibit bacterial growth at very low concentration (17 and 12 μg/mL) for brevinin-Eu and cyanophlyctin β, respectively. Structural prediction suggested that the brevinin-Eu can efficiently bind and destroy bacterial membrane, but cyanophlyctin β uses a diverse mode of action.

  16. Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

    PubMed Central

    Rogalska, Ewa; Więcław-Czapla, Katarzyna

    2013-01-01

    Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Effects on surface pressure (Π) and electric surface potential (ΔV) were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative) while no significant effect on the host membranes (neutral) is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically. PMID:24455264

  17. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  18. Penetration of milk-derived antimicrobial peptides into phospholipid monolayers as model biomembranes.

    PubMed

    Barzyk, Wanda; Rogalska, Ewa; Więcław-Czapla, Katarzyna

    2013-01-01

    Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Effects on surface pressure (Π) and electric surface potential (ΔV) were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative) while no significant effect on the host membranes (neutral) is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically. PMID:24455264

  19. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application.

  20. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application

  1. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  2. Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab.

    PubMed

    Noga, Edward J; Stone, Kathryn L; Wood, Abbey; Gordon, William L; Robinette, David

    2011-04-01

    We report the complete amino acid sequence of callinectin, a 32 amino acid, proline-, arginine-rich antimicrobial peptide (AMP) with four cysteines and having the sequence WNSNRRFRVGRPPVVGRPGCVCFRAPCPCSNY-amide. The primary structure of callinectin is highly similar to arasins, AMPs recently identified in the small spider crab (Hyas araneus). Callinectin exists in three isomers that vary in the functional group on the tryptophan (W) residue. The most prevalent isomer had a hydroxy-N-formylkynurenine group, while the other two isomers had either N-formylkynurenine or hydroxy-tryptophan. Using a sequence highly similar to native callinectin, we chemically synthesized a peptide which we called callinectin-like peptide (CLP). Via immuno-electron microscopy, affinity-purified rabbit antibodies raised to CLP successfully localized the site of callinectin in blue crab hemocytes to the large electron-dense granules that are found primarily in large granule hemocytes.

  3. pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates

    PubMed Central

    Burns, Kelly E.; McCleerey, Tanner P.; Thévenin, Damien

    2016-01-01

    Positively charged antimicrobial peptides have become promising agents for the treatment of cancer by inducing apoptosis though their preferential binding and disruption of negatively charged membranes, such as the mitochondrial membrane. (KLAKLAK)2 is such a peptide but due to its polarity, it cannot cross the cellular membrane and therefore relies on the use of a delivery agent. For targeted delivery, previous studies have relied on cell penetrating peptides, nanoparticles or specific biomarkers. Herein, we investigated the first use of pHLIP to selectively target and directly translocate (KLAKLAK)2 into the cytoplasm of breast cancer cells, based on the acidic tumor micro-environment. With the goal of identifying a lead conjugate with optimized selective cytotoxicity towards cancer cells, we analyzed a family of (KLAKLAK)2 analogs with varying size, polarity and charge. We present a highly efficacious pHLIP conjugate that selectively induces concentration- and pH-dependent toxicity in breast cancer cells. PMID:27334357

  4. Antimicrobial peptides from the skin secretions of the South-East Asian frog Hylarana erythraea (Ranidae).

    PubMed

    Al-Ghaferi, Nadia; Kolodziejek, Jolanta; Nowotny, Norbert; Coquet, Laurent; Jouenne, Thierry; Leprince, Jérôme; Vaudry, Hubert; King, Jay D; Conlon, J Michael

