Alvarez-Ruso, L.; Nieves, J.; Wang, E.
2015-10-15
We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the Δ(1232) resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium Δ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.
Rakotondravohitra, Laza
2015-08-18
Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X10^{20} protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θ_{m}u < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dx_{bj} measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.
Quasielastic production of polarized hyperons in antineutrino-nucleon reactions
NASA Astrophysics Data System (ADS)
Akbar, F.; Alam, M. Rafi; Athar, M. Sajjad; Singh, S. K.
2016-12-01
We have studied the differential cross section as well as the longitudinal and perpendicular components of polarization of the final hyperon (Λ ,Σ ) produced in the antineutrino induced quasielastic charged current reactions on nucleon and nuclear targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic (Δ S =0 ) charged current (anti)neutrino-nucleon scattering and the semileptonic decay of neutron and hyperons assuming G-invariance, T-invariance, and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parametrizations available in the literature have been used. A dipole parametrization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of the axial vector form factor assuming PCAC and GT relation extended to the strangeness sector has been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to the CERN Gargamelle experiment have been calculated for quasielastic hyperon production and found to be in reasonable agreement with the experimental observations. The numerical results for the flux averaged differential cross section d/σ d Q2 and longitudinal (perpendicular) polarization PL(Q2)(PP(Q2)) relevant for the antineutrino fluxes of MINER ν A , MicroBooNE, and T2K experiments have been presented. This will be useful in interpreting future experimental results on production cross sections and polarization observables from the experiments on the quasielastic production of hyperons induced by antineutrinos and exploring the possibility of determining the axial vector and pseudoscalar form factors in the strangeness sector.
Nucleon compositeness and nucleon-nuclei scattering
NASA Astrophysics Data System (ADS)
Li, Ming
1990-04-01
Large N QCD arguments are used to distinguish phenomenology of nucleon-nuclei scattering based on the Dirac equation with point nucleons and on quark based models with composite nucleons. The Friedberg-Lee soliton model is used as an explicit example.
NASA Astrophysics Data System (ADS)
Megias, G. D.; Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.
2013-08-01
We compare the predictions of the SuperScaling model for charged-current quasielastic muonic neutrino and antineutrino scattering from 12C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti)neutrino cross sections relevant for the νSTORM facility.
Neutrino-pair bremsstrahlung from nucleon-nucleon scattering
Li, Yi; Liou, M. K.; Schreiber, W. M.; ...
2015-07-22
Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.
Nucleon-Nucleon Scattering From Fully-Dynamical Lattice QCD
Konstantinos Orginos; Martin Savage; Paulo Bedaque; Silas Beane
2006-07-01
We present results of the first fully-dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1 S0 channel and 3 S1 - 3 D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions
Neutrino-pair bremsstrahlung from nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.
2015-07-01
Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering N N ν ν ¯ (n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ ) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated N N ν ν ¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an one-pion-exchange (OPE) model. Purpose: We investigate the free N N ν ν ¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Method: We employ a realistic one-boson-exchange (ROBE) model for N N scattering and combine those strong scattering amplitudes with the well-known nucleon weak interaction vertices to construct weak bremsstrahlung amplitudes. Using the resulting N N ν ν ¯ amplitudes we investigate the relative importance of the vector (ΓVμ) , axial vector (ΓAμ) , and tensor (ΓTμ) terms. The ROBE model bremsstrahlung amplitudes are also used as a two-nucleon dynamical model with which we calculate the cross sections d/σ d ω for n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Results: The three free N N ν ν ¯ cross sections d/σ d ω are of similar order of magnitude. Each increases with increasing neutrino-pair energy ω . For the neutrino-pair energy of ω =1 MeV our n n ν ν ¯ results are in quantitative agreement with those previously reported by Timmermans et al. [Phys. Rev. C 65, 064007 (2002), 10.1103/PhysRevC.65.064007], who used the leading-order term of the soft-neutrino-pair bremsstrahlung amplitude to calculate the cross sections. Differences between the n n ν ν ¯ and p p ν ν ¯ cross section are not discernible over the nucleon-nucleon incident energy region considered, due to the
Nucleon-nucleon scattering observables in large- Nc QCD
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Gelman, Boris A.
2002-08-01
Nucleon-nucleon scattering observables are considered in the context of the large Nc limit of QCD for initial states with moderately high momenta ( p∼ Nc). The scattering is studied in the framework of the time-dependent mean-field approximation. We focus on the dependence of those observables on the spin and isospin of the initial state which may be computed using time-dependent mean-field theory. We show that, up to corrections, all such observables must be invariant under simultaneous spin and isospin flips (i.e., rotations through π/2 in both spin and isospin) acting on either particle. All observables of this class obtained from spin unpolarized measurements must be isospin independent up to 1/ Nc corrections. Moreover, it can be shown that the leading correction is of relative order 1/ Nc2 rather than 1/ Nc.
Low-energy pion-nucleon scattering
Gibbs, W.R.; Ai, L.; Kaufmann, W.B.
1998-02-01
An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}
Low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Gibbs, W. R.; Ai, Li; Kaufmann, W. B.
1998-02-01
An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.
Deeply virtual Compton scattering and nucleon structure
M. Garcon
2006-11-01
Deeply Virtual Compton Scattering (DVCS) is the tool of choice to study Generalized Parton Distributions (GPD) in the nucleon. After a general introduction to the subject, a review of experimental results from various facilities is given. Following the first encouraging results, new generation dedicated experiments now allow unprecedented precision and kinematical coverage. Several new results were presented during the conference, showing significant progress in this relatively new field. Prospects for future experiments are presented. The path for the experimental determination of GPDs appears now open.
Quark models of dibaryon resonances in nucleon-nucleon scattering
Ping, J. L.; Huang, H. X.; Pang, H. R.; Wang Fan; Wong, C. W.
2009-02-15
We look for {delta}{delta} and N{delta} resonances by calculating NN scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy NN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NNS waves, in agreement with the experimental SP07 NN partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the S-wave NN resonances disappear when the nucleon size b falls below 0.53 fm. Both quark models give an IJ{sup P}=03{sup +}{delta}{delta} resonance. At b=0.52 fm, the value favored by the baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the {sup 3}D{sub 3}{sup NN} channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the pn{yields}d{pi}{pi} production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound {sup 5}S{sub 2}{sup {delta}}{sup {delta}} state that can give rise to a {sup 1}D{sub 2}{sup NN} resonance. None of the quark models used have bound N{delta}P states that might generate odd-parity resonances.
Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\
Chvojka, Jesse John
2012-01-01
The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q^{2}, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles
Nucleon and deuteron scattering cross sections from 25 MV/Nucleon to 22.5 GeV/Nucleon
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.
1983-01-01
Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of nucleon and deuteron total and absorption cross sections at kinetic energies between 25 MeV/nucleon and 22.5 GeV/nucleon for use in cosmic-ray transport and shielding studies. Comparisons of predictions for nucleon-nucleus and deuteron-nucleus absorption and total cross sections with experimental data are also made.
Exploratory study of nucleon-nucleon scattering lengths in lattice QCD
Fukugita, M.; Kuramashi, Y.; Mino, H.; Okawa, M.; Ukawa, A. National Laboratory for High Energy Physics , Tsukuba, Ibaraki 305 Faculty of Engineering, Yamanashi University, Kofu 404 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305 )
1994-10-17
An exploratory study is made of the nucleon-nucleon [ital s]-wave scattering lengths in quenched lattice QCD with the Wilson quark action. The [pi]-[ital N] and [pi]-[pi] scattering lengths are also calculated for comparison. The calculations are made with heavy quarks corresponding to [ital m][sub [pi
Electromagnetic Form Factors of the Nucleon and Compton Scattering
Charles Hyde-Wright; Cornelis De Jager
2004-12-01
We review the experimental and theoretical status of elastic electron scattering and elastic low-energy photon scattering (with both real and virtual photons) from the nucleon. As a consequence of new experimental facilities and new theoretical insights, these subjects are advancing with unprecedented precision. These reactions provide many important insights into the spatial distributions and correlations of quarks in the nucleon.
Inelastic electron scattering from a moving nucleon
Kuhn, S.E.; Griffioen, K.
1994-04-01
The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).
NASA Astrophysics Data System (ADS)
Hellfeld, D.; Bernstein, A.; Dazeley, S.; Marianno, C.
2017-01-01
The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.
Hellfeld, D.; Bernstein, A.; Dazeley, S.; Marianno, C.
2016-10-17
The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3 sigma significance in large Gd-doped water Cherenkov detectors with greater than 10 km standoff from a nuclear reactor.
Hellfeld, D.; Bernstein, A.; Dazeley, S.; Marianno, C.
2017-01-01
The potential of elastic antineutrino-electron scattering (ν¯_{e} + e^{–} → ν¯_{e} + e^{–}) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.
Hellfeld, D.; Bernstein, A.; Dazeley, S.; ...
2016-10-17
The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays frommore » the photomultiplier tubes, detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3 sigma significance in large Gd-doped water Cherenkov detectors with greater than 10 km standoff from a nuclear reactor.« less
Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Grebe, Heather
2013-10-01
Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.
Nucleon-nucleon scattering at small angles, measured at ANKE-COSY
NASA Astrophysics Data System (ADS)
Bagdasarian, Z.
2016-03-01
The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.
Roy-Steiner-equation analysis of pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.
2017-03-01
Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.
A precise measurement of the weak mixing angle in neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Zeller, Geralyn P.
This dissertation reports a precise determination of the weak mixing angle, sin2 thetaW, from measurement of the ratios of neutral current to charged current neutrino deep inelastic cross sections. High statistics samples of separately collected neutrino and antineutrino events, resulting from exposure to the Fermilab neutrino beam during the period from 1996 to 1997, allowed the reduction of systematic errors associated with charm production and other sources. The final value, sin 2 thetaW(on shell) = 0.2277 +/- 0.0013 (stat) +/- 0.0009 (syst), lies three standard deviations above the standard model prediction. The measurement is currently the most precise determination of sin2 theta W in neutrino-nucleon scattering, surpassing its predecessors by a factor of two in precision. A model independent analysis recasts the same data into a measurement of effective left and right handed neutral current quark couplings.
Electroweak radiative corrections to neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Park, Kwangwoo
The main subject of this thesis is to study the impact of electroweak O (alpha) corrections on neutrino-nucleon scattering processes, in particular on the extraction of electroweak parameters at the NuTeV experiment. The Standard Model (SM) represents the best current understanding of electroweak and strong interactions of elementary particles. In recent years it has been impressively confirmed experimentally through the precise determination of W and Z boson properties at the CERN LEP and the Stanford Linear e+e - colliders, and the discovery of the top quark at the Fermilab Tevatron pp collider. The W boson mass (MW) is one of the fundamental parameters in electroweak theory. A precise measurement of MW does not only provide a further precisely known SM input parameter, but significantly improves the indirect limit on the Higgs-boson mass obtained by comparing SM predictions with electroweak precision data. MW is measured directly at the CERN LEP2 e+e- and the Fermilab Tevatron pp colliders. A measurement of MW can also be extracted from a measurement of the sine squared of the weak mixing angle, i.e. sin 2 thetaW, via the well-known relation between the W and Z boson mass, M2W=M2Z (1 - sin2 thetaW). The NuTeV collaboration [20] extracts sin2 theta W, and thus MW, from the ratio of neutral and charged-current neutrino and anti-neutrino cross sections. Their result differs from direct measurements performed at LEP2 and the Fermilab Tevatron by about 3sigma. Much effort both experimental and theoretical has gone into understanding this discrepancy. These efforts include QCD corrections, parton distribution functions, and nuclear structure [21]. However, the effect of electroweak radiative corrections has not been fully studied yet. In the extraction of MW from NuTeV data, only part of the electroweak corrections have been included [20]. Although the complete calculation of these corrections is available in [17] and [18], their impact on the NuTeV measurement of MW
Goeppert-Mayer Award Recipient: Electron Scattering and Nucleon Structure
NASA Astrophysics Data System (ADS)
Beise, Elizabeth
1998-04-01
Electron scattering from hydrogen and light nuclear targets has long been recognized as one of the best tools for understanding the electromagnetic structure of protons, neutrons and few-nucleon systems. In the last decade, considerable progress has been made in the field through advances in polarized beams and polarized targets. Improvements in polarized electron sources has made it feasible to also study the structure of the nucleon through parity-violating electron scattering, where the nucleon's neutral weak structure is probed. In this talk, a summary of the present experimental status of the nucleon's electroweak structure will be presented, with an emphasis on recent results from the MIT-Bates and Jefferson Laboratories.
A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment
NASA Astrophysics Data System (ADS)
Lyubushkin, V.; Popov, B.; Kim, J. J.; Camilleri, L.; Levy, J.-M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Kustov, D.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Ling, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mishra, S. R.; Moorhead, G. F.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.
2009-10-01
We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ( ν μ n→ μ - p and bar{ν }_{μ}ptoμ+n ) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ ( bar{ν}_{μ} ) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are < σ_{qel}rangle_{ν_{μ}}=(0.92±0.02(stat)±0.06(syst))×10^{-38} cm2 and <σ_{qel}rangle_{bar{ν}_{μ}}=(0.81±0.05(stat)±0.09(syst))×10^{-38} cm2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A =1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M A is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.
A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment
NASA Astrophysics Data System (ADS)
Lyubushkin, Vladimir
2009-11-01
We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (vμn→μ-p and v¯μp→μ+n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total vμ (v¯μ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are <σqel>vμ = (0.92±0.02(stat)±0.06(syst))×10-38 cm2 and <σqel>v¯μ = (0.81±0.05(stat)±0.09(syst))×10-38 cm2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is MA = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q2 shape analysis of the high purity sample of vμ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of MA is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on MA, these results are compatible with the more precise NOMAD value.
Partial-wave analysis of nucleon-nucleon elastic scattering data
NASA Astrophysics Data System (ADS)
Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.
2016-12-01
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
Neutrino-pair bremsstrahlung from nucleon-α versus nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Sharma, Rishi; Bacca, Sonia; Schwenk, A.
2015-04-01
We study the impact of the nucleon-α P -wave resonances on neutrino-pair bremsstrahlung. Because of the noncentral spin-orbit interaction, these resonances lead to an enhanced contribution to the nucleon spin structure factor for temperatures T ≲4 MeV. If the α -particle fraction is significant and the temperature is in this range, this contribution is competitive with neutron-neutron bremsstrahlung. This may be relevant for neutrino production in core-collapse supernovae or other dense astrophysical environments. Similar enhancements are expected for resonant noncentral nucleon-nucleus interactions.
Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; ...
2013-11-27
We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from themore » inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2– and 1/2– resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less
The one-pion-exchange potential in the three-body model of nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Garcilazo, Humberto
1981-02-01
We derive the one-pion-exchange potential in the three-body model of nucleon-nucleon scattering in which the nucleon is treated as a bound state of a pion and a nucleon, and show that it has the same form as the usual Yukawa OPEP derived from field theory, except that its range is energy dependent and it becomes complex above the pion-production threshold.
Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach
NASA Astrophysics Data System (ADS)
Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.
2016-03-01
Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.
Beam normal spin asymmetry in elastic lepton-nucleon scattering
M. Gorchtein; P.A.M. Guichon; M. Vanderhaeghen
2004-04-01
We discuss the two-photon exchange contribution to observables which involve lepton helicity flip in elastic lepton-nucleon scattering. This contribution is accessed through the spin asymmetry for a lepton beam polarized normal to the scattering plane. We estimate this beam normal spin asymmetry at large momentum transfer using a parton model and we express the corresponding amplitude in terms of generalized parton distributions.
Neutrino-Nucleon Deep Inelastic Scattering in MINERvA
NASA Astrophysics Data System (ADS)
Norrick, Anne; Minerva Collaboration
2015-04-01
Neutrino-Nucleon Deep Inelastic Scattering (DIS) events provide a probe into the structure of the nucleus that cannot be accessed via charged lepton-nucleon interactions. The MINERvA experiment is stationed in the Neutrinos from the Main Injector (NuMI) beam line at Fermi National Accelerator Laboratory. The projected sensitivity of nuclear structure function analyses using MINERvA's suite of nuclear targets (C, CH, Fe and Pb) in the upgraded 6 GeV neutrino energy NuMI beam will be explored, and their impact discussed.
Roy-Steiner-equation analysis of pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-04-01
We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.
Quantum Monte Carlo Calculations of Nucleon-Nucleus Scattering
NASA Astrophysics Data System (ADS)
Wiringa, R. B.; Nollett, Kenneth M.; Pieper, Steven C.; Brida, I.
2009-10-01
We report recent quantum Monte Carlo (variational and Green's function) calculations of elastic nucleon-nucleus scattering. We are adding the cases of proton-^4He, neutron-^3H and proton-^3He scattering to a previous GFMC study of neutron-^4He scattering [1]. To do this requires generalizing our methods to include long-range Coulomb forces and to treat coupled channels. The two four-body cases can be compared to other accurate four-body calculational methods such as the AGS equations and hyperspherical harmonic expansions. We will present results for the Argonne v18 interaction alone and with Urbana and Illinois three-nucleon potentials. [4pt] [1] K.M. Nollett, S. C. Pieper, R.B. Wiringa, J. Carlson, and G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007)
The method of unitary clothing transformations in the theory of nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Dubovyk, I.; Shebeko, A.
2010-04-01
The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is applied for the description of nucleon-nucleon (N -N) scattering. We consider pseudoscalar (π and η), vector (ρ and ω) and scalar (δ and σ) meson fields interacting with 1/2 spin (N and N) fermion ones via the Yukawa-type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. In this work, we are focused upon the Hermitian and energy-independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N-N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR) instead of the bare particle representation (BPR) with its huge amount of virtual processes. We have derived the Lippmann-Schwinger(LS)-type equation for the CPR elements of the T-matrix for a given collision energy in the two-nucleon sector of the Hilbert space H of hadronic states and elaborated a code for its numerical solution in momentum space.
The Method of Unitary Clothing Transformations in the Theory of Nucleon-Nucleon Scattering
NASA Astrophysics Data System (ADS)
Dubovyk, I.; Shebeko, O.
2010-12-01
The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is applied for the description of nucleon-nucleon ( N- N) scattering. We consider pseudoscalar ( π and η), vector ( ρ and ω) and scalar ( δ and σ) meson fields interacting with 1/2 spin ( N and {bar{N}}) fermion ones via the Yukawa-type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. In this work, we are focused upon the Hermitian and energy-independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N- N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR) instead of the bare particle representation with its large amount of virtual processes. We have derived the Lippmann-Schwinger type equation for the CPR elements of the T-matrix for a given collision energy in the two-nucleon sector of the Hilbert space {mathcal{H}} of hadronic states.
Meson Productions in Neutrino-Nucleon Scattering
NASA Astrophysics Data System (ADS)
Nakamura, Satoshi X.
A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. This is an extension of the DCC model that we have previously developed through an analysis of πN, γp → πN, ηN, KΛ, KΣ reaction data for W ≤ 2.1 GeV. The vector current form factors up to Q2 ≤ 3.0 (GeV/c)2 are determined by analyzing electron-induced reaction data for both proton and neutron targets. Within the DCC model, axial-current matrix elements and the πN interactions are related by the Partially Conserved Axial Current (PCAC). As a result, the interference pattern between resonant and non-resonant amplitudes is uniquely fixed. We find that neutrino-induced single-pion production cross sections from the DCC model are consistent with available data. Double-pion production cross sections in the resonance region are also calculated, for the first time, with relevant resonance contributions and channel couplings.
Nucleon polarizabilities: From Compton scattering to hydrogen atom
NASA Astrophysics Data System (ADS)
Hagelstein, Franziska; Miskimen, Rory; Pascalutsa, Vladimir
2016-05-01
We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polarizabilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the "proton-radius puzzle". We conclude with summary plots of the recent results and prospects for the near-future work.
Roy-Steiner equations for pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ditsche, C.; Hoferichter, M.; Kubis, B.; Meissner, U. G.
Starting from hyperbolic dispersion relations for the invariant amplitudes of pion-nucleon scattering together with crossing symmetry and unitarity, one can derive a closed system of integral equations for the partial waves of both the s-channel (pi N --> pi N) and the t-channel (pi pi --> Nbar N) reaction, called Roy-Steiner equations. After giving a brief overview of the Roy-Steiner system for pi N scattering, we demonstrate that the solution of the t-channel subsystem, which represents the first step in solving the full system, can be achieved by means of Muskhelishvili-Omn\\`es techniques. In particular, we present results for the P-waves featuring in the dispersive analysis of the electromagnetic form factors of the nucleon.
Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory
NASA Astrophysics Data System (ADS)
Entem, D. R.; Kaiser, N.; Machleidt, R.; Nosyk, Y.
2015-01-01
We present the two- and three-pion-exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO , fifth order) of chiral effective field theory and calculate nucleon-nucleon scattering in peripheral partial waves with L ≥3 by using low-energy constants that were extracted from π N analysis at fourth order. While the net three-pion-exchange contribution is moderate, the two-pion exchanges turn out to be sizable and prevailingly repulsive, thus compensating the excessive attraction characteristic for next-to-next-to-leading order and N3LO . As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception being the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the N N interaction.
Advances in Nucleon-Nucleon Scattering Experiments and Their Theoretical Consequences
Bekteshi, Sadik; Kabashi, Skender; Kamishi, Burim
2007-04-23
An overview of critical analysis of the experimental data obtained from nucleon-nucleon scattering is given and investigated in this work. Comparison of the experimental data with results of recent partial wave analysis of Nijmegen group, VPI/GWU and Saclay is given. Potentials of Nijmegen, Bonn and Argonne group are discussed. Experimental data which lead to the break of charge symmetry, to the break of the charge independence and to the determination of the off-shell tensor force, are particularly emphasized. Disagreements which exist between theoretical calculations related to the contribution of particular mechanism in different reactions are pointed out. In this relation, still open problems to be solved and measurement that should be undertaken in the future are identified, as well.
Simula, S.
1994-04-01
Semi-inclusive deep inelastic lepton scattering off nuclei is investigated assuming that virtual boson absorption occurs on a hadronic cluster which can be either a two-nucleon correlated pair or a six-quark bag. The differences in the energy distribution of nucleons produced in backward and forward directions are analyzed both at x<1 and x>1.
Compton scattering and nucleon polarisabilities in chiral EFT: Status and future
NASA Astrophysics Data System (ADS)
Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.
2016-05-01
We review theoretical progress and prospects for determining the nucleon's static dipole polarisabilities from Compton scattering on few-nucleon targets, including new values; see Refs. [1-5] for details and a more thorough bibliography.
Patrick, Cheryl
2016-01-01
Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.
NASA Astrophysics Data System (ADS)
Patrick, Cheryl Elizabeth
Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various correlation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.
Extraction of nuclear spin response functions from spin observables of nucleon quasifree scattering
Ichimura, M. ); Kawahigashi, K. )
1992-04-01
Extraction of spin-longitudinal and -transverse response functions from polarization transfer measurements of nucleon-nucleus quasifree scatterings is discussed. The method proposed by Carey {ital et} {ital al}. is reconsidered and more general formulas are presented. Spin-longitudinal and -transverse interactions are well defined in the nucleon-nucleon scattering {ital t} matrix in the nucleon-nucleon center-of-mass frame. However, observed data are given in the nucleon-nucleus laboratory frame and theoretical analysis based on the distorted-wave and plane-wave impulse approximations is carried out in the nucleon-nucleus center-of-mass system, in which the {ital t} matrix in a certain optimum frame of the nucleon-nucleon system is used. Careful consideration is paid for transformations among these reference frames relativistically.
Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE
Takei, Hideyuki
2009-02-01
In this thesis, results of neutrino-nucleon neutral current (NC) elastic scattering analysis are presented. Neutrinos interact with other particles only with weak force. Measurement of cross-section for neutrino-nucleon reactions at various neutrino energy are important for the study of nucleon structure. It also provides data to be used for beam flux monitor in neutrino oscillation experiments. The cross-section for neutrino-nucleon NC elastic scattering contains the axial vector form factor G_{A}(Q^{2}) as well as electromagnetic form factors unlike electromagnetic interaction. G_{A} is propotional to strange part of nucleon spin (Δs) in Q^{2} → 0 limit. Measurement of NC elastic cross-section with smaller Q^{2} enables us to access Δs. NC elastic cross-sections of neutrino-nucleon and antineutrino-nucleon were measured earlier by E734 experiment at Brookheaven National Laboratory (BNL) in 1987. In this experiment, cross-sections were measured in Q^{2} > 0.4 GeV^{2} region. Result from this experiment was the only published data for NC elastic scattering cross-section published before our experiment. SciBooNE is an experiment for the measurement of neutrino-nucleon scattering cross-secitons using Booster Neutrino Beam (BNB) at FNAL. BNB has energy peak at 0.7 GeV. In this energy region, NC elastic scattering, charged current elastic scattering, charged current pion production, and neutral current pion production are the major reaction branches. SciBar, electromagnetic calorimeter, and Muon Range Detector are the detectors for SciBooNE. The SciBar consists of finely segmented scintillators and 14336 channels of PMTs. It has a capability to reconstruct particle track longer than 8 cm and separate proton from muons and pions using energy deposit information. Signal of NC elastic scattering is a single proton track. In vp → vp process, the recoil proton is detected. On the other hand, most of vn → vn is
Phenomenological models of elastic nucleon scattering and predictions for LHC
NASA Astrophysics Data System (ADS)
Kašpar, Jan; Kundrát, Vojtěch; Lokajíček, Miloš; Procházka, Jiří
2011-02-01
The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
Results for quasi-elastic anti-neutrino scattering on scintillator from the MINERvA experiment
NASA Astrophysics Data System (ADS)
Schellman, Heidi; Minerva Collaboration
2016-09-01
We present a new preliminary measurement of the charge-current quasi-elastic scattering cross section for anti-neutrinos on scintillator (CH) over the energy range 1.5-10 GeV. The data were taken with the MINERvA detector in the NuMI beamline at Fermilab and cover the energy range of interest for the proposed DUNE long-baseline neutrino oscillation experiment and of JLAB elastic scattering experiments. Of particular interest to the nuclear community are possible signatures for short range correlations and/or meson exchange currents in these data. We present comparisons to a range of nuclear models.
Regularization and the potential of effective field theory in nucleon-nucleon scattering
Phillips, D.R.
1998-04-01
This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m{sub {pi}}{sup 2}/M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic.
Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses
NASA Astrophysics Data System (ADS)
Baru, V.; Epelbaum, E.; Filin, A. A.; Gegelia, J.
2015-07-01
The longest-range part of the nuclear force from the one-pion exchange governs the energy dependence of the scattering amplitude in the near-threshold region and imposes correlations between the coefficients in the effective range expansion. These correlations may be regarded as low-energy theorems and are known to hold to a high accuracy in the neutron-proton 3S1 partial wave. We generalize the low-energy theorems to the case of unphysical pion masses and provide results for the correlations between the coefficients in the effective range expansion in this partial wave for pion masses up to Mπ˜400 MeV . We discuss the implications of our findings for the available and upcoming lattice-quantum-chromodynamics simulations of two-nucleon observables.
Roy-Steiner equations for pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.
2012-06-01
Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.
Two-nucleon scattering in a modified Weinberg approach with a symmetry-preserving regularization
NASA Astrophysics Data System (ADS)
Behrendt, J.; Epelbaum, E.; Gegelia, J.; Meißner, Ulf-G.; Nogga, A.
2016-09-01
We consider the nucleon-nucleon scattering problem by applying time-ordered perturbation theory to the Lorentz-invariant formulation of baryon chiral perturbation theory. We employ a higher-derivative symmetry-preserving regularization to obtain an integral equation for the scattering amplitude, which permits a non-perturbative treatment of subleading contributions to the nucleon-nucleon potential. The resulting formulation is used to quantify finite regulator artefacts in two-nucleon phase shifts as well as in the chiral extrapolations of the S-wave scattering lengths and the deuteron binding energy. Our approach can be straightforwardly extended to analyse few-nucleon systems and processes involving external electroweak sources.
Coulomb effects in three- and four-nucleon scattering: A mask of the 3N force
Deltuva, A.; Fonseca, A. C.; Sauer, P. U.
2008-04-29
Recent progress on the solution of ab initio three- and four-nucleon scattering equations in momentum space that include the correct treatment of the Coulomb interaction is reviewed; results for specific observables in reactions initiated by p+d, p+{sup 3}He and n+{sup 3}He indicate that the inclusion of the Coulomb interaction is paramount to validate two- and three-nucleon force models. Three- and four-nucleon force effects in {sup 4}He binding energy and four-nucleon scattering observables are studied for the first time. The effect of the four-nucleon force is found to be much smaller than the effect of the three-nucleon force.
Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV
Fields, L.; Chvojka, J.; Aliaga, L.; ...
2013-07-11
We have isolated ν¯μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at highermore » Q² favor this interpretation over an alternative in which the axial mass is increased.« less
Quark structure of the nucleon and angular asymmetry of proton-neutron hard elastic scattering.
Granados, Carlos G; Sargsian, Misak M
2009-11-20
We investigate an asymmetry in the angular distribution of hard elastic proton-neutron scattering with respect to the 90 degrees center of mass scattering angle and demonstrate that it's magnitude is related to the helicity-isospin symmetry of the quark wave function of the nucleon. Our estimate of the asymmetry within the quark-interchange model of hard scattering demonstrates that the quark wave function of a nucleon based on the exact SU(6) symmetry predicts an angular asymmetry opposite to that of experimental observations. We found that the quark wave function based on the diquark picture of the nucleon produces a correct asymmetry. Comparison with the data allowed us to show that the vector diquarks contribute around 10% in the nucleon wave function and they are in negative phase relative to the scalar diquarks. These observations are essential in constraining QCD models of a nucleon.
Numerical Exact Ab Initio Four-Nucleon Scattering Calculations: from Dream to Reality
NASA Astrophysics Data System (ADS)
Fonseca, A. C.; Deltuva, A.
2017-03-01
In the present manuscript we review the work of the last ten years on the pursuit to obtain numerical exact solutions of the four-nucleon scattering problem using the most advanced force models that fit two nucleon data up to pion production threshold with a χ ^2 per data point approximately one, together with the Coulomb interaction between protons; three- and four-nucleon forces are also included in the framework of a meson exchange potential model where NN couples to NΔ. Failure to describe the world data on four-nucleon scattering observables in the framework of a non relativistic scattering approach falls necessarily on the force models one uses. Four-nucleon observables pose very clear challenges, particular in the low energy region where there are a number of resonances whose position and width needs to be dynamically generated by the nucleon-nucleon (NN) interactions one uses. In addition, our calculations constitute the most advance piece of work where observables for all four-nucleon reactions involving isospin I=0, I=0 coupled to I=1 and isospin I=1 initial states are calculated at energies both below and above breakup threshold. We also present a very extensive comparison between calculated results and data for cross sections and spin observables. Therefore the present work reveals both the shortcomings and successes of some of the present NN force models in describing four-nucleon data and serve as a benchmark for future developments.
Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering
Barbara Pasquini; Marc Vanderhaeghen
2004-07-01
We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of {gamma}* N {yields} {pi} N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress.
The pion nucleon scattering lengths from pionic hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.
2001-07-01
This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.
Extra dimensions, SN1987a, and nucleon-nucleon scattering data
Christoph Hanhart; Daniel R. Phillips; Sanjay Reddy; Martin J. Savage
2001-02-01
One of the strongest constraints on the existence of large, compact, ''gravity-only'' dimensions comes from SN1987a. If the rate of energy loss into these putative extra dimensions is too high, then the neutrino pulse from the supernova will differ from that actually seen. The dominant mechanism for the production of Kaluza-Klein gravitons and dilatons in the supernova is via gravistrahlung and dilastrahlung from the nucleon-nucleon system. In this paper we compute the rates for these processes in a model-independent way using low-energy theorems which relate the emissivities to the measured nucleon-nucleon cross section. This is possible because for soft gravitons and dilatons the leading contribution to the energy-loss rate is from graphs in which the gravitational radiation is produced from external nucleon legs. Previous calculations neglected these mechanisms. We re-evaluate the bounds on toroidally-compactified ''gravity-only'' dimensions (GODs), and find that consistency with the observed SN1987a neutrino signal requires that if there are two such dimensions then their radius must be less than 1 micron.
Armstrong, David S.; McKeown, Robert
2012-11-01
Measurement of the neutral weak vector form factors of the nucleon provides unique access to the strange quark content of the nucleon. These form factors can be studied using parity-violating electron scattering. A comprehensive program of experiments has been performed at three accelerator laboratories to determine the role of strange quarks in the electromagnetic form factors of the nucleon. This article reviews the remarkable technical progress associated with this program, describes the various methods used in the different experiments, and summarizes the physics results along with recent theoretical calculations.
NASA Astrophysics Data System (ADS)
Sekiguchi, K.; Wada, Y.; Watanabe, A.; Eto, D.; Akieda, T.; Kon, H.; Miki, K.; Sakamoto, N.; Sakai, H.; Sasano, M.; Shimizu, Y.; Suzuki, H.; Uesaka, T.; Yanagisawa, Y.; Dozono, M.; Kawase, S.; Kubota, Y.; Lee, C. S.; Yako, K.; Maeda, Y.; Kawakami, S.; Yamamoto, T.; Sakaguchi, S.; Wakasa, T.; Yasuda, J.; Ohkura, A.; Shindo, Y.; Tabata, M.; Milman, E.; Chebotaryov, S.; Okamura, H.; Tang, T. L.
2017-03-01
We have measured a complete set of deuteron analyzing powers in deuteron-proton elastic scattering at 190, 250, and 294 MeV/nucleon. The obtained data are compared with the Faddeev calculations based on the modern nucleon-nucleon forces together with the Tucson-Melbourne'99, and UrbanaIX three nucleon forces. The data are also presented with the calculations based on the N4LO NN potentials of the chiral effective field theory.
