Science.gov

Sample records for antimony gluconate-induced dendritic

  1. Leishmania donovani Isolates with Antimony-Resistant but Not -Sensitive Phenotype Inhibit Sodium Antimony Gluconate-Induced Dendritic Cell Activation

    PubMed Central

    Singhal, Eshu; Bisht, Kamlesh Kumar; Singh, Alpana; Bhaumik, Suniti; Basu, Rajatava; Sen, Pradip; Roy, Syamal

    2010-01-01

    The inability of sodium antimony gluconate (SAG)-unresponsive kala-azar patients to clear Leishmania donovani (LD) infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs) typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (SbRLD) and antimony-sensitive (SbSLD) was compared in vitro. Unlike SbSLD, infection of DCs with SbRLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. SbRLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-κB pathways. In contrast, SbSLD failed to block activation of SAG (20 µg/ml)-induced PI3K/AKT pathway; which continued to stimulate NF-κB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with SbSLD also inhibited SAG (20 µg/ml)-induced activation of PI3K/AKT and NF-κB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 µg/ml. In contrast, SbRLD inhibited these SAG-induced events regardless of duration of DC exposure to SbRLD or dose of SAG. Interestingly, the inhibitory effects of isogenic SbSLD expressing ATP-binding cassette (ABC) transporter MRPA on SAG-induced leishmanicidal effects mimicked that of SbRLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-κB was found to transcriptionally regulate expression of murine γglutamylcysteine synthetase heavy-chain (mγGCShc) gene, presumably an important regulator of antimony resistance. Importantly, SbRLD but not SbSLD blocked SAG-induced mγGCS expression in DCs by preventing NF-κB binding to the mγGCShc promoter. Our

  2. Antimony

    Integrated Risk Information System (IRIS)

    Antimony ; CASRN 7440 - 36 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  3. Antimony Toxicity

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients) and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically. PMID:21318007

  4. Antimony trioxide

    Integrated Risk Information System (IRIS)

    Antimony trioxide ; CASRN 1309 - 64 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  5. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  6. Antimony: a flame fighter

    USGS Publications Warehouse

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    In the 11th century, the word antimonium was used by medieval scholar Constantinus Africanus, but antimony metal was not isolated until the 16th century by Vannoccio Biringuccio, an Italian metallurgist. In the early 18th century, chemist Jons Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  7. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  8. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  9. Oligosilanylated Antimony Compounds

    PubMed Central

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb–Sb bond energies, barriers of pyramidal inversion at Sb, and the conformational behavior of distibines provided insight for the understanding of the spectroscopic properties. PMID:25937691

  10. Antimony activities in copper mattes

    NASA Astrophysics Data System (ADS)

    Hino, M.; Toguri, J. M.

    1987-03-01

    A mass spectrometric technique combined with a double Knudsen cell was used to determine the antimony and copper activities in the Cu-Sb binary system at 1373 K and in the two-melt composition range of the Cu-S-Sb ternary system at 1423 K. The antimony and copper activities were calculated based on the intensity ration of the gaseous Sb and Cu species, over the unknown and known activity samples, respectively. γ{Sb/o} were found to be 1.1×10-2 in molten copper at 1373 K, and 1.8×10-2 and 0.44 in a copper-rich phase and in a matter phase, of the Cu-S-Sb ternary system at 1423 K, respectively. These values indicate, that antimony can be removed during the matte smelting and slagging stage of the copper smelting process. Interaction parameters of antimony in molten copper slagging stage of the copper smelting process. Interaction parameters of antimony in molten copper at 1423 K were calculated and found to be 10.7, -5.4, and 6.3 for ɛ{Sb/Sb} · ρSb Sb, and ɛ{Sb/S}, respectively.

  11. Hydrometallurgically treating antimony-bearing industrial wastes

    NASA Astrophysics Data System (ADS)

    Anderson, C. G.

    2001-01-01

    In many instances, by-products or wastes containing antimony are generated during metallurgical processes. Although these materials pose environmental, recycling, and marketing challenges worldwide, the use of antimony hydrometallurgical leaching principles and technologies may provide a remedy. This paper outlines techniques for treating antimony-containing wastes and offers examples of applications for those wastes and by-products.

  12. Extraction of antimony with tertiary amines.

    PubMed

    Alian, A; Sanad, W

    1967-06-01

    The extractability of antimony(III) and (V) with tridodecylamine from various aqueous solutions is reported. Extraction from nitric and hydrofluoric acid solutions is low, but extraction from sulphuric, hydrochloric and hydrobromic solutions is high. Antimony-(III) can be separated from antimony(V) in 7M nitric acid or 0.64M hydrobromic acid. The extraction of antimony from hydrochloric acid solutions in methanol, ethanol, and acetone-water mixtures is greater than from pure aqueous solutions of the same acidity. The elements from which antimony can be separated with tertiary amines are given.

  13. Mineral Resource of the Month: Antimony

    USGS Publications Warehouse

    Guberman, David E.

    2015-01-01

    Antimony is a lustrous silvery-white semimetal or metalloid. Archaeological and historical studies indicate that antimony and its mineral sulfides have been used by humans for at least six millennia. The alchemist Basil Valentine is sometimes credited with “discovering” the element; he described the extraction of metallic antimony from stibnite in his treatise “The Triumphal Chariot of Antimony,” published sometime between 1350 and 1600. In the early 18th century, Jöns Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  14. First principles calculation of two dimensional antimony and antimony arsenide

    SciTech Connect

    Pillai, Sharad Babu Narayan, Som; Jha, Prafulla K.; Dabhi, Shweta D.

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  15. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities. ...

  16. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities. ...

  17. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities. ...

  18. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities. ...

  19. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Antimony Subcategory § 421.140 Applicability: Description of the primary antimony... antimony at primary antimony facilities. ...

  20. Glutathione-Induced Conversion of Pentavalent Antimony to Trivalent Antimony in Meglumine Antimoniate

    PubMed Central

    Frézard, Frédéric; Demicheli, Cynthia; Ferreira, Claúdio S.; Costa, Michelle A. P.

    2001-01-01

    The standard treatment of human leishmaniases involves the use of pentavalent antimony [Sb(V)] compounds, including meglumine antimoniate. The mode of action of these compounds has not been fully elucidated. The possibility that Sb(III) is involved has been suggested; however, the biomolecule that may induce the conversion of Sb(V) to Sb(III) has not yet been identified. In the present study, we investigated both the ability of reduced glutathione (GSH) to promote the reduction of Sb(V) into Sb(III) in meglumine antimoniate and the effects of pH and temperature on this transformation. GSH did promote the reduction of Sb(V) into Sb(III) in a dose-dependent manner. When GSH and meglumine antimoniate were incubated together at a GSH/Sb molar ratio superior or equal to 5:1, all antimony was encountered in the reduced form, indicating a stoichiometry of 5:1 between GSH and Sb(V) in the reaction. The reaction between Sb(V) and GSH was favored at an acidic pH (pH 5) and an elevated temperature (37°C), conditions found within the phagolysosome, in which Leishmania resides. For instance, about 30% of the Sb(V) (concentration, 2mM) was converted to Sb(III) following incubation for 3 days with 10 mM GSH at pH 5 and 37°C. Our data support the hypothesis that Sb(V) would be converted by GSH, or a related thiol compound, to more toxic Sb(III) in the phagolysosome of macrophages. PMID:11181379

  1. Comparative histological and immunohistochemical changes of dry type cutaneous leishmaniasis after administration of meglumine antimoniate, imiquimod or combination therapy.

    PubMed

    Shamsi Meymandi, Simin; Javadi, Abdolreza; Dabiri, Shahriar; Shamsi Meymandi, Manzumeh; Nadji, Mehrdad

    2011-07-01

    This study compared histological and immunohistochemical changes of cutaneous leishmaniasis treated with meglumine antimoniate, imiquimod, and the combination of both therapies. Single blind clinicopathological studies of fifteen patients with old world cutaneous leishmaniasis in Kerman, Iran were included. A total of four patients received a combination of imiquimod (5% cream) and intra-lesional meglumine antimoniate weekly for four weeks. Monotherapy with imiquimod was given to seven patients and four patients were treated with meglumine antimoniate intralesionally. Histological confirmation was performed before and during therapy. Semi-quantitative histological parameters such as numbers of mixed inflammatory cells (cells/mm(2)) and percentages of Langerhans cells (CD1a+), T-cells (CD3+), B-cells (CD20+), and macrophages (CD68+) were calculated immunohistochemically in the dermis and adjacent epidermis. Topical imiquimod significantly reduced mean histiocytic cellular aggregation size (P<0.05). Meglumine antimoniate reduced parasite load and infected activated histiocytes in the dermis (P<0.05). Meglumine antimoniate therapy decreased epidermal CD3+ lymphocytes but increased them in the dermis, within the granulomas (P<0.05). During topical application of imiquimod a depletion of CD1a+ dendritic cells in the epidermis (P<0.05) and slight predominance of dendritic cells in the dermis were observed. Combined therapy and imiquimod monotherapy decreased CD68+ macrophages in the dermis (P<0.05). Meglumine antimoniate decreases parasite load with considerable effect on up-regulation of T-cells, which demonstrates that meglumine antimoniate works as parasitocidal and immunomodulator, which could be a first line of treatment. Imiquimod accentuates the host immune response and reduces granuloma size which could be effective immunomodulator for combination therapy. Monotherapy of imiquimod is less effective than the two other regimens in decreasing parasite load

  2. Geomicrobial interactions with arsenic and antimony

    USGS Publications Warehouse

    Oremland, Ronald S.

    2015-01-01

    Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.

  3. FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    PubMed Central

    Valete-Rosalino, Cláudia Maria; Araujo-Melo, Maria Helena; Bezerra, Débora Cristina de Oliveira; de Barcelos, Renata Oliveira; de Melo-Ferreira, Vanessa; Torraca, Tânia Salgado de Sousa; Martins, Ana Cristina da Costa; Moreira, João Soares; Vargas, Mirian Catherine Melgares; Braga, Frederico Pereira Bom; Salgueiro, Mariza de Matos; Saheki, Maurício Naoto; Schubach, Armando Oliveira

    2014-01-01

    Introduction: Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate. PMID:25229226

  4. First report on ototoxicity of meglumine antimoniate.

    PubMed

    Valete-Rosalino, Cláudia Maria; Araujo-Melo, Maria Helena; Bezerra, Débora Cristina de Oliveira; Barcelos, Renata Oliveira de; Melo-Ferreira, Vanessa de; Torraca, Tânia Salgado de Sousa; Martins, Ana Cristina da Costa; Moreira, João Soares; Vargas, Mirian Catherine Melgares; Braga, Frederico Pereira Bom; Salgueiro, Mariza de Matos; Saheki, Maurício Naoto; Schubach, Armando Oliveira

    2014-01-01

    Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate.

  5. Mineral resource of the month: antimony

    USGS Publications Warehouse

    ,

    2008-01-01

    The article describes the characteristics and industrial uses of antimony. Antimony, which is produced as a byproduct of mining other metals such as gold, lead or silver, is used in everything from flame retardants, batteries, ceramics and glass. It is also used in glass for television picture tubes, computer monitors, pigments and catalysts.

  6. Heteronuclear compounds of arsenic and antimony

    NASA Astrophysics Data System (ADS)

    Mauser, James E.

    1982-09-01

    Volatilization of secondary metals such as arsenic, antimony, and bismuth, during the smelting of copper ores, is important because of environmental and resource considerations. The Bureau of Mines, United States Department of the Interior, has been studying copper concentrate roasting in conjunction with the volatility of these minor constituents. Some unusual vaporization behavior initiated this supplemental paper which shows that when the mixed sulfides of arsenic and antimony are heated, the volatilization of arsenic is retarded and the volatilization of antimony increased. Mixed oxides of arsenic and antimony also exhibit exceptional volatilization behavior. These anomalous vaporization behaviors are attributed to the formation of heteronuclear compounds of arsenic and antimony, but the colligative properties of solutions may also be a factor.

  7. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this...

  8. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this...

  9. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Antimony test system. 862.3110 Section 862.3110....3110 Antimony test system. (a) Identification. An antimony test system is a device intended to measure antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this...

  10. Antimony and silicon environments in antimony silicate glasses

    SciTech Connect

    Mee, M.; Davies, B.C.; Orman, R.G.; Thomas, M.F.; Holland, D.

    2010-09-15

    Antimony silicate glasses, of general formula xSb{sub 2}O{sub 3}.(1-x)SiO{sub 2} (0.1{<=}x{<=}0.78), have been prepared by melt-quenching and their structures studied using {sup 29}Si MAS NMR spectroscopy, {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. Oxidation during melting gives rise to Sb{sup 5+} in concentrations, which increase linearly with x to give a value of {approx}10% when x=0.78. {sup 121}Sb Moessbauer spectra show Moessbauer shifts and quadrupole splittings consistent with Sb{sup 3+} in a [:SbO{sub 3}] trigonal pyramid, similar to that in crystalline Sb{sub 2}O{sub 3}. A broad band in the Raman spectrum at {approx}410 cm{sup -1} is due to the vibrations of such a unit. The dependence of the silicon Q{sup n} speciation on x can be interpreted by the formation of Sb-O-Sb links possibly to form rings of 4 [:SbO{sub 3}] units such as are found in valentinite. - Graphical abstract: Antimony silicate glasses have been shown to contain Sb{sup 3+} in [:SbO{sub 3}] trigonal pyramid units using {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. {sup 29}Si magic-angle-spinning NMR has shown silicon Q{sup n} speciation which can be interpreted as formation of rings of 4 [:SbO{sub 3}] units such as are found in valentinite.

  11. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  12. Antimony-doped graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-05-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts.

  13. Speciation of antimony in polyethylene terephthalate bottles

    SciTech Connect

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2009-12-18

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  14. Surface complexation of antimony on kaolinite.

    PubMed

    Rakshit, Sudipta; Sarkar, Dibyendu; Datta, Rupali

    2015-01-01

    Geochemical fate of antimony (Sb) - a similar oxyanion as arsenic (As) - in a variety of environment is largely unexplored. Kaolinite is an important, naturally occurring clay mineral in soils and aquifers and is known to control the fate of several contaminants via a multitude of geochemical processes, primarily adsorption. Here we report adsorption of antimony on kaolinite as a function of solution chemistry: initial antimony concentration, pH, ionic strength, and a competing anion. A surface complexation modeling (SCM) approach was undertaken to understand the potential mechanistic implications of sorption envelope data. In the SCM, a multicomponent additive approach, in which kaolinite is assumed to be a (1:1) mixture of quartz (≡SiOH) and gibbsite (≡AlOH), was tested. Results indicated that ionic strength has a minimal effect on antimony adsorption. For the lower initial antimony concentration (4.11 μM), the additive model with binuclear surface complexes on quartz and gibbsite showed a better fit at pH<6, but somewhat under predicted the experimental data above pH 6. At the higher initial antimony concentration (41.1 μM), the sorption envelope was of different shape than the lower load. The additive model, which considered binuclear surface complexes for quartz and gibbsite, resulted in over prediction of the adsorption data at pH>3.5. However, the additive model with binuclear surface complex on quartz and mononuclear surface complex on gibbsite showed an excellent fit of the data. Phosphate greatly influenced antimony adsorption on kaolinite at both low and high antimony loadings, indicating competition for available surface sites.

  15. Antimony: a modular model definition language.

    PubMed

    Smith, Lucian P; Bergmann, Frank T; Chandran, Deepak; Sauro, Herbert M

    2009-09-15

    Model exchange in systems and synthetic biology has been standardized for computers with the Systems Biology Markup Language (SBML) and CellML, but specialized software is needed for the generation of models in these formats. Text-based model definition languages allow researchers to create models simply, and then export them to a common exchange format. Modular languages allow researchers to create and combine complex models more easily. We saw a use for a modular text-based language, together with a translation library to allow other programs to read the models as well. The Antimony language provides a way for a researcher to use simple text statements to create, import, and combine biological models, allowing complex models to be built from simpler models, and provides a special syntax for the creation of modular genetic networks. The libAntimony library allows other software packages to import these models and convert them either to SBML or their own internal format. The Antimony language specification and the libAntimony library are available under a BSD license from http://antimony.sourceforge.net/.

  16. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    NASA Astrophysics Data System (ADS)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  17. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  18. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  19. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  20. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  1. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butanoic acid, antimony (3=) salt. 721... Substances § 721.1930 Butanoic acid, antimony (3=) salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as butanoic acid, antimony (3=) salt (PMN...

  2. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and P...

  3. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and P...

  4. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and P...

  5. 40 CFR 721.5547 - Antimony double oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony double oxide. 721.5547... Substances § 721.5547 Antimony double oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as antimony double oxide (PMNs P-95-677 and P...

  6. 40 CFR 721.10712 - Antimony tris(dialkyldithiocarbamate) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony tris(dialkyldithiocarbamate... Specific Chemical Substances § 721.10712 Antimony tris(dialkyldithiocarbamate) (generic). (a) Chemical... as antimony tris(dialkyldithiocarbamate) (PMN P-13-217) is subject to reporting under this section...

  7. 40 CFR 721.10713 - Antimony tris(dialkyldithiocarbamate) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Antimony tris(dialkyldithiocarbamate... Specific Chemical Substances § 721.10713 Antimony tris(dialkyldithiocarbamate) (generic). (a) Chemical... as antimony tris(dialkyldithiocarbamate) (PMN P-13-259) is subject to reporting under this section...

  8. Microcolumn sorption of antimony(III) chelate for antimony speciation studies

    NASA Astrophysics Data System (ADS)

    Garboś, Sławomir; Rzepecka, Monika; Bulska, Ewa; Hulanicki, Adam

    1999-05-01

    Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C 16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by L-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l -1 in comparison to 1.7 μg l -1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.

  9. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  10. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  11. Drug hypersensitivity syndrome induced by meglumine antimoniate.

    PubMed

    Jeddi, Fakhri; Caumes, Eric; Thellier, Marc; Jauréguiberry, Stéphane; Mazier, Dominique; Buffet, Pierre A

    2009-06-01

    We report a case of drug hypersensitivity syndrome (drug reaction with eosinophilia and systemic symptoms [DRESS]) induced by parenteral meglumine antimoniate (Glucantime) in a 40-year-old man who traveled to Bolivia and was treated for mucocutaneous leishmaniasis. Two weeks after starting therapy, the patient had fever, joint pain, a cutaneous eruption, and hypereosinophilia (1,358 cells/mm(3)). These symptoms resolved after drug withdrawal but reappeared upon reintroduction of the drug. Pentavalent antimonials should be definitively withdrawn in patients with hypereosinophilia > 1,000 cells/mm(3) accompanied by systemic manifestations consistent with DRESS.

  12. The Membrane Electrowinning Separation of Antimony from a Stibnite Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Guang; Yang, Sheng-Hai; Tang, Chao-Bo

    2010-06-01

    The main purpose of this study was to characterize and to extract antimony from a stibnite concentrate through electrowinning. This article reports an account of a study conducted on the optimization of the process parameters for antimony pentachloride circular leaching, purification, and electrowinning of antimony from antimony trichloride solution. The effect of electrowinning parameters, such as antimony and sodium chloride concentration in the catholyte, temperature, current density, polar distance, etc., on the voltage requirement and the current efficiency (CE) of antimony electrodeposition was explored. A maximum CE of more than 97 pct was attained with a catholyte composition of 70-g/L antimony, 25-g/L NaCl, 4.5-mol/L hydrogen ion concentration, with an anolyte composition of 40-g/L antimony trichloride at a temperature of 328 K (55 °C), a 4-cm polar distance, and a cathode current density of 200 A/m2. Under the optimized conditions, the CE was more than 97 pct, and a 99.98 pct antimony plate was obtained on the cathode. The chemical content analysis of the resulting anolyte was indicated to be 97 pct antimony pentachloride and 3 pct antimony trichloride, which could be recycled to leaching tank as the leaching agent.

  13. Thin-film antimony-antimony-oxide enzyme electrode for penicillin determination.

    PubMed

    Flanagan, M T; Carroll, N J

    1986-07-01

    A potentiometric penicillinase electrode is reported in which the base pH transducer is a thin-film antimony-antimony-oxide electrode deposited by vacuum evaporation. Several enzyme immobilization procedures have been examined and a crosslinked protein film found to be the most appropriate to this type of sensor. The use of an adjacent antimony-antimony-oxide track as a pseudoreference electrode was successfully demonstrated. The overall response was shown to be independent of the stirring rate above 100 rpm, but the kinetics of the response were found to depend markedly on the stirring rate. The intrinsic linear response range was 3 x 10(-4)M to 7 x 10(-3)M penicillin G. Linearizing transforms that extend the useful range were examined.

  14. Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways

    PubMed Central

    Li, Jingxin; Wang, Qian; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.” PMID:27342551

  15. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    USGS Publications Warehouse

    Li, Jingxin; Qian Wang,; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  16. Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg.

    PubMed

    Filella, Montserrat; Philippo, Simon; Belzile, Nelson; Chen, Yuwei; Quentel, François

    2009-12-01

    The processes leading to the attenuation of the antimony concentration in the water draining from the abandoned antimony mine in Goesdorf, Luxembourg, have been studied. Antimony has been mined in Goesdorf since Roman times from a stibnite-rich mesothermal vein system hosted in metasedimentary schist. The draining waters have pH values between 7 and 8 because the mineralization itself contains calcite and dolomite. This study combines the identification of minerals in the supergene zone with the application of bulk techniques (e.g., measurement of antimony in the waters of the adit and the creek draining the mine, sediment sequential extractions) over a period of five years. Antimony concentrations in the water that leaves the supergene zone are controlled by the dissolution of stibnite and the subsequent formation of Sb(III) oxides and sulphates. The relative proportions of the main secondary minerals can be qualitatively estimated as follows: 70% valentinite, 15% senarmontite and 12% sulphates (coquandite, klebelsbergite and peretaite). Further antimony attenuation along the adit and the creek that drain the mine waters is due partly to dilution, through mixing with waters that have not been in contact with the ore, and partly to sorption onto amorphous iron and manganese oxides present in the colluvial sediments.

  17. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  18. Arsenic and antimony transporters in eukaryotes.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  19. The Diffusion of Antimony of Alpha Iron.

    DTIC Science & Technology

    Diffusion coefficients of antimony in alpha iron were determined in the temperature range 700 to 900C using the residual activity method. Specimens...negligible effect on the diffusion of antomony in alpha iron . These results are discussed in relation to the phenomenon of temper brittleness in steels

  20. THE CRYSTAL STRUCTURE OF ANTIMONY (III) SULFOBROMIDE, SBSBR,

    DTIC Science & Technology

    ANTIMONY COMPOUNDS, *SULFUR COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), FOURIER ANALYSIS, MOLECULAR STRUCTURE, CRYSTAL LATTICES, CHEMICAL BONDS, X RAY DIFFRACTION.

  1. Resistance mechanisms to arsenicals and antimonials.

    PubMed

    Rosen, B P

    1995-01-01

    Salts and organic derivatives of arsenic and antimony are quite toxic. Living organisms have adapted to this toxicity by the evolution of resistance mechanisms. Both prokaryotic and eukaryotic cells develop resistance when exposed to arsenicals or antimonials. In the case of bacteria resistance is conferred by plasmid-encoded arsenical resistance (ars) operons. The genes and gene products of the ars operon of the clinically-isolated conjugative R-factor R773 have been identified and their mechanism of action elucidated. The operon encodes an ATP-driven pump that extrudes arsenite and antimonite from the cells. The lowering of their intracellular concentration results in resistance. Arsenate resistance results from the action of the plasmid-encoded arsenate reductase that reduces arsenate to arsenite, which is then pumped out of the cell.

  2. Gas phase antimony/magnesium/oxygen clusters

    SciTech Connect

    Deng, H.T.; Okada, Y.; Foltin, M.; Castleman, A.W. Jr. )

    1994-09-15

    Antimony/magnesium/oxygen clusters are produced by a gas aggregation source, in which a mixture of antimony and magnesium is vaporized and reacted with N[sub 2]O introduced in helium carrier gas. The resulting product distribution is detected by a time-of-flight mass spectrometer following ionization with a KrF excimer laser. Four types of cluster products are observed: Sb[sub x][sup +], Sb[sub x]Mg[sub y]O[sub z][sup +], Sb[sub x]Mg[sub y][sup +], and Mg[sub y]O[sub z][sup +]. The mass spectral intensity distributions display enhanced abundances for Mg[sub 2]O[sup +], Sb[sub 2[minus]4]Mg[sub 3]O[sup +], Sb[sub 1[minus]4]Mg[sub 2]O[sup +], Sb[sub 4]Mg[sup +], Sb[sub 5]Mg[sub 2][sup +], and Sb[sub 6]Mg[sub 2][sup +]. The experimental observation of Mg[sub 2]O[sup +] and Mg[sub 3]O[sup +] shows that the suboxides of group 2 are stable species, consistent with theoretical predictions. The binding abilities of antimony clusters to magnesium and magnesium oxides are found to be dependent on cluster size. When the number of antimony atoms in the clusters is smaller than 6, Sb[sub x]Mg[sub y]O[sub z][sup +] are the main products dominating the mass distribution the mass distribution. On the other hand, when the cluster size of Sb[sub x] is larger than 6, only Sb/Mg alloy clusters are observed. 52 refs., 3 figs., 1 tab.

  3. The heat capacity of solid antimony selenide

    NASA Astrophysics Data System (ADS)

    Pashinkin, A. S.; Malkova, A. S.; Mikhailova, M. S.

    2008-06-01

    The literature data on the heat capacity of solid antimony selenide over the temperature range 53 K- T m were analyzed. The heat capacity of Sb2Se3 was measured from 350 to 600 K on a DSM-2M calorimeter. The experimental data were used to calculate the dependence C p = a + bT + cT -2 and the thermodynamic functions of solid Sb2Se3 over the temperature range 298.15 700 K.

  4. Cobalt and antimony: genotoxicity and carcinogenicity.

    PubMed

    De Boeck, Marlies; Kirsch-Volders, Micheline; Lison, Dominique

    2003-12-10

    The purpose of this review is to summarise the data concerning genotoxicity and carcinogenicity of Co and Sb. Both metals have multiple industrial and/or therapeutical applications, depending on the considered species. Cobalt is used for the production of alloys and hard metal (cemented carbide), diamond polishing, drying agents, pigments and catalysts. Occupational exposure to cobalt may result in adverse health effects in different organs or tissues. Antimony trioxide is primarily used as a flame retardant in rubber, plastics, pigments, adhesives, textiles, and paper. Antimony potassium tartrate has been used worldwide as an anti-shistosomal drug. Pentavalent antimony compounds have been used for the treatment of leishmaniasis. Co(II) ions are genotoxic in vitro and in vivo, and carcinogenic in rodents. Co metal is genotoxic in vitro. Hard metal dust, of which occupational exposure is linked to an increased lung cancer risk, is proven to be genotoxic in vitro and in vivo. Possibly, production of active oxygen species and/or DNA repair inhibition are mechanisms involved. Given the recently provided proof for in vitro and in vivo genotoxic potential of hard metal dust, the mechanistic evidence of elevated production of active oxygen species and the epidemiological data on increased cancer risk, it may be advisable to consider the possibility of a new evaluation by IARC. Both trivalent and pentavalent antimony compounds are generally negative in non-mammalian genotoxicity tests, while mammalian test systems usually give positive results for Sb(III) and negative results for Sb(V) compounds. Assessment of the in vivo potential of Sb2O3 to induce chromosome aberrations (CA) gave conflicting results. Animal carcinogenicity data were concluded sufficient for Sb2O3 by IARC. Human carcinogenicity data is difficult to evaluate given the frequent co-exposure to arsenic. Possible mechanisms of action, including potential to produce active oxygen species and to interfere with

  5. [Removal of Antimony in Wastewater by Electrochemical Hydride Generation and the Recovery of Antimony].

    PubMed

    Chen, Jing-jing; Zhang, Guo-ping; Li, Hai-xia; Fu, Zhi-ping; Ouyang, Xiao-xue; Wu, Qiong

    2015-04-01

    An electrochemical hydride generation method was developed for the removal of antimony in wastewater. Hydrogen was generated in the electrolysis of water. Hydrogen reacted with Sb and formed stibine, which volatilized from the solution. Then, stibine was heated and decomposed to elemental Sb. Based on these, Sb in wastewater could be removed and recovered. The highest removal of Sb (76.1%) was achieved in acidic solution (pH = 4). The formation of stibine was proven to contribute most significantly (66.2%) to the removal of antimony in the solution, while the electro-deposition and adsorption also made a small contribution. In the treatment, Sb(V) must be pre-reduced to Sb(III) prior to the formation of stibine. Lead, graphite and tungsten were employed as the materials for cathode, and lead electrode was found most suitable for the removal of antimony.

  6. High Temperature Interactions of Antimony with Nickel

    SciTech Connect

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  7. Comparing polyaluminum chloride and ferric chloride for antimony removal.

    PubMed

    Kang, Meea; Kamei, Tasuku; Magara, Yasumoto

    2003-10-01

    Antimony has been one of the contaminants required to be regulated, however, only limited information has been collected to date regarding antimony removal by polyaluminium chloride (PACl) and ferric chloride (FC). Accordingly, the possible use of coagulation by PACl or FC for antimony removal was investigated. Jar tests were used to determine the effects of solution pH, coagulant dosage, and pre-chlorination on the removal of various antimony species. Although high-efficiency antimony removal by aluminum coagulation has been expected because antimony is similar to arsenic in that both antimony and arsenic are a kind of metalloid in group V of the periodic chart, this study indicated: (1) removal density (arsenic or antimony removed per mg coagulant) for antimony by PACl was about one forty-fifth as low as observed for As(V); (2) although the removal of both Sb(III) and Sb(V) by coagulation with FC was much higher than that of PACl, a high coagulant dose of 10.5mg of FeL(-1) at optimal pH of 5.0 was still not sufficient to meet the standard antimony level of 2 microg as SbL(-1) for drinking water when around 6 microg as SbL(-1) were initially present. Consequently, investigation of a more appropriate treatment process is necessary to develop economical Sb reduction; (3) although previous studies concluded that As(V) is more effectively removed than As(III), this study showed that the removal of Sb(III) by coagulation with FC was much more pronounced than that of Sb(V); (4) oxidation of Sb(III) with chlorine decreased the ability of FC to remove antimony. Accordingly, natural water containing Sb(III) under anoxic condition should be coagulated without pre-oxidation.

  8. The exposure to and health effects of antimony.

    PubMed

    Cooper, Ross G; Harrison, Adrian P

    2009-04-01

    This minireview describes the health effects of antimony exposure in the workplace and the environment. To collate information on the consequences of occupational and environmental exposure to antimony on physiological function and well-being. The criteria used in the current minireview for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability and Health. Articles were classified from an acute and chronic exposure and toxicity thrust. The proportion of utilised and non-utilised articles was tabulated. Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m(3) may exacerbate irritation of the eyes, skin, and lungs. Long-term inhalation of antimony can potentiate pneumoconiosis, altered electrocardiograms, stomach pain, diarrhea, vomiting, and stomach ulcers, results which were confirmed in laboratory animals. Although there were investigations of the effect of antimony in sudden infant death syndrome, current findings suggest no link. Antimony trioxide exposure is predominant in smelters. Mining and exposure via glass working, soldering, and brazing are also important. Antimony has some useful but undoubtedly harmful effects on health and well-being and measures need to be taken to prevent hazardous exposure of the like. Its biological monitoring in the workplace is essential.

  9. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Antimony test system. 862.3110 Section 862.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this...

  10. 21 CFR 862.3110 - Antimony test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimony test system. 862.3110 Section 862.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this...

  11. The exposure to and health effects of antimony

    PubMed Central

    Cooper, Ross G.; Harrison, Adrian P.

    2009-01-01

    Context: This minireview describes the health effects of antimony exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to antimony on physiological function and well-being. Methods: The criteria used in the current minireview for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability and Health. Articles were classified from an acute and chronic exposure and toxicity thrust. Results: The proportion of utilised and non-utilised articles was tabulated. Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m3 may exacerbate irritation of the eyes, skin, and lungs. Long-term inhalation of antimony can potentiate pneumoconiosis, altered electrocardiograms, stomach pain, diarrhea, vomiting, and stomach ulcers, results which were confirmed in laboratory animals. Although there were investigations of the effect of antimony in sudden infant death syndrome, current findings suggest no link. Antimony trioxide exposure is predominant in smelters. Mining and exposure via glass working, soldering, and brazing are also important. Conclusion: Antimony has some useful but undoubtedly harmful effects on health and well-being and measures need to be taken to prevent hazardous exposure of the like. Its biological monitoring in the workplace is essential. PMID:20165605

  12. Antimony Uptake Systems in the Protozoan Parasite Leishmania and Accumulation Differences in Antimony-Resistant Parasites

    PubMed Central

    Brochu, Christian; Wang, Jingyu; Roy, Gaétan; Messier, Nadine; Wang, Xiao-Yan; Saravia, Nancy G.; Ouellette, Marc

    2003-01-01

    The first line drug against leishmaniasis consists of pentavalent antimony [Sb(V)], but there is general belief that the active form of the metal is the trivalent form [Sb(III)]. In this study, we have quantified the accumulation of Sb(V) and Sb(III) in Leishmania by using inductively coupled plasma mass spectrometry. The accumulation was studied in three Leishmania species at various life stages, sensitive or resistant to antimony. Both Sb(III) and Sb(V) are accumulated in promastigote and amastigote parasites, but through competition experiments with arsenite, we found that the routes of entry of Sb(V) and Sb(III) are likely to differ in Leishmania. The level of accumulation of either Sb(III) or Sb(V), however, was not correlated with the susceptibility of wild-type Leishmania cells to antimony. This suggests that other factors may also be implicated in the mode of action of the drugs. In contrast to metal susceptibility, resistance to Sb(III) correlated well with decreased antimony accumulation. This phenotype was energy dependent and highlights the importance of transport systems in drug resistance of this protozoan parasite. PMID:14506011

  13. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of this subpart I are applicable to discharges from (a) mines that produce antimony ore and (b...

  14. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of this subpart I are applicable to discharges from (a) mines that produce antimony ore and (b...

  15. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of this subpart I are applicable to discharges from (a) mines that produce antimony ore and (b...

  16. Antimony diffusion in CdTe

    DOE PAGES

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...

    2017-02-08

    Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.

  17. Undercooling and crystallization behaviour of antimony droplets

    NASA Technical Reports Server (NTRS)

    Graves, J. A.; Perepezko, J. H.

    1986-01-01

    The droplet emulsion technique is presently used to examine the undercooling and crystallization behavior of pure antimony. Control of droplet size and applied cooling rate allowed maximum undercooling to be extended from 0.08 to 0.23 T(m). A droplet coating was produced by means of emulsification which appears to furnish a favorable crystallographic matching for effective nucleation catalysis of a metastable simple cubic structure. Thermal analysis shows the melting temperature of the single cubic phase to be about 625 C.

  18. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  19. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy.

    PubMed

    Roberts, W L; Rainey, P M

    1993-05-15

    Tri- and pentavalent antimony were quantified in Leishmania mexicana pifanoi amastigotes and promastigotes by atomic absorption spectroscopy with electrothermal atomization. Leishmania grown in axenic culture were treated with either potassium antimony tartrate [Sb(III)] or sodium stibogluconate [Sb(V)]. The parasites were collected, digested with nitric acid, and subjected to atomic absorption spectroscopy. The method was linear from 0 to 7 ng of antimony. The interassay coefficients of variation were 9.6 and 5.7% (N = 5) for 0.52 and 3.7-ng samples of leishmanial antimony, respectively. The limit of detection was 95 pg of antimony. The assay was used to characterize Sb(III) and Sb(V) influx and efflux kinetics. Influx rates were determined at antimony concentrations that produced a 50% inhibition of growth (IC50). The influx rates of Sb(V) into amastigotes and promastigotes were 4.8 and 12 pg/million cells/h, respectively, at 200 micrograms antimony/ml. The influx rate of Sb(III) into amastigotes was 41 pg/million cells/h at 20 micrograms antimony/ml. Influx of Sb(III) into promastigotes at 1 microgram antimony/ml was rapid and reached a plateau of 175 pg/million cells in 2 h. Efflux of Sb(III) and Sb(V) from amastigotes and promastigotes exhibited biphasic kinetics. The initial (alpha) half-life of Sb(V) efflux was less than 4 min and that of Sb(III) was 1-2 h. The apparent terminal (beta) half-lives ranged from 7 to 14 h.

  20. Dendritic spikes veto inhibition.

    PubMed

    Stuart, Greg J

    2012-09-06

    How inhibition regulates dendritic excitability is critical to an understanding of the way neurons integrate the many thousands of synaptic inputs they receive. In this issue of Neuron, Müller et al. (2012) show that inhibition blocks the generation of weak dendritic spikes, leaving strong dendritic spikes intact. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Disposition of antimony in rhesus monkeys infected with Leishmania braziliensis and treated with meglumine antimoniate.

    PubMed

    Friedrich, Karen; Vieira, Flávia A; Porrozzi, Renato; Marchevsky, Renato S; Miekeley, Norbert; Grimaldi, Gabriel; Paumgartten, Francisco J R

    2012-01-01

    Antimony (Sb) disposition and toxicity was evaluated in Leishmania braziliensis-infected monkeys (Macaca mulatta) treated with a 21-d course of low (LOW) or standard (STD) meglumine antimoniate (MA) dosage regimens (5 or 20 mg Sb(V)/kg body weight/d im). Antimony levels in biological matrices were determined by inductively coupled plasma mass spectrometry (ICPMS), while on-line ion chromatography coupled to ICPMS was used to separate and quantify Sb species in plasma. Nadir Sb levels rose steadily from 19.6 ± 4 and 65.1 ± 17.4 ng/g, 24 h after the first injection, up to 27.4 ± 5.8 and 95.7 ± 6.6 ng/g, 24 h after the 21st dose in LOW and SDT groups, respectively. Subsequently, Sb plasma levels gradually declined with a terminal elimination phase half-life of 35.8 d. Antimony speciation in plasma on posttreatment days 1-9 indicated that as total Sb levels declined, proportion of Sb(V) remained nearly constant (11-20%), while proportion of Sb(III) rose from 5% (d 1) to 50% (d 9). Plasma [Sb]/erythrocyte [Sb] ratio was >1 until 12 h after dosing and reversed thereafter. Tissue Sb concentrations (posttreatment days 55 and 95) were as follows: >1000 ng/g in thyroid, nails, liver, gall bladder and spleen; >200 and <1000 ng/g in lymph nodes, kidneys, adrenals, bones, skeletal muscles, heart and skin; and <200 ng/g in various brain structures, thymus, stomach, colon, pancreas. and teeth. Results from this study are therefore consistent with view that Sb(V) is reduced to Sb(III), the active form, within cells from where it is slowly eliminated. Localization of Sb active forms in the thyroid gland and liver and the pathophysiological consequences of marked Sb accumulation in these tissues warrant further studies.

  2. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate.

    PubMed

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint'Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-07-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 > 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen > bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.

  3. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    PubMed Central

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint’Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-01-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies. PMID:25075781

  4. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  5. Comparative trials of antimonial drugs in urinary schistosomiasis

    PubMed Central

    Davis, A.

    1968-01-01

    Chemotherapeutic trials in urinary schistosomiasis are described and discussed. Their design and conduct were based on recommended statistical techniques, now generally accepted as the most appropriate approach to the assessment of antischistosomal drugs. Randomization produced comparable host groups in whom multiple parasitic infection and radiological urinary tract damage were common. Treatment was with one of three antimonial compounds given at equivalent metallic dosage daily. Antimony sodium tartrate (AST) and antimony dimercaptosuccinate (TWSb) were equally efficient curatively but both produced many side-effects. Sodium antimonylgluconate (TSAG) was four-fifths as effective but tolerance was superior. Estimations of urinary antimony excretion showed that tissue retention of the metal was related to cure-rates and side-effects. It was concluded that none of the drugs were suitable for mass chemotherapy. More new non-toxic schistosomicides are urgently needed and for their assessment, the setting-up of multicentre trials, following international agreement on technical methods, is suggested. PMID:5302298

  6. Biogeochemistry of arsenic and antimony in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.

    2006-05-01

    The biogeochemical cycles of the metalloid elements arsenic and antimony were examined along a 15,000 km surface water transect and at 9 vertical profile stations in the western North Pacific Ocean as part of the 2002 IOC Contaminant Baseline Survey. Results show that the speciation of dissolved arsenic (As III, As V, and methylated As) was subtly controlled by the arsenate (AsV)/phosphate ratio. An additional fraction of presumed organic arsenic previously reported in coastal waters was also present (˜15% of the total As) in oceanic surface waters. Dissolved inorganic antimony displayed mildly scavenged behavior that was confirmed by correlations with aluminum, but atmospheric inputs that may be anthropogenic in origin also affected its concentrations. Monomethyl antimony, the predominant organic form of the element, behaved almost conservatively throughout the water column, radically changing the known biogeochemical cycle of antimony.

