Science.gov

Sample records for antimonates

  1. Characterization of the Antimonial Antileishmanial Agent Meglumine Antimonate (Glucantime)

    PubMed Central

    Roberts, William L.; McMurray, Walter J.; Rainey, Petrie M.

    1998-01-01

    Meglumine antimonate (Glucantime), a drug of choice for the treatment of leishmaniasis, is produced by the reaction of pentavalent antimony with N-methyl-d-glucamine, a carbohydrate derivative. We investigated the structure and composition of meglumine antimonate, which remain poorly understood, despite 50 years of use. Measurement of the antimony content of meglumine antimonate powder indicated a 1:1.37 molar ratio of antimony to N-methyl-d-glucamine. Osmolality measurements performed with meglumine antimonate solutions demonstrated an average of 1.43 antimony atoms per molecule of meglumine antimonate. The osmolality of a 1:10 dilution of stock meglumine antimonate increased by 45% over 8 days, suggesting hydrolysis to less complex species. A comparison of the proton nuclear magnetic resonance spectra of N-methyl-d-glucamine and meglumine antimonate revealed an increase in complexity in the latter but with all of the resonances of the former still being evident, consistent with the presence of coordination complexes between antimony and each of the N-methyl-d-glucamine hydroxyls. Fast atom bombardment and electrospray ionization mass spectrometry coupled with several derivatization procedures provided evidence that up to four N-methyl-d-glucamine hydroxyls are coordinated with each antimony. A series of oligomers were observed. The major moiety has a molecular mass of 507 atomic mass units and consists of NMG-Sb-NMG, where Sb represents antimony and NMG represents N-methyl-d-glucamine. Additional species containing up to four antimony atoms and five N-methyl-d-glucamine moieties and corresponding to the general form (NMG-Sb)n-NMG are also present. These results suggest that this agent is a complex mixture that exists in equilibrium in aqueous solution. PMID:9593130

  2. Electrochemical reaction of lithium with nanosized vanadium antimonate

    SciTech Connect

    Morales, Julian; Sanchez, Luis . E-mail: luis-sanchez@uco.es; Martin, Francisco; Berry, Frank

    2006-08-15

    Nanometric vanadium antimonate, VSbO{sub 4}, was prepared by mechanical milling from Sb{sub 2}O{sub 3} and V{sub 2}O{sub 5} and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbaueer spectroscopy (MS) and X-ray photoelectron spectroscopy (XPS) techniques. Its reactivity towards lithium was examined by testing Li/VSbO{sub 4} cells under galvanostatic and potentiostatic regimes. The amount of Li inserted was found to be consistent with a two-step process involving the reactions (i) VSbO{sub 4}+8 Li{sup {yields}}Sb+V+4 Li{sub 2}O and (ii) Sb+3 Li{sup {yields}}Li{sub 3}Sb, the former being virtually irreversible and the latter reversible as suggested by the shape of the anodic and cathodic curves. Ex situ XPS measurements of the discharged and charged electrode provided direct evidence of the formation of alloyed Sb and confirmed the results of the potentiostatic curves regarding the irreversible or reversible character of the previous reactions. The Li/VSbO{sub 4} cell exhibited acceptable electrochemical performance, which surpassed that of other Sb-based compounds as the likely result of the formation of V and its associated enhanced electrode conductivity. - Graphical abstract: TEM image of nanosized VSbO{sub 4} sample.

  3. Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers

    NASA Astrophysics Data System (ADS)

    Lahlil, S.; Biron, I.; Cotte, M.; Susini, J.; Menguy, N.

    2010-01-01

    During the 18th Egyptian dynasty (1570-1292 B.C.), opaque white, blue and turquoise glasses were opacified by calcium antimonate crystals dispersed in a vitreous matrix. The technological processes as well as the antimony sources used to manufacture these crystals remain unknown. Our results shed a new light on glassmaking history: contrary to what was thought, we demonstrate that Egyptian glassmakers did not use in situ crystallization but first synthesized calcium antimonate opacifiers, which do not exist in nature, and then added them to a glass. Furthermore, using transmission electron microscopy (TEM) for the first time in the study of Egyptian opaque glasses, we show that these opacifiers were nano-crystals. Prior to this research, such a process for glassmaking has not been suggested for any kind of ancient opaque glass production. Studying various preparation methods for calcium antimonate, we propose that Egyptian craftsmen could have produced Ca2Sb2O7 by using mixtures of Sb2O3 or Sb2O5 with calcium carbonates (atomic ratio Sb/Ca=1) heat treated between 1000 and 1100°C. We developed an original strategy focused on the investigation of the crystals and the vitreous matrices using an appropriate suite of high-sensitivity and high-resolution micro- and nano-analytical techniques (scanning electron microscopy (SEM), X-ray diffraction (XRD), TEM). Synchrotron-based micro X-ray absorption near edge spectroscopy (μ-XANES) proved to be very well suited to the selective measure of the antimony oxidation state in the vitreous matrix. This work is the starting point for a complete reassessment not only of ancient Egyptian glass studies but more generally of high-temperature technologies used throughout antiquity.

  4. Pharmacokinetics of liposome-encapsulated meglumine antimonate after intramuscular and subcutaneous administration in dogs.

    PubMed

    Valladares, J E; Freixas, J; Alberola, J; Franquelo, C; Cristofol, C; Arboix, M

    1997-10-01

    Controlling canine leishmaniasis may reduce the incidence of human leishmaniasis, which affect immunocompromised persons, especially those with human immunodeficiency virus infection. Thus, the pharmacokinetics of liposome-encapsulated meglumine antimonate (LMA) in dogs was studied after intramuscular (I.M.) and subcutaneous (S.C.) administration. Serum concentration-time data for both forms of administration were best described by a triexponential open model. The absorption phase showed statistically significant differences between I.M. and S.C. administrations (K01(I.M.) = 0.046/min, K01(S.C.) = 0.025/min). The first phase of decrease of plasma concentrations showed a longer half-life for S.C. than for I.M. administration, with the delay being caused by the slow absorption process after S.C. injection. Mean terminal phase half-lives after administration of I.M. and S.C. were 904.1 min and 637.4 min, respectively. Peak plasma concentrations after administration of I.M. (Cmax = 43.8 microg/ml) and S.C. (Cmax = 24.9 microg/ml) were detected at 42.8 min and 79.8 min, respectively. Urinary excretion of antimony for both routes surpassed 80% during the first 6 hr, with the rest of the drug being excreted slowly over the following 18 hr. The results obtained with this formulation suggest that for treating canine leishmaniasis, it would be more advisable to inject LMA intramuscularly if we assume that the significantly higher Cmax observed after I.M. administration is more relevant to dog's clinical outcome than is maintenance of concentrations over longer periods.

  5. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    PubMed

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction.

  6. Vibrational spectroscopic study of the antimonate mineral bindheimite Pb 2Sb 2O 6(O,OH)

    NASA Astrophysics Data System (ADS)

    Bahfenne, Silmarilly; Frost, Ray L.

    2009-09-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb 2Sb 2O 6(O,OH). The mineral is characterised by an intense Raman band at 656 cm -1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm -1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm -1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm -1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm -1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm -1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb 2Sb 2O 6(O,OH,H 2O).

  7. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major

    SciTech Connect

    Bisacchi, Davide; Zhou, Yao; Rosen, Barry P.; Mukhopadhyay, Rita; Bordo, Domenico

    2006-10-01

    LmACR2 from L. major is the first rhodanese-like enzyme directly involved in the reduction of arsenate and antimonate to be crystallized. Diffraction data have been collected to 1.99 Å resolution using synchrotron X-rays. Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3{sub 1}21/P3{sub 2}21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 Å and a = b = 111.0, c = 175.6 Å, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 Å.

  8. A new strontium antimonate{sup III} Sr{sub 5}Sb{sub 22}O{sub 38}: Synthesis, crystal structure and characterizations

    SciTech Connect

    Geng, Lei; Meng, Chang-Yu; Lin, Chen-Sheng; Cheng, Wen-Dan

    2013-07-15

    A new strontium antimonate{sup III}, Sr{sub 5}Sb{sub 22}O{sub 38}, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. It crystallizes in the P2{sub 1}/n space group of the monoclinic system with a=11.739(9) Å, b=12.014(10) Å, c=16.412(13) Å, β=91.460(8)°, V=2314.0(3) Å{sup 3}. The crystal structure is built of seven trigonal–pyramidal SbO{sub 3} and four sphenoid SbO{sub 4} polyhedra which are connected through sharing corner-oxygen atoms to form the complex three-dimensional {sub ∞}{sup 3}[Sb{sub 22}O{sub 38}]{sup 10−} anionic network with two different intersectant tunnels along the [111-bar ] and [11-bar 1-bar ] directions accommodating the electric charge balanced Sr{sup 2+} cations. First-principles electronic structure calculations based on the density functional theory (DFT) and the UV–vis diffuse reflectance spectroscopy measurements both indicate that the compound belongs to a direct band insulator with an optical gap value of 3.3 eV. - Graphical abstract: The 2D Sb–O slabs are stacked through sharing oxygen atoms to form the 3D network structure of the new strontium antimonate{sup III} Sr{sub 5}Sb{sub 22}O{sub 38}. - Highlights: • A new strontium antimonate{sup III}, Sr{sub 5}Sb{sub 22}O{sub 38}, has been hydrothermally synthesized. • The single crystal structure was determined by X-ray diffraction. • The powder XRD and UV–vis absorption spectroscopy were studied. • Theoretical studies interpret the relationships between optical absorption and crystal structure.