Ab initio many-body calculations of nucleon-nucleus scattering
NASA Astrophysics Data System (ADS)
Quaglioni, Sofia; Navrátil, Petr
2009-04-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and the Pauli principle. We outline technical details and present phase-shift results for neutron scattering on H3, He4, and Be10 and proton scattering on He3,4, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-He4S-wave phase shifts. In contrast, the experimental nucleon-He4P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-Be10 continuum is successful in explaining the parity-inverted ground state in Be11.
Directional Antineutrino Detection
NASA Astrophysics Data System (ADS)
Safdi, B. R.; Suerfu, J.
2014-12-01
We propose the first truly directional antineutrino detector for antineutrinos near the threshold for the inverse beta decay (IBD) of hydrogen, with potential applications including the spatial mapping of geo-neutrinos, searches for stellar antineutrinos, and the monitoring of nuclear reactors. The detector consists of adjacent and separated target and neutron-capture layers. The IBD events, which result in a neutron and a positron, take place in the target layers. These layers are thin enough so that the neutrons escape without scattering elastically. The neutrons are detected in the thicker neutron-capture layers. The location of the IBD event is determined from the energy deposited by the positron as it slows in the medium and from the two gamma rays that come from the positron annihilation. Since the neutron recoils in the direction of the antineutrino's motion, a line may then be drawn between the IBD event location and the neutron-capture location to approximate the antineutrino's velocity. In some events, we may even measure the positron's velocity, which further increases our ability to reconstruct the antineutrino's direction of motion. Our method significantly improves upon previous methods by allowing the neutron to freely travel a long distance before diffusing and being captured. Moreover, our design is a straightforward modification of existing antineutrino detectors; a prototype could easily be built with existing technology. We verify our design through Monte Carlo simulations in Geant4, using commercially-available boron-loaded plastic scintillators for the target and neutron-capture layer materials. We are able to discriminate from background using multiple coincidence signatures within a short, ~microsecond time interval. We conclude that the detector could likely operate above ground with minimal shielding.
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1972-01-01
The exact nucleon-deuteron elastic single scattering integral was calculated numerically in order to evaluate errors in sticking factor approximations. A similar analysis made by using S wave separable potentials concluded that errors for these approximations were negligible except near backward angles where they were found to be about 10 percent.
Supersymmetry-generated jost functions and nucleon–nucleon scattering phase shifts
Bhoi, J. Laha, U.
2015-10-15
By exploiting the supersymmetry-inspired factorization method higher partial wave Jost solutions and functions for nuclear Hulthen potential are constructed from the knowledge of the ground state wave function. As a case study the nucleon–nucleon scattering phase shifts are computed for partial waves ℓ = 0, 1, and 2.
Spin effects in pion-nucleon and nucleon-nucleon scattering at high energies and fixed angles
NASA Astrophysics Data System (ADS)
Chavleishvili, M. P.
1989-05-01
Based on the study of the general structure of helicity amplitudes, obligatory kinematic factors are separated and the so-called dynamic amplitudes are introduced. These factors make conservation laws fulfill and contain all the kinematic singularities of helicity amplitudes. Via the dynamic amplitudes, the observable quantities are expressed in a simple form. Kinematic factors play the role of weighting functions. At high energies and fixed angles these factors turn into small parameters which suppress contributions of some helicity amplitudes, and enhance contributions of others. So we get the kinematic hierarchy for binary processes. As an example we consider πN- and NN-scattering. Predictions are given for some asymmetry parameters which do not coincide with the helicity conservation rules, predicted by QCD.
Short-range interactions in an effective field theory approach for nucleon-nucleon scattering
Scaldeferri, K.A.; Phillips, D.R.; Kao, C.; Cohen, T.D.
1997-08-01
We investigate in detail the effect of making the range of the {open_quotes}contact{close_quotes} interaction used in effective field theory (EFT) calculations of NN scattering finite. This is done in both an effective field theory with explicit pions, and one where the pions have been integrated out. In both cases we calculate NN scattering in the {sup 1}S{sub 0} channel using potentials which are second order in the EFT expansion. The contact interactions present in the EFT Lagrangian are made finite by use of a square-well regulator. We find that there is an optimal radius for this regulator, at which second-order corrections to the EFT are identically zero; for radii near optimal these second-order corrections are small. The cutoff EFT{close_quote}s which result from this procedure appear to be valid for momenta up to about 100{endash}150MeV/c. We also find that the radius of the square well cannot be reduced to zero if the theory is to reproduce both the experimental scattering length and effective range. Indeed, we show that, if the NN potential is the sum of a one-pion-exchange piece and a short-range interaction, then the short-range piece must extend out beyond 1.05 fm, regardless of its particular form. {copyright} {ital 1997} {ital The American Physical Society}
The nuclear spin-isospin response to quasifree nucleon scattering
Taddeucci, T.N.
1995-12-31
The Neutron-Time-of-Flight (NTOF) facility at LAMPF has been used to measure complete sets of polarization-transfer coefficients for quasifree ({rvec p},{rvec n}) scattering from {sup 2}H, {sup 12}C, and {sup 40}Ca at 494 MeV and scattering angles of 12.5{degrees}, 18{degrees}, and 27{degrees} (q = 1.2, 1.7, 2.5 fm{sup {minus}1}). These measurements yield separated transverse ({sigma} {times} q) and longitudinal ({sigma}{center_dot}q) isovector spin responses. Comparison of the separated responses to calculations and to electron-scattering responses reveals a strong enhancement in the spin transverse channel. This excess transverse strength masks the effect of pionic correlations in the response ratio.
A relativistic meson-exchange model of pion-nucleon scattering
Lee, T.S.H.; Hung, C.T.; Yang, S.N.
1995-08-01
Pion-nucleon scattering is investigated using the Kadshevsky three-dimensional reduction of the Bethe-Salpeter equation. The resulting potential includes the direct and crossed N and {Delta} terms, and the t-channel {sigma}- and {rho}-exchange terms. The nucleon-pole condition is imposed to define the renormalization of the nucleon mass and the {pi}NN coupling constant. A mixture of the scalar and vector {sigma}{pi}{pi} couplings is introduced to simulate the broad width of the s-wave correlated two-pion exchange mechanism. Good descriptions of the {pi}N phase shifts up to 400 MeV have been obtained in all S- and P-waves. The off-shell behavior for our model differs significantly from that obtained using different reductions. A paper describing our results was published.
NASA Astrophysics Data System (ADS)
Uzhinsky, V.; Galoyan, A.; Hu, Q.; Ritman, J.; Xu, H.
2016-12-01
A parametrization of the nucleon-nucleon elastic scattering amplitude is needed for future experiments with nucleon and nuclear beams in the beam momentum range of 2-50 GeV /c /nucleon. There are many parametrizations of the amplitude at Plab> 25-50 GeV /c , and at Plab≤5 GeV /c . Our paper is aimed at covering the range between 5-50 GeV /c . The amplitude is used in Glauber calculations of various cross sections and Monte Carlo simulations of nucleon-nucleon scatterings. Usually, the differential nucleon-nucleon elastic scattering cross sections are described by an exponential expression. Corresponding experimental data on p p interactions at |t |> 0.005 (GeV /c )2 and |t |≤0.125 (GeV /c )2 have been fit. We propose formulas to approximate the beam momentum dependence of these parameters in the momentum range considered. The same was done for n p interactions at |t |≤0.5 (GeV /c )2. Expressions for the momentum dependence of the total and elastic cross sections, and the ratio of real to imaginary parts of the amplitude at zero momentum transfer are also given for p p and n p collisions. These results are sufficient for a first approximation of the Glauber calculations. For more exact calculations we fit the data at |t |>0.005 (GeV /c )2 without restrictions on the maximum value of |t | using an expression based on two coherent exponentials. The parameters of the fits are found for the beam momentum range 2-50 GeV /c .
Parity Violating Electron Scattering and Strangeness in the Nucleon
Maas, Frank E.
2008-10-13
A measurement of the weak form factor of the proton allows a flavor separation of the strangeness contribution to the electromagnetic form factors. The weak form factor is accessed experimentally by the measurement of a parity violating (PV) asymmetry in the scattering of polarized electrons on unpolarized protons. An extended experimental program to measure these parity violating asymmetries has been performed and is going on at different accelerators. After the first round of experiments allowing a separation of the strangeness form factors G{sub E}{sup s} and G{sub M}{sup s} at a Q{sup 2}-value of 0.1 (GeV/c){sup 2}, new, preliminary results have been achieved at 0.23 (GeV/c){sup 2}.
Three-body break-up in deuteron-deuteron scattering at 65 MeV/nucleon
NASA Astrophysics Data System (ADS)
Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslamikalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.
2010-04-01
We successfully identified several multibody final states in deuteron-deuteron scattering at 65 MeV/nucleon at KVI using a unique and advanced detection system called BINA. This facility enabled us to perform cross sections and polarization measurements with an improved statistical and systematic precision. The analysis procedure and a part of the results of the three-body break-up channel in the deuteron-deuteron scattering at 65 MeV/nucleon are presented.
Halo-independent upper limits on the dark matter scattering cross section with nucleons
NASA Astrophysics Data System (ADS)
Wild, Sebastian; Ferrer, Francesc; Ibarra, Alejandro
2016-05-01
We present a novel method that allows to derive an upper limit on the scattering cross section of dark matter with nucleons which is independent of the velocity distribution. To this end, we combine null results from direct detection experiments and neutrino telescopes, and use the fact that taken together, these classes of experiments probe the whole range of possible dark matter velocities. The resulting halo-independent upper limits on the dark matter scattering cross section are remarkably strong, and can be used to robustly rule out models of dark matter, without the need to invoke specific assumptions about the local velocity distribution.
NASA Technical Reports Server (NTRS)
Schinder, Paul J.
1990-01-01
The exact expressions needed in the neutrino transport equations for scattering of all three flavors of neutrinos and antineutrinos off free protons and neutrons, and for electron neutrino absorption on neutrons and electron antineutrino absorption on protons, are derived under the assumption that nucleons are noninteracting particles. The standard approximations even with corrections for degeneracy, are found to be poor fits to the exact results. Improved approximations are constructed which are adequate for nondegenerate nucleons for neutrino energies from 1 to 160 MeV and temperatures from 1 to 50 MeV.
Two-Boson Exchange in Electron-Nucleon Scattering
NASA Astrophysics Data System (ADS)
Ashworth, Jesse; Melnitchouk, Wally; Blunden, Peter
2016-09-01
Researchers are working to determine in-depth information about the proton's substructure. This includes the charge and current distributions of the proton, described by electromagnetic form factors. These quantities can be determined by computing electron-proton scattering cross sections, which have been calculated to first-order expansion in the fine structure constant, α. Experimental discrepancies in the proton's electric-to-magnetic form factor ratio have prompted a need to compute cross sections to second-order expansion in α, involving two-boson exchange (TBE) interactions. Two methods exist for computing TBE contributions: one based on hadronic degrees of freedom (suitable at low Q2) and the other on partonic degrees of freedom (applicable at high Q2). Both methods have been claimed to help account for the form factor discrepancy, but ambiguities exist in the separation of the soft and hard parts of the partonic cross sections. This work aims to resolve such ambiguities and pave the way toward a unified description of TBE effects at all Q2 values. Achieving this goal will further pin down the nature of the proton's interior, and the results in turn can be used to better understand the substructure of the neutron and other hadrons. Thomas Jefferson National Accelerator Facility; Old Dominion University; National Science Foundation.
NASA Astrophysics Data System (ADS)
Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.
2016-05-01
We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.
Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E_{ν}~3.5 GeV
Fields, L.; Chvojka, J.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chung, H.; Clark, M.; da Motta, H.; Damiani, D. S.; Danko, I.; Datta, M.; Day, M.; DeMaat, R.; Devan, J.; Draeger, E.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Edmondson, D. A.; Felix, J.; Fitzpatrick, T.; Fiorentini, G. A.; Gago, A. M.; Gallagher, H.; George, C. A.; Gielata, J. A.; Gingu, C.; Gobbi, B.; Gran, R.; Grossman, N.; Hanson, J.; Harris, D. A.; Heaton, J.; Higuera, A.; Howley, I. J.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kaisen, J.; Kanter, M. O.; Keppel, C. E.; Kilmer, J.; Kordosky, M.; Krajeski, A. H.; Kulagin, S. A.; Le, T.; Lee, H.; Leister, A. G.; Locke, G.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Niculescu, G.; Niculescu, I.; Ochoa, N.; O’Connor, C. D.; Olsen, J.; Osmanov, B.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Peña, C.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Rude, C.; Sassin, K. E.; Schellman, H.; Schmitz, D. W.; Schneider, R. M.; Schulte, E. C.; Simon, C.; Snider, F. D.; Snyder, M. C.; Sobczyk, J. T.; Solano Salinas, C. J.; Tagg, N.; Tan, W.; Tice, B. G.; Tzanakos, G.; Velásquez, J. P.; Walding, J.; Walton, T.; Wolcott, J.; Wolthuis, B. A.; Woodward, N.; Zavala, G.; Zeng, H. B.; Zhang, D.; Zhu, L. Y.; Ziemer, B. P.
2013-07-11
We have isolated ν¯_{μ} charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M_{A}, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q² favor this interpretation over an alternative in which the axial mass is increased.
Ab initio many-body calculations of nucleon-^{4}He scattering with three-nucleon forces
Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert
2013-11-27
We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-^{4}He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the ^{4}He target and find significant effects from the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2^{–} and 1/2^{–} resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+^{3}H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.
Antineutrino Neutral Current Interactions in MiniBooNE
Dharmapalan, Ranjan
2012-01-01
This dissertation reports the antineutrino-nucleus neutral current elastic scattering cross section on CH_{2} measured by the MiniBooNE experiment located in Batavia, IL. The data set consists of 60,605 events passing the selection cuts corresponding to 10.1×10^{20} POT, which represents the world’s largest sample of antineutrino neutral current elastic scattering events. The final sample is more than one order of magnitude lager that the previous antineutrino NCE scattering cross section measurement reported by the BNL E734 experiment. The measurement presented in this dissertation also spans a wider range in Q^{2}, including the low-Q^{2} regime where the cross section rollover is clearly visible. A X^{2}-based minimization was performed to determine the best value of the axial mass, M_{A} and the Pauli blocking scaling function, that matches the antineutrino NCE scattering data. However, the best fit values of M_{A}=1.29 GeV and K=1.026 still give a relatively poor X^{2}, which suggests that the underlying nuclear model (based largely on the relativistic Fermi gas model) may not be an accurate representation for this particular interaction. Additionally, we present a measurement of the antineutrino/neutrino-nucleus NCE scattering cross section ratio. The neutrino mode NCE sample used in this study, corresponding to 6.4 × 10^{20} POT, is also the world’s largest sample (also by an order of magnitude). We have demonstrated that the ratio measurement is robust, as most of the correlated errors cancel, as expected. Furthermore, this ratio also proves to be rather insensitive to variations in the axial mass and the Pauli blocking parameter. This is the first time that this ratio has been experimentally reported. We believe this measurement will aid the theoretical physics community to test various model predictions of neutrino-nucleon/nucleus interactions.
Virtual compton scattering at low energy and the generalized polarizabilities of the nucleon
Helene Fonvieille
2003-10-01
We present a particular kind of (e, e' p) experiments, which has opened a new field of investigation of nucleon structure in the last ten years. The exclusive photon electroproduction process p(e, e' p){gamma} is used to study Virtual Compton Scattering (VCS) off the proton: {gamma}*p {yields} {gamma}p. In the low energy domain, this process gives access to new observables called the Generalized Polarizabilities. They are fundamental properties of the nucleon, characterizing the deformation of its internal structure under an applied electromagnetic field. Dedicated experiments have been performed at MAMI, Jefferson Lab and MIT-Bates. This contribution summarizes the results obtained so far and future prospects in the field.
Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look
NASA Astrophysics Data System (ADS)
Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.
2016-07-01
Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.
a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).
Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory
NASA Astrophysics Data System (ADS)
Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei
2016-07-01
Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.
Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei
Tvaskis, Vladas
2004-12-06
Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F_{2}(x,Q^{2}) is known with high precision over about four orders of magnitude in x and Q^{2}. In the region of Q^{2} > 1 (GeV/c)^{2} the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q^{2} becomes of the order of 1 (GeV/c)^{2}, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q^{2}, since they include a factor 1/(Q^{2n}) (n ≥ 1).
Two-nucleon higher partial-wave scattering from lattice QCD
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; Joó, Bálint; Rinaldi, Enrico; Strother, Mark; Vranas, Pavlos M.; Walker-Loud, André
2017-02-01
We present a determination of nucleon-nucleon scattering phase shifts for ℓ ≥ 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ > 0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU (3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ =mK ≈ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ≈(3.5 fm) 3 and V ≈(4.6 fm) 3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.
NASA Astrophysics Data System (ADS)
Quesada, José Manuel; Capote, Roberto; Soukhovitski, Efrem S.; Chiba, Satoshi
2016-03-01
An extension for odd-A actinides of a previously derived dispersive coupledchannel optical model potential (OMP) for 238U and 232Th nuclei is presented. It is used to fit simultaneously all the available experimental databases including neutron strength functions for nucleon scattering on 232Th, 233,235,238U and 239Pu nuclei. Quasi-elastic (p,n) scattering data on 232Th and 238U to the isobaric analogue states of the target nucleus are also used to constrain the isovector part of the optical potential. For even-even (odd) actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and energy independent geometry.
Determination of the pion-nucleon coupling constant and scattering lengths
NASA Astrophysics Data System (ADS)
Ericson, T. E.; Loiseau, B.; Thomas, A. W.
2002-07-01
We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.
Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; Deng, Xiaoyan
2013-08-22
We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.
Compton Scattering and the Nucleon Polarizabilities in the A2 Collaboration at MAMI
NASA Astrophysics Data System (ADS)
Downie, Evangeline; MAMI A2 Collaboration
2014-09-01
There has been an upsurge in interest in Compton Scattering experiments as a means to understand the internal structure and dynamics of the nucleon. The new PDG value of β, the proton magnetic polarizability, changed noticeably, with no new data, simply new theoretical treatment of the existing data set. This indicates that the existing data is insufficient to constrain our extraction of these fundamental constants, which are important in areas of physics such as the proton radius determination, and neutron star physics. In the A2 Collaboration of the Institut fuer Kernphysik in Mainz, we use the MAMI accelerator with the Glasgow Mainz Photon Tagger to produce a quasi-monoenergetic, linearly polarized photon beam and apply it to a liquid hydrogen target. The reaction products detected in the Crystal Ball and TAPS large acceptance spectrometer array allow clean separation of the low-cross-section hadronic Compton scattering process. In so doing, we have produced the firs t measurement of the photon asymmetry in Compton scattering on the proton below the pion production threshold. Preliminary results show a demonstrable effect due to the polarizabilities. We will cover the experimental results and future prospects of the A2 polarizability program. There has been an upsurge in interest in Compton Scattering experiments as a means to understand the internal structure and dynamics of the nucleon. The new PDG value of β, the proton magnetic polarizability, changed noticeably, with no new data, simply new theoretical treatment of the existing data set. This indicates that the existing data is insufficient to constrain our extraction of these fundamental constants, which are important in areas of physics such as the proton radius determination, and neutron star physics. In the A2 Collaboration of the Institut fuer Kernphysik in Mainz, we use the MAMI accelerator with the Glasgow Mainz Photon Tagger to produce a quasi-monoenergetic, linearly polarized photon beam and
NASA Astrophysics Data System (ADS)
Shebeko, A.
2013-12-01
The clothing procedure, put forward in quantum field theory by Greenberg and Schweber, is applied for the description of nucleon-nucleon ( N- N) scattering below the pion production threshold and deuteron properties. We consider pseudoscalar ( π and η), vector ( ρ and ω) and scalar ( δ and σ) meson fields interacting with N and ones via the Yukawa-type couplings to introduce trial interactions between "bare" particles. The subsequent unitary clothing transformations (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. We will also show a worked example where the UCTs method is used in the framework of a gauge-independent field-theoretical treatment of electromagnetic interactions of deuterons (bound systems).
Deeply Virtual Compton Scattering on nucleons and nuclei in generalized vector meson dominance model
Vadim Guzey; Klaus Goeke; Marat Siddikov
2008-02-01
We consider Deeply Virtual Compton Scattering (DVCS) on nucleons and nuclei in the framework of generalized vector meson dominance (GVMD) model. We demonstrate that the GVMD model provides a good description of the HERA data on the dependence of the proton DVCS cross section on $Q^2$, $W$ (at $Q^2=4$ GeV$^2$) and $t$. At $Q^2 = 8$ GeV$^2$, the soft $W$-behavior of the GVMD model somewhat underestimates the $W$-dependence of the DVCS cross section due to the hard contribution not present in the GVMD model. We estimate $1/Q^2$ power-suppressed corrections to the DVCS amplitude and the DVCS cross section and find them large. We also make predictions for the nuclear DVCS amplitude and cross section in the kinematics of the future Electron-Ion Collider. We predict significant nuclear shadowing, which matches well predictions of the leading-twist nuclear shadowing in DIS on nuclei.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter
Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; Gandolfi, Stefano; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.
2016-02-09
Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N^{2}LO). The two undetermined 3N low-energy couplings are fi t to the ^{4}He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N^{2}LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter
Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...
2016-02-09
Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrastmore » to commonly used phenomenological 3N interactions.« less
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter
NASA Astrophysics Data System (ADS)
Lynn, J. E.; Tews, I.; Carlson, J.; Gandolfi, S.; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.
2016-02-01
We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3 N ) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO ). The two undetermined 3 N low-energy couplings are fit to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P -wave phase shifts. Furthermore, we investigate different choices of local 3 N -operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A =3 ,4 ,5 systems and of neutron matter, in contrast to commonly used phenomenological 3 N interactions.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter.
Lynn, J E; Tews, I; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A
2016-02-12
We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N(2)LO). The two undetermined 3N low-energy couplings are fit to the (4)He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N(2)LO are able to simultaneously reproduce the properties of A=3,4,5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.
Neutrino-nucleon scattering in supernova matter from the virial expansion
NASA Astrophysics Data System (ADS)
Horowitz, C. J.; Caballero, O. L.; Lin, Zidu; O'Connor, Evan; Schwenk, A.
2017-02-01
We extend our virial approach to study the neutral-current neutrino response of nuclear matter at low densities. In the long-wavelength limit, the virial expansion makes model-independent predictions for neutrino-nucleon scattering rates and the density SV and spin SA responses. We find that SA is significantly reduced from one even at low densities. We provide a simple fit SAf(n ,T ,Yp) of the axial response as a function of density n , temperature T , and proton fraction Yp, which can be incorporated into supernova simulations in a straightforward manner. This fit reproduces our virial results at low densities and the Burrows and Sawyer random-phase approximation (RPA) model calculations at high densities. Preliminary one-dimensional supernova simulations suggest that the virial reduction in the axial response may enhance neutrino heating rates in the gain region during the accretion phase of a core-collapse supernovae.
NASA Astrophysics Data System (ADS)
Benali, M.; Mazouz, M.; Fonvieille, H.
2017-01-01
Virtual Compton Scattering (VCS) and Deeply Virtual Compton Scattering (DVCS) on the nucleon are two processes accessed via the photon electroproduction reaction ( eN → eγ N). In the first part of this paper we are interested by the DVCS on the neutron. We measured the ( D( e, eγ) X- H( e, e'γ) X) unpolarized cross section and we extracted, for the first time, a non-zero contribution of (neutron-DVCS + coherent- deuteron-DVCS) at Q 2 = 1.75 GeV2 and x B = 36 from Jefferson Lab experiment E08-025. VCS on the proton has been studied at Mainz Microtron MAMI at the four-momentum transfer squared Q 2 = 0.5 GeV2, below the pion production threshold. In the second part of this paper we present our preliminary results of the structure functions ( P LL - ( P TT/ɛ)) and P LT, and the electric and magnetic generalized polarizabilities α E ( Q 2) and β M ( Q 2) extracted from this experiment.
Pion-nucleon scattering in the Roper channel from lattice QCD
NASA Astrophysics Data System (ADS)
Lang, C. B.; Leskovec, L.; Padmanath, M.; Prelovsek, S.
2017-01-01
We present a lattice QCD study of N π scattering in the positive-parity nucleon channel, where the puzzling Roper resonance N*(1440 ) resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with Nf=2 +1 Wilson-clover dynamical fermions, mπ≃156 MeV and L ≃2.9 fm . In addition to a number of q q q interpolating fields, we implement operators for N π in p -wave and N σ in s -wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by N (0 ), N (0 )π (0 )π (0 ) [mixed with N (0 )σ (0 )] and N (p )π (-p ) with p ≃2 π /L , where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental N π phase shift would—in the approximation of purely elastic N π scattering—imply an additional eigenstate near the Roper mass mR≃1.43 GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that N π elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with N π π , seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of the previous lattice studies based just on q q q interpolators, which did not find a Roper eigenstate below 1.65 GeV. The study of the coupled-channel scattering including a three-particle decay N π π remains a challenge.
Constraints on the virtual Compton scattering on the nucleon in a new dispersive formalism
NASA Astrophysics Data System (ADS)
Caprini, Irinel
2016-04-01
The dispersive representation of the virtual Compton forward scattering amplitude has been recently reexamined in connection with the evaluation of the Cottingham formula for the proton-neutron electromagnetic mass difference and the proton radius puzzle. The most difficult part of the analysis is related to one of the invariant amplitudes, denoted as T1(ν ,Q2), which requires a subtraction in the standard dispersion relation with respect to the energy ν at fixed photon momentum squared q2=-Q2. We propose an alternative dispersive framework, which implements analyticity and unitarity by combining the Cauchy integral relation at low and moderate energies with the modulus representation of the amplitude at high energies. Using techniques of functional analysis, we derive a necessary and sufficient condition for the consistency with analyticity of the subtraction function S1(Q2)=T1(0 ,Q2) , the cross sections measured at low and moderate energies and the Regge model assumed to be valid at high energies. From this condition we obtain model-independent constraints on the subtraction function, confronting them with the available information on nucleon magnetic polarizabilities and results reported recently in the literature. The formalism can be used also for testing the existence of a fixed pole at J =0 in the angular momentum plane, but more accurate data are necessary for a definite answer.
NASA Astrophysics Data System (ADS)
Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar; Mahdavi, Mahdi
2016-10-01
We present a detailed QCD analysis of nucleon structure functions x F3(x ,Q2) , based on Laplace transforms and the Jacobi polynomials approach. The analysis corresponds to the next-to-leading order and next-to-next-to-leading order approximations of perturbative QCD. The Laplace transform technique, as an exact analytical solution, is used for the solution of nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at low- and large-x values. The extracted results are used as input to obtain the x and Q2 evolution of x F3(x ,Q2) structure functions using the Jacobi polynomials approach. In our work, the values of the typical QCD scale ΛMS¯ (nf) and the strong coupling constant αs(MZ2) are determined for four quark flavors (nf=4 ) as well. A careful estimation of the uncertainties shall be performed using the Hessian method for the valence-quark distributions, originating from the experimental errors. We compare our valence-quark parton distribution functions sets with those of other collaborations, in particular with the CT14, MMHT14, and NNPDF sets, which are contemporary with the present analysis. The obtained results from the analysis are in good agreement with those from the literature.
NASA Astrophysics Data System (ADS)
Svenne, J. P.; Canton, L.; Amos, K.; Fraser, P. R.; Karataglidis, S.; Pisent, G.; van der Knijff, D.
2017-03-01
We employ a collective vibration coupled-channel model to describe the nucleon-16O cluster systems, obtaining low-excitation spectra for 17O and 17F. Bound and resonance states of the compound systems have been deduced, showing good agreement with experimental spectra. Low-energy scattering cross sections of neutrons and protons from 16O also have been calculated and the results compare well with available experimental data.
Measurement of the antineutrino neutral-current elastic differential cross section
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; ...
2015-01-08
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσν-barN→ν-barN/dQ2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.
Measurement of the antineutrino neutral-current elastic differential cross section
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.
2015-01-08
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσ_{ν-barN→ν-barN}/dQ^{2}) on CH_{2} by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.
Parity-violating electron scattering from 4He and the strange electric form factor of the nucleon.
Aniol, K A; Armstrong, D S; Averett, T; Benaoum, H; Bertin, P Y; Burtin, E; Cahoon, J; Cates, G D; Chang, C C; Chao, Y-C; Chen, J-P; Choi, Seonho; Chudakov, E; Craver, B; Cusanno, F; Decowski, P; Deepa, D; Ferdi, C; Feuerbach, R J; Finn, J M; Frullani, S; Fuoti, K; Garibaldi, F; Gilman, R; Glamazdin, A; Gorbenko, V; Grames, J M; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Humensky, T B; Ibrahim, H; de Jager, C W; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kowalski, S; Kumar, K S; Lambert, D; LaViolette, P; LeRose, J; Lhuillier, D; Liyanage, N; Margaziotis, D J; Mazouz, M; McCormick, K; Meekins, D G; Meziani, Z-E; Michaels, R; Moffit, B; Monaghan, P; Munoz-Camacho, C; Nanda, S; Nelyubin, V; Neyret, D; Paschke, K D; Poelker, M; Pomatsalyuk, R; Qiang, Y; Reitz, B; Roche, J; Saha, A; Singh, J; Snyder, R; Souder, P A; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Urciuoli, G M; Vacheret, A; Voutier, E; Wang, K; Wilson, R; Wojtsekhowski, B; Zheng, X
2006-01-20
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 4He at an average scattering angle
Nucleon scattering on actinides using a dispersive optical model with extended couplings
NASA Astrophysics Data System (ADS)
SoukhovitskiÄ©, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.; Martyanov, D. S.
2016-12-01
The Tamura coupling model [Rev. Mod. Phys. 37, 679 (1965), 10.1103/RevModPhys.37.679] has been extended to consider the coupling of additional low-lying rotational bands to the ground-state band. Rotational bands are built on vibrational bandheads (even-even targets) or single-particle bandheads (odd-A targets) including both axial and nonaxial deformations. These additional excitations are introduced as a perturbation to the underlying axially symmetric rigid-rotor structure of the ground-state rotational band. Coupling matrix elements of the generalized optical model are derived for extended multiband transitions in even-even and odd-A nuclei. Isospin symmetric formulation of the optical model is employed. A coupled-channels optical-model potential (OMP) containing a dispersive contribution is used to fit simultaneously all available optical experimental databases including neutron strength functions for nucleon scattering on 232Th,233,235,238U, and 239Pu nuclei. Quasielastic (p ,n ) scattering data on 232Th and 238U to the isobaric analog states of the target nucleus are also used to constrain the isovector part of the optical potential. Lane consistent OMP is derived for all actinides if corresponding multiband coupling schemes are defined. For even-even (odd-A ) actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and energy-independent geometry. A phenomenological optical-model potential that couples multiple bands in odd-A actinides is published for a first time. Calculations using the derived OMP potential reproduce measured total cross-section differences between several actinide pairs within experimental uncertainty for incident neutron energies from 50 keV up to 150 MeV. The importance of extended coupling is studied. Multiband coupling is stronger in even-even targets owing to the collective nature of the coupling; the impact of extended coupling on
Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering
Mercado, Luis
2012-05-01
This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z^{0} boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q^{2} = 0.62 GeV^{2}. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (G^{s}_{E,M} ) to the nucleon electromagnetic form factors. A value of A_{PV} = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in G^{s}_{E} + 0.517G^{s}_{M} = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q^{2} = 0.009 GeV^{2}. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the ^{208}Pb nucleus. The Z^{0} boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.
Three-body break-up in deuteron-deuteron scattering at 65 MeV/nucleon
NASA Astrophysics Data System (ADS)
Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslami-Kalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.
2011-02-01
In an experiment with a 65 MeV/nucleon polarized deuteron beam on a liquid-deuterium target at Kernfysisch Versneller Instituut, several multibody final states in deuteron-deuteron scattering were identified. For these measurements, a unique and advanced detection system, called the Big Instrument for Nuclear-polarization Analysis, was utilized. We demonstrate the feasibility of measuring vector and tensor polarization observables of the deuteron break-up reaction leading to a three-body final state. The polarization observables were determined with high precision in a nearly background-free experiment. The analysis procedure and some results are presented.
Nucleon momentum distributions and elastic electron scattering from 19F, 25Mg, 27Al, and 29Si nuclei
NASA Astrophysics Data System (ADS)
Al-Rahmani, A.
2016-04-01
The nucleon momentum distributions and elastic electron scattering form factors of the ground state for some odd 2 s-1 d shell nuclei, such as 19F, 25Mg, 27Al, and 29Si, have been investigated using the coherent density fluctuation model and expressed in terms of the fluctuation function (weight function) | f( x)|2. The fluctuation function has been related to the nucleon density distribution of the nuclei and determined from the theory. The property of the long-tail manner at high-momentum region of the nucleon momentum distribution has been obtained by theoretical fluctuation function. The calculated form factors F( q) of all nuclei under study are in very good agreement with those of experimental data throughout all values of momentum transfer q. It is concluded that the contributions of the quadrupole form factor F C2( q) in 25Mg and 27Al nuclei, which are characterized by the undeformed 2 s-1 d shell model, are necessary for getting a remarkable agreement between the theoretical and experimental form factors.
Quasielastic scattering of 8B and 7Be on 12C at 40 MeV/nucleon
NASA Astrophysics Data System (ADS)
Pecina, I.; Anne, R.; Bazin, D.; Borcea, C.; Borrel, V.; Carstoiu, F.; Corre, J. M.; Dlouhy, Z.; Fomitchev, A.; Guillemaud-Mueller, D.; Keller, H.; Kordyasz, A.; Lewitowicz, M.; Lukyanov, S.; Mueller, A. C.; Penionzhkevich, Yu.; Roussel-Chomaz, P.; Saint-Laurent, M. G.; Skobelev, N.; Sorlin, O.; Tarasov, O.