  7. Antimony and sleep-related disorders: NHANES 2005-2008.

    PubMed

    Scinicariello, Franco; Buser, Melanie C; Feroe, Aliya G; Attanasio, Roberta

    2017-07-01

    Antimony is used as a flame-retardant in textiles and plastics, in semiconductors, pewter, and as pigments in paints, lacquers, glass and pottery. Subacute or chronic antimony poisoning has been reported to cause sleeplessness. The prevalence of short sleep duration (<7h/night) has been reported to be 37.1% in the general US population, and obstructive sleep apnea (OSA) affects 12-28 million US adults. Insufficient sleep and OSA have been linked to the development of several chronic conditions including diabetes, cardiovascular disease, obesity and depression, conditions that pose serious public health threats. To investigate whether there is an association between antimony exposure and sleep-related disorders in the US adult population using the National Health and Nutrition Examination Survey (NHANES) 2005-2008. We performed multivariate logistic regression to analyze the association of urinary antimony with several sleep disorders, including insufficient sleep and OSA, in adult (ages 20 years and older) participants of NHANES 2005-2008 (n=2654). We found that participants with higher urinary antimony levels had higher odds to experience insufficient sleep (≤6h/night) (OR 1.73; 95%CI; 1.04, 2.91) as well as higher odds to have increased sleep onset latency (>30min/night). Furthermore, we found that higher urinary antimony levels in participants were associated with OSA (OR 1.57; 95%CI; 1.05, 2.34), sleep problems, and day-time sleepiness. In this study, we found that urinary antimony was associated with higher odds to have insufficient sleep and OSA. Because of the public health implications of sleep disorders, further studies, especially a prospective cohort study, are warranted to evaluate the association between antimony exposure and sleep-related disorders. Copyright © 2017. Published by Elsevier Inc.

  8. Characterization of the Antimonial Antileishmanial Agent Meglumine Antimonate (Glucantime)

    PubMed Central

    Roberts, William L.; McMurray, Walter J.; Rainey, Petrie M.

    1998-01-01

    Meglumine antimonate (Glucantime), a drug of choice for the treatment of leishmaniasis, is produced by the reaction of pentavalent antimony with N-methyl-d-glucamine, a carbohydrate derivative. We investigated the structure and composition of meglumine antimonate, which remain poorly understood, despite 50 years of use. Measurement of the antimony content of meglumine antimonate powder indicated a 1:1.37 molar ratio of antimony to N-methyl-d-glucamine. Osmolality measurements performed with meglumine antimonate solutions demonstrated an average of 1.43 antimony atoms per molecule of meglumine antimonate. The osmolality of a 1:10 dilution of stock meglumine antimonate increased by 45% over 8 days, suggesting hydrolysis to less complex species. A comparison of the proton nuclear magnetic resonance spectra of N-methyl-d-glucamine and meglumine antimonate revealed an increase in complexity in the latter but with all of the resonances of the former still being evident, consistent with the presence of coordination complexes between antimony and each of the N-methyl-d-glucamine hydroxyls. Fast atom bombardment and electrospray ionization mass spectrometry coupled with several derivatization procedures provided evidence that up to four N-methyl-d-glucamine hydroxyls are coordinated with each antimony. A series of oligomers were observed. The major moiety has a molecular mass of 507 atomic mass units and consists of NMG-Sb-NMG, where Sb represents antimony and NMG represents N-methyl-d-glucamine. Additional species containing up to four antimony atoms and five N-methyl-d-glucamine moieties and corresponding to the general form (NMG-Sb)n-NMG are also present. These results suggest that this agent is a complex mixture that exists in equilibrium in aqueous solution. PMID:9593130

  9. [Side effects of meglumine antimoniate in cutaneous leishmaniasis: 15 cases].

    PubMed

    Ezzine Sebai, Nadia; Mrabet, Nozha; Khaled, Aida; Zeglaoui, Faten; Kharfi, Monia; Fazaa, Bécima; Kamoun, Mohamed Ridha

    2010-01-01

    Leishmaniasis is wide spread parasitic disease considered to be endemic in 88 countries in both old and new world. The standard treatment remains Meglumine antimoniate. We study the side effects of systemic meglumine antimoniate in cutaneous leishmaniasis. We conduct a retrospective study covering 3-year period (2002- 2005). All medical reports of cutaneous leishmaniasis treated by systemic Meglumine antimoniate are reviewed. The study comprise 63 patients all treated by systemic meglumine antimoniate at the dose of 60 mg/kg/day for 10-15 days. Side effects were noted in 15 cases (12 females and 3 males). The subject's age range from 11 to 78 years. Stibio-intolerance (fever, rash, arthralgia, abdominal pain) was observed in 12 cases and stibiotoxicity in 3 cases: precordialgies 1 case, hyperamylasemia and increase liver enzyme: 1 case, pancytopenia, renal and hepatic failure leading to death: 1 case, skin eruption: 7 cases, pruritus and erythema in the site of injection: 5 cases, urticaria: 1 case. Meglumine antimoniate was stopped in 13 cases. Meglumine antimoniate is the generally recommended treatment of cutaneous leishmaniasis. In spite of the rarity of Glucantime's side effects, we recommend a careful survey especially in older patients.

  10. Reduced antimony accumulation in ARM58-overexpressing Leishmania infantum.

    PubMed

    Schäfer, Carola; Tejera Nevado, Paloma; Zander, Dorothea; Clos, Joachim

    2014-01-01

    Antimony-based drugs are still the mainstay of chemotherapy against Leishmania infections in many countries where the parasites are endemic. The efficacy of antimonials has been compromised by increasing numbers of resistant infections, the basis of which is not fully understood and likely involves multiple factors. By using a functional cloning strategy, we recently identified a novel antimony resistance marker, ARM58, from the parasite Leishmania braziliensis that protects the parasites against antimony-based antileishmanial compounds. Here we show that the Leishmania infantum homologue also confers resistance against antimony but not against other antileishmanial drugs and that its function depends critically on one of four conserved domains of unknown function. This critical domain requires at least two hydrophobic amino acids and is predicted to form a transmembrane structure. Overexpression of ARM58 in antimony-exposed parasites reduces the intracellular Sb accumulation by over 70%, indicating a role for ARM58 in Sb extrusion pathways, but without involvement of energy-dependent transporter proteins.

  11. Reduced Antimony Accumulation in ARM58-Overexpressing Leishmania infantum

    PubMed Central

    Schäfer, Carola; Tejera Nevado, Paloma; Zander, Dorothea

    2014-01-01

    Antimony-based drugs are still the mainstay of chemotherapy against Leishmania infections in many countries where the parasites are endemic. The efficacy of antimonials has been compromised by increasing numbers of resistant infections, the basis of which is not fully understood and likely involves multiple factors. By using a functional cloning strategy, we recently identified a novel antimony resistance marker, ARM58, from the parasite Leishmania braziliensis that protects the parasites against antimony-based antileishmanial compounds. Here we show that the Leishmania infantum homologue also confers resistance against antimony but not against other antileishmanial drugs and that its function depends critically on one of four conserved domains of unknown function. This critical domain requires at least two hydrophobic amino acids and is predicted to form a transmembrane structure. Overexpression of ARM58 in antimony-exposed parasites reduces the intracellular Sb accumulation by over 70%, indicating a role for ARM58 in Sb extrusion pathways, but without involvement of energy-dependent transporter proteins. PMID:24366738

  12. [Pollution characteristics of antimony, arsenic and mercury in human hair at Xikuangshan antimony mining area and Guiyang City, China].

    PubMed

    Liu, Bi-Jun; Wu, Feng-Chang; Deng, Qiu-Jing; Mo, Chang-Li; Zhu, Jing; Zeng, Li; Fu, Zhi-You; Li, Wen

    2009-03-15

    The concentration levels of antimony, arsenic and mercury in human hair collected from Xikuangshan antimony mining area and Guiyang City were determined by hydride generation-atomic fluorescence spectrometry after having been digested by nitric acid and perchloric acid. The contents of Sb, As and Hg are 15.9, 4.21, 1.79 microg/g in the samples from Xikuangshan antimony mining area and 0.532, 0.280, 0.338 microg/g in the samples from Guiyang City respectively. The contents of Sb, As and Hg in human hair of Xikuangshan antimony area are much higher than those of Guiyang City. The independent-samples t-test shows that there are no marked differences in the contents of Sb and As between male and female hair samples from both Xikuangshan antimony mining area and Guiyang City (p > 0.05), while Hg contents in male hair are apparently higher than those in female hair from Guiyang City (p < or = 0.05). There is positive correlation observed between As and Sb, as well as between As and Hg, while Sb is weakly correlated with Hg (p < or = 0.01). These results show that the heavy metals (Sb, As and Hg) in antimony mining area may significantly affect human health than in the un-mining areas.

  13. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

    PubMed

    Jiang, Xiuming; Wen, Shengping; Xiang, Guoqiang

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results. (c) 2009 Elsevier B.V. All rights reserved.

  14. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  15. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  16. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  17. Effects of antimony on the electrochemical behaviour of lead dioxide in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Boggio, A.; Maja, M.; Penazzi, N.

    The effect of antimony on the reduction of the two allotropic forms of lead dioxide in sulphuric acid electrolyte has been studied. The effects of antimony doping of the lead dioxide lattice and the effects of antimony contamination of the electrolyte have been considered separately. In the first case antimony increases the quantity of charge related to the reduction, and in the second it exerts a strong passivating influence on the lead dioxide electrodes.

  18. [Antimony and other heavy metals in metallic kitchen ware].

    PubMed

    Ishiwata, H; Sugita, T; Yoshihira, K

    1989-01-01

    The antimony in metallic kitchen ware was determined. The content of this element in metals used for the production or repairing of utensils, containers and packaging which come in contact with foods is regulated and should be less than 5% in under the Japanese Food Sanitation Law. In eight metallic samples, antimony was detected in solder used for the production of a can for green tea and an eggbeater. The contents were 1.30% in the former and 1.90% in the latter. No antimony was detected in solder used for a cookie cutter. A sample of solder used for electric work, not for food utensils, contained 0.81% of antimony. In other metallic utensils which come in contact with food such as aluminum foil, a brass spoon, a stainless steel fork, a wire netting, and an iron rock for vegetable color stabilizing, antimony was not detected at a 0.05% detection limit. A qualitative test using rhodamine B also showed positive results in only three solder samples. Lead concentrations in solder used for the kitchen ware were from 39.3 to 51.3%. These concentrations were higher than the limit (20%) of lead content by the Law. No cadmium was detected in any samples.

  19. Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant

    PubMed Central

    Brotherton, Marie-Christine; Bourassa, Sylvie; Leprohon, Philippe; Légaré, Danielle; Poirier, Guy G.; Droit, Arnaud; Ouellette, Marc

    2013-01-01

    Background Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial. Methods/Principal Findings In the present study, quantitative proteomics using stable isotope labelling of amino acids in cell culture (SILAC) and genome next generation sequencing were used in order to better characterize in vitro generated Leishmania infantum antimony resistant mutant (Sb2000.1). Using the proteomic method, 58 proteins were found to be differentially regulated in Sb2000.1. The ABC transporter MRPA (ABCC3), a known marker of antimony resistance, was observed for the first time in a proteomic screen. Furthermore, transfection of its gene conferred antimony resistance in wild-type cells. Next generation sequencing revealed aneuploidy for 8 chromosomes in Sb2000.1. Moreover, specific amplified regions derived from chromosomes 17 and 23 were observed in Sb2000.1 and a single nucleotide polymorphism (SNP) was detected in a protein kinase (LinJ.33.1810-E629K). Conclusion/Significance Our results suggest that differentially expressed proteins, chromosome number variations (CNVs), specific gene amplification and SNPs are important features of antimony resistance in Leishmania. PMID:24312377

  20. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of this...

  1. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of...

  2. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  3. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.

    PubMed

    Hu, Xingyun; Guo, Xuejun; He, Mengchang; Li, Sisi

    2016-06-01

    The pH-dependent leaching of antimony (Sb) and arsenic (As) from three typical Sb-bearing ores (Banxi, Muli and Tongkeng Antimony Mine) in China was assessed using a pH-static leaching experiment. The pH changes of the leached solutions and pH-dependent leaching of Sb and As occurred in different ways. For the Banxi and Muli Sb ores, alkaline conditions were more favorable for the release of Sb compared to neutral and acidic conditions, but the reverse was true for the pH-dependent release of As. For the Tongkeng Sb ore, unlike the previous two Sb-bearing ores, acidic conditions were more favorable for Sb release than neutral and alkaline conditions. The ores with lower Sb and As contents released higher percentages of their Sb and As after 16day leaching, suggesting that they are the largest potential sources of pollution. This work may provide key information on the geochemistry of Sb and As in the weathering zone. Copyright © 2016. Published by Elsevier B.V.

  4. Cellular/Dendritic Transition and Microstructure Evolution during Transient Directional Solidification of Pb-Sb Alloys

    NASA Astrophysics Data System (ADS)

    Rosa, Daniel M.; Spinelli, José E.; Ferreira, Ivaldo L.; Garcia, Amauri

    2008-09-01

    Recent studies of lead-antimony alloys, used for the production of positive electrodes of lead-acid batteries, have assessed the influences of both the microstructural morphology and of solute redistribution on the surface corrosion resistance in sulfuric acid solution, and have shown that cellular structures and dendritic structures have different responses on the corrosion rate of such alloys. The present article focuses on the search of adequate solidification conditions (alloy composition, cooling rate, and solidification velocity), which determine the occurrence of a microstructural transition from the cellular to the dendritic regime during the transient unidirectional solidification of hypoeutectic Pb-Sb alloys and on the microstructural evolution after such transition. The experimental data refers to the solidification of four hypoeutectic Pb-Sb alloys (2.2, 2.5, 3, and 6.6 wt pct Sb) and of the eutectic composition. The experimental results include transient metal/mold heat-transfer coefficients, liquidus isotherm velocity, cooling rate, and cellular and dendritic spacings. It was found that the cooling rate dependence on cellular and primary dendritic spacings is characterized by an experimental law of the form λ 1 = A{\\cdot}ifmmodeexpandafterdotelseexpandafter\\.fi{T}^{{{kern 1pt} {-0.55}}}, which seems to be independent of composition where A = 60 represents the alloys undergoing a cellular growth and A = 115 can describe the dendritic growth. The sudden change on such multiplier has occurred for the Pb 2.2 wt pct Sb alloy, i.e., for the cellular/dendritic transition.

  5. Uptake of antimony potassium tartrate by mouse liver slices

    PubMed Central

    Smith, S. E.

    1969-01-01

    1. The uptake of 124Sb-antimony potassium tartrate by isolated mouse liver slices has been measured and found to establish high tissue: medium concentration ratios. 2. Uptake was not influenced by oxygen lack, potassium, ouabain, dinitrophenol or sodium arsenate. It was inhibited by dimercaprol and reduced at low temperature. No evidence was found of counter-transport. After subcellular fractionation, most of the radioactivity was recovered from particulate fractions. 3. Kinetic studies of uptake from media containing different concentrations of antimony suggest that uptake is due partly to diffusion and partly to a saturable binding mechanism, probably involving chelation by non-diffusible thiol groups. Saturation studies suggest that only a small proportion of thiol groups bind antimony, the remainder undergoing catalytic oxidation. PMID:5348432

  6. Possible Links between Sickle Cell Crisis and Pentavalent Antimony

    PubMed Central

    Garcerant, Daniel; Rubiano, Luisa; Blanco, Victor; Martinez, Javier; Baker, Nancy C.; Craft, Noah

    2012-01-01

    For over 60 years, pentavalent antimony (Sbv) has been the first-line treatment of leishmaniasis. Sickle cell anemia is a disease caused by a defect in red blood cells, which among other things can cause vasooclusive crisis. We report the case of a 6-year-old child with leishmaniasis who during treatment with meglumine antimoniate developed a sickle cell crisis (SCC). No previous reports describing the relationship between antimonial drugs and sickle cell disease were found. Reviews of both the pathophysiology of SCC and the mechanism of action of Sbv revealed that a common pathway (glutathione) may have resulted in the SCC. ChemoText, a novel database created to predict chemical-protein-disease interactions, was used to perform a more expansive and systematic review that was able to support the association between glutathione, Sbv, and SCC. Although suggestive evidence to support the hypothesis, additional research at the bench would be needed to prove Sbv caused the SCC. PMID:22665619

  7. Development of Secondary Antimony Oxides from Metallurgical Slags for the Application in Plastic Products

    NASA Astrophysics Data System (ADS)

    Binz, Florian; Friedrich, Bernd

    Bottom-up process design is performed for an antimony white fuming approach from antimonyrich lead refining residues. Thermochemical modelling is used to evaluate process boundaries regarding temperature and slag composition allowing the fuming of qualified antimony white from mentioned residues. Fuming boundaries indicate that state of the art drosses are not suitable for fuming qualified antimony white. Slag conditioning by antimony enrichment of the slag has to be carried out in advance. Carbothermic reduction of lead oxide from named oxides is simulated and evaluated in lab scale to achieve optimal slag enrichment while avoiding antimony losses to the metal phase.

  8. [The corrosion behavior of antimony in a Ag-Sn-Cu-Sb amalgam].

    PubMed

    Weiland, M; Borrmann, S; Nossek, H

    1989-01-01

    Specimen of amalgam containing antimony were stored in solutions with different pH and different content of rhodanide until 21 days. The most antimony were solved within 24 hours. After 7 days an increase of the antimony concentration were not observed in physiological pH. An inhibition of corrosion by rhodanide existed only after incubation from 21 days. The quantity of antimony (10-21 micrograms) were analysed by mean of atomic absorption spectroscopy. It represent not a risk for the health. The natural presence of this element in environment and in human body is discussed to the analysed quantity of solved antimony.

  9. Antimony recycling in the United States in 2000

    USGS Publications Warehouse

    Carlin Jr., James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  10. Standardization of intralesional meglumine antimoniate treatment for cutaneous leishmaniasis.

    PubMed

    Duque, Maria Cristina de Oliveira; Vasconcellos, Érica de Camargo Ferreira E; Pimentel, Maria Inês Fernandes; Lyra, Marcelo Rosandiski; Pacheco, Sandro Javier Bedoya; Marzochi, Mauro Celio de Almeida; Rosalino, Cláudia Maria Valete; Schubach, Armando de Oliveira

    2016-01-01

    Intralesional treatment for cutaneous leishmaniasis has been applied for over 30 years at the Oswaldo Cruz Foundation, Rio de Janeiro, with good therapeutic results and without relevant systemic toxicity. Meglumine antimoniate was injected subcutaneously, using a long medium-caliber needle (for example, 30mm × 0.8mm); patients received 1-3 injections, with 15-day intervals. The technique is described in detail sufficient to enable replication. The treatment of cutaneous leishmaniasis with intralesional meglumine antimoniate is a simple, effective, and safe technique, which may be used in basic healthcare settings.

  11. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  12. Antimony Based III-V Thermophotovoltaic Devices

    SciTech Connect

    CA Wang

    2004-06-09

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  13. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS.

    PubMed

    Silva Junior, Mario M; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Victor; Ferreira, Sergio L C

    2017-04-01

    This paper proposes the use of a multisyringe flow injection analysis (MSFIA) system for inorganic antimony speciation analysis, trimethyl antimony(V) and determination of total antimony in soil samples using hydride generation atomic fluorescence spectrometry (HG-AFS). Total antimony has been determined after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. For determination of total inorganic antimony the sample is percolated in a mini-column containing the Dowex 50W-X8 resin for retention of the organic species of antimony. Antimony(III) is quantified in presence of 8-hydroxyquinoline as masking agent for antimony(V) after an extraction step of the organic antimony species using the also same mini-column. The trimethyl antimony(V) content is found by difference between total antimony and total inorganic antimony. By other hand, antimony(V) is quantified by difference between total inorganic antimony and antimony(III). The analytical determinations were performed using sodium tetrahydroborate as reducing agent. The optimization step was performed using two-level full factorial design and Doehlert matrix involving the factors: hydrochloric acid and sodium tetrahydroborate concentrations and sample flow rate. The optimized experimental conditions allow the antimony determination utilizing the external calibration technique with limits of detection and quantification of 0.9 and 3.1ngg(-1), respectively, and a precision expressed as relative standard deviation of 3.2% for an antimony solution of 5.0µgL(-1). The method accuracy was confirmed by analysis of the soil certified reference material furnished from Sigma-Aldrich RTC. Additionally, addition/recovery tests were performed employing synthetic solutions prepared using trimethyl antimony(V), antimony(III), antimony(V) and five soil samples. The antimony extraction step was performed in a closed system using hydrochloric acid, ultrasonic radiation and controlled temperature. The

  14. Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis

    PubMed Central

    Demicheli, Cynthia; Ochoa, Rosemary; da Silva, José B. B.; Falcão, Camila A. B.; Rossi-Bergmann, Bartira; de Melo, Alan L.; Sinisterra, Ruben D.; Frézard, Frédéric

    2004-01-01

    The need for daily parenteral administration represents one of the most serious limitations in the clinical use of pentavalent antimonials against leishmaniasis. In this work, we investigated the ability of β-cyclodextrin to enhance the oral absorption of antimony and to promote the oral efficacy of meglumine antimoniate against experimental cutaneous leishmaniasis. The occurrence of interactions between β-cyclodextrin and meglumine antimoniate was demonstrated through the changes induced in the spin lattice relaxation times of protons in both compounds. When free and complexed meglumine antimoniate were given orally to Swiss mice, plasma antimony levels were found to be about three times higher for the meglumine antimoniate-β-cyclodextrin complex than for the free drug. Antileishmanial efficacy was evaluated in BALB/c mice experimentally infected with Leishmania amazonensis. Animals treated daily with the complex (32 mg of Sb/kg of body weight) by the oral route developed significantly smaller lesions than those treated with meglumine antimoniate (120 mg of Sb/kg) and control animals (treated with saline). The effectiveness of the complex given orally was equivalent to that of meglumine antimoniate given intraperitoneally at a twofold-higher antimony dose. The antileishmanial efficacy of the complex was confirmed by the significantly lower parasite load in the lesions of treated animals than in saline-treated controls. This work reports for the first time the effectiveness of an oral formulation for pentavalent antimonials. PMID:14693525

  15. Dendrite Model Explained

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Angie Jackman, a NASA project manager in microgravity research, explains a model of a dendrite to a visitor to the NASA exhibit at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI. The model depicts microscopic dendrites that grow as molten metals solidify. NASA sponsored three experiments aboard the Space Shuttle that used the microgravity environment to study the formation of large (1 to 4 mm) dendrites without Earth's gravity disrupting their growth. Three advanced follow-on experiments, managed by Jackman, are being developed for the International Space Station (ISS).

  16. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  17. Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes

    NASA Astrophysics Data System (ADS)

    Xiao, Fa-xin; Cao, Dao; Mao, Jian-wei; Shen, Xiao-ni; Ren, Feng-zhang

    2013-01-01

    The role of trivalent antimony was investigated in removing As, Sb, and Bi impurities from a copper electrolyte. Purification experiments were carried out by adding a various concentrations of Sb(III) ions in a synthetic electrolyte containing 185 g/L sulfuric acid, 45 g/L Cu2+, 10 g/L As, and 0.5 g/L Bi under stirring at 65°C for 2 h. The electrolyte was filtered, and the structure, morphology and composition of the precipitate were analyzed by means of chemical analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and IR spectroscopy. The precipitate is composed of irregular lumps which are agglomerated by fine dendritic and floccus particles, and it mainly consists of As, Sb, Bi, and O elements. Characteristic bands in the IR spectra of the precipitate are As-OX (X=As, Sb, Bi), Sb-OY (Y=Sb, Bi), O-As-O, As-OH, Sb-OH, and O-H. The precipitate is a mixture of microcrystalline SbAsO4, (Sb,As)2O3, and amorphous phases. As, Sb, and Bi impurities are effectively removed from the copper electrolyte by Sb(III) ions attributing to these precipitates.

  18. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  19. Antimony(V) Adsorption by Variable-Charge Minerals

    DTIC Science & Technology

    2013-10-01

    Sb(OH)6, SO4, and PO4 adsorption by gibbsite , kaolinite , goethite, and birnessite...pKa triple layer surface complexation modeling of Sb(OH)6, SO4, and PO4 adsorption by gibbsite , kaolinite , goethite, and birnessite...Competition Surface Complexation Triple Layer Model Gibbsite Kaolinite Goethite Birnessite xviii Abstract Background. Antimony (Sb) is a

  20. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect

    Kathawa, J.; Fry, C.; Thoennessen, M.

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  1. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B

    PubMed Central

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure. PMID:26735920

  2. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    PubMed

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  3. Antimony tartrate corrosion inhibitive composition for coolant systems

    SciTech Connect

    Payerle, N.E.

    1987-08-11

    An automobile coolant concentrate is described comprising (a) a liquid polyhydric alcohol chosen from the group consisting of ethylene glycol, propylene glycol, diethylene glycol and mixtures thereof, and (b) corrosion inhibitors in a corrosion inhibitory amount with respect to corrosion of lead-containing solders, the corrosion inhibitors comprising (i) an alkali metal antimony tartrate, and (ii) an azole compound.

  4. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  5. Influence of Antimony-Halogen Additives on Flame Propagation.

    PubMed

    Babushok, Valeri I; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T

    2017-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).

  6. Antimony and arsenic biogeochemistry in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ren, Jing-Ling; Zhang, Xu-Zhou; Sun, You-Xu; Liu, Su-Mei; Huang, Daji; Zhang, Jing

    2016-02-01

    The biogeochemical cycles of the metalloid elements arsenic and antimony in the East China Sea (ECS), one of the most important marginal seas for western Pacific, were examined in May 2011. Dissolved inorganic arsenic (As(V) and As(III)) and antimony (Sb(V) and Sb(III)) species were determined by selective hydride generation-atomic fluorescence spectrometry (HG-AFS). Results show that total dissolved inorganic arsenic (TDIAs; [TDIAs]=[As(V)]+[As(III)]) were moderately depleted in the surface water and enriched in the deep water. Arsenite (As(III)) showed different vertical profiles with that of TDIAs, with significant surface enrichment in the middle shelf region where the concentrations of phosphate were extremely low. Speciation of dissolved arsenic was subtly controlled by the stoichiometric molar ratio of arsenate (As(V)) to phosphate. The average As(V)/P ratio for the ECS in spring 2011 was 10.8×10-3, which is higher than previous results and indicates the arsenate stress. The concentrations of total dissolved inorganic antimony (TDISb; [TDISb]=[Sb(V)]+[Sb(III)]) were high near the Changjiang Estuary and the coastal area of Hangzhou Bay and decreased moderately off the coast. TDISb displayed moderate conservative behavior in the ECS that confirms by the correlations with salinity and dissolved aluminum. Different with that of As(III), antimonite (Sb(III)) concentrations were extremely lower in the ECS, with relative higher concentration appeared at the bottom layer which indicates the contribution from sediment-water interface. A preliminary box model was established to estimate the water-mass balance and antimony budgets for the ECS. Compared with other areas in the world, the concentrations of dissolved inorganic arsenic and antimony in the ECS remain at natural levels.

  7. BioGeochemistry of antimony, Sources, Transfers, Impacts and Assessment

    NASA Astrophysics Data System (ADS)

    Le Roux, Gael; Pinelli, Eric; Hedde, Mickael; Guiresse, Maritxu; De Vleeschouwer, François; Silvestre, Jérôme; Enrico, Maxime; Gandois, Laure; Monna, Fabrice; Gers, Charles; Probst, Anne

    2013-04-01

    BioGeoSTIB is a project funded by ADEME (French Environmental Protection Agency). Its aim is to provide a better understanding of biogeochemical cycle disturbances of antimony by man. Specifically, it is focused on the atmosphere-soil-organism interfaces. Based on a multi-scale approach, the impact of antimony on organisms and organism communities and the factors of Sb dispersion in the environment aim to better characterized. This report gives the main results of 2 and 1 -2 years of research. Using peat bogs as environmental archives, we show that Sb contamination in soils date back to the beginning of the metallurgy. Atmospheric deposition of Sb largely increased by 100 times during the Industrial Revolution compared to natural levels (~0,001-0,01 mg m-2 an-1) estimated in the deepest peat layers. This disturbance in the antimony geochemical cycle modified its concentrations in soils. One main source of present Sb contamination is automotive traffic due to Sb in braking lines. This emerging contamination was characterized close to a roundabout. This additional source of Sb does not seem to impact soil fauna but Sb concentrations in soil solutions exceed 1 μg L-1. Genotoxicity tests have been performed on the model plant Vicia faba and show that antimony is genotoxic at its lowest concentrations and that there is a synergistic effect lead, a trace metal frequently found in association with antimony in the environment. It is a main issue to determine Sb critical loads in the environment but main identified lacks are thermodynamic data, which are not available yet, to model the behavior of Sb in soil solutions and the fact the antimony is always associated with other anthropogenic trace metals like lead. Critical thresholds of Sb have been determined for the first time based on genotoxicity experiment. Simulations show that these thresholds can be exceeded in the future, whereas present limits for invertebrates (US-EPA) are and will not be reached. However

  8. Antimony and arsenic biogeochemistry in the western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.; Featherstone, Alison M.; Lohrenz, Steven E.

    The subtropical to equatorial Atlantic Ocean provides a unique regime in which one can examine the biogeochemical cycles of antimony and arsenic. In particular, this region is strongly affected by inputs from the Amazon River and dust from North Africa at the surface, and horizontal transport at depth from high-latitude northern (e.g., North Atlantic Deep Water) and southern waters (e.g., Antarctic Bottom and Intermediate Waters). As a part of the 1996 Intergovernmental Oceanographic Commission's Contaminant Baseline Survey, data for dissolved As(III+V), As(III), mono- and dimethyl arsenic, Sb(III+V), Sb(III), and monomethyl antimony were obtained at six vertical profile stations and 44 sites along the 11,000 km transect from Montevideo, Uruguay, to Bridgetown, Barbados. The arsenic results were similar to those in other oceans, with moderate surface depletion, deep-water enrichment, a predominance of arsenate (>85% As(V)), and methylated arsenic species and As(III) in surface waters that are likely a result of phytoplankton conversions to mitigate arsenate "stress" (toxicity). Perhaps the most significant discovery in the arsenic results was the extremely low concentrations in the Amazon Plume (as low as 9.8 nmol/l) that appear to extend for considerable distances offshore in the equatorial region. The very low concentration of inorganic arsenic in the Amazon River (2.8 nmol/l; about half those in most rivers) is probably the result of intense iron oxyhydroxide scavenging. Dissolved antimony was also primarily in the pentavalent state (>95% antimonate), but Sb(III) and monomethyl antimony were only detected in surface waters and displayed no correlations with biotic tracers such as nutrients and chlorophyll a. Unlike As(III+V)'s nutrient-type vertical profiles, Sb(III+V) displayed surface maxima and decreased into the deep waters, exhibiting the behavior of a scavenged element with a strong atmospheric input. While surface water Sb had a slight correlation with

  9. Active properties of neuronal dendrites.

    PubMed

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  10. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  11. Identification of Antimony- and Arsenic-Oxidizing Bacteria Associated with Antimony Mine Tailing

    PubMed Central

    Hamamura, Natsuko; Fukushima, Koh; Itai, Takaaki

    2013-01-01

    Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with AsIII (10 mM) or SbIII (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with SbIII oxidation activities and a Sinorhizobium-related isolate capable of AsIII oxidation were obtained. The AsIII-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of AsIII or SbIII. However, no SbIII oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ. PMID:23666539

  12. Identification of antimony- and arsenic-oxidizing bacteria associated with antimony mine tailing.

    PubMed

    Hamamura, Natsuko; Fukushima, Koh; Itai, Takaaki

    2013-01-01

    Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with As(III) (10 mM) or Sb(III) (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with Sb(III) oxidation activities and a Sinorhizobium-related isolate capable of As(III) oxidation were obtained. The As(III)-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of As(III) or Sb(III). However, no Sb(III) oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ.

  13. Surface segregation of antimony in Fe-Si steel for grain oriented sheets

    NASA Astrophysics Data System (ADS)

    Jenko, M.; Vodopivec, F.; Praček, B.

    1993-06-01

    Surface segregation of antimony in a polycrystalline Fe-Si alloy with 0.049 wt% Sb was investigated by Auger electron spectroscopy in the temperature range from 450 to 800°C, and the segregation kinetics of antimony were described. From the surface segregation kinetics and its temperature dependence the bulk diffusion coefficient of antimony and the activation energy were determined in the temperature range from 500 to 600°C.

  14. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  15. Dendritic Release of Neurotransmitters.

    PubMed

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C; Rice, Margaret E

    2016-12-06

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.

  16. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  17. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  18. Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates

    PubMed Central

    Wyllie, Susan; Mandal, Goutam; Singh, Neeloo; Sundar, Shyam; Fairlamb, Alan H.; Chatterjee, Mitali

    2012-01-01

    Enhancement of the anti-oxidant metabolism of Leishmania parasites, dependent upon the unique dithiol trypanothione, has been implicated in laboratory-generated antimony resistance. Here, the role of the trypanothione-dependent anti-oxidant pathway is studied in antimony-resistant clinical isolates. Elevated levels of tryparedoxin and tryparedoxin peroxidase, key enzymes in hydroperoxide detoxification, were observed in antimonial resistant parasites resulting in an increased metabolism of peroxides. These data suggest that enhanced anti-oxidant defences may play significant in clinical resistance to antimonials. PMID:20553768

  19. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  20. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    DOE PAGES

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; ...

    2015-06-10

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  1. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  2. Oxidative stress in mice treated with antileishmanial meglumine antimoniate.

    PubMed

    Bento, D B; de Souza, B; Steckert, A V; Dias, R O; Leffa, D D; Moreno, S E; Petronilho, F; de Andrade, V M; Dal-Pizzol, F; Romão, P R

    2013-12-01

    In order to improve the understanding of the toxicity of pentavalent antimony (Sb(V)), we investigated the acute effects of meglumine antimoniate (MA) on the oxidative stress in heart, liver, kidney, spleen and brain tissue of mice. Levels of lipoperoxidation and protein carbonylation were measured to evaluate the oxidative status, whereas superoxide dismutase/catalase activity and glutathione levels were recorded to examine the antioxidative status. We observed that MA caused significant protein carbonylation in the heart, spleen and brain tissue. Increased lipoperoxidation was found in the liver and brain tissue. An imbalance between superoxide dismutase and catalase activities could be observed in heart, liver, spleen and brain tissue. Our results suggest that MA causes oxidative stress in several vital organs of mice. This indicates that the production of highly reactive oxygen and nitrogen species induced by MA might be involved in some of its toxic adverse effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. [Miltefosine versus meglumine antimoniate in the treatment of mucosal leishmaniasis].

    PubMed

    Garcia Bustos, Maria F; Barrio, Alejandra; Parodi, Cecilia; Beckar, Josefina; Moreno, Sonia; Basombrio, Miguel A

    2014-01-01

    The conventional treatment for tegumentary leishmaniasis is meglumine antimoniate, which needs parenteral administration, has increased therapeutic failure, and produces serious adverse effects, justifying the search for therapeutic alternatives. We report here the preliminary results of a phase II clinical trial in patients with mucosal leishmaniasis, in which the efficacy of oral miltefosine versus the antimonial compound was assessed. The evaluation of response to the treatment was performed by monitoring with nasopharyngeal video-fibroscopy, using a score of mucosal injury severity for patients at each follow-up point. We found no significant differences so far between the number of patients cured with miltefosine or conventional chemotherapy. The favorable results of this study suggest that miltefosine could be an effective and safe oral therapeutic alternative in the region.

  4. States of antimony and tin atoms in lead chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Zaiceva, A. V.; Kozhokar, M. Yu.; Seregin, P. P.

    2011-04-15

    It is shown by Moessbauer spectroscopy of the {sup 119}Sb({sup 119m}Sn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of {sup 119}Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U{sup -} centers. Electron exchange between the neutral and doubly ionized tin U{sup -} centers via the allowed band states is observed. The tin atoms formed after radioactive decay of {sup 119}Sb are electrically inactive in the anion and cation sublattices of PbTe.

  5. Selective synthesis of ternary copper-antimony sulfide nanocrystals.

    PubMed

    Xu, Dongying; Shen, Shuling; Zhang, Yejun; Gu, Hongwei; Wang, Qiangbin

    2013-11-18

    Ternary copper-antimony sulfide nanocrystals (CAS NCs) have attracted increasing attention in photovoltaics and photoelectric nanodevices due to their tunable band gaps in the near-IR regime. Although much progress in the synthesis of CAS NCs has been achieved, the selective synthesis of CAS NCs with controllable morphologies and compositions is preliminary: in particular, a facile method is still in demand. In this work, we have successfully selectively synthesized high-quality CAS NCs with diverse morphologies, compositions, and band gaps, including rectangular CuSbS2 nanosheets (NSs), trigonal-pyramidal Cu12Sb4S13 NCs, and rhombic Cu3SbS3 NSs, by cothermodecomposition of copper diethyldithiocarbamate trihydrate (Cu(Ddtc)2) and antimony diethyldithiocarbamate trihydrate (Sb(Ddtc)3). The direct and indirect band gaps of the obtained CAS NCs were systematically studied by performing Kubelka-Munk transformations of their solid-state diffuse reflectance spectra.

  6. [Premature birth after the use of pentavalent antimonial: case report].

    PubMed

    Silveira, Bruna Pinheiro; Araújo Sobrinho, José; Leite, Lacínia Freire; Sales, Maria das Neves Andrade; Gouveia, Maria do Socorro Araújo; Mathias, Renato Leal; Guedes Filho, Ricardo Amorim; Barbosa, Sônia Maria

    2003-01-01

    A case is reported of a 19-year-old woman, at week 24 of gestation, with visceral leishmaniosis. She was treated with meglumine antimoniate at a dose of 850 mg/day for 20 days. There occurred premature birth on day five of treatment and the neonate died one day after birth. Considering the importance of protozoiasis in our population and the rarity of the association with pregnancy, we resolved to publish the case.

  7. Transmission Potential of Antimony-Resistant Leishmania Field Isolates

    PubMed Central

    Seblova, Veronika; Oury, Bruno; Eddaikra, Naouel; Aït-Oudhia, Khatima; Pratlong, Francine; Gazanion, Elodie; Maia, Carla; Volf, Petr

    2014-01-01

    We studied the development of antimony-resistant Leishmania infantum in natural vectors Lutzomyia longipalpis and Phlebotomus perniciosus to ascertain the risk of parasite transmission by sand flies. All three resistant strains produced fully mature late-stage infections in sand flies; moreover, the resistant phenotype was maintained after the passage through the vector. These results highlight the risk of circulation of resistant Leishmania strains and question the use of human drugs for treatment of dogs as Leishmania reservoirs. PMID:25049256

  8. Kinetics and mechanism of photopromoted oxidative dissolution of antimony trioxide.

    PubMed

    Hu, Xingyun; Kong, Linghao; He, Mengchang

    2014-12-16

    Light (sunlight, ultraviolet, simulated sunlight) irradiation was used to initiate the dissolution of antimony trioxide (Sb2O3). Dissolution rate of Sb2O3 was accelerated and dissolved trivalent antimony (Sb(III)) was oxidized in the irradiation of light. The photopromoted oxidative dissolution mechanism of Sb2O3 was studied through experiments investigating the effects of pH, free radicals scavengers, dissolved oxygen removal and Sb2O3 dosage on the release rate of antimony from Sb2O3 under simulated sunlight irradiation. The key oxidative components were hydroxyl free radicals, photogenerated holes and superoxide free radicals; their contribution ratios were roughly estimated. In addition, a conceptual model of the photocatalytic oxidation dissolution of Sb2O3 was proposed. The overall pH-dependent dissolution rate of Sb2O3 and the oxidation of Sb(III) under light irradiation were expressed by r = 0.08 ·[OH(-)](0.63) and rox = 0.10 ·[OH(-)](0.79). The present study on the mechanism of the photo-oxidation dissolution of Sb2O3 could help clarify the geochemical cycle and fate of Sb in the environment.

  9. Thermoelectric properties of bismuth-antimony thin films

    SciTech Connect

    Treffny, J.; Jayadev, T.S.

    1980-07-01

    Thermoelectrics have a wide range of potential applications in the temperature range of 0/sup 0/ to 100/sup 0/C. In an effort to enhance the feasibility of thermoelectrics, we have begun investigation of potentially cheaper materials and cheaper techniques for thermoelectrics. Two features of bismuth and antimony have influenced our work. First, Horst and Williams have reported quite respectable figure of merit values in bulk single crystals of bismuth-antimony, up to 2.5 x 10/sup -3/ at room temperature. Second, bismuth and antimony are an order of magnitude cheaper in cost compared to selenium and tellurium, making this binary alloy a natural candidate to reduce the cost of thermoelectric devices. Our avenue of approach involves a simplification of the fabrication process using an established technique of solid-state electronics: thin-film deposition. We have recently begun to investigate the extent to which the favorable properties of bulk Bi-Sb are preserved in thin films. Some of the preliminary data coming out of this ongoing investigation are reported.

  10. Behaviour of Antimony and Bismuth in Copper Electrorefining Circuits

    SciTech Connect

    Beauchemin,S.; Chen, T.; Dutrizac, J.

    2008-01-01

    Antimony- and bismuth-rich copper anodes, anode slimes and decopperized anode slimes from industrial copper electrorefineries were studied mineralogically. Antimony in the anodes occurs mainly as Cu-Pb-As-Sb-Bi oxide inclusions along the copper grain boundaries; bismuth is mainly present as Cu-Pb-As-Sb-Bi oxide, Cu-Bi-As oxide, Cu-Pb-As-Bi oxide and Cu-Bi oxide inclusions. Sb and Bi partly dissolve during electrorefining, but extensively reprecipitate as As-Sb oxide, As-Sb-Bi oxide and SbAsO4. The presence of As results in the precipitation of essentially all the Bi as BiAsO4. The decopperizing process dissolves much of the Sb and Bi, although the majority of the BiAsO4 phase remains unaffected. Subsequently, some of the dissolved Sb and Bi reprecipitates as various oxide, sulphate and arsenate species. X-ray absorption near-edge structure (XANES) analyses suggest about 70% of the antimony in the anode slimes is present in the pentavalent oxidation state. The XANES analyses indicate that most of the Bi in all the slimes samples is present in the trivalent oxidation state.