  9. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2).

    PubMed

    Luo, Jinming; Luo, Xubiao; Crittenden, John; Qu, Jiuhui; Bai, Yaohui; Peng, Yue; Li, Junhua

    2015-09-15

    Zirconium oxide (ZrO2)-carbon nanofibers (ZCN) were fabricated and batch experiments were used to determine antimonite (Sb(III)) and antimonate (Sb(V)) adsorption isotherms and kinetics. ZCN have a maximum Sb(III) and Sb(V) adsorption capacity of 70.83 and 57.17 mg/g, respectively. The adsorption process between ZCN and Sb was identified to be an exothermic and follows an ion-exchange reaction. The application of ZCN was demonstrated using tap water spiked with Sb (200 μg/L). We found that the concentration of Sb was well below the maximum contaminant level for drinking water with ZCN dosages of 2 g/L. X-ray photoelectron spectroscopy (XPS) revealed that an ionic bond of Zr-O was formed with Sb(III) and Sb(V). Based on the density functional theory (DFT) calculations, Sb(III) formed Sb-O and O-Zr bonds on the surface of the tetragonal ZrO2 (t-ZrO2) (111) plane and monoclinic ZrO2 planes (m-ZrO2) (111) plane when it adsorbs. Only an O-Zr bond was formed on the surface of t-ZrO2 (111) plane and m-ZrO2 (111) plane for Sb(V) adsorption. The adsorption energy (Ead) of Sb(III) and Sb(V) onto t-ZrO2 (111) plane were 1.13 and 6.07 eV, which were higher than that of m-ZrO2 (0.76 and 3.35 eV, respectively).

  10. High-temperature X-ray diffraction measurements of fluorite-related rare earth antimonates Ln{sub 3}SbO{sub 7} (Ln=Nd, Tb) and their magnetic properties

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro

    2014-09-15

    Ternary rare-earth antimonates Ln{sub 3}SbO{sub 7} (Ln=rare earths) were prepared, and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr; Ccmm for Ln=Sm–Dy), in which Ln{sup 3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated). For Ln=Nd, two phases with the Cmcm and Ccmm space groups coexist at room temperature. When the temperature was increased, the Nd{sub 3}SbO{sub 7} compound transformed into a single phase with the space group Cmcm. Through magnetic susceptibility measurements, an antiferromagnetic transition was observed at 3.0 K (Ln=Nd) and 7.8 K (Ln=Tb). Analysis of the magnetic specific heat for Tb{sub 3}SbO{sub 7} indicates that the 8-coordinated Tb ions magnetically orders at 7.8 K, and with furthermore decreasing temperature, the 7-coordinated Tb ions shows antiferromagnetic ordering at 3.0 K. - Graphical abstract: Temperature dependence of the specific heat divided by temperature (C{sub p}/T) and the magnetic entropy (S{sub mag}) for Tb{sub 3}SbO{sub 7}. Two-step magnetic transition has been observed. - Highlights: • The phase transition of Nd{sub 3}SbO{sub 7} is from the Ccmm space group to the Cmcm one. • Nd{sub 3}SbO{sub 7} shows an antiferromagnetic transition at 3.0 K. • For Tb{sub 3}SbO{sub 7}, two-step magnetic transition has been observed at 7.8 and 3.0 K.

  11. Cyanido Antimonate(III) and Bismuthate(III) Anions.

    PubMed

    Arlt, Sören; Harloff, Jörg; Schulz, Axel; Stoffers, Alrik; Villinger, Alexander

    2016-12-05

    The reaction of in situ generated E(CN)3 (E = Sb, Bi) with different amounts of [Ph4P]CN and [PPN]CN ([PPN](+) = [Ph3P-N-PPh3](+)) was studied, affording salts bearing the novel ions [E(CN)5](2-), [Bi2(CN)11](5-), and [Bi(CN)6](3-). The valence lone pair of electrons on the central atom of antimony and bismuth(III) compounds can be either sterically active in an unsymmetric fashion (three shorter bonds + x longer bonds) or symmetric (with rather long averaged bonds). In the presence of weakly coordinating cations (e.g., [Ph4P](+) and [PPN](+)), the solid-state structures of salts with [E(CN)5](2-) anions contain well-separated cations and monomeric anions, which display a sterically active lone pair and a monomeric square-based pyramidal (pseudo-octahedral) structure. The [Bi(CN)5·MeCN](2-) acetonitrile adduct ion exhibits a strongly distorted octahedral structure, which is better understood as a [5 + 1] coordination. The intriguing [Ph4P]6[Bi2(CN)11]CN salt consists of separated cations and anions as well as well-separated [Bi2(CN)11](5-) and CN(-) ions. The structure of the molecular [Bi2(CN)11](5-) ion can be described as two square-based-pyramidal [Bi(CN)5](2-) fragments connected by a disordered bridging CN(-) ion, thereby leading to a distorted-octahedral environment around the two Bi centers. Here the steric effect of the lone pair is much less pronounced but still present.

  12. 40 CFR 63.11459 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal-based compounds, such as lead oxide, chromium oxide, and sodium antimonate; metal ores, such as chromite and pyrolusite; and other substances that are intentionally added to a glass manufacturing...

  13. Structural phase transitions and crystal chemistry of the series Ba{sub 2} LnB'O{sub 6} (Ln=lanthanide and B'=Nb{sup 5+} or Sb{sup 5+})

    SciTech Connect

    Saines, Paul J.; Kennedy, Brendan J. Elcombe, Margaret M.

    2007-02-15

    The structures of 28 compounds in the two series Ba{sub 2} LnSbO{sub 6} and Ba{sub 2} LnNbO{sub 6} have been examined using synchrotron X-ray and in selected cases neutron powder diffraction at, below and above ambient temperature. The antimonate series is found to undergo a sequence of phase transitions from monoclinic to rhombohedral to cubic symmetry with both decreasing ionic radii of the lanthanides and increasing temperature. Compounds in the series Ba{sub 2} LnNbO{sub 6}, on the other hand, feature an intermediate tetragonal structure instead of the rhombohedral structure exhibited by the antimonates. This difference in symmetry is thought to be caused by {pi}-bonding in the niobates that is absent in the antimonates. The bonding environments of the cations in these compounds have also been examined with overbonding of the lanthanide and niobium cations being caused by the unusually large B-site cations. - Graphical abstract: Lattice parameters versus temperature for Ba{sub 2}NdNbO{sub 6}. The formation of the I4/m tetragonal phase contrasts with the antimonate series where a rhombohedral structure occurs instead. This difference is believed to be caused by the presence of {pi}-bonding present in the niobates but absent in the antimonates.

  14. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  15. A multi-spectroscopic approach to the characterization of early glaze opacifiers: Studies on an Achaemenid glazed brick found at Susa, south-western Iran (mid-first millennium BC)

    NASA Astrophysics Data System (ADS)

    Holakooei, Parviz

    2013-12-01

    This paper presents the results of micro-Raman spectroscopy, energy dispersive X-ray fluorescence (XRF), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) studies performed on an Achaemenid glazed brick found at Susa (mid-first millennium BC). The results showed that calcium antimonate (CaSb2O6) and lead antimonate (Pb2Sb2O7) were used as white and yellow opacifiers in the white and orange glazes respectively. Moreover, the mixture of calcium antimonate and lead antimonate were used as opacifier in the green glaze. In addition, green, turquoise, blue, and orange colors were achieved by the dissolution of copper, cobalt, and iron-bearing materials in an alkali glaze. A black glazed line, whose color was obtained by copper and iron oxides, was used to separate the colored glazes. The present paper strongly suggests invasive micro-Raman spectroscopy for the identification of the opacifiers used in the early vitreous materials.

  16. Differentiation of stem cells into insulin-producing cells under the influence of nanostructural polyoxometalates.

    PubMed

    Bâlici, Ştefana; Şuşman, Sergiu; Rusu, Dan; Nicula, Gheorghe Zsolt; Soriţău, Olga; Rusu, Mariana; Biris, Alexandru S; Matei, Horea

    2016-03-01

    Two polyoxometalates (POMs) with W were synthesized by a two-step, self-assembling method. They were used for stimulation of mesenchymal stem cell differentiation into insulin-producing cells. The nanocompounds (tris(vanadyl)-substituted tungsto-antimonate(III) anions [POM1] and tris-butyltin-21-tungsto-9-antimonate(III) anions [POM2]) were characterized by analytical techniques, including ultraviolet-visible, Fourier transform infrared, nuclear magnetic resonance spectroscopy, and transmission electron microscopy. We found that these polyoxotungstates, with 2-4 nm diameters, did not present toxic effects at the tested concentrations. In vitro, POM1 stimulated differentiation of a greater number of dithizone-positive cells (also organized in clusters) than the second nanocompound (POM2). Based on our in vitro studies, we have concluded that both the POMs tested had significant biological activity acting as active stimuli for differentiation of stem cells into insulin-producing cells.