1995-07-01
The quasielastic scattering of the exotic nucleus 8B on a 12C target has been studied at an energy of 320 MeV and compared with that of 7Be at the same velocity. The quasielastic scattering of 12C + 12C at 20 MeV/nucleon, also performed as a secondary beam experiment, was used to check the data reduction method. The results are interpreted in terms of a semimicroscopic double folding model and coupled-channels calculation. The difference in the total reaction cross section (8%) between 8B and 7Be is consistent with the measured one proton removal cross section and corresponds to an increase in the interaction radius of 4%. The existence of a substantial proton halo in 8B is not supported by the present data.
Aniol, Konrad; Armstrong, David; Averett, Todd; Benaoum, Hachemi; Bertin, Pierre; Burtin, Etienne; Cahoon, Jason; Cates, Gordon; Chang, C; Chao, Yu-Chiu; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Decowski, Piotr; Deepa, Deepa; Ferdi, Catherine; Feuerbach, Robert; Finn, John; Frullani, Salvatore; Fuoti, Kirsten; Garibaldi, Franco; Gilman, Ronald; Glamazdin, Oleksandr; Gorbenko, V; Grames, Joseph; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Humensky, Thomas; Ibrahim, Hassan; Jager, Cornelis De; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kowalski, Stanley; Kumar, Krishna; Lambert, Daniel; Laviolette, Peter; LeRose, John; Lhuillier, David; Liyanage, Nilanga; Margaziotis, Demetrius; Mazouz, Malek; McCormick, Kathy; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Camacho, Carlos Munoz; Nanda, Sirish; Nelyubin, Vladimir; Neyret, Damien; Paschke, Kent; Poelker, Benard; Pomatsalyuk, Roman; Qiang, Yi; Reitz, Bodo; Roche, Julie; Saha, Arunava; Singh, Jaideep; Snyder, Ryan; Souder, Paul; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Vacheret, Antonin; Voutier, Eric; Wang, Kebin; Wilson, R; Wojtsekhowski, Bogdan; Zheng, Xiaochao
2005-06-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle {theta}{sub lab} = 5.7 degrees and a four-momentum transfer Q{sup 2} = 0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV} = 6.72 {+-} 0.84 (stat) {+-} 0.21 (syst) parts per million yields a value of G{sub E}{sup s} = -0.038 {+-} 0.042 (stat) {+-} 0.010 (syst), consistent with zero.
Aniol, K.A.; Margaziotis, D.J.; Armstrong, D.S.; Averett, T.; Finn, J.M.; Holmstrom, T.; Kelleher, A.; Moffit, B.; Sulkosky, V.; Benaoum, H.; Holmes, R.; Souder, P.A.; Bertin, P.Y.; Ferdi, C.
2006-01-20
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle <{theta}{sub lab}>=5.7 deg. and a four-momentum transfer Q{sup 2}=0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV}=(6.72{+-}0.84{sub (stat)}{+-}0.21{sub (syst)})x10{sup -6} yields a value of G{sub E}{sup s}=-0.038{+-}0.042{sub (stat)}{+-}0.010{sub (syst)}, consistent with zero.
Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals
Drozd, Aleksandra; Grzadkowski, Bohdan; Gunion, John F.; Jiang, Yun
2016-10-24
We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.
Semi-inclusive polarised lepton-nucleon scattering and the anomalous gluon contribution
NASA Astrophysics Data System (ADS)
Güllenstern, St.; Veltri, M.; Górnicki, P.; Mankiewicz, L.; Schäfer, A.
1993-08-01
We discuss a new observable for semi-inclusive pion production in polarised lepton-nucleon collisions. This observable is sensitive to the polarised and unpolarised strange quark distribution and the anomalous gluon contribution, provided that their fragmentation functions into pions differ substantially from that of light quarks. From Monte Carlo data generated with our PEPSI code we conclude that HERMES might be able to decide whether the polarized strange quark and gluon distributions are large.
Double-spin asymmetries in electron-nucleon scattering in Halls B and C at Jlab
Donald Crabb
2003-07-15
Three experiments at JLab have measured the double polarization asymmetries in the nucleon resonance region, using polarized electron beams incident on polarized proton and deuteron targets. The analysis for the first experiment, eg1a in Hall B, is nearly finished and preliminary values of the spin structure function g1(x, Q2) and the first moment (x) have been extracted. The other two experiments, one in Hall B and one in Hall C, are still analyzing data. Some results are presented.
Boer, Marie
2016-03-01
Hard exclusive processes such as photoproduction or electroproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs), in the regime where the scattering amplitude is factorized into a hard and a soft part. GPDs contain the correlation between the longitudinal momentum fraction and the transverse spatial densities of quarks and gluons in the nucleon. Timelike Compton Scattering (TCS) correspond to the reaction gammaN --> gamma*N --> e+e?N, where the photon is scattered off a quark. It is measured through its interference with the associated Bethe-Heitler process, which has the same final state. TCS allows to access the GPDs and test their universality by comparison to the results obtained with the DVCS process (eN --> e gamma N). Also, results obtained with TCS provide additional independent constrains to the GPDs parameterization. We will present the physical motivations for TCS, with our theoretical predictions for TCS observables and their dependencies. We calculated for JLab 12 GeV energies all the single and double beam and/or target polarization observables off the proton and off the neutron. We will also present the experimental perspectives for the next years at JLab. Two proposals were already accepted at JLab: in Hall B, with the CLAS12 spectrometer, in order to measure the unpolarized cross section and in Hall A, with the SoLID spectrometer, in order to measure the unpolarized cross section and the beam spin asymmetry at high intensity. A Letter Of Intent was also submitted in order to measure the transverse target spin asymmetries in Hall C. We will discuss the merits of this different experiments and present some of the expected results.
Peripheral elastic and inelastic scattering of {sup 17,18}O on light targets at 12 MeV/nucleon
Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.
2015-02-24
The elastic and inelastic scattering of {sup 17,18}O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction {sup 13}C({sup 17}O,{sup 18}O){sup 12}C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the {sup 17}F(p,γ){sup 18}Ne which is essential to estimate the production of {sup 18}F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of {sup 17}O, {sup 18}O and {sup 16}O projectiles is made.
NASA Astrophysics Data System (ADS)
Amir-Ahmadi, H. R.; Castelijns, R.; Deltuva, A.; Eslami-Kalantari, M.; Garderen, E. D. Van; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J. G.; Mukherjee, B.; Savran, D.; Sekiguchi, K.; Shende, S. V.; Witała, H.; Wörtche, H. J.
2007-04-01
The cross section and several spin-dependent observables have been measured with high precision for the reaction H(d→,p→)d at 90 MeV/nucleon. Several calculations were performed based either purely on two-nucleon potentials or also including three-nucleon potentials (3NP). The cross sections are consistent with all calculations including 3NPs. However, no single calculation reproduces the analyzing powers and spin-transfer coefficients, although some spin observables are reproduced to various degrees by the different calculations. A good understanding of the spin structure of 3NP is still lacking.
Radiative effects in scattering of polarized leptons by polarized nucleons and light nuclei
Igor Akushevich; A. Ilyichev; N. Shumeiko
2001-07-01
Recent developments in the field of radiative effects in polarized lepton-nuclear scattering are reviewed. The processes of inclusive, semi-inclusive, diffractive and elastic scattering are considered. The explicit formulae obtained within the covariant approach are discussed. FORTRAN codes POLRAD, RADGEN, HAPRAD, DIFFRAD and MASCARAD created on the basis of the formulae are briefly described. Applications for data analysis of the current experiments on lepton-nuclear scattering at CERN, DESY, SLAC and TJNAF are illustrated by numerical results.
NASA Astrophysics Data System (ADS)
Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.; Abdul-Magead, I. A. M.
2016-11-01
The folding-model optical potential is generalized in such a way as to apply it to calculating the cross sections for inelastic scattering of π ±-mesons on 28Si, 40Ca, 58Ni, and 208Pb nuclei at the energies of 162, 180, 226, and 291 MeV leading to the excitation of the 2+ and 3- collective states. In doing this, use is made of known nucleon-density distributions in nuclei and the pion-nucleon scattering amplitude whose parameters were obtained previously by fitting the elastic scattering cross sections for the same nuclei. Thus, the values of quadrupole ( β 2) and octupole ( β 3) deformations of nuclei appear here as the only adjustable parameters. The scattering cross section is calculated by solving the relativistic wave equation, whereby effects of relativization and distortion in the entrance and exit scattering channels are taken exactly into account. The cross sections calculated in this way for inelastic scattering are in good agreement with respective experimental data. The importance of the inclusion of in-medium effects in choosing parameters of the pion-nucleon amplitude is emphasized.
Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen
2005-01-01
We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.
NASA Astrophysics Data System (ADS)
Quesada, J. M.; Capote, R.; Soukhovitskiı˜, E. Sh.; Chiba, S.
2014-04-01
Tamura's coupling formalism has been extended to consider low-lying rotational bands built on vibrational (single-particle) band heads in well-deformed even-even (odd) actinides. These additional excitations are introduced as a perturbation to the underlying rigid rotor structure that is known to describe well the ground state rotational band of major actinides. Coupling matrix elements needed in extended Tamura's formalism are derived for both even-even and odd actinides. Employed dispersive optical model (DCCOMP) replaces the incident proton energy Ep (for proton induced reactions) by the equivalent Coulomb subtracted energy in all potential terms including both the imaginary and real potentials with the corresponding dispersive corrections. Therefore, the optical potential becomes fully symmetric for protons and neutrons. This potential is used to fit simultaneously all the available optical experimental databases (including neutron strength functions) for nucleon scattering on 238U and 232Th (even even) nuclei. Quasi-elastic (p,n) scattering data to the isobaric analogue states of the target nuclei are also used to constrain the isovector part of the optical potential. Derived Lane-consistent DCCOMP is based on coupling of almost all levels below 1 MeV of excitation energy. The ground state, octupole, beta, gamma and non-axial rotational bands are considered for even nuclei, and rotational bands built on single-particle levels - for odd nuclei. Application of derived potential to odd targets based on a new coupling scheme is foreseen.
Improved input for multi-reaction hadronic analyses from elastic pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Revier, Joseph; Roenchen, Deborah; Doering, Michael; Workman`, Ronald
2017-01-01
In the search for missing baryonic resonances, many analyses include data from a variety of pion and photon induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to non-linear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The compilation of the necessary data to improve hadronic analyses is presented in detail. Supported by the U.S. Department of Energy Grant DE-SC0014133, contract DE-AC05-06OR23177, and by the National Science Foundation (CAREER grant No. 1452055, PIF Grant No. 1415459).
Axial structure of the nucleon
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
A phenomenological study of photon production in low energy neutrino nucleon scattering
Jenkins, James P; Goldman, Terry J
2009-01-01
Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.
2015-04-01
The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.
NASA Astrophysics Data System (ADS)
Farag, M. Y. H.; Esmael, E. H.; Maridi, H. M.
2014-03-01
The proton elastic scattering data on 4,6,8 He and 6,7,9,11Li nuclei at energies below 160 MeV/nucleon are analyzed using the optical model. The optical potential (OP) is taken microscopically, with few and limited fitting parameters, using the single folding model for the real part and high-energy approximation (HEA) for the imaginary one. Clear dependencies of the volume integrals on energy and rms radii are obtained from the results. The calculated differential and the reaction cross sections are in good agreement with the available experimental data. In general, this OP with few and limited fitting parameters, which have a systematic behavior with incident energy and matter radii, successfully describes the proton elastic scattering data with stable and exotic light nuclei at energies up to 160 MeV/nucleon.
Microscopic model analysis of {sup 11}Li+p elastic scattering at 62, 68.4, and 75 MeV/nucleon
Hassan, M. Y. M.; Farag, M. Y. H.; Esmael, E. H.; Maridi, H. M.
2009-01-15
{sup 11}Li+p elastic scattering data at three energies, 62, 68.4, and 75 MeV/nucleon, are analyzed with density-dependent M3Y and KH effective nucleon-nucleon (NN) interactions in the framework of the single folding model. The parameters of the density-dependent term are adjusted to fulfill saturation of nuclear matter. The optical potentials (OP's) and cross sections are calculated using four model densities of {sup 11}Li, G (one-parameter Gaussian), GG (Gaussian-Gaussian), GO (Gaussian- oscillator), and the COSMA (cluster orbital shell model approximation). Comparative studies are performed for real, imaginary, and spin-orbit potentials with the phenomenological and microscopic forms. The microscopic volume and surface imaginary potentials are constructed from both the renormalized folded potentials and their derivatives. The sensitivity of the differential cross section to the four densities is tested. It is found that the {sup 11}Li+p elastic scattering cross sections depend strongly upon the behavior of the corresponding potentials. The GG and GO densities obtained from analyzing the data, using Glauber multiple scattering theory at high energies, give good results at energies below 100 MeV/nucleon in the framework of the folding model. The OP's calculated in the microscopic form using few parameters give good agreement with the data. Thus, it is not necessary to introduce a large number of arbitrary fitting parameters as done in the phenomenological and semimicroscopic OP's. The KH effective interaction successfully describes {sup 11}Li+p elastic scattering as the popular M3Y interaction. The obtained results of the reaction cross section are in good agreement with previous calculations.
NASA Astrophysics Data System (ADS)
Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szableski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.
2014-09-01
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cosϕh, cos2ϕh and sinϕh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cosϕh and cos2ϕh modulations show strong kinematic dependencies both for positive and negative hadrons.
Nucleon Electromagnetic Form Factors
Kees de Jager
2004-08-01
Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.
Stopping power of neutrinos and antineutrinos in polymers
NASA Technical Reports Server (NTRS)
Rustgi, M. L.; Leung, P. T.; Long, S. A. T.
1985-01-01
The Weinberg-Salam model is applied to quantify the energy loss of antineutrinos and neutrinos encountering polymers. The scattering cross-sectional energy due to encounters with electrons is calculated, along with the probability that an antineutrino will remain the same particle. The energy loss reaches a maximum, i.e., stopping occurs, when the probability is unity. The technique is applied to study the energy losses in kapton, a solid organic insulator used for antennas on spacecraft exposed to solar neutrinos with energies ranging from 0.5-10 MeV. The energy loss is found to be negligible.
Antineutrino monitoring of thorium reactors
NASA Astrophysics Data System (ADS)
Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.
2016-09-01
Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. A rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.
Antineutrino monitoring of thorium reactors
Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.
2016-09-30
Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg ofmore » 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. In conclusion, a rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.« less
Antineutrino monitoring of thorium reactors
Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.
2016-09-30
Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed ^{233}U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of ^{233}U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of ^{233}U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of ^{233}U could not be detected within the current IAEA timeliness detection goal using either tests. In conclusion, a rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.
Can one distinguish τ-neutrinos from antineutrinos in neutral-current pion production processes?
NASA Astrophysics Data System (ADS)
Hernández, E.; Nieves, J.; Valverde, M.
2007-04-01
A potential way to distinguish τ-neutrinos from antineutrinos, below the τ-production threshold, but above the pion production one, is presented. It is based on the different behavior of the neutral-current pion production off the nucleon, depending on whether it is induced by neutrinos or antineutrinos. This procedure for distinguishing τ-neutrinos from antineutrinos neither relies on any nuclear model, nor it is affected by any nuclear effect (distortion of the outgoing nucleon waves, etc.). We show that neutrino-antineutrino asymmetries occur both in the totally integrated cross sections and in the pion azimuthal differential distributions. To define the asymmetries for the latter distributions we just rely on Lorentz-invariance. All these asymmetries are independent of the lepton family and can be experimentally measured by using electron or muon neutrinos, due to the lepton family universality of the neutral-current neutrino interaction. Nevertheless and to estimate their size, we have also used the chiral model of [E. Hernández, J. Nieves, M. Valverde, arxiv:hep-ph/0701149] at intermediate energies. Results are really significant since the differences between neutrino and antineutrino induced reactions are always large in all physical channels.
NASA Astrophysics Data System (ADS)
Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard
2015-08-01
Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.
Detection of Breeding Blankets Using Antineutrinos
NASA Astrophysics Data System (ADS)
Cogswell, Bernadette; Huber, Patrick
2016-03-01
The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.
Elastic scattering and breakup effect analysis of {sup 11}Be+{sup 12}C at 38.4 MeV/nucleon
Hassan, M. Y. M.; Farag, M. Y. H.; Esmael, E. H.; Maridi, H. M.
2009-06-15
{sup 11}Be+{sup 12}C elastic-scattering data at 38.4 MeV/nucleon has been analyzed using the optical model. The optical potential is calculated in the framework of the double folding model using M3Y effective nucleon-nucleon interaction. Different models of {sup 11}Be density are tested and the model that does not include the halo structure gives poor fitting with data. The breakup effect is studied by introducing a complex dynamical polarization potential (DPP) that is added to the ''bare'' potential. The DPP is taken in different forms that have been obtained from simple phenomenological, semiclassical approximation, and microscopic methods. The simple phenomenological DPP is related to the semiclassical approximation method. The sensitivity of the differential and reaction cross sections to these polarization potentials is tested. The microscopic DPP that has been constructed from the derivative of the folding potential describes the breakup effect well. It gives an explicit justification for the long range of the polarization potential.
Luminita Todor
2003-05-01
The experiment (E93-050) at Jefferson Lab measured the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} cross sections in the nucleon resonance region, from the threshold to W = 1.9 GeV at Q{sup 2} = 1 GeV{sup 2} for backward emission of the {gamma} or {pi}{sup 0}.
Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces
NASA Astrophysics Data System (ADS)
Binder, S.; Calci, A.; Epelbaum, E.; Furnstahl, R. J.; Golak, J.; Hebeler, K.; Kamada, H.; Krebs, H.; Langhammer, J.; Liebig, S.; Maris, P.; Meißner, Ulf-G.; Minossi, D.; Nogga, A.; Potter, H.; Roth, R.; Skibiński, R.; Topolnicki, K.; Vary, J. P.; Witała, H.; Lenpic Collaboration
2016-04-01
We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors to study nucleon-deuteron (N d ) scattering and selected low-energy observables in 3H,4He , and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon-force contributions agree well with expectations based on Weinberg's power counting. We identify the energy range in elastic N d scattering best suited to study three-nucleon-force effects and estimate the achievable accuracy of theoretical predictions for various observables.
Amaro, J E; Barbaro, M B; Caballero, J A; Donnelly, T W
2012-04-13
We evaluate quasielastic double-differential antineutrino cross sections obtained in a phenomenological model based on the superscaling behavior of electron scattering data and estimate the contribution of the vector meson-exchange currents in the two-particle-two-hole sector. We show that the impact of meson-exchange currents for charge-changing antineutrino reactions is much larger than in the neutrino case.
Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing
2016-05-27
We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.
Anti-neutrino imprint in solar neutrino flare
NASA Astrophysics Data System (ADS)
Fargion, D.
2006-10-01
A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\
NASA Astrophysics Data System (ADS)
Kievsky, A.
2005-04-01
Recent advances in the theoretical description of few-nucleon systems are reported. This research activity has been performed under the Italian project FISICA TEORICA DEL NUCLEO E DEI SISTEMI A MOLTI CORPI. Bound and scattering states as well as specific reactions are analyzed in connection with the current experimental activity.
NASA Astrophysics Data System (ADS)
Devan, Joshua D.
Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low- v method, which relies on the principle that the cross section for interactions with very low recoil energy is nearly constant as a function of neutrino energy. The measured cross section is compared with world data.
Devan, Joshua D.
2015-01-01
Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2016-04-01
We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Krutov, A. F.; Tsirova, N. A.; Troitsky, V. E.
2008-10-15
Using the instant form dynamics of Poincare invariant quantum mechanics and the modified relativistic impulse approximation proposed previously, we calculate asymptotic behavior of electromagnetic form factors for the deuteron considered as a two-nucleon system. We show that today, experimentation on elastic ed scattering has reached the asymptotic regime. We also estimate the possible range of momentum transfer in which the quark degrees of freedom will possibly be seen in future JLab experiments. The explicit relation between the behavior of the deuteron wave function at r=0 and the form factors asymptotic behavior is obtained, and the conditions of wave functions that give the asymptotic behavior predicted by QCD and quark counting rules are formulated.
Akerib, D. S.
2016-04-20
Here, we present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 × 104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn = 9.4 × 10–41 cm2 (σp = 2.9 × 10–39 cm2) at 33 GeV/c2. Themore » spin-dependent WIMP-neutron limit is the most sensitive constraint to date.« less
Fanelli, Cristiano V.
2015-03-01
In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will
Reactor antineutrinos and nuclear physics
NASA Astrophysics Data System (ADS)
Balantekin, A. B.
2016-11-01
Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.
Gårdestig, A; Phillips, D R
2006-06-16
We show that chiral symmetry and gauge invariance enforce relations between the short-distance physics that occurs in a number of electroweak and pionic reactions on light nuclei. Within chiral perturbation theory, this is manifested via the appearance of the same axial isovector two-body contact term in pi(-)d --> nngamma, p-wave pion production in NN collisions, tritium beta decay, pp fusion, nud scattering, and the hep reaction. Using a Gamow-Teller matrix element obtained from calculations of pp fusion as input, we compute the neutron spectrum obtained in pi(-)d --> nngamma. With the short-distance physics in this process controlled from pp --> de(=)nu(e), the theoretical uncertainty in the nn scattering length extracted from pi(-)d --> nngamma is reduced by a factor larger than 3, to approximately < or = 0.05 fm.
AGM2015: Antineutrino Global Map 2015
Usman, S.M.; Jocher, G.R.; Dye, S.T.; McDonough, W.F.; Learned, J.G.
2015-01-01
Every second greater than 1025 antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors. PMID:26323507
Sterile antineutrino search in the MINOS experiment
NASA Astrophysics Data System (ADS)
Chen, Rui; Minos Collaboration
2017-01-01
The MINOS experiment is a long-baseline on-axis neutrino oscillation experiment. The two detectors are separated by 734km and optimised for sensitivity to the disappearance of muon neutrinos and antineutrinos delivered by the NuMI beam at Fermilab. The MINOS detectors are magnetised, giving the experiment a unique ability to separate neutrinos and antineutrinos on an event-by-event basis. Thanks to the different possible NuMI beam configurations, MINOS has accumulated 10 . 56 ×1020 POT from a muon neutrino dominated beam and 3 . 36 ×1020 POT from a muon antineutrino enhanced beam. In this talk I will present an analysis of the muon antineutrino interactions collected in both beam configurations. The LSND and MiniBooNE experiments have observed non-standard electron antineutrino appearance in their oscillation analyses. A possible explanation for this is the 3+1 sterile neutrino model where one adds an additional neutrino to the current three-flavour model. MINOS is sensitive to this model through looking at the charged current neutrino and antineutrino energy spectra to probe any deviations from the three-flavour muon neutrino and antineutrino survival probabilities. In this talk, I will present new limits on sterile antineutrinos, using this 3+1 model.
AGM2015: Antineutrino Global Map 2015.
Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G
2015-09-01
Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.
Antineutrino Oscillations in the Atmospheric Sector
Himmel, Alexander I.
2011-05-01
This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for v_{μ} → $\\bar{v}$_{μ} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$_{atm} ^{2}| = (3.36_{-0.40}^{+0.46}(stat) ± 0.06(syst)) x 10^{-3} eV^{2} and sin^{2}(2$\\bar{θ}$_{23}) = 0.860_{-0.12}^{+0.11}(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.
AGM2015: Antineutrino Global Map 2015
NASA Astrophysics Data System (ADS)
Usman, S. M.; Jocher, G. R.; Dye, S. T.; McDonough, W. F.; Learned, J. G.
2015-09-01
Every second greater than 1025 antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.
Zheng, Xiaochao
2016-03-10
The program proposed contains two ingredients which aim to address aspects of two of the three research frontiers of nuclear science as identified in the 2007 NSAC Long Range Plan. The first topic, a test of the current Standard Model, is an ongoing project focusing on measurements of the parity-violating asymmetry in ~e-2H deep inelastic scattering (PVDIS). The PVDIS measurement is complementary to other completed or ongoing low- to medium-energy tests of the Standard Model. As the first, exploratory, step, an experiment using a 6 GeV electron beam will be carried out from October to December 2009 at the Thomas Jefferson National Accelerator Facility (JLab). Meanwhile, a program using the upgraded JLab 11 GeV beam is being planned. The PVDIS program as a whole will provide the first precision data on the axial quark neutral-weak coupling constants. This will either put the current Standard Model to a test that has never been done before, or reveal information on where to look for New Physics beyond the current Standard Model. The PVDIS program will also provide results on hadronic physics effects such as charge symmetry violation. The second part of the proposed program uses spin observables to address the research frontier concerning QCD and structure of the nucleon. An experiment using the JLab 6 GeV beam in 2001 showed that, contrary to predictions from perturbative quantum chromodynamics (pQCD), while the valence up quark’s spin is parallel to the nucleon’s spin, the valence down quark’s spin is not. In order to test the limit of QCD in describing the nucleon spin structure to a region beyond the 6 GeV kinematics, this measurement will be extended to a more energetic, “deeper” valence quark region using the upgraded JLab 11 GeV beam with a polarized ^{3}He target. Although the two topics of the proposed program appear to focus on different physics, for the upgraded JLab 11 GeV beam, both will utilize a new, yet-to-be-built large acceptance
Akerib, D. S.
2016-04-20
Here, we present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 × 10^{4} kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n} = 9.4 × 10^{–41} cm^{2} (σ_{p} = 2.9 × 10^{–39} cm^{2}) at 33 GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
NASA Astrophysics Data System (ADS)
Adolph, C.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novakova, C.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmïden, H.; Schmitt, L.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2013-11-01
The differential cross section for the production of charged hadrons with high transverse momenta in the scattering of 160GeV/c muons off nucleons at low photon virtualities has been measured at the COMPASS experiment at CERN. The results, which cover transverse momenta from 1.1GeV/c to 3.6GeV/c, are compared to a perturbative quantum chromodynamics (pQCD) calculation, in order to evaluate the applicability of pQCD to this process in the kinematic domain of the experiment. The shape of the calculated differential cross section as a function of transverse momentum is found to be in good agreement with the experimental data, but the absolute scale is underestimated by next-to-leading order pQCD. The inclusion of all-order resummation of large logarithmic threshold corrections reduces the discrepancy from a factor of 3 to 4 to a factor of 2. The dependence of the cross section on the pseudorapidity and on the virtual photon energy fraction is investigated. Finally the dependence on the charge of the hadrons is discussed.
Bhattacharya, Debdatta
2009-01-01
This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 10^{6} neutrino events and 1.60 x 10^{5} antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.
Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?
NASA Astrophysics Data System (ADS)
Shomer, Isaac
2010-02-01
The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )
S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage
2004-04-01
The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.
Reactor monitoring and safeguards using antineutrino detectors
Bowden, N S
2008-09-07
Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.
Calculation of the nucleon structure function from the nucleon wave function
NASA Technical Reports Server (NTRS)
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Electromagnetic Form Factors of the Nucleon
Kees de Jager
2004-06-01
The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. As a consequence of new experimental facilities and new theoretical insights, this subject is advancing with unprecedented precision.
Nucleon measurements at the precision frontier
Carlson, Carl E.
2013-11-07
We comment on nucleon measurements at the precision frontier. As examples of what can be learned, we concentrate on three topics, which are parity violating scattering experiments, the proton radius puzzle, and the symbiosis between nuclear and atomic physics.
Strangeness contributions to nucleon form factors
Ross Young
2006-09-11
We review a recent theoretical determination of the strange quark content of the electromagnetic form factors of the nucleon. These are compared with a global analysis of current experimental measurements in parity-violating electron scattering.
Korda, V. Yu.; Molev, A. S.; Klepikov, V. F.; Korda, L. P.
2009-02-15
We present the results of the model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon. The analysis has been performed with help of a procedure based on the application of the evolutionary algorithm, which enables us to extract the nuclear part of the scattering matrix S{sub N}(l) as a complex function of angular momentum directly from the scattering data. Contrary to the commonly used model approaches, our procedure gives the better fits and leads to the S{sub N}(l) representations defined by the moduli and the nuclear phases exhibiting smooth monotonic dependencies on l.
Total nucleon-nucleon cross sections in large Nc QCD
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Gelman, Boris A.
2012-02-01
We use contracted spin-flavor symmetry which emerges in the large Nc limit of QCD to obtain relations between proton-proton and proton-neutron total cross sections for both polarized and unpolarized scattering. The formalism used is valid in the semiclassical regime in which the relative momentum of the incident nucleons is much larger than the inverse size of the nucleon, provided that certain technical assumptions are met. The relations should be phenomenologically useful provided that Nc=3 is sufficiently large so that the large Nc results have at least semiquantitative predictive power. The relations are model independent in the sense that they depend on properties of large Nc QCD only and not on any particular model-dependent details of the nucleon-nucleon interaction. We compare these model-independent results to the experimental data. We find the relation for spin-unpolarized scattering works well empirically. For the case of polarized scattering, the data are consistent with the relations, but the cross sections are too small to make sharp predictions.
Antineutrino induced Λ (1405 ) production off the proton
NASA Astrophysics Data System (ADS)
Ren, Xiu-Lei; Oset, E.; Alvarez-Ruso, L.; Vicente Vacas, M. J.
2015-04-01
We have studied the strangeness-changing antineutrino-induced reactions ν¯lp →l+ϕ B , with ϕ B =K-p , K¯0n , π0Λ , π0Σ0 , η Λ , η Σ0 , π+Σ- , π-Σ+ , K+Ξ- , and K0Ξ0 , using a chiral unitary approach. These ten coupled channels are allowed to interact strongly, using a kernel derived from the chiral Lagrangians. This interaction generates two Λ (1405 ) poles, leading to a clear single peak in the π Σ invariant mass distributions. At backward scattering angles in the center-of-mass frame, ν¯μp →μ+π0Σ0 is dominated by the Λ (1405 ) state at around 1420 MeV while the lighter state becomes relevant as the angle decreases, leading to an asymmetric line shape. In addition, there are substantial differences in the shape of π Σ invariant mass distributions for the three charge channels. If observed, these differences would provide valuable information on a claimed isospin I =1 , strangeness S =-1 baryonic state around 1400 MeV. Integrated cross sections have been obtained for the π Σ and K ¯N channels and the impact of unitarization in the results has been investigated. The number of events with Λ (1405 ) excitation in ν¯μp collisions in the recent antineutrino run at the Main Injector Experiment for ν -A (MINERνA) has also been obtained. We find that this reaction channel is relevant enough to be investigated experimentally and to be taken into account in the simulation models of future experiments with antineutrino beams.
Impact of nucleon-nucleon bremsstrahlung rates beyond one-pion exchange
NASA Astrophysics Data System (ADS)
Bartl, A.; Bollig, R.; Janka, H.-T.; Schwenk, A.
2016-10-01
Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only ≲5 % changes of the neutrino luminosities and an increase of ≲0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by ≲0.5 - 1 s .
A Direction-Sensitive Detector for Electron Antineutrinos
Brooks, F. D.; Drosg, M.; Smit, F. D.
2011-12-13
A modular design is proposed for an electron antineutrino detector based on boron-doped liquid scintillator. Tests have been carried out on small detector systems using neutrons to simulate the antineutrino detection signature. Results from these tests are reported, and the possibility of using a larger system of similar design to detect reactor antineutrinos is discussed.
Some measurements for determining strangeness matrix elements in the nucleon
Henley, E.M.; Pollock, S.J.; Ying, S.; Frederico, T.; Krein,; Williams, A.G.
1991-12-31
Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.
Some measurements for determining strangeness matrix elements in the nucleon
Henley, E.M.; Pollock, S.J.; Ying, S. ); Frederico, T. , Sao Jose dos Campos, SP . Inst. de Estudos Avancados); Krein, . Inst. de Fisica Teorica); Williams, A.G. )
1991-01-01
Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.
Recent Developments in Neutrino/Antineutrino-Nucleus Interactions
Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.
2012-01-01
Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.
Recent Developments in Neutrino/Antineutrino-Nucleus Interactions
Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.
2012-01-01
Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.
Nucleon-nucleon theory and phenomenology
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the ..pi..N and ..pi pi.. physical regions of the N anti N ..-->.. ..pi pi.. amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers.
Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions
Vale, D.; Rauscher, T.; Paar, N. E-mail: Thomas.Rauscher@unibas.ch
2016-02-01
We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.
Chiral perturbation theory with nucleons
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.
Nucleon Form Factor Experiments and the Pion Cloud
Kees de Jager
2006-04-27
The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. A wealth of new data of unprecedented precision, especially at small values of the momentum transfer, in parallel to new theoretical insights, has allowed sensitive tests of the influence of the pionic cloud surrounding the nucleon.
Borexino's search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts
NASA Astrophysics Data System (ADS)
Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; de Kerret, H.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.
2017-01-01
A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos (νbare) that inverse beta decay on protons with energies from 1.8 MeV to 15 MeV and set the best limit on the neutrino fluence from GRBs below 8 MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino fluence of all flavors and species below 7 MeV. Finally, time correlations between GRBs and bursts of events are investigated. Our analysis combines two semi-independent data acquisition systems for the first time: the primary Borexino readout optimized for solar neutrino physics up to a few MeV, and a fast waveform digitizer system tuned for events above 1 MeV.