  11. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  12. Molecular mechanisms of dendrite morphogenesis

    PubMed Central

    Arikkath, Jyothi

    2012-01-01

    Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field. PMID:23293584

  13. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching

    PubMed Central

    Zhou, Yingying; Deng, Renjian

    2017-01-01

    We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149–420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small. PMID:28804669

  14. Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS).

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang

    2009-09-01

    Antimony occurs widely in the environment as a result of natural processes and human activity. Although antimony is similar to arsenic in chemical properties and toxicity, and a pollutant of priority interest to the USEPA and the EU, its environmental behaviors, control techniques, and even solution chemistry, are yet barely touched. In this study, antimony removal from drinking water with coagulation-flocculation-sedimentation (CFS) is comprehensively investigated with respect to the dependence of both Sb(III) and Sb(V) removal on the initial contaminant-loading level, coagulant type and dosage, pH and interfering ions. The optimum pH for Sb(V) removal with ferric chloride (FC) was observed at pH 4.5-5.5, and continuously reduced with further pH increase. Over a broad pH range from 4.0 to 10.0, effective Sb(III) removal with FC was obtained. Contrary to the effective Sb removal with FC, the degree of both Sb(III) and Sb(V) removal with aluminum sulfate (AS) was very low, indicating the impracticability of AS application for antimony removal. The presence of phosphate and humic acid (HA) markedly impeded Sb(V) removal, while exhibited insignificant effect on Sb(III) removal. The effects of coagulant type, Sb species and pH are more pronounced than the effects of coagulant dose and initial pollutant concentration. After preliminarily excluding the possibility of precipitation and the predominance of coprecipitation, the adsorption mechanism is used to rationalize and simulate Sb/FC coagulation with good result by incorporating diffuse-layer model (DLM).

  15. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  16. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats

    SciTech Connect

    Groth, D.H.; Stettler, L.E.; Burg, J.R.; Busey, W.M.; Grant, G.C.; Wong, L.

    1986-01-01

    This study was initiated because of a suspected increase in incidence of lung cancer in antimony smelter workers in England. Three groups of 8-mo-old Wistar-derived rats (90 males and 90 females per group) were exposed by inhalation to either Sb/sub 2/O/sub 3/ (time-weighted average (TWA) 45 mg/m/sup 3/), Sb ore concentrate (TWA 36 + 40 mg/m/sup 3/), or filtered air (controls) for 7 h/d, 5 d/wk, for up to 52 wk and sacrificed 20 wk after terminating exposures. Serial sacrifices (5 rats/sex/group) were performed at 6, 9, and 12 mo. Autopsies and histopathological examinations were performed on all animals. The dusts and animals tissues were analyzed for Sb, arsenic, and other inorganic elements by atomic absorption and proton-induced X-ray emissions methods. The most significant findings were the presence of lung neoplasms in 27% of females exposed to Sb/sub 2/O/sub 3/ and 25% of females exposed to Sb ore concentrate. None of the male rats in any group or the female controls developed lung neoplasms. There were no significant differences in incidences of cancer of other organs between exposed and control rats. These results were compared with other published results, including an animal inhalation study with Sb/sub 2/O/sub 3/ in which lung tumors were also induced. Higher concentrations of arsenic were found in tissues from female rats than from male rats. For example, arsenic levels in blood of control males, control females, Sb/sub 2/O/sub 3/ males, Sb/sub 2/O/sub 3/ females, Sb ore males, and Sb ore females were 60, 123, 115, 230, 71, and 165 ..mu..g arsenic/g dry blood, respectively, 9 mo after initiating exposures.

  17. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China.

    PubMed

    Liu, Faye; Le, X Chris; McKnight-Whitford, Anthony; Xia, Yunlong; Wu, Fengchang; Elswick, Erika; Johnson, Claudia C; Zhu, Chen

    2010-10-01

    Water samples from Xikuangshan (China), the world largest antimony (Sb) mine with a Sb mining and smelting history of more than 200 years, were analyzed. These water samples ranged from stream water in the vicinity of the mining and smelting area that received seepage from ore residues to the underground mine-pit drainage. The concentrations of total Sb, Sb (III) and Sb (V) of the samples were determined by HPLC-ICP-MS. In addition, water pH and concentrations of major cations and anions were analyzed. All 18 samples demonstrated total Sb concentrations with ppm levels from 0.33 ppm to 11.4 ppm, which is two to three orders of magnitude higher compared to the typical concentration of dissolved Sb in unpolluted rivers (less than 1 ppb). This is probably the first time that such high Sb contents have been documented with complete environmental information. Distribution of total Sb and Sb species was investigated, taking into account the respective local environment (in the mining area or close to the smelter, etc.). Sb (V) was the predominant valence in all 18 samples. Only trace levels of Sb (III) were detected in 4 of the 18 samples. Geochemical speciation modeling showed the dominant species was Sb(OH)(6)(-). It is also probably the first time that such high Sb contents have been documented in the natural environment with Sb speciation distribution information. Several potential oxidation pathways are also discussed that might have facilitated the oxidation of Sb (III) in the natural environment. Signs of intoxication were observed among local mine workers with extensive exposure to different forms of Sb for a long period of time.

  18. Flavihumibacter stibioxidans sp. nov., an antimony-oxidizing bacterium isolated from antimony mine soil.

    PubMed

    Han, Yushan; Zhang, Fujun; Wang, Qian; Zheng, Shixue; Guo, Wei; Feng, Liang; Wang, Gejiao

    2016-11-01

    A Gram-stain-positive, strictly aerobic, non-motile and rod-shaped bacterial strain, designated YS-17T, was isolated from soil in the Lengshuijiang antimony mine, Hunan Province, China. Comparative 16S rRNA gene sequencing analysis clustered it with Flavihumibacter strains, and strain YS-17T was most closely related to Flavihumibacter cheonanensis WS16T (97.2 % similarity), Flavihumibacter petaseus T41T (96.6 %) and Flavihumibacter solisilvae 3-3T (96.5 %). The level of DNA-DNA relatedness between strain YS-17T and F. cheonanensis JCM 19322T was 35.5±0.1 % (n=2). The major respiratory quinone of strain YS-17T was menaquinone-7 and the major polar lipids were phosphatidylethanolamine, two unidentified lipids, two unidentified amino lipids and phospholipid. The major fatty acids (≥5 %) were iso-C15 : 0, iso-C15 : 1 G, unknown ECL 13.565, iso-C17 : 0 3-OH, C15 : 0, C16 : 1ω5c and anteiso-C15 : 0. The DNA G+C content was 47.8 mol%. Compared with other Flavihumibacter strains, strain YS-17T showed major biophysical and biochemical differences, with the ability to hydrolyse gelatin and to assimilate salicin and l-proline. The results demonstrated that strain YS-17T belongs to the genus Flavihumibacter and represents a novel species, for which the name Flavihumibacter stibioxidans sp. nov. is proposed. The type strain is YS-17T (=CCTCC AB 2016053T=KCTC 52205T).

  19. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China.

    PubMed

    Wei, Chaoyang; Deng, Qiujing; Wu, Fengchang; Fu, Ziyou; Xu, Libin

    2011-12-01

    Arsenic (As), antimony (Sb), and bismuth (Bi) are metalloids that share similar chemical properties, the objective of this study was to characterize the uptake and accumulation of these metalloids by plants colonized on heavy contaminated sites in an old Sb mine. Sixty-five plant samples from seven species as well as the associated soil samples were collected at ten sites of Xikuangshan (XKS), Hunan province, China. Concentrations of As, Sb, and Bi in plants and soils were measured. As, Sb, and Bi were found to be evidently elevated due to the long history and intensive mining and smelting activities; the respective ranges for the levels of As, Sb, and Bi at the sites were 40.02-400.2 mg kg(-1) As, 610-54,221 mg kg(-1) Sb, and n.d. to 1,672 mg kg(-1) Bi. No correlation was found between As and Sb at the sites, while Bi was found to be positively correlated with As whereas negative with Sb at the sites. In general, the contents in the plants in XKS were in the order of As > Sb > Bi, and the contents of As was positively correlated with Sb and Bi in plants. The highest contents of As and Sb recorded was 607.8 mg kg(-1) As in Pteris vittata and 90.98 mg kg(-1) Sb in Hippochcaete ramosissima, while the highest Bi content as 2.877 mg kg(-1) Bi was measured in Buddleja davidii. Bioconcentration factors defined as the ratios of metalloids in shoots of plants to those in soils for various plants were lower than 1. The results showed plants colonized at the heavy contaminated sites in XKS had great tolerance to As, Sb, and Bi, and demonstrated similarities in plant uptake and accumulation of these three elements.

  20. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    PubMed

    Westerhoff, Paul; Prapaipong, Panjai; Shock, Everett; Hillaireau, Alice

    2008-02-01

    Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small

  1. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    PubMed

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Assessment of Industrial Antimony Exposure and Immunologic Function for Workers in Taiwan

    PubMed Central

    Wu, Chin-Ching; Chen, Yi-Chun

    2017-01-01

    This study investigated antimony exposure among employees in industries in Taiwan and evaluated whether their immunologic markers were associated with antimony exposure. We recruited 91 male workers and 42 male office administrators from 2 glass manufacturing plants, 1 antimony trioxide manufacturing plants, and 2 engineering plastic manufacturing plants. Air samples were collected at worksites and administrative offices, and each participant provided specimens of urine, blood, and hair to assay antimony levels. We also determined white blood cells, lymphocyte, and monocyte, IgA, IgE, and IgG in blood specimens. The mean antimony concentration in the air measured at worksites was much higher in the antimony trioxide plant (2.51 ± 0.57 mg/m3) than in plastic plants (0.21 ± 0.06 mg/m3) and glass plants (0.14 ± 0.01 mg/m3). Antimony levels in blood, urine, and hair measured for participants were correlated with worksites and were higher in workers than in administrators. The mean serum IgG, IgA, and IgE levels were lower in workers than in administrators (p < 0.001). Serum IgA and IgE levels in participants were negatively associated with antimony levels in air samples of workplaces, and in blood, urine, and hairs of participants. Serum IgG and IgE of all participants were also negatively associated with antimony levels in their hairs. In conclusion, the antimony exposure is greater for workers employed in the five industrial plants than for administrators. This study suggests serum IgG, IgA, and IgE levels are negatively associated with antimony exposure. PMID:28672853

  3. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    PubMed

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  4. Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony

    PubMed Central

    Mandal, G.; Wyllie, S.; Singh, N.; Sundar, S.; Fairlamb, A.H.; Chatterjee, M.

    2012-01-01

    Summary The current trend of antimony (Sb) unresponsiveness in the Indian subcontinent is a major impediment to effective chemotherapy of visceral leishmaniasis (VL). Although contributory mechanisms studied in laboratory raised Sb-R parasites include an up regulation of drug efflux pumps and increased thiols, their role in clinical isolates is not yet substantiated. Accordingly, our objectives were to study the contributory role of thiols in generation of Sb unresponsiveness in clinical isolates. Promastigotes were isolated from VL patients who were either Sb responsive (n = 2) or unresponsive (n = 3). Levels of thiols as measured by HPLC and flow cytometry showed higher basal levels of thiols and a faster rate of thiol regeneration in Sb unresponsive strains as compared with sensitive strains. The effects of antimony on generation of reactive oxygen species (ROS) in normal and thiol depleted conditions as also their H2O2 scavenging activity indicated that in unresponsive parasites, Sb mediated ROS generation was curtailed which could be reversed by depletion of thiols and was accompanied by a higher H2O2 scavenging activity. Higher levels of thiols in Sb unresponsive field isolates from patients with VL protects parasites from Sb mediated oxidative stress, thereby contributing to the antimony resistance phenotype. PMID:17612420

  5. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite.

    PubMed

    Gomes, Marcela Luísa; DeFreitas-Silva, Gilson; dos Reis, Priscila Gomes; Melo, Maria Norma; Frézard, Frédéric; Demicheli, Cynthia; Idemori, Ynara Marina

    2015-07-01

    Two bismuth(III) porphyrins-5,10,15,20-tetrakis(phenyl)porphyrinatobismuth(III) nitrate, [Bi(III)(TPP)]NO3, and the unprecedent 5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatobismuth(III) nitrate, [Bi(III)(T4CMPP)]NO3, and two unprecedented antimony(V) porphyrins dichlorido(5,10,15,20-tetrakis(phenyl)porphyrinato)antimony(V) bromide, [Sb(V)(TPP)Cl2]Br, and dibromido(5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinato)antimony(V) bromide, [Sb(V)(T4CMPP)Br2]Br,-were synthesized by reacting the corresponding porphyrin ligand with Bi(NO3)3·5H2O or SbCl3. All compounds were characterized by UV-vis, (1)H NMR spectroscopy, and mass spectrometry. The new compounds were also characterized by elemental analysis. Because antimony and bismuth compounds have been widely applied in medicine, the activity of these complexes was tested against Sb-sensitive and -resistant Leishmania amazonensis parasites. [Sb(V)(T4CMPP)Br2]Br was more active against the promastigote form of Sb-resistant mutant strain as compared to the sensitive parental strain, with IC50 in the micromolar range. These data contrasted with those obtained using the Sb(III) drug potassium antimony tartrate, which displayed IC50 of 110 μmol L(-1) against the Sb-sensitive parasite and was almost inactive against the Sb-resistant strain. The H2T4CMPP ligand also showed antileishmanial activity against Sb-resistant and -sensitive strains, but with IC50 at least tenfold greater than that of the complex. The Sb(V)-porphyrin complex was also active against intracellular amastigotes and showed a higher selectivity index than the conventional Sb(V) drug glucantime, in both Sb-sensitive and -resistant strains. The greater antileishmanial activity of this complex could be attributed to an increased cellular uptake of Sb. Thus, [Sb(V)(T4CMPP)Br2]Br constitutes a new antileishmanial drug candidate.

  6. Dendritic Spikes in Sensory Perception.

    PubMed

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception.

  7. Dendritic Spikes in Sensory Perception

    PubMed Central

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception. PMID:28261060

  8. Effect of antimony on the microbial growth and the activities of soil enzymes.

    PubMed

    An, Youn-Joo; Kim, Minjin

    2009-02-01

    The effects of antimony (Sb) on microbial growth inhibition and activities of soil enzymes were investigated in the present study. Test bacterial species were Escherichia coli, Bacillus subtilis and Streptococcus aureus. Among the microorganisms tested, S. aureus was the most sensitive. The 50% effects on the inhibition of specific growth rate of E. coli, B. subtilis, and, S. aureus were 555, 18.4, and 15.8 mg Sb L(-1), respectively. A silt loam soil was amended with antimony and incubated in a controlled condition. Microbial activities of dehydrogenase, acid phosphatase (P cycle), arylsulfatase (S cycle), beta-glucosidase (C cycle), urease (N cycle), and fluorescein diacetate hydrolase in soil were measured. Activities of urease and dehydrogenase were related with antimony and can be an early indication of antimony contamination. The maximum increase in soil urease activity by antimony was up to 168% after 3d compared with the control. The activities of other four enzymes (acid phosphatase, fluorescein diacetate hydrolase, arylsulfatase and ss-glucosidase) were less affected by antimony. This study suggested that antimony affects nitrogen cycle in soil by changing urease activity under the neutral pH, however, soil enzyme activities may not be a good protocol due to their complex response patterns to antimony pollution.

  9. Transformation/dissolution examination of antimony and antimony compounds with speciation of the transformation/dissolution solutions.

    PubMed

    Skeaff, James M; Beaudoin, Robert; Wang, Ruiping; Joyce, Barry

    2013-01-01

    Speciation is held to be a key factor in controlling the ecotoxicity of metals in solution. Using the United Nations transformation/dissolution protocol (T/DP) for metals and sparingly soluble metal compounds, we have examined the transformation/dissolution (T/D) characteristics in terms of the concentrations of total dissolved Sb at pH 6 and 8.5 in 1, 10, and 100 mg/L loadings over 7 d as well as the concentrations of Sb(III) and Sb(V) at the 1 mg/L loadings over 28 d, of sodium hexahydroxoantimonate (NaSb(OH)(6)), antimony metal (Sb), antimony trioxide (Sb(2) O(3)), antimony sulfide (Sb(2) S(3)), sodium antimonate (NaSbO(3)), antimony tris(ethylene glycolate) (Sb(2) (C(2) H(4) O(2) )(3)), antimony trichloride (SbCl(3)), antimony triacetate (Sb(CH(3) COO)(3)), and antimony pentoxide (Sb(2) O(5) ). We also measured the concentrations of the dissolved Sb(III) and Sb(V) species at the 1 mg/L loadings. Because of complexing, the trivalent organic Sb compounds exhibited little or no oxidation of Sb(III) to Sb(V). However, oxidation of Sb(III) to Sb(V) was evident for the trivalent inorganic Sb compounds. Conversely, with pentavalent Sb compounds, there was no reduction of Sb(V) to Sb(III). Based on the percentage of Sb in the compound dissolved or metal reacted at 28 d and 1 mg/L loadings, the solubility rankings at pH 6 are NaSb(OH)(6)  > Sb(CH(3) COO)(3)  > Sb metal > Sb(2) (C(2) H(4) O(2))(3)  > Sb(2) S(3)  > Sb(2) O(3)  > NaSbO(3)  ≈ SbCl(3)  > Sb(2) O(5). For pH 8.5 the order is NaSb(OH)(6)  > Sb(CH(3) COO)(3)  > Sb metal > Sb(2) (C(2) H(4) O(2) )(3)  > SbCl(3)  > Sb(2) O(3)  > Sb(2) S(3)  > NaSbO(3)  > Sb(2) O(5) . We provide worked examples of how the T/D data have been used to derive hazard classification proposals for Sb metal and these selected compounds for submission to the European Chemicals Agency under the Registration, Evaluation, Authorization and Restriction of CHemicals (REACH

  10. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  11. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  12. Dendritic Materials Systems

    DTIC Science & Technology

    2003-09-22

    2-hydroxyethyl)-e-caprolactone,” Macromolecules, 32, 6881-4, (1999). Yu, D.; Vladimirov, N.; Fréchet, J.M.J. “ MALDI - TOF in the Characterization of...Mat Sci. Eng., (1999). Yu, D.; Vladimirov, N.; Fréchet, J. M. J. “ MALDI - TOF Mass Spectrometry in the Characterization of Dendritic-Linear Block and...with long endgroups capable of chain entanglements providing uniform continuous films. We found that the surface properties of polyetherimide ( PEI

  13. Human dendritic cell subsets

    PubMed Central

    Collin, Matthew; McGovern, Naomi; Haniffa, Muzlifah

    2013-01-01

    Summary Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology. PMID:23621371

  14. Silicon dendritic web growth

    NASA Technical Reports Server (NTRS)

    Duncan, S.

    1984-01-01

    Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.

  15. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  16. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  17. Organic ligand-induced dissolution kinetics of antimony trioxide.

    PubMed

    Hu, Xingyun; He, Mengchang

    2017-06-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb2O3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl, hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid, xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH=3.7, 6.6 and 8.6 and added to powdered Sb2O3 in a stirred, thermostatted reactor (25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH3.7 and catechol at pH8.6 increased the rate of release of antimony. In the 10mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120min reaction. There was no effect on the dissolution of Sb2O3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb2O3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals. Copyright © 2016. Published by Elsevier B.V.

  18. Inhibition of ABC Transporters Abolishes Antimony Resistance in Leishmania Infection▿

    PubMed Central

    Mookerjee Basu, Jayati; Mookerjee, Ananda; Banerjee, Rajdeep; Saha, Manik; Singh, Subhankar; Naskar, Ksudiram; Tripathy, Gayetri; Sinha, Prabhat K.; Pandey, Krishna; Sundar, Shyam; Bimal, Sanjeev; Das, Pradip K.; Choudhuri, Soumitra K.; Roy, Syamal

    2008-01-01

    The emergence of antimony (Sb) resistance has jeopardized the treatment of visceral leishmaniasis in various countries. Previous studies have considered the part played by leishmanial parasites in antimony resistance, but the involvement of host factors in the clinical scenario remained to be investigated. Here we show that unlike infection with Sb-sensitive (Sbs) Leishmania donovani, infection with Sb-resistant (Sbr) L. donovani induces the upregulation of multidrug resistance-associated protein 1 (MRP1) and permeability glycoprotein (P-gp) in host cells, resulting in a nonaccumulation of intracellular Sb following treatment with sodium antimony gluconate (SAG) favoring parasite replication. The inhibition of MRP1 and P-gp with resistance-modifying agents such as lovastatin allows Sb accumulation and parasite killing within macrophages and offers protection in an animal model in which infection with Sbr L. donovani is otherwise lethal. The occurrence of a similar scenario in clinical cases is supported by the findings that unlike monocytes from SAG-sensitive kala-azar (KA) patients, monocytes from SAG-unresponsive KA patients overexpress P-gp and MRP1 and fail to accumulate Sb following in vitro SAG treatment unless pretreated with inhibitors of ABC transporters. Thus, the expression status of MRP1 and P-gp in blood monocytes may be used as a diagnostic marker for Sb resistance and the treatment strategy can be designed accordingly. Our results also indicate that lovastatin, which can inhibit both P-gp and MRP1, might be beneficial for reverting Sb resistance in leishmaniasis as well as drug resistance in other clinical situations, including cancer. PMID:18056276

  19. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    SciTech Connect

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur

  20. Electrostatically defined silicon quantum dots with counted antimony donor implants

    SciTech Connect

    Singh, M. Luhman, D. R.; Lilly, M. P.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  1. Simultaneous lead and antimony immobilization in shooting range soil by a combined application of hydroxyapatite and ferrihydrite.

    PubMed

    Ogawa, Shouhei; Katoh, Masahiko; Sato, Takeshi

    2015-01-01

    This study investigated whether a combined application of hydroxyapatite and ferrihydrite could immobilize lead and antimony in shooting range soil in which the level of lead contamination is markedly higher than that of antimony. In addition, we evaluated the stability of lead and antimony immobilized by the combined application with varying soil pH. The levels of water-soluble lead and antimony for the combined application were lower than those of single applications of hydroxyapatite or ferrihydrite, indicating that the combined application could suppress the levels of water-soluble lead and antimony by 99.9% and 95.5%, respectively, as compared with the levels in shooting range soil without immobilization material. The amounts of residual lead and amorphous Fe/Al oxide-bound antimony fractions in sequential extraction increased with a decrease in the exchangeable and carbonate lead fractions as well as in non-specifically bound and specifically bound antimony fractions. The alteration of lead and antimony phases to chemically more stable ones as a result of the combined application would result in the suppression of their mobility. The stability of immobilized lead and antimony in the combined application was equal to that of lead with a single application of hydroxyapatite and that of antimony with a single application of ferrihydrite within neutral to alkaline pH conditions, respectively. Therefore, this study suggests that the combined application of hydroxyapatite and ferrihydrite can simultaneously immobilize lead and antimony in shooting range soil with neutral to alkaline pH.

  2. Removal of arsenic and antimony from anode slime by vacuum dynamic flash reduction.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-04-15

    Anode slime is an important material of recycling precious metals. Up to now, treating the arsenic- and antimony-rich anode slime by conventional processes has the following problems: its economic and environmental effect is less than satisfactory, and the removal effect of arsenic and antimony from anode slime in present processes is not all that could be desired. Therefore, vacuum dynamic flash reduction, a new process for treating arsenic- and antimony-rich anode slime, was investigated in this work. During vacuum dynamic flash reduction, silver from the arsenic- and antimony-rich anode slime was left behind in the distilland as the silver alloy, and trivalent oxides of arsenic and antimony were evaporated in the distillate. The experimental results showed that the evaporation percent of the arsenic- and antimony-rich anode slime was 65.6%. Namely, 98.92% by weight of arsenic and 93.67% by weight of antimony can be removed under the following experimental conditions: temperature of 1083 K, vacuum evaporation time of 60 min, and air flow rate of 400 mL/min corresponding to the residual gas pressure of 250 Pa. Moreover, vacuum treatment eliminates much of the air pollution and material losses associated with other conventional treatment methods.

  3. Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells.

    PubMed Central

    Naredi, P; Heath, D D; Enns, R E; Howell, S B

    1995-01-01

    Cross-resistance between cisplatin (DDP) and metalloid salts in human cells was sought on the basis that mechanisms that mediate metalloid salt cross-resistance in prokaryotes are evolutionarily conserved. Two ovarian and two head and neck carcinoma cell lines selected for DDP resistance were found to be cross-resistant to antimony potassium tartrate, which contains trivalent antimony. The DDP-resistant variant 2008/A was also cross-resistant to arsenite but not to stibogluconate, which contains pentavalent antimony. A variant selected for resistance to antimony potassium tartrate was cross-resistant to DDP and arsenite. Resistance to antimony potassium tartrate and arsenite was of a similar magnitude (3-7-fold), whereas the level of resistance to DDP was greater (17-fold), irrespective of whether the cells were selected by exposure to DDP or to antimony potassium tartrate. In the resistant sublines, uptake of [3H]-dichloro(ethylenediamine) platinum(II) was reduced to 41-52% of control, and a similar deficit was observed in the accumulation of arsenite. We conclude that DDP, antimony potassium tartrate, and arsenite all share a common mechanism of resistance in human cells and that this is due in part to an accumulation defect. PMID:7883968

  4. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    PubMed Central

    Soflaei, Saied; Dalimi, Abdolhossein; Ghaffarifar, Fatemeh; Shakibaie, Mojtaba; Shahverdi, Ahmad Reza; Shafiepour, Mohsen

    2012-01-01

    Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5) were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL) of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration) of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations. PMID:22792443

  5. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions

    NASA Astrophysics Data System (ADS)

    Filella, Montserrat; Belzile, Nelson; Lett, Marie-Claire

    2007-02-01

    Antimony is ubiquitously present in the environment as a result of natural processes and human activities. Antimony is not considered to be an essential element for plants or animals. In this third review paper on the occurrence of antimony in natural waters, the interactions of antimony with microbiota are discussed in relation to its fate in natural waters. This paper covers the following aspects: occurrence in microbiota, uptake transport mechanisms, pathways of Sb(III) removal from cells involved in antimony tolerance, oxidation and reduction of antimony by living organisms, phytochelatin induction and biomethylation. This review is based on a careful and systematic examination of a comprehensive collection of papers on the above mentioned aspects of the subject. All data are quoted from the original sources. Relatively little existing information falls within the strict scope of this review and, when relevant, discussion on the interactions of antimony with reference microorganisms, such as Escherichia coli, Saccharomyces cerevisiae and different protozoan parasites of the genus Leishmania, has been included.

  6. The potential DNA toxic changes among workers exposed to antimony trioxide.

    PubMed

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  7. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    PubMed

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

  8. Antimony sulphide, an absorber layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Shamsuri, W. N. Wan; Shaari, A.; Ahmad, N.; Abbas, S. M.

    2016-01-01

    Replacement of the toxic, expensive and scarce materials with nontoxic, cheap and earth-abundant one, in solar cell absorber layer, is immensely needed to realize the vision of green and sustainable energy. Two-micrometre-thin antimony sulphide film is considered to be adequate as an absorbing layer in solar cell applications. In this paper, we synthesize antimony sulphide thin films on glass substrate by physical vapour deposition technique, and the obtained films were then annealed at different temperatures (150-250 °C). The as-deposited and annealed samples were investigated for structural and optoelectronic properties using different characterization techniques. The X-ray diffraction analysis showed that the annealed samples were polycrystalline with Sb2S3 phase, while the as-deposited sample was amorphous in nature. The optical properties are measured via optical ellipsometric techniques. The measured absorbance of the film is adequately high, and every photon is found to be absorbed in visible and NIR range. The conductivity type of the films measured by hot-point probe technique is determined to be p-type. The optical band gap of the resulted samples was in the range (2.4-1.3 eV) for the as-deposited and annealed films.

  9. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode.

    PubMed

    Arsenault, Eric; Soheilnia, Navid; Ozin, Geoffrey A

    2011-04-26

    Optically transparent and electrically conductive electrodes are ubiquitous in the myriad world of devices. They are an indispensable component of solar and photoelectrochemical cells, organic and polymer light emitting diodes, lasers, displays, electrochromic windows, photodetectors, and chemical sensors. The majority of the electrodes in such devices are made of large electronic band-gap doped metal oxides fashioned as a dense low-surface-area film deposited on a glass substrate. Typical transparent conducting oxide materials include indium-, fluorine-, or antimony-doped tin oxides. Herein we introduce for the first time a transparent conductive periodic macroporous electrode that has been self-assembled from 6 nm nanocrystalline antimony-doped tin oxide with high thermal stability, optimized electrical conductivity, and high quality photonic crystal properties, and present an electrochemically actuated optical light switch built from this electrode, whose operation is predicated on its unique combination of electrical, optical, and photonic properties. The ability of this macroporous electrode to host active functional materials like dyes, polymers, nanocrystals, and nanowires provides new opportunities to create devices with improved performance enabled by the large area, spatially accessible and electroactive internal surface.

  10. Antimony contamination and its effect on Trifolium plants

    NASA Astrophysics Data System (ADS)

    Corrales, Isabel; Barceló, Juan; Bech, Jaume; Poschenrieder, Charlotte

    2014-05-01

    Antimony is not an essential element and soil Sb contents usually are low.However, soil contamination by Sb has increased in the last years due to the human activities (combustion of fossil fuels, mining, waste incineration, smelting, shooting and road traffic). The main objective of this work was to study the effect of different concentrations of antimony (KSb(OH)6) in order to evaluate the effect on growth and Sb uptake on Trifolium pratense cv. Milvus and Trifolium repens. Our results show that Sb accumulated both in roots and shoots of clover without any negative effect on root growth, cellular viability and lipid peroxidation. This absence of toxicity sympthoms in clover plants could be very dangerous because Sb can be inadvertedly incorporated into the trophic chain causing toxic effects both in animals and humans. The absence of toxic effects on plants does not seem to be due to detoxification by phytochelatins because the use of the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO) did not enhance Sb toxicity to plants. (Supported by the Spanish MICINN project BFU2010-14873)

  11. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  12. Transparent conducting aerogels of antimony-doped tin oxide.

    PubMed

    Correa Baena, Juan Pablo; Agrios, Alexander G

    2014-11-12

    Bulk antimony-doped tin oxide aerogels are prepared by epoxide-initiated sol-gel processing. Tin and antimony precursors are dissolved in ethanol and water, respectively, and propylene oxide is added to cause rapid gelation of the sol, which is then dried supercritically. The Sb:Sn precursor mole ratio is varied from 0 to 30% to optimize the material conductivity and absorbance. The materials are characterized by electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), nitrogen physisorption analysis, a four-point probe resistivity measurement, and UV-vis diffuse reflectance spectroscopy. The samples possess morphology typical of aerogels without significant change with the amount of doping. Calcination at 450 °C produces a cassiterite crystal structure in all aerogel samples. Introduction of Sb at 15% in the precursor (7.6% Sb by XPS) yields a resistivity more than 3 orders of magnitude lower than an undoped SnO2 aerogel. Calcination at 800 °C reduces the resistivity by an additional 2 orders of magnitude to 30 Ω·cm, but results in a significant decrease in surface area and pore volume.

  13. Systemic Meglumine Antimoniate in Acute Cutaneous Leishmaniasis: Children versus Adults

    PubMed Central

    Layegh, Pouran; Rahsepar, Sara; Rahsepar, Amir Ali

    2011-01-01

    Some studies showed that children have a lower response to systemic use of pentavalent antimoniate than adults. We aimed to evaluate the response rate to Glucantime therapy in children and compare it with adults. One hundred and twelve patients with acute cutaneous leishmaniais (ACL) were divided into two equal groups of adults (> 15 yrs) and children (≤ 15 yrs). They received meglumine antimoniate; 20 mg/kg/day for 20 days, their improvement rate was evaluated 20 and 45 days after treatment. Perprotocol analysis showed a significantly lower response in the children group 20 and 45 days after initiation of the treatment (P = 0.0001, 95% confidence interval [CI] = 0.190 [0.079–0.456]/P = 0.0051, 95% CI = 0.317 [0.140–0.717], respectively). Moreover, after intention-to-treat analysis, the same results were seen in the younger group 20 and 45 days after treatment (P = 0.0003, 95% CI = 0.228 [0.098–0.528]/P = 0.0132, 95% CI = 0.382 [0.177–0.825], respectively). According to our results, systemic Glucantime has lower efficacy in treating ACL in children than adults. PMID:21460006

  14. Systemic meglumine antimoniate in acute cutaneous leishmaniasis: children versus adults.

    PubMed

    Layegh, Pouran; Rahsepar, Sara; Rahsepar, Amir Ali

    2011-04-01

    Some studies showed that children have a lower response to systemic use of pentavalent antimoniate than adults. We aimed to evaluate the response rate to Glucantime therapy in children and compare it with adults. One hundred and twelve patients with acute cutaneous leishmaniasis: (ACL) were divided into two equal groups of adults (> 15 yrs) and children (≤ 15 yrs). They received meglumine antimoniate; 20 mg/kg/day for 20 days, their improvement rate was evaluated 20 and 45 days after treatment. Per-protocol analysis showed a significantly lower response in the children group 20 and 45 days after initiation of the treatment (P = 0.0001, 95% confidence interval [CI] = 0.190 [0.079-0.456]/P = 0.0051, 95% CI = 0.317 [0.140-0.717], respectively). Moreover, after intention-to-treat analysis, the same results were seen in the younger group 20 and 45 days after treatment (P = 0.0003, 95% CI = 0.228 [0.098-0.528]/P = 0.0132, 95% CI = 0.382 [0.177-0.825], respectively). According to our results, systemic Glucantime has lower efficacy in treating ACL in children than adults.

  15. Thermoelectric Micro-Refrigerator Based on Bismuth/Antimony Telluride

    NASA Astrophysics Data System (ADS)

    Dang, Linh Tuan; Dang, Tung Huu; Nguyen, Thao Thi Thu; Nguyen, Thuat Tran; Nguyen, Hue Minh; Nguyen, Tuyen Viet; Nguyen, Hung Quoc

    2017-03-01

    Thermoelectric micro-coolers based on bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) are important in many practical applications thanks to their compactness and fluid-free circulation. In this paper, we studied thermoelectric properties of bismuth/antimony telluride (Bi/SbTe) thin films prepared by the thermal co-evaporation method, which yielded among the best thermoelectric quality. Different co-evaporation conditions such as deposition flux ratio of materials and substrate temperature during deposition were investigated to optimize the thermoelectric figure␣of merit of these materials. Micron-size refrigerators were designed and fabricated using standard lithography and etching technique. A three-layer structure was introduced, including a p-type layer, an n-type layer and an aluminum layer. Next to the main cooler, a pair of smaller Bi/SbTe junctions was used as a thermocouple to directly measure electron temperature of the main device. Etching properties of the thermoelectric materials were investigated and optimized to support the fabrication process of the micro-refrigerator. We discuss our results and address possible applications.

  16. Developing dendrites demonstrate unexpected specificity.

    PubMed

    Chalupa, Leo M

    2006-11-22

    Our knowledge of how developing dendrites attain their mature state is still rudimentary. In this issue of Neuron, Mumm et al. rely on time-lapsed analysis of ingrowing dendrites of retinal ganglion cells in transgenic zebrafish to show that this process is much more specific than has been suspected.

  17. Soy isoflavones have antimutagenic activity on DNA damage induced by the antileishmanial Glucantime (meglumine antimoniate).

    PubMed

    Cantanhêde, Ludymila Furtado; Almeida, Laís Pinheiro; Soares, Rossy-Eric Pereira; Castelo Branco, Patrícia Valéria Gomes; Pereira, Silma Regina Ferreira

    2015-01-01

    Isoflavones are phytoestrogens reported to be potent antioxidant agents. In contrast, the antileishmanial meglumine antimoniate has mutagenic activities. This study evaluated the ability of soy isoflavones to reduce DNA damage induced by meglumine antimoniate. Antimutagenic effects (by micronucleus test) were tested using Swiss mice divided into seven groups treated with meglumine antimoniate (425 mg/kg bw pentavalent antimony); cyclophosphamide (50 mg/kg bw); water (negative control); single isoflavones dose (1.6 mg/kg bw), and three groups received one dose of isoflavones via gavage (0.4 mg/kg bw, 0.8 mg/kg bw or 1.6 mg/kg bw) plus meglumine antimoniate via intraperitoneal, simultaneously. To evaluate antigenotoxicity (by Comet assay), each group with 10 animals received the above-mentioned control doses; single dose of isoflavones 0.8 mg/kg bw, and three groups received isoflavones (0.8 mg/kg bw) by gavage along with intraperitoneal meglumine antimoniate, which were treated with isoflavones 24 h before or after receiving meglumine antimoniate (pre-treatment and post-treatment, respectively) or simultaneously. Cells were harvested 24 h after the treatment, and the data were evaluated by ANOVA followed by Tukey's test (p < 0.05). The data from the simultaneous treatment by micronucleus test revealed that isoflavones (0.4 and 0.8 mg/kg) were able to reverse the mutagenic effect of Glucantime. Moreover, all regimes of the treatment with 0.8 mg/kg bw dose were able to reduce the genotoxicity caused by meglumine antimoniate. It is suggested that the protective effect of isoflavones against DNA damage is related to their ability to reduce oxidative stress caused by the trivalent Sb(III) metabolite of meglumine antimoniate.

  18. Prediction Score for Antimony Treatment Failure in Patients with Ulcerative Leishmaniasis Lesions

    PubMed Central

    Dujardin, Jean Claude; Llanos-Cuentas, Alejandro; Chappuis, François; Zimic, Mirko

    2012-01-01

    Background Increased rates for failure in leishmaniasis antimony treatment have been recently recognized worldwide. Although several risk factors have been identified there is no clinical score to predict antimony therapy failure of cutaneous leishmaniasis. Methods A case control study was conducted in Peru from 2001 to 2004. 171 patients were treated with pentavalent antimony and followed up to at least 6 months to determine cure or failure. Only patients with ulcerative cutaneous leishmaniasis (N = 87) were considered for data analysis. Epidemiological, demographical, clinical and laboratory data were analyzed to identify risk factors for treatment failure. Two prognostic scores for antimonial treatment failure were tested for sensitivity and specificity to predict antimony therapy failure by comparison with treatment outcome. Results Among 87 antimony-treated patients, 18 (21%) failed the treatment and 69 (79%) were cured. A novel risk factor for treatment failure was identified: presence of concomitant distant lesions. Patients presenting concomitant-distant lesions showed a 30.5-fold increase in the risk of treatment failure compared to other patients. The best prognostic score for antimonial treatment failure showed a sensitivity of 77.78% and specificity of 95.52% to predict antimony therapy failure. Conclusions A prognostic score including a novel risk factor was able to predict antimonial treatment failure in cutaneous leishmaniasis with high specificity and sensitivity. This prognostic score presents practical advantages as it relies on clinical and epidemiological characteristics, easily obtained by physicians or health workers, and makes it a promising clinical tool that needs to be validated before their use for developing countries. PMID:22720098

  19. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.

    PubMed

    Warnken, Jan; Ohlsson, Rohana; Welsh, David T; Teasdale, Peter R; Chelsky, Ariella; Bennett, William W

    2017-08-01

    Antimony is a priority environmental contaminant that is relatively poorly studied compared to other trace metal(loid)s. In particular, the behaviour of antimony in wetland sediments, where anaerobic conditions often dominate, has received considerably less attention compared to well-drained terrestrial soil environments. Here we report the results of a spatial assessment of antimony in the sediments and vegetation of a freshwater wetland exposed to stibnite tailings for the past forty years. The concentration of antimony in the sediment decreased rapidly with distance from the tailings deposit, from a maximum of ∼22,000 mg kg(-1) to ∼1000 mg kg(-1) at a distance of ∼150 m. In contrast, arsenic was distributed more evenly across the wetland, indicating that it was more mobile under the prevailing hypoxic/anoxic conditions. Less clear trends were observed in the tissues of wetland plants, with the concentrations of antimony in waterlilies (2.5-195 mg kg(-1)) showing no clear trends with distance from the tailings deposit, and no correlation with sediment concentrations. Sedges and Melaleuca sp. trees had lower antimony concentrations (<25 mg kg(-1) and 5 mg kg(-1), respectively) compared to waterlilies, but showed a non-significant trend of higher concentrations closer to the tailings. For all vegetation types sampled, antimony concentrations were consistently lower than arsenic concentrations (Sb:As = 0.27-0.31), despite higher concentrations of antimony in the sediment. Overall, the results of this study highlight clear differences in the behaviour of antimony and arsenic in freshwater wetlands, which should be considered during the management and remediation of such sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. What is the weighing form in gravimetric determination of antimony(III) with oxine?

    PubMed

    Hioki, Akiharu

    2004-03-01

    The gravimetric analysis of antimony(III) with oxine (8-quinolinol, Hox) was studied. The amount of antimony left in filtrate and washing solutions was corrected with the results of atomic absorption spectrometry. The weighing form, which had not been conclusive before the present study, was determined to be SbO(ox)(Hox)2. The result (purity of antimony(II) oxide: 99.84 +/- 0.05% (m/m)) of the gravimetric analysis was in good agreement with that of coulometric titration with electrogenerated iodine.