    2010-04-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions of the South-East Asian frog Hylarana erythraea (formerly Rana erythraea partim) has led to the identification of multiple peptides with antimicrobial activity. Structural characterization of the peptides demonstrated that they belong to the brevinin-1 (3), brevinin-2 (2), esculentin-2 (4), and temporin (1) families. The values in parentheses indicate the number of paralogs. In addition, a peptide (GVIKSVLKGVAKTVALG ML.NH(2)) was isolated that shows some structural similarity to the brevinin-2-related peptides (B2RP) previously isolated from North American frogs of the genus Lithobates. A synthetic replicate of the species B2RP showed broad-spectrum growth inhibitory activity against reference strains of Escherichia coli (MIC=12.5 microM), Staphylococcus aureus (MIC=12.5 microM) and Candida albicans (MIC=50 microM) and was active against multidrug-resistant clinical isolates of Acetinobacter baumannii (MIC in the range 6-12.5 microM). The hemolytic activity of the peptide was relatively low (LC(50)=280 microM). Phylogenetic analysis based upon the amino acid sequences of 47 brevinin-2 peptides from 17 Asian species belonging to the family Ranidae provides support for the placement of H. erythraea in the genus Hylarana.

  5. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  6. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  7. Activity Determinants of Helical Antimicrobial Peptides: A Large-Scale Computational Study

    PubMed Central

    He, Yi; Lazaridis, Themis

    2013-01-01

    Antimicrobial peptides (AMPs), produced by a wide range of organisms, have attracted attention due to their potential use as novel antibiotics. The majority of these peptides are cationic and are thought to function by permeabilizing the bacterial membrane, either by making pores or by dissolving it (‘carpet’ model). A key hypothesis in the literature is that antimicrobial and hemolytic activity correlate with binding affinity to anionic and zwitterionic membranes, respectively. Here we test this hypothesis by using binding free energy data collected from the literature and theoretical binding energies calculated from implicit membrane models for 53 helical AMPs. We indeed find a correlation between binding energy and biological activity, depending on membrane anionic content: antibacterial activity correlates best with transfer energy to membranes with anionic lipid fraction higher than 30% and hemolytic activity correlates best with transfer energy to a 10% anionic membrane. However, the correlations are weak, with correlation coefficient up to 0.4. Weak correlations of the biological activities have also been found with other physical descriptors of the peptides, such as surface area occupation, which correlates significantly with antibacterial activity; insertion depth, which correlates significantly with hemolytic activity; and structural fluctuation, which correlates significantly with both activities. The membrane surface coverage by many peptides at the MIC is estimated to be much lower than would be required for the ‘carpet’ mechanism. Those peptides that are active at low surface coverage tend to be those identified in the literature as pore-forming. The transfer energy from planar membrane to cylindrical and toroidal pores was also calculated for these peptides. The transfer energy to toroidal pores is negative in almost all cases while that to cylindrical pores is more favorable in neutral than in anionic membranes. The transfer energy to pores

  8. Controlling Listeria monocytogenes in Cold Smoked Salmon with the Antimicrobial Peptide Salmine.

    PubMed

    Cheng, Christopher; Arritt, Fletcher; Stevenson, Clinton

    2015-06-01

    Listeria monocytogenes (LM) is a major safety concern for smoked salmon producers, as it can survive both the brining and smoking process in cold smoked salmon production. Salmine is a cationic antimicrobial peptide derived from the milt of salmon that has been shown to inhibit the growth of LM in vitro. Commercialization of this peptide would add value to a waste product produced when raising salmon. The purpose of this study was to determine the anti-listeria activity of salmine in smoked salmon by measuring the viable counts of LM over time. Cold smoked salmon was treated with a salmine solution or coated with agar or k-carrageenan films incorporating salmine to maintain a high surface concentration of the antimicrobial. Samples were then inoculated with approximately 1.0 × 10(3) cells of LM. The viable counts were then enumerated throughout 4 wk at 4 °C storage. It was found that 5 mg/g salmine delayed the growth of LM on smoked salmon. These samples had significantly (P < 0.05) lower LM counts than on the untreated samples on days 13 and 22. Edible films did not significantly (P > 0.05) improve the antimicrobial efficacy of salmine. The peptide combined with biopolymers also had lower antimicrobial activity in vitro when compared to salmine alone. These results suggest there is potential for salmine to be used as a natural hurdle to inhibit growth of LM due to post process contamination; however, future investigations for extending this effect throughout the shelf life of smoked salmon products are warranted.

