Science.gov

Sample records for antioxidant defence system

  1. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.

    PubMed

    Wujeska, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2013-10-01

    Current climate change predictions hint to more frequent extreme weather events, including extended droughts, making better understanding of the impacts of water stress on trees even more important. At the individual plant level, stomatal closure as a result of water deficit leads to reduced CO2 availability in the leaf, which can lead to photo-oxidative stress. Photorespiration and the Mehler reaction can maintain electron transport rates under low internal CO2, but result in production of reactive oxygen species (ROS). If electron consumption is decreased, upstream photochemical processes can be affected and light energy is absorbed in excess of photochemical requirements. Trees evolved to cope with excess energy and elevated concentration of ROS by activating photoprotective and antioxidative defence systems. The meta-analysis we present here assessed responses of these defence systems reported in 50 studies. We found responses to vary depending on stress intensity, foliage type and habitat, and on whether experiments were done in the field or in controlled environments. In general, drought increased concentrations of antioxidants and photoprotective pigments. However, severe stress caused degradation of antioxidant concentrations and oxidation of antioxidant pools. Evergreen trees seemed to preferentially reinforce membrane-bound protection systems zeaxanthin and tocopherol, whereas deciduous species showed greater responses in water-soluble antioxidants ascorbic acid and glutathione. Trees and shrubs from arid versus humid habitats vary in their antioxidative and photoprotective defence responses. In field experiments, drought had greater effects on some defence compounds than under controlled conditions.

  2. Evolution of cubic membranes as antioxidant defence system

    PubMed Central

    Deng, Yuru; Almsherqi, Zakaria A.

    2015-01-01

    Possibly the best-characterized cubic membrane transition has been observed in the mitochondrial inner membranes of free-living giant amoeba (Chaos carolinense). In this ancient organism, the cells are able to survive in extreme environments such as lack of food, thermal and osmolarity fluctuations and high levels of reactive oxygen species. Their mitochondrial inner membranes undergo rapid changes in three-dimensional organization upon food depletion, providing a valuable model to study this subcellular adaptation. Our data show that cubic membrane is enriched with unique ether phospholipids, plasmalogens carrying very long-chain polyunsaturated fatty acids. Here, we propose that these phospholipids may not only facilitate cubic membrane formation but may also provide a protective shelter to RNA. The potential interaction of cubic membrane with RNA may reduce the amount of RNA oxidation and promote more efficient protein translation. Thus, recognizing the role of cubic membranes in RNA antioxidant systems might help us to understand the adaptive mechanisms that have evolved over time in eukaryotes. PMID:26464785

  3. Interactive effects of early and later nutritional conditions on the adult antioxidant defence system in zebra finches.

    PubMed

    Noguera, José C; Monaghan, Pat; Metcalfe, Neil B

    2015-07-01

    In vertebrates, antioxidant defences comprise a mixture of endogenously produced components and exogenously obtained antioxidants that are derived mostly from the diet. It has been suggested that early-life micronutritional conditions might influence the way in which the antioxidant defence system operates, which could enable individuals to adjust the activity of the endogenous and exogenous components in line with their expected intake of dietary antioxidants if the future environment resembles the past. We investigated this possibility by experimentally manipulating the micronutrient content of the diet during different periods of postnatal development in the zebra finch (Taeniopygia guttata). Birds that had a low micronutrient diet during the growth phase initially had a lower total antioxidant capacity (TAC) than those reared under a high micronutrient diet, but then showed a compensatory response, so that by the end of the growth phase, the TAC of the two groups was the same. Interestingly, we found an interactive effect of micronutrient intake early and late in development: only those birds that continued with the same dietary treatment (low or high) throughout development showed a significant increase in their TAC during the period of sexual maturation. A similar effect was also found in the level of enzymatic antioxidant defences (glutathione peroxidase; GPx). No significant effects were found in the level of oxidative damage in lipids [malondialdehyde (MDA) levels]. These findings demonstrate the importance of early and late developmental conditions in shaping multiple aspects of the antioxidant system. Furthermore, they suggest that young birds may adjust their antioxidant defences to enable them to 'thrive' on diets rich or poor in micronutrients later in life.

  4. Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity.