  1. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds.

    PubMed

    Barros, Andrea Barbieri; Rodrigues, Alex Miranda; Batista, Mariane Pereira; Munhoz Junior, Sidney; Hueb, Marcia; Fontes, Cor Jesus

    2014-07-01

    Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year). The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  2. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    PubMed Central

    Barros, Andrea Barbieri; Rodrigues, Alex Miranda; Batista, Mariane Pereira; Munhoz, Sidney; Hueb, Marcia; Fontes, Cor Jesus

    2014-01-01

    Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year). The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported. PMID:25004145

  3. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  4. Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples.

    PubMed

    Shakerian, Farid; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Nili Ahmad Abadi, Maryam

    2014-02-15

    A solid phase extraction method using antimony ion imprinted polymer (IIP) sorbent combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for the extraction and speciation of antimony. The sorbent has been synthesised in the presence of Sb(III) and ammonium pyrrolidine dithiocarbamate (APDC) using styrene as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linker. The imprinted Sb(III) ions were removed by leaching with HCl (50%v/v) and the polymer was characterised by FT-IR and scanning electron microscopy. The maximum sorption capacity of the IIP for Sb(III) ions was found to be 6.7 mg g(-1). With preconcentration of 60 mL of sample, an enhancement factor of 232 and detection limit of 3.9 ng L(-1) was obtained. Total antimony was determined after the reduction of Sb(V) to Sb(III). The method was successfully applied to the determination of antimony species in water samples and total antimony in fruit juices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Anthropogenic impacts on the biogeochemistry and cycling of antimony.

    PubMed

    Shotyk, William; Krachler, Michael; Chen, Bin

    2005-01-01

    Antimony is a potentially toxic trace element with no known biological function. Antimony is commonly enriched in coals, and fossil fuel combustion appears to be the largest single source of anthropogenic Sb to the global atmosphere. Abundant in sulfide minerals, its emission to the atmosphere from anthropogenic activities is linked to the mining and metallurgy of non-ferrous metals, especially Pb, Cu, and Zn. In particular, the geochemical and mineralogical association of Sb with Pb minerals implies that, like Pb, Sb has been emitted to the environment for thousands of years because of Pb mining, smelting, and refining. In the US alone, there are more than 400 former secondary lead smelting operations and worldwide there are 133 Pb-Zn smelters in operation today. Antimony is used in creating and improving dozens of industrial and commercial materials including various alloys, ceramics, glasses, plastics, and synthetic fabrics, making waste incineration another important source of Sb to the environment. Enrichments of Sb in atmospheric aerosols, plants, soils, sediments, as well as alpine and polar snow and ice suggest that Sb contamination is extensive, but there are very few quantitative studies of the geographic extent, intensity, and chronology of this contamination. There is an urgent need to quantify the extent of human impacts and how these have changed with time. The decreasing inventories of anthropogenic Sb with time in peat cores from Switzerland and Scotland suggest that the atmospheric Sb flux may be declining, but there have been too few studies to make any general conclusions. In fact, some studies of sediments and biomonitors in central Europe show little decline in Sb concentrations during the past decades. There is an obvious need for reliable data from well dated archives such as polar snow and ice, peat bogs, and sediments. The air concentrations, extent of enrichment, particle size distribution, and rate of deposition of Sb in urban areas is

  6. Biogeochemistry of Antimony(V) in Microcosms under Sulfidogenic Conditions

    NASA Astrophysics Data System (ADS)

    O'Loughlin, E. J.; Johnson, C. R.; Antonopoulos, D. A.; Boyanov, M.; Flynn, T. M.; Koval, J. C.; Kemner, K. M.

    2015-12-01

    As the mining and use of antimony continues to increase, environmental concerns involving the element have grown. Antimony(V) and (III) are the two most environmentally-relevant oxidation states, but little is known about the redox transitions between the two in natural systems. To better understand the behavior of antimony in anoxic environments, we examined the transformations of Sb(V) under Fe(III)- and sulfate-reducing conditions in aqueous suspensions that contained 2 mM KSb(OH)6, 50 mM Fe(III) (as ferrihydrite), 10 mM sulfate, and 10 mM lactate, and were inoculated with sediment from a wetland on the campus of Argonne National Laboratory in Argonne, Illinois. Samples were collected over time to track changes in the concentrations of Sb, Fe(II), sulfate, and lactate, as well as the composition of the microbial community as determined by 16S rRNA gene inventories. We also examined the interaction of Sb(V) with pure Fe(II) mineral phases in aqueous suspensions containing 2 mM KSb(OH)6 and 50 mM Fe(II) as either magnetite, sideritre, vivianite, green rust, or mackinawite. X-ray absorption fine-structure spectroscopy was used to determine the valence state of Sb and its chemical speciation. Lactate was rapidly fermented to acetate and propionate concomittant with a bloom of Veillonellaceae. Utilization of propionate for dissimilatory sulfate reduction (DSR) was accompanied by an increase in Desulfobulbaceae. Sb K-edge X-Ray absorption near edge structure (XANES) analysis showed reduction of Sb(V) to Sb(III) within 4 weeks, concurrent with DSR and the formation of FeS. We observed variable responses in the ability of specific Fe(II) minerals to reduce Sb(V). No reduction was observed with magnetite, siderite, vivianite, or green rust. In the presence of mackinawite (FeS), however, Sb(V) was reduced to Sb(III) sulfide. These results suggest that the reduction of Sb(V) to Sb(III) is not likely under solely Fe(III)-reducing conditions, but is expected in sulfidogenic

  7. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Steinbach, I.; Karma, A.; deGroh, H. C., III

    1999-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during solidification of an assemblage of equiaxed dendritic crystals. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology (i.e., tip radii, branch spacings, etc.) and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of initial supercoolings and, thus, interaction "strengths" between the crystals. The experiment thus extends the microgravity measurements of Glicksman and coworkers for steady growth of a single dendrite [Isothermal Dendritic Growth Experiment (IDGE), first flown on USMP-2] to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation more close to actual casting conditions. Corresponding earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will primarily be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  8. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during equiaxed dendritic solidification. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion-dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of interaction "strengths" between the crystals. The experiment extends the microgravity measurements of Glicksman and co-workers isothermal dendritic growth experiment (IDGE) for steady growth of a single dendrite to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation closer to actual casting conditions. Corresponding Earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  9. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  10. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of puget sound

    USGS Publications Warehouse

    Crecelius, E.A.; Bothner, Michael H.; Carpenter, R.

    1975-01-01

    The natural distributions of arsenic, antimony mercury, chromium, cobalt, iron, aluminum, and carbon in the surface sediments of Puget Sound are perturbed by two major anthropogenic sources of trace metals: a copper smelter near Tacoma, Wash., that discharges large amounts of arsenic and antimony, and a chlor-alkali plant in Bellingham, Wash., which, in the recent past, discharged significant amounts of mercury. Arsenic and antimony inputs from the smelter over the past 80 years are evident in sediment cores whose accumulation rates have been determined by the lead-210 technique. An arsenic budget for Puget Sound reveals the importance of atmospheric input resulting from smokestack emissions of the smelter. Chemical extraction studies of sediments showed that more than 82% of the mercury was associated with easily oxidizable organic matter, whereas about 50% of both arsenic and antimony was associated with extractable iron and aluminum compounds.

  11. 78 FR 67141 - Antimony Trioxide (ATO) TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Antimony Trioxide (ATO) TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To Comment AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: On September 27...

  12. Antimony Trioxide (ATO) - Summary of External Peer Review and Public Comments and Disposition

    EPA Pesticide Factsheets

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for Antimony Trioxide (ATO).

  13. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  14. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  15. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    SciTech Connect

    Yang, Xiaolong; Lin, Jianping; Qiao, Guanjun; Wang, Zhao

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  16. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  17. Silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  18. Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage

    SciTech Connect

    Bradwell, DJ; Kim, H; Sirk, AHC; Sadoway, DR

    2012-02-01

    Batteries are an attractive option for grid: scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 degrees C) magnesium antimony (MgllSb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCL2-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use Of low-cost materials results in a promising technology for stationary energy storage applications.

  19. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    SciTech Connect

    Misochko, O. V.

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  20. Plasma phase separation in bismuth and antimony chalcogenide crystals

    NASA Astrophysics Data System (ADS)

    Netesova, Nadezhda P.

    2017-05-01

    Oscillation parameters of narrow band layered crystals of bismuth selenide and telluride and antimony telluride for one and two oscillations are calculated. The electron oscillation crystal model equations of real epsilonr and imaginary epsilonι, ω epsilonι components of dielectric function, electronic losses L, ωL are given, special points of the optical functions epsilonr, epsilonι, ω epsilonι, L, ωL for boundary frequencies ω are probed. Ratios of energy balance of `sublattices on the basis of oscillation electronic model are revealed. It is concluded that these crystals at high hydrostatic pressures and low temperatures are turned into superconductors. In high-temperature superconductors spontaneous division into two phases: superconducting and isolating was revealed. Stratification on two phases in superconducting crystals has been confirmed experimentally: neutron graphic, neutron spectral and spectral researches, an electronic and nuclear paramagnetic resonance.

  1. Copper, lead, zinc, antimony, and arsenic in Pakistan

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Copper localities that merit geological investigation are found in the western Chasai District, in North Waziristan Agency, and in the Salt Range in Mianwali and Sargodha Districts. No high-grade deposits have been .reported from these ,areas and if deposits are developed they will likely be low-grade, high-tonnage, disseminated deposits. Those localities reported from Chitral State are too remote and inaccessible to be of interest now. All lead localities found to date are of minor importance; there has been small production at one .locality in Chasai District and in the southern part of the Hazara District. Zinc, antimony, and arsenic are sparse in Pakistan and no important localities of these metals are reported.

  2. Coherent and incoherent structural dynamics in laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Vasileiadis, Thomas; Bertoni, Roman; Ernstorfer, Ralph; Zier, Tobias; Valencia, Felipe H.; Garcia, Martin E.; Zijlstra, Eeuwe S.

    2017-02-01

    We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric A1 g optical phonon mode via the shift of the minimum of the atomic potential energy surface. Ab initio molecular dynamics simulations on laser excited potential energy surfaces are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. Good agreement is obtained between the parameter-free calculations and the experiment. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. The electron-phonon coupling is determined as a function of electronic temperature from our DFT calculations and the data by applying different models for the energy transfer.

  3. Metabolism of tellurium, antimony and germanium simultaneously administered to rats.

    PubMed

    Kobayashi, Akihiro; Ogra, Yasumitsu

    2009-06-01

    Recently, tellurium (Te), antimony (Sb) and germanium (Ge) have been used as an alloy in phase-change optical magnetic disks, such as digital versatile disk-random access memory (DVD-RAM) and DVD-recordable disk (DVD-RW). Although these metalloids, the so-called "exotic" elements, are known to be non-essential and harmful, little is known about their toxic effects and metabolism. Metalloid compounds, tellurite, antimonite and germanium dioxide, were simultaneously administered to rats. Their distributions metabolites were determined and identified by speciation. Te and Sb accumulated in red blood cells (RBCs): Te accumulated in RBCs in the dimethylated form, while Sb accumulated in the inorganic/non-methylated form. In addition, trimethyltelluronium (TMTe) was the urinary metabolite of Te, whereas Sb in urine was not methylated but oxidized. Ge was also not methylated in rats. These results suggest that each metalloid is metabolized via a unique pathway.

  4. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  5. Neutron-activation analysis by standard addition and solvent extraction Determination of traces of antimony.

    PubMed

    Alian, A; Shabana, R; Sanad, W; Allam, B; Khalifa, K

    1968-02-01

    The application of neutron activation analysis by standard addition and solvent extraction to the determination of traces of antimony in aluminium and rocks is reported. Three simple extraction procedures, using isopropyl ether, hexone, and tributyl phosphate, are described for the selective separation of radioantimony from interfering radionuclides. Antimony concentration is measured by counting the activities of the (122)Sb and (124)Sb photopeaks at 0.564 and 0.603 MeV.

  6. Can microorganisms convert antimony trioxide or potassium antimonyl tartrate to methylated stibines?

    PubMed

    Gates, P N; Harrop, H A; Pridham, J B; Smethurst, B

    1997-10-20

    No evidence could be found for the production, in culture, of methylated antimony compounds from water-insoluble or soluble antimony derivatives by the aerobes, Scopulariopsis brevicaulis or Bacillus sp. or by anaerobes associated with cot mattress materials. The study does not support the hypothesis that volatile organoantimony compounds are a cause of cot deaths. Anaerobic cultures from a polluted pond generated trimethylstibine from potassium antimonyl tartrate.

  7. Survey of antimony workers: mortality 1961-1992.

    PubMed Central

    Jones, R D

    1994-01-01

    The mortality of a census population and a prospective cohort of men employed on an antimony smelter in the north east of England was followed up from 1961-1992. The workers studied were exposed to a variety of agents including antimony and its oxides, arsenic and arsenic oxides, sulphur dioxide, and polycyclic aromatic hydrocarbons. The regional mortality rates were used to calculate expected deaths and a group of zircon sand workers employed on the site were used as a comparison group. For the census population of men working on the smelter before 1961 a significant increase in deaths from lung cancer was found (32 observed v 14.7 expected, P < 0.001). A similar excess was seen among maintenance men (12 observed v 5.3 expected P = 0.016). No such excess was found in the cohort recruited after 1960 (5 observed v 9.2 expected, maintenance workers 3 observed v 2.8 expected). There was evidence of a minimum latency period of around 20 years between first exposure and death from lung cancer. No evidence was found for a correlation between length of time worked and mortality from lung cancer. The results show that an increased risk of lung cancer existed in the workers employed before 1961, but it was not possible to attribute this excess to any particular agent. Mortality analysed by five year calendar periods of first exposure show a lessening of effect after 1955. Although the power of the study is clearly less for more recent periods of exposure the absence of any excess in the population after 1960 is encouraging. PMID:7849856

  8. Antimony as a global dilemma: Geochemistry, mobility, fate and transport.

    PubMed

    Herath, Indika; Vithanage, Meththika; Bundschuh, Jochen

    2017-04-01

    Elevated concentrations of antimony (Sb) in environmental, biological and geochemical systems originating from natural, geological and anthropogenic sources are of particular global concern. This review presents a critical overview of natural geochemical processes which trigger the mobilization of Sb from its host mineral phases and related rocks to the surrounding environments. The primary source of Sb contamination in the environment is geogenic. The geochemical characteristics of Sb are determined by its oxidation states, speciation and redox transformation. Oxidative dissolution of sulfide minerals and aqueous dissolution are the most prevalent geochemical mechanisms for the release of Sb to the environment. Transformation of mobile forms of Sb is predominantly controlled by naturally occurring precipitation and adsorption processes. Oxyhydroxides of iron, manganese and aluminum minerals have been recognized as naturally occurring Sb sequestrating agents in the environment. Antimony is also immobilized in the natural environment via precipitation with alkali and heavy metals resulting extremely stable mineral phases, such as schafarzikite, tripuhyite and calcium antimonates. Many key aspects, including detection, quantification, and speciation of Sb in different environmental systems as well as its actual human exposure remain poorly understood. Identification of global distribution of most vulnerable Sb-contaminated regions/countries along with aquifer sediments is an urgent necessity for the installation of safe drinking water wells. Such approaches could provide the global population Sb-safe drinking and irrigation water and hinder the propagation of Sb in toxic levels through the food chain. Hence, raising awareness through the mobility, fate and transport of Sb as well as further transdisciplinary research on Sb from global scientific communities will be a crucial stage to establish a sustainable Sb mitigation on a global scale. Copyright © 2017 Elsevier

  9. Noninferiority of miltefosine versus meglumine antimoniate for cutaneous leishmaniasis in children.

    PubMed

    Rubiano, Luisa Consuelo; Miranda, María Consuelo; Muvdi Arenas, Sandra; Montero, Luz Mery; Rodríguez-Barraquer, Isabel; Garcerant, Daniel; Prager, Martín; Osorio, Lyda; Rojas, Maria Ximena; Pérez, Mauricio; Nicholls, Ruben Santiago; Gore Saravia, Nancy

    2012-02-15

    Children have a lower response rate to antimonial drugs and higher elimination rate of antimony (Sb) than adults. Oral miltefosine has not been evaluated for pediatric cutaneous leishmaniasis. A randomized, noninferiority clinical trial with masked evaluation was conducted at 3 locations in Colombia where Leishmania panamensis and Leishmania guyanensis predominated. One hundred sixteen children aged 2-12 years with parasitologically confirmed cutaneous leishmaniasis were randomized to directly observed treatment with meglumine antimoniate (20 mg Sb/kg/d for 20 days; intramuscular) (n = 58) or miltefosine (1.8-2.5 mg/kg/d for 28 days; by mouth) (n = 58). Primary outcome was treatment failure at or before week 26 after initiation of treatment. Miltefosine was noninferior if the proportion of treatment failures was ≤15% higher than achieved with meglumine antimoniate (1-sided test, α = .05). Ninety-five percent of children (111/116) completed follow-up evaluation. By intention-to-treat analysis, failure rate was 17.2% (98% confidence interval [CI], 5.7%-28.7%) for miltefosine and 31% (98% CI, 16.9%-45.2%) for meglumine antimoniate. The difference between treatment groups was 13.8%, (98% CI, -4.5% to 32%) (P = .04). Adverse events were mild for both treatments. Miltefosine is noninferior to meglumine antimoniate for treatment of pediatric cutaneous leishmaniasis caused by Leishmania (Viannia) species. Advantages of oral administration and low toxicity favor use of miltefosine in children. NCT00487253.

  10. Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V).

    PubMed

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-08-08

    Removal of radioactive antimony, especially at low levels, is a difficult problem faced by nuclear power plants all over the world. Further, antimony is classified as a pollutant of priority importance by the United States and the European environmental protection agencies. Chitosan, a biopolymer well known for its sorption properties, can also serve as a stable matrix for inorganic sorbents such as titania on crosslinking. A robust high performing sorbent for antimony, in the form of stable beads, has been prepared using nano-TiO2 and chitosan. Raman spectra of the beads confirmed the incorporation of nano-TiO2 in the chitosan matrix. The sorbent exhibited complete sorption of antimony from aqueous solutions with antimony concentrations ranging from as low as 150 ppb to as high as 120 ppm. The sorption dependence on equilibrium pH has been investigated. The beads have been shown to be effective sorbent of antimony in both +3 and +5 oxidation states. The sorption properties of the beads were attributed to the TiO2 component present in the beads, while the crosslinked chitosan provided strong matrix and influenced the formation of much needed stable spherical beads suitable for real life large scale applications. The beads exhibited high sorption efficiency in the column mode, and were found to be physically stable at a flow rate of one bed volume per minute. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Urinary antimony and leukocyte telomere length: An analysis of NHANES 1999-2002.

    PubMed

    Scinicariello, Franco; Buser, Melanie C

    2016-10-01

    Telomeres are repetitive DNA sequences (TTAGGG) at the end of chromosomes. Cells with critically short telomeres enter replicative senescence and apoptosis. Several in vitro studies report that antimony causes cell apoptosis in human leukocyte cell lines. The goal of this analysis was to investigate whether there is an association between antimony exposure and leukocyte telomere length (LTL) among US adults aged 20 and older based on the National Health and Nutrition Examination Survey (NHANES) 1999-2002. We used multivariate linear regression to analyze the association of urinary antimony with LTL. LTL was log-natural transformed and the results were re-transformed and presented as percent differences. After adjustment for potential confounders, individuals in the 3rd and 4th quartiles of urinary antimony had statistically significantly shorter LTL (-4.78%, 95% CI: -8.42,-0.90; and -6.11%, 95% CI: -11.04,-1.00, respectively) compared to the lowest referent quartile, with evidence of a dose-response relationship (p-value for trend =0.03). Shorter LTL with antimony was driven by middle aged (40-59 years) and older (60-85 years) adult groups. The association may be biologically plausible because of reported oxidative stress and apoptosis effects of antimony on blood cells, effects known to shorten telomere length. Published by Elsevier Inc.

  12. A comprehensive global inventory of atmospheric Antimony emissions from anthropogenic activities, 1995-2010.

    PubMed

    Tian, Hezhong; Zhou, JunRui; Zhu, Chuanyong; Zhao, Dan; Gao, Jiajia; Hao, Jiming; He, Mengchang; Liu, Kaiyun; Wang, Kun; Hua, Shenbing

    2014-09-02

    Antimony (Sb) and its compounds are considered as global pollutants due to their health risks and long-range transport characteristics. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities during the period of 1995-2010 has been developed with specific estimation methods based on the relevant data available for different continents and countries. Our results indicate that the global antimony emissions have increased to a peak at about 2232 t (t) in 2005 and then declined gradually. Global antimony emissions in 2010 are estimated at about 1904 t (uncertainty of a 95% confidence interval (CI): -30% ∼ 67%), with fuel combustion as the major source category. Asia and Europe account for about 57% and 24%, respectively, of the global total emissions, and China, the United States, and Japan rank as the top three emitting countries. Furthermore, global antimony emissions are distributed into gridded cells with a resolution of 1° × 1°. Regions with high Sb emissions are generally concentrated in the Southeastern Asia and Western Europe, while South Africa, economically developed regions in the eastern U.S., and Mexico are also responsible for the high antimony emission intensity.

  13. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area.

    PubMed

    Baroni, F; Boscagli, A; Protano, G; Riccobono, F

    2000-08-01

    Preliminary data of a biogeochemical survey concerning antimony transfer from soil to plants in an abandoned Sb-mining area are presented. Achillea ageratum, Plantago lanceolata and Silene vulgaris can strongly accumulate antimony when its extractable fraction in the soil is high (139-793 mg/kg). A. ageratum accumulates in basal leaves (1367 mg/kg) and inflorescences (1105 mg/kg), P. lanceolata in roots (1150 mg/kg) and S. vulgaris in shoots (1164 mg/kg). In these plant species, the efficiency of antimony accumulation decreases when the antimony availability in the soil is high. In A. ageratum and S. vulgaris, the death of the epigeal target part at the end of the growing season contributes to a reduction of the antimony load in the plant. A study to test the use of these species as bioindicators of antimony availability in soil is suggested by our results.

  14. Dendritic oligoguanidines as intracellular translocators.

    PubMed

    Chung, Hyun-Ho; Harms, Guido; Seong, Churl Min; Choi, Byung Hyune; Min, Changhee; Taulane, Joseph P; Goodman, Murray

    2004-01-01

    A series of polyguanidylated dendritic structures that can be used as molecular translocators have been designed and synthesized based on nonpeptide units. The dendritic oligoguanidines conjugated with fluorescein or with a green fluorescent protein (GFP) mutant as cargos were isolated and characterized. Quantification and time-course analyses of the cellular uptake of the conjugates using HeLa S3 and human cervical carcinoma cells reveal that the polyguanidylated dendrimers have comparable translocation efficiency to the Tat(49-57) peptide. Furthermore, the deconvolution microscopy image analysis shows that they are located inside the cells. These results clearly show that nonlinear, branched dendritic oligoguanidines are capable of translocation through the cell membrane. This work also demonstrates the potential of these nonpeptidic dendritic oligoguanidines as carriers for intracellular delivery of small molecule drugs, bioactive peptides, and proteins. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  15. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  16. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  17. Prolonged absorption of antimony(V) by the oral route from non-inclusion meglumine antimoniate-beta-cyclodextrin conjugates.

    PubMed

    Ribeiro, Raul R; Ferreira, Weverson A; Martins, Patricia S; Neto, Rubens L M; Rocha, Olguita G F; Le Moyec, Laurence; Demicheli, Cynthia; Frézard, Frédéric

    2010-03-01

    The orally active composition comprising meglumine antimoniate (MA) and beta-cyclodextrin (beta-CD) differs markedly from conventional drug-CD complexes, since it combines a water-soluble drug and a hydrophilic CD. In order to obtain insights into the mechanism(s) responsible for the improved oral delivery of the drug, physicochemical and pharmacokinetic studies were carried out. The composition investigated here was prepared at a 7:1 antimony(Sb)/beta-CD molar ratio, a condition that improves its solubility in water and allows the oral administration of a high dose of Sb in large animals. It was characterized by circular dichroism, (1)H-NMR, ESI-MS and photon correlation spectroscopy. Pharmacokinetic data were obtained in Beagle dogs after oral administration of the composition at 100 mg Sb/kg. (1)H-NMR and ESI-MS data supported the formation of non-inclusion complexes between MA and beta-CD. Sub-micron assemblies were also evidenced that slowly dissociate and presumably release the MA drug, upon reconstitution of the composition in water. Pharmacokinetic studies of MA and MA/beta-CD in dogs showed a prolongation of the serum mean residence time of Sb from 4.1 to 6.8 h, upon complexation of MA with beta-CD. Evidence was also obtained that Sb remains essentially under the form of pentavalent Sb-meglumine complex, following gastro-intestinal absorption from the MA/beta-CD composition. In conclusion, the present data support the model that the sustained drug release property of 7:1 MA/beta-CD composition resulted in the prolongation of MA absorption by the oral route and, consequently, in the increase of the drug mean residence time in serum. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area.

    PubMed

    Benhamdi, Asma; Bentellis, Alima; Rached, Oualida; Du Laing, Gijs; Mechakra, Aicha

    2014-04-01

    The present work was undertaken to determine strategies and antioxidant enzyme activities involved in the adaptation of two wild steppic plants (Hedysarum pallidum Desf. and Lygeum spartum L.) to the toxic environment of the abandoned antimony mining area of Djebel Hamimat (Algeria). For this purpose, soils and plants were collected in different zones coinciding with a Sb and As concentrations gradient in the soil. Antimony (Sb) and arsenic (As) were analyzed by ICP-OES in the soils and the aboveground parts and roots of the plants. Malondialdehyde (MDA) and antioxidant enzyme activities were measured by spectrometry. Results show levels of Sb and As exceptionally high in most soil and plant samples. The two species accumulate differently Sb and As in their above and belowground parts. MDA levels, in the two parts of both species, increase significantly with increasing soil Sb and As concentrations, but they are significantly higher in H. pallidum than in L. spartum. The activities of antioxidant enzymes differ significantly according to the soil metalloid concentrations, the plant species considered and the plant part. Apart from superoxide dismutase (SOD) whose activity is, overall, higher in H. pallidum than in L. spartum, the activities of all the other enzymes studied (glutathione S-transferase (GST), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) are generally higher in L. spartum than in H. pallidum. For both species, APX and GST are overall more active in the upper parts than in the roots, while it is the reverse for SOD and CAT. POD is more active in the upper parts than in the roots of L. spartum and the reverse applies to H. pallidum. It appears that the two studied plant species use different tolerance strategies to protect themselves against elevated As and Sb concentrations.

  19. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  20. SOLID-LIQUID PHASE EQUILIBRIUM IN BINARY SYSTEMS OF TRIPHENYL ANTIMONY WITH BIPHENYL, NAPHTHALENE, AND BENZOIC ACID.

    DTIC Science & Technology

    PHASE STUDIES, *ORGANOMETALLIC COMPOUNDS, SEMICONDUCTORS, SOLID STATE PHYSICS, ANTIMONY COMPOUNDS, EUTECTICS , ZONE MELTING, HALIDES, BISMUTH, ARSENIC, ELECTRONS, NAPHTHALENES , PHASE DIAGRAMS, SOLIDS.

  1. Intralesional treatment with meglumine antimoniate in three patients with New World cutaneous leishmaniasis and large periarticular lesions with comorbidities.

    PubMed

    Pimentel, Maria Inês Fernandes; Vasconcellos, Érica de Camargo Ferreira E; Ribeiro, Carla de Oliveira; Lyra, Marcelo Rosandiski; Saheki, Mauricio Naoto; Salgueiro, Mariza de Matos; Antonio, Liliane de Fátima; Schubach, Armando de Oliveira

    2017-01-01

    Although New World cutaneous leishmaniasis is not itself a life-threatening disease, its treatment with systemic antimonials can cause toxicity that can be dangerous to some patients. Intralesional meglumine antimoniate provides a viable, less toxic alternative. Herein, we describe an alternative treatment with subcutaneous intralesional injections of meglumine antimoniate into large periarticular lesions of three patients with cutaneous leishmaniasis and comorbidities. This treatment was safe, successful, and well tolerated. This case series suggests that intralesional meglumine antimoniate is an effective therapy for cutaneous leishmaniasis, even with periarticular lesions. This hypothesis should be tested in controlled clinical trials.

  2. Simulation of antimony adsorption on nano-zero valent iron and kaolinite and analyzing the influencing parameters.

    PubMed

    Saeidnia, Setareh; Asadollahfardi, Gholamreza; Darban, Ahmad Khodadadi; Mohseni, Mehdi

    2016-01-01

    Antimony is one of the most toxic pollutants in industrial and mineral wastewaters threatening the life of humans and other creatures. We simulated the adsorption of antimony in the presence of nano-zero valent iron (nZVI) adsorbent, on kaolinite and in the presence of nZVI coated on kaolinite from mineral wastewater using VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of antimony by applying simulation. The simulation was performed using an adsorption model of a diffuse layer model. The results of the simulation indicated that the nZVI concentration, initial concentrations of antimony and pH factor are effective on the adsorption of antimony. In the conducted stimulation, the optimum pH was 2-5 and the highest adsorption occurred in an acidic state. With increasing initial concentrations of antimony in the simulation, we concluded that nZVI had absorbed various concentrations above 90% and, by increasing the concentration of nZVI, antimony adsorption rate increased. The increased surface area of nZVI and the expansion of more interchangeable surfaces available for reaction with antimony ions causes more antimony ions to be adsorbed. In all cases, the coefficient of determination between the laboratory results and the model predictions that was obtained was more than 0.9.

  3. Reconsideration of macrophage and dendritic cell classification.

    PubMed

    Kadowaki, Takeshi; Shimada, Misato; Inagawa, Hiroyuki; Kohchi, Chie; Hirashima, Mitsuomi; Soma, Gen-Ichiro

    2012-06-01

    It is well known that the activation of innate immune cells, especially antigen-presenting cells such as macrophages and dendritic cells, can ameliorate or exacerbate various diseases, including cancer. Currently, the macrophages and dendritic cells are categorized into several groups by their cell surface and intracellular molecules. However, the detailed classification of the differences between macrophages and dendritic cells has still not been established. Here, we summarized and reviewed the previous studies on the classification of macrophages and dendritic cells. In addition, the previous classification of monocytes, macrophages and dendritic cells is discussed based on our findings of macrophage activation, which has both conventional and plasmacytoid dendritic cell phenotype.

  4. MAPK1 of Leishmania donovani modulates antimony susceptibility by downregulating P-glycoprotein efflux pumps.

    PubMed

    Garg, Mansi; Goyal, Neena

    2015-07-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Mitogen-activated protein kinases (MAPKs) are well-known mediators of signal transduction of eukaryotes, regulating important processes, like proliferation, differentiation, stress response, and apoptosis. In Leishmania, MAPK1 has been shown to be consistently downregulated in antimony-resistant field isolates, suggesting that it has a role in antimony resistance. The present work investigates the molecular mechanism of MAPK1 in antimony resistance in Leishmania donovani. The L. donovani MAPK1 (LdMAPK1) single-allele replacement mutants exhibited increased resistance to Sb(III) (5.57-fold) compared to wild-type promastigotes, while overexpressing parasites became much more susceptible to antimony. The LdMAPK1-mediated drug sensitivity was directly related to antimony-induced apoptotic death of the parasite, as was evidenced by a 4- to 5-fold decrease in cell death parameters in deletion mutants and a 2- to 3-fold increase in MAPK1-overexpressing cells. LdMAPK1-underexpressing parasites also exhibited increased P-glycoprotein (P-gp)-mediated efflux pump activity, while a significant decrease in pump activity was observed in overexpressing cells. This change in efflux pump activity was directly related to expression levels of P-gp in all cell lines. However, episomal complementation of the gene restored normal growth, drug sensitivity, P-gp expression, and efflux pump activity. The data indicate that LdMAPK1 negatively regulates the expression of P-glycoprotein-type efflux pumps in the parasite. The decrease in efflux pump activity with an increase in LdMAPK1 expression may result in increased antimony accumulation in the parasite, making it more vulnerable to the drug. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. MAPK1 of Leishmania donovani Modulates Antimony Susceptibility by Downregulating P-Glycoprotein Efflux Pumps

    PubMed Central

    Garg, Mansi

    2015-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Mitogen-activated protein kinases (MAPKs) are well-known mediators of signal transduction of eukaryotes, regulating important processes, like proliferation, differentiation, stress response, and apoptosis. In Leishmania, MAPK1 has been shown to be consistently downregulated in antimony-resistant field isolates, suggesting that it has a role in antimony resistance. The present work investigates the molecular mechanism of MAPK1 in antimony resistance in Leishmania donovani. The L. donovani MAPK1 (LdMAPK1) single-allele replacement mutants exhibited increased resistance to Sb(III) (5.57-fold) compared to wild-type promastigotes, while overexpressing parasites became much more susceptible to antimony. The LdMAPK1-mediated drug sensitivity was directly related to antimony-induced apoptotic death of the parasite, as was evidenced by a 4- to 5-fold decrease in cell death parameters in deletion mutants and a 2- to 3-fold increase in MAPK1-overexpressing cells. LdMAPK1-underexpressing parasites also exhibited increased P-glycoprotein (P-gp)-mediated efflux pump activity, while a significant decrease in pump activity was observed in overexpressing cells. This change in efflux pump activity was directly related to expression levels of P-gp in all cell lines. However, episomal complementation of the gene restored normal growth, drug sensitivity, P-gp expression, and efflux pump activity. The data indicate that LdMAPK1 negatively regulates the expression of P-glycoprotein-type efflux pumps in the parasite. The decrease in efflux pump activity with an increase in LdMAPK1 expression may result in increased antimony accumulation in the parasite, making it more vulnerable to the drug. PMID:25870075

  6. New Antimony Lanthanide Disulfide Dibromides LnSbS

    SciTech Connect

    Gout, D.; Jobic, S.; Evain, M.; Brec, R.

    2001-05-01

    CeSbS{sub 2}Br{sub 2} (I), Ce{sub 1/2}La{sub 1/2}SbS{sub 2}Br{sub 2} (II), and LaSbS{sub 2}Br{sub 2} (III) have been synthesized at 700 C from a mixture of LnBr{sub 3}, Ln{sub 2}S{sub 3}, Sb, and S and characterized by single-crystal X-ray diffraction. The three phases are isostructural (space group P2{sub 1}/c, Z=4) and crystallize in a novel, dense, bidimensional structure with cell parameters a=8.709(3) {angstrom}, b=9.187(2) {angstrom}, c=17.397(5) {angstrom} {beta}=104.26(3) for I, a=8.739(7) {angstrom}, b=9.219(7) {angstrom}, c=17.41(2) {angstrom}, =104.3(1) for II, and a=8.785(1) {angstrom}, b=9.236(2) {angstrom}, c=17.372(3) {angstrom}, {beta}=104.09(2) for III. In these compounds, [Ln S{sub 5}Br{sub 4}] and [Ln S{sub 3}Br{sub 6}] (Ln=Ce, La) distorted tricapped trigonal prisms define infinite {sub {infinity}}{sup 2}[LnS{sub 2}Br{sub 2}] layers counterbalanced and capped by antimony cations. In good accordance with the structural features, the charge balance in these materials is to be written Ln{sup III}Sb{sup III}S{sup -II}{sub 2}Br{sup -I}{sub 2}. These compounds exhibit a yellow hue with a measured absorption threshold of 2.42(1), 2.55(1), and 2.72(1) eV for I, II, and III, respectively. In the two cerium containing bromothioantimonates I and II, the origin of the color is assigned to a Ce-4f{yields}Ce-5d electronic transition, which shifts to higher energy from I to II due either to a matrix effect (increase of the mean Ln-S distances under the substitution of Ce for La) or to an atomic ordering between Ce and La cations on the Ln(1) and Ln(2) crystallographic sites. In contrast, the electronic transition at play in III involves a charge transfer from the bromine and sulfur ions to the antimony ions, the latter contributing substantially to the lowermost levels of the conduction band.

  7. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.

    PubMed

    Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2015-05-01

    The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P < 0.001). There was no significant difference of hair antimony concentrations among different occupation types in e-waste recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure.

  8. Homophilic Dscam interactions control complex dendrite morphogenesis

    PubMed Central

    Hughes, Michael E.; Bortnick, Rachel; Tsubouchi, Asako; Bäumer, Philipp; Kondo, Masahiro; Uemura, Tadashi; Schmucker, Dietmar

    2007-01-01

    Summary The morphogenesis of complex dendritic fields requires highly specific patterning and dendrite-dendrite recognition mechanisms. Alternative splicing of the Drosophila cell surface receptor Dscam results in up to 38,016 different receptor isoforms and in vitro binding studies suggested that sequence variability in immunoglobulin-like ecto-domains determines the specificity of strictly homophilic interactions. We report that diverse Dscam receptors play an important role in controlling cell-intrinsic aspects of dendrite guidance. We examined the function of Dscam during morphogenesis of dendrite arborization neurons (“da” neurons) and found that loss of Dscam in single neurons causes abnormal dendritic fasciculation and a strong increase in self-crossing of dendritic branches of da neurons. Restriction of dendritic fields of neighboring class III neurons appeared intact in Dscam deficient neurons suggesting that dendritic self-avoidance but not hetero-neuronal tiling may depend on Dscam function. Over-expression of the same Dscam isoforms in two da neurons with normally overlapping dendritic fields forced a spatial segregation of the two dendritic fields. Taken together, our results suggest that dendritic branches of all four classes of da neurons use isoform-specific homophilic interactions of Dscam to ensure minimal overlap of dendrites. The large pool of Dscam’s extracellular recognition domains may allow the same ‘core’ repulsion mechanism to be used in every da neuron without interfering with hetero-neuronal interactions. PMID:17481395

  9. Coding and decoding with dendrites.

    PubMed

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    PubMed

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  11. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol.

    PubMed

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu

    2015-12-15

    A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu2Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L(-1) HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol(-1), indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process.

  12. Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis

    PubMed Central

    do Monte-Neto, Rubens L.; Coelho, Adriano C.; Raymond, Frédéric; Légaré, Danielle; Corbeil, Jacques; Melo, Maria N.; Frézard, Frédéric; Ouellette, Marc

    2011-01-01

    Background Drug resistance is a major problem in leishmaniasis chemotherapy. RNA expression profiling using DNA microarrays is a suitable approach to study simultaneous events leading to a drug-resistance phenotype. Genomic analysis has been performed primarily with Old World Leishmania species and here we investigate molecular alterations in antimony resistance in the New World species L. amazonensis. Methods/Principal Findings We selected populations of L. amazonensis promastigotes for resistance to antimony by step-wise drug pressure. Gene expression of highly resistant mutants was studied using DNA microarrays. RNA expression profiling of antimony-resistant L. amazonensis revealed the overexpression of genes involved in drug resistance including the ABC transporter MRPA and several genes related to thiol metabolism. The MRPA overexpression was validated by quantitative real-time RT-PCR and further analysis revealed that this increased expression was correlated to gene amplification as part of extrachromosomal linear amplicons in some mutants and as part of supernumerary chromosomes in other mutants. The expression of several other genes encoding hypothetical proteins but also nucleobase and glucose transporter encoding genes were found to be modulated. Conclusions/Significance Mechanisms classically found in Old World antimony resistant Leishmania were also highlighted in New World antimony-resistant L. amazonensis. These studies were useful to the identification of resistance molecular markers. PMID:21629719

  13. Electrochemical antimony removal from accumulator acid: results from removal trials in laboratory cells.

    PubMed

    Bergmann, M E Henry; Koparal, A Savas

    2011-11-30

    Regeneration of spent accumulator acid could be an alternative process for crystallization, neutralisation and disposal. Therefore, for the first time in a study of the possibilities of electrochemical removal of antimony and accumulator acid regeneration on a laboratory scale, two synthetic and several real systems containing sulfuric acid of concentrations ranging between 28% and 36%, and antimony species were tested. Discontinuous electrochemical reactors with anion exchange membranes were successfully used in these experiments, which were conducted at a temperature of 35°C. Removal of antimony using cells that were not divided by a separator, however, was not possible. In selected experiments, by varying the electrode material, type of electrolyte, and cell current, the concentration of antimony could be reduced from the range of 5 ppm to 0.15 ppm. This resulted in current efficiencies between 0.00002% and 0.001%, and in specific electroenergy demands between 100 Wh L(-1) and 2000 Wh L(-1). In other experiments on substances with antimony contents up to 3500 mg L(-1), the current efficiencies obtained were more than a thousandfold higher. In contrast to the formally high relative energy consumption parameters absolute demand parameters are relatively small and favour the electrochemical method in small scale application. Besides plate electrodes, 3D-cathodes were used. Copper- and graphite cathodes produced the best results.

  14. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  15. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  16. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  17. Leachability and analytical speciation of antimony in coal fly ash.

    PubMed

    Miravet, Ricard; López-Sánchez, José Fermín; Rubio, Roser

    2006-08-25

    The present study assesses the single extraction of Sb from two coal fly ashes with aqueous solutions at a range of pHs (1-12) and with citrate 1 mol L(-1) at pH 5, in order to obtain preliminary information about Sb leaching from this matrix. Speciation analysis of the coal fly ash extracts by HPLC-ICP-MS and HPLC-HG-AFS was carried out in order to identify the presence of individual Sb species. Sb(V) was the main Sb species in the leachates, although minor amounts of Sb(III) were also detected in some extracts. Citrate at pH 5 gave the best extraction efficiency for both samples whereas Sb species were also fairly soluble in aqueous solutions at acidic pHs. Analysis by HPLC-ICP-MS provided the most accurate results in some extracts (aqueous solution at pH 1 and citrate at pH 5) when both coupled techniques used were compared. The presence in these leachates of higher content of interfering metal ions (Ca, Fe and Pb) than those obtained for the Sb species reduced stibine generation in the HPLC-HG-AFS analysis. The proposed methodology can be considered reliable and useful for antimony speciation in environmental studies.