  17. Microwave fixation and localization of calcium in synaptic terminals using x-ray microanalysis and electron energy loss spectroscopy imaging.

    PubMed

    Mizuhira, V; Hasegawa, H

    1997-01-01

    The distribution of calcium ions is demonstrated in synaptic terminals by means of a two-step chemical precipitation of calcium ions in the rat brain. K-oxalate/K-antimonate chemical replacement with simultaneous computerized microwave irradiation was used. This precipitate in nerve cell structures was investigated by computerized electron probe x-ray microanalysis (EDX) and electron energy loss spectroscopic (EELS) imaging. The values obtained by EDX agreed with those of the standard sample and theoretical values of Ca-antimonate. Typical EELS spectra of Ca:L, O:K, and Sb:M were obtained from nerve terminals in the same tissue block as that used for EDX analysis. Excellent net Ca:L and Sb:M EELS digital images were obtained after their background images were subtracted. Calcium ions were distributed in the nerve terminals, synaptic vesicles, mitochondria, and synaptic membranes.

  18. 40 CFR 421.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (b) Fouled... electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c) Cathode Antimony Wash Water... electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  19. 40 CFR 421.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... produced by electrowinning Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562 Total suspended... produced by electrowinning Antimony 89.680 40.000 Arsenic 65.310 29.060 Mercury 7.812 3.125 Total...

  20. 40 CFR 421.146 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pounds) of antimony contained in sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687... metal produced by electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c... produced by electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  1. 40 CFR 421.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... produced by electrowinning Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562 Total suspended... produced by electrowinning Antimony 89.680 40.000 Arsenic 65.310 29.060 Mercury 7.812 3.125 Total...

  2. 40 CFR 421.146 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pounds) of antimony contained in sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687... metal produced by electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c... produced by electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  3. 40 CFR 421.146 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pounds) of antimony contained in sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687... metal produced by electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c... produced by electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  4. 40 CFR 421.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (b) Fouled... electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c) Cathode Antimony Wash Water... electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  5. 40 CFR 421.146 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pounds) of antimony contained in sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687... metal produced by electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c... produced by electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  6. 40 CFR 421.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (b) Fouled... electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c) Cathode Antimony Wash Water... electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  7. 40 CFR 421.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... produced by electrowinning Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562 Total suspended... produced by electrowinning Antimony 89.680 40.000 Arsenic 65.310 29.060 Mercury 7.812 3.125 Total...

  8. 40 CFR 421.146 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pounds) of antimony contained in sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687... metal produced by electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c... produced by electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  9. 40 CFR 421.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... produced by electrowinning Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562 Total suspended... produced by electrowinning Antimony 89.680 40.000 Arsenic 65.310 29.060 Mercury 7.812 3.125 Total...

  10. 40 CFR 421.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (b) Fouled... electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c) Cathode Antimony Wash Water... electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  11. 40 CFR 421.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... produced by electrowinning Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562 Total suspended... produced by electrowinning Antimony 89.680 40.000 Arsenic 65.310 29.060 Mercury 7.812 3.125 Total...

  12. Multipurpose Corrosion Inhibitors for Aerospace Materials in Naval Environments

    DTIC Science & Technology

    1987-06-04

    environment becomes acidic, as is the case at the crack-tip. Molybdates. tungstates , vanadates, bismuthates, antimonates, peroxycarbonates are the compounds...inhibitors, the results of Parrish et al (17) have been used. A one percent solution of sodium chloride at pH 2, suggested as an extreme possible condition...used to study the effect of inhibitors. Among the inhibitors investigated, sodium dichromate and sodium molybdate were found to significantly inhibit

  13. 40 CFR 421.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (b) Fouled... electrowinning Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (c) Cathode Antimony Wash Water... electrowinning Antimony 60.310 26.870 Arsenic 43.430 19.370 Mercury 4.687 1.875...

  14. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  15. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  16. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    PubMed

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration.

  17. THE DISTRIBUTION OF INORGANIC CATIONS IN MOUSE TESTIS

    PubMed Central

    Kierszenbaum, Abraham L.; Libanati, Cesar M.; Tandler, Carlos J.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, mouse testes were fixed with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative), hardened with formaldehyde, and postosmicated. A good preservation of the cell membranes and over-all cell morphology is obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. Four sites of prominent antimonate deposits are revealed, besides a more or less uniform distribution of the precipitates. These sites are: (a) In the walls of the seminiferous tubules, localized in two concentric layers corresponding to the inner and outer layers of the tubular wall; (b) Around the blood vessels and adjacent connective tissue; (c) At the area of contact between the Sertoli cell and spermatids, where a double line of precipitate surrounds the head of the mature spermatids; and (d) In the cell nuclei, disposed between regions of the condensed chromatin. The nucleus of mature spermatids did not show any sign of antimonate precipitation. The implications of this inorganic cation distribution are discussed with relation to their anionic counterparts, their localization in other animal and plant tissues, and the possibility that those sites may represent barriers to the free passage of ions. PMID:4101521

  18. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.

    PubMed

    Cornelis, Geert; Van Gerven, Tom; Vandecasteele, Carlo

    2012-02-01

    Development of treatment methods to reduce Sb leaching from municipal solid waste incinerator (MSWI) bottom ash, such as accelerated carbonation, is being complicated by insufficient understanding of Sb geochemistry. The leaching of antimonate (Sb(V)) and antimonite (Sb(III)) in MSWI bottom was studied as a function of pH and degree of carbonation. While total (Sb(V)+Sb(III)) leaching was lowest (1.2 mg kg(-1)) at the natural pH (i.e. 10.6) of uncarbonated bottom ash, HPLC-ICP-MS analysis showed that acidification and carbonation increased Sb(V) leaching, but decreased Sb(III) leaching, probably because Sb(III)(OH)(4)(-) became less stable. PHREEQC geochemical modelling suggested that Sb(V) concentrations approached equilibrium with the romeites, i.e. calcium antimonates, Ca(1.13)Sb(2)(OH)(0.26)·0.74H(2)O at pH=10.6 and Ca[Sb(OH)(6)](2) at pH=8. It is hypothesised that not interaction with ettringite but dissolution of romeite controls antimonate leaching in the pH range 8-11 in MSWI bottom ash, because while Ca is preferentially leached from romeite, the mineral structures containing more Ca at higher pH are less soluble. A model was proposed where acidification and carbonation both lead to lower Ca(2+) and/or hydroxyl concentration, which removes Ca(2+) and hydroxyls from the romeite structure and leads to comparably higher Sb(V) concentration in equilibrium with romeite. Sb solubility depends on pH and Ca(2+) availability in this model, which has implications for bottom ash valorisation and risk assessment.

  19. Saponins of the ivy plant, Hedera helix, and their leishmanicidic activity.

    PubMed

    Majester-Savornin, B; Elias, R; Diaz-Lanza, A M; Balansard, G; Gasquet, M; Delmas, F

    1991-06-01

    Antileishmanial activity is reported for the first time for saponins of ivy, Hedera helix L., in vitro on promastigote and amastigote forms of Leishmania infantum and Leishmania tropica. The compounds tested were an extract containing 60% of saponic complex (CS 60), the bidesmosides hederasaponin B, C, and D (saponin K10), their corresponding monodesmosides alpha-, beta-, and delta-hederin, and hederagenin. CS 60 and bidesmosides have shown no effect. Monodesmosides were found to be as effective on promastigote forms as the reference compound (pentamidine). Against amastigote forms only hederagenin exhibited a significant activity which was equivalent to that of the reference compound (N-methylglucamine antimonate).

  20. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    In higher plants, calcium redistribution is believed to be crucial for the root to respond to a change in the direction of the gravity vector. To test the effects of clinorotation and microgravity on calcium localization in higher plant roots, sweet clover (Melilotus alba L.) seedlings were germinated and grown for two days on a slow rotating clinostat or in microgravity on the US Space Shuttle flight STS-60. Subsequently, the tissue was treated with a fixative containing antimonate (a calcium precipitating agent) during clinorotation or in microgravity and processed for electron microscopy. In root columella cells of clinorotated plants, antimonate precipitates were localized adjacent to the cell wall in a unilateral manner. Columella cells exposed to microgravity were characterized by precipitates mostly located adjacent to the proximal and lateral cell wall. In all treatments some punctate precipitates were associated with vacuoles, amyloplasts, mitochondria, and euchromatin of the nucleus. A quantitative study revealed a decreased number of precipitates associated with the nucleus and the amyloplasts in columella cells exposed to microgravity as compared to ground controls. These data suggest that roots perceive a change in the gravitational field, as produced by clinorotation or space flights, and respond respectively differently by a redistribution of free calcium.