    PubMed

    Sharma, Indu; Pati, Pratap Kumar; Bhardwaj, Renu

    2011-06-01

    Heavy metals have emerged as major environmental contaminants due to rapid industrialization and urbanization. The genotoxic, mutagenic and carcinogenic effects of heavy metal like chromium (Cr) on man, animals and plants have been documented. In plants, accumulation of heavy metals beyond critical levels generates oxidative stress. This stress is generally overcome by antioxidant defence system and stress shielding phytohormones. Thus, the present study has been focused to analyze the effect of one of imperative group of plant hormones, i.e., brassinosteroids (BRs) which have been reported for its protective properties for wide array of environmental stresses. Raphanus sativus L. (Pusa Chetaki) seeds pre-treated with different concentrations of 28-homobrassinolide (28-HBL) were raised under various concentrations of Cr(VI). It was observed that 28-HBL treatment considerably reduced the impact of Cr-stress on seedlings which was evinced upon analysis of morphological and biochemical parameters of 7-days old radish seedlings. The toxic effects of Cr in terms of reduced growth, lowered contents of chlorophyll (Chl), protein, proline; increased malondialdehyde (MDA) content and elevated metal uptake were ameliorated by applications of 28-HBL. Also, the activities of all the antioxidant enzymes except guaiacol peroxidase (POD), increased significantly when subjected to Cr stress in combination with 28-HBL. Overall, seed pre-soaking treatment of 28-HBL at 10(-7) M was most effective in ameliorating Cr stress. The present work emphasizes the protective role of 28-HBL on regulation of antioxidant enzymes and its possible link in amelioration of stress in plants.

  5. Sub-lethal effects of cadmium on the antioxidant defence system of the hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Company, Rui; Serafim, Angela; Cosson, Richard P; Fiala-Médioni, Aline; Camus, Lionel; Serrão-Santos, Ricardo; João Bebianno, Maria

    2010-07-01

    The mussel Bathymodiolus azoricus is one of the most abundant species in the Mid-Atlantic Ridge hydrothermal vents and is continually exposed to the high-temperature venting fluids containing high metal concentrations and enriched in sulphides and methane, which constitute a potential toxic environment for marine species. The aim of this study was to assess the effects of a sub-lethal Cd concentration on the antioxidant defence system of this mussel. B. azoricus were collected at Menez Gwen vent site (37 degrees 51'N, 32 degrees 31'W) and exposed to Cd (50 microg l(-1)) during 24 days, followed by a depuration period of six days. A battery of stress related biomarkers including antioxidant enzymes (superoxide dismutase-SOD, catalase-CAT; glutathione peroxidases-GPx), metallothioneins (MT), lipid peroxidation (LPO) and total oxyradical scavenging capacity (TOSC) were measured in the gills and mantle of B. azoricus. Cd was accumulated linearly during the exposure period in both tissues and no significant elimination occurred after the 6 days of depuration. Antioxidant enzymes activities were significantly higher in the gills. Cyt-SOD, T-GPx and Se-GPx were induced during the experiment but this was also observed in control organisms. Mit-SOD and CAT activities remained relatively unchanged. MT levels increased linearly in the gills of exposed mussels in the first 18 days of exposure. No significant differences were observed between LPO levels of control and exposed mussels. TOSC levels remained unchanged in control and exposed mussels. This suggests that although Cd is being accumulated in the tissues of exposed mussels, MT defence system is enough to detoxify the effect of Cd accumulated in the tissues. Furthermore, other factors besides the presence of Cd are influencing the antioxidant defence system in B. azoricus.

  6. Effect of temperature acclimation on the liver antioxidant defence system of the Antarctic nototheniids Notothenia coriiceps and Notothenia rossii.