  18. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    PubMed

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.

  19. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines.

    PubMed

    Ouakad, M; Vanaerschot, M; Rijal, S; Sundar, S; Speybroeck, N; Kestens, L; Boel, L; De Doncker, S; Maes, I; Decuypere, S; Dujardin, J-C

    2011-09-01

    Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

  20. [Four cutaneous leishmaniosis case resistant to meglumine antimoniate treatment].

    PubMed

    Polat, Erdal; Kutlubay, Zekayi

    2014-01-01

    The aim of the study was to treatment of cutaneous leishmaniasis caused by meglumine antimoniate resistant Leishmania major with Lucilia sericata larvae. Samples obtained from patients'lesions were stained with Giemsa and examined under the microscope. The samples were also incubated to Novy-Nicolle-McNeal (NNN) and Roswell Park Memorial Institute (RPMI) 1640 media. ITS1 region real time PCR was performed for identfying the Leishmania species. The patients were treated using Glucantime® or liposomal amphotericin B or L. sericata larvae according to their response to the treatmet regimes. In the initial examination, amastigote forms of Leishmania were seen in the samples of all 4 patients under microscopic examination. Two of the patients with cutaneous leishmaniasis, which were caused by Glucantime resistant L. major were treated with liposomal amphotericin B, and two of them were treated with L. sericata larvae. Leishmania promastigotes were not grown in both cultures. Cutaneous leishmaniasis, which wascaused by Glucantime resistant L. major has been successfully treated with L. sericata larvae in a very short time, 10 days. PCR results from samples taken 2 months after the treatment were examined and the results were negative.

  1. Thermal Stability of Nanocrystalline Copper Alloyed with Antimony

    NASA Astrophysics Data System (ADS)

    Atwater, Mark A.; Mula, Suhrit; Scattergood, Ronald O.; Koch, Carl C.

    2013-12-01

    Nanocrystalline copper (Cu) was generated by cryogenic, high-energy ball milling. Antimony (Sb) was added to investigate its utility in stabilizing the grain structure during annealing up to a maximum temperature of 1073 K (800 °C). When alloyed with Sb in quantities up to 1 at. pct, thermal stability was maintained up to 673 K (400 °C). Cu and Sb have very different molar volumes which can drive segregation of the solute due to the elastic strain energy and hence stabilize the grain size by reducing grain boundary energy. The elastic mismatch of Sb in Cu is calculated to be quite large (113 kJ/mol) when molar volume is used, but when an equivalent equation using atomic radius is applied, the driving force is nearly an order of magnitude lower (~12 kJ/mol). The low elastic mismatch is corroborated by the large equilibrium solubility of Sb in Cu. The results for the Cu-Sb system are compared to the nanocrystalline Ni-W system and the large amount of equilibrium solubility of the solute in both cases is thought to hinder thermal stabilization since segregation is not strongly favored.

  2. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  3. Removal of antimony from copper by injection of soda ash

    NASA Astrophysics Data System (ADS)

    Stapurewicz, Tadeusz T.; Themelis, Nickolas J.

    1990-12-01

    The removal of Sb from molten copper is of importance in the development of processes which can smelt copper concentrates directly into copper in a single furnace. A promising method is injection of oxygen and sodium carbonate in a modified anode furnace. This study encompassed a thermodynamic analysis of the impurity removal reactions and an experimental investigation of antimony removal from molten copper in a 15 kW induction furnace. The results showed that the reaction was controlled by diffusion of Sb in the metal phase. The reaction between metal and injected flux can be divided into two subprocesses-. (1) “transitory contact” reaction to the injected flux particles as they rise through the melt and (2) “permanent contact” reaction across the interface between the metal bath and the supernatant slag layer. On the basis of the experimental work, the overall volumetric mass transfer coefficient (cm3/s) at 1473 K was expressed in terms of the two subprocesses as follows: (k d A) ov = (k d A) pc + (k d A) tc = 1.25Q{g/0.29} + 0.28 (H Q f ) where Q g is the injection gas flow rate in normal liters per minute, H is the depth of injection in centimeters, and Q f the rate of flux injection in grams per second.

  4. Single-layer crystalline phases of antimony: Antimonenes

    NASA Astrophysics Data System (ADS)

    Aktürk, O. Üzengi; Ã-zçelik, V. Ongun; Ciraci, S.

    2015-06-01

    The pseudolayered character of 3D bulk crystals of antimony has led us to predict its 2D single-layer crystalline phase named antimonene in a buckled honeycomb structure like silicene. Sb atoms also form an asymmetric washboard structure like black phospherene. Based on an extensive analysis comprising ab initio phonon and finite-temperature molecular dynamics calculations, we show that these two single-layer phases are robust and can remain stable at high temperatures. They are nonmagnetic semiconductors with band gaps ranging from 0.3 eV to 1.5 eV, and are suitable for 2D electronic applications. The washboard antimonene displays strongly directional mechanical properties, which may give rise to a strong influence of strain on the electronic properties. Single-layer antimonene phases form bilayer and trilayer structures with wide interlayer spacings. In multilayers, this spacing is reduced and eventually the structure changes to 3D pseudolayered bulk crystals. The zigzag and armchair nanoribbons of the antimonene phases have fundamental band gaps derived from reconstructed edge states and display a diversity of magnetic and electronic properties depending on their width and edge geometry. Their band gaps are tunable with the widths of the nanoribbons. When grown on substrates, such as germanene or Ge(111), the buckled antimonene attains a significant influence of substrates.

  5. Determination of antimony by using tungsten trap atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Titretir, Serap; Kendüzler, Erdal; Arslan, Yasin; Kula, İbrahim; Bakırdere, Sezgin; Ataman, O. Yavuz.

    2008-08-01

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH 3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 °C. Following the preconcentration step, the trap is heated to 895 °C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH 4 solutions, H 2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l - 1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  6. Mitochondrial Proteomics of Antimony and Miltefosine Resistant Leishmania infantum

    PubMed Central

    Vincent, Isabel M.; Racine, Gina; Légaré, Danielle; Ouellette, Marc

    2015-01-01

    Antimony (SbIII) and miltefosine (MIL) are important drugs for the treatment of Leishmania parasite infections. The mitochondrion is likely to play a central role in SbIII and MIL induced cell death in this parasite. Enriched mitochondrial samples from Leishmania promastigotes selected step by step for in vitro resistance to SbIII and MIL were subjected to differential proteomic analysis. A shared decrease in both mutants in the levels of pyruvate dehydrogenase, dihydrolipoamide dehydrogenase, and isocitrate dehydrogenase was observed, as well as a differential abundance in two calcium-binding proteins and the unique dynamin-1-like protein of the parasite. Both mutants presented a shared increase in the succinyl-CoA:3-ketoacid-coenzyme A transferase and the abundance of numerous hypothetical proteins was also altered in both mutants. In general, the proteomic changes observed in the MIL mutant were less pronounced than in the SbIII mutant, probably due to the early appearance of a mutation in the miltefosine transporter abrogating the need for a strong mitochondrial adaptation. This study is the first analysis of the Leishmania mitochondrial proteome and offers powerful insights into the adaptations to this organelle during SbIII and MIL drug resistance. PMID:28248274

  7. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  8. First Report on Infant Acute Urticaria after Mother’s Parenteral Use of Meglumine Antimoniate (Glucantime): A Case Report

    PubMed Central

    MOZAFARI, Omid; SHOROFI, Seyed Afshin; YOUSEFI, Seyde Sedighe

    2016-01-01

    Pentavalent antimonials are still the first drug of choice for the treatment of cutaneous leishmaniasis (CL). Like other treatments, they can cause adverse reactions including musculoskeletal pain, gastrointestinal disturbances, and mild to moderate headaches. In this paper, we report the first case of an infant who developed acute urticaria after her mother’s parenteral use of meglumine antimoniate (glucantime). PMID:27957467

  9. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation

    SciTech Connect

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R. St. J.

    2013-06-15

    Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.

  10. An Inverse Approach for Elucidating Dendritic Function

    PubMed Central

    Torben-Nielsen, Benjamin; Stiefel, Klaus M.

    2010-01-01

    We outline an inverse approach for investigating dendritic function–structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a “hypothesis generator” in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a “function confirmation” by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions. PMID:21258425

  11. An inverse approach for elucidating dendritic function.

    PubMed

    Torben-Nielsen, Benjamin; Stiefel, Klaus M

    2010-01-01

    We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a "hypothesis generator" in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a "function confirmation" by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  12. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrite irritator control for the EDSE in the Microgravity Development Lab (MDL).

  13. SESPE-FRAZIER, DIABLO, MATILIJA, DRY LAKES, SAWMILL-BADLANDS, CUYAMA, ANTIMONY, AND QUATAL ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Hale, William N.

    1984-01-01

    The study area, consisting of the Sespe-Frazier, Diablo, Matilija, Dry Lakes, Sawmill-Badlands, Cuyama, Antimony, and Quatal Roadless Areas, occupies about 872 sq mi in the Los Padres National Forest, California. Studies indicate that the Sespe-Frazier Roadless Area contains demonstrated resources of gold, gypsum, phosphate and bentonite; deposits in the Cuyama Roadless Area have demonstrated resources of gypsum; mines in the Antimony Roadless Area have demonstrated resources of antimony, gold, silver, and marble; and the Quatal Roadless Area has demonstrated resources of bentonite. The Sespe-Frazier Roadless Area has substantiated potential for geothermal resources suitable for direct-heat purposes, probable and substantiated potential for oil and gas resources, and probable potential for gold resources. Small areas of probable resource potential for antimony and gold were identified in Antimony Roadless Area.

  14. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    SciTech Connect

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-02-11

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  15. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.

    PubMed

    Steely, Sarah; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2007-07-01

    The presence of antimony compounds is often suspected in the soil of apple orchards contaminated with lead arsenate pesticide and in the soil of shooting ranges. Nitric acid (1M) extractable Sb from the shooting range (8300 microg kg(-1)) and the apple orchard (69 microg kg(-1)) had considerably higher surface Sb levels than the control site (<1.5 microg kg(-1)), and Sb was confined to the top approximately 30 cm soil layer. Sb(V) was the principal species in the shooting range and the apple orchard surface soils. Size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) analysis of humic acids isolated from the two contaminated soils demonstrated that Sb has complexed to humic acid molar mass fractions. The results also indicate that humic acids have the ability to arrest the mobility of Sb through soils and would be beneficial in converting Sb(III) to a less toxic species, Sb(V), in contaminated areas.

  16. A species-specific approach to the use of non-antimony treatments for cutaneous leishmaniasis.

    PubMed

    Ramanathan, Roshan; Talaat, Kawsar R; Fedorko, Daniel P; Mahanty, Siddhartha; Nash, Theodore E

    2011-01-01

    We used a species-specific approach to treat 10 patients with cutaneous leishmaniasis diagnosed using polymerase chain reaction. Non-antimony treatments (oral miltefosine, ketoconazole, and liposomal amphotericin B) were chosen as an alternative to pentavalent antimony drugs based on likely or proven drug efficacy against the infecting species. Leishmania Viannia panamensis was diagnosed in three patients and treated successfully with oral ketoconazole. Miltefosine treatment cured two patients with L. infantum chagasi. A wide variety of Leishmania responded to liposomal amphotericin B administered for 5-7 days. Three patients with L. V. braziliensis, one patient with L. tropica, and two patients with L. infantum chagasi were treated successfully. One person with L. V. braziliensis healed slowly because of a resistant bacterial superinfection, and a second patient with L. infantum chagasi relapsed and was retreated with miltefosine. These drugs were reasonably well-tolerated. In this limited case series, alternative non-antimony-based regimens were convenient, safe, and effective.

  17. Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions

    PubMed Central

    Haldar, Arun Kumar; Sen, Pradip; Roy, Syamal

    2011-01-01

    In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model. Thus, vanadium compounds may be used in combination with Sb(V) in the treatment of Sb(V) resistance cases of kala-azar. PMID:22091408

  18. Process for treating spent catalyst including antimony halides from chlorofluorocarbon production

    SciTech Connect

    Kalcevic, V.; McGahan, J.F.

    1988-06-14

    A process for treating spent catalyst from chlorofluorocarbon production is described wherein the catalyst includes antimony halides and undergoes hydrolysis in an aqueous medium to produce insoluble antimony compounds and fluoride ions. The process comprises hydrolyzing the catalyst in an aqueous solution of ferric chloride having a sufficient concentration of ferric ions to complex substantially all of the fluoride ions produced upon hydrolysis of the catalyst, neutralizing the reaction mass present following hydrolysis of the catalyst and complexing of the fluoride ions by contacting the reaction mass with an aqueous suspension of a compound selected from the class consisting of calcium hydroxide and magnesium hydroxide, and separating the insoluble antimony compounds from the neutralized reaction mass.

  19. Spectrophotometric procedure using rhodamine B for determination of submicrogram quantities of antimony in rocks

    USGS Publications Warehouse

    Schnepfe, M.M.

    1973-01-01

    A spectrophotometric procedure using Rhodamine B is given for the determination of antimony in mineralized rocks after its separation as stibine. A study of the Rhodamine B reaction points to the importance of the order of addition of reagents in enhancing sensitivity and increasing the stability of the system. The tolerance of some 26 elements is established for the overall procedure. Although the limit of determination is approximately 0??5 ppm Sb in a 0??2-g sample, the procedure is intended primarily for screening samples containing more than 1 ppm Sb. In pure solutions 0??1 ??g of antimony can be determined with a relative standard deviation of 25%. For >0??2 ??g of antimony a relative standard deviation of 15% or less can be expected. ?? 1973.

  20. Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study.

    PubMed

    Culioli, Julia-Laurence; Fouquoire, Aurélie; Calendini, Serge; Mori, Christophe; Orsini, Antoine

    2009-10-04

    The distribution of arsenic and antimony discharges related to a past mining activity in the Bravona River and its tributary, the Presa River, was investigated. We determined levels of arsenic and antimony in the water and the biota (bryophytes, benthic macroinvertebrates and fish), along a pollution gradient. Concentrations of metalloids downstream mining wastes were significantly higher than those in reference station sites. The pattern of accumulation of arsenic in the food chain decreased as follows: macroinvertebrates>bryophytes>water>fish tissues. For antimony, the lowest concentrations were found in water. The accumulation of metals in invertebrate taxa depends on their place in the food chain, their feeding behavior, and their specific habit (lenitophilic/rheophilic species). Concentrations of both metalloids decreased with increasing trophic level.

  1. Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells

    SciTech Connect

    Tutu, F. K.; Wu, J.; Lam, P.; Tang, M.; Liu, H.; Miyashita, N.; Okada, Y.; Wilson, J.; Allison, R.

    2013-07-22

    We report enhanced solar cell performance using high-density InAs quantum dots. The high-density quantum dot was grown by antimony mediated molecular beam epitaxy. In-plane quantum dot density over 1 × 10{sup 11} cm{sup −2} was achieved by applying a few monolayers of antimony on the GaAs surface prior to quantum dot growth. The formation of defective large clusters was reduced by optimization of the growth temperature and InAs coverage. Comparing with a standard quantum dot solar cell without the incorporation of antimony, the high-density quantum dot solar cell demonstrates a distinct improvement in short-circuit current from 7.4 mA/cm{sup 2} to 8.3 mA/cm{sup 2}.

  2. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  3. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  4. Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nikolakopoulou, Archontoula; Raptis, Dimitrios; Dracopoulos, Vasilios; Sygellou, Lamprini; Andrikopoulos, Konstantinos S.; Lianos, Panagiotis

    2015-03-01

    Solid state solar cells of inverted structure were constructed by successive deposition of nanoparticulate titania, antimony sulfide sensitizer and P3HT on FTO electrodes with PEDOT:PSS:Ag as counter electrode. Sensitized photoanode electrodes were characterized by XRD, Raman, XPS, FESEM and UV-vis. Small laboratory scale cells were first constructed and optimized. Functional cells were obtained by annealing the antimony sulfide film either in air or in inert atmosphere. High short-circuit currents were recorded in both cases with air-annealed sample producing more current but lower voltage. Small unit cells were combined to form cell modules. Connection of unit cells in parallel increased current but not proportionally to that of the unit cell. Connection in series preserved current and generated voltage multiplication. Cells were constructed and studied under ambient conditions, without encapsulation. The results encourage upscaling of antimony sulfide solar cells.

  5. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  6. Stage-Specific Activity of Pentavalent Antimony against Leishmania donovani Axenic Amastigotes

    PubMed Central

    Ephros, Moshe; Bitnun, Ari; Shaked, Pninit; Waldman, Ella; Zilberstein, Dan

    1999-01-01

    The standard treatment of human visceral leishmaniasis involves the use of pentavalent antimony (SbV) compounds. In recent years increasing numbers of clinical failures of treatment with SbV have been reported, probably due to the development of parasite resistance to this compound. The mode of action and mechanisms of resistance to SbV have not been fully elucidated. In the present study an axenic amastigote culture was used to study the in vitro responses of Leishmania donovani to SbV. Susceptibility to both sodium stibogluconate and meglumine antimoniate was found to be stage specific. Amastigotes were 73 to 271 times more susceptible to SbV than were promastigotes. As opposed to SbV, trivalent antimony (SbIII) was similarly toxic to both developmental stages. When promastigotes were transformed to amastigotes, susceptibility to meglumine antimoniate developed after 4 to 5 days, upon the completion of differentiation. In contrast, with transformation from amastigotes to promastigotes, resistance to meglumine antimoniate was acquired rapidly, within 24 h, before the completion of differentiation. The culture of promastigotes at an acidic pH (5.5) or at an elevated temperature (37°C) alone did not lead to the appearance of SbV susceptibility, emphasizing the requirement of both these environmental factors for the development of SbV susceptibility. A previously isolated sodium stibogluconate (Pentostam)-resistant L. donovani mutant (Ld1S.20) is also resistant to meglumine antimoniate, indicating cross-resistance to SbV-containing compounds. In contrast, no cross-resistance was found with SbIII, suggesting a mechanism of SbV resistance different from that described in Leishmania tarentolae. These data show that L. donovani susceptibility to SbV is parasite intrinsic, stage specific, and macrophage independent. PMID:9925518

  7. Noninferiority of Miltefosine Versus Meglumine Antimoniate for Cutaneous Leishmaniasis in Children

    PubMed Central

    Rubiano, Luisa Consuelo; Miranda, María Consuelo; Muvdi Arenas, Sandra; Montero, Luz Mery; Rodríguez-Barraquer, Isabel; Garcerant, Daniel; Prager, Martín; Osorio, Lyda; Rojas, Maria Ximena; Pérez, Mauricio; Nicholls, Ruben Santiago

    2012-01-01

    Background. Children have a lower response rate to antimonial drugs and higher elimination rate of antimony (Sb) than adults. Oral miltefosine has not been evaluated for pediatric cutaneous leishmaniasis. Methods. A randomized, noninferiority clinical trial with masked evaluation was conducted at 3 locations in Colombia where Leishmania panamensis and Leishmania guyanensis predominated. One hundred sixteen children aged 2–12 years with parasitologically confirmed cutaneous leishmaniasis were randomized to directly observed treatment with meglumine antimoniate (20 mg Sb/kg/d for 20 days; intramuscular) (n = 58) or miltefosine (1.8–2.5 mg/kg/d for 28 days; by mouth) (n = 58). Primary outcome was treatment failure at or before week 26 after initiation of treatment. Miltefosine was noninferior if the proportion of treatment failures was ≤15% higher than achieved with meglumine antimoniate (1-sided test, α = .05). Results. Ninety-five percent of children (111/116) completed follow-up evaluation. By intention-to-treat analysis, failure rate was 17.2% (98% confidence interval [CI], 5.7%–28.7%) for miltefosine and 31% (98% CI, 16.9%–45.2%) for meglumine antimoniate. The difference between treatment groups was 13.8%, (98% CI, −4.5% to 32%) (P = .04). Adverse events were mild for both treatments. Conclusions. Miltefosine is noninferior to meglumine antimoniate for treatment of pediatric cutaneous leishmaniasis caused by Leishmania (Viannia) species. Advantages of oral administration and low toxicity favor use of miltefosine in children. Clinical Trial Registration. NCT00487253. PMID:22238470

  8. Mercury, arsenic, antimony, and selenium contents of sediment from the Kuskokwim River, Bethel, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Belkin, Harvey E.; Sparck, Harold M.

    1993-10-01

    The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.

  9. Mercury, arsenic, antimony, and selenium contents of sediment from the Kuskokwim River, Bethel, Alaska, USA

    USGS Publications Warehouse

    Belkin, H.E.; Sparck, H.M.

    1993-01-01

    The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources. ?? 1993 Springer-Verlag.

  10. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  11. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  12. Synthesis and Crystal Structures of the First Antimony(III) Aziridinides.

    PubMed

    Harmgarth, Nicole; Liebing, Phil; Zörner, Florian; Silinskas, Mindaugas; Burte, Edmund P; Edelmann, Frank T

    2017-04-17

    The first antimony(III) aziridinyl derivatives are reported. Treatment of anhydrous SbCl3 with N-lithioaziridine Li(Azn) (Azn = NC2H4) afforded the structurally unique heterobimetallic lithium/antimony(III) amide complex [Li3Sb(μ3-Cl)2(μ-Azn)4(THF)2]∞ (1). Homoleptic Sb2(Azn)6 (2) has become available for the first time through an amide group exchange reaction between Sb(NMe2)3 and 3 equiv of aziridine. The low-melting Sb2(Azn)6 exhibits a "weak dimer" structure in the crystal.

  13. Experimental and clinical studies with a new antimonial preparation for the treatment of schistosomiasis

    PubMed Central

    Pedrique, Miguel Ron; Ercoli, Nicolò

    1971-01-01

    This paper presents the results of a clinical study in which a new antimony preparation—a chelate of dimethylcysteine with antimony sodium tartrate (”NAP”)—was administered intramuscularly at a total dosage of 2 g (5×400 mg, corresponding to 290 mg of Sb) to 400 patients with schistosomiasis. Among 108 patients in a rural population the treatment was on the whole well accepted (97% completed the intensive course of injections), thus indicating that NAP would be useful for the mass treatment of schistosomiasis. PMID:5317079

  14. Electron irradiation effects on optical properties of semiorganic antimony thiourea tetra chloride single crystals.

    PubMed

    Mahesha Upadhya, K; Udayashankar, N K; Ganesh, S

    2012-11-01

    Antimony thiourea tetra chloride single crystals were grown by solution growth technique at room temperature. The UV-visible, fourier transform infrared and fluorescence spectra were recorded and electron irradiation effects on these properties were studied. The optical absorption edge of the UV-visible spectrum slightly shifts towards longer wavelength with the increase of irradiation dose. The fluorescence quantum yield is decreased for electron irradiated antimony thiourea tetra chloride crystals. The presence of functional group of the as-grown and electron irradiated complex was confirmed by fourier transform infrared spectral study. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Electron irradiation effects on optical properties of semiorganic antimony thiourea tetra chloride single crystals

    NASA Astrophysics Data System (ADS)

    Mahesha Upadhya, K.; Udayashankar, N. K.; Ganesh, S.

    2012-11-01

    Antimony thiourea tetra chloride single crystals were grown by solution growth technique at room temperature. The UV-visible, fourier transform infrared and fluorescence spectra were recorded and electron irradiation effects on these properties were studied. The optical absorption edge of the UV-visible spectrum slightly shifts towards longer wavelength with the increase of irradiation dose. The fluorescence quantum yield is decreased for electron irradiated antimony thiourea tetra chloride crystals. The presence of functional group of the as-grown and electron irradiated complex was confirmed by fourier transform infrared spectral study.

  16. Intrinsic and extrinsic mechanisms of dendritic morphogenesis.

    PubMed

    Dong, Xintong; Shen, Kang; Bülow, Hannes E

    2015-01-01

    The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors.

  17. Regulation of dendrite morphogenesis by extrinsic cues.

    PubMed

    Valnegri, Pamela; Puram, Sidharth V; Bonni, Azad

    2015-07-01

    Dendrites play a central role in the integration and flow of information in the nervous system. The morphogenesis and maturation of dendrites is hence an essential step in the establishment of neuronal connectivity. Recent studies have uncovered crucial functions for extrinsic cues in the development of dendrites. We review the contribution of secreted polypeptide growth factors, contact-mediated proteins, and neuronal activity in distinct phases of dendrite development. We also highlight how extrinsic cues influence local and global intracellular mechanisms of dendrite morphogenesis. Finally, we discuss how these studies have advanced our understanding of neuronal connectivity and have shed light on the pathogenesis of neurodevelopmental disorders.

  18. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  19. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  20. Pattern selection in dendritic solidification

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Goldenfeld, N.; Kotliar, B. G.; Langer, J. S.

    1984-01-01

    It is shown that the dynamically selected velocity and tip radius of dendrites in the boundary-layer model of solidification have the special values which permit the existence of steady-state needle-crystal solutions. This result, in conjunction with considerations of stability, provides new insight concerning the validity of the marginal-stability hypothesis.

  1. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  2. Temperature coefficient of and oxygen effect on the antimony microelectrode.

    PubMed

    Satake, N; Matsumura, Y; Fujimoto, M

    1980-01-01

    With regard to pH measurement of biological fluids in vivo with metal-metal oxide microelectrodes, the effect of temperature and partial pressure of oxygen on antimony (Sb) microelectrodes was examined, and pH of blood was estimated in the bullfrog. The temperature coefficient (dE/dt) of electromotive force (EMF) of Sb-microelectrodes in the range of 7 to 37 degrees C was -1.18 +/- 0.113 mV/degrees C (mean +/- SEM) in Ringer solution, whereas that of the pH glass electrode in the same solution was -0.43 +/- 0.035 mV/degrees C. When estimated in Tris buffer solution, it was -0.06 +/- 0.063 mV/degrees C for Sb-microelectrodes and 1.05 + 0.036 mV/degrees C for glass electrodes. The change of slope constant (alpha in -mV/pH) in the Sb-microelectrode due to temperature change could be predicted empirically from: alpha = 0.40 (t-25) + 55.3, where t represents the measuring temperature in degrees C. The resultant deviation of pH reading between Sb and glass electrodes, delta pHSb-Glass, may be expressed by: delta pHSb-Glass = 0.00183 (t-25) +0.016. In the range of 45 to 760 mmHg of oxygen partial pressure it fixed pH, the EMF increased linearly with the increase of Po2, the slope (dE/dlog(Po2)) being 11.7 +/- 0.42 (SEM) mV (n = 13, t = 25 degrees C). In consideration of the above effects, the blood pH of bullfrog was estimated to be 7.697 +/- 0.092 (SD) and 7.729 +/- 0.111 with glass and Sb-microelectrodes respectively, the difference between the two being relatively minor.

  3. Subcellular distribution and chemical forms of antimony in Ficus tikoua.

    PubMed

    Wang, Yong; Chai, Liyuan; Yang, Zhihui; Mubarak, Hussani; Xiao, Ruiyang; Tang, Chongjian

    2017-02-01

    Ficus tikoua (F. tikoua) was a potential species for antimony (Sb) phytoremediation due to its wide growth in the mining area. However, little was known about its tolerance mechanisms toward Sb. The determination of the distribution and chemical speciation of Sb in F. tikoua is essential for understanding the mechanisms involved in Sb accumulation, transportation, and detoxification. The present study investigated the subcellular distribution and chemical forms of Sb in F. tikoua. The plant was exposed to different Sb concentrations (0, 30, 90, and 180 μmol/L) for 30 days. The results showed that F. tikoua possessed a marked ability to tolerate and accumulate Sb. The proportional Sb increased with increasing Sb concentration in the solution, and the highest Sb concentration occurred in roots (1274.5-1580.9 mg/kg), followed by stems (133.5-498.9 mg/kg) and leaves (4.1-15.7 mg/kg). In the subcellular sequestration of Sb in F. tikoua, the largest accumulation of Sb occurred in cell walls (72.4-87.5%) followed by cytoplasmic organelles (8.2-18.6%) and cytoplasmic supernatant. The results suggested that cell walls act as important protective barriers against Sb toxicity in F. tikoua. Although Sb in all plant tissues found primarily in the fractions extracted by ethanol and distilled water, the current study found that the Sb amounts in the HAc-extractable fraction, HCl-extractable fraction, and residue fraction increased at the highest Sb level (180 μmol/L) compared to that under lower Sb levels. These results indicate that excessive Sb accumulated in F. tikoua under Sb stress is bound to non-dissolved or low-bioavailable compounds, a biochemical mechanism that benefits F. tikoua because it helps alleviate Sb toxicity.

  4. Molecular and cellular mechanisms of dendritic morphogenesis

    PubMed Central

    Gao, Fen-Biao

    2008-01-01

    Summary Dendrites exhibit unique cell-type specific branching patterns and targeting specificity that are critically important for neuronal function and connectivity. Recent evidence indicates that highly complex transcriptional regulatory networks dictate various aspects of dendritic outgrowth, branching, and routing. In addition to other intrinsic molecular pathways such as membrane protein trafficking, interactions between neighboring dendritic branches also contribute to the final specification of dendritic morphology. Nonredundant coverage by dendrites of same type of neurons, known as tiling, requires the actions of the Tricornered/Furry (Sax-1/Sax-2) signaling pathway. However, the dendrites of a neuron do not cross over each other, a process called self-avoidance that is mediated by Down’s syndrome cell adhesion molecule (Dscam). Those exciting findings have enhanced significantly our understanding of dendritic morphogenesis and revealed the magnitude of complexity in the underlying molecular regulatory networks. PMID:17933513

  5. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain).

    PubMed

    Murciego, A Murciego; Sánchez, A García; González, M A Rodríguez; Gil, E Pinilla; Gordillo, C Toro; Fernández, J Cabezas; Triguero, T Buyolo

    2007-01-01

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation.

  6. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    PubMed

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  7. The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice.

    PubMed

    Ding, Yongzhen; Wang, Ruigang; Guo, Junkang; Wu, Fengchang; Xu, Yingming; Feng, Renwei

    2015-04-01

    Selenium (Se) can alleviate the toxicity of antimony (Sb) in plants; however, the associated mechanisms have not been fully clarified. In this study, we hypothesize that Se can affect the subcellular distribution of Sb to regulate Sb toxicity. To test our hypothesis, two nested hydroponic experiments were performed by using paddy rice (Fengmeizhan). The results showed that Sb exerted toxic effects on the growth of paddy rice, and Se caused beneficial effects that were limited to the shoot growth. In general, Se and Sb mutually showed antagonistic effects on their uptake and concentrations in different subcellular fractions. However, in some cases, the stimulation effects of Sb on the Se concentration in chlorophyll (Chl) and cytosol (Cy) fractions or of Se on the Sb concentration in the cell wall fraction (Cw) were also observed in the shoots, which might suggest that Sb detoxification by Se is also related to the migration of both Se and Sb in cells. Selenium and Sb were primarily concentrated in the Cw and Cy, suggesting the important roles of these two fractions in detoxifying Se and Sb. When paddy rice was subjected to increasing Sb concentrations and a fixed Se concentration, most of the Se in the shoots was sequestered in the Cy (59.81-79.51% of total Se) and more Se was transferred into the inner cell from Cw; however, in the roots, Se was primarily concentrated in the Cw (53.28-72.10%). When paddy rice was exposed to increasing Se concentrations with a fixed Sb concentration, the Cw in both the shoots and roots might play an important role in binding Se, especially in the roots where up to 78.92% of the total Se was sequestered in the Cw.

  8. Should we continue to indicate meglumine antimoniate as first-line treatment for cutaneous leishmaniasis in Tunisia.

    PubMed

    Mlika, Rym Benmously; Hamida, Myriam Ben; Hammami, Houda; Jannet, Salima Ben; Badri, Talel; Fenniche, Sami; Mokhtar, Inçaf

    2012-01-01

    Meglumine antimoniate compounds have been the mainstay of treatment for cutaneous leishmaniasis (CL) for decades. We propose to evaluate the place of these drugs in this indication in Tunisia. We retrospectively reviewed medical records of 67 patients treated for (CL) using meglumine antimoniate at a dose of 20 mg/kg/day for 15 day from 1998 to 2010. Clinical and laboratory data, tolerance, and outcome were precised. Side effects were recorded in 17 among 67 patients (25%). The average age was 44.4 years (2-86 years). Antimony intolerance events occurred in 11 patients, stibio-intoxication events in nine cases, and the both type of antimony adverse effects were observed in three patients. Fever was the most frequent complication of antimony intolerance (five cases), followed by cough (three cases), rash (two cases), injection site erythema (two cases), musculoskeletal pain (one case), asthenia (one case), and vomiting (one case). Signs of stibio-intoxication were asymptomatic elevation of amylase level (four cases), hepatic cytolysis (three cases), hematologic toxicity (three cases), and acute toxic kidney failure (one case). Meglumine antimoniate was stopped in 13 cases. Systemic administration of pentavalent antimonials in the treatment of CL has been associated with severe adverse effects. CL observed in Tunisia is a self-healing dermatosis that never induces sequela; therefore, other therapies such as topical treatment or cryotherapy should be considered. © 2012 Wiley Periodicals, Inc.

  9. Treatment of Visceral Leishmaniasis: Model-Based Analyses on the Spread of Antimony-Resistant L. donovani in Bihar, India

    PubMed Central

    Stauch, Anette; Duerr, Hans-Peter; Dujardin, Jean-Claude; Vanaerschot, Manu; Sundar, Shyam; Eichner, Martin

    2012-01-01

    Background Pentavalent antimonials have been the mainstay of antileishmanial therapy for decades, but increasing failure rates under antimonial treatment have challenged further use of these drugs in the Indian subcontinent. Experimental evidence has suggested that parasites which are resistant against antimonials have superior survival skills than sensitive ones even in the absence of antimonial treatment. Methods and Findings We use simulation studies based on a mathematical L. donovani transmission model to identify parameters which can explain why treatment failure rates under antimonial treatment increased up to 65% in Bihar between 1980 and 1997. Model analyses suggest that resistance to treatment alone cannot explain the observed treatment failure rates. We explore two hypotheses referring to an increased fitness of antimony-resistant parasites: the additional fitness is (i) disease-related, by causing more clinical cases (higher pathogenicity) or more severe disease (higher virulence), or (ii) is transmission-related, by increasing the transmissibility from sand flies to humans or vice versa. Conclusions Both hypotheses can potentially explain the Bihar observations. However, increased transmissibility as an explanation appears more plausible because it can occur in the background of asymptomatically transmitted infection whereas disease-related factors would most probably be observable. Irrespective of the cause of fitness, parasites with a higher fitness will finally replace sensitive parasites, even if antimonials are replaced by another drug. PMID:23285309

  10. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction.

    PubMed

    Wen, Shengping; Zhu, Xiashi

    2013-10-15

    A simple, sensitive and efficient method of ultrasound-assisted emulsification of solidified floating organic drop microextraction (USE-SFODME) coupled to electrothermal atomic absorption spectrometry for the speciation of antimony at different oxidation state Sb(III)/Sb(V) in environmental samples was established. In this method, the hydrophobic complex of Sb(III) with sodium diethyldithiocarbamate (DDTC) is extracted by 1-undecanol at pH 9.0, while Sb(V) remains in aqueous phase. Sb(V) content can be calculated by subtracting Sb(III) from the total antimony after reducing Sb(V) to Sb(III) by l-cysteine. Various factors affecting USE-SFODME including pH, extraction solvent and its volume, concentration of DDTC, sonication time, and extraction temperature were investigated. Under the optimized conditions, the calibration curve was linear in the range from 0.05 to 10.0 ng mL(-1), with the limit of detection (3σ) 9.89 ng L(-1) for Sb(III). The relative standard deviation for Sb(III) was 4.5% (n=9, c=1.0 ng mL(-1)). This method was validated against the certified reference materials (GSB 07-1376-2001, GBW07441), and applied to the speciation of antimony in environmental samples (soil and water samples) with satisfactory results.

  11. Hepatotoxicity of Pentavalent Antimonial Drug: Possible Role of Residual Sb(III) and Protective Effect of Ascorbic Acid

    PubMed Central

    Kato, Kelly C.; Morais-Teixeira, Eliane; Reis, Priscila G.; Silva-Barcellos, Neila M.; Salaün, Pascal; Campos, Paula P.; Dias Corrêa-Junior, José; Rabello, Ana; Demicheli, Cynthia

    2014-01-01

    Pentavalent antimonial drugs such as meglumine antimoniate (Glucantime [Glu; Sanofi-Aventis, São Paulo, Brazil]) produce severe side effects, including cardiotoxicity and hepatotoxicity, during the treatment of leishmaniasis. We evaluated the role of residual Sb(III) in the hepatotoxicity of meglumine antimoniate, as well as the protective effect of the antioxidant ascorbic acid (AA) during antimonial chemotherapy in a murine model of visceral leishmaniasis. BALB/c mice infected with Leishmania infantum were treated intraperitoneally at 80 mg of Sb/kg/day with commercial meglumine antimoniate (Glu) or a synthetic meglumine antimoniate with lower Sb(III) level (MA), in association or not with AA (15 mg/kg/day), for a 20-day period. Control groups received saline or saline plus AA. Livers were evaluated for hepatocytes histological alterations, peroxidase activity, and apoptosis. Increased proportions of swollen and apoptotic hepatocytes were observed in animals treated with Glu compared to animals treated with saline or MA. The peroxidase activity was also enhanced in the liver of animals that received Glu. Cotreatment with AA reduced the extent of histological changes, the apoptotic index, and the peroxidase activity to levels corresponding to the control group. Moreover, the association with AA did not affect the hepatic uptake of Sb and the ability of Glu to reduce the liver and spleen parasite loads in infected mice. In conclusion, our data supports the use of pentavalent antimonials with low residue of Sb(III) and the association of pentavalent antimonials with AA, as effective strategies to reduce side effects in antimonial therapy. PMID:24189251

  12. Dendritic cell analysis in primary immunodeficiency

    PubMed Central

    Bigley, Venetia; Barge, Dawn; Collin, Matthew

    2016-01-01

    Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease. PMID:27755182

  13. An Insight into Sodiation of Antimony from First-Principles Crystal Structure Prediction

    NASA Astrophysics Data System (ADS)

    Caputo, Riccarda

    2016-02-01

    Elemental antimony has recently become an attractive anode material for potential application in rechargeable sodium-ion batteries. I present a first-principles study of the structure-composition dependence of the Na-Sb system for both sodiation and desodiation processes. The enthalpy of reaction of x moles of sodium with the hexagonal structure of antimony reveals several stable crystal structures for 0 < x ≤ 3, with variable composition states for 1.25 < x < 2.75. The direct and reverse reactions pass through similar states in terms of enthalpy of formation and symmetry representation of the corresponding optimized structures, in particular for x = 1 and x = 3, confirming the two known phases, namely NaSb and Na3Sb. The calculations suggest that the optimal composition range for reversible sodiation of antimony is 1 < x ≤ 3, thus avoiding the global minimum at x = 1. This can help to rationalize the structure-composition dependence of the electrochemical performance of antimony in Na-ion batteries.

  14. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide.

    PubMed

    Lee, Yeseul; Lo, Shih-Han; Chen, Changqiang; Sun, Hui; Chung, Duck-Young; Chasapis, Thomas C; Uher, Ctirad; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2014-05-02

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23-27 μW cm(-1) K(-2) at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. The corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.

  15. Liposomal amphotericin B versus pentavalent antimony salts for visceral Leishmania in children.

    PubMed

    Apa, Hurşit; Devrim, İlker; Bayram, Nuri; Deveci, Reyhan; Demir-Özek, Gülcihan; Cartı, Özgür Umaç

    2013-01-01

    The aim of this study was to investigate the efficacy of a 21-day schedule of liposomal amphotericin B compared to pentavalent antimony salts in the treatment of patients during a first episode of visceral leishmaniasis. In this study, 17 cases of visceral leishmaniasis admitted to Behçet Uz Children's Hospital between January 2005 and April 2012 were reviewed retrospectively. The study group was composed of 11 males (64.7%) and 6 females (35.3%). One group included 11 patients who were treated with pentavalent antimony salts, sodium stibogluconate or meglumine antimoniate, intramuscularly for 28 days. The second group was treated with amphotericin B intravenously at a dosage of 3 mg/kg on days 1-5, 10 and 21 (a cumulative dose of 21 mg/kg/day). While pentavalent antimony salts were found to increase biochemical and hematological findings, liposomal amphotericin B was responsible for rapid recovery in fever and shorter hospital stay. As a result, our study shows the advantages of both medications independent of their costs.