  1. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    USGS Publications Warehouse

    Li, Jingxin; Qian Wang,; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  2. Study of haemostatic disorders in experimentally induced leishmaniasis in Beagle dogs.

    PubMed

    Valladares, J E; Ruiz De Gopegui, R; Riera, C; Alberola, J; Gállego, M; Espada, Y; Portús, M; Arboix, M

    1998-01-01

    Haemostatic alterations in dogs experimentally infected with Leishmania infantum were studied before and after therapy with meglumine antimonate. Haemostatic function tests including platelet count, collagen-induced platelet aggregation, prothrombin time, activated partial thromboplastin time, thrombin time, plasma fibrinogen determination, and serum fibrinogen/fibrin degradation products concentration were performed. In the course of infection and before treatment, moderate thrombocytopenia (P<0.00001), decreased collagen induced platelet aggregation (P=0.0003), prolonged thrombin time (P=0.0117) and increased fibrinogen/fibrin degradation products were observed. Statistically significant differences of plasma fibrinogen concentration, prothrombin time, and activated partial thromboplastin time were not encountered. Haemostatic parameters returned to normal values after therapy. The results indicate that Leishmania infection may impair haemostasis suggesting induction of disseminated intravascular coagulation (DIC), and that treating dogs in an early stage of infection may potentially avoid the possibility of developing an uncompensated DIC.

  3. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution.

    PubMed

    Tschan, Martin; Robinson, Brett; Schulin, Rainer

    2008-04-01

    We investigated the extent of Sb uptake by maize (Zea mays) and sunflower (Helianthus annuus) from nutrient solutions containing concentrations from 3 to 24 mg/L of potassium antimonate, with the aim of determining the potential of Sb to enter the food chain. The maximum shoot Sb concentrations in Z. mays and H. annuus were 41 mg/kg and 77 mg/kg dry weight, respectively. There was no significant difference in Sb uptake between species. The average bioaccumulation coefficients (the plant/solution concentration quotients) were 1.02 and 1.93 for Z. mays and H. annuus, respectively. Phosphate addition did not affect plant growth or Sb uptake. Antimony uptake by both Z. mays and H. annuus is unlikely to pose a health risk to animals and humans.

  4. Efficacy of the treatment of dogs with leishmaniosis with a combination of metronidazole and spiramycin.

    PubMed

    Pennisi, M G; De Majo, M; Masucci, M; Britti, D; Vitale, F; Del Maso, R

    2005-03-12

    Twenty-seven dogs infected naturally with Leishmania infantum were used in a randomised controlled trial to compare the clinical and parasitological efficacy of an oral treatment with a combination of metronidazole and spiramycin (13 dogs) with the efficacy of conventional treatment with meglumine antimonate and allopurinol (14 dogs) as controls. In the test group one dog had to be withdrawn from the treatment because it developed pemphigus foliaceus; 10 of the dogs were clinically responsive but none was cured parasitologically. In the control group four dogs were withdrawn from the treatment because of side effects; eight of the dogs were clinically responsive but none was cured parasitologically. The control group showed signs of improvement after an average of 30 days, whereas the test group did not show signs of improvement until after an average of 45 days.

  5. THE INTRACELLULAR LOCALIZATION OF INORGANIC CATIONS WITH POTASSIUM PYROANTIMONATE

    PubMed Central

    Tandler, Carlos J.; Libanati, César M.; Sanchis, Carlos A.

    1970-01-01

    Potassium pyroantimonate, when used as fixative (saturated or half-saturated, without addition of any conventional fixative) has been demonstrated to produce intracellular precipitates of the insoluble salts of calcium, magnesium, and sodium and to preserve the general cell morphology. In both animal and plant tissues, the electron-opaque antimonate precipitates were found deposited in the nucleus—as well as within the nucleolus—and in the cytoplasm, largely at the site of the ribonucleoprotein particles; the condensed chromatin appeared relatively free of precipitates. The inorganic cations are probably in a loosely bound state since they are not retained by conventional fixatives. The implications of this inorganic cation distribution in the intact cell are discussed in connection with their anionic counterparts, i.e., complexing of cations by fixed anionic charges and the coexistence of a large pool of inorganic orthophosphate anions in the nucleus and nucleolus. PMID:4935442

  6. Effect of heat shock on ultrastructure and calcium distribution in Lavandula pinnata L. glandular trichomes.

    PubMed

    Huang, S S; Kirchoff, B K; Liao, J P

    2013-02-01

    The effects of heat shock (HS) on the ultrastructure and calcium distribution of Lavandula pinnata secretory trichomes are examined using transmission electron microscopy and potassium antimonate precipitation. After 48-h HS at 40°C, plastids become distorted and lack stroma and osmiophilic deposits, the cristae of the mitochondria become indistinct, the endoplasmic reticulum acquires a chain-like appearance with ribosomes prominently attached to the lamellae, and the plasma and organelle membranes become distorted. Heat shock is associated with a decrease in calcium precipitates in the trichomes, while the number of precipitates increases in the mesophyll cells. Prolonged exposure to elevated calcium levels may be toxic to the mesophyll cells, while the lack of calcium in the glands cell may deprive them of the normal protective advantages of elevated calcium levels. The inequality in calcium distribution may result not only from uptake from the transpiration stream, but also from redistribution of calcium from the trichomes to the mesophyll cells.

  7. Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways

    PubMed Central

    Li, Jingxin; Wang, Qian; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.” PMID:27342551

  8. In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis.

    PubMed Central

    Fournet, A; Ferreira, M E; Rojas De Arias, A; Torres De Ortiz, S; Fuentes, S; Nakayama, H; Schinini, A; Hocquemiller, R

    1996-01-01

    The antileishmanial efficacies of 2-n-propylquinoline, chimanines B and D, 2-n-pentylquinoline, 2-phenylquinoline, 2-(3,4-methylenedioxyphenylethyl) quinoline, and two total alkaloidal extracts of Galipea longiflora were evaluated in BALB/c mice infected with Leishmania amazonensis or Leishmania venezuelensis. Animals were treated for 4 to 6 weeks postinfection with a quinoline by the oral route at 50 mg/kg of body weight twice daily for 15 days or by five intralesional injections at intervals of 4 days with a quinoline at 50 mg/kg of body weight. The reference drug, N-methylglucamine antimonate (Glucantime), was administered by subcutaneous or intralesional injection (regimens of 14, 28, or 56 mg of pentavalent antimony [Sbv] per kg of body weight daily). Twice-daily oral treatment with chimanine B at 50 mg/kg resulted in a decrease in lesion weight by 70% (P < 0.001) and a decrease in the parasite loads by 95% (P < 0.001). Five injections of chimanine B at intervals of 4 days reduced the lesion weight by 74% and the parasite loads in the lesion by 90% compared with the values for the group of untreated mice. Subcutaneous administration of N-methylglucamine antimonate at 28 mg of Sbv kg per day for 15 days reduced the parasite burden by 95% (P < 0.001), and five intralesional injections at the same concentration reduced the parasite burden by 96% (P < 0.001). Other 2-substituted quinolines, 2-n-propylquinoline administered by the oral and intralesional routes, 2-phenylquinoline administered by the oral route, 2-n-pentylquinoline administered by intralesional injection, and two total alkaloidal extracts of G. longiflora administered by the oral route, had intermediate effects. These findings suggest that chimanine B may be chosen as a lead molecule in the development of oral therapy against leishmaniasis. PMID:8913444

  9. In vivo antileishmanial activity and chemical profile of polar extract from Selaginella sellowii.

    PubMed

    Queiroz, Dayane Priscilla de Souza; Carollo, Carlos Alexandre; Kadri, Mônica Cristina Toffoli; Rizk, Yasmin Silva; Araujo, Vanessa Carneiro Pereira de; Monteiro, Paulo Eduardo de Oliveira; Rodrigues, Patrik Oening; Oshiro, Elisa Teruya; Matos, Maria de Fátima Cepa; Arruda, Carla Cardozo Pinto de

    2016-03-01

    The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.

  10. High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

    DOE PAGES

    Tian, Wei; Svoboda, Chris; Ochi, M.; ...

    2015-09-14

    We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu2O6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu2O6 crystallizes into the hexagonal lead antimonate (PbSb2O6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr2+ ions. SrRu2O6 is found to order at TN = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μB/Ru at room temperature and is along the crystallographic c axis in the G-type magnetic structure. We perform density functional calculations with constrained random-phase approximation (RPA)more » to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed TN .« less

  11. Composition and microstructure of maiolica from the museum of ceramics in Ascoli Piceno (Italy): evidences by electron microscopy and microanalysis

    NASA Astrophysics Data System (ADS)

    Gulmini, M.; Scognamiglio, F.; Roselli, G.; Vaggelli, G.