    PubMed

    Machado, Cintia; Zaleski, Tania; Rodrigues, Edson; Carvalho, Cleoni Dos Santos; Cadena, Silvia Maria Suter Correia; Gozzi, Gustavo Jabor; Krebsbach, Priscila; Rios, Flávia Sant'Anna; Donatti, Lucélia

    2014-01-01

    The aim of this study was to determine whether endemic Antarctic nototheniid fish are able to adjust their liver antioxidant defence system in response to the temperature increase. The activity of the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) enzymes as well as the content of non-enzymatic oxidative stress markers such as reduced glutathione (GSH), lipid peroxidation (LPO) and protein carbonyl (PC) were measured in the liver of two Antarctic fish species, Notothenia rossii and Notothenia coriiceps after 1, 3 and 6days of exposure to temperatures of 0°C and 8°C. The GST activity showed a downregulation in N. rossii after 6days of exposure to the increased temperature. The activity profiles of GST and GR in N. rossii and of GPx in N. coriiceps also changed as a consequence of heating to 8°C. The GSH content increased by heating to 8°C after 3days in N. coriiceps and after 6days in N. rossii. The content of malondialdehyde (MDA), a LPO marker, showed a negative modulation by the heating to 8°C in N. rossii after 3days of exposure to temperatures. Present results show that heating to 8°C influenced the levels and profiles of the antioxidant enzymes and defences over time in the nototheniid fish N. rossii and N. coriiceps. PMID:24607634

  7. Influence of Podophyllum hexandrum on endogenous antioxidant defence system in mice: possible role in radioprotection.

    PubMed

    Mittal, A; Pathania, V; Agrawala, P K; Prasad, J; Singh, S; Goel, H C

    2001-08-01

    Podophyllum hexandrum, a Himalayan herb with known radioprotective and anti-tumour properties, was investigated for its mechanism of action. Glutathione S-transferase (GST), catalase, superoxide dismutase (SOD) activities and lipid peroxidation (LPx) were determined in the liver, jejunum and ileum at various time intervals, with and without the aqueous extract of P. hexandrum rhizome (200 mg/kg b.w. i.p.) in unirradiated and whole body irradiated (10 Gy,-2 h) male Swiss albino mice. Pre-irradiation treatment with P. hexandrum enhanced liver GST (P<0.01) and SOD (P<0.05) at 12 h post irradiation, the intestinal SOD (P<0.00005) at 84 h post irradiation was significantly elevated. However, no significant change was manifested in the catalase activity in the liver, at any of the post irradiation intervals (0, 12 and 84 h). The antioxidant defence with Podophyllum sp. treatment in mice can explain to some extent its protective action manifested in terms of survival against whole body lethal irradiation. However, some other possible mechanisms that may strengthen radioprotective action of the Podophyllum sp. extract need to be investigated further.

  8. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought

  9. Effects of MnTnHex-2-PyP on lung antioxidant defence system in asthma mice model.

    PubMed

    Dancheva, Violeta; Terziev, Lyudmil; Shopova, Veneta; Stavreva, Galya

    2012-12-01

    We aimed to study the MnTnHex-2-PyP effect on some markers of lung antioxidant defence system in mice asthma model.The study was carried out on 28 C57B1/6 mice divided into four treatment groups: group 1 - controls; group 2 - injected and inhaled with ovalbumin; group 3 - treated with MnTnHex-2-PyP and inhaled with phosphate buffered saline; group 4 - injected with ovalbumin and MnTnHex-2-PyP but also inhaled with ovalbumin. On days 24, 25 and 26, mice from groups 1 and 2 were inhaled with PBS for 30 min, and those from groups 2 and 4 were given a 1% ovalbumin solution. One hour before inhalation, and 12 hours later the animals from groups 1 and 2 were injected i.p. with 100 μl PBS, and those from groups 3 and 4 received a 100 μl MnTnHex-2-PyP solution in PBS, сontaining 0,05mg/kg. The animals were killed by exsanguination 48 hours after the last inhalation for obtaining a lung homogenate. The activities of superoxide dismutase, catalase, glutathione peroxidase and the non-protein sulphhydryl group content in the lung homogenate were investigated. Ovalbumin decreased the activities of superoxide dismutase (p=0.01), catalase (p=0.002), glutathione peroxidase and non-protein sulphhydryl groups content (p<0.001) in comparison to controls. In group 4 (ovalbumin and MnTnHex-2-PyP) the activities of superoxide dismutase (p=0.044), catalase (p=0.045), glutathione peroxidase (p=0.002), and the non-protein sulphhydryl groups content (p<0.001) were significantly increased compared to ovalbumin (group 2).MnTnHex-2-PyP restored the activities of basic enzymes in the lung antioxidant defence system in ovalbumin-induced asthma mice model, 48 hours after the last nebulization.