Radial Dependence of the Nucleon Effective Mass in
L.J. de Bever; Henk Blok; Ross Hicks; Kees de Jager; N. Kalantar-Nayestanaki; James Kelly; L. Lapikas; Rory Miskimen; D. Van Neck; Gerald Peterson; G. van der Steenhoven; H. de Vries
1998-05-04
The dynamic properties of the atomic nucleus depend strongly on correlations between the nucleons. We present a combined analysis of inelastic electron-scattering data and electron-induced proton knockout measurements in an effort to obtain phenomenological information on nucleon-nucleon correlations. Our results indicate that the ration of radial wave functions extracted from precise B(e,e') and B(e, e'p) measurements evolve from an interior depression for small Em, characteristic of short-range correlations, to a surface-peaked enhancement for larger Em, characteristic of long-range correlations. This observation can be interpreted in terms of the nucleon effective mass.
Uncertainty analysis of fission fraction for reactor antineutrino experiments
NASA Astrophysics Data System (ADS)
Ma, X. B.; Lu, F.; Wang, L. Z.; Chen, Y. X.; Zhong, W. L.; An, F. P.
2016-06-01
Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Therefore, how to evaluate the antineutrino flux uncertainty results from reactor simulation is an important question. In this study, a method of the antineutrino flux uncertainty result from reactor simulation was proposed by considering the correlation coefficient. In order to use this method in the Daya Bay antineutrino experiment, the open source code DRAGON was improved and used for obtaining the fission fraction and correlation coefficient. The average fission fraction between DRAGON and SCIENCE code was compared and the difference was less than 5% for all the four isotopes. The uncertainty of fission fraction was evaluated by comparing simulation atomic density of four main isotopes with Takahama-3 experiment measurement. After that, the uncertainty of the antineutrino flux results from reactor simulation was evaluated as 0.6% per core for Daya Bay antineutrino experiment.
Future directions for probing two and three nucleon short-range correlations at high energies
Frankfurt, Leonid; Sargsian, Misak; Strikman, Mark
2008-10-13
We summarize recent progress in the studies of the short-rang correlations (SRC) in nuclei in high energy electron and hadron nucleus scattering and suggest directions for the future high energy studies aimed at establishing detailed structure of two-nucleon SRCs, revealing structure of three nucleon SRC correlations and discovering non-nucleonic degrees of freedom in nuclei.
Mapping High x Structure of the Nucleon: which data is missing?
Smirnov, G.I.
2005-02-10
The analysis of numerous experiments on lepton-nucleon and lepton-nucleus deep inelastic scattering reveals several non-trivial features of the nucleon structure, which are particularly interesting in the range of large Bjorken x (x > 0.8). It is shown that new data form the lightest nuclei can provide decisive information needed for the understanding of the nucleon structure.
Personal History of Nucleon Polarization Experiments
DOE R&D Accomplishments Database
Chamberlain, O.
1984-09-01
The history of nucleon scattering experiments is reviewed, starting with the observation of large proton polarizations in scattering from light elements such as carbon, and ending with the acceleration of polarized proton beams in high-energy synchrotrons. Special mention is made about significant contributions made by C.L. Oxley, L. Wolfenstein, R.D. Tripp, T. Ypsilantis, A. Abragam, M. Borghini, T. Niinikoski, Froissart, Stora, A.D. Krisch, and L.G. Ratner.
Kees de Jager; B. Pire
1999-06-01
The authors review recent progress in the experimental knowledge of and theoretical speculations about nucleon form factors, with special emphasis on the large Q{sup 2} region. There is now a long history of continuous progress in the understanding of electromagnetic form factors at large momentum transfer. After the pioneering works leading to the celebrated quark counting rules, the understanding of hard scattering exclusive processes has been solidly founded. A perturbative QCD subprocess is factorized from a wave function-like distribution amplitude {var_phi}(x{sub i},Q{sup 2}) (x{sub i} being the light cone fractions of momentum carried by valence quarks), the Q{sup 2} dependence of which is analyzed in the renormalization group approach. Although an asymptotic expression emerges from this analysis for the x dependence of the distribution, it was quickly understood that the evolution to the asymptotic Q{sub 2} is very slow and that indeed some non perturbative input is required to get reliable estimates of this distribution amplitude at measurable Q{sup 2}.
Four nucleon systems: a zoom to the open problems in nuclear interaction
Lazauskas, R.
2005-05-06
Faddeev-Yakubovski equations in configuration space are used to solve four nucleon problem for bound and scattering states. Different realistic interaction models are tested, elucidating open problems in the description of nuclear interaction. On one hand, by example of nonlocal Doleschall potential, we reveal possibility of reducing three-nucleon force. On the other hand we disclose discrepancies in describing n+3H resonance, which seems to be hardly related with off-shell structure of nucleon-nucleon interaction.
Long Distance Reactor Antineutrino Flux Monitoring
NASA Astrophysics Data System (ADS)
Dazeley, Steven; Bergevin, Marc; Bernstein, Adam
2015-10-01
The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.
Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections
Anderson, Colin E.
2011-05-01
flux-averaged, total cross sections for NC 1π^{0} production on CH_{2} to be (4.76 ± 0.05_{stat} ± 0.76_{sys}) x 10^{-40} cm^{2}/nucleon at
Nucleon electromagnetic form factors
Kees de Jager
2000-01-01
A review of data on the nucleon electromagnetic form factors in the space-like region is presented. Recent results from experiments using polarized beams and polarized targets or nucleon recoil polarimeters have yielded a significant improvement on the precision of the data obtained with the traditional Rosenbluth separation. Future plans for extended measurements are outlined.
Kees de Jager
2001-12-01
A review of data on the nucleon electromagnetic form factors in the space-like region is presented. Recent results from experiments using polarized beams and polarized targets or nucleon recoil polarimeters have yielded a significant improvement on the precision of the data obtained with the traditional Rosenbluth separation. Future plans for extended measurements are outlined.
Kees de Jager
2002-10-01
A review of data on the nucleon electro-weak form factors in the space-like region is presented. Recent results from experiments using polarized beams and either polarized targets or nucleon recoil polarimeters have yielded a significant improvement on the precision of the electromagnetic data obtained with the traditional Rosenbluth separation. An outlook is presented of planned experiments.
Nucleon-Nucleon Total Cross Section
NASA Technical Reports Server (NTRS)
Norbury, John W.
2008-01-01
The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.
About Hydrotechnical Laboratory, Professor Smorodinsky, and Nucleon-Nucleon Scattering
NASA Astrophysics Data System (ADS)
Ryndin, R. M.
2013-06-01
Yakov Abramovich Smorodinsky... memory brings me back to those far-off days when we first met in March 1952. We saw each other for the first time at the Hydrotechnical Laboratory (GTL) of the Academy of Sciences of the USSR,
Guegan, Baptiste
2012-11-01
The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.
Neutrino-antineutrino correlations in dense anisotropic media
NASA Astrophysics Data System (ADS)
Serreau, Julien; Volpe, Cristina
2014-12-01
We derive the most general evolution equations describing in-medium (anti)neutrino propagation in the mean-field approximation. In particular, we consider various types of neutrino-antineutrino mixing, for both Dirac and Majorana fields, resulting either from nontrivial pair correlations or from helicity coherence due to the nonvanishing neutrino masses. We show that, unless the medium is spatially homogeneous and isotropic, these correlations are sourced by the usual neutrino and antineutrino densities. This may be of importance in astrophysical environments such as core-collapse supernovae.
Evaluation of the Antiproton Flux from the Antineutrino Electron Scattering
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Belotsky, K. M.; Bogomolov, Yu V.; Budaev, R. I.; Dunaeva, O. A.; Kirillov, A. A.; Kuznetsov, A. V.; Laletin, M. N.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Mayorova, M. A.; Mosichkin, A. F.; Okrugin, A. A.; Rodenko, S. A.; Shitova, A. M.
2016-02-01
Recent experiments in high enegry cosmic ray physics, PAMELA and AMS-02, excite a new interest to the mechanisms of generation of galactic antiparticles. In spite of the fact that global picture coincides with the predictions of the standard model, there are some black spots stimulating scientists to involve into research a particularly new physics like dark matter. In the present work, we make an attempt to estimate the impact of standard neutrino processes into the total flux of secondary antiprotons detected by contemporary experiments.
Sea Quark Contribution to the Nucleon Spin
NASA Astrophysics Data System (ADS)
Benmokhtar, Fatiha
2015-10-01
The widespread belief is that proton and neutron, commonly known as nucleons, are each composed of three elementary particles called quarks. But in the last two decades experiments showed that the mass, momentum, spin and electromagnetic properties of the three quarks do not add up to the known proprieties of the nucleon. Theory predicts that a ``sea'' of virtual pairs of quarks and anti-quarks, along with the strong force carrier particles called gluons, should account for the difference. I will present ongoing work on the preparation of an experiment to isolate the contributions of the sea to the nucleon spin using semi-inclusive deep inelastic scattering technique at the Thomas Jefferson National Accelerator Facility.
Estimating terrestrial uranium and thorium by antineutrino flux measurements.
Dye, Stephen T; Guillian, Eugene H
2008-01-08
Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.
Geoneutrinos and reactor antineutrinos at SNO+
NASA Astrophysics Data System (ADS)
Baldoncini, M.; Strati, V.; Wipperfurth, S. A.; Fiorentini, G.; Mantovani, F.; McDonough, W. F.; Ricci, B.
2016-05-01
In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores (~55% of the total reactor signal), which generally burn natural uranium. Approximately 18% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.
First direct observation of muon antineutrino disappearance
Adamson, P.
2011-07-05
This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν¯μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν¯μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm¯2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ¯) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν¯μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.
Neutrino-antineutrino pair production by hadronic bremsstrahlung
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-09-01
I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).
Antineutrino analysis for continuous monitoring of nuclear reactors: Sensitivity study
Stewart, Christopher; Erickson, Anna
2015-10-28
This paper explores the various contributors to uncertainty on predictions of the antineutrino source term which is used for reactor antineutrino experiments and is proposed as a safeguard mechanism for future reactor installations. The errors introduced during simulation of the reactor burnup cycle from variation in nuclear reaction cross sections, operating power, and other factors are combined with those from experimental and predicted antineutrino yields, resulting from fissions, evaluated, and compared. The most significant contributor to uncertainty on the reactor antineutrino source term when the reactor was modeled in 3D fidelity with assembly-level heterogeneity was found to be the uncertainty on the antineutrino yields. Using the reactor simulation uncertainty data, the dedicated observation of a rigorously modeled small, fast reactor by a few-ton near-field detector was estimated to offer reduction of uncertainty on antineutrino yields in the 3.0–6.5 MeV range to a few percent for the primary power-producing fuel isotopes, even with zero prior knowledge of the yields.
NASA Astrophysics Data System (ADS)
Viviani, Michele
The recent theoretical advances in the study of the statical and dynamical properties of few-nucleon systems are here reported, with particular attention to the research activities performed under the Italian MURST-PRIN project FISICA DEL NUCLEO E DEI SISTEMI A PIÙ CORPI. The latter studies also include the development of methods for dealing with pionic degrees of freedom, the determination of static properties of light nuclei, and the computation of few-nucleon reaction observables, including electroweak processes.
Dispersive analysis of the scalar form factor of the nucleon
NASA Astrophysics Data System (ADS)
Hoferichter, M.; Ditsche, C.; Kubis, B.; Meißner, U.-G.
2012-06-01
Based on the recently proposed Roy-Steiner equations for pion-nucleon ( πN) scattering [1], we derive a system of coupled integral equations for the π π to overline N N and overline K K to overline N N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including overline K K intermediate states. In particular, we determine the correction {Δ_{σ }} = σ ( {2M_{π }^2} ) - {σ_{{π N}}} , which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.
Nucleon Form Factors - A Jefferson Lab Perspective
John Arrington, Kees de Jager, Charles F. Perdrisat
2011-06-01
The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.
Nucleon spin structure at Jefferson Lab
Angela Biselli
2011-10-01
In the past decade an extensive experimental program to measure the spin structure of the nucleon has been carried out in the three halls at Jefferson Lab. Using a longitudinally polarized beam scattering off longitudinally or transversely polarized 3He, NH3 and ND3 targets, the double spin asymmetries A|| and A[perpendicular] were measured, providing data of impressively high precision that gives a better understanding of the structure of the nucleon in the deep inelastic scattering and the valence quarks regions. The virtual photon asymmetries A1,2 and polarized structure functions g1,2 were also extracted for the proton, neutron and deuteron over large kinematic ranges, allowing the extraction of first moments and the testing of sum rules and duality.
NASA Astrophysics Data System (ADS)
Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.
2016-11-01
We analyze the low-energy nucleon-nucleon (NN) interaction by confronting statistical versus systematic uncertainties. This is carried out with the help of model potentials fitted to the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data below 350 MeV from 1950 till 2013 has been made. We extract threshold parameter uncertainties from the coupled-channel effective range expansion up to j≤slant 5. We find that for threshold parameters systematic uncertainties are generally at least an order of magnitude larger than statistical uncertainties. Similar results are found for np phase shifts and amplitude parameters.
Relativistic Treatments of the Nucleon-Nucleon System
NASA Astrophysics Data System (ADS)
Beachey, David Joseph
The relativistically minimalist Breit equation is used to study the two-nucleon system. Generally, the equation is noncovariant and its realm of applicability is limited. It is not a field-theoretical equation but, at low energy, it was thought to be a promising candidate to explore the scheme of repulsive vector and attractive scalar interactions as the dominant ingredient of the two -nucleon interaction. In the ^1S_0 singlet case, the equation does indeed seem viable. Dynamically sound interactions and a reasonable fit of the scattering data arise. In a specific application, the discrepancy between the ^1S_0 isovector scattering lengths of the p-p and n -n interactions is explored. This novel charge -symmetry-breaking (CSB) mechanism enlarges the discrepancy between the two lengths, implying a still larger correction is required by other documented (CSB) mechanisms. An all-encompassing model of the ^3S _1-^3D_1 state is, on the other hand, not achieved. Models which best fit the experimental deuteron and elastic scattering data, are unphysical. The vector coupling is driven strongly negative and a dominant interference mechanism arises involving the entirely phenomenological short range OPEP. It was hoped that this parametrized short range OPEP would remain benign while the scalar/vector interference scheme took a lead role. Instead the constraint of avoiding Klein paradox difficulties defeats this picture and achieves the short-range repulsion in the N-N force by ramping up the phenomenological OPEP. It is finally argued that the Breit framework almost certainly does not lend itself to an adequate description of the N-N system. It does, however, point to novel relativistic elements which may ultimately resolve celebrated outstanding problems such as the a_ {t}-r_{m} discrepancy. The triplet scattering length a_ {t} and deuteron matter-radius r _{m} are tightly correlated and resistant to simultaneous fitting in conventional models. The p-wave amplitudes of the
Renormalization of the Brazilian chiral nucleon-nucleon potential
NASA Astrophysics Data System (ADS)
Da Rocha, Carlos A.; Timóteo, Varese S.
2013-03-01
In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.
Renormalization of the Brazilian chiral nucleon-nucleon potential
Da Rocha, Carlos A.; Timoteo, Varese S.
2013-03-25
In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.
Bolometric Bounds on the Antineutrino Mass
NASA Astrophysics Data System (ADS)
Arnaboldi, C.; Brofferio, C.; Cremonesi, O.; Fiorini, E.; Lo Bianco, C.; Martensson, L.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Giuliani, A.; Margesin, B.; Zen, M.
2003-10-01
High statistics calorimetric measurements of the β spectrum of 187Re are being performed with arrays of silver perrhenate crystals operated at low temperature. After a substantial modification of the experimental setup, a new measurement with ten silver perrhenate microbolometers has been running since July 2002. The crystals have masses around 300 μg and their average FWHM energy resolution is of 28.3eV at the β end point. The Kurie plot collected during 4485 h×mg effective running time has an end-point energy of 2466.1±0.8stat±1.5syst eV, while the half lifetime of the decay is found to be 43.2±0.2stat±0.1syst Gy. These values are the most precise obtained so far for 187Re. The best fit value for m2ν¯e is 147±237stat±90syst eV2, which corresponds to an upper limit for the electron antineutrino mass mν¯e≤21.7 eV at 90%C.L.
Neutrino mass hierarchy determination using reactor antineutrinos
NASA Astrophysics Data System (ADS)
Ghoshal, Pomita; Petcov, S. T.
2011-03-01
Building on earlier studies, we investigate the possibility to determine the type of neutrino mass spectrum (i.e., "the neutrino mass hierarchy") in a high statistics reactor {bar{ν }_e} experiment with a relatively large KamLAND-like detector and an optimal baseline of 60 Km. We analyze systematically the Fourier Sine and Cosine Transforms (FST and FCT) of simulated reactor antineutrino data with reference to their specific mass hierarchy-dependent features discussed earlier in the literature. We perform also a binned χ 2 analysis of the sensitivity of simulated reactor {bar{ν }_e} event spectrum data to the neutrino mass hierarchy, and determine, in particular, the characteristics of the detector and the experiment (energy resolution, visible energy threshold, exposure, systematic errors, binning of data, etc.), which would allow us to get significant information on, or even determine, the type of the neutrino mass spectrum. We find that if sin2 2 θ 13 is sufficiently large, sin2 2 θ 13 ≳ 0 .02, the requirements on the set-up of interest are very challenging, but not impossible to realize.
Electromagnetic nucleon form factors
Bender, A.; Roberts, C.D.; Frank, M.R.
1995-08-01
The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.
Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos
Heeger, Karsten M.
2014-09-13
This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.
Quaglioni, S; Navratil, P; Roth, R
2009-12-15
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
NASA Astrophysics Data System (ADS)
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-01
We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-07
For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-07
For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV^{2} of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.
Two-Nucleon Systems in a Finite Volume
Briceno, Raul
2014-11-01
I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extents L satisfying fm <~ L <~ 14 fm.
Nucleon Spin Structure: Longitudinal and Transverse
Jian-Ping Chen
2011-02-01
Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.
Instantons and the spin of the nucleon
NASA Astrophysics Data System (ADS)
Schäfer, T.; Zetocha, V.
2004-05-01
Motivated by measurements of the flavor singlet axial coupling constant of the nucleon in polarized deep inelastic scattering we study the contribution of instantons to Okubo-Zweig-Iizuka rule (OZI) violation in the axial-vector channel. We consider, in particular, the f1-a1 meson splitting, the flavor singlet and triplet axial coupling of a constituent quark, and the axial coupling constant of the nucleon. We show that instantons provide a short distance contribution to OZI violating correlation functions which is repulsive in the f1 meson channel and adds to the flavor singlet three-point function of a constituent quark. We also show that the sign of this contribution is determined by positivity arguments. We compute long distance contributions using numerical simulations of the instanton liquid. We find that the isovector axial coupling constant of a constituent quark is (g3A)Q=0.9 and that of a nucleon is g3A=1.28, in good agreement with experiment. The flavor singlet coupling of a quark is close to one, while that of a nucleon is suppressed, g0A=0.77. However, this number is larger than the experimental value g0A=(0.28-0.41).
Monitoring nuclear reactors for safeguards purposes using anti-neutrinos
NASA Astrophysics Data System (ADS)
Carroll, J.; Coleman, J.; Lockwood, M.; Metelko, C.; Murdoch, M.; Touramanis, C.; Davies, G.; Roberts, A.
2015-04-01
Preventing nuclear proliferation is a high priority for the international community. Monitoring of nuclear facilities to detect unauthorised removal of fissile materials from operational cores is central to this. Neutrino detection devices can be used to remotely monitor the core of operating reactors in a safe, reliable manner. Technology developed for the T2K experiment can be adapted to make a small footprint, reliable, anti-neutrino detector. Through, characterisation of the anti-neutrino spectrum there is a possibility to provide core material accountancy. A prototype of such a device has been developed and demonstrated at the University of Liverpool. Based on the design of the T2K Near Detector Calorimeter, the device will detect anti-neutrinos through the distinctive delayed coincidence signal of inverse beta decay interactions. This poster presented data from detector commissioning. The detector is currently deployed at Wylfa power station, UK for field testing.
Solar antineutrinos from fluctuating magnetic fields at Kamiokande
NASA Astrophysics Data System (ADS)
Torrente-Lujan, E.
1998-11-01
We consider the effect of a strongly chaotic magnetic field at the narrow bottom of the convective zone of the Sun together with resonant matter oscillations on the production of electron Majorana antineutrinos. Even for moderate levels of noise, we show that it is possible to obtain a small but significant probability for νe-->ν¯e conversions (1-3%) at the energy range 2-10 MeV for large regions of the mixing parameter space while still satisfying present (Super)-Kamiokande antineutrino bounds and observed total rates. In the other hand it would be possible to obtain information about the solar magnetic internal field if antineutrino bounds reach the 1% level and a particle physics solution to the SNP is assumed. The mechanism presented here has the advantage of being independent of the largely unknown magnetic profile of the Sun and the intrinsic neutrino magnetic moment.
Data acquisition system for segmented reactor antineutrino detector
NASA Astrophysics Data System (ADS)
Hons, Z.; Vlášek, J.
2017-01-01
This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.
Spectral structure of electron antineutrinos from nuclear reactors.
Dwyer, D A; Langford, T J
2015-01-09
Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.
New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei
Fomin, N.; Arrington, J.; Asaturyan, R.; ...
2012-02-01
We present new, high-Q2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.
New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei
Fomin, N.; Arrington, J.; Asaturyan, R.; Benmokhtar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Bukhari, M. H. S.; Christy, M. E.; Chudakov, E.; Clasie, B.; Connell, S. H.; Dalton, M. M.; Daniel, A.; Day, D. B.; Dutta, D.; Ent, R.; El Fassi, L.; Fenker, H.; Filippone, B. W.; Garrow, K.; Gaskell, D.; Hill, C.; Holt, R. J.; Horn, T.; Jones, M. K.; Jourdan, J.; Kalantarians, N.; Keppel, C. E.; Kiselev, D.; Kotulla, M.; Lindgren, R.; Lung, A. F.; Malace, S.; Markowitz, P.; McKee, P.; Meekins, D. G.; Mkrtchyan, H.; Navasardyan, T.; Niculescu, G.; Opper, A. K.; Perdrisat, C.; Potterveld, D. H.; Punjabi, V.; Qian, X.; Reimer, P. E.; Roche, J.; Rodriguez, V. M.; Rondon, O.; Schulte, E.; Seely, J.; Segbefia, E.; Slifer, K.; Smith, G. R.; Solvignon, P.; Tadevosyan, V.; Tajima, S.; Tang, L.; Testa, G.; Trojer, R.; Tvaskis, V.; Vulcan, W. F.; Wasko, C.; Wesselmann, F. R.; Wood, S. A.; Wright, J.; Zheng, X.
2012-02-01
We present new, high-Q^{2} measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.
Spin and angular momentum in the nucleon
Franz Gross, Gilberto Ramalho, Teresa Pena
2012-05-01
Using the covariant spectator theory (CST), we present the results of a valence quark-diquark model calculation of the nucleon structure function f(x) measured in unpolarized deep inelastic scattering (DIS), and the structure functions g1(x) and g2(x) measured in DIS using polarized beams and targets. Parameters of the wave functions are adjusted to fit all the data. The fit fixes both the shape of the wave functions and the relative strength of each component. Two solutions are found that fit f(x) and g1(x), but only one of these gives a good description of g2(x). This fit requires the nucleon CST wave functions contain a large D-wave component (about 35%) and a small P-wave component (about 0.6%). The significance of these results is discussed.
THE SPIN STRUCTURE OF THE NUCLEON.
VOGELSANG, W.
2005-05-23
For many years now, spin has played a very prominent role in QCD. The field of QCD spin physics has been carried by the hugely successful experimental program of polarized deeply-inelastic lepton-nucleon scattering (DIS), and by a simultaneous tremendous progress in theory. A new milestone has now been reached with the advent of RHIC, the world's first polarized proton-proton collider. RHIC is poised to help answer many of the important question pertaining to the spin structure of the nucleon. Recently, it has also been proposed to study spin phenomena in transversely polarized {bar p}p collisions at the planned GSI-FAIR facility. This talk describes some of the opportunities provided by RHIC and the proposed GSI experiments.
Martemyanov, V.P.; Aleshin, V.I.; Tarasenko, V.G.; Tsinoev, V.G.; Sabelnikov, A.A.; Yukhimchuk, A.A.; Popov, V.V.; Baluev, V.V.; Golubkov, A.N.; Klevtsov, V.G.; Kuryakin, A.V.; Sitdikov, D.T.; Bogdanova, L.N.
2015-03-15
We present research results of the preparation project for the experimental measurement of the (anti)neutrino magnetic moment at the level of 10{sup -12} μ{sub B} using an intense tritium source of antineutrinos and a liquid helium scintillation detector. The neutrino detection in the scintillation detector is based on the scattering of neutrinos by the electrons of the helium atoms that produces fast electrons able to ionize and exciting helium atoms. The detection of the atomic radiation emitted during the relaxation process of the helium atoms and the knowledge of its parameters will allow us to conclude on the neutrino properties.
Nucleon resonances in exclusive reactions of photo- and electroproduction of mesons
Skorodumina, Iu. A.; Burkert, V. D.; Golovach, E. N.; Gothe, R. W.; Isupov, E. L.; Ishkhanov, B. S.; Mokeev, V. I.; Fedotov, G. V.
2015-11-01
Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo- and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed.
Electron Neutrino and Antineutrino Appearance in the MINOS Detector
Schreckenberger, Adam Paul
2013-04-01
The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino experiment that utilizes a particle beam and two steel-scintillator calorimeters designed to determine the parameters associated with muon neutrino disappearance. Analysis methods developed by the MINOS νe group have facilitated the placement of limits upon the mixing angle associated with ν_{μ} → ν_{e} oscillations. Since the polarity of the focusing horns can be switched, we can perform a similar analysis with an antineutrino-enriched beam to select electron antineutrino appearance candidates. Using 3.34e20 POT (protons on target) in the antineutrino mode, we exclude θ_{13} = 0 at the 80% C.L. A joint fit of the 3.34e20 POT antineutrino and 10.6e20 POT neutrino samples excluded θ_{13} = 0 at the 96% C.L. In addition, the combined data were used to produce exclusions regarding the CP-violating phase.
Neutron Capture and the Antineutrino Yield from Nuclear Reactors.
Huber, Patrick; Jaffke, Patrick
2016-03-25
We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.
NASA Astrophysics Data System (ADS)
Price, C. E.; Shepard, J. R.
1991-04-01
We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.
Measuring Antineutrino Oscillations with the MINOS Experiment
Evans, Justin John
2008-09-01
MINOS is a long baseline neutrino oscillation experiment. A manmade beam of predominantly muon neutrinos is detected both 1 km and 735 km from the production point by two functionally identical detectors. A comparison of the energy spectra measured by the two detectors shows the energy-dependent disappearance of muon neutrinos characteristic of oscillations and allows a measurement of the parameters governing the oscillations. This thesis presents work leading to measurements of disappearance in the 6% $\\bar{v}$_{μ} background in that beam. A calibration is developed to correct for time-dependent changes in the responses of both detectors, reducing the corresponding uncertainty on hadronic energy measurements from 1.8% to 0.4% in the near detector and from 0.8% to 0.4% in the far detector. A method of selecting charged current $\\bar{v}$_{μ} events is developed, with purities (efficiencies) of 96.5% (74.4%) at the near detector, and 98.8% (70.9%) at the far detector in the region below 10 GeV reconstructed antineutrino energy. A method of using the measured near detector neutrino energy spectrum to predict that expected at the far detector is discussed, and developed for use in the $\\bar{v}$_{μ} analysis. Sources of systematic uncertainty contributing to the oscillation measurements are discussed. In the far detector, 32 charged current $\\bar{v}$_{μ} events are observed below a reconstructed energy of 30 GeV, compared to an expectation of 47.8 for Δ$\\bar{m}$_{atm}^{2} = Δ$\\bar{m}$_{atm}^{2}, sin^{2}(2$\\bar{θ}$_{23}) = sin^{2}(2θ_{23}). This deficit, in such a low-statistics sample, makes the result difficult to interpret in the context of an oscillation parameter measurement. Possible sources for the discrepancy are discussed, concluding that considerably more data are required for a definitive solution. Running MINOS with a dedicated $\\bar
Nucleon-nucleon interaction and large Nc QCD
NASA Astrophysics Data System (ADS)
Banerjee, Manoj K.; Cohen, Thomas D.; Gelman, Boris A.
2002-03-01
The nature of the nonrelativistic nucleon-nucleon potential in the large-Nc limit is discussed. In particular, we address the consistency of the meson-exchange picture of nucleon interactions. It is shown that the nonrelativistic nucleon-nucleon potential extracted from the Feynmann graphs up to and including two-meson-exchange diagrams satisfies the spin-flavor counting rules of Kaplan and Savage and of Kaplan and Manohar, provided the nucleon momenta is of order N0c. The key to this is a cancellation of the retardation effect of the box graphs against the contributions of the crossed-box diagram. The consistency requires including Δ as an intermediate state.
Calculation of relativistic nucleon-nucleon potentials in three dimensions
NASA Astrophysics Data System (ADS)
Hadizadeh, M. R.; Radin, M.
2017-02-01
In this paper, we have applied a three-dimensional approach for the calculation of the relativistic nucleon-nucleon potential. The quadratic operator relation between the non-relativistic and the relativistic nucleon-nucleon interactions is formulated as a function of relative two-nucleon momentum vectors, which leads to a three-dimensional integral equation. The integral equation is solved by the iteration method, and the matrix elements of the relativistic potential are calculated from non-relativistic ones. The spin-independent Malfliet-Tjon potential is employed in the numerical calculations, and the numerical tests indicate that the two-nucleon observables calculated by the relativistic potential are preserved with high accuracy.
Probing the nucleon structure with SIDIS at Jefferson Lab
Pereira, Sergio Anafalos
2013-01-01
In recent years, measurements of azimuthal moments of polarized hadronic cross sections in hard processes have emerged as a powerful tool to probe nucleon structure. Many experiments worldwide are currently trying to pin down various effects related to nucleon structure through Semi-Inclusive Deep-Inelastic Scattering (SIDIS). Azimuthal distributions of final-state particles in semi-inclusive deep inelastic scattering, in particular, are sensitive to the orbital motion of quarks and play an important role in the study of Transverse Momentum Dependent parton distribution functions (TMDs) of quarks in the nucleon. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected semi-inclusive data using the CEBAF 6 GeV polarized electron beam on polarized solid NH{sub 3} and ND{sub 3} targets. An overview of these measurements is presented.
Three-Body Antikaon-Nucleon Systems
NASA Astrophysics Data System (ADS)
Shevchenko, N. V.
2017-01-01
The paper contains a review of the exact or accurate results achieved in the field of the three-body antikaon-nucleon physics. Different states and processes in bar{K}NN and bar{K}bar{K}N systems are considered. In particular, quasi-bound states in K^- pp and K^- K^- p systems were investigated together with antikaonic deuterium atom. Near-threshold scattering of antikaons on deuteron, including the K^- d scattering length, and applications of the scattering amplitudes are also discussed. All exact three-body results were calculated using some form of Faddeev equations. Different versions of bar{K}N, {\\varSigma }N, bar{K}bar{K}, and NN potentials, specially constructed for the calculations, allowed investigation of the dependence of the three-body results on the two-body input. Special attention is paid to the antikaon-nucleon interaction, being the most important for the three-body systems. Approximate calculations, performed additionally to the exact ones, demonstrate accuracy of the commonly used approaches.
A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE
Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.
2005-03-01
The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been
Four-nucleon potential due to exchange of pions
Robilotta, M.R.
1985-03-01
A four-body force due to the exchange of pions has been derived by means of It includes effects corresponding to pion-pion scattering, pion production, and pion-nucleon rescattering. The strength parameters of this four-body potential are typically one order of magnitude smaller than those of the two-pion-exchange three-body force.
Nucleon-antinucleon annihilation in chiral soliton model
Musakhanov, M.M. . Inst. for Nuclear Theory Tashkentskij Gosudarstvennyj Univ., Tashkent . Dept. of Theoretical Physics); Musatov, I.V. . Research Inst. of Applied Physics)
1991-09-07
We investigate annihilation process of nucleons in the chiral soliton model by the path integral method. A soliton-antisoliton pair is shown to decay into mesons at range of about 1fm, defined by the S{bar S} potential. Contribution of the annihilation channel to the elastic scattering is discussed.
Electromagnetic studies of nucleon and nuclear structure
Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.
1993-06-01
Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.
Experimental Studies of Nuclear Interactions in Few-Nucleon Systems
NASA Astrophysics Data System (ADS)
Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Kozela, A.
2017-03-01
Systems of three nucleons (3N) can be treated as a testing ground for modern approaches to describe nuclear interactions. At intermediate energies, observables for 3N systems are sensitive to subtle effects of the dynamics beyond the pairwise nucleon-nucleon force, so-called 3N-force (3NF). For years the search for 3NF has been motivating precise measurements of observables of elastic nucleon-deuteron scattering and for the deuteron breakup reaction. Breakup of a deuteron in collision with a proton leads to the final state of three free nucleons, with variety of possible kinematic configurations, revealing locally enhanced sensitivity to particular aspects of the interaction dynamics, like 3NF, Coulomb force between protons, or relativistic effects. This feature makes the breakup reaction a very versatile tool for validation of the theoretical description. Reactions involving four nucleons pose immense challenges with regard to exact theoretical calculations for such systems. Nonetheless, they attract attention due to expected enhanced sensitivity to certain aspects of the nuclear dynamics, manifesting themselves in various channels and configurations. The most important results of recent experimental studies of 3N and 4N systems at intermediate energies are discussed. A brief survey of the ongoing projects is given.
NASA Astrophysics Data System (ADS)
Maekawa, Nobuhiro; Muramatsu, Yu
2017-04-01
Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.