    2015-09-01

    The present work focuses on majolica objects from the collection of the museum of ceramic in Ascoli Piceno (Italy). The scientific investigation was performed on fragments detached from seven maiolicas attributed to the Castelli production (Abruzzi region) and one majolica from the Ascoli Piceno production (Marche region). The Castelli artifacts (late sixteenth-early eighteenth century) belong to the decorated style known as " compendiario." The piece from Ascoli Piceno recalls the decoration style of the other considered objects and is attributable to the "Paci" manufacture (first half of the nineteenth century). The selected objects were investigated by fiber optics reflectance spectroscopy, micro-X-ray fluorescence spectroscopy and scanning electron microscopy coupled with electron-dispersive X-ray spectrometry. The ceramic bodies of all objects are calcareous, whereas the glazes are lead-alkali type opacified by tin dioxide. Blue and purplish-red decorations were obtained by cobalt and manganese compounds dissolved in the glaze, respectively. Yellow and orange decorations were obtained by particles of lead antimonate and hematite. Finally, black decorations were obtained using compounds rich in manganese and iron. The study contributes to knowledge on the production of Castelli ceramics and presents first archaeometric data on the maiolica production from Ascoli Piceno. The scientific examination highlights continuity with the Renaissance production, and the joint contribution of the three analytical techniques suggests distinctive features among different productions, thus integrating and refining the information obtained by the art-historical study.

  12. Dating ancient mosaic glasses by luminescence: The case study of San Pietro in Vaticano

    NASA Astrophysics Data System (ADS)

    Galli, A.; Martini, M.; Sibilia, E.; Vandini, M.; Villa, I.

    2011-12-01

    The preliminary results of a study on the dosimetric properties of a set of glass tesserae from the mosaics of the vaults of St. Peter's Basilica in Rome (late XVI century) are reported. The main goal of the research was to assess the possibility of dating them by means of luminescence techniques. The samples had already been extensively studied and investigated from a historical, artistic and compositional point of view. The period of the making of the mosaic was rather well known, and could be the basis to test the experimental procedures we used for dosimetry. The experiments also aimed at demonstrating the validity of the hypothesis we put forward, i.e. the positive link between the presence of micro-crystals and the luminescence sensitivity in mosaic glass: to this aim, the samples richer in crystalline inclusions were selected. The role of calcium antimonate and cassiterite was definitely demonstrated. For what concerns their thermoluminescence (TL) characteristics, a preliminary investigation suggested that the available configuration of the detection systems did not properly fit the wavelength of the emitted TL. Much more promising results have been achieved by the use of Optically Stimulated Luminescence (OSL), even if the measured absorbed doses were rather scattered. For one sample with high OSL sensitivity, it was possible to establish its recent age, relative to one of the documented restorations that took place during the last century.

  13. Calcium transport mechanism in molting crayfish revealed by microanalysis

    SciTech Connect

    Mizuhira, V.; Ueno, M.

    1983-01-01

    Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the fine precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism.

  14. In vivo antileishmanial activity and chemical profile of polar extract from Selaginella sellowii

    PubMed Central

    Queiroz, Dayane Priscilla de Souza; Carollo, Carlos Alexandre; Kadri, Mônica Cristina Toffoli; Rizk, Yasmin Silva; de Araujo, Vanessa Carneiro Pereira; Monteiro, Paulo Eduardo de Oliveira; Rodrigues, Patrik Oening; Oshiro, Elisa Teruya; Matos, Maria de Fátima Cepa; de Arruda, Carla Cardozo Pinto

    2016-01-01

    The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis. PMID:26910353

  15. Calcium and Calmodulin Localization in Gravitropically-responding Plant Organs

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1985-01-01

    Antimonate staining procedures were used to detect calcium redistribution changes in corn roots. Results show that an asymmetric redistribution of Ca is induced by a gravitropic stimulus in roots as it is in shoots. Since this response occurs within 10 min, at least 5 min before any visible bending, it could play a role in the regulation of root gravitropism. Two different general approaches were used to localize calmodulin in plant tissue: radioimmunoassay of its content in tissue and in purified subcellular organelles, and immunocytochemical detection of it in roots and coleoptiles. Radioimmunoassay results indicate that calmodulin is present in large quantities in pllant cells and that it is specifically associated with mitochondria, etioplasts and nuclei. An assayed of an extract of soluble wall proteins revealed that over 1% of these proteins was calmodulin. Controls indicate that this calmodulin is not cytoplasmic in origin. A reaction product from anti-calmodulin was found mainly in the root cap cells, moderately in metazylem elements, in some cells in the stele surrounding metaxylem elements and in cortical cells.

  16. An update on the diagnosis and treatment of canine leishmaniosis caused by Leishmania infantum (syn. L. chagasi).

    PubMed

    Noli, Chiara; Saridomichelakis, Manolis N

    2014-12-01

    Canine leishmaniosis caused by Leishmania infantum is still a common disease in endemic areas, such as the Mediterranean countries, and has progressively expanded into non-endemic areas like Central and Northern Europe. The aim of this article is to critically review current knowledge on the diagnosis and treatment of this disease. In dogs with typical clinical signs and clinicopathological abnormalities, diagnosis is relatively easy based on the exclusion of major differentials, the demonstration of the parasite (e.g., with lymph node and/or skin cytology) and the presence of Leishmania-specific immunoglobulin G antibodies (quantitative serology). In less typical cases, these criteria together with the exclusion of possible differentials and the demonstration of compatible histological lesions in affected organs and tissues form the basis for a sound diagnosis. In clinically healthy dogs, molecular techniques are the most sensitive means for detecting L. infantum infection. Treatment of canine leishmaniosis should follow clinical staging and is usually based on meglumine antimonate or miltefosine administration for a few weeks in combination with allopurinol for several months. However, allopurinol monotherapy may be used in very mild cases as well as in dogs with end stage kidney disease. Aminosidine administered once daily at a revised dosage shows some promise but additional controlled studies are needed. Close attention to published guidelines regarding treatment and follow-up is necessary to achieve the best possible therapeutic outcome.

  17. PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.

    PubMed

    Van der Linden, Veerle; Meesdom, Eva; Devos, Annemie; Van Dooren, Rita; Nieuwdorp, Hans; Janssen, Elsje; Balace, Sophie; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen

    2011-10-01

    The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.

  18. The Fluid Processing Apparatus: from Flight Hardware to Electron Micrographs

    NASA Technical Reports Server (NTRS)

    Hilaire, Emmanuel; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Since the early years of space biology, a major drawback in spaceflight plant experiments has been the inability to fix specimens in microgravity, relying instead on fixation after return to Earth. As there, it is of a growing interest to look at the effect of microgravity on the structure and the developmental polarity of root graviperceptive cells, or columella cells, and so, it is important to use flight hardware which allows specimen fixation in space therefore avoiding the confounding effects of rapid readaptation to gravity after landing. As part of the Bioserve Space Technologies, a Center for the Commercial Development of Space (CCDS), we now have experiment flight opportunities through the Commercial Generic Bioprocessing Apparatus (CGBA) payload. In this study the Fluid Processing Apparatus (FPA) was used to grow seedlings for a limited period of time prior to fixation of the tissue in a microgravity environment. Upon return to Earth, the samples were processed for electron microscopy. This report describes the microscopic data obtained from the two space flights (STS-54 and STS-60). In both cases, the electron micrographs of the columella cells revealed well preserved cell structure, well defined microtubules, and the presence of calcium precipitates formed by a antimonate precipitation method.

  19. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis.

    PubMed

    Perry, Meghan R; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H

    2013-12-03

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg · mL(-1) Pentostam compared with the control passage group (38.5 μg · mL(-1)) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is.

  20. Distribution of calcium in the stigma and style of tobacco during pollen germination and tube elongation.

    PubMed

    Ge, Li Li; Xie, Chao Tian; Tian, Hui Qiao; Russell, Scott D

    2009-06-01

    Potassium antimonate was used to locate loosely bound calcium in the stigma and style of tobacco. The tobacco stigma is wet and covered by a thick layer of glycoprotein exudate at anthesis. The exudate contains abundant vesicles, which are densely labeled with calcium precipitates. When pollen grains arrive at the stigma, become hydrated, and as the pollen swells, Ca(2+) precipitates accumulate at the aperture. Calcium precipitates that accumulate in pollen cytoplasm are initially concentrated within small vacuoles, but as germination proceeds these appear to fuse, forming prominent, densely labeled vesicles that preferentially accumulate near the proximal region of the growing tube. Although the stigma has abundant particles, few calcium precipitates are observed in the transmitting tissue from anthesis to 11 h after pollination. However, at 22 h after pollination, accumulation of calcium increases distally from the stigmatic interface with the transmitting tissue through the length of the style to the ovary. An examination of flowering plants with differing floral biology will be needed to understand the role of loosely bound calcium accumulation and its relationship to tissue-level changes in calcium uptake, maintenance of other calcium pools, including [Ca(2+)](cyt), and in pollen and style maturation during the progamic phase.

  1. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  2. Polychrome glass from Etruscan sites: first non-destructive characterization with synchrotron μ-XRF, μ-XANES and XRPD

    NASA Astrophysics Data System (ADS)

    Arletti, R.; Vezzalini, G.; Quartieri, S.; Ferrari, D.; Merlini, M.; Cotte, M.