  10. Comparative study of the antioxidant defence systems in the erythrocytes of Australian marsupials and monotremes.

    PubMed

    Whittington, A T; Parkinson, A L; Spencer, P B; Grigg, G; Hinds, L; Gallagher, C H; Kuchel, P W; Agar, N S

    1995-03-01

    A comparison of the erythrocyte (RBC) antioxidant metabolites and enzymes in nine marsupial and two monotreme species was carried out. Reduced glutathione (GSH) concentrations were comparable with those reported for other marsupial and eutherian species. An important finding was that the erythrocytes of the southern hairy nosed wombat regenerated GSH faster than the erythrocytes from its close relative, the common wombat. The activities of glutathione-S-transferase, NADH-methaemoglobin reductase, superoxide dismutase, and glutathione peroxidase (GSH-Px), showed similar levels and extents of variation as those observed in other marsupial and eutherian species. Catalase activities in the marsupials were lower than those measured in the two monotreme species and much lower than those reported in eutherian species. A negative correlation, significant at P < 0.05, was observed between GSH-Px and catalase activities in the RBC of the marsupials. Since both these enzymes "detoxify" H2O2, there appears to be a reciprocal relationship between the activities of these enzymes in marsupial RBC.

  11. Crucial Roles of Systemic and Tissue Lipid Peroxidation Levels and Anti-Oxidant Defences Following Contrast Agent Application

    PubMed Central

    Sitar, Gungor; Kucuk, Mehmet; Erinc Sitar, Mustafa; Yasar, Ozgur; Aydin, Seval; Yanar, Karolin; Cakatay, Ufuk; Buyukpınarbasili, Nur

    2016-01-01

    Background One of the most important side effects of contrast pharmaceutical agents, which are used very common in routine radiology practice, is contrast induced nephropathy. Even ischemia, oxidative stress and osmolality related cytotoxic effects are considered, the molecular mechanisms underlying this pathology have not been identified completely yet. Objectives The aim of the current study was to reveal the role of oxidative stress and antioxidant enzymatic defence mechanisms in the aetiopathogenesis of contrast-induced nephropathy. We also studied possible alleviating effects of N-acetylcysteine (NAC), a potent antioxidant, to obtain extra information regarding the molecular mechanisms underlying this pathology. Materials and Methods This is an clinical-experimental study, This study was conducted of Istanbul/Turkey between September 15, 2012 and April 15, 2013. Three groups of male rats were randomly set up as a control group (C), a 100 mg/kg intraperitoneal NAC + 7 mL/kg contrast agent group (N + CIN) and a 7 mL/kg intraperitoneal contrast agent group (CIN). They were placed in individual metabolic cages 48 hours after agent administration to obtain 24-hour urine samples. Renal function tests (albumin, urea, creatinine, total protein) were conducted, oxidative stress parameters (Cu, Zn superoxide dismutase activity - Cu, Zn-SOD; advanced oxidation protein products - AOPP; protein carbonyls - PCO; total thiol groups - T-SH; and lipid hydroperoxides -LHP) were measured and tissues were analysed histopathologically. Results Compared with the control group, groups CIN and N + CIN had significantly higher urea and LHP levels (P < 0.05 and P < 0.001, respectively) and significantly lower Cu, Zn-SOD activity and creatinine clearance (P < 0.05). There was no statistically significant difference between the groups in PCO or AOPP levels despite differences in descriptive statistics. Conclusions Contrast-agent-induced nephropathic changes are more closely related to

  12. Crucial Roles of Systemic and Tissue Lipid Peroxidation Levels and Anti-Oxidant Defences Following Contrast Agent Application

    PubMed Central

    Sitar, Gungor; Kucuk, Mehmet; Erinc Sitar, Mustafa; Yasar, Ozgur; Aydin, Seval; Yanar, Karolin; Cakatay, Ufuk; Buyukpınarbasili, Nur