  16. Delayed allergic skin reactions due to intralesional meglumine antimoniate therapy for cutaneous leishmaniasis.

    PubMed

    Córdoba, S; Gandolfo Cano, M; Aguado, M; Huerta-Brogera, M; Romero, A; Martínez-Morán, C; Borbujo, J

    2012-12-01

    The pentavalent antimonials are considered the first-choice drugs for treatment of leishmaniasis. Intralesional therapy is used to minimize the systemic effects of the drug. Seventy patients were treated with weekly intralesional infiltrations of Glucantime(®) (meglumine antimoniate) for cutaneous leishmaniasis. Nine of them had infiltrated itchy erythematous and vesiculous plaques at the injection sites. Cutaneous tests were undertaken in eight patients. Prick tests were negative and seven of the eight patients showed positive intradermal tests with Glucantime(®) dilutions reading at D2 and D4. Only one patient had positive patch test to Glucantime a.i. Local reactions at the site of injection have been briefly mentioned in some reported series of leishmaniasis treated with intralesional or intramuscular meglumine antimoniate but the mechanism has never been explained before. We report the first series of patients with local reactions at the injection sites of meglumine antimoniate in whom type IV hypersensitivity could be involved. © 2012 John Wiley & Sons A/S.

  17. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study.

    PubMed

    Navaei, Ali; Rasoolian, Morteza; Momeni, Arash; Emami, Shahriar; Rafienia, Mohammad

    2014-06-01

    The objective of this study was to fabricate double-walled poly(lactide-co-glycolide) (PLGA) microspheres to increase encapsulation efficiency and avoid rapid release of hydrophilic drugs such as meglumine antimoniate. In this study, double-walled and one-layered microspheres of PLGA were prepared using the emulsion solvent evaporation technique to better control the release of a hydrophilic drug, meglumine antimoniate (Glucantime®), which is the first choice treatment of cutaneous leishmaniasis. The effect of hydrophobic coating on microspheres' size, morphology, encapsulation efficiency and drug release characteristics was evaluated. Furthermore, the presence of antimony in meglumine antimoniate made it possible to observe the drug distribution within the microspheres' cross section by means of energy dispersive X-ray spectroscopy. Drug distribution images confirmed accumulation of the drug within the inner core of double-walled microspheres. In addition, these microspheres encapsulated the drug more efficiently up to 87% and demonstrated reduced initial burst and prolonged release compared to one-layered microspheres. These superiorities make double-walled microspheres an optimum candidate for sustained delivery of hydrophilic drugs. Double-walled microspheres provide some advantages over traditional microspheres overcoming most of their limitations. Double-walled microspheres were found to be more efficient than their corresponding one-layered microspheres in terms of encapsulation efficiencies and release characteristics.

  18. Early enlargement of an ulcerated area during leishmaniasis treatment with meglumine antimoniate in Brazil.

    PubMed

    Romero, Gustavo A S; Molinet, Félix J L; Noronha, Elza F

    2013-04-01

    Cutaneous leishmaniasis is a public health problem in Brazil, where meglumine antimoniate is the drug of choice for treatment. Ulcers treated with pentavalent antimonials show increasing diameters during the first weeks of drug exposure. We evaluated data from patients previously enrolled into an open study to compare changes in the ulcerated area of 189 lesions in 101 patients with localized cutaneous leishmaniasis caused by Leishmania braziliensis and L. guyanensis who were treated with i.v. meglumine antimoniate (Glucantime), 20 mg kg(-1) day(-1) for 20 days. An average increase in the ulcerated area of 0.3 cm(2) (95% CI 0.13-0.47 cm(2); p = 0.001) was observed at Day 10 compared with the baseline measurement. Comparison of Day 20 with Day 10 showed a significant decrease of 0.76 cm(2) (95% CI 0.53-0.99 cm(2); p < 0.001) in ulcer size. At Day 50, compared with Day 20, the ulcerated area was decreased by 0.77 cm(2) (95% CI 0.53-1.01 cm(2); p < 0.001). We conclude that early enlargement of the ulcerated area during treatment of localized cutaneous leishmaniasis with antimonials in Brazil is a common feature and easily detected by the 10th day of treatment. Following the end of the treatment period (20 days), it would be reasonable to observe a significant decrease in size of the ulcerated area.

  19. Strain induced changes in phonon band structure of antimony monolayer using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pillai, Sharad Babu; Narayan, Som; Jha, Prafulla K.

    2017-05-01

    The present paper reports the study of phonon properties of a two dimensional antimony nanosheet under the biaxial strain using first principles calculation based on density functional theory. Our calculations shows that the strain turns the quadratic dependence of wave vector on frequency to the linear dependency which can be linked with the removal of rippling in nanosheets.

  20. [Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium].

    PubMed

    Tsaplina, I A; Sorokin, V V; Zhuravleva, A E; Melamud, V S; Bogdanova, T I; Kondrat'eva, T F

    2013-01-01

    Antimony leaching from sulfide ore samples by an experimental consortium of thermoacidophilic microorganisms, including Sulfobacillus, Leptospirillum, and Ferroplasma strains was studied. The ores differed significantly in the content of the major metal sulfides (%): Sb(S), 0.84 to 29.95; Fe(S), 0.47 to 2.5, and As(S), 0.01 to 0.4. Independent on the Sb(S) concentration in the experimental sample, after adaptation to a specific ore and pulp compaction the microorganisms grew actively and leached/oxidized all gold-antimony ores at 39 ± 1 degrees C. The lower was the content of iron and arsenic sulfides, the higher was antimony leaching. For the first time the investigations conducted with the use of X-ray microanalysis research made it possible to conclude that in a natural high-antimony ore Sb inhibits growth of only a part of the cell population and that Ca, Fe, and Sb may compete for the binding centers of the cell.

  1. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide

    SciTech Connect

    Lee, Yeseul; Lo, Shih -Han; Chen, Changqiang; Sun, Hui; Chung, Duck -Young; Chasapis, Thomas C.; Uher, Ctirad; Dravid, Vinayak P.; Kanatzidis, Mercouri G.

    2014-05-02

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23–27μW cm–1 K–2 at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. As a result, the corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.

  2. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.

    PubMed

    Balva, Maxime; Legeai, Sophie; Garoux, Laetitia; Leclerc, Nathalie; Meux, Eric

    2017-04-01

    Major uses of thermoelectricity concern refrigeration purposes, using Peltier devices, mainly composed of antimony, bismuth and tellurium. Antimony was identified as a critical raw material by EU and resources of bismuth and tellurium are not inexhaustible, so it is necessary to imagine the recycling of thermoelectric devices. That for, a complete characterization is needed, which is the aim of this work. Peltier devices were manually dismantled in three parts: the thermoelectric legs, the alumina plates on which remain the electrical contacts and the silicone paste used to connect the plates. The characterization was performed using five Peltier devices. It includes mass balances of the components, X-ray diffraction analysis of the thermoelectric legs and elemental analysis of each part of the device. It appears that alumina represents 45% of a Peltier device in weight. The electrical contacts are mainly composed of copper and tin, and the thermoelectric legs of bismuth, tellurium and antimony. Thermoelectric legs appear to be Se-doped Bi2Te3 and (Bi0,5Sb1,5)Te3 for n type and p type semiconductors, respectively. This work shows that Peltier devices can be considered as a copper ore and that thermoelectric legs contain high amounts of bismuth, tellurium and antimony compared to their traditional resources.

  3. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide

    DOE PAGES

    Lee, Yeseul; Lo, Shih -Han; Chen, Changqiang; ...

    2014-05-02

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23–27μW cm–1 K–2 at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amountsmore » of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. As a result, the corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.« less

  4. Antimony sulphide thin film as an absorber in chemically deposited solar cells

    NASA Astrophysics Data System (ADS)

    Messina, Sarah; Nair, M. T. S.; Nair, P. K.

    2008-05-01

    Antimony sulfide thin films (thickness, 500 nm) were deposited on chemically deposited CdS thin films (100 nm) obtained on 3 mm glass substrates coated with a transparent conductive coating of SnO2:F (TEC-15 with 15 Ω sheet resistance). Two different chemical formulations were used for depositing antimony sulfide films. These contained (i) antimony trichloride dissolved in acetone and sodium thiosulfate, and (ii) potassium antimony tartrate, triethanolamine, ammonia, thioacetamide and small concentrations of silicotungstic acid. The films were heated at 250 °C in nitrogen. The cell structure was completed by depositing a 200 nm p-type PbS thin film. Graphite paint applied on the PbS thin film and a subsequent layer of silver paint served as the p-side contact. The cell structure: SnO2:F/CdS/Sb2S3 (i or ii)/PbS showed open circuit voltage (Voc) of 640 mV and short circuit current density (Jsc) above 1 mA cm-2 under 1 kW m-2 tungsten-halogen radiation. Four cells, each of 1.7 cm2 area, were series-connected to give Voc of 1.6 V and a short circuit current of 4.1 mA under sunlight (1060 W m-2).

  5. Nanostructured Carbon/Antimony Composites as Anode Materials for Lithium-Ion Batteries with Long Life.

    PubMed

    Cheng, Yong; Yi, Zheng; Wang, Chunli; Wang, Lidong; Wu, Yaoming; Wang, Limin

    2016-08-05

    A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol-gel, high-temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium-ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g(-1) and a reversible charge capacity of 595.5 mAh g(-1) with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g(-1) at a current density of 100 mA g(-1) after 200 cycles and a high rate discharge capacity of 354.4 mAh g(-1) at a current density of 1000 mA g(-1) . The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge-discharge cycles.

  6. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions

    USDA-ARS?s Scientific Manuscript database

    Limited mechanistic knowledge is available to understand how biochar interacts with trace elements that exist predominantly as oxoanions, such as antimony (Sb). Soybean stover biochars were produced at 300 degrees C (SBC300) and 700 degrees C (SBC700), and were characterized by BET, Boehm titration,...

  7. Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure.

    PubMed Central

    Gebel, T W; Suchenwirth, R H; Bolten, C; Dunkelberg, H H

    1998-01-01

    Part of the northern Palatinate region in Germany is characterized by elevated levels of arsenic and antimony in the soil due to the presence of ore sources and former mining activities. In a biomonitoring study, 218 residents were investigated for a putative increased intake of these elements. Seventy-six nonexposed subjects in a rural region in south lower Saxony were chosen as the reference group. Urine and scalp hair samples were obtained as surrogates to determine the internal exposures to arsenic and antimony. The analyses were performed using graphite furnace atomic absorption spectrometry except for arsenic in urine, which was determined by the hydride technique. This method does not detect organoarsenicals from seafood, which are not toxicologically relevant. In the northern Palatinate subjects, slightly elevated arsenic contents in urine and scalp hair (presumably not hazardous) could be correlated with an increased arsenic content in the soil. On the other hand, the results did not show a correlation between the antimony contents in the soil of the housing area and those in urine and hair. Except for antimony in scalp hair, age tended to be associated with internal exposures to arsenic and antimony in both study groups. Consumption of seafood had a slight impact on the level of urinary arsenic, which is indicative of the presence of low quantities of inorganic arsenicals and dimethylarsinic acid in seafood. The arsenic and antimony contents in scalp hair were positively correlated with the 24-hr arsenic excretion in urine. However, antimony in scalp hair was not correlated with seafood consumption as was arsenic in scalp hair and in urine. This indicated the existence of unidentified common pathways of exposure contributing to the alimentary body burden. Short time peaks in the 24-hr excretion of arsenic in urine, which could not be assigned to a high consumption of seafood, were detected for six study participants. This suggests that additional factors

  8. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  9. Methylated arsenic, antimony and tin species in soils.

    PubMed

    Duester, Lars; Diaz-Bone, Roland A; Kösters, Jan; Hirner, Alfred V

    2005-12-01

    Methylated species of antimony, arsenic and tin were examined in urban soils of the Ruhr basin, near the cities of Duisburg and Essen, Germany. The main aim of this study was to investigate the occurrence of mono-, di- and trimethylated species of these elements in urban soils. The influence of historical and present land use upon the species content was examined. The distribution of inorganic As, Sb and Sn and their methylated species along the profile depth was investigated. As, Sb and Sn speciation was performed by pH-gradient hydride generation purge and trap gas chromatography, followed by inductively-coupled plasma mass spectrometry (HG-PT-GC/ICP-MS). Species' structures were confirmed by GC-EI/MS-ICP-MS. Monomethylated Sb and As were the dominant species detected: the concentration of these metal(loid) species varied between <0.07-56 microg kg(-1) per dry mass. All dimethylated species and monomethyltin concentrations were between <0.01-7.6 microg kg(-1) per dry mass, and for the trimethylated species of all examined elements, concentrations between <0.001-0.63 microg kg(-1) per dry mass were detected. The highest organometal(loid) concentrations were observed in agricultural soils and garden soils; lower concentrations were found in the soils of abandoned industrial sites (wasteland, primary forest and grassland) and a flood plain soil of the Rhine. This result can be ascribed to both the cultivation and the increased biological activity of the agricultural soils, and the generally higher contamination, the disturbed structure and the artificial substrates (deposits from industrial sources) of the abandoned industrial soils. Due to periodical sedimentation, the flood plain profile was the only one where no depth dependence of organometal(loid) species concentration was detected. The other soil profiles showed a decrease of species content with increasing depth; this was particularly noticeable in soils with a clear change from a horizon with an organic

  10. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  11. Lipid dynamics at dendritic spines

    PubMed Central

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity. PMID:25152717

  12. Lipid dynamics at dendritic spines.

    PubMed

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  13. Dendritic Spine Pathology in Schizophrenia

    PubMed Central

    Glausier, Jill R.; Lewis, David A.

    2012-01-01

    Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia. PMID:22546337

  14. Dendritic cells in Graves' disease.

    PubMed

    Purnamasari, Dyah; Soewondo, Pradana; Djauzi, Samsuridjal

    2015-01-01

    Dendritic cells are major antigen-presenting cells (APC) that stimulate naive T cells, which induce adaptive immune responses. Graves' disease (GD) is an autoimmune disease characterized by the presence of autoantibodies against Thyroid Stimulating Hormone Receptor (TSHR). The autoantibodies bind with TSHR and stimulate thyroid hormone production. Dendritic cells are still the major APC in GD immune response although thyrocytes in GD can also express Major Histocompatibility Class (MHC) class II molecule. Studies about DC in GD have been conducted by isolating intra-thyroid DC or DC in peripheral circulation. Results of DC studies in GD are still controversial. Changes in number and profile of DC are found, which indicate altered immune response activity and defects of regulator T cell (Treg) in GD.

  15. Histopathological and functional effects of antimony on the renal cortex of growing albino rat

    PubMed Central

    Rashedy, Ahmed H; Solimany, Adnan A; Ismail, Ayman K; Wahdan, Mohamed H; Saban, Khalid A

    2013-01-01

    Contamination of the environment with antimony compounds may affect human health through the persistent exposure to small doses over a long period. Sixty growing male albino rats, weighing 43-57 grams, utilized in this study. The animals were divided into 3 groups; each of 20 rats: animals of group I served as control, animals of group II received 6 mg/kg body weight antimony trisulfide daily for 8 weeks with drinking water, and those of group III received the same dose by the same route for 12 weeks. The Malpighian renal corpuscles showed distortion, destruction and congestion of glomerular tuft, vacuoles in the glomeruli, peritubular haemorrhage, obliteration of Bowman’s space, and thickening with irregularity of Bowman’s membrane. The proximal convoluted tubules demonstrated patchy loss of their brush border, thickening of the basement membrane with loss of its basal infoldings, disarrangement of the mitochondria, pleomorphic vacuoles in the cytoplasm, apical destruction of the cells, apical migration of the nuclei, and absence of microvilli. On the other hand, peri-tubular hemorrhage, apical vacuolation, small atrophic nuclei, swelling of mitochondria, obliteration of the lumina, destruction of cells, and presence of tissue debris in the lumina, were observed in the distal convoluted tubules. The present work demonstrated the hazardous effect of antimony on the renal function as evidenced by the significant increase of the level of blood urea, serum creatinine, and serum sodium and potassium. In conclusion, this study proposed that continuous oral administration of antimony for 8 and 12 weeks has hazardous toxic effect on the structure and function of the kidney in growing albino rat. Based on the results of the present study, it is recommended to avoid the use of any drinking water contaminated with antimony compounds and forbidden its use in infants and children foods. PMID:23923065

  16. Histopathological and functional effects of antimony on the renal cortex of growing albino rat.

    PubMed

    Rashedy, Ahmed H; Solimany, Adnan A; Ismail, Ayman K; Wahdan, Mohamed H; Saban, Khalid A

    2013-01-01

    Contamination of the environment with antimony compounds may affect human health through the persistent exposure to small doses over a long period. Sixty growing male albino rats, weighing 43-57 grams, utilized in this study. The animals were divided into 3 groups; each of 20 rats: animals of group I served as control, animals of group II received 6 mg/kg body weight antimony trisulfide daily for 8 weeks with drinking water, and those of group III received the same dose by the same route for 12 weeks. The Malpighian renal corpuscles showed distortion, destruction and congestion of glomerular tuft, vacuoles in the glomeruli, peritubular haemorrhage, obliteration of Bowman's space, and thickening with irregularity of Bowman's membrane. The proximal convoluted tubules demonstrated patchy loss of their brush border, thickening of the basement membrane with loss of its basal infoldings, disarrangement of the mitochondria, pleomorphic vacuoles in the cytoplasm, apical destruction of the cells, apical migration of the nuclei, and absence of microvilli. On the other hand, peri-tubular hemorrhage, apical vacuolation, small atrophic nuclei, swelling of mitochondria, obliteration of the lumina, destruction of cells, and presence of tissue debris in the lumina, were observed in the distal convoluted tubules. The present work demonstrated the hazardous effect of antimony on the renal function as evidenced by the significant increase of the level of blood urea, serum creatinine, and serum sodium and potassium. In conclusion, this study proposed that continuous oral administration of antimony for 8 and 12 weeks has hazardous toxic effect on the structure and function of the kidney in growing albino rat. Based on the results of the present study, it is recommended to avoid the use of any drinking water contaminated with antimony compounds and forbidden its use in infants and children foods.

  17. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  18. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  19. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  20. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  1. Dendritic Ion Channel Trafficking and Plasticity

    PubMed Central

    Shah, Mala M.; Hammond, Rebecca S.; Hoffman, Dax

    2010-01-01

    Dendrites, the elaborate processes emerging from neuronal cell bodies, receive most excitatory synaptic inputs. Voltage- and calcium-gated ion channels are abundant in dendrites and modify the shape, propagation and integration of synaptic signals. These ion channels also determine intrinsic dendritic excitability and are therfore important for the induction and manifestation of Hebbian and non-Hebbian plasticity. Revealingly, dendritic channels have distinct expression patterns and biophysical properties from those present in other neuronal compartments. Recent evidence suggests that dendritic ion channels are locally regulated, perhaps contributing to different forms of plasticity. In this review, we will discuss the implications of regulating dendritic ion channel function and trafficking in the context of plasticity and information processing. PMID:20363038

  2. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  3. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrites growing at .4 supercooling from a 2 stinger growth chamber for the EDSE in the Microgravity Development Lab (MDL).

  4. Intravital imaging of dendritic spine plasticity

    PubMed Central

    Sau Wan Lai, Cora

    2014-01-01

    Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511

  5. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  6. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  7. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-02-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  8. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  9. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  10. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  11. In vitro sensitivity of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis Brazilian isolates to meglumine antimoniate and amphotericin B.

    PubMed

    Zauli-Nascimento, Rogéria C; Miguel, Danilo C; Yokoyama-Yasunaka, Jenicer K U; Pereira, Ledice I A; Pelli de Oliveira, Milton A; Ribeiro-Dias, Fátima; Dorta, Miriam L; Uliana, Silvia R B

    2010-01-01

    Resistance of Leishmania parasites to specific chemotherapy has become a well-documented problem in the Indian subcontinent in recent years but only a few studies have focused on the susceptibility of American Leishmania isolates. Our susceptibility assays to meglumine antimoniate were performed against intracellular amastigotes after standardizing an in vitro model of macrophage infection appropriate for Leishmania (Viannia) braziliensis isolates. For the determination of promastigote susceptibility to amphotericin B, we developed a simplified MTT-test. The sensitivity in vitro to meglumine antimoniate and amphotericin B of 13 isolates obtained from Brazilian patients was determined. L. (V.) braziliensis isolates were more susceptible to meglumine antimoniate than Leishmania (Leishmania) amazonensis. EC(50), EC(90) and activity indexes (calculated over the sensitivity of reference strains), suggested that all isolates tested were susceptible in vitro to meglumine antimoniate, and did not show association with the clinical outcomes. Isolates were also uniformly susceptible in vitro to amphotericin B.

  12. Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil.

    PubMed

    Silva, Mario Marques; Leao, Danilo Junqueira; Moreira, Ícaro Thiago Andrade; de Oliveira, Olívia Maria Cordeiro; de Souza Queiroz, Antônio Fernando; Ferreira, Sergio Luis Costa

    2015-06-01

    This paper proposes an extraction procedure for the speciation analysis of inorganic antimony in sediment samples using slurry sampling and hydride generation atomic absorption spectrometry. The optimization step of extraction of the species was performed employing a full two-level factorial design (2(3)) and a Box-Behnken matrix where the studied factors in both experiments were: extraction temperature, ultrasonic radiation time, and hydrochloric acid concentration. Using the optimized conditions, antimony species can be extracted in closed system using a 6.0 M hydrochloric acid solution at temperature of 70 °C and an ultrasonic radiation time of 20 min. The determination of antimony is performed in presence of 2.0 M hydrochloric acid solution using HG AAS by external calibration technique with limits of detection and quantification of 5.6 and 19.0 ng L(-1) and a precision expressed as relative standard deviation of 5.6 % for an antimony solution with concentration of 6.0 μg L(-1). The accuracy of the method was confirmed by analysis of two certified reference materials of sediments. For a sample mass of sediment of 0.20 g, the limits of detection and quantification obtained were 0.70 and 2.34 ng g(-1), respectively. During speciation analysis, antimony(III) is determined in presence of citrate, while total antimony is quantified after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. The method was applied for analysis of six sediment samples collected in São Paulo Estuary (Bahia State, Brazil). The antimony contents obtained varied from 45.3 to 89.1 ng g(-1) for total antimony and of 17.7 to 31.4 ng g(-1) for antimony(III). These values are agreeing with other data reported by the literature for this element in uncontaminated sediment samples.

  13. Overexpression of ubiquitin and amino acid permease genes in association with antimony resistance in Leishmania tropica field isolates.

    PubMed

    Kazemi-Rad, Elham; Mohebali, Mehdi; Khadem-Erfan, Mohammad Bagher; Hajjaran, Homa; Hadighi, Ramtin; Khamesipour, Ali; Rezaie, Sassan; Saffari, Mojtaba; Raoofian, Reza; Heidari, Mansour

    2013-08-01

    The mainstay therapy against leishmaniasis is still pentavalent antimonial drugs; however, the rate of antimony resistance is increasing in endemic regions such as Iran. Understanding the molecular basis of resistance to antimonials could be helpful to improve treatment strategies. This study aimed to recognize genes involved in antimony resistance of Leishmania tropica field isolates. Sensitive and resistant L. tropica parasites were isolated from anthroponotic cutaneous leishmaniasis patients and drug susceptibility of parasites to meglumine antimoniate (Glucantime®) was confirmed using in vitro assay. Then, complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) and real-time reverse transcriptase-PCR (RT-PCR) approaches were utilized on mRNAs from resistant and sensitive L. tropica isolates. We identified 2 known genes, ubiquitin implicated in protein degradation and amino acid permease (AAP3) involved in arginine uptake. Also, we identified 1 gene encoding hypothetical protein. Real-time RT-PCR revealed a significant upregulation of ubiquitin (2.54-fold), and AAP3 (2.86-fold) (P<0.05) in a resistant isolate compared to a sensitive one. Our results suggest that overexpression of ubiquitin and AAP3 could potentially implicated in natural antimony resistance.

  14. Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance.

    PubMed

    Ashutosh; Garg, Mansi; Sundar, Shyam; Duncan, Robert; Nakhasi, Hira L; Goyal, Neena

    2012-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) on the Indian subcontinent. The mechanisms operating in laboratory-generated strains are somewhat known, but the determinants of clinical antimony resistance are not well understood. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding mitogen-activated protein kinase 1 (MAPK1) for the kinetoplast protozoan Leishmania donovani (LdMAPK1) that was consistently downregulated in antimony-resistant field isolates. The expression level of the gene was validated by real-time PCR. Furthermore, decreased expression of LdMAPK1 was also confirmed at the protein level in resistant isolates. Primary structure analysis of LdMAPK1 revealed the presence of all of the characteristic features of MAPK1. When expressed in Escherichia coli, the recombinant enzyme showed kinase activity with myelin basic protein as the substrate and was inhibited by staurosporine. Interestingly, overexpression of this gene in a drug-sensitive laboratory strain and a resistant field isolate resulted in increased the sensitivity of the transfectants to potassium antimony tartrate, suggesting that it has a role in antimony resistance. Our results demonstrate that downregulation of LdMAPK1 may be in part correlated with antimony drug resistance in Indian VL isolates.

  15. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.

  16. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    PubMed

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.

  17. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry.

    PubMed

    Mendil, Durali; Bardak, Hilmi; Tuzen, Mustafa; Soylak, Mustafa

    2013-03-30

    A speciation system for antimony (III) and antimony (V) ions that based on solid phase extraction on tetraethylenepentamine bonded silica gel has been established. Antimony was determined by graphite furnace atomic absorption spectrometry (GF-AAS). Analytical conditions including pH, sample volume, etc., were studied for the quantitative recoveries of Sb (III) and Sb (V). Matrix effects on the recovery were also investigated. The recovery values and detection limit for antimony (III) at optimal conditions were found as >95% and 0.020 μg L(-1), respectively. Preconcentration factor was calculated as 50. The capacity of adsorption for the tetraethylenepentamine bonded silica gel was 7.9 mg g(-1). The validation was checked by analysis of NIST SRM 1573a Tomato laves and GBW 07605 Tea certified reference materials. The procedure was successfully applied to speciation of antimony in tap water, mineral water and spring water samples. Total antimony was determined in refined salt, unrefined salt, black tea, rice, tuna fish and soil samples after microwave digestion and presented enrichment method combination.

  18. Downregulation of Mitogen-Activated Protein Kinase 1 of Leishmania donovani Field Isolates Is Associated with Antimony Resistance

    PubMed Central

    Ashutosh; Garg, Mansi; Sundar, Shyam; Duncan, Robert; Nakhasi, Hira L.

    2012-01-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) on the Indian subcontinent. The mechanisms operating in laboratory-generated strains are somewhat known, but the determinants of clinical antimony resistance are not well understood. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding mitogen-activated protein kinase 1 (MAPK1) for the kinetoplast protozoan Leishmania donovani (LdMAPK1) that was consistently downregulated in antimony-resistant field isolates. The expression level of the gene was validated by real-time PCR. Furthermore, decreased expression of LdMAPK1 was also confirmed at the protein level in resistant isolates. Primary structure analysis of LdMAPK1 revealed the presence of all of the characteristic features of MAPK1. When expressed in Escherichia coli, the recombinant enzyme showed kinase activity with myelin basic protein as the substrate and was inhibited by staurosporine. Interestingly, overexpression of this gene in a drug-sensitive laboratory strain and a resistant field isolate resulted in increased the sensitivity of the transfectants to potassium antimony tartrate, suggesting that it has a role in antimony resistance. Our results demonstrate that downregulation of LdMAPK1 may be in part correlated with antimony drug resistance in Indian VL isolates. PMID:22064540

  19. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum

    PubMed Central

    Leprohon, Philippe; Légaré, Danielle; Raymond, Frédéric; Madore, Éric; Hardiman, Gary; Corbeil, Jacques; Ouellette, Marc

    2009-01-01

    Antimonials remain the first line drug against the protozoan parasite Leishmania but their efficacy is threatened by resistance. We carried out a RNA expression profiling analysis comparing an antimony-sensitive and -resistant (Sb2000.1) strain of Leishmania infantum using whole-genome 70-mer oligonucleotide microarrays. Several genes were differentially expressed between the two strains, several of which were found to be physically linked in the genome. MRPA, an ATP-binding cassette (ABC) gene known to be involved in antimony resistance, was overexpressed in the antimony-resistant mutant along with three other tandemly linked genes on chromosome 23. This four gene locus was flanked by 1.4 kb repeated sequences from which an extrachromosomal circular amplicon was generated in the resistant cells. Interestingly, gene expression modulation of entire chromosomes occurred in the antimony-resistant mutant. Southern blots analyses and comparative genomic hybridizations revealed that this was either due to the presence of supernumerary chromosomes or to the loss of one chromosome. Leishmania parasites with haploid chromosomes were viable. Changes in copy number for some of these chromosomes were confirmed in another antimony-resistant strain. Selection of a partial revertant line correlated antimomy resistance levels and the copy number of aneuploid chromosomes, suggesting a putative link between aneuploidy and drug resistance in Leishmania. PMID:19129236

  20. Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates

    PubMed Central

    Kazemi-Rad, Elham; Khadem-Erfan, Mohammad Bagher; Hajjaran, Homa; Hadighi, Ramtin; Khamesipour, Ali; Rezaie, Sassan; Saffari, Mojtaba; Raoofian, Reza

    2013-01-01

    The mainstay therapy against leishmaniasis is still pentavalent antimonial drugs; however, the rate of antimony resistance is increasing in endemic regions such as Iran. Understanding the molecular basis of resistance to antimonials could be helpful to improve treatment strategies. This study aimed to recognize genes involved in antimony resistance of Leishmania tropica field isolates. Sensitive and resistant L. tropica parasites were isolated from anthroponotic cutaneous leishmaniasis patients and drug susceptibility of parasites to meglumine antimoniate (Glucantime®) was confirmed using in vitro assay. Then, complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) and real-time reverse transcriptase-PCR (RT-PCR) approaches were utilized on mRNAs from resistant and sensitive L. tropica isolates. We identified 2 known genes, ubiquitin implicated in protein degradation and amino acid permease (AAP3) involved in arginine uptake. Also, we identified 1 gene encoding hypothetical protein. Real-time RT-PCR revealed a significant upregulation of ubiquitin (2.54-fold), and AAP3 (2.86-fold) (P<0.05) in a resistant isolate compared to a sensitive one. Our results suggest that overexpression of ubiquitin and AAP3 could potentially implicated in natural antimony resistance. PMID:24039283

  1. Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis

    PubMed Central

    Monte-Neto, Rubens; Laffitte, Marie-Claude N.; Leprohon, Philippe; Reis, Priscila; Frézard, Frédéric; Ouellette, Marc

    2015-01-01

    Background Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Methodology/Principal Findings Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. Conclusions/Significance This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites. PMID:25679388

  2. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis.

    PubMed

    Monte-Neto, Rubens; Laffitte, Marie-Claude N; Leprohon, Philippe; Reis, Priscila; Frézard, Frédéric; Ouellette, Marc

    2015-02-01

    Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.

  3. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    PubMed

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  4. Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT.

    PubMed

    Allcorn, Eric; Kim, Sang Ok; Manthiram, Arumugam

    2015-11-21

    The diffusion coefficient of lithium is an important parameter in determining the rate capability of an electrode and its ability to deliver high power output. Galvanostatic intermittent titration technique (GITT) is a quick electrochemical method to determine diffusion coefficients in electrode materials and is applied here to antimony-based anodes for lithium-ion batteries. Like other alloy anodes, antimony suffers from large volume change and a short cycle life, so GITT is also applied to determine the effects on lithium diffusivity of antimony intermetallics and composite electrodes designed to mitigate these issues. Pure antimony is measured to have a diffusion coefficient of 4.0 × 10(-9) cm(2) s(-1), in agreement with previously measured values. The intermetallics NiSb, FeSb, and FeSb2 all demonstrate diffusivity values within an order of magnitude of antimony, while Cu2Sb shows roughly an order of magnitude improvement due to the persistence of the Cu2Sb phase during cycling. The composite electrode FeSb-TiC is shown to offer significant enhancement of the diffusion coefficient positively correlated with higher concentrations of TiC in the composite up to a maximum value of 1.9 × 10(-7) cm(2) s(-1) at 60 wt% TiC, nearly two full orders of magnitude greater than that of pure antimony.

  5. In vivo dendrite regeneration after injury is different from dendrite development

    PubMed Central

    Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-01-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  6. In vivo dendrite regeneration after injury is different from dendrite development.

    PubMed

    Thompson-Peer, Katherine L; DeVault, Laura; Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-08-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions.

  7. Dendritic Growth in Undercooled Melts

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1985-01-01

    The kinetic and morphological behavior of systems solidifying at small undercooling were investigated with emphasis on the role of convective and diffusive transport and the influence of gravity. A data base was established for pure succinonitrile which permits a comprehensive check on diffusional dendrite growth theory and the development of scaling laws to extend the theory to other material systems. A departure from diffusional-controlled growth was observed which becomes more significant at smaller undercoolings. A shuttle experiment is prepared to test the theory at the low undercoolings where convective effects begin to dominate.

  8. [Disseminated interdigitating dendritic cell sarcoma].

    PubMed

    Santarelli, Ignacio M; Veltri, Mariano; Manzella, Diego J; Avagnina, María Alejandra; Pereyra, Pablo M; Chavín, Hernán C

    2017-01-01

    A 70 year-old woman was admitted to our hospital with a 3-month history of abdominal pain, weight loss and night sweats. On physical examination, she presented with a 5 cm diameter abdominal mass extended from epigastrium to the left flank, and at least three bilateral supraclavicular adenopathies. A disseminated interdigitating dendritic cell sarcoma was diagnosed through a biopsy of the abdominal mass. After that, a CHOP regime (cyclophosphamide, doxorubicin, vincristine and prednisone) was iniciated. She died after completion of the first cycle of treatment, six months after diagnosis.

  9. Lung dendritic cells and the inflammatory response.

    PubMed

    Grayson, Mitchell H

    2006-05-01

    To discuss the role of conventional and plasmacytoid dendritic cells in inducing and modulating immune responses in the lung. The primary literature and selected review articles studying the role of dendritic cells in both rodent and human lungs as identified via a PubMed/MEDLINE search using the keywords dendritic cell, antigen-presenting cell, viral airway disease, asthma, allergy, and atopy. The author's knowledge of the field was used to identify studies that were relevant to the stated objective. Dendritic cells are well positioned in the respiratory tract and other mucosal surfaces to respond to any foreign protein. These cells are crucial to the initiation of the adaptive immune response through induction of antigen specific T-cell responses. These cells also play an important role in the regulation of developing and ongoing immune responses, an area that is currently under intense investigation. This review discusses the various subsets of human and rodent dendritic cells and the pathways involved in antigen processing and subsequent immune regulation by dendritic cells in the lung using both viral and nonviral allergenic protein exposure as examples. Conventional and plasmacytoid dendritic cells are uniquely situated in the immune cascade to not only initiate but also modulate immune responses. Therapeutic interventions in allergic and asthmatic diseases will likely be developed to take advantage of this exclusive position of the dendritic cell.

  10. Convection and diffusion effects during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S.-C.

    1979-01-01

    A report is presented of the first quantitative measurements of dendritic growth at supercooling levels where convection instead of diffusion is the controlling heat transfer mechanism. Precautions similar to that used in an investigation conducted by Glicksman et al. (1976) were taken to insure 'free' dendritic growth conditions. Dendritic growth velocity was measured as a function of growth orientation at seventeen supercoolings which ranged from 0.043 C to 2 C. Selected but representative measurements of velocity versus orientation angle are shown in a graph. The relative growth velocity of a downward growing dendrite is found to be greater than that of a diffusion-limited dendrite. This result is consistent with that expected from the enhanced heat transfer arising from natural convection.

  11. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  12. A Species-Specific Approach to the Use of Non-Antimony Treatments for Cutaneous Leishmaniasis

    PubMed Central

    Ramanathan, Roshan; Talaat, Kawsar R.; Fedorko, Daniel P.; Mahanty, Siddhartha; Nash, Theodore E.

    2011-01-01

    We used a species-specific approach to treat 10 patients with cutaneous leishmaniasis diagnosed using polymerase chain reaction. Non-antimony treatments (oral miltefosine, ketoconazole, and liposomal amphotericin B) were chosen as an alternative to pentavalent antimony drugs based on likely or proven drug efficacy against the infecting species. Leishmania Viannia panamensis was diagnosed in three patients and treated successfully with oral ketoconazole. Miltefosine treatment cured two patients with L. infantum chagasi. A wide variety of Leishmania responded to liposomal amphotericin B administered for 5–7 days. Three patients with L. V. braziliensis, one patient with L. tropica, and two patients with L. infantum chagasi were treated successfully. One person with L. V. braziliensis healed slowly because of a resistant bacterial superinfection, and a second patient with L. infantum chagasi relapsed and was retreated with miltefosine. These drugs were reasonably well-tolerated. In this limited case series, alternative non-antimony–based regimens were convenient, safe, and effective. PMID:21212212

  13. Synthesis of Antimony Nanotubes via Facile Template-Free Solvothermal Reactions.

    PubMed

    Li, Ruxue; Wang, Xiaohua; Wang, Xinwei; Zhang, Haoran; Pan, Jingxin; Tang, Jilong; Fang, Dan; Ma, Xiaohui; Li, Yongfeng; Yao, Bin; Fan, Jie; Wei, Zhipeng

    2016-12-01

    Uniform antimony (Sb) nanotubes were successfully synthesized via a facile solvothermal method without the need for any surfactants or templates. The Sb nanotubes are confirmed to be pure rhombohedral phase and have better crystallinity. These nanotubes show middle-hollow and open-ended structures, as well as multi-walled structures with the wall thickness of about 10 nm. Also, they have an average size of the diameter of about 50 nm and the length of about 350 nm. On the basis of the structural and morphological studies, a possible rolling mechanism is proposed to explain the formation of Sb nanotubes. It is expected that uniform Sb nanotubes can further be used in wide applications. Graphical Abstract A possible rolling-formation mechanism is proposed for forming pure rhombhedral phase and high crystallinity antimony nanotubes without any surfactants or templates via a facile solvothermal method.

  14. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  15. Effect of iron plaque on antimony uptake by rice (Oryza sativa L.).

    PubMed

    Cui, Xiao-Dan; Wang, Yu-Jun; Hockmann, Kerstin; Zhou, Dong-Mei

    2015-09-01

    Although iron (Fe) plaque has been shown to significantly affect the uptake of toxic antimony (Sb) by rice, knowledge about the influence of iron plaque on antimony (Sb) (amount, mechanisms, etc) is, however, limited. Here, the effect of Fe plaque on Sb(III) and Sb(V) (nominal oxidation states) uptake by rice (Oryza sativa L.) was investigated using hydroponic experiments and synchrotron-based techniques. The results showed that iron plaque immobilized Sb on the surface of rice roots. Although the binding capacity of iron plaque for Sb(III) was markedly greater than that for Sb(V), significantly more Sb(III) was taken up by roots and transported to shoots. In the presence of Fe plaque, Sb uptake into rice roots was significantly reduced, especially for Sb(III). However, this did not translate into decreasing Sb concentrations in rice shoots and even increased shoot Sb concentrations during high Fe-Sb(III) treatment.

  16. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    SciTech Connect

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  17. On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India.

    PubMed

    Shrivas, Kamlesh; Agrawal, Kavita; Harmukh, Neetu

    2008-06-30

    A new, selective and sensitive on-site spectrophotometric method for the determination of antimony at trace level in water, soil and dust samples of Central India has been demonstrated. It is based on the color reaction of Sb(III) with I(-) ions in the presence of a cationic surfactant cetylpyridinium chloride (CPC) in acidic media, and subsequent extraction of the complex with N-phenylbenzimidoylthiourea (PBITU) into chloroform to give a yellow colored complex. The value of apparent molar absorptivity of the complex in the terms of Sb is (7.84) x 10(4)l mol(-1)cm(-1) at 440 nm. The detection limit of the method is 5 ng ml(-1). In addition, the present method is free from interferences of all metal ions that are associated during the determination of antimony in environmental samples.

  18. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Drozdov, M. N.; Novikov, A. V.; Yurasov, D. V.

    2013-11-15

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony.

  19. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.

    2017-01-01

    Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.

  20. Thermal stability and spectroscopic properties of Er 3+-doped antimony-borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Qian, Q.; Zhao, C.; Yang, G. F.; Yang, Z. M.; Zhang, Q. Y.; Jiang, Z. H.

    2008-11-01

    This paper reports on the optical spectroscopic properties and thermal stability of Er 3+-doped antimony-borosilicate glasses for developing 1.5 μm optical amplifiers. Upon excitation at 980 nm laser diode, an intense 1.5 μm infrared fluorescence has been observed with the maximum full width at half maximum (FWHM) of 90 nm for Er 3+-doped antimony-borosilicate glasses. The emission cross-section and the lifetime of the 4I13/2 level of Er 3+ ions are 6.3 × 10 -21 cm 2 and 0.30 ms, respectively. It is noted that the product of the emission cross-section and FWHM of the glass studied is as great as 567 × 10 -21 cm 2 nm, which is comparable or higher than that of bismuthate and tellurite glasses.

  1. Numerical simulation and experimental characterization of the performance evolution of a liquid antimony anode fuel cell

    NASA Astrophysics Data System (ADS)

    Cao, Tianyu; Shi, Yixiang; Wang, Hongjian; Cai, Ningsheng

    2015-06-01

    A solid oxide fuel cell (SOFC) with a liquid antimony anode is fabricated based on a smooth single crystal YSZ electrolyte substrate and a porous Pt cathode. The performance of the liquid antimony anode was tested under "battery mode", with the anode chamber shielded in argon throughout the test and the cathode exposed to air. Polarization curves were taken and a long term constant potential discharging test was carried out afterwards. Taking electrochemical reaction, mass transport and microstructure of the liquid Sb anode into consideration, a one dimensional mathematical model was built and then validated by the polarization curve and the constant potential discharging performance curve obtained during the test. This model analyzes the metallic Sb distribution in the anode during cell operation, explains the cell performance evolution base on the microstructural development of the liquid Sb anode and simulates how the anode microstructure affects the cell performance.