Time-correlated coincidences at the sudbury neutrino observatory: An antineutrino search
NASA Astrophysics Data System (ADS)
Shokair, Timothy Milad
This dissertation presents a search for antineutrinos in all three phases of data from the Sudbury Neutrino Observatory. This work presents a new method for detecting time correlated coincidences in water detectors. There are two separate searches: an outside search for the inverse beta decay of antineutrinos on protons and an inside search for the inverse beta decay of antineutrinos on deuterons. The inside search found 3 antineutrino candidates in Phase I with an expected background of 3.83+0.71-0.72 events, 28 antineutrino candidates in Phase II with an expected background of 21.25+3.72-3.75 events, 4 antineutrino candidates in Phase III with an expected background of 6.06 +/- 1.14 events. The outside search found 4 antineutrino candidates in Phase I with an expected background of 1.21+0.14-0.17 events, 8 antineutrino candidates in Phase II with an expected background of 9.77+1.06-1.34 events, 0 antineutrino candidates in Phase III with an expected background of 0.46 +/- 0.29 events. Including the expected contribution of antineutrinos from nuclear reactors after oscillations, a limit on the solar antineutrino flux is computed to be F8Bn¯ ≤ 2.5 x 103 cm-2s -1. Taking the flux limit and the measured 8B solar neutrino flux, a limit on the neutrino to antineutrino conversion probability of P(nu → nu) ≤ 5.0 x 10-4. These limits are the best limits from a water detector.
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2016-10-01
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.
Burkert, Volker D.
2016-07-25
Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.
Deur, Alexandre
2009-12-01
We discuss the Jefferson Lab low momentum transfer data on moments of the nucleon spin structure functions $g_1$ and $g_2$ and on single charged pion electroproduction off polarized proton and polarized neutron. A wealth of data is now available, while more is being analyzed or expected to be taken in the upcoming years. Given the low momentum transfer selected by the experiments, these data can be compared to calculations from Chiral Perturbation theory, the effective theory of strong force that should describe it at low momentum transfer. The data on various moments and the respective calculations do not consistently agree. In particular, experimental data for higher moments disagree with the calculations.The absence of contribution from the $\\Delta$ resonance in the various observables was expected to facilitate the calculations and hence make the theory predictions either more robust or valid over a larger $Q^2$ range. Such expectation is verified only for the Bjorken sum, but not for other observables in which the $\\Delta$ is suppressed. Preliminary results on pion electroproduction off polarized nucleons are also presented and compared to phenomenological models for which contributions from different resonances are varied. Chiral Perturbation calculations of these observables, while not yet available, would be valuable and, together with these data, would provide an extensive test of the effective theory.
Development of an advanced antineutrino detector for reactor monitoring
NASA Astrophysics Data System (ADS)
Classen, T.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Ho, A.; Jonkmans, G.; Kogler, L.; Reyna, D.; Sur, B.
2015-01-01
Here we present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. This paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass per detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.
Uncertainties in the Anti-neutrino Production at Nuclear Reactors
Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio
2008-08-06
Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.
Inverse-square law violation and reactor antineutrino anomaly
NASA Astrophysics Data System (ADS)
Naumov, D. V.; Naumov, V. A.; Shkirmanov, D. S.
2017-01-01
We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short but macroscopic distances between the neutrino source and detector. An extensive statistical analysis of the reactor data is performed to examine this speculation.
Hylogenesis and annihilation of nucleons by dark matter
Davoudiasl, Hooman
2014-06-24
In this talk, we briefly present hylogenesis - a unified scenario for simultaneous generation of asymmetric dark matter (ADM) and visible baryons in the early Universe - and some of its experimental implications. A particularly interesting signature of hylogenesis is induced nucleon decay (IND), that is the possibility of baryon destruction in scattering from ADM. For some motivated range of parameters, IND can result in potentially observable signals in nucleon decay experiments. We also briefly discuss other signals of hylogenesis, including collider physics and astrophysical implications of IND.
Three pion nucleon coupling constants
NASA Astrophysics Data System (ADS)
Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.
2016-08-01
There exist four pion nucleon coupling constants, fπ0pp, - fπ0nn, fπ+pn/2 and fπ-np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
Recent Improvements in the Summation Calculation of Antineutrino Spectra
NASA Astrophysics Data System (ADS)
Sonzogni, Alejandro; Johnson, Timothy; McCutchan, Elizabeth; Dimitriou, Paraskevi
2016-09-01
The antineutrino spectrum following the fission of an actinide nucleus can be calculated using a comprehensive set of fission yields and decay data, an approach known as the summation method. We have recently updated our databases to incorporate newly published results as well as to perform some corrections and updates. These summation calculations are now in better agreement with those from the conversion method. The advantage of the summation method is that one can understand the rich correlations between the different radiation types - gammas, electrons, neutrons and antineutrinos - as well as study the time dependence of the radiation intensity in a variety of situations. Additionally, we have performed a sensitivity study to identify different elements of the input nuclear data which have an important impact in the calculation of antineutrino spectra and which would benefit from a precise measurement. Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
Nucleon and Deuteron Form Factors from BLAST
Hasell, D. K.
2009-12-17
The BLAST experiment was designed to study in a systematic manner the spin-dependent, electromagnetic interaction on hydrogen and deuterium. Measuring only asymmetries in electron scattering with respect to the beam helicity, target spin, or both; the BLAST experiment was able to extract information on nucleon and deuteron form factors independent of beam intensity or target density. By further forming 'super-ratios' of asymmetries, measurements were possible independent of beam and target polarization thus reducing uncertainties due to these quantities as well. Some of the form factor results from BLAST will be briefly presented here. Also, in response to observed discrepancies between polarization measurements and those obtained using traditional Rosenbluth separation techniques a proposed experiment, OLYMPUS, which will use the BLAST detector to measure the two photon contribution to elastic electron scattering will also be presented.
Scattering calculations and confining interactions
NASA Technical Reports Server (NTRS)
Buck, Warren W.; Maung, Khin M.
1993-01-01
Most of the research work performed under this grant were concerned with strong interaction processes ranging from kaon-nucleon interaction to proton-nucleus scattering calculations. Research performed under this grant can be categorized into three groups: (1) parametrization of fundamental interactions, (2) development of formal theory, and (3) calculations based upon the first two. Parametrizations of certain fundamental interactions, such as kaon-nucleon interaction, for example, were necessary because kaon-nucleon scattering amplitude was needed to perform kaon-nucleus scattering calculations. It was possible to calculate kaon-nucleon amplitudes from the first principle, but it was unnecessary for the purpose of the project. Similar work was also done for example for anti-protons and anti-nuclei. Formal developments to some extent were also pursued so that consistent calculations can be done.
Nucleon Electromagnetic Form Factors
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Neutron Measurements and the Weak Nucleon-Nucleon Interaction
Snow, W. M.
2005-01-01
The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120
A quark transport theory to describe nucleon-nucleon collisions
NASA Astrophysics Data System (ADS)
Kalmbach, U.; Vetter, T.; Biró, T. S.; Mosel, U.
1993-11-01
On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
News on Compton Scattering γX → γX in Chiral EFT
NASA Astrophysics Data System (ADS)
Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.
2016-03-01
We review theoretical progress and prospects to understand the nucleon's static dipole polarisabilities from Compton scattering on few-nucleon targets, including new values; see Refs. [1-5] for details and a more thorough bibliography.
Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies
Not Available
1990-10-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.
Soft two-pion-exchange nucleon-nucleon potentials
Rijken, Th.A. )
1991-06-01
Two-pion-exchange nucleon-nucleon potentials are derived for the pseudo-vector pion-nucleon interaction, assuming strong dynamical pair-suppression. At the pion-nucleon vertices the authors include Gaussian form factors, which are incorporated into the relativistic two-body framework by using a dispersion representation for the one-pion-exchange amplitude. The Fourier transformations are performed using a factorization technique for the energy denominators. This leads to analytic expressions for the TPE-potentials containing at most one-dimensional integrals. The TPE-potentials are calculated up to orders {line integral}{sup 4} and (m/M){line integral}{sup 4}. The terms of order {line integral}{sup 4} come from the adiabatic contributions of the parallel and crossed three-dimensional momentum-space TPE-diagrams, and from the non-adiabatic contributions of the OPE-iteration. The (m/M)-corrections are due to the 1/M-terms in the non-adiabatic expansion of the nucleon energies in the intermediate states, and the 1/M-terms in the pion-nucleon vertices. The latter are typical for the PV-coupling and would be absent for the PS-coupling. The Gaussian form factors lead to soft TPE-potentials. These potentials can readily be exploited in NN-calculations in combination with, e.g., the Nijmegen soft-core OBE-model, and in nuclear (matter) calculations.
Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS
Isvan, Zeynep
2012-01-01
MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.
NASA Astrophysics Data System (ADS)
Cai, Bao-Jun; Li, Bao-An
2016-01-01
It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy Esym(ρ ) . First, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic models, the kinetic symmetry energy of quasinucleons is found to be Esymkin(ρ0) =-16.94 ±13.66 MeV which is dramatically different from the prediction of Esymkin(ρ0) ≈12.5 MeV by FFG models at nuclear matter saturation density ρ0=0.16 fm-3 . Third, comparing the RMF calculations with and without the high-momentum nucleons using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum distribution is found to make the Esym(ρ ) more concave around ρ0 by softening it significantly at both subsaturation and suprasaturation
NASA Astrophysics Data System (ADS)
Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N.
2016-11-01
Background: Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. Purpose: Confront our calculations of charged-current quasielastic cross sections with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. Method: The model takes the mean-field approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. Results: We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off 12C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. Conclusions: The HF and CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy HF-CRPA nuclear excitations (ω <50 MeV) account for nearly 50% of the flux-folded cross section. This extra low-energy strength is a feature of the detailed microscopic nuclear model used here, that is not accessed in a Fermi-gas based approach.
Symmetry relations in nucleon decay
NASA Astrophysics Data System (ADS)
Hurlbert, Anya; Wilczek, Frank
1980-05-01
Some experimental consequences of the structure of the effective hamiltonian for nucleon decay are presented. New results concern relations among inclusive decay rates, a striking test of the kinship hypothesis involving μ+ polarization, and soft π theorems.
The Detection of Reactor Antineutrinos for Reactor Core Monitoring: an Overview
NASA Astrophysics Data System (ADS)
Fallot, M.
2014-06-01
There have been new developments in the field of applied neutrino physics during the last decade. The International Atomic Energy Agency (IAEA) has expressed interest in the potentialities of antineutrino detection as a new tool for reactor monitoring and has created an ad hoc Working Group in late 2010 to follow the associated research and development. Several research projects are ongoing around the world to build antineutrino detectors dedicated to reactor monitoring, to search for and develop innovative detection techniques, or to simulate and study the characteristics of the antineutrino emission of actual and innovative nuclear reactor designs. We give, in these proceedings, an overview of the relevant properties of antineutrinos, the possibilities of and limitations on their detection, and the status of the development of a variety of compact antineutrino detectors for reactor monitoring.
Nucleon structure and the high energy interactions
NASA Astrophysics Data System (ADS)
Selyugin, O. V.
2015-06-01
On the basis of the representation of the generalized structure of nucleons a new model of the hadron interaction at high energies is presented. A new t dependence of the generalized parton distributions is obtained from the comparative analysis of different sets of the parton distribution functions, based on the description of the entire set of experimental data for the electromagnetic form factors of the proton and neutron. Taking into account the different moments of the generalized parton distributions of the hadron, quantitative descriptions of all existing experimental data of the proton-proton and proton-antiproton elastic scatterings from √{s }=9.8 GeV to 8 TeV, including the Coulomb range and large momentum transfers up to -t =15 GeV2 , are obtained with a few free high-energy fitting parameters. The real part of the hadronic elastic scattering amplitude is determined only through the complex s that satisfies the dispersion relations. The negligible contributions of the hard Pomeron and the presence of the non-small contributions of the maximal Odderon are obtained. The non-dying form of the spin-flip amplitude is examined as well. The structures of the Born term and unitarized scattering amplitude are analyzed. It is shown that the black disk limit for the elastic scattering amplitude is not reached at LHC energies. Predictions for LHC energies are made.
Microscopic optical potentials for He4 scattering
NASA Astrophysics Data System (ADS)
Egashira, Kei; Minomo, Kosho; Toyokawa, Masakazu; Matsumoto, Takuma; Yahiro, Masanobu
2014-06-01
We present a reliable double-folding (DF) model for He4-nucleus scattering, using the Melbourne g-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target density is taken as the local density in the Melbourne g matrix. For He4 elastic scattering from Ni58 and Pb208 targets in a wide range of incident energies from 20 to 200 MeV/nucleon, the DF model with the target-density approximation (TDA) yields much better agreement with the experimental data than the usual DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as the local density. We also discuss the relation between the DF model with the TDA and the conventional folding model in which the nucleon-nucleus potential is folded with the He4 density.
The physics of antineutrinos in DUNE and determination of octant and δCP
NASA Astrophysics Data System (ADS)
Nath, Newton; Ghosh, Monojit; Goswami, Srubabati
2016-12-01
The octant of the leptonic mixing angle θ23 and the CP phase δCP are the two major unknowns (apart from neutrino mass hierarchy) in neutrino oscillation physics. It is well known that the precise determination of octant and δCP is interlinked through the octant-δCP degeneracy. In this paper we study the proficiency of the DUNE experiment to determine these parameters scrutinizing, in particular, the role played by the antineutrinos, the broadband nature of the beam and the matter effect. It is well known that for Pμe and P μ bar e bar the octant-δCP degeneracy occurs at different values of δCP, combination of neutrino and antineutrino runs help to resolve this. However, in regions where neutrinos do not have octant degeneracy adding antineutrino data is expected to decrease the sensitivity because of the degeneracy and reduced statistics. However we find that in case of DUNE baseline, the antineutrino runs help even in parameter space where the antineutrino probabilities suffer from degeneracies. We explore this point in detail and point out that this happens because of the (i) broad-band nature of the beam so that even if there is degeneracy at a particular energy bin, over the whole spectrum the degeneracy may not be there; (ii) the enhanced matter effect due to the comparatively longer baseline which creates an increased tension between the neutrino and the antineutrino probabilities which raises the overall χ2 in case of combined runs. This feature is more prominent for IH since the antineutrino probabilities in this case are much higher than the neutrino probabilities due to matter effects. The main role of antineutrinos in enhancing CP sensitivity is their ability to remove the octant-δCP degeneracy. However even if one assumes octant to be known the addition of antineutrinos can give enhanced CP sensitivity in some parameter regions due to the tension between the neutrino and antineutrino χ2s.
The Muon System of the Daya Bay Reactor Antineutrino Experiment
An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.
2014-10-05
The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)
The SoLid anti-neutrino detector's readout system
NASA Astrophysics Data System (ADS)
Arnold, L.; Beaumont, W.; Cussans, D.; Newbold, D.; Ryder, N.; Weber, A.
2017-02-01
The SoLid collaboration have developed an intelligent readout system to reduce their 3200 silicon photomultiplier detector's data rate by a factor of 10000 whilst maintaining high efficiency for storing data from anti-neutrino interactions. The system employs an FPGA-level waveform characterisation to trigger on neutron signals. Following a trigger, data from a space-time region of interest around the neutron will be read out using the IPbus protocol. In these proceedings the design of the readout system is explained and results showing the performance of a prototype version of the system are presented.
Development and Prototyping of the PROSPECT Antineutrino Detector
NASA Astrophysics Data System (ADS)
Commeford, Kelley; Prospect Collaboration
2017-01-01
The PROSPECT experiment will make the most precise measurement of the 235U reactor antineutrino spectrum as well as search for sterile neutrinos using a segmented Li-loaded liquid scintillator neutrino detector. Several prototype detectors of increasing size, complexity, and fidelity have been constructed and tested as part of the PROSPECT detector development program. The challenges to overcome include the efficient rejection of cosmogenic background and collection of optical photons in a compact volume. Design choices regarding segment structure and layout, calibration source deployment, and optical collection methods are discussed. Results from the most recent multi-segment prototype, PROSPECT-50, will also be shown.
The muon system of the Daya Bay Reactor antineutrino experiment
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. E.; Butorov, I.; Cao, G. F.; Cao, J.; Carr, R.; Chan, Y. L.; Chang, J. F.; Chang, L.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, Y.; Chen, Y. X.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Dale, E.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; He, Q.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. J.; Hu, L. M.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, H. Z.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kebwaro, J. M.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Pearson, C. E.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wilhelmi, J.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, G. H.; Xu, J.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. M.; Zhang, S. H.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.
2015-02-01
The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.
Calculation of the nd Scattering Lengths by a Realistic Nonlocal Gaussian Potential
Fukukawa, K.; Fujiwara, Y.
2010-05-12
We apply a quark-model nucleon-nucleon interaction to the neutron-deuteron (nd) scattering. We solve the Alt-Grassberger-Sandhas equation in the momentum space. The doublet and quartet nd scattering lengths ({sup 2}a{sub nd} and {sup 4}a{sub nd}) are calculated. We re-confirm the pole structure in the doublet scattering length. The experimental data are well reproduced without three-nucleon forces. This result seems to be related to the off-shell properties of the quark-model nucleon-nucleon interaction.
Electron antineutrino detection from simulated supernovae
NASA Astrophysics Data System (ADS)
Luoma, Steffon Jon
Supernova 1987A demonstrated that neutrinos from a nearby supernova could be detected terrestrially. The partition of events between the neutrino flavours generated by stellar collapse can provide details about supernova dynamics and by using Monte Carlo simulations we can prepare for the analysis of data from the next such supernova. Through its sensitivity to the charged current, neutral current and elastic scattering interactions in both the heavy and light waters, the Sudbury Neutrino Observatory (SNO) is able to measure this partition. The unique signal of the charged current [Special characters omitted.] interactions with deuterium nuclei ([Special characters omitted.] + d [arrow right] n + n + e + ) allows a direct count of the number of [Special characters omitted.] 's to be made. With the addition of NaCl to the heavy water the efficiency of detecting neutrons was increased, which in turn increased the sensitivity for the detection of [Special characters omitted.] 's. This work explores methods of identifying [Special characters omitted.] 's in the high flux environment of a modeled supernova source in SNO during the salt phase. The differences in energy spectrum and in PMT hit pattern of positrons and neutrons allow for distinction between the two, and thus permits classification. Association of these particles to the [Special characters omitted.] interaction is made possible by measuring the time and space between detection of the positron and each neutron generated from the same [Special characters omitted.] . A [Special characters omitted.] is considered to be identified when the correct final state particles generated from the interaction with a deuterium nucleus are associated with each other. Because the expected data rate may be very high and may have a large dynamic range, causing some improper particle association, a pivotal component of this analysis is understanding the rate dependencies. To accomplish this, datasets were generated at several
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Flavor Analysis of Nucleon, Δ , and Hyperon Electromagnetic Form Factors
NASA Astrophysics Data System (ADS)
Rohrmoser, Martin; Choi, Ki-Seok; Plessas, Willibald
2017-03-01
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on ^2H and ^3He) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to Q^2˜ 4 GeV^2, relying on three-quark configurations only. Analogous studies have been extended to the Δ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.
Hard QCD rescattering in few nucleon systems
NASA Astrophysics Data System (ADS)
Maheswari, Dhiraj; Sargsian, Misak
2017-01-01
The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.
Electroexcitation of nucleon resonances
Inna Aznauryan, Volker D. Burkert
2012-01-01
We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.
Nucleon Transfer Reactions in Few-Body Nuclear Systems
NASA Astrophysics Data System (ADS)
Deltuva, A.
2017-03-01
Three- and four-body scattering is described solving Faddeev-Yakubovsky or equivalent Alt-Grassberger-Sandhas integral equations for transition operators in momentum-space. Several realistic nuclear interaction models are used; the Coulomb force between charged particles is taken into account via the screening and renormalization method. Differential cross sections and spin observables for various nucleon transfer reactions are calculated and compared with experimental data.
Unpolarized nucleon structure studies utilizing polarized electromagnetic probes.
Arrington, J.; Physics
2009-08-15
By the mid-1980s, measurements of the nucleon form factors had reached a stage where only slow, incremental progress was possible using unpolarized electron scattering. The development of high quality polarized beams, polarized targets, and recoil polarimeters led to a renaissance in the experimental program. I provide an overview of the changes in the field in the last ten years, which were driven by the dramatically improved data made possible by a new family of tools to measure polarization observables.
Above-ground Antineutrino Detection for Nuclear Reactor Monitoring
Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...
2014-08-01
Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less
Above-ground Antineutrino Detection for Nuclear Reactor Monitoring
Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.
2014-08-01
Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by ^{6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.
From nucleons to nuclei to fusion reactions
NASA Astrophysics Data System (ADS)
Quaglioni, S.; Navrátil, P.; Roth, R.; Horiuchi, W.
2012-12-01
Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
From Nucleons To Nuclei To Fusion Reactions
Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W
2012-02-15
Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
The gluon contribution to nucleon spin
Antje Bruell
2006-04-06
EIC is the ideal machine to finally determine the contribution of the gluons to the nucleon spin. Measurements of G{sub 1} will allow: (1) a determination of {Delta}G/G from its scaling violation and (2) a statistically very precise determination of the Bjorken Sum (systematics due to uncertainty in proton beam polarization). Measurements of charm cross section asymmetries will provide a precise determination of {Delta}G/G for 0.003 < x < 0.5 at a fixed value of Q{sup 2} of {approx} GeV{sup 2} provided they can measure the scattered electron at extremely small angles; separate the primary and secondary vertex with sufficient precision; and control the contribution of resolved photons. More work is needed to define the necessary detector requirements.
Time Dependent Nuclear Scattering Calculations
NASA Astrophysics Data System (ADS)
Weeks, David
2005-04-01
A new time dependent method for calculating scattering matrix elements of two and three body nuclear collisions below 50 Mev is being developed. The procedure closely follows the channel packet method (CPM) used to compute scattering matrix elements for non-adiabatic molecular reactions.ootnotetextT.A.Niday and D.E.Weeks, Chem. Phys. Letters 308 (1999) 106 Currently, one degree of freedom calculations using a simple square well have been completed and a two body scattering calculation using the Yukawa potential is anticipated. To perform nuclear scattering calculations with the CPM that will incorporate the nucleon-nucleon tensor force, we plan to position initial reactant and product channel packets in the asymptotic limit on single coupled potential energy surfaces labeled by the spin, isospin, and total angular momentum of the reactant nucleons. The wave packets will propagated numerically using the split operator method augmented by a coordinate dependant unitary transformation used to diagonalize the potential. Scattering matrix elements will be determined by the Fourier transform of the correlation function between the evolving reactant and product wave packets. A brief outline of the Argonne v18 nucleon-nucleon potentialootnotetextR.B.Wiringa, V.G.J.Stoks, and R.Schiavilla, Physical Review C 51(1995) 38 and the proposed wave packet calculations will be presented.
Sensitivity of the Antineutrino Emission from Reactors to the Fuel Content
Hayes-Sterbenz, Anna C
2012-06-25
We investigated the antineutrino signals for several reactor core designs. In all cases we found that the antineutrino signals are distinct. The signals are distinguishable by the combination of their magnitudes and their rate of change with fuel burn-up. If the thermal power of the reactor is known, the overall uncertainty in the antineutrino flux emitted from the reactor is about 5%. The quoted uncertainty in the number of antineutrinos per fission for {sup 235}U, {sup 239}Pu, and {sup 241}Pu is less than 3% and for {sup 238}U is 8%. When folded with the uncertainty in the thermal power measurement and the uncertainty in converting the thermal power to a fission rate, the total antineutrino flux is typically quoted with an accuracy of 3-5%. This overall uncertainty in the antineutrino flux, together with the calculations presented here, suggests that the differences in fuels for the class of reactor designed considered would be detectable using antineutrino monitoring.
Nucleon spin decomposition and orbital angular momentum in the nucleon
NASA Astrophysics Data System (ADS)
Wakamatsu, Masashi
2014-09-01
To get a complete decomposition of nucleon spin is a fundamentally important homework of QCD. In fact, if our researches end up without accomplishing this task, a tremendous efforts since the 1st discovery of the nucleon spin crisis would end in the air. We now have a general agreement that there are at least two physically inequivalent gauge-invariant decompositions of the nucleon. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum (OAM) parts. The OAMs of quarks and gluons appearing in the first decomposition are the so-called ``mechanical'' OAMs, while those appearing in the second decomposition are the generalized (gauge-invariant) ``canonical'' ones. By this reason, these decompositions are broadly called the ``mechanical'' and ``canonical'' decompositions of the nucleon spin. Still, there remains several issues, which have not reached a complete consensus among the experts. (See the latest recent). In the present talk, I will mainly concentrate on the practically most important issue, i.e. which decomposition is more favorable from the observational viewpoint. There are two often-claimed advantages of canonical decomposition. First, each piece of this decomposition satisfies the SU(2) commutation relation or angular momentum algebra. Second, the canonical OAM rather than the mechanical OAM is compatible with free partonic picture of constituent orbital motion. In the present talk, I will show that both these claims are not necessarily true, and push forward a viewpoint that the ``mechanical'' decomposition is more physical in that it has more direct connection with observables. I also emphasize that the nucleon spin decomposition accessed by the lattice QCD analyses is the ``mechanical'' decomposition not the ``canonical'' one. The recent lattice QCD studies of the nucleon spin decomposition are also briefly overviewed.
Systematics of meson-Skyrmion scattering
Mattis, M.P.
1986-02-01
The S-matrix characterizing the scattering of pions from nucleons is calculated in the context of skyrmion models of the nucleon. These are models in which the nucleon is considered a soliton in the field of pions. The spectrum of nucleon and delta resonances in the Skyrme model is calculated and found to be in overall good agreement with Nature. Model-independent sum rules between amplitudes in the same partial wave are derived and examined. An extension of the formalism to the case of three light flavors is presented. 31 refs., 26 figs., 6 tabs.
Parameterizations of Pion Energy Spectrum in Nucleon-Nucleon Collisions
NASA Technical Reports Server (NTRS)
Cucinotta, Franics A.; Wilson, John W.; Norbury, John W.
1998-01-01
The effects of pion (PI) production are expected to play an important role in radiation exposures in the upper atmosphere or on the Martian surface. Nuclear databases for describing pion production are developed for radiation transport codes to support these studies. We analyze the secondary energy spectrum of pions produced in nucleon-nucleon (NN) collisions in the relativistic one-pion exchange model. Parametric formulas of the isospin cross sections for one-pion production channels are discussed and are used to renormalize the model spectrum. Energy spectra for the deuteron related channels (NN yields dPi) are also described.
Weak production of strange particles and η mesons off the nucleon
Alam, M. Rafi; Athar, M. Sajjad; Simo, I. Ruiz; Alvarez-Ruso, L.; Vacas, M. J. Vicente
2015-10-15
The strange particle production induced by (anti)neutrino off nucleon has been studied for |ΔS| = 0 and |ΔS| = 1 channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are f{sub π}, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included Σ*(1385) resonance and for eta production S{sub 11}(1535) and S{sub 11}(1650) resonances are included.
Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C
2015-09-04
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Abe, K; Hayato, Y; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J
2011-12-09
We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3) eV2, 1.0) and is consistent with the overall Super-K measurement.
Antineutrinos for Reactor Safeguards: Effect of Fuel Loading and Burnup on the Signal
NASA Astrophysics Data System (ADS)
Erickson, Anna; Bernstein, Adam; Bowden, Nathaniel
2014-02-01
Various types of nuclear reactor related information, including relative power level and fuel evolution parameters, can be inferred remotely using antineutrino detectors. We show that it is possible to verify assembly-level burnup using information derived from an antineutrino detector if the nominal reactor fuel loading is known. Alternatively, if the core power is measured using an independent method, for example, a thermal hydraulic element, and the nominal core behavior is known, the antineutrino detector has a capability to determine previously unknown MOX loading in the core.
Interacting Boson Model and nucleons
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu
2012-10-01
An overview on the recent development of the microscopic derivation of the Interacting Boson Model is presented with some remarks not found elsewhere. The OAI mapping is reviewed very briefly, including the basic correspondence from nucleon-pair to boson. The new fermionboson mapping method is introduced, where intrinsic states of nucleons and bosons for a wide variation of shapes play an important role. Nucleon intrinsic states are obtained from mean field models, which is Skyrme model in examples to be shown. This method generates IBM-2 Hamiltonian which can describe and predict various situations of quadrupole collective states, including U(5), SU(3), O(6) and E(5) limits. The method is extended so that rotational response (cranking) can be handled, which enables us to describe rotational bands of strongly deformed nuclei. Thus, we have obtained a unified framework for the microscopic derivation of the IBM covering all known situations of quadrupole collectivity at low energy.
The hyperon-nucleon interaction
NASA Astrophysics Data System (ADS)
Haidenbauer, J.
2007-11-01
Results of two recent hyperon-nucleon interaction potentials, both developed by the Bonn-Jülich group, are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The most salient feature of the new meson-exchange hyperon-nucleon model is that the contributions in the scalar-isoscalar (σ) and vector-isovector (ρ) exchange channels are constrained by a microscopic model of correlated ππ and KK¯ exchange.
Nucleon Structure from Lattice QCD
Haegler, Philipp
2011-10-24
Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.
Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung
NASA Astrophysics Data System (ADS)
Stoica, S.; Paun, V. P.; Negoita, A. G.
2004-06-01
The rates of neutrino pair emission by nucleon-nucleon (NN) bremsstrahlung are calculated with the inclusion of the full contribution from a nuclear one pion exchange potential (OPEP). We compute the contributions from the neutron-neutron (nn), proton-proton (pp), and neutron-proton (np) processes for physical conditions encountered in supernovae and neutron stars, both in the degenerate (D) and nondegenerate (ND) limits. We find a significant reduction of these rates, especially for the nn and pp processes, in comparison with the case when the whole nuclear contribution was replaced by constants, representing the high-momentum limits of the expressions of the nuclear potential. Furthermore, we also perform the calculations by including contributions due to the ρ meson exchange between nucleons, in the OPEP. This may be relevant for processes produced in the inner core of neutron stars, where the density may exceed several times the standard nuclear density, and the short-range part of the NN interaction should be taken into account. These corrections lead to an additional suppression of the neutrino emission rates between (8 and 36)%, depending on the process [nn (pp) or np] and physical conditions (temperature and degeneracy of the nucleons).
Exploring Three Nucleon Forces in Lattice QCD
Doi, Takumi
2011-10-21
We study the three nucleon force in N{sub f} = 2 dynamical clover fermion lattice QCD, utilizing the Nambu-Bethe-Salpeter wave function of the three nucleon system. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we develop a new formulation to extract the genuine three nucleon force which requires only the information of parity-even two nucleon potentials. In order to handle the extremely expensive calculation cost, we consider a specific three-dimensional coordinate configuration for the three nucleons. We find that the linear setup is advantageous, where nucleons are aligned linearly with equal spacings. The lattice calculation is performed with 16{sup 3}x32 configurations at {beta} = 1.95, m{sub {pi}} = 1.13 GeV generated by CP-PACS Collaboration, and the result of the three nucleon force in triton channel is presented.
Spin Structure of the Nucleon - Status and Recent Results
Kuhn, Sebastian; Chen, Jian-Ping; Leader, Elliot
2009-07-01
After the initial discovery of the so-called "spin crisis in the parton model" in the 1980s, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large $x$ and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the $Q^2$ dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure in the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions $g_
Stylized features of single-nucleon momentum distributions
NASA Astrophysics Data System (ADS)
Ryckebusch, Jan; Vanhalst, Maarten; Cosyn, Wim
2015-05-01
Nuclear short-range correlations (SRC) typically manifest themselves in the tail parts of the single-nucleon momentum distributions. We propose an approximate practical method for computing those SRC contributions to the high-momentum parts. The framework adopted in this work is applicable throughout the nuclear mass table and corrects mean-field models for central, spin-isospin and tensor correlations by shifting the complexity induced by the SRC from the wave functions to the operators. It is argued that the expansion of these modified operators can be truncated to a low order. The proposed model can generate the SRC-related high-momentum tail of the single-nucleon momentum distribution. These are dominated by correlation operators acting on mean-field pairs with vanishing relative radial and angular-momentum quantum numbers. The proposed method explains the dominant role of proton-neutron pairs in generating the SRC and accounts for the magnitude and mass dependence of SRC as probed in inclusive electron scattering. It also provides predictions for the ratio of the amount of correlated proton-proton to proton-neutron pairs which are in line with the observations. In asymmetric nuclei, the correlations make the average kinetic energy for the minority nucleons larger than for the majority nucleons.
Weak Deeply Virtual Compton Scattering
Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin
2007-03-01
We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.
Determination of the direction to a source of antineutrinos via inverse beta decay in Double Chooz
NASA Astrophysics Data System (ADS)
Nikitenko, Ya.
2016-11-01
To determine the direction to a source of neutrinos (and antineutrinos) is an important problem for the physics of supernovae and of the Earth. The direction to a source of antineutrinos can be estimated through the reaction of inverse beta decay. We show that the reactor neutrino experiment Double Chooz has unique capabilities to study antineutrino signal from point-like sources. Contemporary experimental data on antineutrino directionality is given. A rigorous mathematical approach for neutrino direction studies has been developed. Exact expressions for the precision of the simple mean estimator of neutrinos' direction for normal and exponential distributions for a finite sample and for the limiting case of many events have been obtained.
Precision Search for Muon Antineutrino Disappearance Oscillations Using a Dual Baseline Technique
Cheng, Gary Li
2013-01-01
A search for short baseline muon antineutrino disappearance with the SciBooNE and MiniBooNE experiments at Fermi National Accelerator Laboratory in Batavia, Illinois is presented. Short baseline muon antineutrino disappearance measurements help constrain sterile neutrino models. The two detectors observe muon antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. A likelihood ratio method was used to set a 90% confidence level upper limit on muon antineutrino disappearance that dramatically improves upon prior sterile neutrino oscillation limits in the Δm^{2}=0.1-100 eV^{2} region.