  9. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections.

    PubMed

    Laverty, Garry; Gorman, Sean P; Gilmore, Brendan F

    2012-07-01

    The effectiveness of the antimicrobial peptide maximin-4, the ultrashort peptide H-Orn-Orn-Trp-Trp-NH(2), and the lipopeptide C(12)-Orn-Orn-Trp-Trp-NH(2) in preventing adherence of pathogens to a candidate biomaterial were tested utilizing both matrix- and immersion-loaded poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels. Antiadherent properties correlated to both the concentration released and the relative antimicrobial concentrations of each compound against Staphylococcus epidermidis ATCC 35984, at each time point. Immersion-loaded samples containing C(12)-Orn-Orn-Trp-Trp-NH(2) exhibited the lowest adherence profile for all peptides studied over 1, 4, and 24 h. The results outlined in this article show that antimicrobial peptides have the potential to serve as an important weapon against biomaterial associated infections.

  10. Overexpression of Antimicrobial, Anticancer, and Transmembrane Peptides in Escherichia coli through a Calmodulin-Peptide Fusion System.

    PubMed

    Ishida, Hiroaki; Nguyen, Leonard T; Gopal, Ramamourthy; Aizawa, Tomoyasu; Vogel, Hans J

    2016-09-01

    In recent years, the increasing number of antibiotic-resistant bacteria has become a serious health concern. Antimicrobial peptides (AMPs) are an important component of the innate immune system of most organisms. A better understanding of their structures and mechanisms of action would lead to the design of more potent and safer AMPs as alternatives for current antibiotics. For detailed investigations, effective recombinant production which allows the facile modification of the amino acid sequence, the introduction of unnatural amino acids, and labeling with stable isotopes for nuclear magnetic resonance (NMR) studies is desired. Several expression strategies have been introduced in previous reports; however, their effectiveness has been limited to a select few AMPs. Here, we have studied calmodulin (CaM) as a more universal carrier protein to express many types of AMPs in E. coli. We have discovered that the unique architecture of CaM, consisting of two independent target binding domains with malleable methionine-rich interaction surfaces, can accommodate numerous amino acid sequences containing basic and hydrophobic residues. This effectively masks the toxic antimicrobial activities of many amphipathic AMPs and protects them from degradation during expression and purification. Here, we demonstrate the expression of various AMPs using a CaM-fusion expression system, including melittin, fowlicidin-1, tritrpticin, indolicidin, puroindoline A peptide, magainin II F5W, lactoferrampin B, MIP3α51-70, and human β-defensin 3 (HBD-3), the latter requiring three disulfide bonds for proper folding. In addition, our approach was extended to the transmembrane domain of the cell adhesion protein l-selectin. We propose the use of the CaM-fusion system as a universal approach to express many cationic amphipathic peptides that are normally toxic and would kill the bacterial host cells. PMID:27502305