    2016-01-01

    Background One of the most important side effects of contrast pharmaceutical agents, which are used very common in routine radiology practice, is contrast induced nephropathy. Even ischemia, oxidative stress and osmolality related cytotoxic effects are considered, the molecular mechanisms underlying this pathology have not been identified completely yet. Objectives The aim of the current study was to reveal the role of oxidative stress and antioxidant enzymatic defence mechanisms in the aetiopathogenesis of contrast-induced nephropathy. We also studied possible alleviating effects of N-acetylcysteine (NAC), a potent antioxidant, to obtain extra information regarding the molecular mechanisms underlying this pathology. Materials and Methods This is an clinical-experimental study, This study was conducted of Istanbul/Turkey between September 15, 2012 and April 15, 2013. Three groups of male rats were randomly set up as a control group (C), a 100 mg/kg intraperitoneal NAC + 7 mL/kg contrast agent group (N + CIN) and a 7 mL/kg intraperitoneal contrast agent group (CIN). They were placed in individual metabolic cages 48 hours after agent administration to obtain 24-hour urine samples. Renal function tests (albumin, urea, creatinine, total protein) were conducted, oxidative stress parameters (Cu, Zn superoxide dismutase activity - Cu, Zn-SOD; advanced oxidation protein products - AOPP; protein carbonyls - PCO; total thiol groups - T-SH; and lipid hydroperoxides -LHP) were measured and tissues were analysed histopathologically. Results Compared with the control group, groups CIN and N + CIN had significantly higher urea and LHP levels (P < 0.05 and P < 0.001, respectively) and significantly lower Cu, Zn-SOD activity and creatinine clearance (P < 0.05). There was no statistically significant difference between the groups in PCO or AOPP levels despite differences in descriptive statistics. Conclusions Contrast-agent-induced nephropathic changes are more closely related to

  13. [Effect of biologically active substances from marine organisms on lipid peroxidation-antioxidant defence system in gastroduodenitis, associated with hyperlipidemia].

    PubMed

    Knyshova, V V; Ivanova, I L; Kozlovskaia, E P; Loenko, Iu N

    2002-01-01

    An experimental model of gastroduodenitis combined with hyperlipidemia was used to study the effects of the product Zolotoi rog (Golden Horn) which is a composition of biologically active substances of marine organisms and honey. It was found that a course administration of Zolotoi rog in a dose 2.5 mg/kg b.w. improves histomorphology of gastric mucosa, acts hypolipidemically, raises reserves of the antioxidant system of the body and suppresses intensity of lipid peroxidation.

  14. Influence of Zn-contaminated soils in the antioxidative defence system of wheat (Triticum aestivum) and maize (Zea mays) at different exposure times: potential use as biomarkers.

    PubMed

    Alonso-Blázquez, Nieves; García-Gómez, Concepción; Fernández, María Dolores

    2015-03-01

    In this study, we evaluated the antioxidant responses of wheat and maize growing in Zn-treated soils (200, 450 and 900 mg kg(-1)) at different exposure times (7, 14, 21 and 35 days). The Zn concentration in the plants increased with an increase in the Zn concentration in the soil, thereby causing an increase in the accumulation of Mg and Mn. The emergence of wheat and the growth of maize were inhibited by Zn. The chlorophyll levels increased in wheat, whereas the opposite effect was observed in maize. Regarding enzymatic activities, Zn only provoked pronounced increases in the ascorbate peroxidase activity in maize at the early exposure times and occasionally in the superoxide dismutase (14 days) and catalase (7 and 35 days) activities in wheat. The most notable effect of the exposure of plants to Zn was an inhibition of antioxidative activities after 35 days in both plant species. The reduced glutathione levels increased in wheat and maize after 35 days and the protein levels in wheat after 7 and 35 days. The only significant alteration of lipid peroxidation was a decrease in the malondialdehyde level in wheat after 35 days. Results of this work suggest that Zn may generate oxidative stress by interfering with the plant antioxidant defence system (peroxidases, catalases and superoxide dismutase) responsible for free radical detoxification. The enzymatic activities, particularly ascorbate peroxidase, and the content of reduced glutathione could be considered good biomarkers of serious stress by Zn in soils.