Nucleon Optical Potential in Brueckner Theory
Haider, Wasi
2008-10-13
Recent results of g-matrix calculation of the nucleon optical potential are presented and their predictions are compared with experimental data for Sn-isotopes. Corrections to spin-orbit part of the potential are discussed. Extension of Bethe's method to calculate three nucleon interaction effects in the nucleon optical potential is presented.
Leading chiral logarithms for the nucleon mass
Vladimirov, Alexey A.; Bijnens, Johan
2016-01-22
We give a short introduction to the calculation of the leading chiral logarithms, and present the results of the recent evaluation of the LLog series for the nucleon mass within the heavy baryon theory. The presented results are the first example of LLog calculation in the nucleon ChPT. We also discuss some regularities observed in the leading logarithmical series for nucleon mass.
Soudan 2 nucleon decay experiment
Thron, J.L.
1986-01-01
The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Present status of sensitive detector of reactor’s antineutrinos using scintillating detectors
Fajt, L.; Mamedov, F.; Přidal, P.; Špavorová, M.; Štekl, I.; Belov, V.; Egorov, V. G.; Fomina, M.; Kuznetsov, A.; Ponomarev, D.; Rozova, I.; Zhitnikov, I.; Burešová, H.
2015-08-17
In 2011, the reanalysis of the reactor antineutrinos spectra led to the formulation of the Reactor Antineutrino Anomaly (RAA) [1], which indicates the discrepancy between measured and expected antineutrino fluxes on short baselines. This discrepancy appears to favor the existence of the fourth “sterile” neutrino with |Δm{sup 2}|>1 eV{sup 2}. To confirm or reject this hypothesis a high sensitive antineutrino detector located close to the reactor is required. In addition to that such a detector could be used to online monitor the isotopic composition of the reactor core and to prevent illegal production and removal of{sup 239}Pu, which is the essential part of nuclear weapons. Detector DANSSino [2] already proved that even a compact antineutrino detector (∼ 1 m{sup 3}) based on polystyrene is capable of antineutrino detection in the close vicinity of a reactor core (∼ 10 m) with signal to background ratio about one. As a common activity between JINR Dubna and IEAP CTU a new prototype of detector (called S{sup 3}) has been proposed and is under construction. The construction design, selected results of Monte Carlo simulations and results of benchmark tests are presented.
Present status of sensitive detector of reactor's antineutrinos using scintillating detectors
NASA Astrophysics Data System (ADS)
Fajt, L.; Belov, V.; Burešová, H.; Egorov, V. G.; Fomina, M.; Kuznetsov, A.; Mamedov, F.; Ponomarev, D.; Přidal, P.; Rozova, I.; Špavorová, M.; Štekl, I.; Zhitnikov, I.
2015-08-01
In 2011, the reanalysis of the reactor antineutrinos spectra led to the formulation of the Reactor Antineutrino Anomaly (RAA) [1], which indicates the discrepancy between measured and expected antineutrino fluxes on short baselines. This discrepancy appears to favor the existence of the fourth "sterile" neutrino with |Δm2|>1 eV2. To confirm or reject this hypothesis a high sensitive antineutrino detector located close to the reactor is required. In addition to that such a detector could be used to online monitor the isotopic composition of the reactor core and to prevent illegal production and removal of239Pu, which is the essential part of nuclear weapons. Detector DANSSino [2] already proved that even a compact antineutrino detector (˜ 1 m3) based on polystyrene is capable of antineutrino detection in the close vicinity of a reactor core (˜ 10 m) with signal to background ratio about one. As a common activity between JINR Dubna and IEAP CTU a new prototype of detector (called S3) has been proposed and is under construction. The construction design, selected results of Monte Carlo simulations and results of benchmark tests are presented.
Three-nucleon problem: trinucleon bound states and trinucleon interactions
Friar, J.L.
1985-01-01
The assumptions underlying the formulation and solution of the Schroedinger equation for three nucleons in configuration space are reviewed, in conjunction with those qualitative aspects of the two-nucleon problem which are important. The geometrical features of the problem and the crucial role of the angular momentum barrier are developed. The boundary conditions for scattering are discussed qualitatively, and the Faddeev-Noyes equation is motivated. The method of splines and orthogonal collocation are shown to provide convenient techniques for generating numerical solutions. Properties of the many numerical solutions for the bound states and zero-energy scattering states are discussed. The evidence for three-body forces is reviewed, and the results of the recent calculations including such forces are discussed. The importance of electromagnetic interactions in the three-nucleon systems is motivated. Relativistic corrections and meson-exchange currents are discussed in the context of ''rules of scale'', and the pion-exchange currents of nonrelativistic order are derived. The experimental results for trinucleon electromagnetic interactions are reviewed, including recent tritium data. Conclusions are presented. 56 refs., 23 figs.
3D Animations for Exploring Nucleon Structure
NASA Astrophysics Data System (ADS)
Gorman, Waverly; Burkardt, Matthias
2016-09-01
Over the last few years many intuitive pictures have been developed for the interpretation of electron hadron scattering experiments, such as a mechanism for transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering experiments. While Dr. Burkardt's pictures have been helpful for many researchers in the field, they are still difficult to visualize for broader audiences since they rely mostly on 2-dimensional static images. In order to make more accessible for a broader audience what can be learned from Jefferson Lab experiments, we have started to work on developing 3-dimensional animations for these processes. The goal is to enable the viewer to repeatedly look at the same microscopic mechanism for a specific reaction, with the viewpoint of the observer changing. This should help an audience that is not so familiar with these reactions to better understand what can be learned from various experiments at Jefferson Lab aimed at exploring the nucleon structure. Jefferson Lab Minority/Female Undergraduate Research Assistantship.
Inclusive Inelastic Electron Scattering from Nuclei
Fomin, Nadia
2007-10-26
Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.
Pion Total Cross Section in Nucleon - Nucleon Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
2009-01-01
Total cross section parameterizations for neutral and charged pion production in nucleon - nucleon collisions are compared to experimental data over the projectile momentum range from threshold to 300 GeV. Both proton - proton and proton - neutron reactions are considered. Overall excellent agreement between parameterizations and experiment is found, except for notable disagreements near threshold. In addition, the hypothesis that the neutral pion production cross section can be obtained from the average charged pion cross section is checked. The theoretical formulas presented in the paper obey this hypothesis for projectile momenta below 500 GeV. The results presented provide a test of engineering tools used to calculate the pion component of space radiation.
Chiral symmetry and the nucleon-nucleon interaction
Machleidt, Ruprecht
2016-04-20
We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of the chiral EFT approach to the NN interaction.
Chiral symmetry and the nucleon-nucleon interaction
Machleidt, Ruprecht
2016-04-20
We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less
Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-11-01
We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.
Infinite-Cutoff Renormalization of the Chiral Nucleon-Nucleon Interaction up to N3LO
NASA Astrophysics Data System (ADS)
Zeoli, Ch.; Machleidt, R.; Entem, D. R.
2013-12-01
Naively, the "best" method of renormalization is the one where a momentum cutoff is taken to infinity while maintaining stable results due to a cutoff-dependent adjustment of counterterms. We have applied this renormalization method in the non-perturbative calculation of phase-shifts for nucleon-nucleon ( NN) scattering using chiral NN potentials up to next-to-next-to-next-to-leading order (N3LO). For lower partial waves, we find that there is either no convergence with increasing order or, if convergence occurs, the results do not always converge to the empirical values. For higher partial waves, we always observe convergence to the empirical phase shifts (except for the 3G5 state). Furthermore, no matter what the order is, one can use only one or no counterterm per partial wave, creating a rather erratic scheme of power counting that does not allow for a systematic order-by-order improvement of the predictions. The conclusion is that infinite-cutoff renormalization is inappropriate for chiral NN interactions, which should not come as a surprise, since the chiral effective field theory (chiral EFT), these interactions are based upon, is designed for momenta below the chiral-symmetry breaking scale of about 1 GeV. Therefore, this value for the hard scale should also be perceived as the appropriate upper limit for the momentum cutoff.
Transverse force on transversely polarized quarks in longitudinally polarized nucleons
NASA Astrophysics Data System (ADS)
Abdallah, Manal; Burkardt, Matthias
2016-11-01
We study the semiclassical interpretation of the x3 and x4 moments of twist-3 parton distribution functions (PDFs). While no semiclassical interpretation for the higher moments of gT(x ) and e (x ) was found, the x3 moment of the chirally odd spin-dependent twist-3 PDF hL3(x ) can be related to the longitudinal gradient of the transverse force on transversely polarized quarks in longitudinally polarized nucleons in a deep-inelastic scattering experiment. We discuss how this result relates to the torque acting on a quark in the same experiment. This has further implications for comparisons between the Jaffe-Manohar and the Ji decompositions of the nucleon spin.
Density dependence of microscopic nucleon optical potential in first order Brueckner theory
NASA Astrophysics Data System (ADS)
Saliem, S. M.; Haider, W.
2002-06-01
In the present work we apply the lowest order Brueckner theory of infinite nuclear matter to obtain nucleon-nucleus optical potential for p-40Ca elastic scattering at 200 MeV using Urbana V14 soft core internucleon potential. We have investigated the effect of target density on the calculated nucleon-nucleus optical potential. We find that the calculated optical potentials depend quite sensitively on the density distribution of the target nucleus. The important feature is that the real part of calculated central optical potential for all densities shows a wine-bottle-bottom type behaviour at this energy. We also discuss the effect of our new radial dependent effective mass correction. Finally, we compare the prediction of our calculated nucleon optical potential using V14 with the prediction using older hard core Hamada-Johnston internucleon potential for p-40Ca elastic scattering at 200 MeV.
Determination of the Axial Nucleon Form Factor from the MiniBooNE Data
Butkevich, A. V.; Perevalov, D.
2014-03-26
Both neutrino and antineutrino charged-current quasi-elastic scattering on a carbon target are studied to investigate the nuclear effect on the determination of the axial form factor F_A(Q^2). A method for extraction of F_A(Q^2) from the flux-integrated $d\\sigma/dQ^2$ cross section of (anti)neutrino scattering on nuclei is presented. Data from the MiniBooNE experiment are analyzed in the relativistic distorted-wave impulse approximation, Fermi gas model, and in the Fermi gas model with enhancements in the transverse cross section. We found that the values of the axial form factor, extracted in the impulse approximation and predicted by the dipole approximation with the axial mass M_A~1.37 GeV are in good agreement. On the other hand, the Q^2-dependence of F_A extracted in the approach with the transverse enhancement is found to differ significantly from the dipole approximation.
Nucleon-anti-nucleon intruder state of Dirac equation for nucleon in deep scalar potential well
NASA Astrophysics Data System (ADS)
Kuo, T. T. S.; Kuo, T. K.; Osnes, E.; Shu, S.
We solve the Dirac radial equation for a nucleon in a scalar Woods-Saxon potential well of depth V0 and radius r0. A sequence of values for the depth and radius are considered. For shallow potentials with ‑ 1000MeV ≲ V0 < 0 the wave functions for the positive-energy states Ψ+(r) are dominated by their nucleon component g(r). But for deeper potentials with V0 ≲‑1500MeV the Ψ+(r)s begin to have dominant anti-nucleon component f(r). In particular, a special intruder state enters with wave function Ψ1/2(r) and energy E1/2. We have considered several r0 values between 2 and 8fm. For V0 ≲‑2000MeV and the above r0 values, Ψ1/2 is the only bound positive-energy state and has its g(r) closely equal to ‑ f(r), both having a narrow wave packet shape centered around r0. The E1/2 of this state is practically independent of V0 for the above V0 range and obeys closely the relation E1/2 = ℏc r0.
What nucleon resonances teach us about nucleon structure
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2014-03-01
The excitation spectrum of atomic hydrogen contains the full information needed to describe its structure from its basic ingredients, protons and electrons, and the electromagnetic interaction between them. Similarly, the nucleon excitation spectrum contains information about the effective degrees of freedom and the forces between them. The difference between the two systems is that in the former case the electromagnetic interaction leads to a well-defined energy spectrum, while the latter has strongly interacting ingredients, hadrons, quarks and gluons, at its core leading to broad and overlapping energy levels that in most cases cannot be studied in isolation. Microscopic approaches such as modern constituent quark models and Lattice QCD, make predictions regarding masses and quantum numbers of the excited states and their internal structure according to radial, spin, and orbital transitions of the quark-gluon system. Pion induced transitions have revealed many states largely consistent with these predictions, but many of the predicted states have not been observed. The quest for a better understanding of the internal structure of nucleons has led to a worldwide effort to measure nucleon excitations using photon- and electron-induced processes and to determine their internal structure. At Jefferson Lab with the CLAS detector differential cross sections and polarization observables have been measured with unprecedented precision and some of these data have been analyzed with modern coupled channel approaches that led to evidence of a number of previously unobserved excited states. In this talk, I discuss the two main directions of current experimental research, the search for new states in meson photoproduction and the study of resonance transition form factors in electroproduction, which encode the internal structure and the nature of the excited states.
On single nucleon wave functions in nuclei
Talmi, Igal
2011-05-06
The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.
Gadolinium-loaded gel scintillators for neutron and antineutrino detection
Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William
2016-11-29
A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.
Investigating the spectral anomaly with different reactor antineutrino experiments
NASA Astrophysics Data System (ADS)
Buck, C.; Collin, A. P.; Haser, J.; Lindner, M.
2017-02-01
The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in 235U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted 235U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.
Discovering asymmetric dark matter with anti-neutrinos
Feldstein, Brian; Fitzpatrick, A. Liam E-mail: fitzpatr@physics.bu.edu
2010-09-01
We discuss possible signatures of Asymmetric Dark Matter (ADM) through dark matter decays to neutrinos. We specifically focus on scenarios in which the Standard Model (SM) baryon asymmetry is transferred to the dark sector (DS) through higher dimensional operators in chemical equilibrium. In such cases, the dark matter (DM) carries lepton and/or baryon number, and we point out that for a wide range of quantum number assignments, by far the strongest constraints on dark matter decays come from decays to neutrinos through the ''neutrino portal'' operator HL. Together with the facts that ADM favors lighter DM masses ∼ a few GeV and that the decays would lead only to anti-neutrinos and no neutrinos (or vice versa), the detection of such decays at neutrino telescopes would provide compelling evidence for ADM. We discuss current and future bounds on models where the DM decays to neutrinos through operators of dimension ≤ 6. For dimension 6 operators, the scale suppressing the decay is bounded to be ∼>10{sup 12}–10{sup 13} GeV.
Pion content of the nucleon in polarized semi-inclusive DIS
Melnitchouk, W.; Thomas, A.W.
1994-04-01
An explicit pionic component of the nucleon may be identified by measuring polarized {Delta}{sup ++} fragments produced in deep-inelastic scattering (DIS) off polarized protons. The pion-exchange model predicts highly correlated polarizations of the {Delta}{sup ++} and target proton, in marked contrast with the competing diquark fragmentation process.
New measurement of antineutrino oscillation with the full detector configuration at Daya Bay.
An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Themann, H; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H
2015-09-11
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3} eV^{2} in the three-neutrino framework.
New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Themann, H.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2015-09-01
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9 × 105 GWth ton days , a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am 241- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22 θ13 and |Δ mee 2| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin22 θ13=0.084 ±0.005 and |Δ mee 2|=(2.42 ±0.11 )×10-3 eV2 in the three-neutrino framework.
New measurement of antineutrino oscillation with the full detector configuration at Daya Bay
An, F. P.; Balantekin, A. B.; Band, H. R.; ...
2015-09-11
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×105 GWth ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors.more » Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2θ13 and |Δm2ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2θ13=0.084±0.005 and |Δm2ee|=(2.42±0.11)×10–3 eV2 in the three-neutrino framework.« less
Dissecting nucleon transition electromagnetic form factors
NASA Astrophysics Data System (ADS)
Segovia, Jorge; Roberts, Craig D.
2016-10-01
In Poincaré-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the electromagnetically induced nucleon-Δ and nucleon-Roper transitions, providing a flavor separation of the latter and associated predictions that can be tested at modern facilities.
Gluon Contribution To The Nucleon Spin
Arash, Firooz; Shahveh, Abolfazl; Taghavi-Shahri, Fatemeh
2011-07-15
Gluon polarization in Nucleon is evaluated in the valon representation of hadrons. It is shown that although {delta}g/g is small at the currently measured kinematics, it does not imply that the gluon contribution to the nucleon spin is small. In fact the first moment of gluon polarization in the nucleon, {Delta}g(Q{sup 2}), is sizable. We also notice that the majority of {Delta}g is concentrated at around x = 0.08.
A relativistic theory of few-nucleon systems
Alfred Stadler
2010-12-01
This talk provides an overview of recent results for two- and three-nucleon systems obtained within the framework of the covariant spectator theory (CST). The main features of two recently published models for the neutron–proton interaction, that fit the 2007 world data base containing several thousands of neutron-proton scattering data below 350 MeV with χ 2/N data ≈ 1, are presented. These one-boson-exchange models, called WJC-1 and WJC-2, have a considerably smaller number of adjustable parameters than are present in realistic nonrelativistic potentials. When applied to the three-nucleon bound state, the correct binding energy is obtained without additional three-body forces. First calculations of the electromagnetic form factors of helium-3 and the triton in complete impulse approximation also give very reasonable results. One can conclude that the CST yields a very efficient description of few-nucleon systems, in which the relativistic formulation of the dynamics is an essential element.
Structure and Spin of the Nucleon
Avakian, Harut A.
2014-03-01
Parton distribution functions, describing longitudinal momentum, helicity and transversity distributions of quarks and gluons, have been recently generalized to account also for transverse degrees of freedom. Two new sets of more general distributions, Transverse Momentum Distributions and Generalized Parton Distributions, were introduced to describe transverse momentum and space distributions of partons. Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs) in semi-inclusive and hard exclusive processes providing access to TMDs and GPDs, respectively. Facilities world-wide involved in studies of the 3D structure of nucleon include HERMES, COMPASS, BELLE, BaBar, Halls A, B, and C at JLab, and PHENIX and STAR at RHIC (BNL). TMD studies in the Drell-Yan process are also becoming an important part of the program of hadron scattering experiments. Studies of TMDs are also among the main driving forces of the JLab 12-GeV upgrade project, several of the forward upgrade proposals of STAR and PHENIX at RHIC, and future facilities, such as the Electron Ion Collider (EIC), FAIR in Germany, and NICA in Russia. In this contribution we present an overview of the latest developments in studies of parton distributions and discuss newly released results, ongoing activities, as well as some future measurements.
The nucleon-nucleon potential in the chromodielectric soliton model
Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.
1993-12-31
The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar {sigma} field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function {kappa}({sigma}). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme.
Hard probes of short-range nucleon-nucleon correlations
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Overview of nucleon form factor experiments with 12 GeV at Jefferson Lab
NASA Astrophysics Data System (ADS)
Cisbani, Evaristo
2014-06-01
Since the R. Hofstadter pioneering experiments in the '50s, the measurements of the electromagnetic space-like nucleon form factors (FF's) have been a precious source of information for the understanding of the internal structure of the nucleons. In the last 15 years, the polarization transfer experiments at the Thomas Jefferson National Accelerator Facility (JLab) have undermined our view of the mechanism of the electron scattering and renewed critical interest in the FF measurements. In the coming years, JLab, with its upgraded 12 GeV polarized, high intensity, electron beam combined to new targets and readout equipments, will offer unprecedented opportunities to extend the current proton and neutron FF's measurements to higher momentum transfer Q2 and to improve statistical and uncertainties at lower Q2, where the nucleon size can be accurately investigated. The measurements at high Q2 will provide also new insights on the elusive quark orbital angular momenta, will contribute to constraint two of the nucleon Generalized Parton Distributions that are expected to describe more consistently the nucleon structure, and in general will test the validity of quite a few fundamental nucleon models in a region of transition between perturbative and non perturbative regimes. A selection of the relevant properties of the FF's, and the main results of JLab are shortly reviewed; the new proposed and approved experiments on FF's at JLab are presented addressing some key details, the expected experimental achievements and the new equipment designed for them.
Three-Nucleon Bound States and the Wigner-SU(4) Limit
NASA Astrophysics Data System (ADS)
Vanasse, Jared; Phillips, Daniel R.
2017-03-01
We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.
NASA Astrophysics Data System (ADS)
Ma, X. B.; Qiu, R. M.; Chen, Y. X.
2017-02-01
Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between 235U and 239Pu, the covariance coefficient changes from 0.15 to -0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller.
Precise determination of the 235U reactor antineutrino cross section per fission
NASA Astrophysics Data System (ADS)
Giunti, C.
2017-01-01
We investigate which among the reactor antineutrino fluxes from the decays of the fission products of 235U, 238U, 239Pu, and 241Pu may be responsible for the reactor antineutrino anomaly if the anomaly is due to a miscalculation of the antineutrino fluxes. We find that it is very likely that at least the calculation of the 235U flux must be revised. From the fit of the data we obtain the precise determination σ235 = (6.33 ± 0.08) ×10-43cm2 /fission of the 235U cross section per fission, which is more precise than the calculated value and differs from it by 2.2σ. The cross sections per fission of the other fluxes have large uncertainties and in practice their values are undetermined by the fit.
Target mass monitoring and instrumentation in the Daya Bay antineutrino detectors
NASA Astrophysics Data System (ADS)
Band, H. R.; Cherwinka, J. J.; Greenler, L. S.; Heeger, K. M.; Hinrichs, P.; Kang, L.; Lewis, C. A.; Li, S. F.; Lin, S. X.; McFarlane, M. C.; Wang, W.; Webber, D. M.; Wei, Y. D.; Wise, T. S.; Xiao, Q.; Yang, L.; Zhang, Z. J.
2013-04-01
The Daya Bay experiment measures sin 22θ13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detector's central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors' effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.
Effect of the reactor antineutrino anomaly on the first Double-Chooz results
NASA Astrophysics Data System (ADS)
Giunti, Carlo; Laveder, Marco
2012-02-01
We investigate the possible effects of short-baseline ν¯e disappearance implied by the reactor antineutrino anomaly on the Double-Chooz determination of ϑ13 through the normalization of the initial antineutrino flux with the Bugey-4 measurement. We show that the effects are negligible and the value of ϑ13 obtained by the Double-Chooz collaboration is accurate only if Δm412≳3eV2. For smaller values of Δm412 the short-baseline oscillations are not fully averaged at Bugey-4 and the uncertainties due to the reactor antineutrino anomaly can be of the same order of magnitude of the intrinsic Double-Chooz uncertainties.
Experimental Results from an Antineutrino Detector for Cooperative Monitoring of Nuclear Reactors
Bowden, N S; Bernstein, A; Allen, M; Brennan, J S; Cunningham, M; Estrada, J K; Greaves, C R; Hagmann, C; Lund, J; Mengesha, W; Weinbeck, T D; Winant, C D
2006-09-18
Our collaboration has designed, installed, and operated a compact antineutrino detector at a nuclear power station, for the purpose of monitoring the power and plutonium content of the reactor core. This paper focuses on the basic properties and performance of the detector. We describe the site, the reactor source, and the detector, and provide data that clearly show the expected antineutrino signal. Our data and experience demonstrate that it is possible to operate a simple, relatively small, antineutrino detector near a reactor, in a non-intrusive and unattended mode for months to years at a time, from outside the reactor containment, with no disruption of day-to-day operations at the reactor site. This unique real-time cooperative monitoring capability may be of interest for the International Atomic Energy Agency (IAEA) reactor safeguards program and similar regimes.
Di-hadron fragmentation and mapping of the nucleon structure
NASA Astrophysics Data System (ADS)
Pisano, Silvia; Radici, Marco
2016-06-01
The fragmentation of a colored parton directly into a pair of colorless hadrons is a non-perturbative mechanism that offers important insights into the nucleon structure. Di-hadron fragmentation functions can be extracted from semi-inclusive electron-positron annihilation data. They also appear in observables describing the semi-inclusive production of two hadrons in deep-inelastic scattering of leptons off nucleons or in hadron-hadron collisions. When a target nucleon is transversely polarized, a specific chiral-odd di-hadron fragmentation function can be used as the analyzer of the net density of transversely polarized quarks in a transversely polarized nucleon, the so-called transversity distribution. The latter can be extracted through suitable single-spin asymmetries in the framework of collinear factorization, thus in a much simpler framework with respect to the traditional one in single-hadron fragmentation. At subleading twist, the same chiral-odd di-hadron fragmentation function provides the cleanest access to the poorly known twist-3 parton distribution e( x) , which is intimately related to the mechanism of dynamical chiral symmetry breaking in QCD. When sensitive to details of transverse-momentum dynamics of partons, the di-hadron fragmentation functions for a longitudinally polarized quark can be connected to the longitudinal jet handedness to explore possible effects due to CP -violation of the QCD vacuum. In this review, we outline the formalism of di-hadron fragmentation functions, we discuss different observables where they appear and we present measurements and future worldwide plans.
Monte Carlo eikonal scattering
NASA Astrophysics Data System (ADS)
Gibbs, W. R.; Dedonder, J. P.
2012-08-01
Background: The eikonal approximation is commonly used to calculate heavy-ion elastic scattering. However, the full evaluation has only been done (without the use of Monte Carlo techniques or additional approximations) for α-α scattering.Purpose: Develop, improve, and test the Monte Carlo eikonal method for elastic scattering over a wide range of nuclei, energies, and angles.Method: Monte Carlo evaluation is used to calculate heavy-ion elastic scattering for heavy nuclei including the center-of-mass correction introduced in this paper and the Coulomb interaction in terms of a partial-wave expansion. A technique for the efficient expansion of the Glauber amplitude in partial waves is developed.Results: Angular distributions are presented for a number of nuclear pairs over a wide energy range using nucleon-nucleon scattering parameters taken from phase-shift analyses and densities from independent sources. We present the first calculations of the Glauber amplitude, without further approximation, and with realistic densities for nuclei heavier than helium. These densities respect the center-of-mass constraints. The Coulomb interaction is included in these calculations.Conclusion: The center-of-mass and Coulomb corrections are essential. Angular distributions can be predicted only up to certain critical angles which vary with the nuclear pairs and the energy, but we point out that all critical angles correspond to a momentum transfer near 1 fm-1.
Nucleon-nucleon interaction with one-pion exchange and instanton-induced interactions
NASA Astrophysics Data System (ADS)
Vanamali, C. S.; Kumar, K. B. Vijaya
2016-11-01
Singlet (S10) and triplet (S31) nucleon-nucleon potentials are obtained in the framework of the SU(2) nonrelativistic quark model using the resonating-group method in the Born-Oppenheimer approximation. The full Hamiltonian used in the investigation includes the kinetic energy, two-body confinement potential, one-gluon-exchange potential (OGEP), one-pion exchange potential (OPEP), and instanton induced interaction (III), which includes the effect of quark exchange between the nucleons. The contribution of the OGEP, III, and OPEP to the nucleon-nucleon adiabatic potential is discussed.
Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector
Adamson, P.; et al.
2012-02-01
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.
Recent Results from JLab on Nucleon Responses
Kees de Jager
2004-02-01
Highlights of recent data from Jefferson Lab on the nucleon response to an electro-magnetic probe are presented. Recent technological advances in polarized beams and either polarized targets or nucleon recoil polarimeters have yielded a significant improvement on the precision of the data. An outlook is presented of planned experiments.
Recent Results from JLab on Nucleon Responses
Kees de Jager
2003-05-01
Highlights of recent data from Jefferson Lab on the nucleon response to an electro-magnetic probe are presented. Recent technological advances in polarized beams and either polarized targets or nucleon recoil polarimeters have yielded a significant improvement on the precision of the data. An outlook is presented of planned experiments.
The form factors of the nucleons
Petratos, G.G.
1993-12-01
The study of the electromagnetic form factors of the nucleons are of fundamental importance in understanding nucleon structure. The form factors contain all the information about the deviation from pointlike structure of the charge and magnetization current distributions of the nucleons. The hope is that measurements at sufficiently large momentum transfers can provide a microscopic understanding of the nucleon wave functions in terms of their constituent quark amplitudes. Recent measurements of the electric G{sub E}(Q{sup 2}) and magnetic G{sub M}(Q{sup 2}) form factors of the nucleons are reviewed and compared to theoretical calculations based on non-perturbative QCD sum rules, diquark, relativistic constituent quark, and vector meson dominance (VMD) models. A short summary of ongoing and future measurements is also presented.
Jet production in muon scattering at Fermilab E665
Salgado, C.W.; E665 Collaboration
1993-11-01
Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.
SANE Of Jefferson Lab: Spin Asymmetries on the Nucleon Experiment
Ahmidouch, Abdellah
2011-07-15
The Spin Asymmetry on the Nucleon Experiment (SANE) at Jefferson Lab measures proton spin observables A{sub 1}{sup p}, A{sub 2}{sup p} and structure functions g{sub 1}{sup p} and g{sub 2}{sup p} over a broad range of Bjorken scaling variable x from 0.3 to 0.8, for four-momentum transfers ranging from 2.5 GeV{sup 2} to 6.5 GeV{sup 2}. Inclusive double spin asymmetries were measured by scattering 4.7 and 5.9-GeV longitudinally polarized electron beam off a polarized solid NH{sub 3} target, in both parallel and near-perpendicular configuration. Scattered electrons were detected using a novel non-magnetic detector array with 194-msr acceptance. This paper presents the physics motivation for the experiment, the detector performance, and the latest status of the ongoing data analysis.
SANE Of Jefferson Lab: Spin Asymmetries on the Nucleon Experiment
Abdellah Ahmidouch
2011-07-01
The Spin Asymmetry on the Nucleon Experiment (SANE) at Jefferson Lab measures proton spin observables A1p, A2p and structure functions g1p and g2p over a broad range of Bjorken scaling variable x from 0.3 to 0.8, for four-momentum transfers ranging from 2.5 GeV2 to 6.5 GeV2. Inclusive double spin asymmetries were measured by scattering 4.7 and 5.9-GeV longitudinally polarized electron beam off a polarized solid NH3 target, in both parallel and near-perpendicular configuration. Scattered electrons were detected using a novel non-magnetic detector array with 194-msr acceptance. This paper presents the physics motivation for the experiment, the detector performance, and the latest status of the ongoing data analysis.
Probing the strange nature of the nucleon with phi photoproduction
Lowry, M.M.
1997-03-06
The presence inside the nucleon of a significant component of strange-antistrange quark pairs has been invoked to explain a number of current puzzles in the low energy realm of QCD. The {sigma} term in {pi}N scattering is a venerable conundrum which can be explained with a 10%--20% admixture. The spin crisis brought on by the EMC result and follow on experiments was first interpreted as requiring a large strange content of s quarks whose spin helped cancel the contribution of the u and d quarks to the nucleon spin, again of order 10%. Excess phi meson production in p{anti p} annihilation at LEAR has also been explained in terms of up to a 19% admixture of s{anti s} pairs. Charm production in deep-inelastic neutrino scattering would appear to provide evidence for a 3% strange sea. It is clear that a definite probe of the strange quark content would be an invaluable tool in unraveling a number of mysteries. The longitudinal beam target asymmetry in {psi} photoproduction is a particularly sensitive probe of that content. It is explored here.
Quark-mass dependence of two-nucleon observables
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei; Lee, Tze-Kei; Liu, C.-P.; Liu, Yu-Sheng
2012-11-01
We study the potential implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths with unphysical light quark masses. If the light quark masses are small enough such that nuclear effective field theory (NEFT) can be used to perform quark-mass extrapolations, then the leading quark-mass dependence of not only the effective range and the two-body current, but also all the low-energy deuteron matrix elements up to next-to-leading-order in NEFT can be obtained. As a proof of principle, we compute the quark-mass dependence of the deuteron charge radius, magnetic moment, polarizability, and the deuteron photodisintegration cross section using the lattice calculation of the scattering lengths at 354 MeV pion mass by the ``Nuclear Physics with Lattice QCD'' (NPLQCD) collaboration and the NEFT power counting scheme of Beane, Kaplan, and Vuorinen (BKV), even though it is not yet established that the 354 MeV pion mass is within the radius of convergence of the BKV scheme. Once the lattice result with quark mass within the NEFT radius of convergence is obtained, our observation can be used to constrain the time variation of isoscalar combination of u and d quark mass mq, to help the anthropic principle study to find the mq range that allows the existence of life, and to provide a weak test of the multiverse conjecture.
Polarized light ions and spectator nucleon tagging at EIC
Guzey, Vadim; Higinbotham, Dougas W.; Hyde, Charles; Nadel-Turonski, Pawel A.; Park, Kijun; Sargsian, Misak M.; Strikman, Mark; Weiss, Christian
2014-10-01
The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x ll 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p(R) < several 100MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.
Elastic proton-deuteron scattering at intermediate energies
NASA Astrophysics Data System (ADS)
Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslami-Kalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.
2008-07-01
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental database for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This article reviews the background of this problem and presents new data taken at Kernfysisch Versneller Instituute (KVI). Differential cross sections and analyzing powers for the 2H(p→,d)p and 1H(d→,d)p reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The differential cross-section data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.
Overview of nucleon structure studies
Marc Vanderhaeghen
2007-06-08
A brief overview of the recent activity in the measurement of the elastic electromagnetic proton and neutron form factors is presented. It is discussed how the quality of the data has been greatly improved by performing double polarization experiments, and the role of two-photon exchange processes will be highlighted. The spatial information on the quark charge distribibutions in the nucleon resulting from the form factors measurements will be discussed, as well as the steady rate of improvements made in the lattice QCD calculations. It is discussed how generalized parton distributions have emerged as a unifying theme in hadron physics linking the spatial densities extracted from form factors with the quark momentum distribution information residing in quark structure functions. The recent progress in the electromagnetic excitation of the $\\Delta(1232)$ resonance will also briefly be discussed.