  11. Blastocystis Isolate B Exhibits Multiple Modes of Resistance against Antimicrobial Peptide LL-37.

    PubMed

    Yason, John Anthony; Ajjampur, Sitara Swarna Rao; Tan, Kevin Shyong Wei

    2016-08-01

    Blastocystis is one of the most common eukaryotic organisms found in humans and many types of animals. Several reports have identified its role in gastrointestinal disorders, although its pathogenicity is yet to be clarified. Blastocystis is transmitted via the fecal-to-oral route and colonizes the large intestines. Epithelial cells lining the intestine secrete antimicrobial peptides (AMPs), including beta-defensins and cathelicidin, as a response to infection. This study explores the effects of host colonic antimicrobial peptides, particularly LL-37, a fragment of cathelicidin, on different Blastocystis subtypes. Blastocystis is composed of several subtypes that have genetic, metabolic, and biological differences. These subtypes also have various outcomes in terms of drug treatment and immune response. In this study, Blastocystis isolates from three different subtypes were found to induce intestinal epithelial cells to secrete LL-37. We also show that among the antimicrobial peptides tested, only LL-37 has broad activity on all the subtypes. LL-37 causes membrane disruption and causes Blastocystis to change shape. Blastocystis subtype 7 (ST7), however, showed relative resistance to LL-37. An isolate, ST7 isolate B (ST7-B), from this subtype releases proteases that can degrade the peptide. It also makes the environment acidic, which causes attenuation of LL-37 activity. The Blastocystis ST7-B isolate was also observed to have a thicker surface coat, which may protect the parasite from direct killing by LL-37. This study determined the effects of LL-37 on different Blastocystis isolates and indicates that AMPs have significant roles in Blastocystis infections. PMID:27217421

  12. Effects of Cationic Antimicrobial Peptides on Liquid-Preserved Boar Spermatozoa

    PubMed Central

    Schulze, Martin; Junkes, Christof; Mueller, Peter; Speck, Stephanie; Ruediger, Karin; Dathe, Margitta; Mueller, Karin

    2014-01-01

    Antibiotics are mandatory additives in semen extenders to control bacterial contamination. The worldwide increase in resistance to conventional antibiotics requires the search for alternatives not only for animal artificial insemination industries, but also for veterinary and human medicine. Cationic antimicrobial peptides are of interest as a novel class of antimicrobial additives for boar semen preservation. The present study investigated effects of two synthetic cyclic hexapeptides (c-WFW, c-WWW) and a synthetic helical magainin II amide derivative (MK5E) on boar sperm during semen storage at 16°C for 4 days. The standard extender, Beltsville Thawing Solution (BTS) containing 250 µg/mL gentamicin (standard), was compared to combinations of BTS with each of the peptides in a split-sample procedure. Examination revealed peptide- and concentration-dependent effects on sperm integrity and motility. Negative effects were more pronounced for MK5E than in hexapeptide-supplemented samples. The cyclic hexapeptides were partly able to stimulate a linear progressive sperm movement. When using low concentrations of cyclic hexapeptides (4 µM c-WFW, 2 µM c-WWW) sperm quality was comparable to the standard extender over the course of preservation. C-WFW-supplemented boar semen resulted in normal fertility rates after AI. In order to investigate the interaction of peptides with the membrane, electron spin resonance spectroscopic measurements were performed using spin-labeled lipids. C-WWW and c-WFW reversibly immobilized an analog of phosphatidylcholine (PC), whereas MK5E caused an irreversible increase of PC mobility. These results suggest testing the antimicrobial efficiency of non-toxic concentrations of selected cyclic hexapeptides as potential candidates to supplement/replace common antibiotics in semen preservation. PMID:24940997

  13. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection.

    PubMed

    Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian

    2016-01-01

    SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644

  14. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection

    PubMed Central

    Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian

    2016-01-01

    SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644

  15. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum.