  2. Thermal stability and spectroscopic properties of Er3+-doped antimony-borosilicate glasses.

    PubMed

    Qian, Q; Zhao, C; Yang, G F; Yang, Z M; Zhang, Q Y; Jiang, Z H

    2008-11-01

    This paper reports on the optical spectroscopic properties and thermal stability of Er3+-doped antimony-borosilicate glasses for developing 1.5 microm optical amplifiers. Upon excitation at 980 nm laser diode, an intense 1.5 microm infrared fluorescence has been observed with the maximum full width at half maximum (FWHM) of 90 nm for Er3+-doped antimony-borosilicate glasses. The emission cross-section and the lifetime of the 4I13/2 level of Er3+ ions are 6.3 x 10(-21) cm2 and 0.30 ms, respectively. It is noted that the product of the emission cross-section and FWHM of the glass studied is as great as 567 x 10(-21) cm2 nm, which is comparable or higher than that of bismuthate and tellurite glasses.

  3. Sandwich heterostructures of antimony trioxide and bismuth trioxide films: Structural, morphological and optical analysis

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Praisler, Mirela; Gavrila, Raluca; Tigau, Nicolae

    2017-01-01

    Thin film heterostructures can be advantageous since they either exhibit novel or a combination of the properties of their components. Here we propose sandwich-type of heterostructures made of antimony trioxide and bismuth trioxide thin films, which were deposited on glass substrates by thermal vacuum deposition at three substrate temperatures, 50° Celsius apart. Their morphology and optical properties are studied as compared to the corresponding monolayers. It was found that even small substrate temperature changes strongly influence their morphology, increasing their roughness, while the optical transmittance shows a slight decrease as compared with the individual layers. The corresponding absorption coefficient exhibits intermediate values as compared to the component oxides, while the energy bandgaps for the indirect allowed transitions move towards the Infrared when overlapping the antimony and bismuth trioxides.

  4. Synthesis, spectroscopic characterization and antibacterial activity of antimony(III) bis(dialkyldithiocarbamato)alkyldithiocarbonates

    NASA Astrophysics Data System (ADS)

    Chauhan, H. P. S.; Bakshi, Abhilasha; Bhatiya, Sumit

    2011-10-01

    Some mixed sulfur donor ligand complexes of antimony(III) of the general formula [(R 2NCS 2)] 2SbS 2COR' where R = CH 3, C 2H 5 and R' = Me, Et, Pr n, Pr i, Bu n and Bu i have been synthesized by the reaction of antimony(III) bis(dialkyldithiocarbamate) chloride with potassium organodithiocarbonate in an equimolar ratio by stirring at room temperature in benzene/CS 2 mixture. These complexes have been characterized by physicochemical [elemental analysis, melting points and molecular weight determinations] and spectral [UV, IR, Far-IR, NMR ( 1H and 13C), FAB + mass and powder X-ray diffraction] studies. Free ligands and synthesized complexes have also been screened against different bacterial strains and results obtained made it desirable to delineate a comparison between free ligands, standard drug used and synthesized complexes.

  5. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  6. Bi-antimony capped Keggin polyoxometalate modified with Cu-ligand fragment

    SciTech Connect

    Huang, Jiao; Han, Zhangang; Zhang, Heng; Yu, Haitao; Zhai, Xueliang

    2012-10-15

    Three polyoxometalates consisting of bi-antimony capped Keggin-type clusters: [Cu(mbpy){sub 2}]{sub 2}[PMo{sub 12}O{sub 40}Sb{sub 2}]{center_dot}4H{sub 2}O (1), [Cu(mbpy){sub 2}][PMo{sub 12}O{sub 40}Sb{sub 2}] (2) and {l_brace}Cu(mbpy)[Cu(mbpy){sub 2}]{sub 2}{r_brace}[VMo{sub 8}V{sub 4}O{sub 40}Sb{sub 2}]{center_dot}2H{sub 2}O (3) (mbpy=4,4 Prime -dimethyl-2,2 Prime - dipyridyl in 1 and 2; 5,5 Prime -dimethyl-2,2 Prime -dipyridyl in 3) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. Single-crystal analysis revealed that all of three compounds are built upon bi-antimony capped Keggin-type polyoxoanions and Cu-mbpy cations. In 1-3, two Sb{sup III} centers located at the two opposite of anionic surface adopt fundamentally tetragonal pyramidal coordination geometry. Both compounds 1 and 2 consist of P-centered Keggin structure, while compound 3 presents a V-centered Keggin anion. The Keggin-type anions present different structural features: isolated cluster in 1 and Cu-ligand-supported cluster in 2 and 3. - Graphical abstract: Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters modified with Cu-ligand cations have been synthesized and characterized. Highlights: Black-Right-Pointing-Pointer Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters have been synthesized. Black-Right-Pointing-Pointer Two Sb{sup III} centers located at the two opposite of anionic surface adopt tetragonal pyramidal coordination geometry. Black-Right-Pointing-Pointer The anions present different structural features: isolated and Cu-ligand-supported cluster.

  7. Development and characterization of ion selective electrode for the assay of antimony.

    PubMed

    Mostafa, G A E

    2007-03-15

    The construction and general performance characteristics of two novel potentiometric carbon paste electrodes (CPE) responsive to antimony are described. These sensors are based on the use of the ion associate complexes of tetraiodoantimonate (TIA) anion with cetylpyridinium (CP) and triphenyl tetrazolium (TPT) counter cations as ion exchange site in a carbon paste matrix. The two sensors exhibits fast, stable and near-Nernstian for the mono charged TIA anion over the concentration range 1x10(-3) to 10(-6)M at 25 degrees C in the pH range 4-10 with anionic slope of 58.0+/-0.5 and 55.0+/-0.7 per concentration decade for TIA-CP and TIA-TPT, respectively. The lower detection limits are 4 and 5x10(-6)M and response time are 20 and 30s in the same order of both electrodes. Selectivity coefficients for antimony relative to a number of different cations and anions were investigated. There is negligible interference from many inorganic cation and anion except for Hg(2+), Cd(2+), and Bi(3+); however, their effect were eliminated by EDTA. The determination of 1.0-120.0mug/ml of antimony in aqueous solutions shows an average recovery of 99.0 and 97.5% with relative standard deviation of 2.0% for both electrodes at 40mug/ml. The determination of antimony in wastewater and some antibilharzial compounds using the proposed electrodes gave results that compare favorably with those obtained by the atomic absorption spectrometric method. Precipitation titrations involving cetylpyridinium chloride as titrant are monitored with both electrodes with inflection point of 180 and 100mV for TIA-CP and TIA-TPT, respectively.

  8. Electronic band structure and optical properties of antimony selenide under pressure

    SciTech Connect

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  9. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The heat capacity of solid antimony telluride Sb2Te3

    NASA Astrophysics Data System (ADS)

    Pashinkin, A. S.; Malkova, A. S.; Mikhailova, M. S.

    2008-05-01

    The literature data on the heat capacity of solid antimony telluride over the range 53 895 K were analyzed. The heat capacity of Sb2Te3 was measured over the range 350 700 K on a DSM-2M calorimeter. The equation for the temperature dependence was suggested. The thermodynamic functions of Sb2Te3 were calculated over the range 298.15 700 K.

  11. Evaluation of Antimony Thioantimonate in Three in Vitro Short-Term Assays.

    DTIC Science & Technology

    1984-12-14

    dimethylsulfoxide [Cl potassium chloride DM dimethylnitrosamine MCA 3-me thylcholanthrene CA chromosome aberrations Sb(SbS 4 antimony thioantimonate TG...control compounds, ethylmethanesulfonate (EMS) lot #AZG and dImethylnitrosamIne were purchased from Eastman Kodak Company and Sigma Chemical Company...ethylmethanesulfonate (EMS) at 248 Lg/ml in the - absence of S9 or dimethylnitrosamine (DMN) at 100 jig/ml in the presence of S9. The cells were treated

  12. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  13. In vitro susceptibility to pentavalent antimony in Leishmania infantum strains is not modified during in vitro or in vivo passages but is modified after host treatment with meglumine antimoniate

    PubMed Central

    Carrió, Jaume; Portús, Montserrat

    2002-01-01

    Background Leishmaniasis is a common parasitic disease in Southern Europe, caused by Leishmania infantum. The failures of current treatment with pentavalent antimonials are partially attributable to the emergence of antimony-resistant Leishmania strains. This study analyses the in vitro susceptibility to pentavalent antimony of intracellular amastigotes from a range of L. infantum strains, derived from the same infected animal, during in vitro and in vivo passages and after host treatment with meglumine antimoniate. Results SbV-IC50 values for strains from two distinct isolates from the same host and one stock after two years of culture in NNN medium and posterior passage to hamster were similar (5.0 ± 0.2; 4.9 ± 0.2 and 4.4 ± 0.1 mgSbV/L, respectively). In contrast, a significant difference (P < 0.01, t test) was observed between the mean SbV-IC50 values in the stocks obtained before and after treatment of hosts with meglumine antimoniate (4.7 ± 0.4 mgSbV/L vs. 7.7 ± 1.5 mgSbV/L). Drug-resistance after drug pressure in experimentally infected dogs increased over repeated drug administration (6.4 ± 0.5 mgSbV/L after first treatment vs. 8.6 ± 1.4 mgSbV/L after the second) (P < 0.01, t test). Conclusions These results confirm previous observations on strains from Leishmania/HIV co-infected patients and indicate the effect of the increasing use of antimony derivatives for treatment of canine leishmaniasis in endemic areas on the emergence of Leishmania antimony-resistant strains. PMID:12019027

  14. Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer.

    PubMed

    Farzinpour, P; Sundar, A; Gilroy, K D; Eskin, Z E; Hughes, R A; Neretina, S

    2012-12-14

    Solid state dewetting of ultrathin films is the most straightforward means of fabricating substrate-supported noble metal nanostructures. This assembly process is, however, quite inflexible, yielding either densely packed smaller structures or widely spaced larger structures. Here, we demonstrate the utility of introducing a sacrificial antimony layer between the substrate and noble metal overlayer. We observe an agglomeration process which is radically altered by the concurrent sublimation of antimony. In stark contrast with conventional dewetting, where the thickness of the deposited metal film determines the characteristic length scales of the assembly process, it is the thickness of the sacrificial antimony layer which dictates both the nanoparticle size and interparticle spacing. The result is a far more flexible self-assembly process where the nanoparticle size and areal density can be varied widely. Demonstrations show nanoparticle areal densities which are varied over four orders of magnitude assembled from the identical gold layer thickness, where the accompanying changes to nanostructure size see a systematic shift in the wavelength of the localized surface plasmon resonance. As a pliable self-assembly process, it offers the opportunity to tailor the properties of an ensemble of nanostructures to meet the needs of specific applications.

  15. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

    NASA Astrophysics Data System (ADS)

    Zhong, Da-Peng; Li, Lei; Tan, Cheng

    2017-01-01

    A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the "Sb" component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

  16. An experimental approach to studying the effectiveness and safety of meglumine antimoniate formulations.

    PubMed

    Delgado, G; Sánchez, Y; Plaza, D; Mariño, A; Granados, D

    2011-12-01

    Among the problems associated to leishmaniasis, the two most outstanding ones are the lack of a vaccine and the adverse effects caused by drugs use for its control. Meglumine antimoniate compounds are the first-line drugs in the treatment for cutaneous leishmaniasis (the most prevalent form of the disease in Colombia); nevertheless, they are far from being ideal drugs due to their toxicity (not to mention the emergence of drug-resistant parasites), all of which has prompted current search for new strategies to improve their safety. This work assesses the effectiveness and safety (toxicity including new aspects related with immunotoxicity not reported previously) of two different meglumine antimoniate formulations using an in vitro and in vivo murine model. The results evidence that although both injectable formulations induce an equally efficient (clearance of intracellular parasites), both give rise to adverse effects, including a preferential immunomodulation on Balb/c mice and in a lesser proportion on ICR mice. These results are comparable to human trials reporting variable reactions when following the same treatment regimen. The model presented herein is proposed as a tool for evaluating the effectiveness and safety of meglumine antimoniate-based antileishmanial formulations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Variation of proteinuria in dogs with leishmaniasis treated with meglumine antimoniate and allopurinol: a retrospective study.

    PubMed

    Pierantozzi, Marco; Roura, Xavier; Paltrinieri, Saverio; Poggi, Marco; Zatelli, Andrea

    2013-01-01

    A retrospective study was performed using 53 client owned dogs with leishmaniasis to determine whether the degree of proteinuria, evaluated by the urine protein/creatinine ratio (UP/C), changes following treatment with meglumine antimoniate and allopurinol. Medical records of dogs with leishmaniasis in clinical stage C (according to the Canine Leishmaniasis Working Group staging system) and either proteinuric or borderline proteinuric (according to the International Renal Interest Society [IRIS] staging system) were reviewed. All dogs were treated with meglumine antimoniate and allopurinol for 4-8 wk. After treatment, UP/C, total protein, and total globulin significantly decreased and albumin and the albumin/globulin ratio (A/G) increased. After treatment, 7 of the 53 dogs (13.4%) became nonproteinuric following either a proteinuric or borderline proteinuric stage. Moreover, 12 of the 53 proteinuric dogs (22.6%) changed their stage to borderline proteinuric. The antileishmaniasis treatment with meglumine antimoniate in combination with allopurinol in dogs significantly reduced the degree of proteinuria in a short period of time. The results of the current study may be useful to the veterinary practitioner in the clinical management of canine leishmaniasis (CanL) in dogs with proteinuric chronic kidney disease.

  18. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    PubMed

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  19. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines.

    PubMed

    Matrangolo, Fabiana S V; Liarte, Daniel B; Andrade, Laila C; de Melo, Melina F; Andrade, Juvana M; Ferreira, Rafael F; Santiago, André S; Pirovani, Carlos P; Silva-Pereira, Rosiane A; Murta, Silvane M F

    2013-08-01

    The emergence of drug-resistant Leishmania species is a significant problem in several countries. A comparative proteomic analysis of antimony-susceptible and antimony-resistant Leishmania braziliensis (LbSbR) and Leishmania infantum chagasi (LcSbR) lines was carried out using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (LC/MS/MS) for protein identification. Out of 132 protein spots exclusive or up-regulated submitted to MS, we identified 80 proteins that corresponded to 57 distinct proteins. Comparative analysis of data showed that most of the protein spots with differential abundance in both species are involved in antioxidant defense, general stress response, glucose and amino acid metabolism, and cytoskeleton organization. Five proteins were commonly more abundant in both SbIII-resistant Leishmania lines: tryparedoxin peroxidase, alpha-tubulin, HSP70, HSP83, and HSP60. Analysis of the protein abundance by Western blotting assays confirmed our proteomic data. These assays revealed that cyclophilin-A is less expressed in both LbSbR and LcSbR lines. On the other hand, the expression of pteridine reductase is higher in the LbSbR line, whereas tryparedoxin peroxidase is overexpressed in both LbSbR and LcSbR lines. Together, these results show that the mechanism of antimony-resistance in Leishmania spp. is complex and multifactorial. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Long term improvement in the treatment of canine leishmaniosis using an antimony liposomal formulation.

    PubMed

    Valladares, J E; Riera, C; González-Ensenyat, P; Díez-Cascón, A; Ramos, G; Solano-Gallego, L; Gállego, M; Portús, M; Arboix, M; Alberola, J

    2001-05-09

    Pharmacokinetic and clinical effectiveness of liposome-encapsulated N-methylglucamine antimoniate (LMA) was performed in dogs suffering from experimental leishmaniosis. LMA was compared with N-methylglucamine antimoniate (MGA), the same drug in its free form. Sb plasma concentrations for LMA were always higher than those for MGA. Mean residence time (MRT), half-life time (t(1/2)) and clearance (Cl) showed that Sb was eliminated slower after liposome administration. The high volume of distribution (Vd) obtained with LMA suggests that Sb could achieve therapeutic concentrations in parasite-infected tissues. Average plasma concentration at steady state (Css(ave)) shows that Sb body concentrations after LMA treatment (9.8 mg/kg Sb, each 24h) would be effective in Leishmania infantum canine infection. Comparing LMA with MGA in a 1-year follow-up we observed no relapses for LMA and total protein and gammaglobulin concentrations were within normal range, while for MGA both began to rise 3 months after treatment. Use of antimonial liposomal formulations may restore effectiveness to an existing drug and reduce toxicity.

  1. Study on Determination of Antimony in Environmental Samples by Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Martins, Tassiane Cristina Gomes; Saiki, Mitiko; Zahn, Guilherme Soares

    2011-08-01

    There is an increasing interest in the determination of antimony in environmental samples since this element is cumulative and potentially toxic at very low concentrations. Moreover, the quantification of antimony presents difficulties due to its low concentrations in the samples and to the interference problem in the analyses. In this study, neutron activation analysis procedure was established in order to obtain reliable results for Sb determination in environmental samples. For this study ten reference materials were analyzed. Aliquots of these materials and synthetic standard of Sb were irradiated at the IEA- R1 nuclear reactor under a thermal neutron flux of about 5×1012 n cm-2 s-1 for 8 or 16 hours. The induced gamma activities of 122Sb and 124Sb were measured using a hyperpure Ge detector. Antimony concentrations were calculated by comparative method and the uncertainties of the results were estimated using statistical counting errors of the sample and standard. Relative errors calculated demonstrated that the accuracy of the results depends on the Sb radioisotope measured and the decay time for counting.

  2. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

    NASA Astrophysics Data System (ADS)

    Zhong, Da-Peng; Li, Lei; Tan, Cheng

    2017-04-01

    A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the "Sb" component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

  3. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    PubMed

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and <40 μg L(-1) in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2-5 μg L(-1) Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites.

  4. H-point standard addition method applied to simultaneous kinetic determination of antimony(III) and antimony(V) by adsorptive linear sweep voltammetry.

    PubMed

    Zarei, K; Atabati, M; Karami, M

    2010-07-15

    In this work, the applicability of H-point standard addition method (HPSAM) to the kinetic voltammetry data is verified. For this purpose, a procedure is described for the determination of Sb(III) and Sb(V) by adsorptive linear sweep voltammetry using pyrogallol as a complexing agent. The method is based on the differences between the rate of complexation of pyrogallol with Sb(V) and Sb(III) at pH 1.2. The results show that the H-point standard addition method is suitable for the speciation of antimony. Sb(III) and Sb(V) can be determined in the ranges of 0.003-0.120 and 0.010-0.240 microg mL(-1), respectively. Moreover, the solution is analyzed for any possible effects of foreign ions. The obtained results show that the HPSAM in combination to electroanalytical techniques is a powerful method with high sensitivity and selectivity. The procedure is successfully applied to the speciation of antimony in water samples. 2010 Elsevier B.V. All rights reserved.

  5. Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: impact on intracellular parasite survival

    PubMed Central

    Gómez, Maria Adelaida; Navas, Adriana; Márquez, Ricardo; Rojas, Laura Jimena; Vargas, Deninson Alejandro; Blanco, Victor Manuel; Koren, Roni; Zilberstein, Dan; Saravia, Nancy Gore

    2014-01-01

    Objectives Treatment failure is multifactorial. Despite the importance of host cell drug transporters and metabolizing enzymes in the accumulation, distribution and metabolism of drugs targeting intracellular pathogens, their impact on the efficacy of antileishmanials is unknown. We examined the contribution of pharmacologically relevant determinants in human macrophages in the antimony-mediated killing of intracellular Leishmania panamensis and its relationship with the outcome of treatment with meglumine antimoniate. Methods Patients with cutaneous leishmaniasis who failed (n = 8) or responded (n = 8) to treatment were recruited. Gene expression profiling of pharmacological determinants in primary macrophages was evaluated by quantitative RT–PCR and correlated to the drug-mediated intracellular parasite killing. Functional validation was conducted through short hairpin RNA gene knockdown. Results Survival of L. panamensis after exposure to antimonials was significantly higher in macrophages from patients who failed treatment. Sixteen macrophage drug-response genes were modulated by infection and exposure to meglumine antimoniate. Correlation analyses of gene expression and intracellular parasite survival revealed the involvement of host cell metallothionein-2A and ABCB6 in the survival of Leishmania during exposure to antimonials. ABCB6 was functionally validated as a transporter of antimonial compounds localized in both the cell and phagolysosomal membranes of macrophages, revealing a novel mechanism of host cell-mediated regulation of intracellular drug exposure and parasite survival within phagocytes. Conclusions These results provide insight into host cell mechanisms regulating the intracellular exposure of Leishmania to antimonials and variations among individuals that impact parasite survival. Understanding of host cell determinants of intracellular pharmacokinetics/pharmacodynamics opens new avenues to improved drug efficacy for intracellular

  6. Meglumine Antimoniate (Glucantime) Causes Oxidative Stress-Derived DNA Damage in BALB/c Mice Infected by Leishmania (Leishmania) infantum.

    PubMed

    Moreira, Vanessa Ribeiro; de Jesus, Luís Cláudio Lima; Soares, Rossy-Eric Pereira; Silva, Luis Douglas Miranda; Pinto, Bruno Araújo Serra; Melo, Maria Norma; Paes, Antonio Marcus de Andrade; Pereira, Silma Regina Ferreira

    2017-06-01

    Leishmaniasis is a neglected tropical disease caused by >20 species of the protozoan parasite Leishmania Meglumine antimoniate (Glucantime) is the first-choice drug recommended by the World Health Organization for the treatment of all types of leishmaniasis. However, the mechanisms of action and toxicity of pentavalent antimonials, including genotoxic effects, remain unclear. Therefore, the mechanism by which meglumine antimoniate causes DNA damage was investigated for BALB/c mice infected by Leishmania (Leishmania) infantum and treated with meglumine antimoniate (20 mg/kg for 20 days). DNA damage was analyzed by a comet assay using mouse leukocytes. Furthermore, comet assays were followed by treatment with formamidopyrimidine-DNA glycosylase and endonuclease III, which remove oxidized DNA bases. In addition, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the animals' sera were assessed. To investigate mutagenicity, we carried out a micronucleus test. Our data demonstrate that meglumine antimoniate, as well as L. infantum infection, induces DNA damage in mammalian cells by the oxidation of nitrogenous bases. Additionally, the antileishmanial increased the frequency of micronucleated cells, confirming its mutagenic potential. According to our data, both meglumine antimoniate treatment and L. infantum infection promote oxidative stress-derived DNA damage, which promotes overactivation of the SOD-CAT axis, whereas the SOD-GPx axis is inhibited as a probable consequence of glutathione (GSH) depletion. Finally, our data enable us to suggest that a meglumine antimoniate regimen, as recommended by the World Health Organization, would compromise GPx activity, leading to the saturation of antioxidant defense systems that use thiol groups, and might be harmful to patients under treatment. Copyright © 2017 American Society for Microbiology.

  7. Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Corrales, Isabel; Duran, Paola; Roca, Núria; Tume, Pedro; Barceló, Juan; Poschenrieder, Charlotte

    2010-05-01

    Soil contamination by antimony is of increasing environmental concern due to the use of this amphoterous p-block element in many industrial applications such as flame retardant, electronics, alloys, rubber and textile industries. However, little is still known about the response of plants to antimony. Here we report on the accumulation of antimony and other potentially toxic elements (mainly As, Pb and Cu) in plants growing around a former antimony mine in the ribes Valley located in the Eastern Pyrenees (424078E, 4686100N alt. 1145 m.a.s.l) that was operating approximately between the years 1870 to 1960. The ore mineral veins are included in quartz gangue. The main ores were: Sulphides: Stibnite (Sb2S3), Pyrite (FeS2), Sphalerite (ZnS), Arsenopyrite (FeAs), Galenite (PbS), Chalcopyrite (CuFeS2), Tetrahydrite (Cu5Sb2S3). Sulphosals: Boulangerite (5PbS•2Sb2S3), Jamesonite (4PbS•FeS•3Sb2S3), Zinckenite (6PbS•7Sb2S3), Plagionite (5PbS•4Sb2S3), Bournonite PbCu (Sb,As)S3, Pyrargirite (Ag3SbS3). Soil and plant samples were taken at five locations with different levels of Sb, As, and polymetallic contamination. Both pseudototal (aqua regia soluble) and extractable (EDTA) concentrations of metals from sites with low (sites 1 and 2), moderate (site 3 and 4) and high (sites 5 and 6) pollutant burdens were studied. The range of agua regia and EDTA values in mgkg-1 is as follows: Sb 8-2904 and 0.88-44; As: 33-16186 and 3.2-167; Pb: 79-4794 and 49-397; Cu: 66-712 and 48-56 mg•kg-1, respectively). While sites 1 to 4 had alkaline soil pH (7.4-8.7), sites 5 and 6 were acidic with values of 6 and 4.6, respectively. Different herbaceous plant species (Poa annua, Echium vulgare, Sonchus asper, Barbera verna among others) at the low and moderately polluted sites were able to efficiently restrict Sb and As transport to shoots showing average concentration ranges between 5.5 and 23 mg/kg As and 1.21 mg/kg and 4.9 mg/kg Sb. However, at the highly polluted acidic sites (5 and

  8. Probe dendritic functions through poking and peeking

    NASA Astrophysics Data System (ADS)

    Xiong, Wenhui; Zhou, Zhishang; Zeng, Shaoqun; Chen, Wei R.

    2003-12-01

    Several photonic approaches have been utilized to study functional dynamics of olfactory bulb dendrites, which plays a critical role in odor discrimination and recognition. Firstly, with infrared differential interference contrast (DIC) video microscopy, we can visualize living nerve cells in an olfactory bulb slice preparation and target glass electrodes to different dendritic locations for direct electrical measurement. This furnishes a high temporal resolution of signal recording from dendrites. Secondly, by using a cooled CCD camera and loading calcium-sensitive dyes into neurons, we have explored the spatial distribution and propagation of spike signals within complex dendritic trees. Thirdly, two-photon microscope enables us to analyze active properties of very tiny dendritic structures such as dendritic spines. Lastly, by using UV light pulse to release calcium ions from caged compounds, we have examined the mechanisms for signal communication between two dendrites with reciprocal synaptic connections. Our research highlights an important contribution of optical imaging methods to functional dissection of neuronal circuitry in the brain.

  9. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  10. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  11. Nanoscaled hydrated antimony (V) oxide as a new approach to first-line antileishmanial drugs

    PubMed Central

    Franco, Antonia MR; Grafova, Iryna; Soares, Fabiane V; Gentile, Gennaro; Wyrepkowski, Claudia DC; Bolson, Marcos A; Sargentini, Ézio; Carfagna, Cosimo; Leskelä, Markku; Grafov, Andriy

    2016-01-01

    Background Coordination compounds of pentavalent antimony have been, and remain, the first-line drugs in leishmaniasis treatment for >70 years. Molecular forms of Sb (V) complexes are commercialized as sodium stibogluconate (Pentostam®) and meglumine antimoniate (MA) (Glucantime®). Ever-increasing drug resistance in the parasites limits the use of antimonials, due to the low drug concentrations being administered against high parasitic counts. Sb5+ toxicity provokes severe side effects during treatment. To enhance therapeutic potency and to increase Sb (V) concentration within the target cells, we decided to try a new active substance form, a hydrosol of Sb2O5·nH2O nanoparticles (NPs), instead of molecular drugs. Methodology/principal findings Sb2O5·nH2O NPs were synthesized by controlled SbCl5 hydrolysis in a great excess of water. Sb2O5·nH2O phase formation was confirmed by X-ray diffraction. The surface of Sb (V) NPs was treated with ligands with a high affinity for target cell membrane receptors. The mean particle size determined by dynamic light scattering and transmission electron microscopy was ~35–45 nm. In vitro tests demonstrated a 2.5–3 times higher antiparasitic activity of Sb (V) nanohybrid hydrosols, when compared to MA solution. A similar comparison for in vivo treatment of experimental cutaneous leishmaniasis with Sb5+ nanohybrids showed a 1.75–1.85 times more effective decrease in the lesions. Microimages of tissue fragments confirmed the presence of NPs inside the cytoplasm of infected macrophages. Conclusion/significance Sb2O5·nH2O hydrosols are proposed as a new form of treatment for cutaneous leishmaniasis caused by Leishmania amazonensis. The NPs penetrate directly into the affected cells, creating a high local concentration of the drug, a precondition to overcoming the parasite resistance to molecular forms of pentavalent antimonials. The nanohybrids are more effective at a lower dose, when compared to MA, the molecular drug. Our

  12. Nanoscaled hydrated antimony (V) oxide as a new approach to first-line antileishmanial drugs.

    PubMed

    Franco, Antonia Mr; Grafova, Iryna; Soares, Fabiane V; Gentile, Gennaro; Wyrepkowski, Claudia Dc; Bolson, Marcos A; Sargentini, Ézio; Carfagna, Cosimo; Leskelä, Markku; Grafov, Andriy

    Coordination compounds of pentavalent antimony have been, and remain, the first-line drugs in leishmaniasis treatment for >70 years. Molecular forms of Sb (V) complexes are commercialized as sodium stibogluconate (Pentostam(®)) and meglumine antimoniate (MA) (Glucantime(®)). Ever-increasing drug resistance in the parasites limits the use of antimonials, due to the low drug concentrations being administered against high parasitic counts. Sb(5+) toxicity provokes severe side effects during treatment. To enhance therapeutic potency and to increase Sb (V) concentration within the target cells, we decided to try a new active substance form, a hydrosol of Sb2O5·nH2O nanoparticles (NPs), instead of molecular drugs. Sb2O5·nH2O NPs were synthesized by controlled SbCl5 hydrolysis in a great excess of water. Sb2O5·nH2O phase formation was confirmed by X-ray diffraction. The surface of Sb (V) NPs was treated with ligands with a high affinity for target cell membrane receptors. The mean particle size determined by dynamic light scattering and transmission electron microscopy was ~35-45 nm. In vitro tests demonstrated a 2.5-3 times higher antiparasitic activity of Sb (V) nanohybrid hydrosols, when compared to MA solution. A similar comparison for in vivo treatment of experimental cutaneous leishmaniasis with Sb(5+) nanohybrids showed a 1.75-1.85 times more effective decrease in the lesions. Microimages of tissue fragments confirmed the presence of NPs inside the cytoplasm of infected macrophages. Sb2O5·nH2O hydrosols are proposed as a new form of treatment for cutaneous leishmaniasis caused by Leishmania amazonensis. The NPs penetrate directly into the affected cells, creating a high local concentration of the drug, a precondition to overcoming the parasite resistance to molecular forms of pentavalent antimonials. The nanohybrids are more effective at a lower dose, when compared to MA, the molecular drug. Our data suggest that the new form of treatment has the potential to

  13. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  14. Neural image processing by dendritic networks.

    PubMed

    Cuntz, Hermann; Haag, Jürgen; Borst, Alexander

    2003-09-16

    Convolution is one of the most common operations in image processing. Based on experimental findings on motion-sensitive visual interneurons of the fly, we show by realistic compartmental modeling that a dendritic network can implement this operation. In a first step, dendritic electrical coupling between two cells spatially blurs the original motion input. The blurred motion image is then passed onto a third cell via inhibitory dendritic synapses resulting in a sharpening of the signal. This enhancement of motion contrast may be the central element of figure-ground discrimination based on relative motion in the fly.

  15. Fractional Cable Models for Spiny Neuronal Dendrites

    NASA Astrophysics Data System (ADS)

    Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.

    2008-03-01

    Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders.

  16. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  17. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  18. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  19. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  20. In vitro evaluation of the effectiveness and cytotoxicity of meglumine antimoniate microspheres produced by spray drying against Leishmania infantum.

    PubMed

    Pujals, G; Suñé-Negre, J M; Pérez, P; García, E; Portus, M; Tico, J R; Miñarro, M; Carrió, J

    2008-05-01

    The aim of the present study was to evaluate the in vitro activity and cytotoxicity of meglumine antimoniate microspheres produced by spray drying on Leishmania infantum and the effect of the excipients used in them. The parasite strain shows sensitivity to the meglumine antimoniate microspheres prepared. All the antimony IC50 values from encapsulated meglumine antimoniate (3.80 +/- 0.34 to 9.53 +/- 0.70 microg SbV/ml for promastigotes assay) are considerably lower compared to the mean value of IC50 in Glucantime solution (112 +/- 12.74 microg SbV/ml). Interesting IC50 values for the excipient chitosan (112.64 +/- 0.53 mg/ml for promastigotes and 100.81 +/- 26.45 mg/ml for amastigotes) were obtained (without cytotoxic activity), whereas the rest of the excipients did not show any activity. This new delivery system could offer a new pharmacological tool for the treatment of leishmaniosis that reduces the doses required, lowering toxic side effects because of meglumine antimoniate.

  1. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice.

    PubMed

    Borborema, Samanta Etel Treiger; Osso Jr, João Alberto; Andrade Jr, Heitor Franco de; Nascimento, Nanci do

    2013-08-01

    Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime®) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, ¹²²Sb and ¹²⁴Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.

  2. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice

    PubMed Central

    Borborema, Samanta Etel Treiger; Osso, João Alberto; de Andrade, Heitor Franco; do Nascimento, Nanci

    2013-01-01

    Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime(r)) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy. PMID:23903979

  3. Combined suboptimal schedules of topical paromomycin, meglumine antimoniate and miltefosine to treat experimental infection caused by Leishmania (Viannia) braziliensis.

    PubMed

    de Morais-Teixeira, Eliane; Aguiar, Marta Gontijo; Soares de Souza Lima, Bruna; Ferreira, Lucas Antônio Miranda; Rabello, Ana

    2015-12-01

    This study aimed to evaluate the efficacy of binary combinations of suboptimal schedules of drugs with different administration routes (topical paromomycin, intramuscular meglumine antimoniate and oral miltefosine) to treat animals infected with Leishmania (Viannia) braziliensis. Hamsters were inoculated with L. (V.) braziliensis and after ulceration of lesions, divided into seven groups: untreated control, paromomycin, miltefosine, meglumine antimoniate, meglumine antimoniate + paromomycin, miltefosine + paromomycin and meglumine antimoniate + miltefosine. Meglumine antimoniate and miltefosine were administered at low doses and topical paromomycin at a single daily application regimen. The animals were treated for 20 consecutive days (meglumine antimoniate and/or paromomycin) and/or 10 alternate days (miltefosine). Lesion sizes were determined weekly. Upon completion of treatment, parasites were recovered from skin lesions and spleens and evaluated by limiting dilution assay. The combinations of a once daily application of paromomycin with low doses of miltefosine or meglumine antimoniate yielded higher efficacies in reducing the parasite load as well as lesion size when compared with any of these drugs administered as monotherapy regimens at the same suboptimal schedules. Considering the parameters evaluated, the combinations of a systemic therapy with topical treatment were more effective than monotherapy with each of these drugs. These combinations may represent an alternative combination strategy for the treatment of leishmaniasis caused by L. (V.) braziliensis. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Species-specific antimonial sensitivity in Leishmania is driven by post-transcriptional regulation of AQP1.

    PubMed

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-02-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3'-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species.

  5. Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1

    PubMed Central

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-01-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. PMID:25714343

  6. Effect of decabromodiphenyl ether and antimony trioxide on controlled pyrolysis of high-impact polystyrene mixed with polyolefins.

    PubMed

    Mitan, Nona Merry M; Bhaskar, Thallada; Hall, William J; Muto, Akinori; Williams, Paul T; Sakata, Yusaku

    2008-07-01

    The controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed with brominated high-impact polystyrene containing decabromodiphenyl ether as a brominated flame-retardant with antimony trioxide as a synergist was performed. The effect of decabromodiphenyl ether and antimony trioxide on the formation of its congeners and their effect on distribution of pyrolysis products were investigated. The controlled pyrolysis significantly affected the decomposition behavior and the formation of products. Analysis with gas chromatograph with electron capture detector confirmed that the bromine content was rich in step 1 (oil 1) liquid products leaving less bromine content in the step 2 (oil 2) liquid products. In the presence of antimony containing samples, the major portion of bromine was observed in the form of antimony bromide and no flame-retardant species were found in oil 1. In the presence of synergist, the step 1 and step 2 oils contain both light and heavy compounds. In the absence of synergist, the heavy compounds in step 1 oil and light compounds in step 2 oils were observed. The presence of antimony bromide was confirmed in the step 1 oils but not in step 2 oils.

  7. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    PubMed

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  8. Neurotensin promotes the dendrite elongation and the dendritic spine maturation of the cerebral cortex in vitro.

    PubMed

    Gandou, Chihiro; Ohtani, Akiko; Senzaki, Kouji; Shiga, Takashi

    2010-03-01

    We examined roles of neurotensin in the dendrite formation and the maturation of dendritic spines in the rat cerebral cortex. Embryonic day (E) 18 cortical neurons were cultured for 2 or 4 days in the presence of neurotensin. The chronic treatment of cortical neurons with neurotensin for 4 days increased the dendritic length of non-GABAergic neurons. In addition, the acute treatment of cortical neurons for 24h at 3 days in vitro also increased the dendritic length of non-GABAergic neurons similarly but more strongly than the chronic treatment. In contrast, the acute treatment for 4h had no effects on the dendrite formation. Next, we examined the effects of neurotensin on the maturation of dendritic spines. E16 cortical neurons were cultured for 10 or 14 days in a basal medium and then treated with neurotensin for 24h. At 11 days in vitro, neurotensin increased the postsynaptic density (PSD) 95-positive dendritic protrusions (filopodia, puncta and spines) together with the increase of spine density and the decrease of puncta density. At 15 days in vitro, neurotensin decreased the puncta density. In addition, the immunohistochemical localization of neurotensin type 1 and type 3 receptors in cultured neurons suggested the differential contribution of the receptors in these effects. These findings suggest that neurotensin promotes the dendrite outgrowth and the maturation of dendritic spines of cultured cortical neurons, although further studies are needed to conclude that these roles of neurotensin are also the case in vivo.

  9. Dendritic ion channelopathy in acquired epilepsy

    PubMed Central

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  10. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  11. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  12. Podosomes of dendritic cells facilitate antigen sampling.

    PubMed

    Baranov, Maksim V; Ter Beest, Martin; Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G; van den Bogaart, Geert

    2014-03-01

    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.

  13. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  14. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  15. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the overview for the EDSE in the Microgravity Development Lab (MDL).

  16. Low versus high dose of antimony for American cutaneous leishmaniasis: A randomized controlled blind non-inferiority trial in Rio de Janeiro, Brazil

    PubMed Central

    Salgueiro, Mariza de Matos; Vasconcellos, Érica de Camargo Ferreira e; Passos, Sonia Regina Lambert; dos Santos, Ginelza Peres Lima; Ribeiro, Madelon Novato; Fagundes, Aline; Madeira, Maria de Fátima; Mouta-Confort, Eliame; Marzochi, Mauro Célio de Almeida; Valete-Rosalino, Cláudia Maria

    2017-01-01

    Background Although high dose of antimony is the mainstay for treatment of American cutaneous leishmaniasis (ACL), ongoing major concerns remain over its toxicity. Whether or not low dose antimony regimens provide non-inferior effectiveness and lower toxicity has long been a question of dispute. Methods A single-blind, non-inferiority, randomized controlled trial was conducted comparing high dose with low dose of antimony in subjects with ACL treated at a referral center in Rio de Janeiro, an endemic area of Leishmania (Viannia) braziliensis transmission. The primary outcome was clinical cure at 360 days of follow-up in the modified-intention-to-treat (mITT) and per-protocol (PP) populations. Non-inferiority margin was 15%. Secondary objectives included occurrence of epithelialization, adverse events and drug discontinuations. This study was registered in ClinicalTrials.gov: NCT01301924. Results Overall, 72 patients were randomly assigned to one of the two treatment arms during October 2008 to July 2014. In mITT, clinical cure was observed in 77.8% of subjects in the low dose antimony group and 94.4% in the high dose antimony group after one series of treatment (risk difference 16.7%; 90% CI, 3.7–29.7). The results were confirmed in PP analysis, with 77.8% of subjects with clinical cure in the low dose antimony group and 97.1% in the high dose antimony group (risk difference 19.4%; 90% CI, 7.1–31.7). The upper limit of the confidence interval exceeded the 15% threshold and was also above zero supporting the hypothesis that low dose is inferior to high dose of antimony after one series of treatment. Nevertheless, more major adverse events, a greater number of adverse events and major adverse events per subject, and more drug discontinuations were observed in the high dose antimony group (all p<0.05). Interestingly, of all the subjects who were originally allocated to the low dose antimony group and were followed up after clinical failure, 85.7% achieved cure

  17. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  18. Fast Kalman filtering on quasilinear dendritic trees.

    PubMed

    Paninski, Liam

    2010-04-01

    Optimal filtering of noisy voltage signals on dendritic trees is a key problem in computational cellular neuroscience. However, the state variable in this problem-the vector of voltages at every compartment-is very high-dimensional: realistic multicompartmental models often have on the order of N = 10(4) compartments. Standard implementations of the Kalman filter require O(N (3)) time and O(N (2)) space, and are therefore impractical. Here we take advantage of three special features of the dendritic filtering problem to construct an efficient filter: (1) dendritic dynamics are governed by a cable equation on a tree, which may be solved using sparse matrix methods in O(N) time; and current methods for observing dendritic voltage (2) provide low SNR observations and (3) only image a relatively small number of compartments at a time. The idea is to approximate the Kalman equations in terms of a low-rank perturbation of the steady-state (zero-SNR) solution, which may be obtained in O(N) time using methods that exploit the sparse tree structure of dendritic dynamics. The resulting methods give a very good approximation to the exact Kalman solution, but only require O(N) time and space. We illustrate the method with applications to real and simulated dendritic branching structures, and describe how to extend the techniques to incorporate spatially subsampled, temporally filtered, and nonlinearly transformed observations.