Charged-current quasielastic scattering of muon antineutrino and neutrino in the MINERvA experiment
NASA Astrophysics Data System (ADS)
Ankowski, Artur M.
2015-07-01
One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions in the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays a pivotal role in reproducing the experimental data.
Pion-Nucleon Scattering Experiments at Low Energies:
NASA Astrophysics Data System (ADS)
Breitschopf, J.; Bauer, M.; Clement, H.; Cröni, M.; Denz, H.; Meier, R.; Wagner, G. J.; Friedman, E.; Gibson, E.
Total cross sections of the single charge exchange reaction π-p→π0n have been measured at PSI from about 40 to 250 MeV using a transmission technique. Preliminary results show an excellent agreement with predictions from the SAID FA02 phase shift analysis for energies above 70 MeV.
Study of all Reaction Channels in Deuteron-Deuteron Scattering
NASA Astrophysics Data System (ADS)
Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslami-Kalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.
Few-nucleon systems can be used as fundamental laboratories for studying details of the nuclear force effects. We performed a series of deuteron-deuteron scattering experiments at intermediate energies. The experiments exploited BINA and BBS experimental setups and polarized deuteron beams with kinetic energies of 65 and 90 MeV/nucleon. These experiments aim to measure differential cross sections, vector and tensor analyzing powers of all available reaction channels in deuteron-deuteron scattering. With these data we will provide a systematic database, which will be used to test present theoretical approximations and upcoming ab-initio calculations in four-nucleon system.
Nucleon and nucleon-pair momentum distributions in A≤12 nuclei
Wiringa, Robert B.; Schiavilla, Rocco; Pieper, Steven C.; ...
2014-02-10
We report variational Monte Carlo calculations of single-nucleon momentum distributions for A≤12 nuclei and nucleon-pair and nucleon-cluster momentum distributions for A≤8. The wave functions have been generated for a Hamiltonian containing the Argonne ν18 two-nucleon and Urbana X three-nucleon potentials. The single-nucleon and nucleon-pair momentum distributions exhibit universal features attributable to the one-pion-exchange tensor interaction The single-nucleon distributions are broken down into proton and neutron components and spin-up and spin-down components where appropriate. The nucleon-pair momentum distributions are given separately for pp and pn pairs. The nucleon-cluster momentum distributions include dp in 3He, tp and dd in S4He, αd inmore » 6Li,αt in 7Li, and αα in 8Be. Detailed tables are provided on-line for download.« less
Higuera, A; Mislivec, A; Aliaga, L; Altinok, O; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Brooks, W K; Budd, H; Butkevich, A; Carneiro, M F; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Fiorentini, G A; Gallagher, H; Gomez, A; Gran, R; Harris, D A; Hurtado, K; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Snider, F D; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P
2014-12-31
Neutrino-induced coherent charged pion production on nuclei νμA→μ(±)π(∓)A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. We select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.
Higuera, A.
2014-12-23
Neutrino-induced coherent charged pion production on nuclei ν(–)μA → μ±π∓A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. In addition, we select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We findmore » poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.« less
NASA Astrophysics Data System (ADS)
Higuera, A.; Mislivec, A.; Aliaga, L.; Altinok, O.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Brooks, W. K.; Budd, H.; Butkevich, A.; Carneiro, M. F.; Castromonte, C. M.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Fiorentini, G. A.; Gallagher, H.; Gomez, A.; Gran, R.; Harris, D. A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Snider, F. D.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Ziemer, B. P.; Minerva Collaboration
2014-12-01
Neutrino-induced coherent charged pion production on nuclei ν(-) μA →μ±π∓A is a rare, inelastic interaction in which a small squared four-momentum |t | is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t | from the final-state pion and muon. We select low |t | events to isolate a sample rich in coherent candidates. By selecting low |t | events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. -H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y. -C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H. -R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C. -H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.
2017-01-01
Here, a new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW_{th} nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 ± 0.020 (0.992 ± 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4$-$6 MeV was found in the measured spectrum, with a local significance of 4.4σ. Finally, a reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.
Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring
Cormon, S.; Fallot, M. Bui, V.-M.; Cucoanes, A.; Estienne, M.; Lenoir, M.; Onillon, A.; Shiba, T.; Yermia, F.; Zakari-Issoufou, A.-A.
2014-06-15
This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {sup 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.
NASA Astrophysics Data System (ADS)
Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.
2016-03-01
Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Measurement of the reactor antineutrino flux and spectrum at Daya Bay
D. E. Jaffe; Bishai, M; Diwan, M.; Gill, R.; Hackenburg, R. W.; Hans, S.; Hu, L. M.; Jaffe, D. E.; Kettell, S. H.; Tang, W.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.
2016-02-12
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW_{th} nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ± 0.04) × 10^{–18} cm^{2}/GW/day or (5.92 ± 0.14) × 10^{–43} cm^{2}/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ± 0.022 (0.991 ± 0.023) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ~4σ between 4-6 MeV. Furthermore, a reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
Measurement of the reactor antineutrino flux and spectrum at Daya Bay
D. E. Jaffe; Bishai, M; Diwan, M.; ...
2016-02-12
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GWth nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ± 0.04) × 10–18 cm2/GW/day or (5.92 ± 0.14) × 10–43 cm2/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ± 0.022more » (0.991 ± 0.023) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ~4σ between 4-6 MeV. Furthermore, a reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.« less
Adamson, P.; et al.
2016-05-10
Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}$ and $\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}$ parameters at $|\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}| < 3.3\\times 10^{-23}$ and $|\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}| < 3.3\\times 10^{-23}$, all limits quoted at $3\\sigma$.
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.
An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H
2016-02-12
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring
NASA Astrophysics Data System (ADS)
Cormon, S.; Fallot, M.; Bui, V.-M.; Cucoanes, A.; Estienne, M.; Lenoir, M.; Onillon, A.; Shiba, T.; Yermia, F.; Zakari-Issoufou, A.-A.
2014-06-01
This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (νbare) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of 235U, 239Pu and 241Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
An, F. P.; Balantekin, A. B.; Band, H. R.; ...
2017-01-01
Here, a new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 ± 0.020 (0.992 ±more » 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4$-$6 MeV was found in the measured spectrum, with a local significance of 4.4σ. Finally, a reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.« less
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dove, J.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2016-02-01
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWt h nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ±0.04 ) ×10-18 cm2 GW-1 day-1 or (5.92 ±0.14 ) ×10-43 cm2 fission-1 . This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ±0.022 (0.991 ±0.023 ) relative to the flux predicted with the Huber -Mueller (ILL -Vogel ) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2 σ over the full energy range with a local significance of up to ˜4 σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
NASA Astrophysics Data System (ADS)
Kashyap, V. K. S.; Pant, L. M.; Mohanty, A. K.; Datar, V. M.
2016-03-01
A simulation study of two kinds of scintillation detectors has been done using GEANT4. We compare plastic scintillator and liquid scintillator based designs for detecting electron antineutrinos emitted from the core of reactors. The motivation for this study is to set up an experiment at the research reactor facility at BARC for very short baseline neutrino oscillation study and remote reactor monitoring.
Studies of the nucleon structure in back-to-back SIDIS
Avakian, Harut
2016-03-01
The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.
NASA Astrophysics Data System (ADS)
Kievsky, A.; Viviani, M.; Gattobigio, M.; Girlanda, L.
2017-02-01
In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels S =0 ,1 , and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionless effective field theory, the LO potential includes two contact terms only. In the three-nucleon system, the pionless theory includes a three-nucleon contact term interaction at LO whereas the chiral effective theory does not. Accordingly arbitrary differences could be observed in the LO description of three- and four-nucleon binding energies. We analyze the two theories at LO and conclude that a three-nucleon contact term is necessary at this order in both theories. In turn this implies that subleading three-nucleon contact terms should be promoted to lower orders. Furthermore, this analysis shows that one single low-energy constant might be sufficient to explain the large values of the singlet and triplet scattering lengths.
Nucleon and heavy-ion total and absorption cross section for selected nuclei
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Costner, C. M.
1975-01-01
Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.
Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakamura, K.; Obara, S.; Oura, T.; Ozaki, H.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Takai, T.; Tamae, K.; Teraoka, Y.; Ueshima, K.; Watanabe, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Piepke, A.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O’Donnell, T.; Learned, J. G.; Maricic, J.; Sakai, M.; Winslow, L. A.; Krupczak, E.; Ouellet, J.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.
2016-09-30
Here, we present a search, using KamLAND, a kiloton-scale anti-neutrino detector, for low-energy anti-neutrino events that were coincident with the gravitational-wave (GW) events GW150914 and GW151226, and the candidate event LVT151012. We find no inverse beta-decay neutrino events within ±500 s of either GW signal. This non-detection is used to constrain the electron anti-neutrino fluence and the total integrated luminosity of the astrophysical sources.
Grange, Joseph M.
2013-01-01
This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.
KamLAND bounds on solar antineutrinos and neutrino transition magnetic moments
NASA Astrophysics Data System (ADS)
Torrente-Lujan, Emilio
2003-04-01
We investigate the possibility of detecting solar electron antineutrinos with the KamLAND experiment. These electron antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. KamLAND is sensitive to antineutrinos originated from solar 8B neutrinos. From KamLAND negative results after 145 days of data taking, we obtain model independent limits on the total flux of solar electron antineutrinos Phi(8B) < 1.1-3.5 × 104cm-2 s-1, more than one order of magnitude smaller than existing limits, and on their appearance probability P < 0.15% (95% CL). Assuming a concrete model for antineutrino production by spin-flavor precession, this upper bound implies an upper limit on the product of the intrinsic neutrino magnetic moment and the value of the solar magnetic field muB < 2.3 × 10-21 MeV 95% CL (for LMA (Deltam2,tan 2theta) values). Limits on neutrino transition moments are also obtained. For realistic values of other astrophysical solar parameters these upper limits would imply that the neutrino magnetic moment is constrained to be, in the most conservative case, mu leq 3.9 × 10-12 muB (95% CL) for a relatively small field B = 50 kG. For higher values of the magnetic field we obtain: mu leq 9.0 × 10-13 muB for field B = 200 kG and mu leq 2.0 × 10-13 muB for field B = 1000 kG at the same statistical significance.
New measurement of antineutrino oscillation with the full detector configuration at Daya Bay
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Themann, H.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.
2015-09-11
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am- ^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of ^{2}sin2θ_{13} and |Δm^{2}_{ee}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave ^{2}sin2θ_{13}=0.084±0.005 and |Δm^{2}_{ee}|=(2.42±0.11)×10^{–3} eV^{2} in the three-neutrino framework.
Two-photon exchange in electron-trinucleon elastic scattering
NASA Astrophysics Data System (ADS)
Kobushkin, A. P.; Timoshenko, Ju. V.
2013-10-01
We discuss two-photon exchange (TPE) in elastic electron scattering off the trinucleon systems, 3He and 3H. The calculations are done in the semirelativistic approximation with the trinucleon wave functions obtained with the Paris and CD-Bonn nucleon-nucleon potentials. An applicability area of the model is wide enough and includes the main part of kinematical domain where experimental data exist. All three TPE amplitudes (generalized form factors) for electron 3He elastic scattering are calculated. We find that the TPE amplitudes are a few times more significant in the scattering of electrons off 3He then in the electron-proton scattering.
ERIC Educational Resources Information Center
Banerjee, S. N.; Chakraborty, S. N.
1980-01-01
Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)
Nucleon and triton production from nucleon-induced reactions on 7Li
NASA Astrophysics Data System (ADS)
Watanabe, Yukinobu; Guo, Hairui; Nagaoka, Kohei; Matsumoto, Takuma; Ogata, Kazuyuki; Yahiro, Masanobu
2016-06-01
Nucleon (N) and triton production from nucleon-induced reactions on 7Li at an incident energy of 14 MeV are analyzed by using three-body continuum discretized coupled channels method (CDCC), final state interaction (FSI) model, and sequential decay (SD) model. The CDCC is used to describe nucleon and triton production via breakup continuum channels, 7Li(N,N')7Li*→ t + α. Triton production from p(n) + 7Li → t + 5Li(5He) channel and nucleon production from sequential decay of the ground-state 5Li(5He) are calculated by the FSI model and the SD model, respectively. The calculated double differential cross sections for both nucleon and triton production are in good agreement with experimental ones except at relatively low nucleon emission energies.
The nucleon intensity in the atmosphere and the Pt distribution
NASA Technical Reports Server (NTRS)
Liland, A.
1985-01-01
The diffusion equation for cosmic ray nucleons in the atmosphere has been solved analytically, taking into account the transverse momentum distribution of nucleons produced in nucleon-air nucleus collisions. The effect of the transverse momentum distribution increases the nucleon intensity at large zenith angles and low energies.
Chiral bag model for the nucleon
NASA Astrophysics Data System (ADS)
Hosaka, Atsushi; Toki, Hiroshi
1996-12-01
We review the chiral bag model for the nucleon at low energy. The model is a hybrid model of quark and meson degrees of freedom, interpolating the two limits of the Skyrme model at R → 0 and the MIT bag model at R → ∞, where R is the bag radius. Baryon number one ( B = 1) solutions are obtained in the semiclassical method, where the nucleon is regarded as a slowly rotating hedgehog. We investigate static properties of the nucleon such as masses and magnetic moments as functions of R, first in the original chiral bag model and second in the models with vector mesons. We find a reasonably good description for the nucleon in both cases at an intermediate bag radius R ~ 0.6 fm. Results of the model calculations are then re-derived using a group theoretical method in the large- Nc limit.
Lattice results on nucleon/roper properties
Lin, Huey-Wen
2009-12-01
In this proceeding, I review the attempts to calculate the Nucleon resonance (including Roper as first radially excited state of nucleon and other excited states) using lattice quantum chromodynamics (QCD). The latest preliminary results from Hadron Spectrum Collaboration (HSC) with mπ thickapprox 380 MeV are reported. The Sachs electric form factor of the proton and neutron and their transition with the Roper at large Q2 are also updated in this work.
Two nucleon systems at mπ~450MeV from lattice QCD
Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; ...
2015-12-23
Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass ofmore » $$m_\\pi\\sim 450~{\\rm MeV}$$ in three spatial volumes using $$n_f=2+1$$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $$B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$$, while the dineutron is bound by $$B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.« less
Improving the Convergence of Chiral EFT for Few-Nucleon Systems
Epelbaum, Evgeny; Glockle, W.; Meissner, Ulf-G.
2003-11-01
In the past decade chiral EFT has been applied by several groups to study the properties of fewâ nucleon systems based on the original idea of Weinberg [1], see [2] for a recent review. It is of utmost importance for all these applications to verify the convergence of the lowâ momentum expansion. As pointed out by Kaiser et al. [3], nucleonâ nucleon peripheral scattering provides an excellent ground to test the convergence of the chiral expansion. Indeed, the high angular momentum scattering states are dominated by the longâ range part of the nuclear force, where chiral dynamics is important. For example, no shortâ range contact interactions (with, in general, unknown coupling constants) contribute to Dâ and higher partial waves at nextâ nextâ toâ leading order (NNLO), which allows for parameterâ free calculations. In addition, the interaction between two nucleons becomes weak due to the centrifugal barrier, so that the Sâ matrix can be obtained using perturbative methods. It was found in [3
Four-nucleon force in chiral effective field theory
Evgeny Epelbaum
2005-10-25
We derive the leading contribution to the four--nucleon force within the framework of chiral effective field theory. It is governed by the exchange of pions and the lowest--order nucleon--nucleon contact interaction and includes effects due to the nonlinear pion--nucleon couplings and the pion self interactions constrained by the chiral symmetry of QCD. The resulting 4NF does not contain any unknown parameters and can be tested in future few--and many--nucleon studies.
Effects of pion-fold-pion diagrams in the energy-independent nucleon-nucleon potential
NASA Astrophysics Data System (ADS)
de Guzman, G.; Kuo, T. T. S.; Holinde, K.; Machleidt, R.; Faessler, A.; Müther, H.
1985-10-01
Based on a T-matrix equivalence theory, an energy-independent or locally energy-dependent nucléon-nucléon potential VNN derived from meson exchanges is studied. The potential, given as a series expansion of folded diagrams, is independent of the asymptotic energy of the scattering nucleons. It is, however, locally energy dependent in the sense that its matrix elements < a| VNN| b> depend on the energies associated with its bra and ket states a and b. Our formulation makes use of right-hand-side on-shell T-matrix equivalence of the field-theoretical and potential descriptions when limited to the space of neutrons and protons only. This preserves not only scattering (e.g. phase shifts, projections of wave functions) but also bound-state properties. The matrix elements of V were calculated for two potential models, one based on one-pion exchange (OPEP) and the other on one-boson exchange (OBEP) using {π, ρ, σ, ω, δ, η }. Three types of phase-shift calculations have been carried out to study the viability of constructing an energy-independent potential using the folded-diagram expansion: (A) NN phase shifts for an energy-dependent OPEP and OBEP. For the OBEP we used parameters adjusted to fit experimental data. (B) The same phase shifts for the energy-independent case for both OPEP and OBEP. (C) Repetition of (B) with effects of the two-pion folded diagrams included. Our results show two important points: (i) folded diagrams are of essential importance, and (ii) the first-order folded diagrams contain the dominant effect and the neglect of terms with more than two folds can be regarded as a good approximation. The effects of folded diagrams are large especially for low partial waves and high energies. For high partial waves ( J greater than 2) the folded terms are negligible, and the phase shifts given by (A), (B) and (C) practically coincide.
Variational Studies of Nucleon Matter with Realistic Potentials
NASA Astrophysics Data System (ADS)
Akmal, Arya
We study cold, symmetric nuclear matter and pure neutron matter at densities up to six times nuclear saturation density, with realistic interactions fitted to nucleon-nucleon scattering data, using variational methods and correlated wave functions. The expectation value of the nuclear Hamiltonian is expanded in terms of cluster contributions, and re-summed via chain summation methods. Included in the calculation are a number of new, momentum-dependent cluster diagrams, which make significant contributions to the energy. These include relativistic boost corrections, heretofore neglected in studies of infinite matter. The boost corrections, partially mocked up by the three-nucleon interaction in previous studies, must be treated explicitly to obtain accurate predictions of the energy of matter at densities above saturation. We find that matter exhibits structure on the femtometer scale at saturation density, and undergoes a phase transition at about twice saturation density. The new phase is marked by a significant increase in the length of tensor correlations. The nature of the transition is further elucidated using the spin-isospin structure function, which points to long-range order in the new phase. We argue that this new phase contains a neutral pion condensate, as evidenced by enhancement of the pionic interactions and the pion field. In addition to symmetric nuclear and pure neutron matter, we present an equation of state for beta-stable matter, used to predict properties of spherical, non-rotating neutron stars by integrating the relativistic equation governing gravitational equilibrium. The interaction models presented here, with relativistic boost corrections, predict the existence of neutron stars with masses up to 2.0 to 2.2 solar masses. We also investigate the possibility of a deconfined quark phase in neuron star cores, and argue that such a phase, should it be present, will have only a small effect on the predictions of maximum masses.
Toward complete pion nucleon amplitudes
Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; ...
2015-10-05
We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.
The nucleon-nucleon system in chiral effective theory
Phillips, Daniel R.
2011-10-24
I discuss the conditions under which the application of chiral perturbation theory to the NN potential gives reliable results for NN scattering phase shifts. {sub {chi}P}T also yields a convergent expansion for the deuteron charge operator. For cutoffs <1 GeV, this produces precise predictions for deuterium's quadrupole and charge form factors in the range Q{sup 2}<0.25 GeV{sup 2}.
Unitary limit of two-nucleon interactions in strong magnetic fields
Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.; Chang, Emmanuel
2016-03-14
In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m_{π} ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 10^{19} – 10^{20} Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-08-01
We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
Unitary limit of two-nucleon interactions in strong magnetic fields
Detmold, William; Orginos, Kostas; Parreño, Assumpta; ...
2016-03-14
In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of mπ ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 1019 – 1020 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, andmore » the unitary behavior at large scattering lengths may have important consequences for these systems.« less
d/u Asymmetry in the Nucleon Sea
Gagliardi, C.A.; Awes, T.C.; Stankus, P.W.; Young, G.R.
1998-08-24
Fermilab E866 has performed a precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets, leading to the first determinations of {bar d}/{bar u} and {bar d}-{bar u} in the proton as functions of {chi}. The results show that {bar d} > {bar u} over a broad range of {chi} and provide valuable information regarding the origins of the {bar d}/{bar u} asymmetry and the antiquark sea in the nucleon. No known symmetry requires equality of the {bar d} and {bar u} distributions in the proton. However, until recently it had been generally assumed that {bar d}({chi}) {approx} {bar u}({chi}), where {chi} is the fraction of the proton's momentum (Bjorken-{chi}) carried by the antiquark, based both on the assumption that the majority of the antiquark sea in the nucleon originates from gluon splitting into q - {bar q} pairs and the lack of experimental evidence to the contrary. The first clear evidence that {bar d} {ne} {bar u} came from the NMC measurements of the structure functions F{sub 2}{sup p}({chi}) and F{sub 2}{sup n}({chi}) in deep-inelastic muon scattering on hydrogen and deuterium.
Relativistic O(q{sup 4}) two-pion exchange nucleon-nucleon potential: parametrized version
R. Higa; M. R. Robilotta; C. A. da Rocha
2005-01-01
The chiral two-pion exchange nucleon-nucleon interaction has nowadays a rather firm conceptual basis, but depends on low-energy constants, which may be extracted from fits to data. In order to facilitate this kind of application, we present here a parametrized version of our relativistic expansion of this component of the force to O(q{sup 4}), performed recently.
A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1999-01-01
A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.
Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics
Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.
2011-08-02
Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the
Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems
Viviani, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Schiavilla, R.
2014-06-18
Weak interactions between quarks induce a parity-violating (PV) component in the nucleon-nucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (${\\chi }$EFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the $\\vec{p}$-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the ^{3}He( $\\vec{n}$,p)^{3}H charge-exchange reaction. Methods: The ${\\chi }$EFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A=2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from ${\\chi }$EFT. In the case of the A=3-4 systems, systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h$1\\atop{π}$ and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The ${\\chi }$EFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.
Nucleon resonances and spin structure
Karl Slifer
2012-04-01
The inclusive structure function g2 which is extracted from doubly polarized lepton scattering is relatively unknown. But due to its fundamental nature, knowledge of g2 is needed in a wide field of topics, ranging from understanding quark-gluon interactions in QCD confined systems, to calculations of energy levels in QED bound states. We discuss recent results on g2 from the JLab spin structure program and give a perspective on upcoming experiments.
Studies of partonic transverse momentum and spin structure of the nucleon
NASA Astrophysics Data System (ADS)
Contalbrigo, M.
2014-06-01
The investigation of the partonic degrees of freedom beyond collinear approximation (3D description) has been gained increasing interest in the last decade. The Thomas Jefferson National Laboratory, after the CEBAF upgrade to 12 GeV, will become the most complete facility for the investigation of the hadron structure in the valence region by scattering of polarized electron off various polarized nucleon targets. A compendium of the planned experiments is here presented.
NASA Astrophysics Data System (ADS)
Sato, T.
2007-12-01
A dynamical approach of the meson production reaction for extracting nucleon resonance parameters has been developed. We report on the γ N Δ form factors extracted from the recent pion electroproduction data and the coupled-channels model of π N scattering up to W ≤ 2 GeV. An analysis of the resonance poles extracted using the speed-plot and time-delay methods is briefly discussed.
Time-reversal-invariance-violating nucleon-nucleon potential in the 1 /Nc expansion
NASA Astrophysics Data System (ADS)
Samart, Daris; Schat, Carlos; Schindler, Matthias R.; Phillips, Daniel R.
2016-08-01
We apply the large-Nc expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-Nc counting are constructed. For the TV and parity-violating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which, however, are suppressed by 1 /Nc compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral effective field theory potential in the TV parity-violating case, leads to large-Nc scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
Kovalchuk, V. I.; Kozlovsky, I. V.; Tartakovsky, V. K.
2011-05-15
A method for solving Faddeev equations in configuration space for a bound state and a continuous spectrum of the system of three nucleons was developed on the basis of expansions in K harmonics. Coulomb interaction and particle spins were not taken into account in this study. The method in question was used to describe the triton bound state and differential cross sections for neutron-deuteron scattering at subthreshold incident-neutron energies. The Volkov, Malfliet-Tjon, and Eikemeier-Hackenbroich local nucleon-nucleon potentials were employed in the present calculations.
First measurement of neutrino and antineutrino coherent charged pion production on argon
Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fleming, B.; Greenlee, H.; Hatcher, R.; Horton-Smith, G.; James, C.; Klein, E.; Lang, K.; Laurens, P.; Mehdiyev, R.; Page, B.; Palamara, O.; Partyka, K.; Rameika, G.; Rebel, B.; Santos, E.; Schukraft, A.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Yang, T.; Zeller, G. P.
2014-12-23
We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 ^{+1.2}_{-1.0} (stat)^{+0.3}_{-0.4}(syst) × 10⁻³⁸cm² / Ar for neutrinos at a mean energy of 9.6 GeV and 5.5^{+2.6}_{-2.1}(stat)^{+0.6}_{-0.7}(syst) × 10⁻³⁹ cm² / Ar for antineutrinos at a mean energy of 3.6 GeV.
First measurement of neutrino and antineutrino coherent charged pion production on argon
Acciarri, R.; Adams, C.; Asaadi, J.; ...
2014-12-23
We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 +1.2-1.0 (stat)+0.3-0.4(syst) × 10⁻³⁸cm² / Ar for neutrinos at a mean energy of 9.6 GeV and 5.5+2.6-2.1(stat)+0.6-0.7(syst) × 10⁻³⁹ cm² / Ar for antineutrinos at a mean energy of 3.6 GeV.
Neutron β -decay as the origin of IceCube's PeV (anti)neutrinos
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.
2015-01-01
Motivated by the indications of a possible deficit of muon tracks in the first three-year equivalent data set of IceCube we investigate the possibility that the astrophysical (anti)neutrino flux (in the PeV energy range) could originate from β -decay of relativistic neutrons. We show that to accommodate IceCube observations it is necessary that only about 1% to 10% of the emitted cosmic rays in the energy decade 108.5≲ECR/GeV ≲109.5 , yielding antineutrinos on Earth (1 05.5≲Eν ¯/GeV ≲1 06.5 ), are observed. Such a strong suppression can be explained assuming magnetic shielding of the secondary protons which diffuse in extragalactic magnetic fields of strength 10 ≲B /nG ≲100 and coherence length ≲Mpc .
First measurement of neutrino and antineutrino coherent charged pion production on argon
Acciarri, R.
2015-01-20
In this study, we report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 +1.2-1.0 (stat)+0.3-0.4(syst) x 10-38 cm2/Ar for neutrinos at a mean energy of 9.6 GeV and 5.5+2.6-2.1(stat)+0.6-0.7(syst) x 10-39 cm2/Ar for antineutrinos at a mean energy of 3.6 GeV.
Transverse charge and magnetization densities in the nucleon's chiral periphery
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.
Relativity constraints on the two-nucleon contact potential
Luca Girlanda; Pastore, Saori; Schiavilla, Rocco; Viviani, Michele
2010-03-01
We construct the most general, relativistically invariant, contact Lagrangian at order $Q^2$ in the power counting, $Q$ denoting the low momentum scale. A complete, but non-minimal, set of (contact) interaction terms is identified, which upon non-relativistic reduction generate 2 leading independent operator combinations of order $Q^0$ and 7 sub-leading ones of order $Q^2$---a result derived previously in the heavy-baryon formulation of effective field theories (EFT's). We show that Poincar\\'e covariance of the theory requires that additional terms with fixed coefficients be included, in order to describe the two-nucleon potential in reference frames other than the center-of-mass frame. These terms will contribute in systems with mass number $A>2$, and their impact on EFT calculations of binding energies and scattering observables in these systems should be studied.
Relativity constraints on the two-nucleon contact interaction
Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M.
2010-03-15
We construct the most general, relativistically invariant, contact Lagrangian at order Q{sup 2} in the power counting, with Q denoting the low momentum scale. A complete, but nonminimal, set of (contact) interaction terms is identified, which upon nonrelativistic reduction generate two leading independent operator combinations of order Q{sup 0} and seven subleading ones of order Q{sup 2}--a result derived previously in the heavy-baryon formulation of effective field theories (EFTs). We show that Poincare covariance of the theory requires that additional terms with fixed coefficients be included, to describe the two-nucleon potential in reference frames other than the center-of-mass frame. These terms will contribute in systems with mass number A>2, and their impact on EFT calculations of binding energies and scattering observables in these systems should be studied.
Quasimolecular single-nucleon effects in heavy-ion collisions
Erb, K.A.
1984-01-01
Several experimental examples are discussed to illustrate that single-particle molecular orbital behavior has become an established reality in nuclear physics over the last several years. Measurements and analyses of inelastic scattering in the /sup 13/C + /sup 12/C and /sup 17/O + /sup 12/C systems, and of neutron transfer in the /sup 13/C(/sup 13/C, /sup 12/C)/sup 14/C reaction, show that the motion of valence nucleons can be strongly and simultaneously influenced by both collision partners in heavy-ion collisions. This bvehavior is characteristic of a molecular (single-particle) rather than a direct (DWBA) mechanism: it demonstrates that the single-particle analog of atomic molecular motion plays an important role in nuclear reactions at bombarding energies near the Coulomb barrier. Such behavior may be even more pronounced in the collisions of massive nuclei that will be studied with the new generation of heavy-ion accelerators. 19 references.
Equivalent hyperon-nucleon interactions in low-momentum space
Kohno, M.; Okamoto, R.; Kamada, H.; Fujiwara, Y.
2007-12-15
Equivalent interactions in a low-momentum space for the {lambda}N,{sigma}N, and {xi}N interactions are calculated, using the SU{sub 6} quark model potential as well as the Nijmegen OBEP model as the input bare interaction. Because the two-body scattering data has not been accumulated sufficiently to determine the hyperon-nucleon interactions unambiguously, the construction of the potential even in low-energy regions has to rely on a theoretical model. The equivalent interaction after removing high-momentum components is still model dependent. Because this model dependence reflects the character of the underlying potential model, it is instructive for better understanding of baryon-baryon interactions in the strangeness sector to study the low-momentum space YN interactions.
Pion-nucleon {sigma} term in lattice QCD
Fukugita, M.; Kuramashi, Y.; Okawa, M.; Ukawa, A.
1995-05-01
We calculate both the connected and disconnected contributions to the {pi}-{ital N} {sigma} term in quenched lattice QCD with the Wilson quark action on a 12{sup 3}{times}20 lattice at {beta}=5.7 with the lattice spacing {ital a}{approx}0.14 fm. The latter is evaluated with the variant wall source method, previously applied successfully for {pi}-{pi} scattering lengths and the {eta}{prime} meson mass. We found the disconnected contribution to be about twice as large as the connected one. The value for the full {pi}-{ital N} {sigma} term {sigma}=40--60 MeV is consistent with the experimental estimates. The nucleon matrix element of the strange quark density {ital {bar s}s} is fairly large in our result.
Strange quarks in the nucleon sea: Results from HAPPEX II
K.A. Aniol; HAPPEX Collaboration
2007-03-01
The HAPPEX Collaboration measured parity-violating electron scattering from 4He(e, e) and H(e, e) in 2004 and 2005 for Q2 ≤ 0.11 GeV2. Results for the strange-quark contributions to the electromagnetic form factors of the nucleon from the 2004 data will be reviewed. Preliminary results from the 2005 data, which have significantly greater statistical precision, are GsE = 0.004 0.014stat 0.013syst for Q2 = 0.0772 GeV2 from the helium data and GsE + 0.088 GsM = 0.004 0.011stat 0.005syst 0.004FF for Q2 = 0.1089 GeV2 from the hydrogen data.
Exclusive measurements of pion nucleon going to pion pion nucleon
NASA Astrophysics Data System (ADS)
Kermani, Mohammad Arjomand
The pion induced pion production reactions π±p/toπ±π+n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV. The Canadian High Acceptance Orbit Spectrometer (CHAOS) was used to detected the charged particles, which originated from the interaction of the incident pion beam with a cryogenic liquid hydrogen target. The experimental results are presented in the form of single, double and triple differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. The experimental data, namely the π-p/toπ-π+n double differential cross sections, were used as input to the Chew-Low extrapolation procedure which was utilized to determine on-shell π+π- elastic scattering cross sections in the near threshold region. The Chew-Low results (the extrapolated πpi cross sections) were then used in a dispersion analysis (Roy equations) to obtain the πpi isospin zero S-wave scattering length. We find a00=0.209/pm 0.011μ-1. In addition, the invariant mass distributions from the (π+π-) channel were fitted to determine the model parameters for the extended model of Oset and Vicente-Vacas. We find that the model parameters obtained from fitting the (π+π-) data do not describe the invariant mass distributions in the (π+π+) channel.
Mufson, Stuart; Rebel, Brian
2014-01-01
We searched for a sidereal modulation in the rate of neutrinos observed by the MINOS far detector. The detection of these signals could be a signature of neutrino-antineutrino mixing due to Lorentz and CPT violation as described by the Standard-Model Extension framework. We found no evidence for these sidereal signals and we placed limits on the coefficients in this theory describing the effect.