    PubMed Central

    Lai, Ren; Lomas, Lee O; Jonczy, Jan; Turner, Philip C; Rees, Huw H

    2004-01-01

    Two non-cationic defensin-like antimicrobial peptides, named Amblyomma defensin peptide 1 and Amblyomma defensin peptide 2, were identified from the hard tick, Amblyomma hebraeum, by a combination of suppression subtractive hybridization for differentially expressed genes and proteomics. cDNA clones encoding each of these two defensin-like antimicrobial peptides were isolated from the differentially expressed cDNA library of the tick synganglia (central nervous system). The preproproteins deduced from the cDNA sequences each have 92 amino acid residues. Amblyomma defensin peptide 2 was purified from the haemolymph of fed female ticks. The purified peptide displayed antibacterial activity against Gram-negative and Gram-positive bacteria. Amblyomma defensin peptide 1 was further identified by protein chip capture combined with SELDI-TOF (surface-enhanced laser desorption/ionization-time-of-flight) MS. By screening for differentially expressed proteins, it was found that the expression of Amblyomma defensin peptide 1 was upregulated during 4 days post-feeding. Our findings firstly provide two defensin-like antimicrobial peptides that are particularly novel in being anionic, together with corresponding cDNA sequences, in hard ticks, and prove that the combination of suppression subtractive hybridization and protein profiling is a powerful method to study differentially expressed proteins, especially for organisms without available genome sequence information. PMID:14705963

  16. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents.

    PubMed

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A

    2015-01-01

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer. PMID:26062132

  17. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    PubMed Central

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A.

    2015-01-01

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer. PMID:26062132

  18. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents.

    PubMed

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A

    2015-06-08

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.

  19. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.

    PubMed

    Miao, Jianyin; Chen, Feilong; Duan, Shan; Gao, Xiangyang; Liu, Guo; Chen, Yunjiao; Dixon, William; Xiao, Hang; Cao, Yong

    2015-08-19

    Antimicrobial peptides have received increasing attention in the agricultural and food industries due to their potential to control pathogens. However, to facilitate the development of novel peptide-based antimicrobial agents, details regarding the molecular mechanisms of these peptides need to be elucidated. The aim of this study was to investigate the antimicrobial mechanism of peptide F1, a bacteriocin found in Tibetan kefir, against Escherichia coli at protein levels using iTRAQ-based quantitative proteomic analysis. In response to treatment with peptide F1, 31 of the 280 identified proteins in E. coli showed alterations in their expression, including 10 down-regulated proteins and 21 up-regulated proteins. These 31 proteins all possess different molecular functions and are involved in different molecular pathways, as is evident in referencing the Kyoto Encyclopedia of Genes and Genomes pathways. Specifically, pathways that were significantly altered in E. coli in response to peptide F1 treatment include the tricarboxylic acid cycle, oxidative phosphorylation, glycerophospholipid metabolism, and the cell cycle-caulobacter pathways, which was also associated with inhibition of the cell growth, induction of morphological changes, and cell death. The results provide novel insights into the molecular mechanisms of antimicrobial peptides.

  20. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora.

    PubMed

    Kaushal, Akanksha; Gupta, Kajal; van Hoek, Monique L

    2016-02-19

    Antimicrobial peptides are components of both vertebrate and invertebrate innate immune systems that are expressed in response to exposure to bacterial antigens. Naturally occurring antimicrobial peptides from evolutionarily ancient species have been extensively studied and are being developed as potential therapeutics against antibiotic resistant microorganisms. In this study, a putative Cimex lectularius (bedbug, CL) defensin is characterized for its effectiveness against human skin flora including Gram-negative and Gram-positive bacteria. The bedbug defensin (CL-defensin), belonging to family of insect defensins, is predicted to have a characteristic N-terminal loop, an α-helix, and an antiparallel β-sheet, which was supported by circular dichroism spectroscopy. The defensin was shown to be antimicrobial against Gram-positive bacteria commonly found on human skin (Micrococcus luteus, Corynebacterium renale, Staphylococcus aureus and Staphylococcus epidermidis); however, it was ineffective against common skin Gram-negative bacteria (Pseudomonas aeruginosa and Acinetobacter baumannii) under low-salt conditions. CL-defensin was also effective against M. luteus and C. renale in high-salt (MIC) conditions. Our studies indicate that CL-defensin functions by depolarization and pore-formation in the bacterial cytoplasmic membrane. PMID:26802465

  1. Identification of Synthetic Host Defense Peptide Mimics That Exert Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Som, Abhigyan; Navasa, Nicolás; Percher, Avital; Scott, Richard W.