  19. Analytical application of nano-sized titanium dioxide for the determination of trace inorganic antimony in natural waters.

    PubMed

    Hagarová, Ingrid; Matúš, Peter; Bujdoš, Marek; Kubová, Jana

    2012-03-01

    In this work, solid phase extraction (SPE) using nano-sized TiO2 as a solid sorbent was used for separation/preconcentration of total inorganic antimony (iSb) before its determination by electrothermal atomic absorption spectrometry (ETAAS). After adsorption of iSb onto nano-sized TiO2, direct TiO2-slurry sampling was used for sample injection into a graphite tube. The conditions for the reliable slurry sampling together with careful control of the temperature program for the slurry solutions were worked out. Extraction conditions for both inorganic antimony species (Sb(III) and Sb(V)) and interference studies of coexisting ions were studied in detail. The accuracy of the optimized method was checked by the certified reference material (CRM) for trace elements in lake water TMDA-61. Finally, the optimized method was used for the determination of trace inorganic antimony in synthetic and natural waters.

  20. Evaluation of the cardiac toxicity of N-methyl-glucamine antimoniate in dogs with naturally occurring leishmaniasis.

    PubMed

    Luciani, Alessia; Sconza, Sarah; Civitella, Carla; Guglielmini, Carlo

    2013-04-01

    The aim of this study was to evaluate the cardiotoxic effects of pentavalent antimonial compounds in dogs with leishmaniasis. Twenty-eight dogs with clinical disease due to natural infection with Leishmania infantum were treated with 75 mg/kg meglumine antimoniate SC every 12h for 60 days. Serum cardiac troponin I (cTnI) concentrations were determined and routine and 24h ambulatory electrocardiographic monitoring was performed before the onset (T0) and at the end of treatment (T60). No abnormalities were found in routine and 24h electrocardiographic tracings before and after treatment. No statistical difference was found between serum cTnI concentrations or corrected QT intervals at T0 and T60. There was no evidence of laboratory or electrocardiographic features of cardiac toxicity in dogs with leishmaniasis treated with a therapeutic dose of meglumine antimoniate for 60 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase.

    PubMed

    Karacan, Mehmet Sayım; Rodionova, Margarita V; Tunç, Turgay; Venedik, Kübra Begüm; Mamaş, Serhat; Shitov, Alexandr V; Zharmukhamedov, Sergei K; Klimov, Vyacheslav V; Karacan, Nurcan; Allakhverdiev, Suleyman I

    2016-12-01

    Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, (1)H-NMR, (13)C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.

  2. Pharmacokinetics of meglumine antimoniate after administration of a multiple dose in dogs experimentally infected with Leishmania infantum.

    PubMed

    Valladares, J E; Riera, C; Alberola, J; Gállego, M; Portús, M; Cristòfol, C; Franquelo, C; Arboix, M

    1998-02-15

    Pharmacokinetics of meglumine antimoniate in dogs with experimentally induced leishmaniosis has been investigated. After infection, dogs received a dose of 75 mg kg-1 of meglumine antimoniate twice daily by subcutaneous injection for 10 days. Blood samples were collected throughout the treatment. No statistical differences were found in the kinetic behaviour of the drug administered as a single dose to healthy dogs and that administered as a multiple dose to infected animals. However, peak plasma concentrations (Cmax) of 30.8 +/- 12.8 micrograms ml-1 found after this dosage regimen were higher than those observed after the single dose administration of 100 mg kg-1 24 h-1. Furthermore, sustained antimony concentrations of 1.14 +/- 0.52 micrograms Sb ml-1 were detected throughout the treatment. No signs of toxicity were found in the animals treated indicating that this regimen would be very appropriate to treat canine leishmaniosis.

  3. Penicillamine as an adjuvant to antimonial therapy of schistosomiasis: effect on liver function tests in rabbits and on antischistosomal activity*

    PubMed Central

    Khayyal, M. T.; Saleh, S.; El Masri, A. M.

    1973-01-01

    Earlier work has shown that penicillamine reduces the acute toxicity of antimonyl potassium tartrate (APT) as well as the abnormal ECG changes it induces. In the present study, the possible protective effect of penicillamine on the hepatic toxicity of APT was investigated. Tests of liver function showed changes in the level of serum aspartate and alanine aminotransferase and of alkaline phosphatase, and in the beta-/alpha-lipoprotein ratio, in response to antimony treatment. The changes were significantly reduced by penicillamine, though the effect depended on the dose. Penicillamine was found to give the best overall protection without affecting the antischistosomal efficacy of the antimonial when a 1:2 APT/penicillamine ratio was used. The findings provide further evidence of the potential usefulness of penicillamine in the antimonial treatment of schistosomiasis. PMID:4543547

  4. Sensitivity of Leishmania viannia panamensis to Pentavalent Antimony Is Correlated with the Formation of Cleavable DNA-Protein Complexes

    PubMed Central

    Lucumi, Armando; Robledo, Sara; Gama, Vivian; Saravia, Nancy G.

    1998-01-01

    The emergence of Leishmania less sensitive to pentavalent antimonial agents (SbVs), the report of inhibition of purified topoisomerase I of Leishmania donovani by sodium stibogluconate (Pentostam), and the uncertain mechanism of action of antimonial drugs prompted an evaluation of SbVs in the stabilization of cleavable complexes in promastigotes of Leishmania (Viannia). The effect of camptothecin, an inhibitor of topoisomerase, and additive-free meglumine antimoniate (Glucantime) on the stabilization of cleavable DNA-protein complexes associated with the inhibition of topoisomerase was assessed in the human promonocytic cell line U-937, promastigotes of L. (Viannia) panamensis selected for SbV resistance in vitro, and the corresponding wild-type strain. The stabilization of cleavable complexes and the 50% effective dose (ED50) of SbVs for parasites isolated from patients with relapses were also evaluated. The median ED50 for the wild-type strain was 16.7 μg of SbV/ml, while that of the line selected for resistance was 209.5 μg of SbV/ml. Treatment with both meglumine antimoniate and sodium stibogluconate (20 to 200 μg of SbV/ml) stabilized DNA-protein complexes in the wild-type strain but not the resistant line. The ED50s of the SbVs for Leishmania strains from patients with relapses was comparable to those for the line selected for in vitro resistance, and DNA-protein complexes were not stabilized by exposure to meglumine antimoniate. Cleavable complexes were observed in all Leishmania strains treated with camptothecin. Camptothecin stabilized cleavable complexes in U-937 cells; SbVs did not. The selective effect of the SbVs on the stabilization of DNA-protein complexes in Leishmania and the loss of this effect in naturally resistant or experimentally derived SbV-resistant Leishmania suggest that topoisomerase may be a target of antimonial drugs. PMID:9687395

  5. The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance.

    PubMed

    Perea, Ana; Manzano, José Ignacio; Castanys, Santiago; Gamarro, Francisco

    2016-06-01

    Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products.

    PubMed

    Turner, Andrew; Filella, Montserrat

    2017-02-09

    Very little systematic information exists on the occurrence and concentrations of antimony (Sb) in consumer products. In this study, a Niton XL3t field-portable-X-ray fluorescence (FP-XRF) spectrometer was deployed in situ and in the laboratory to provide quantitative information on Sb dissipated in plastic items and fixtures (including rubber, textile and foamed materials) from the domestic, school, vehicular and office settings. The metalloid was detected in 18% of over 800 measurements performed, with concentrations ranging from about 60 to 60,000μgg(-1). The highest concentrations were encountered in white, electronic casings and in association with similar concentrations of Br, consistent with the use of antimony oxides (e.g. Sb2O3) as synergistic flame retardants. Concentrations above 1000μgg(-1), and with or without Br, were also encountered in paints, piping and hosing, adhesives, whiteboards, Christmas decorations, Lego blocks, document carriers, garden furniture, upholstered products and interior panels of private motor vehicles. Lower concentrations of Sb were encountered in a wide variety of items but its presence (without Br) in food tray packaging, single-use drinks bottles, straws and small toys were of greatest concern from a human health perspective. While the latter observations are consistent with the use of antimony compounds as catalysts in the production of polyethylene terephthalate, co-association of Sb and Br in many products not requiring flame retardancy suggests that electronic casings are widely recycled. Further research is required into the mobility of Sb when dissipated in new, recycled and aged polymeric materials.

  7. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  8. Antimony film sensor for sensitive rare earth metal analysis in environmental samples.

    PubMed

    Makombe, Martin; van der Horst, Charlton; Silwana, Bongiwe; Iwuoha, Emmanuel; Somerset, Vernon

    2016-07-02

    A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 μg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples.

  9. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species

    PubMed Central

    Andrade, Juvana M.; Baba, Elio H.; Machado-de-Avila, Ricardo A.; Chavez-Olortegui, Carlos; Demicheli, Cynthia P.; Frézard, Frédéric

    2016-01-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (SbIII) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased SbIII susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to SbIII exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, SbIII-sodium nitrate or SbIII-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of SbIII alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to SbIII and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated SbIII susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and SbIII. PMID:27161624

  10. Role of Efflux Pumps and Intracellular Thiols in Natural Antimony Resistant Isolates of Leishmania donovani

    PubMed Central

    Rai, Smita; Bhaskar; Goel, Sudhir K.; Nath Dwivedi, Upendra; Sundar, Shyam; Goyal, Neena

    2013-01-01

    Background In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s) and expression profiles of known genes involved in transport and thiol based redox metabolism Methodology/Principal Findings We selected 7 clinical isolates (2 sensitive and 5 resistant) in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. Conclusions/Significance Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s) in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance. PMID:24069359

  11. Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance

    SciTech Connect

    Ge, Shengsong; Yang, Xiaokun; Shao, Qian; Liu, Qingyun; Wang, Tiejun; Wang, Lingyun; Wang, Xiaojie

    2013-04-15

    A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infrared reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.

  12. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    PubMed

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III).

  13. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  14. Coherent A{sub 1g} and E{sub g} phonons of antimony

    SciTech Connect

    Ishioka, Kunie; Kitajima, Masahiro; Misochko, Oleg V.

    2008-06-15

    We report the ultrafast dynamics of the coherent A{sub 1g} and E{sub g} phonons of antimony as a function of temperature and optical polarization. Like in bismuth, the two phonon modes exhibit nearly {pi}/2 difference in their initial phase, suggesting their different coupling strengths with photoexcited electrons. The dependence of the phonon amplitude on the optical polarization and temperature indicates the generation of the coherent A{sub 1g} phonons through both displacive and Raman processes, rather than a purely displacive one. In contrast, the generation of the coherent E{sub g} phonons can be understood within Raman framework alone.

  15. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Zhimeng; Zhu, Mengfu; Wang, Zheng; Wang, Hong; Deng, Cheng; Li, Kui

    2016-05-01

    A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2)/carbon aerogel (CA) for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  16. Specific features of utilizing bismuth antimony chalcogenide single crystals in miniature coolers

    SciTech Connect

    Semenyuk, V.A.; Ivanova, L.D.; Svechnikova, T.E.

    1995-01-01

    A procedure for growing perfect single crystals of bismuth antimony chalcogenide solid solutions by the Czochralski technique with melt feeding from a floating crucible was developed at the Baikov Institute of Metallurgy. Given that the single crystals in question readily split along the cleavage planes, the problem of acceptable yield of suitable products in the manufacture of thermoelements and cooling modules arises. To solve this problem, investigations were undertaken along two lines: (1) development of nondestructive, damage-free technologies; and (2) development of methods for making low-resistance antidiffusion contacts on the end faces of the thermoelements.

  17. Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers*

    PubMed Central

    Vásquez, Laura; Scorza Dagert, José V.; Scorza, José V.; Vicuña-Fernández, Nelson; de Peña, Yaneira Petit; López, Sabrina; Bendezú, Herminia; Rojas, Elina; Vásquez, Libia; Pérez, Belén

    2006-01-01

    Background: Pentavalent antimony (SbV) has demonstrated therapeuticeffectiveness against clinical manifestations of leishmaniasis, an infection caused by Leishmania, a genus of flagellate protozoa comprising parasites of worldwide distribution. Approximately 1.8 million new cases are reported annually. Objective: The aim of this study was to assess the pharmacokinetics of the investigational generic SbV, Ulamina (pentachloride of antimony + N-methylglucamine), in healthy adult volunteers. Methods: In this study, SbV was administered IM as a single 5-mg/kg dose.Blood samples were collected at 0.25, 0.75, 1, 2, 4, 8, 12, and 24 hours after administration; urine samples were collected at 6-hour intervals during the 24-hour postadministration period. Determination of trivalent antimony, SbV, and total antimony concentrations in blood and urine samples was carried out using atomic absorption spectrometry. Clinical history was reviewed and the subjects were monitored before and after administration of SbV using physical examination, weight, and hepatic- and renal-function studies. The pharmacokinetic parameters calculated were Cmax, Tmax, absorption constant (Ka), elimination constant (Kel), AUC2–24h, AUC0-∞, elimination phase (t½β), volume of distribution (Vd), and urinary excretion rate. Results: Five subjects (3 men, 2 women; mean age, 28 years [range, 18–34 years]) were included in the study. One hour after drug administration the following values were obtained: Cmax, 1.1 μg/mL; Tmax, 1.3 hours; Ka, 1.87 hours; Kel, 0.043 hours; AUC0–24h, 12.26 μg/mL · h; AUC0-∞, 19.84 μg/mL · h; t½β, 17.45 hours; Vd, 6.6 L/kg; and urinary excretion rate, 2.8 μg/h; these were mean values for the entire study group. The single dose was well tolerated by all subjects. Conclusions: The investigational generic SbV, Ulamina, was associated with linearelimination after IM administration of a single 5-mg/kg dose. A 2-compartment pharmacokinetic model was observed in

  18. Stripping voltammetric determination of mercury(II) at antimony-coated carbon paste electrode.

    PubMed

    Ashrafi, Amir M; Vytřas, Karel

    2011-10-15

    A new procedure was elaborated to determine mercury(II) using an anodic stripping square-wave voltammetry at the antimony film carbon paste electrode (SbF-CPE). In highly acidic medium of 1M hydrochloric acid, voltammetric measurements can be realized in a wide potential window. Presence of cadmium(II) allows to separate peaks of Hg(II) and Sb(III) and apparently catalyses reoxidation of electrolytically accumulated mercury, thus allowing its determination at ppb levels. Calibration dependence was linear up to 100 ppb Hg with a detection limit of 1.3 ppb. Applicability of the method was tested on the real river water sample.

  19. Tissue distribution of trivalent antimony in mice infected with Schistosoma mansoni

    PubMed Central

    Molokhia, M. M.; Smith, H.

    1969-01-01

    The work described in this paper is designed to use the very high analytical sensitivity of neutron-activation analysis. The antimony content of individual organs and pieces of organs have been analysed as part of an investigation of the chemotherapy of schistosomiasis. The results illustrate the great, and as yet relatively unapplied, value of this technique in dealing with the investigation of trace elements in biological systems. Values such as those given form firm bases on which further studies can be built and show that the single animal has the same metabolic reactions as those deduced from bulked samples, but of course with individual variations. PMID:5306316

  20. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  1. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  2. Dendritic cells in hematological malignancies.

    PubMed

    Galati, Domenico; Corazzelli, Gaetano; De Filippi, Rosaria; Pinto, Antonio

    2016-12-01

    Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a crucial role in initiating and modulating the adaptive immune response and supporting the innate immune response independently from T cells. While functioning as the most effective antigen-presenting cells within the immune system, DCs can otherwise induce tolerance in central and peripheral lymphoid organs acting therefore as suppressors rather than stimulators of the immune response. Within mechanisms regulating antitumor immunity, DCs can capture antigens from viable or damaged tumor cells and present the processed peptides to T-cells to prompt the generation and maintenance of an effective tumor-specific T-cell response. Upon a complex cross-talk with other cellular components of the tumor microenvironment, DCs can, on the other hand, exert a potent antigen-dependent and -independent tolerogenic function by favoring the process of tumor immune evasion. Due to this dual-role in balancing antitumor immunity and tolerance, possibly linked to distinct developmental stages and functional subsets, several studies have addressed the regulatory significance of DCs in different types of malignancies. This review summarizes the most significant pieces of evidence highlighting the critical relevance of bone marrow-derived DCs within the immune pathways regulating pathogenesis and progression of hemopoietic tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons

    PubMed Central

    Kim, Michael D.; Jan, Lily Yeh; Jan, Yuh Nung

    2006-01-01

    Dendrites exhibit a wide range of morphological diversity, and their arborization patterns are critical determinants of proper neural connectivity. How different neurons acquire their distinct dendritic branching patterns during development is not well understood. Here we report that Spineless (Ss), the Drosophila homolog of the mammalian aryl hydrocarbon (dioxin) receptor (Ahr), regulates dendrite diversity in the dendritic arborization (da) sensory neurons. In loss-of-function ss mutants, class I and II da neurons, which are normally characterized by their simple dendrite morphologies, elaborate more complex arbors, whereas the normally complex class III and IV da neurons develop simpler dendritic arbors. Consequently, different classes of da neurons elaborate dendrites with similar morphologies. In its control of dendritic diversity among da neurons, ss likely acts independently of its known cofactor tango and through a regulatory program distinct from those involving cut and abrupt. These findings suggest that one evolutionarily conserved role for Ahr in neuronal development concerns the diversification of dendrite morphology. PMID:17015425

  4. Molecules and mechanisms of dendrite development in Drosophila.

    PubMed

    Corty, Megan M; Matthews, Benjamin J; Grueber, Wesley B

    2009-04-01

    Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.

  5. Dendritic spine dysgenesis in neuropathic pain.

    PubMed

    Tan, Andrew M; Waxman, Stephen G

    2015-08-05

    Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies.

  6. Characterization of chicken epidermal dendritic cells

    PubMed Central

    Igyártó, Botond-Zoltán; Lackó, Erzsébet; Oláh, Imre; Magyar, Attila

    2006-01-01

    It has been known for 15 years that the chicken epidermis contains ATPase+ and major histocompatibility complex class II-positive (MHCII+) dendritic cells. These cells were designated as Langerhans cells but neither their detailed phenotype nor their function was further investigated. In the present paper we demonstrate a complete overlapping of ATPase, CD45 and vimentin staining in all dendritic cells of the chicken epidermis. The CD45+ ATPase+ vimentin+ dendritic cells could be divided into three subpopulations: an MHCII+ CD3– KUL01+ and 68.1+ (monocyte-macrophage subpopulation markers) subpopulation, an MHCII– CD3– KUL01– and 68.1– subpopulation and an MHCII– CD3+ KUL01– and 68.1– subpopulation. The first population could be designated as chicken Langerhans cells. The last population represents CD4– CD8– T-cell receptor-αβ– and -γδ– natural killer cells with cytoplasmic CD3 positivity. The epidermal dendritic cells have a low proliferation rate as assessed by bromodeoxyuridine incorporation. Both in vivo and in vitro experiments showed that dendritic cells could be mobilized from the epidermis. Hapten treatment of epidermis resulted in the decrease of the frequency of epidermal dendritic cells and hapten-loaded dendritic cells appeared in the dermis or in in vitro culture of isolated epidermis. Hapten-positive cells were also found in the so-called dermal lymphoid nodules. We suggest that these dermal nodules are responsible for some regional immunological functions similar to the mammalian lymph nodes. PMID:16889640

  7. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; LaCombe, J. C.; Lupulescu, A. O.; Frei, J. E.; Guimarra, C.; Malarik, D. C.

    2001-01-01

    Dendritic solidification is one of the simplest examples of pattern formation where a structureless melt evolves into a ramified crystalline microstructure; it is a common mode of solidification in many materials, but especially so in metals and alloys. There is considerable engineering interest in dendrites because of the role dendrites play in the determination of microstructure, and thereby in influencing the physical properties of cast metals and alloys. Dendritic solidification provides important examples of non-equilibrium physics, pattern formation dynamics, and models for computational condensed matter and material physics. Current theories of dendritic growth generally couple diffusion effects in the melt with the physics introduced by the interface. Unfortunately, in terrestrial based experiments, convective effects in the melt alter the growth process in such a manner as to prevent definitive analysis of convective, diffusive or interfacial effects. Thus, the effective elimination of convection in the melt by operating experiments on orbit were required to produce high-fidelity data needed for achieving further progress. This simple fact comprised the scientific justification for the IDGE.

  8. Nerve Conduction Through Dendrites via Proton Hopping.

    PubMed

    Kier, Lemont B

    2017-01-01

    In our previous studies of nerve conduction conducted by proton hopping, we have considered the axon, soma, synapse and the nodes of Ranvier. The role of proton hopping described the passage of information through each of these units of a typical nerve system. The synapse projects information from the axon to the dendrite and their associated spines. We have invoked the passage of protons via a hopping mechanism to illustrate the continuum of the impulse through the system, via the soma following the dendrites. This is proposed to be a continuum invoked by the proton hopping method. With the proposal of the activity through the dendrites, via proton hopping, a complete model of the nerve function is invoked. At each step to the way, a water pathway is present and is invoked in the proposed model as the carrier of the message via proton hopping. The importance of the dendrites is evident by the presence of a vast number of spines, each possessing the possibility to carry unique messages through the nervous system. With this model of the role of dendrites, functioning with the presence of proton hopping, a complete model of the nerve system is presented. The validity of this model will be available for further studies and models to assess it's validity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Dendritic spine abnormalities in mental retardation.

    PubMed

    von Bohlen Und Halbach, Oliver

    2010-12-01

    Abnormalities in dendritic spine morphologies are often associated with mental retardation. Since dendritic spines are thought to represent a morphological correlate of neuronal plasticity, altered spine morphologies may underlie or contribute to cognitive deficits seen in mental retardation. Signaling cascades that are important for cytoskeletal regulation may have an impact upon spine morphologies. The Rho GTPase signaling pathway has been shown to be involved in the regulation of the cytoskeleton and to play fundamental roles in the structural plasticity of dendritic spines. Moreover, alterations in the Rho GTPase signaling pathway have been shown to contribute to mental retardation. Recently, different mental retardation-associated genes have been identified that encode modulators of the Rho GTPases. Disturbances in these genes can lead to mental retardation and-on the morphological level-to alterations in dendritic spines. Thus, getting more insight into the Rho GTPase signaling pathways, and the molecules involved, would not only help in understanding the basic mechanisms by which the morphologies of dendritic spines are modulated but may also allow the development of therapeutic strategies to counteract some aspects of mental retardation.

  10. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    PubMed

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes.

  11. Migration of antimony from PET containers into regulated EU food simulants.

    PubMed

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Cámara, Carmen; Madrid, Yolanda

    2013-11-15

    Antimony migration from polyethylene terephthalate (PET) containers into aqueous (distilled water, 3% acetic acid, 10% and 20% ethanol) and fatty food simulants (vegetable oil), as well as into vinegar, was studied. Test conditions were according to the recent European Regulation 10/2011 (EU, 2011). Sb migration was assayed by ICP-MS and HG-AFS. The results showed that Sb migration values ranged from 0.5 to 1.2μg Sb/l, which are far below the maximum permissible migration value for Sb, 40μg Sb/kg, (EU, Regulation 10/2011). Parameters as temperature and bottle re-use influence were studied. To assess toxicity, antimony speciation was performed by HPLC-ICP-MS and HG-AFS. While Sb(V) was the only species detected in aqueous simulants, an additional species (Sb-acetate complex) was measured in wine vinegar. Unlike most of the studies reported in the literature, migration tests were based on the application of the EU directive, which enables comparison and harmonisation of results.

  12. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum

    PubMed Central

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina

    2016-01-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum. Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu2+ challenge but not under sodium arsenite, Cd2+, or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. PMID:27324767

  13. Bi-antimony capped Keggin polyoxometalate modified with Cu-ligand fragment

    NASA Astrophysics Data System (ADS)

    Huang, Jiao; Han, Zhangang; Zhang, Heng; Yu, Haitao; Zhai, Xueliang

    2012-10-01

    Three polyoxometalates consisting of bi-antimony capped Keggin-type clusters: [Cu(mbpy)2]2[PMo12O40Sb2]·4H2O (1), [Cu(mbpy)2][PMo12O40Sb2] (2) and {Cu(mbpy)[Cu(mbpy)2]2}[VMo8V4O40Sb2]·2H2O (3) (mbpy=4,4'-dimethyl-2,2'- dipyridyl in 1 and 2; 5,5'-dimethyl-2,2'-dipyridyl in 3) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. Single-crystal analysis revealed that all of three compounds are built upon bi-antimony capped Keggin-type polyoxoanions and Cu-mbpy cations. In 1-3, two SbIII centers located at the two opposite of anionic surface adopt fundamentally tetragonal pyramidal coordination geometry. Both compounds 1 and 2 consist of P-centered Keggin structure, while compound 3 presents a V-centered Keggin anion. The Keggin-type anions present different structural features: isolated cluster in 1 and Cu-ligand-supported cluster in 2 and 3.

  14. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    DOEpatents

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  15. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  16. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm.

  17. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    PubMed

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 μmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance.

  18. Studies on optical properties of antimony doped SnO2 films

    NASA Astrophysics Data System (ADS)

    Gürakar, Sibel; Serin, Tülay; Serin, Necmi

    2015-10-01

    Antimony doped tin oxide thin films were grown by spray method on microscope glass substrates. The antimony doping was varied from 0 to 4 at%. The structural properties of the films were investigated by X-ray diffraction method. The optical transmittances of thin films were measured with UV-Vis-NIR spectrometer in the 300-2000 nm wavelength range. A simple analysis according to Swanepoel's method was applied to derive the real and imaginary parts of the complex index of refraction plus film thickness. The dispersion of refractive index was investigated in terms of the single-oscillator Wemple and DiDomenico model and the important oscillating parameters such as the dispersion energy Ed, the oscillation energy Eo, the high frequency dielectric constant ɛ∞ were determined. The analysis of the refractive index has been carried out to calculate the lattice dielectric constant ɛL and the ratio of carrier concentration to the effective mass N/m*. The real and imaginary parts of the electronic dielectric constant and optical conductivity were analyzed. The optical band gap, Eg values of the films were obtained from the spectral dependence of the absorption coefficient, using the Tauc relation.

  19. [Liposomal amphotericin B treatment of cutaneous leishmaniasis contracted in Djibouti and resistant to meglumine antimoniate].

    PubMed

    Rapp, C; Imbert, P; Darie, H; Simon, F; Gros, P; Debord, T; Roué, R

    2003-08-01

    Pentavalent antimony (PA) compounds remain the main therapeutic agents of cutaneous leishmaniasis (CL). CL infection resistant to PA is difficult to cure, limited by severe side effects and requiring a long course treatment of parenteral administration of recommended second line drugs. We report a case of CL unresponsive to meglumine antimoniate contracted in Djibouti, successfully treated with a short course treatment of AmBisome. In this case the subject had a recurrent thick crusted erythematous lesion on his left elbow associated with spreading micropapula on arms and thorax. The diagnosis of CL was confirmed by direct examination and genomic amplification by PCR of skin samples, cultures were negative. A short course treatment of parenteral AmBisome (18 mg/kg) has lead to clinical cure with no side effects and no relapse. In our hospital, the high cost of medication was counterbalanced by easiest administration, reduction of hospitalization duration, absence of adverse events and a gain of comfort. For this patient, a short course treatment of AmBisome proved to be a suitable alternative to traditional drugs used in CL resistant to PA.

  20. Influence of phosphoric acid on the electrochemistry of lead electrodes in sulfuric acid electrolyte containing antimony

    NASA Astrophysics Data System (ADS)

    Venugopalan, S.

    The influence of phosphoric acid (0 to 40 g 1 -1) on the Pb/PbSO 4 reaction and the kinetics of hydrogen evolution on pure, smooth lead and lead alloy electrodes is studied via galvanostatic polarization in the linear and Tafel domains with and without antimony (0 to 10 mg 1 -1) addition to the H 2SO 4 (3 to 10 M) electrolyte. Phosphoric acid is found to offset significantly the adverse effect of antimony. H 3PO 4 is also found to increase the hydrogen overpotential without affecting the Pb/PbSO 4 reaction. This implies that the open-circuit corrosion of lead and the consequent hydrogen evolution rate on lead are reduced in the presence of H 3PO 4. The beneficial effects of H 3PO 4 additive are found to be optimum at around 20 g 1 -1. Suppression of hydrogen evolution on the negative electrode, a crucial criterion for sealed cell operation, can be achieved using a H 3PO 4 additive.

  1. Meglumine antimoniate is more effective than sodium stibogluconate in the treatment of cutaneous leishmaniasis.

    PubMed

    Yesilova, Yavuz; Surucu, Hacer Altın; Ardic, Nurittin; Aksoy, Mustafa; Yesilova, Abdullah; Oghumu, Steve; Satoskar, Abhay R

    2016-01-01

    Sodium stibogluconate (SSG, Pentostam) and meglumine antimoniate (MA, Glucantime) are two antimonials that are widely used to treat cutaneous leishmaniasis (CL), but the relative efficacies of these treatments are not clear. The aim of this study is to compare the efficacy of intralesional SSG with intralesional MA therapy in the treatment of CL. One month after completion of the therapy, 1431 of 1728 patients (82%) who received intralesional MA showed complete clinical cure compared to 1157 of 1728 patients (67%) in the SSG group. Patients who did not respond to the first round of therapy were re-administered the same treatment but with twice weekly injections. Following completion of the second course of therapy, 237 of 297 patients (80%) in the MA group and 407 of 561 patients (72%) in the SSG group healed their lesions by 1-month post-treatment. At both times, the differences in cure rates between MA and SSG groups were statistically significant (p < 0.05). Cure rates in the MA group were always significantly higher than SSG groups irrespective of other parameters including age, gender, lesion site and type of lesion. Intralesional MA is more effective than intralesional SSG in the treatment of CL.

  2. Measurements of spin life time of an antimony-bound electron in silicon

    NASA Astrophysics Data System (ADS)

    Lu, T. M.; Bishop, N. C.; Tracy, L. A.; Blume-Kohout, R.; Pluym, T.; Wendt, J. R.; Dominguez, J.; Lilly, M. P.; Carroll, M. S.

    2013-03-01

    We report our measurements of spin life time of an antimony-bound electron in silicon. The device is a double-top-gated silicon quantum dot with antimony atoms implanted near the quantum dot region. A donor charge transition is identified by observing a charge offset in the transport characteristics of the quantum dot. The tunnel rates on/off the donor are first characterized and a three-level pulse sequence is then used to measure the spin populations at different load-and-wait times in the presence of a fixed magnetic field. The spin life time is extracted from the exponential time dependence of the spin populations. A spin life time of 1.27 seconds is observed at B = 3.25 T. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.

    PubMed

    Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi

    2014-07-01

    A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.

  4. Heterogeneous dislocation nucleation in single crystal copper-antimony solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Rajgarhia, Rahul K.; Spearot, Douglas E.; Saxena, Ashok

    2009-07-01

    Molecular dynamics (MD) simulations are employed to study the partial dislocation nucleation process in single crystal copper with varying concentrations of antimony (0.0-2.0 at%Sb) under uniaxial tension. A well-established embedded-atom method potential is used to represent the Cu-Cu interactions and a recently developed Lennard-Jones potential is used for the Cu-Sb and Sb-Sb interactions. Antimony atoms are randomly distributed as substitutional defects in the Cu single crystal. MD simulations indicate that the tensile stress required for partial dislocation nucleation in the crystal decreases with increasing concentration of Sb. The strain field around Sb dopant atoms in the Cu lattice reduces the unstable stacking fault energy, which promotes heterogeneous nucleation of partial dislocations and reduces the tensile stresses required for plastic deformation. In addition, the role of Sb on the reduction in the stress required for dislocation nucleation is found to be orientation-dependent. Finally, both temperature and Sb distribution play a role in the statistical variation of the stress required for heterogeneous partial dislocation nucleation; this variation is maximum at moderate levels of Sb concentration (0.20-0.50 at%Sb).

  5. Effect of indium and antimony doping in SnS single crystals

    SciTech Connect

    Chaki, Sunil H. Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  6. Antimony(III) complexes with 2-amino-4,6-dimethoxypyrimidines: Synthesis, characterization and biological evaluation.

    PubMed

    Tunç, Turgay; Karacan, Mehmet Sayım; Ertabaklar, Hatice; Sarı, Musa; Karacan, Nurcan; Büyükgüngör, Orhan

    2015-12-01

    Novel pyrimidine compound bearing disulfide bridge, 5,5'-disulfanediylbis(2-amino-4,6-dimetoxypyrimidine) (3) was synthesized by reduction of 2-amino-4,6-dimethoxy-5-thiocyanatopyrimidine for the first time, and its structure was confirmed by X-ray crystallographic analysis. Novel binuclear antimony(III) compound of (3), {Sb[5,5'-disulfanediylbis(2-amino-4,6-dimetoxypyrimidine)]Cl3}2 (4) and mononuclear antimony(III) compounds, SbL2Cl3, [L: 2-amino-5-thiol-4,6-dimethoxy pyrimidine (2) and 2-amino-5-(1H-tetrazol-5-ylthio)-4,6-dimethoxypyrimidine (6)] were synthesized and characterized with the help of elemental analysis, molecular conductivity, FT-IR, (1)H-NMR and LC-MS techniques. The geometrical structures optimized by a DFT/B3LYP/LANL2DZ method of the compounds, indicated that monomeric compounds have square pyramidal shape. Both antileishmanial activity against Leishmania tropica promastigote and glutathione reductase inhibitory activity were determined in vitro. The results showed that (3) has the best biological activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum.

    PubMed

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina; Clos, Joachim

    2016-09-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu(2+) challenge but not under sodium arsenite, Cd(2+), or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Influence of silicon on maize roots exposed to antimony - growth and antioxidative response.

    PubMed

    Vaculíková, Miroslava; Vaculík, Marek; Šimková, Lenka; Fialová, Ivana; Kochanová, Zuzana; Sedláková, Barbora; Luxová, Miroslava

    2014-10-01

    Pollution of antimony (Sb) raises a serious environmental problem. Although this non-essential element can be taken up by roots and accumulated in plant tissues in relatively high concentrations, there is still lack of knowledge about the effect of Sb on biochemical and metabolic processes in plants. It was shown that application of silicon (Si) can decrease the toxicity of other heavy metals and toxic elements in various plants. The aim of this study was to assess how Si influences the growth and antioxidative response of young Zea mays L. roots exposed to elevated concentrations of Sb. Antimony reduced the root growth and induced oxidative stress and activated antioxidant defense mechanisms in maize. Silicon addition to Sb treated roots decreased oxidative stress symptoms documented by lower lipid peroxidation, proline accumulation, and decreased activity of antioxidative enzymes (ascorbate peroxidase, EC 1.11.1.11; catalase, EC 1.11.1.6; and guaiacol peroxidase, EC 1.11.1.7). Although neither positive nor negative effect of Si has been observed on root length and biomass, changes in the oxidative response of plants exposed to Sb indicate a possible mitigation role of Si on Sb toxicity in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Alkaline reforming of brominated fire-retardant plastics: fate of bromine and antimony.

    PubMed

    Onwudili, Jude A; Williams, Paul T

    2009-02-01

    High-impact polystyrene (HIPS) flame retarded with decabromodiphenyl ether (DDE), has been reacted in supercritical water from 380 to 450 degrees C and 21.5 to 31.0 MPa pressure in a batch reactor. Different concentrations of sodium hydroxide additive were used in situ to neutralize the corrosive inorganic bromine species released during the reactions. It appeared that supercritical water conditions lowered the decomposition temperature of both the fire-retardant DDE and HIPS. The reaction products included oils (up to 76 wt%), char (up to 18 wt%) and gas (up to 2.4 wt%) which was mainly methane. The presence of the alkaline water led to up to 97 wt% debromination of the product oil, producing virtually bromine-free oil feedstock. The removal of antimony from the oil product during processing was of the order of 98 wt%. The oil consisted of many single- and multiple-ringed aromatic compounds, many of which had alkyl substituents and/or aliphatic C(n)-bridges (n=1-4). The major single-ringed compounds included toluene, xylenes, ethylbenzene, propylbenzene and alpha-methylstyrene. Bibenzyl (diphenylethane), stilbene, diphenylmethane, diphenylpropane, diphenylcyclopropane, diphenylpropene, diphenylbutane, diphenylbutene and diphenylbuta-1,3-diene were the major C(n)-bridged compounds. Diphenyl ether and acetophenone were the major oxygenated compounds found. The process thus has the potential to produce bromine-free and antimony-free oils from fire-retardant plastics.

  10. Antimony oxofluorides - a synthesis concept that yields phase pure samples and single crystals.

    PubMed

    Ali, Sk Imran; Johnsson, Mats

    2016-07-26

    The single crystals of the new isostructural compounds Sb3O4F and Y0.5Sb2.5O4F and the two previously known compounds M-SbOF and α-Sb3O2F5 were successfully grown by a hydrothermal technique at 230 °C. The new compound Sb3O4F crystallizes in the monoclinic space group P21/c; a = 5.6107(5) Å, b = 4.6847(5) Å, c = 20.2256(18) Å, β = 94.145(8)°, z = 4. The replacing part of Sb with Y means a slight increase in the unit cell dimensions. The compounds M-SbOF and α-Sb3O2F5 have not been grown as single crystals before and it can be concluded that hydrothermal synthesis has proved to be a suitable technique for growing single crystals of antimony oxofluorides because of the relatively low solubility of such compounds compared to other antimony oxohalides that most often have been synthesised at high temperatures by solid state reactions or gas-solid reactions.

  11. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    PubMed Central

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  12. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  13. Genes regulating dendritic outgrowth, branching, and routing in Drosophila

    PubMed Central

    Gao, Fen-Biao; Brenman, Jay E.; Jan, Lily Yeh; Jan, Yuh Nung

    1999-01-01

    Signaling between neurons requires highly specialized subcellular structures, including dendrites and axons. Dendrites exhibit diverse morphologies yet little is known about the mechanisms controlling dendrite formation in vivo. We have developed methods to visualize the stereotyped dendritic morphogenesis in living Drosophila embryos. Dendrite development is altered in prospero mutants and in transgenic embryos expressing a constitutively active form of the small GTPase cdc42. From a genetic screen, we have identified several genes that control different aspects of dendrite development including dendritic outgrowth, branching, and routing. These genes include kakapo, a large cytoskeletal protein related to plectin and dystrophin; flamingo, a seven-transmembrane protein containing cadherin-like repeats; enabled, a substrate of the tyrosine kinase Abl; and nine potentially novel loci. These findings begin to reveal the molecular mechanisms controlling dendritic morphogenesis. PMID:10521399

  14. Genes regulating dendritic outgrowth, branching, and routing in Drosophila.

    PubMed

    Gao, F B; Brenman, J E; Jan, L Y; Jan, Y N

    1999-10-01

    Signaling between neurons requires highly specialized subcellular structures, including dendrites and axons. Dendrites exhibit diverse morphologies yet little is known about the mechanisms controlling dendrite formation in vivo. We have developed methods to visualize the stereotyped dendritic morphogenesis in living Drosophila embryos. Dendrite development is altered in prospero mutants and in transgenic embryos expressing a constitutively active form of the small GTPase cdc42. From a genetic screen, we have identified several genes that control different aspects of dendrite development including dendritic outgrowth, branching, and routing. These genes include kakapo, a large cytoskeletal protein related to plectin and dystrophin; flamingo, a seven-transmembrane protein containing cadherin-like repeats; enabled, a substrate of the tyrosine kinase Abl; and nine potentially novel loci. These findings begin to reveal the molecular mechanisms controlling dendritic morphogenesis.

  15. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines.

  16. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth.

    PubMed

    Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting

    2011-10-20

    During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  18. The path integral for dendritic trees.

    PubMed

    Abbott, L F; Farhi, E; Gutmann, S

    1991-01-01

    We construct the path integral for determining the potential on any dendritic tree described by a linear cable equation. This is done by generalizing Brownian motion from a line to a tree. We also construct the path integral for dendritic structures with spatially-varying and/or time-dependent membrane conductivities due, for example, to synaptic inputs. The path integral allows novel computational techniques to be applied to cable problems. Our analysis leads ultimately to an exact expression for the Green's function on a dendritic tree of arbitrary geometry expressed in terms of a set of simple diagrammatic rules. These rules providing a fast and efficient method for solving complex cable problems.

  19. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  20. Measuring dendritic distribution of membrane proteins.

    PubMed

    Ballou, Edmund W; Smith, W Bryan; Anelli, Roberta; Heckman, C J

    2006-09-30

    Neurons perform much of their integrative work in the dendritic tree, and spinal motoneurons have the largest tree of any cell. Electrical excitability is strongly influenced by dendrite membrane properties, which are difficult to measure directly. We describe a method to measure the distribution of ion channel membrane densities along dendritic trajectories. The method combines standard immunohistochemistry with reconstruction procedures for both large-scale and small-scale optical microscopy. Software written for Matlab then extracts the colocalization of the target ion channel with the target dye injected cell, and calculates the relative channel density per square micron of cell surface area, as a function of distance from the cell body. The technique can be used to quantify the localization and distribution of any immunoreactive moiety, and the software provides a flexible vehicle for sensitivity analysis, to validate heuristics for selecting thresholds.