    2008-07-01

    This work is devoted to the characterization of a suite of very rare, highly decorated and coloured glass vessels and beads from the VII to the IV century BC. The most serious difficulty in developing this study was that any sampling even micro-sampling was absolutely forbidden. As a consequence, the mineralogical and chemical nature of chromophores and opacifiers present in these Iron Age finds were identified by means of the following synchrotron-based, strictly non-destructive, techniques: micro X-ray fluorescence (μ-XRF), Fe K-edge micro X-ray absorption near edge spectroscopy (μ-XANES) and X-ray powder diffraction (XRPD). The μ-XRF mapping evidenced high levels of Pb and Sb in the yellow decorations and the presence of only Sb in the white and light-blue ones. Purple and black glass show high amounts of Mn and Fe, respectively. The XRPD analyses confirmed the presence of lead and calcium antimonates in yellow, turquoise and white decorations. Fe K-edge μ-XANES spectra were collected in different coloured parts of the finds, thus enabling the mapping of the oxidation state of these elements across the samples. In most of the samples iron is present in the reduced form Fe2+ in the bulk glass of the vessels, and in the oxidized form Fe3+ in the decorations, indicating that these glass artefacts were produced in at least two distinct processing steps under different furnace conditions.

  3. A fruitful demonstration in sensors based on upconversion luminescence of Yb3+/Er3+codoped Sb2O3-WO3-Li2O (SWL) glass-ceramic

    NASA Astrophysics Data System (ADS)

    Prasad Sukul, Prasenjit; Kumar, Kaushal

    2016-07-01

    In this article, erbium and ytterbium doped lithium tungsten antimonate (Yb3+/Er3+:Sb2O3-WO3-Li2O) glass-ceramics (GC) is synthesized and its novel applications in temperature sensing and detection of latent fingerprints is studied. It is also estimated that this material could be useful as a solar cell concentrator. The upconversion emission studies on Yb3+/Er3+:SWL glass-ceramics have shown intense green emission at 525 nm (2H11/2 → 4I15/2) & 545 nm (4s3/2 → 4I15/2). The variation of UC intensities with external temperature have shown a well-fashioned pattern, which suggests that the 2H11/2 and 4S3/2 levels of Er3+ ion are thermally coupled and can act as a temperature sensor in the 300-500 K temperature range. Dry powder of Yb3+/Er3+:SWL glass-ceramic is used to develop latent fingerprint with high contrast in green color on glass slide.

  4. Properties of the arsenate reductase of plasmid R773.

    PubMed

    Gladysheva, T B; Oden, K L; Rosen, B P

    1994-06-14

    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  5. Changes in vacuolation in the root apex cells of soybean seedlings in microgravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Kordyum, E.; Chapman, D.; Brown, C.; Vorobyova, T.

    In this study, changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Dry seeds were mounted within BRIC (Biological Research in Canister) before launching, activated and germinated on board the space shuttle Columbia (STS 87). Spaceflight and- ground control seedlings were grown in the presence of KMnO4 (to remove ethylene) and in the absence of KMnO4 for 6 days. After landing, seedling root apices were fixed in a solutions (2.5% (w/v) glutaraldehyde in 0.1 M cacodilate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer) with osmolarity (accounted theoretically) 0.45 and 1.26 osmol for study of cell ultrastructure and subcellular free calcium ion distribution correspondingly. The concentration of ethylene in all spaceflight canisters were significantly higher than in the ground controls. Seedling growth and lateral root formation decreased in microgravity and the progressive vacuolation in root apex cells, particularly in collumela cells, was observed unlike the ground controls. In addition, plasmolysis in collumela cells of spaceflight roots treated by solution with relatively high osmolarity occurred. The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells is higher than the surrounding fxative solution (1.26 osmol). Ai decrease in osmotic potential and/or an increase in turgor potential may bring about increases in cell water potential. However, the plasmolysed (i.e. nonturgid) cells imply that increases in water potential accompanied with a decrease in osmotic potential. In such cells, changes in vacuolation, which may be involved to maintain turgor pressure or may be a result of intensification of other vacuole functions as digestion, storage are discussed.

  6. Changes in vacuolation in the root apex cells of soybean seedlings in microgravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Chapman, D. K.; Brown, C. S.

    2003-05-01

    Changes in the vacuolation in root apex cells of soybean ( Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO 4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH) 6] in 0.1 M K 2HPO 4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. nonturgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage

  7. Simultaneous removal of Cd(II) and Sb(V) by Fe-Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption.

    PubMed

    Liu, Ruiping; Liu, Feng; Hu, Chengzhi; He, Zan; Liu, Huijuan; Qu, Jiuhui

    2015-12-30

    The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe-Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Qmax,Sb(V)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd(2+) exhibited a more significant positive effect than both calcium ion (Ca(2+)) and manganese ion (Mn(2+)). Cd(2+) showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca(2+) and Mn(2+). The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pHi) range from 2 to 9, and QSb(V) decreases whereas QCd(II) increases with elevated pHi. Their combined values, as expressed by QSb(V)+Cd(II), amount to about 2 mmol/g and vary slightly in the pHi range 4-9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  8. Three-Dimensional Reduced Graphene Oxide Coupled with Mn3O4 for Highly Efficient Removal of Sb(III) and Sb(V) from Water.

    PubMed

    Zou, Jian-Ping; Liu, Hui-Long; Luo, Jinming; Xing, Qiu-Ju; Du, Hong-Mei; Jiang, Xun-Heng; Luo, Xu-Biao; Luo, Sheng-Lian; Suib, Steven L

    2016-07-20

    Highly porous, three-dimensional (3D) nanostructured composite adsorbents of reduced graphene oxides/Mn3O4 (RGO/Mn3O4) were fabricated by a facile method of a combination of reflux condensation and solvothermal reactions and systemically characterized. The as-prepared RGO/Mn3O4 possesses a mesoporous 3D structure, in which Mn3O4 nanoparticles are uniformly deposited on the surface of the reduced graphene oxide. The adsorption properties of RGO/Mn3O4 to antimonite (Sb(III)) and antimonate (Sb(V)) were investigated using batch experiments of adsorption isotherms and kinetics. Experimental results show that the RGO/Mn3O4 composite has fast liquid transport and superior adsorption capacity toward antimony (Sb) species in comparison to six recent adsorbents reported in the literature and summarized in a table in this paper. Theoretical maximum adsorption capacities of RGO/Mn3O4 toward Sb(III) and Sb(V) are 151.84 and 105.50 mg/g, respectively, modeled by Langmuir isotherms. The application of RGO/Mn3O4 was demonstrated by using drinking water spiked with Sb (320 μg/L). Fixed-bed column adsorption experiments indicate that the effective breakthrough volumes were 859 and 633 mL bed volumes (BVs) for the Sb(III) and Sb(V), respectively, until the maximum contaminant level of 5 ppb was reached, which is below the maximum limits allowed in drinking water according to the most stringent regulations. The advantages of being nontoxic, highly stable, and resistant to acid and alkali and having high adsorption capacity toward Sb(III) and Sb(V) confirm the great potential application of RGO/Mn3O4 in Sb-spiked water treatment.

  9. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    PubMed Central

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-01-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2. PMID:28252030

  10. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth.

    PubMed

    Cai, Ru; Wang, Xin; Ji, Xionghui; Peng, Bo; Tan, Changyin; Huang, Xi

    2017-02-01

    In this study, the efficiency and mechanism of aqueous phosphate removal by magnetic biochar derived from water hyacinth (MW) were investigated. The MW pyrolyzed at 450 °C (MW450) exhibited the most prominent phosphate sorption capacity, which was estimated to be 5.07 mg g(-1) based on Langmuir-Freundlich model. At an initial phosphorus (P) concentration of 1 mg l(-1), >90% P removal was achieved over pH 3-9, but the efficiency decreased sharply at pH > 10. The presence of arsenate and carbonate could remarkably decrease P sorption, while the inhibition effects of antimonate, nitrate and sulfate were less significant. In further application of MW450 to reclaim P from eutrophic lake waters (0.71-0.94 mg l(-1) total P), ∼96% P removals were attained in the batch studies and the effluent P concentrations in the column tests were reduced to <0.05 mg l(-1) within 509-1019 empty bed volumes. As indicated by XRD, MW450 surface was dominated by Fe3O4 and Fe2O3, resulting in a good ferromagnetic property of this composite (saturation magnetization 45.8 emu g(-1)). Based on XPS, P sorption onto MW450 occurred mainly by surface complexation with the hydroxyl via ligand exchange. These results highlighted that MW derived from highly damaging water hyacinth could provide a promising alternative for P removal from most eutrophic waters.

  11. Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues.