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2017-01-01
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile
Neutrino-nucleon cross section measurements in NOMAD
NASA Astrophysics Data System (ADS)
Wu, Qun
The NOMAD (Neutrino Oscillation MAgnetic Detector) experiment, using the SPS (Super Proton Syncrotron) neutrino beam (1 GeV < E nu < 200 GeV) at CERN (European Organization for Nuclear Research), has collected more than 1.7 million neutrino induced charged and neutral current (CC and NC) events. This data is the largest high resolution neutrino nucleon scattering data to date and is ideal for precision measurements and searches in neutrino-physics. This thesis presents the precise measurement of the inclusive neutrino CC cross section in 2.5 GeV < E nu < 150 GeV region. The linear dependence of the inclusive CC cross section ( snCC ) versus the incoming neutrino energy (Enu ) is observed in the high energy region of 30 GeV < E nu < 150 GeV. Especially, the measurement in 2.5 GeV < Enu < 30 GeV region provides the first precise determination of snCC . The significant deviation from the linear dependence for snCC versus neutrino energy (Enu) is determined in the energy region less than 20 GeV. This thesis also presents an empirical measurement of NC/CC ratio dependence on hadronic energy in 2.5 GeV < EHad < 30 GeV. Likelihood techniques exploiting full event kinematics were developed. It gives the best neutral current and charged current separation in a traditional neutrino-nucleon scattering experiment. This measurement is going to give a better understanding of the neutral current background in current and future neutrino oscillation experiments.
Dynamical isospin effects in nucleon-induced reactions
Ou Li; Li Zhuxia; Wu Xizhen
2008-10-15
The isospin effects in proton-induced reactions on isotopes of {sup 112-132}Sn and the corresponding {beta}-stable isobars are studied by means of the improved quantum molecular dynamics model and some sensitive probes for the density dependence of the symmetry energy at subnormal densities are proposed. The beam energy range is chosen to be 100-300 MeV. Our study shows that the system size dependence of the reaction cross sections for p+{sup 112-132}Sn deviates from the Carlson's empirical expression obtained by fitting the reaction cross sections for proton on nuclei along the {beta}-stability line and sensitively depends on the stiffness of the symmetry energy. We also find that the angular distribution of elastic scattering for p+{sup 132}Sn at large impact parameters is very sensitive to the density dependence of the symmetry energy, which is uniquely due to the effect of the symmetry potential with no mixture of the effect from the isospin dependence of the nucleon-nucleon cross sections. The isospin effects in neutron-induced reactions are also studied and it is found that the effects are just opposite to that in proton-induced reactions. We find that the difference between the peaks of the angular distributions of elastic scattering for p+{sup 132}Sn and n+{sup 132}Sn at E{sub p,n}=100 MeV and b=7.5 fm is positive for soft symmetry energy U{sub sym}{sup sf} and negative for super-stiff symmetry energy U{sub sym}{sup nlin} and close to zero for linear density dependent symmetry energy U{sub sym}{sup lin}, which seems very useful for constraining the density dependence of the symmetry energy at subnormal densities.
Bulaevskaya, Vera; Bernstein, Adam
2011-06-01
This paper analyzes the sensitivity of antineutrino count rate measurements to changes in the fissile content of civil power reactors. Such measurements may be useful in IAEA reactor safeguards applications. We introduce a hypothesis testing procedure to identify statistically significant differences between the antineutrino count rate evolution of a standard 'baseline' fuel cycle and that of an anomalous cycle, in which plutonium is removed and replaced with an equivalent fissile worth of uranium. The test would allow an inspector to detect anomalous reactor activity, or to positively confirm that the reactor is operating in a manner consistent with its declared fuel inventory and power level. We show that with a reasonable choice of detector parameters, the test can detect replacement of 82 kg of plutonium in 90 days with 95% probability, while controlling the false positive rate at 5%. We show that some improvement on this level of sensitivity may be obtained by various means, including use of the method in conjunction with existing reactor safeguards methods. We also identify a necessary and sufficient minimum daily antineutrino count rate and a maximum tolerable background rate to achieve the quoted sensitivity, and list examples of detectors in which such rates have been attained.
NASA Astrophysics Data System (ADS)
Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.
2005-09-01
Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.
Measurement of the neutrino component of an antineutrino beam observed by a nonmagnetized detector
Aguilar-Arevalo, A. A.; Anderson, C. E.; Fleming, B. T.; Linden, S. K.; Spitz, J.; Brice, S. J.; Brown, B. C.; Ford, R.; Garcia, F. G.; Kobilarcik, T.; Marsh, W.; Moore, C. D.; Polly, C. C.; Russell, A. D.; Stefanski, R. J.; Zeller, G. P.; Bugel, L.; Conrad, J. M.; Karagiorgi, G.; Nguyen, V.
2011-10-01
Two methods are employed to measure the neutrino flux of the antineutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high-purity {nu}{sub {mu}}-induced charged-current single {pi}{sup +} (CC1{pi}{sup +}) sample while the second exploits the difference between the angular distributions of muons created in {nu}{sub {mu}} and {nu}{sub {mu}} charged-current quasielastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the predominately antineutrino beam is overestimated--the CC1{pi}{sup +} analysis indicates the predicted {nu}{sub {mu}} flux should be scaled by 0.76{+-}0.11, while the CCQE angular fit yields 0.65{+-}0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well-modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of antineutrino beams observed by future nonmagnetized detectors.
How unequal fluxes of high energy astrophysical neutrinos and antineutrinos can fake new physics
Nunokawa, Hiroshi; Panes, Boris; Funchal, Renata Zukanovich
2016-10-21
Flavor ratios of very high energy astrophysical neutrinos, which can be studied at the Earth by a neutrino telescope such as IceCube, can serve to diagnose their production mechanism at the astrophysical source. The flavor ratios for neutrinos and antineutrinos can be quite different as we do not know how they are produced in the astrophysical environment. Due to this uncertainty the neutrino and antineutrino flavor ratios at the Earth also could be quite different. Nonetheless, it is generally assumed that flavor ratios for neutrinos and antineutrinos are the same at the Earth, in fitting the high energy astrophysical neutrino data. This is a reasonable assumption for the limited statistics for the data we currently have. However, in the future the fit must be performed allowing for a possible discrepancy in these two fractions in order to be able to disentangle different production mechanisms at the source from new physics in the neutrino sector. To reinforce this issue, in this work we show that a wrong assumption about the distribution of neutrino flavor ratios at the Earth may indeed lead to misleading interpretations of IceCube results.
Spectral Measurement of Electron Antineutrino Oscillation Amplitude and Frequency at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, G. F.; Cao, J.; Carr, R.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, Y.; Chen, Y. X.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, G. H.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, yk.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. J.; Hu, L. M.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, H. Z.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Ngai, H. Y.; Ngai, W. K.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tanaka, H. K.; Tang, X.; Themann, H.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, S. H.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2014-02-01
A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos (ν¯e) from six 2.9 GWth reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41 589 (203 809 and 92 912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude sin22θ13=0.090-0.009+0.008 and the first direct measurement of the ν¯e mass-squared difference |Δmee2|=(2.59-0.20+0.19)×10-3 eV2 is obtained using the observed ν¯e rates and energy spectra in a three-neutrino framework. This value of |Δmee2| is consistent with |Δmμμ2| measured by muon neutrino disappearance, supporting the three-flavor oscillation model.
Cravo, E.; Deltuva, A.; Crespo, R.; Moro, A. M.
2010-03-15
A comparison between full few-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) and continuum-discretized coupled-channels calculations is made for the resonant and nonresonant breakup of {sup 11}Be on proton target at 63.7 MeV/u incident energy. A simplified two-body model is used for {sup 11}Be which involves an inert {sup 10}Be(0{sup +}) core and a valence neutron. The sensitivity of the calculated observables to the nucleon-nucleon potential dynamical input is analyzed. We show that with the present NN and N-core dynamics the results remain a puzzle for the few-body problem of scattering from light exotic halo nuclei.
Nucleon Parton Structure from Continuum QCD
NASA Astrophysics Data System (ADS)
Bednar, Kyle; Cloet, Ian; Tandy, Peter
2017-01-01
The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.
Quasi-elastic nuclear scattering at high energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1992-01-01
The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.
Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; ...
2015-03-09
The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less
Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.
2015-03-09
The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹^{,}²⁴¹Pu and ²³⁵^{,}²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered
Hadronic uncertainties in the elastic scattering of supersymmetric dark matter
Ellis, John; Olive, Keith A.; Savage, Christopher
2008-03-15
We review the uncertainties in the spin-independent and spin-dependent elastic scattering cross sections of supersymmetric dark matter particles on protons and neutrons. We propagate the uncertainties in quark masses and hadronic matrix elements that are related to the {pi}-nucleon {sigma} term and the spin content of the nucleon. By far the largest single uncertainty is that in spin-independent scattering induced by our ignorance of the
Constraining nucleon high momentum in nuclei
NASA Astrophysics Data System (ADS)
Yong, Gao-Chan
2017-02-01
Recent studies at Jefferson Lab show that there are a certain proportion of nucleons in nuclei have momenta greater than the so-called nuclear Fermi momentum pF. Based on the transport model of nucleus-nucleus collisions at intermediate energies, nucleon high momentum caused by the neutron-proton short-range correlations in nuclei is constrained by comparing with π and photon experimental data and considering some uncertainties. The high momentum cutoff value pmax ≤ 2pF is obtained.
Experimental Study of Nucleon Structure and QCD
Jian-Ping Chen
2012-03-01
Overview of Experimental Study of Nucleon Structure and QCD, with focus on the spin structure. Nucleon (spin) Structure provides valuable information on QCD dynamics. A decade of experiments from JLab yields these exciting results: (1) valence spin structure, duality; (2) spin sum rules and polarizabilities; (3) precision measurements of g{sub 2} - high-twist; and (4) first neutron transverse spin results - Collins/Sivers/A{sub LT}. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; and (2) Precision extraction of transversity/tensor charge/TMDs.
Recent Studies of Nucleon Electromagnetic Form Factors
NASA Astrophysics Data System (ADS)
Gilad, Shalev
2010-08-01
The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.
Lattice Calculations of Nucleon Form Factors
Syritsyn, S. N.
2011-10-24
We present recent results of calculation of the isovector electromagnetic and axial form factors of the nucleon using lattice QCD with three different lattice actions and pion masses down to m{sub {pi}} > or approx. 300 MeV. Because of the precision of our high-statistics calculations, we can test predictions of baryon chiral perturbation theory for the charge and axial radii of the nucleon. We find that currently available baryon ChPT calculations disagree with our data, indicating that the corresponding effective theory approximations are not valid above m{sub {pi}{approx_equal}3}00 MeV.
Miceli, Tia; Papavassiliou, Vassili; Pate, Stephen; Woodruff, Katherine
2015-11-01
The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.
Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter
NASA Astrophysics Data System (ADS)
Cai, Bao-Jun; Li, Bao-An
2015-07-01
The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.
NASA Astrophysics Data System (ADS)
Hlophe, Linda D.
The three-body description of deuteron-induced nuclear reactions requires the nucleon-nucleon (NN) and effective nucleon-nucleus interactions as input. The latter are given by Optical Model Potentials (OMPs), which are complex as well as energy-dependent. While a lot of effort has been dedicated to creating separable NN potentials, the same is not true for the nucleon-nucleus OMPs. In this work, separable representations of nucleon-nucleus OMPs are presented. To construct separable representations of neutron-nucleus OMPs, a scheme due to Ernst, Shakin, and Thaler (EST) is adopted as a starting point. It is shown that, by including both incoming and outgoing scattering states in the EST scheme, separable expansions for complex neutron-nucleus potentials that partially obey reciprocity are obtained. For the application to neutron-nucleus potentials that are complex as well as energy-dependent, a further generalization is carried out leading to an energy-dependent separable expansion that exactly fulfills reciprocity. By working exclusively with half-shell transition matrices in momentum space, the implementation of these separable representation schemes is straightforward. The proton-nucleus interaction consists of a short-ranged nuclear piece as well as the long-ranged point-Coulomb potential. After separating the point-Coulomb piece via the Gell-Mann-Goldberger relation, one is left with the short-ranged potential in the Coulomb basis. An extension of the separable representation schemes for neutron-nucleus OMPs to proton-nucleus systems thus requires scattering solutions in the Coulomb basis. This complicates a momentum space implementation of the aforementioned separable expansions. However, by employing the techniques first suggested by Elster, Liu, and Thaler, the separable representation schemes generalized for proton-nucleus OMPs are implemented in a similar manner to neutron-nucleus OMPs. Taking into account the internal structure of the nucleus leads to
Isospin dependence of the three-nucleon force
Evgeny Epelbaum; Ulf-G. Meissner; Juan Palomar
2004-07-01
We classify A--nucleon forces according to their isospin dependence and discuss the most general isospin structure of the three--nucleon force. We derive the leading and subleading isospin--breaking corrections to the three--nucleon force using the framework of chiral effective field theory.
Critical enhancement of the in-medium nucleon-nucleon cross section at low temperatures
Alm, T.; Roepke, G. ); Schmidt, M. )
1994-07-01
The in-medium nucleon-nucleon cross section is calculated starting from the thermodynamic [ital T] matrix at finite temperatures. The corresponding Bethe-Salpeter equation is solved using a separable representation of the Paris nucleon-nucleon potential. The energy-dependent in-medium [ital N]-[ital N] cross section at a given density shows a strong temperature dependence. Especially at low temperatures and low total momenta, the in-medium cross section is strongly modified by in-medium effects. In particular, with decreasing temperature an enhancement near the Fermi energy is observed. This enhancement can be discussed as a precursor of the superfluid phase transition in nuclear matter.
A transport theory of relativistic nucleon-nucleon collisions with confinement
NASA Astrophysics Data System (ADS)
Vetter, T.; Biró, T. S.; Mosel, U.
1995-02-01
A transport theory is developed on the quark level to describe nucleon-nucleon collisions. We treat the strong interaction effectively by the Friedberg-Lee model both in its original and in its modified confining version. First we study the stability of the static three-dimensional semiclassical configuration, then we present results of the time evolution given by a Vlasov equation for the quarks coupled to a Klein-Gordon equation for the mean field. We find at higher energies that the nucleons are almost transparent, whereas at lower energies we observe a substantial interaction. At very low energies we see a fusion of our bags, which is due to the purely attractive nature of the mean field and hence is an artifact of our model. We test the confinement mechanism and find that at higher energies the nucleons are restored shortly after the collision.
Bonner Prize: The Elastic Form Factors of the Nucleon
NASA Astrophysics Data System (ADS)
Perdrisat, Charles F.
2017-01-01
A series of experiments initiated in 1998 at the then new Continuous Electron Beam Accelerator, or CEBAF in Newport News Virginia, resulted in unexpected results, changing significantly our understanding of the structure of the proton. These experiments used a relatively new technique to obtain the ratio of the two form factors of the proton, namely polarization. An intense beam of highly polarized electrons with energy up to 6 GeV was made to interact elastically with un-polarized protons in a hydrogen target. The polarization of the recoiling protons, with energies up to 5 GeV, was measured from a second interaction in a polarimeter consisting of blocs of graphite or CH2 and tracking wire chambers. The scattered electrons were detected in an electromagnetic lead-glass calorimeter, to select elastically scattered events. After a short introduction describing the path which brought me from the University of Geneva to the College of William and Mary in 1966, I will introduce the subject of elastic electron scattering, describe some of the apparatus required for such experiments, and show the results which were unexpected at the time. These results demonstrated unequivocally that the two form factors required to describe elastic ep scattering, electric GE and magnetic GM in the Born approximation, had a drastically different dependence upon the four-momentum squared q2 = q2 -ω2 with q the momentum, and ω the energy transferred in the reaction. The finding, in flagrant disagreement with the data available at the time, which had been obtained dominantly from cross section measurements of the type first used by Nobel Prize R. Hofstadter 60 years ago, have led to a reexamination of the information provided by form factors on the structure of the nucleon, in particular its quark-gluon content. The conclusion will then be a brief outline of several theoretical considerations to put the results in a proper perspective.
Nuclear data requirements for fusion reactor nucleonics
Bhat, M.R.; Abdou, M.A.
1980-01-01
Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.
A chiral soliton bag model of nucleons
NASA Astrophysics Data System (ADS)
Seki, Ryoichi; Ohta, Shigemi
1984-11-01
As a possible phenomenological model of nucleons, a model Lagrangian is numerically solved in the semiclassical approximation using the hedgehog ansatz. Soliton solutions with winding numbers Z=0 and 1 are examined as functions of the pion decay constant. The Z=0 solution is similar to the cloudy bag model, but the Z=1 solution is quite different from the little (chiral) bag model.
Study of excited nucleons and their structure
Burkert, Volker D.
2014-01-01
Recent advances in the study of excited nucleons are discussed. Much of the progress has been achieved due to the availability of high precision meson production data in the photoproduction and electroproduction sectors, the development of multi-channel partial wave analysis techniques, and advances in Lattice QCD with predictions of the full excitation spectrum.
Introduction to Nucleonics: A Laboratory Course.
ERIC Educational Resources Information Center
Phelps, William; And Others
This student text and laboratory manual is designed primarily for the non-college bound high school student. It can be adapted, however, to a wide range of abilities. It begins with an examination of the properties of nuclear radiation, develops an understanding of the fundamentals of nucleonics, and ends with an investigation of careers in areas…
Nuclear effects on axions emission rates from nucleon-nucleon bremsstrahlung
NASA Astrophysics Data System (ADS)
Pastrav, B.; Scafes, A. C.
2010-11-01
The rates of axion emissions by nucleon-nucleon bremsstrahlung from neutron stars obtained with the inclusion of the full angular momentum contribution from a nuclear one-pion-exchange potential (OPEP), are studied in different conditions of temperature and degeneracy in both, non degenerate (ND) and degenerate (D) regimes. The comparison with the previous results obtained in literature, where only the high momentum limit of the OPEP expressions are used, is done and the differences discussed.
Toy model of the repulsive core of the nucleon-nucleon potential
Kamuntavicius, G. P.; Masalaite, A.; Mickevicius, S.
2007-09-15
We study the simplest quark model assuming that the sea of gluons and quark-antiquark pairs can be treated as a part of a static force and proceeding to calculate the hadronic states by solving the Schroedinger equation for a static confining interaction. We refer to this model, starting from a system of six interacting constituent quarks, and examine how the picture of two structureless nucleons can change when the effects caused by the substructure of the nucleons are taken into account.
Inelastic pion scattering to 2 1+ states of pre12C and 28Si
NASA Astrophysics Data System (ADS)
Amos, K.; Berge, L.
1983-08-01
Large basis, microscopic models of nuclear structure have been used to specify the “collective” form factors for inelastic scattering to the 2 1+ states in 12C and 28Si. They have been used in a Distorted Wave Impulse Approximation, with π-nucleon t-matrices fixed by elastic scattering analyses, to fit inelastic pion scattering data.
Few Nucleon Systems From Expanding About the Unitarity Limit
NASA Astrophysics Data System (ADS)
Griesshammer, Harald W.
2017-01-01
Can one understand the structure of nuclei at the physical point by an expansion about the unitarity limit? When the NN S-wave binding energies are zero, the NN system has no scale. Still, the 3 N system has one dimensionful quantity Λ*, related to the breaking of scale invariance to a discrete scaling symmetry (Efimov effect). The scale is set by the triton binding energy. While qualitatively this has been known for a long time, one may speculate that Nuclear Physics resides then in a sweet spot: bound weakly enough to be insensitive to the details of the nuclear interaction and thus to be described by ``pionless'' EFT; but dense enough that the NN scattering lengths are perturbatively close to the unitarity limit. In this case, Λ* sets the only low-energy scale of all observables. Without it, no scale exists, and all nuclei have zero or infinite binding energy in the unitarity limit. For A <= 4 nucleons, the spectrum is indeed described well in this simplified version: a converging, perturbative expansion around the unitarity limit, with controlled corrections in the inverse scattering lengths, the interaction ranges and isospin breaking. Supported in part by US DOE and George Washington University.
Nucleon propagation through nuclear matter in chiral effective field theory
NASA Astrophysics Data System (ADS)
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Strangeness Vector and Axial-Vector Form Factors of the Nucleon
NASA Astrophysics Data System (ADS)
Pate, Stephen; Trujillo, Dennis
2014-03-01
A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic) form factors GsE(Q2) and GsM(Q2) are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2) is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.
Quasielastic scattering with the relativistic Green’s function approach
Meucci, Andrea; Giusti, Carlotta
2015-05-15
A relativistic model for quasielastic (QE) lepton-nucleus scattering is presented. The effects of final-state interactions (FSI) between the ejected nucleon and the residual nucleus are described in the relativistic Green’s function (RGF) model where FSI are consistently described with exclusive scattering using a complex optical potential. The results of the model are compared with experimental results of electron and neutrino scattering.
Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.; ...
2017-01-10
We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less
NASA Astrophysics Data System (ADS)
Sufian, Raza Sabbir; de Téramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre; Dosch, Hans Günter
2017-01-01
We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components |q q q q q ¯ ⟩ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r , required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.
Generator of neutrino-nucleon interactions for the FLUKA based simulation code
Battistoni, G.; Sala, P. R.; Ferrari, A.; Lantz, M.; Smirnov, G. I.
2009-11-25
An event generator of neutrino-nucleon and neutrino-nucleus interactions has been developed for the general purpose Monte Carlo code FLUKA. The generator includes options for simulating quasi-elastic interactions, the neutrino-induced resonance production and deep inelastic scattering. Moreover, it shares the hadronization routines developed earlier in the framework of the FLUKA package for simulating hadron-nucleon interactions. The simulation of neutrino-nuclear interactions makes use of the well developed PEANUT event generator implemented in FLUKA for modeling of the interactions between hadrons and nuclei. The generator has been tested in the neutrino energy range from 0 to 10 TeV and it is available in the standard FLUKA distribution. Limitations related to some particular kinematical conditions are discussed. A number of upgrades is foreseen for the generator which will optimize its applications for simulating experiments in the CNGS beam.
Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium
Knapp, D.A.
1986-12-01
A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.
Proposed search for a fourth neutrino with a PBq antineutrino source.
Cribier, Michel; Fechner, Maximilien; Lasserre, Thierry; Letourneau, Alain; Lhuillier, David; Mention, Guillaume; Franco, Davide; Kornoukhov, Vasily; Schönert, Stefan
2011-11-11
Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV(2). We show that this hypothesis can be tested with a PBq (ten kilocurie scale) (144)Ce or (106)Ru antineutrino beta source deployed at the center of a large low background liquid scintillator detector. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
Study of reactor antineutrino interaction with proton at Bugey nuclear power plant
NASA Astrophysics Data System (ADS)
Declais, Y.; de Kerret, H.; Lefièvre, B.; Obolensky, M.; Etenko, A.; Kozlov, Yu.; Machulin, I.; Martemianov, V.; Mikaelyan, L.; Skorokhvatov, M.; Sukhotin, S.; Vyrodov, V.
1994-10-01
We report on a high precision measurement at 15m from a 2800 MWth reactor in which 300 000 events of electron antineutrino interactions with proton have been detected using an integral method. The cross section of the neutron inverse beta-decay process has been measured with an accuracy of 1.4%. The ratio of measured cross section to the expected one in the standard V-A theory of weak interactions is: σ ⨍/σ V-A = 98.7% ± 1.4% ± 2.7% = 0.987 ± 0.030 .
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; Dolph, J.; Qian, X.; Sharma, R.; Viren, B.; Zhang, C.
2015-11-06
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.
2015-11-01
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies
NASA Astrophysics Data System (ADS)
Hebeler, K.; Krebs, H.; Epelbaum, E.; Golak, J.; Skibiński, R.
2015-04-01
We present a novel framework to decompose three-nucleon forces in a momentum-space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei, and nuclear matter based on higher-order chiral three-nucleon forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at next-to-next-to-leading-order and next-to-next-to-next-to-leading-order in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon-force contributions for 3H . For nonlocal regulators, we find that the subleading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.
NASA Astrophysics Data System (ADS)
Ward, Thomas
2013-10-01
A new electromagnetic neutral-current quark mixing matrix, analog to the well-known Cabibbo-Kobayashi-Maskawa (CKM) weak charge-current matrix, is proposed to account for the strange quark content of the neutron and proton and part of the anomalous axial vector magnetic moments. The EM-CKM matrix is shown to be equivalent to the weak-CKM matrix following an EM to weak gauge symmetry transformation, demonstrating the universality of the Standard Model (SM) CKM quark mixing matrix. The electric and magnetic form factors are reformulated using a new QCD three quark nucleon gyromagnetic factor, Dirac and Pauli form factors and anomalous kappa factors. The old 1943 Jauch form factors which have been systematically used and developed for many years is shown to be in stark disagreement with the new global set of experimental polarized electron-proton scattering data whereas the reformulated SM parameter set of this study is shown to agree very well, lending strong support for this new EM SM approach.
Parity violation in few-nucleon systems
NASA Astrophysics Data System (ADS)
Schindler, Matthias
2017-01-01
Parity-violating interactions between nucleons are the manifestation of an interplay between strong and weak quark-quark interactions at the hadronic level. Because of the short range of the weak interactions, these parity-violating forces provide a unique probe of low-energy strong interactions. In addition, a better understanding of parity violation in nuclei could also shed light on problems in the hadronic weak interactions involving strange quarks. An ongoing experimental program is mapping out the weak component of the nuclear force in few-nucleon systems. Recent theoretical progress in analyzing and interpreting hadronic parity violation in such systems, based on effective field theory methods, will be described. This work was supported by the DOE Office of Science, Office of Nuclear Physics.
The form factors of the nucleons
NASA Astrophysics Data System (ADS)
Perdrisat, C. F.
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with previous unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model independently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
Physics of the nucleon sea quark distributions
Vogt, R.
2000-03-10
Sea quark distributions in the nucleon have naively been expected to be generated perturbatively by gluon splitting. In this case, there is no reason for the light quark and anti-quark sea distributions to be different. No asymmetries in the strange or heavy quark sea distributions are predicted in the improved parton model. However,recent experiments have called these naive expectations into question. A violation of the Gottfried sum rule has been measured in several experiments, suggesting that (bar u) < (bar d) in the proton. Additionally, other measurements, while not definitive, show that there may be an asymmetry in the strange and anti-strange quark sea distributions. These effects may require nonperturbative explanations. In this review we first discuss the perturbative aspects of the sea quark distributions. We then describe the experiments that could point to nonperturbative contributions to the nucleon sea. Current phenomenological models that could explain some of these effects are reviewed.
New model for nucleon generalized parton distributions
Radyushkin, Anatoly V.
2014-01-01
We describe a new type of models for nucleon generalized parton distributions (GPDs) H and E. They are heavily based on the fact nucleon GPDs require to use two forms of double distribution (DD) representations. The outcome of the new treatment is that the usual DD+D-term construction should be amended by an extra term, {xi} E{sub +}{sup 1} (x,{xi}) which has the DD structure {alpha}/{beta} e({beta},{alpha}, with e({beta},{alpha}) being the DD that generates GPD E(x,{xi}). We found that this function, unlike the D-term, has support in the whole -1 <= x <= 1 region. Furthermore, it does not vanish at the border points |x|={xi}.
Meson photoproduction from the nucleon at CLAS
Daniel P. Watts
2012-01-01
The excitation spectrum of the nucleon provides a stringent constraint on the dynamics and interactions of its internal constituents and therefore probes the mechanism of confinement in the light quark sector. Our detailed knowlege of this excitation spectrum is poor, with many predicted states not yet observed in experiment and many 'established' states having poorly known properties. To address these shortcomings a worldwide effort is currently underway exploiting the latest generation of electron and photon beams in detailed studies of meson photoproduction from nucleon targets. A major contribution to this effort will come from the experimental programme at Jefferson Lab exploiting the frozen spin target (FROST) with the CLAS spectrometer. The status of this project will be presented along with preliminary results and analyses.
Understanding Nucleons in the Nuclear Medium
Douglas Higinbotham, Vince Sulkosky
2010-10-01
Recent cross section (e,e'pN) short-range correlation experiments have clearly shown the strong dominance of tensor correlations for (e,e'p) missing momenta greater than the Fermi momentum; while recent D(e,e'p)n and 4He(e,e'p)t asymmetry experiments at low missing momentum have shown small changes from the free nucleon form factor. By doing asymmetry experiments as a function of missing momentum, these results can be linked together and observed as a change of sign in the measured asymmetry. This idea will be presented within the context of the recently completed Jefferson Lab Hall A quasi-elastic, polarized 3He(e,e'N) experiments (N=0,p,n,d) where the asymmetries of several reaction channels were measured with three, orthogonal target-spin directions. Together, these various experiments will help us to better understand nucleons in the nuclear medium.
The Form Factors of the Nucleons
Perdrisat, Charles F.
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with pre-vious unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high- precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model in- dependently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
Scattering of low-energy neutrinos on atomic shells
Babič, Andrej; Šimkovic, Fedor
2015-10-28
We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.
Scattering of low-energy neutrinos on atomic shells
NASA Astrophysics Data System (ADS)
Babič, Andrej; Šimkovic, Fedor
2015-10-01
We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.
Exclusive Reactions Involving Pions and Nucleons
NASA Technical Reports Server (NTRS)
Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.
2002-01-01
The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.
Vector resonances and electromagnetic nucleon structure
Williams, R.A.; Krewald, S.; Linen, K. )
1995-02-01
Motivated by new, precise magnetic proton form factor data in the timelike reigon, a hybrid vector meson dominance (hVMD) formalism is employed to investigate the significance of excited vector meson rsonances on electromagnetic nucleon structure. We find that the [rho](1700), [omega](1600), and two previously unobserved states are required to reproduce the local structure seen in the new LEAR data just above the [ital p[bar p
The Angular Momentum Structure of the Nucleon
Nowak, Wolf-Dieter
2008-10-13
The proton spin budget is discussed. Results are presented from inclusive and semi-inclusive deep inelastic scattering and from deeply virtual Compton scattering. They permit interpretations towards the determination of various contributions to the proton spin.
Differential Cross Sections for Proton-Proton Elastic Scattering
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.
2009-01-01
Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.
Pion-Mass Dependence of the Nucleon Polarisabilities: A Reappraisal
NASA Astrophysics Data System (ADS)
Phillips, Daniel R.; Griesshammer, Harald W.; McGovern, Judith A.
2014-09-01
The static electric and magnetic scalar dipole polarisabilities and the four spin polarisabilities parametrise the nucleon's two-photon response. At next-to-next-to-leading order in Chiral Effective Field Theory (χEFT) with dynamical Δ (1232) s, they have recently been extracted from Compton scattering data; ongoing experiments at HI γS, MAMI and MAXlab test proton-neutron differences and chiral symmetry breaking. Comparing lattice QCD simulations at pion masses mπ > 220 MeV to data and χEFT predictions requires a reliable extrapolation to the physical point. Since χEFT provides a systematically improvable, model-independent parametrisation of the polarisabilities, it is well-suited for that task. The relative theoretical uncertainties increase with increasing mπ: the magnitudes of the polarisabilities decrease; the χEFT expansion parameter itself increases; and the Δ (1232) becomes more important, leading to a re-ordering of contributions. After a review of χEFT, this presentation offers a method to quantitatively assess error-bands for chiral lattice extrapolations which can also be applied to other cases. Published errors appear to be underestimated. The static electric and magnetic scalar dipole polarisabilities and the four spin polarisabilities parametrise the nucleon's two-photon response. At next-to-next-to-leading order in Chiral Effective Field Theory (χEFT) with dynamical Δ (1232) s, they have recently been extracted from Compton scattering data; ongoing experiments at HI γS, MAMI and MAXlab test proton-neutron differences and chiral symmetry breaking. Comparing lattice QCD simulations at pion masses mπ > 220 MeV to data and χEFT predictions requires a reliable extrapolation to the physical point. Since χEFT provides a systematically improvable, model-independent parametrisation of the polarisabilities, it is well-suited for that task. The relative theoretical uncertainties increase with increasing mπ: the magnitudes of the
Antineutrino-induced charge current quasi-elastic neutral hyperon production in ArgoNeuT
NASA Astrophysics Data System (ADS)
Farooq, Saima
This dissertation presents the first topological study of the charge current quasi-elastic (CCQE) neutral hyperon production induced by antineutrinos in the ArgoNeuT detector, a liquid argon time projection chamber (LArTPC) at Fermilab, using 1.20 x 1020 protons-on- target (POT), in the NuMI beam operating in the low energy antineutrino mode. The total cross section for the CCQE neutral hyperon production is reported at the mean production energy of 3.42 GeV. The event yield in data is consistent with the predicted cross section, sigma = 2.7 x 10-40 cm2: sigma(CCQELambda0+Sigma0 ) = 3.7 +/- 1.9(stat.) +/- 1.5 (sys.) x 10 -40 cm2. The study sets a 90% confidence level (C.L.) upper limit on the total cross section of CCQE neutral hyperon production: sigma(CCQE Lambda0+Sigma0) < 7.3 x10-40 cm 2 at 90% C.L.
NASA Astrophysics Data System (ADS)
Dey, J.; Samanta, B. C.; Dey, M.
1980-09-01
A calculation is performed using lowest order Brueckner theory in momentum space, with explicit isobar configurations included through the coupled channel mathod. The effective interaction for the1 S 0-5 D 0 channel is extracted from this calculation. Two different transition potentials are used — one due to Green and Niskanen (1976), the other, due to Green and co-workers (1978). The nucleon-nucleon (NN) interaction used is the Reid soft core potential, compensated for the inclusion of the explicit isobar channel. The effective interaction shows marked momentum dependence in the intermediate range. The loss of attraction depends on the transition potential one chooses. The correlation function involving the nucleon-isobar intermediate state is anti-correlated to the NN part.
Isospin-violating nucleon-nucleon forces using the method of unitary transformation
Evgeny Epelbaum; Ulf-G. Meissner
2005-02-01
Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.
ERIC Educational Resources Information Center
Young, Andrew T.
1982-01-01
The correct usage of such terminology as "Rayleigh scattering,""Rayleigh lines,""Raman lines," and "Tyndall scattering" is resolved during an historical excursion through the physics of light-scattering by gas molecules. (Author/JN)