    2012-01-01

    A group of synthetic antimicrobial oligomers, inspired by naturally occurring antimicrobial peptides, were analyzed for the ability to modulate innate immune responses to Toll-like receptor (TLR) ligands. These synthetic mimics of antimicrobial peptides (SMAMPs) specifically reduced cytokine production in response to Staphylococcus aureus and the S. aureus component lipoteichoic acid (LTA), a TLR2 agonist. Anti-inflammatory SMAMPs prevented the induction of tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-10 in response to S. aureus or LTA, but no other TLR2 ligands. We show that these SMAMPs bind specifically to LTA in vitro and prevent its interaction with TLR2. Importantly, the SMAMP greatly reduced the induction of TNF and IL-6 in vivo in mice acutely infected with S. aureus while simultaneously reducing bacterial loads dramatically (4 log10). Thus, these SMAMPs can eliminate the damage induced by pathogen-associated molecular patterns (PAMPs) while simultaneously eliminating infection in vivo. They are the first known SMAMPs to demonstrate anti-inflammatory and antibacterial activities in vivo. PMID:22956655

  2. A Lack of Synergy Between Membrane-permeabilizing Cationic Antimicrobial Peptides and Conventional Antibiotics

    PubMed Central

    He, Jing; Starr, Charles G.; Wimley, William C.

    2014-01-01

    The rapid rise in morbidity and mortality from drug-resistant pathogenic bacteria has generated elevated interest in combination therapy using antimicrobial agents. Antimicrobial peptides (AMPs) are a candidate drug class to advance the development of combination therapies. Although the literature is ambiguous, the generic membrane disrupting activity of AMPs could enable them to synergize with conventional small molecule antibiotics by increasing access to the cell and by triggering membrane damage mediators. We used a novel assay to measure interactions, expressed as fractional inhibitory concentration (FIC), between four conventional antibiotics in combination with four well-characterized, membrane permeabilizing AMPs, against three species of Gram negative and Gram positive bacteria, giving 40 total pair-wise measurements of FIC with statistical uncertainties. We chose a set of AMPs that are known to dramatically disrupt the membranes of both Gram negative and Gram positive bacteria. Yet none of the membrane permeabilizing antimicrobial peptides interacted synergistically with any of the conventional antibiotic drugs in any organism. Large-scale membrane disruption and permeabilization by AMPs is not sufficient to drive them to act synergistically with chemical antibiotics in either Gram negative or Gram positive microbes. PMID:25268681

  3. A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism.

    PubMed

    Lee, Wonyoung; Hwang, Jae-Sam; Lee, Dong Gun

    2015-11-01

    A novel antimicrobial peptide (AMP) was identified from the centipede Scolopendra subspinipes mutilans by RNA sequencing, and the amino acid sequences predicted from the sequenced mRNAs were compared with those of known AMPs. We named this peptide scolopendin, according to its origin, and investigated the molecular mechanisms underlying its antimicrobial activity. Our findings showed that scolopendin had antimicrobial activity against several pathogenic microorganisms, but did not produce hemolysis of human erythrocytes. In addition, disturbances in the cell membrane potential, induction of potassium release from the cytosol, and increased membrane permeability of the microbes Candida albicans and Escherichia coli O157 were detected by the use of 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] dye, potassium leakage assay, and propidium iodide influx assay, respectively, following scolopendin treatment. Further evidence to support the membrane-targeted action of scolopendin was obtained using artificial liposomes as models of the cell membrane. Use of calcein and FITC-labeled dextran leakage assays from scolopendin-treated giant unilamellar vesicles and large unilamellar vesicles showed that scolopendin has a pore-forming action on microbial membrane, with an estimated pore radius of 2.3-3.3 nm. In conclusion, scolopendin is a novel and potent AMP with a membrane-targeted mechanism of action. PMID:26342880

  4. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice.

    PubMed

    Shi, Wei; Li, Caiyun; Li, Man; Zong, Xicui; Han, Dongju; Chen, Yuqing

    2016-06-01

    Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection. PMID:26948237

  5. Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L.