    PubMed

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej

    2010-07-01

    Environments in the vicinity of the lead (Pb) smelters are contaminated by emissions containing high concentrations of antimony (Sb) and arsenic (As). Air-pollution-control (APC) residues from bag-type filters from a secondary Pb smelter were subjected to leaching experiments to elucidate the controlling mechanisms of Sb and As release. Kinetic batch leaching tests at a liquid-to-solid (L/S) ratio of 10 L kg(- 1) within the time frame of 720 hours and batch leaching at various L/S ratios (ranging from 1 to 1000 L kg(-1)) were performed. In contrast to other inorganic contaminants (Pb, Cd, Zn), less than 1% of the total Sb and As content was leached from the residues. At a L/S ratio of 10, the As and Sb concentrations in the leachates exceeded the EU limit values for non-hazardous waste (0.2 and 0.07 mg L(-1) ). According to PHREEQC-2 calculations, the concentrations of As and Sb are controlled by the precipitation of complex arsenates and antimonates mainly at low L/S ratios. The washing and related chemical/mineralogical transformation of APC residues was suggested as a technological pre-treatment process before their re-smelting in a blast furnace. The Ferrox-like processing of the resulting contaminated process water/leachate was simulated using the PHREEQC-2 code. Significant reduction was obtained in the concentration of some key contaminants (As, Cu, Pb, Zn) related to sorption on newly formed hydrous ferric oxides, whereas Sb and Cd exhibited only limited attenuation.

  12. Global Regulator IscR Positively Contributes to Antimonite Resistance and Oxidation in Comamonas testosteroni S44

    PubMed Central

    Liu, Hongliang; Zhuang, Weiping; Zhang, Shengzhe; Rensing, Christopher; Huang, Jun; Li, Jie; Wang, Gejiao

    2015-01-01

    Antimonial compounds can be found as a toxic contaminant in the environment. Knowledge on mechanisms of microbial Sb oxidation and its role in microbial tolerance are limited. Previously, we found that Comamonas testosteroni S44 was resistant to multiple heavy metals and was able to oxidize the toxic antimonite [Sb(III)] to the much less toxic antimonate [Sb(V)]. In this study, transposon mutagenesis was performed in C. testosteroni S44 to isolate genes responsible for Sb(III) resistance and oxidation. An insertion mutation into iscR, which regulates genes involved in the biosynthesis of Fe-S clusters, generated a strain called iscR-280. This mutant strain was complemented with a plasmid carrying iscR to generate strain iscR-280C. Compared to the wild type S44 and iscR-280C, strain iscR-280 showed lower resistance to Sb(III) and a lower Sb(III) oxidation rate. Strain iscR-280 also showed lower resistance to As(III), Cd(II), Cu(II), and H2O2. In addition, intracellular γ-glutamylcysteine ligase (γ-GCL) activity and glutathione (GSH) content were decreased in the mutated strain iscR-280. Real-time RT-PCR and lacZ fusion expression assay indicated that transcription of iscR and iscS was induced by Sb(III). Results of electrophoretic mobility shift assay (EMSA) and bacterial one-hybrid (B1H) system demonstrated a positive interaction between IscR and its promoter region. The diverse defective phenotypes and various expression patterns suggest a role for IscR in contributing to multi-metal(loid)s resistance and Sb(III) oxidation via Fe-S cluster biogenesis and oxidative stress protection. Bacterial Sb(III) oxidation is a detoxification reaction. PMID:26734615

  13. Changes in vacuolation in the root apex cells of soybean seedlings in microgravity

    NASA Technical Reports Server (NTRS)

    Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Chapman, D. K.; Brown, C. S.

    2003-01-01

    Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.

    PubMed

    Heller, Annerose; Witt-Geiges, Tanja

    2013-01-01

    The mechanism of the diseases caused by the necrotroph plant pathogen Sclerotinia sclerotiorum is not well understood. To investigate the role of oxalic acid during infection high resolution, light-, scanning-, transmission electron microscopy and various histochemical staining methods were used. Our inoculation method allowed us to follow degradation of host plant tissue around single hyphae and to observe the reaction of host cells in direct contact with single invading hyphae. After penetration the outer epidermal cell wall matrix appeared degraded around subcuticular hyphae (12-24 hpi). Calcium oxalate crystals were detected in advanced (36-48 hpi) and late (72 hpi) infection stages, but not in early stages. In early infection stages, surprisingly, no toxic effect of oxalic acid eventually secreted by S. sclerotiorum was observed. As oxalic acid is a common metabolite in plants, we propose that attacked host cells are able to metabolize oxalic acid in the early infection stage and translocate it to their vacuoles where it is stored as calcium oxalate. The effects, observed on healthy tissue upon external application of oxalic acid to non-infected, living tissue and cell wall degradation of dead host cells starting at the inner side of the walls support this idea. The results indicate that oxalic acid concentrations in the early stage of infection stay below the toxic level. In plant and fungi oxalic acid/calcium oxalate plays an important role in calcium regulation. Oxalic acid likely could quench calcium ions released during cell wall breakdown to protect growing hyphae from toxic calcium concentrations in the infection area. As calcium antimonate-precipitates were found in vesicles of young hyphae, we propose that calcium is translocated to the older parts of hyphae and detoxified by building non-toxic, stable oxalate crystals. We propose an infection model where oxalic acid plays a detoxifying role in late infection stages.

  15. High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

    SciTech Connect

    Tian, Wei; Svoboda, Chris; Ochi, M.; Matsuda, M.; Cao, Huibo; Cheng, J. -G.; Sales, B. C.; Mandrus, D.; Arita, R.; Trivedi, Nandini; Yan, Jiaqiang

    2015-09-14

    We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu2O6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu2O6 crystallizes into the hexagonal lead antimonate (PbSb2O6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr2+ ions. SrRu2O6 is found to order at TN = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μB/Ru at room temperature and is along the crystallographic c axis in the G-type magnetic structure. We perform density functional calculations with constrained random-phase approximation (RPA) to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed TN .

  16. Residence of silver in mineral deposits of the Thunder Mountain caldera complex, Central Idaho, U.S.A.

    USGS Publications Warehouse

    Leonard, B.F.; Christian, R.P.

    1987-01-01

    Silver is an accessory element in gold, antimony, and tungsten deposits of the caldera complex. Most of the deposits are economically of low grade and genetically of xenothermal or epithermal character. Their gold- and silver-bearing minerals are usually disseminated, fine grained, and difficult to study. Sparsely disseminated pyrite and arsenoprite are common associates. Identified silver minerals are: native silver and electrum; the sulfides acanthite, argentite (the latter always inverted to acanthite), and members of the Silberkies group; the sulfosalts matildite, miargyrite, pyrargyrite, argentian tetrahedrite, and unnamed Ag-Sb-S and Ag-Fe-Sb-S minerals; the telluride hessite and the selenide naumannite; halides of the cerargyrite group; and the antimonate stetefeldtite. Suspected silver minerals include the sulfide uytenbogaardtite and the sulfosalts andorite, diaphorite, and polybasite. Electrum, acanthite, and argentian tetrahedrite are common, though nowhere abundant. The other silver minerals are rare. Silver is present as a minor element in the structure of some varieties of other minerals. These include arsenopyrite, chalcopyrite, chalcostibite, covelline, digenite, galena, sphalerite, and stibnite. The search for adventitious Ag in most of these minerals has been cursory. The results merely indicate that elemental silver is not confined to discrete silver minerals and is, therefore, an additional complication for the recovery of silver-bearing material from some deposits. Silver occurs cryptically in some plants of the region. At Red Mountain, for example, the ashed sapwood of Douglas-fir (Pseudotsuga menziesii) contains 2 to 300 ppm Ag. Silver in the ashed wood is roughly 100 times as abundant as it is in soil. The phenomenon, useful in biogeochemical exploration, deserves the attention of mineralogists. ?? 1987 Springer-Verlag.

  17. In vivo/In vitro immune responses to L. major isolates from patients with no clinical response to Glucantime

    PubMed Central

    Saberi, Sedigheh; Arjmand, Reza; Soleimanifard, Simindokht; Khamesipour, Ali; Hosseini, Seyed Mohsen; Salehi, Mansoor; Varshosaz, Jaleh; Palizban, Abbas Ali; Hejazi, Seyed Hossein

    2016-01-01

    Background: Leishmaniasis is a major health problem in some endemic areas of tropical and subtropical areas of the world. Interleukin-12 (IL-12) and interferon gamma (IFN-γ) are essential cytokines associated with initiation of Th1 response. The main objective of this study was to evaluate of the type of immune response to L. major isolates from patients with no clinical response to antimonite (Glucantime). Materials and Methods: This experimental study was carried out during 2013–2014. In the current study Leishmania major were isolated from 10 CL patients with a history of at least one course of treatment with Meglumine antimonate (Sb5). The isolates were used to evaluate in vitro and in vivo response to Sb5. J774 murine macrophage cell line was used for in vitro tests and Balb/c mice was used for in vivo studies. IL-12 gene expression was evaluated using Real-time PCR and IFN-γ serum level was quantified using ELISA technique. SPSS (version: 20), analysis of Covariance (ANCOVA) was used for statistical analysis. Results: PCR results confirmed that all 10 isolates were L. major. The mean of IL-12 gene expression in vitro, in vivo and IFN-γ serum levels (pg/ml) after 2 and 3 weeks treatment in vivo, increased significantly following the treatment with Glucantime in the two groups of Balb/c mice infected either with patients' isolates or standard L. major. No significant difference was seen between the patients' isolates and standard species. Conclusions: Although the L. major were isolated from patients with active lesion and no clinical response to Glucantime after at least one courses of Glucantime treatment but in vivo and in vitro immune response of L. major isolates showed no difference between the patients' isolates and standard L. major. PMID:27563636

  18. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    NASA Astrophysics Data System (ADS)

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-03-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.