    PubMed

    Subramanian, Sangeetha; Ross, Neil W; MacKinnon, Shawna L

    2009-01-01

    Fish epidermal mucus contains innate immune components that provide a first line of defense against various infectious pathogens. This study reports the bioassay-guided fractionation and characterization of a novel antimicrobial peptide, myxinidin, from the acidic epidermal mucus extract of hagfish (Myxine glutinosa L.). Edman sequencing and mass spectrometry revealed that myxinidin consists of 12 amino acids and has a molecular mass of 1,327.68 Da. Myxinidin showed activity against a broad range of bacteria and yeast pathogens at minimum bactericidal concentration (MBC) ranging from 1.0 to 10.0 microg/mL. Screened pathogens, Salmonella enterica serovar Typhimurium C610, Escherichia coli D31, Aeromonas salmonicida A449, Yersinia ruckeri 96-4, and Listonella anguillarum 02-11 were found to be highly sensitive to myxinidin at the MBC of 1.0-2.5 microg/mL; Staphylococcus epidermis C621 and yeast (Candida albicans C627) had an MBC of 10.0 microg/mL. The antimicrobial activity of myxinidin was found to be two to 16 times more active than a potent fish-derived antimicrobial peptide, pleurocidin (NRC-17), against most of the screened pathogens. The microbicidal activity of myxinidin was retained in the presence of sodium chloride (NaCl) at concentrations up to 0.3 M and had no hemolytic activity against mammalian red blood cells. These results suggest that myxinidin may have potential applications in fish and human therapeutics. PMID:19330556

  6. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    PubMed Central

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-01-01

    Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules. PMID:24756162

  7. The potential for adaptive maintenance of diversity in insect antimicrobial peptides.

    PubMed

    Unckless, Robert L; Lazzaro, Brian P

    2016-05-26

    Genes involved in immune defence are among the fastest evolving in the genomes of many species. Interestingly, however, genes encoding antimicrobial peptides (AMPs) have shown little evidence for adaptive divergence in arthropods, despite the centrality of these peptides in direct killing of microbial pathogens. This observation, coupled with a failure to detect phenotypic consequence of genetic variation in AMPs, has led to the hypothesis that individual AMPs make minor contributions to overall immune defence and that AMPs instead act as a collective cocktail. Recent data, however, have suggested an alternative explanation for the apparent lack of adaptive divergence in AMP genes. Molecular evolutionary and phenotypic data have begun to suggest that variant AMP alleles may be maintained through balancing selection in invertebrates, a pattern similar to that observed in several vertebrate AMPs. Signatures of balancing selection include high rates of non-synonymous polymorphism, trans-species amino acid polymorphisms, and convergence of amino acid states across the phylogeny. In this review, we revisit published literature on insect AMP genes and analyse newly available population genomic datasets in Drosophila, finding enrichment for patterns consistent with adaptive maintenance of polymorphism.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160594

  8. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.

    PubMed

    Nuri, Reut; Shprung, Tal; Shai, Yechiel

    2015-11-01

    Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  9. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    PubMed

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight < 1000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  10. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP).

    PubMed

    Bjerkan, Louise; Sonesson, Andreas; Schenck, Karl

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes. PMID:27399723

  11. Activity of Antimicrobial Peptide Mimetics in the Oral Cavity: I. Activity Against Biofilms of Candida albicans

    PubMed Central

    Hua, Jianyuan; Yamarthy, Radha; Felsenstein, Shaina; Scott, Richard W.; Markowitz, Kenneth; Diamond, Gill

    2010-01-01

    Summary Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans, however numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (MW <1,000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-MIC levels did not lead to resistant Candida in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies. PMID:21040515

  12. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    PubMed Central

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  13. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria.

    PubMed

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-04-26

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg(2+) could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections.

  14. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.