  19. Antimony and arsenic biogeochemistry in the western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.; Featherstone, Alison M.; Lohrenz, Steven E.

    The subtropical to equatorial Atlantic Ocean provides a unique regime in which one can examine the biogeochemical cycles of antimony and arsenic. In particular, this region is strongly affected by inputs from the Amazon River and dust from North Africa at the surface, and horizontal transport at depth from high-latitude northern (e.g., North Atlantic Deep Water) and southern waters (e.g., Antarctic Bottom and Intermediate Waters). As a part of the 1996 Intergovernmental Oceanographic Commission's Contaminant Baseline Survey, data for dissolved As(III+V), As(III), mono- and dimethyl arsenic, Sb(III+V), Sb(III), and monomethyl antimony were obtained at six vertical profile stations and 44 sites along the 11,000 km transect from Montevideo, Uruguay, to Bridgetown, Barbados. The arsenic results were similar to those in other oceans, with moderate surface depletion, deep-water enrichment, a predominance of arsenate (>85% As(V)), and methylated arsenic species and As(III) in surface waters that are likely a result of phytoplankton conversions to mitigate arsenate "stress" (toxicity). Perhaps the most significant discovery in the arsenic results was the extremely low concentrations in the Amazon Plume (as low as 9.8 nmol/l) that appear to extend for considerable distances offshore in the equatorial region. The very low concentration of inorganic arsenic in the Amazon River (2.8 nmol/l; about half those in most rivers) is probably the result of intense iron oxyhydroxide scavenging. Dissolved antimony was also primarily in the pentavalent state (>95% antimonate), but Sb(III) and monomethyl antimony were only detected in surface waters and displayed no correlations with biotic tracers such as nutrients and chlorophyll a. Unlike As(III+V)'s nutrient-type vertical profiles, Sb(III+V) displayed surface maxima and decreased into the deep waters, exhibiting the behavior of a scavenged element with a strong atmospheric input. While surface water Sb had a slight correlation with

  20. Quantitative Antimony Speciation in Shooting-Range Soils by EXAFS Spectroscopy

    SciTech Connect

    Scheinost,A.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A.; Funke, H.; Johnson, C.

    2006-01-01

    The Sb speciation in soil samples from Swiss shooting ranges was determined using Sb K-edge X-ray absorption spectroscopy (XAS) and advanced statistical data analysis methods (iterative transformation factor analysis, ITFA). The XAS analysis was supported by a spectral data set of 13 Sb minerals and 4 sorption complexes. In spite of a high variability in geology, soil pH (3.1-7.5), Sb concentrations (1000-17,000 mg/kg) and shooting-range history, only two Sb species were identified. In the first species, Sb is surrounded solely by other Sb atoms at radial distances of 2.90, 3.35, 4.30 and 4.51 Angstroms, indicative of metallic Sb(0). While part of this Sb(0) may be hosted by unweathered bullet fragments consisting of PbSb alloy, Pb L{sub III}-edge XAS of the soil with the highest fraction (0.75) of Sb(0) showed no metallic Pb, but only Pb{sup 2+} bound to soil organic matter. This suggests a preferential oxidation of Pb in the alloy, driven by the higher standard reduction potential of Sb. In the second species, Sb is coordinated to 6 O-atoms at a distance of 1.98 Angstroms, indicative of Sb(V). This oxidation state is further supported by an edge energy of 30,496-30,497 eV for the soil samples with <10% Sb(0). Iron atoms at radial distances of 3.10 and 3.56 Angstroms from Sb atoms are in line with edge-sharing and bidentate corner-sharing linkages between Sb(O,OH)6 and Fe(O,OH)6 octahedra. While similar structural units exist in tripuhyite, the absence of Sb neighbors contradicts formation of this Fe antimonate. Hence the second species most likely consists of inner-sphere sorption complexes on Fe oxides, with edge and corner-sharing configuration occurring simultaneously. This pentavalent Sb species was present in all samples, suggesting that it is the prevailing species after weathering of metallic Sb(0) in oxic soils. No indication of Sb(III) was found.

  1. GEMAS: prediction of solid-solution phase partitioning coefficients (Kd) for oxoanions and boric acid in soils using mid-infrared diffuse reflectance spectroscopy.

    PubMed

    Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens

    2015-02-01

    The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2)  = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2)  = 0.62-0.79), compared with those from PSLR-DRIFT (R(2)  = 0.61-0.72) and MLR (R(2)  = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration.

  2. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    SciTech Connect

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  3. Platinum mineralization in the Kapalagulu Intrusion, western Tanzania

    NASA Astrophysics Data System (ADS)

    Wilhelmij, Harry R.; Cabri, Louis J.

    2016-03-01

    . Impersistent, stratiform PGE mineralized horizons occur within the MCSS harzburgite from which drill core samples were taken for platinum-group mineral (PGM) characterization from two drill holes. Where the PGE reefs reach the surface there is residual PGE mineralization within the laterite regolith from which drill core samples were taken from various laterite lithological units for PGM characterization. As the harzburgite PGE reefs contain significant concentrations of both sulfide and chromite (including chromitite seams) they resemble the PGE-rich chromitite seams of the Bushveld Complex rather than the PGE-bearing Main Sulfide Zone of the Great Dyke and Main Sulfide Layer of the Munni Munni Complex. The dominant Pd PGM in three PGE reef samples varies, ranging ( n = 164, relative wt%) from bismuthides (63 %), bismuthtellurides (19 %), and tellurides (6 %), to tellurides (39 %), bismuthtellurides (24 %), stannides (14 %), and alloys (13 %), and to antimon-arsenides (33 %), stannides (21 %), bismuthides (17 %), tellurides (13 %), and alloys (10 %). From 13.5 % to 21.0 % of the total Pd occurs as a solid solution in pentlandite. The three samples have similar Pt PGM modal distributions ( n = 172, relative wt%); the dominant Pt mineral is sperrylite (79, 58, and 47 %) followed by tellurides (15, 17, 21 %), alloys (2, 1, 1 %), and sulfides (2, 1, 0 %). Comparison of Pd/Pt ratios from assays to those calculated from minerals show that the data for the Pt and Pd PGM are very robust, confirming the concentration methodology and characterization. Study of samples from a shallow drill hole penetrating the laterite regolith shows that the primary Pd mineralization has not survived oxidation, is mainly dispersed, but some was reconstituted to form secondary minerals: cabriite, unnamed tellurides, a selenide, a Pd-Te-Hg mineral, alloys and Pd-bearing secondary sulfides (millerite and heazlewoodite). The primary Pt minerals are more resistant to oxidation and dissolution, especially

  4. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.

    PubMed

    Van Caneghem, Jo; Verbinnen, Bram; Cornelis, Geert; de Wijs, Joost; Mulder, Rob; Billen, Pieter; Vandecasteele, Carlo

    2016-08-01

    The leaching of Sb from waste-to-energy (WtE) bottom ash (BA) often exceeds the Dutch limit value of 0.32mgkg(-1) for recycling of BA in open construction applications. From the immobilization mechanisms described in the literature, it could be concluded that both Ca and Fe play an important role in the immobilization of Sb in WtE BA. Therefore, Ca and Fe containing compounds were added to the samples of the sand fraction of WtE BA, which in contrast to the granulate fraction is not recyclable to date, and the effect on the Sb leaching was studied by means of batch leaching tests. Results showed that addition of 0.5 and 2.5% CaO, 5% CaCl2, 2.5% Fe2(SO4)3 and 1% FeCl3 decreased the Sb leaching from 0.62±0.02mgkgDM(-1) to 0.20±0.02, 0.083±0.044, 0.25±0.01, 0.27±0.002 and 0.29±0.02mgkgDM(-1), respectively. Due to the increase in pH from 11.41 to 12.53 when 2.5% CaO was added, Pb and Zn leaching increased and exceeded the respective leaching limits. Addition of 5% CaCO3 had almost no effect on the Sb leaching, as evidenced by the resulting 0.53mgkgDM(-1) leaching concentration. This paper shows a complementary enhancement of the effect of Ca and Fe, by comparing the aforementioned Sb leaching results with those of WtE BA with combined addition of 2.5% CaO or 5% CaCl2 with 2.5% Fe2(SO4)3 or 1% FeCl3. These lab scale results suggest that formation of romeites with a high Ca content and formation of iron antimonate (tripuhyite) with a very low solubility are the main immobilization mechanisms of Sb in WtE BA. Besides the pure compounds and their mixtures, also addition of 10% of two Ca and Fe containing residues of the steel industry, hereafter referred to as R1 and R2, was effective in decreasing the Sb leaching from WtE BA below the Dutch limit value for reuse in open construction applications. To evaluate the long term effect of the additives, pilot plots of WtE BA with 10% of R1 and 5% and 10% of R2 were built and samples were submitted to leaching tests at