  15. Semecarpus anacardium nut extract promotes the antioxidant defence system and inhibits anaerobic metabolism during development of lymphoma.

    PubMed

    Verma, Nibha; Vinayak, Manjula

    2009-06-01

    Antioxidants are substances that fight against ROS (reactive oxygen species) and protect the cells from their damaging effects. Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which promotes a large number of human diseases, including cancer. Therefore antioxidants may be regarded as potential anticarcinogens, as they may slow down or prevent development of cancer by reducing oxidative stress. Fruits and vegetables are rich source of antioxidants. Moreover, a number of phytochemicals present in medicinal plants are known to possess antioxidant activity. Therefore the aim of the present study was to investigate antioxidant activity of the aqueous extract of nuts of the medicinal plant Semecarpus anacardium in AKR mouse liver during the development of lymphoma. Antioxidant action was monitored by the activities of antioxidant enzymes catalase, superoxide dismutase and glutathione transferase. The effect of S. anacardium was also studied by observing the activity of LDH (lactate dehydrogenase), an enzyme of anaerobic metabolism. LDH activity serves as a tumour marker. The activities of antioxidant enzymes decreased gradually as lymphoma developed in mouse. However, LDH activity increased progressively. Administration of the aqueous extract of S. anacardium to lymphoma-transplanted mouse led to an increase in the activities of antioxidant enzymes, whereas LDH activity decreased significantly, indicating a decrease in carcinogenesis. The aqueous extract was found to be more effective than doxorubicin, a classical anticarcinogenic drug, with respect to its action on antioxidant enzymes and LDH in the liver of mice with developing lymphomas. PMID:18764779

  16. Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system

    PubMed Central

    Chen, Xianyang; Bao, Hexigeduleng; Guo, Jie; Jia, Weitao; Tai, Fang; Nie, Lingling; Jiang, Ping; Feng, Juanjuan; Lv, Sulian; Li, Yinxin

    2014-01-01

    Despite the importance of NHX1 (Na+/H+ exchanger 1) in plant salt tolerance, little is known about its other functions. In this study, intriguingly, it was found that NHX1 participated in plant disease defence against Phytophthora parasitica var. nicotianae (Ppn) in Nicotiana benthamiana. NbNHX1 was originally isolated from N. benthamiana, and characterized. The subcellular localization of NbNHX1 with its C-terminus fused with green fluorescent protein indicated that NbNHX1 localized primarily to the tonoplast. Tobacco rattle virus-induced NbNHX1 silencing led to reduced H+ efflux from the vacuole to cytoplasts, and decreased Ppn resistance in N. benthamiana. After attack by Ppn, NbNHX1-silenced plants exhibited impaired ability to scavenge reactive oxidative species (ROS) induced by the pathogen. Pea early browning virus-mediated ectopic expression of SeNHX1 (from Salicornia europaea) or AtNHX1 (from Arabidopsis thaliana) both conferred enhanced Ppn resistance to N. benthamiana, with a lower H2O2 concentration after Ppn inoculation. Further investigation of the role of NHX1 demonstrated that transient overexpression of NbNHX1 improved the vacuolar pH and cellular ROS level in N. benthamiana, which was coupled with an enlarged NAD(P) (H) pool and higher expression of ROS-responsive genes. In contrast, NbNHX1 silencing led to a lower pH in the vacuole and a lower cellular ROS level in N. benthamiana, which was coupled with a decreased NAD(P) (H) pool and decreased expression of ROS-responsive genes. These results suggest that NHX1 is involved in plant disease defence; and regulation of vacuolar pH by NHX1, affecting the cellular oxidation state, primes the antioxidative system which is associated with Ppn resistance in tobacco. PMID:25170102

  17. [Defects in antioxidant defence enhance glyoxal toxicity in the yeast Saccharomyces cerevisiae].

    PubMed

    Semchyshyn, H M

    2013-01-01

    Glyoxal being either exogenous or endogenous compound belongs to reactive carbonyl species. In particular, its level increases under disturbance of the balance of glucose intracellular metabolism as well as of other reductive carbohydrates. Having two carbonyl reactive groups, glyoxal readily enters glycation reaction that results in carbonyl stress development. Investigations of different model systems demonstrate a strong relationship between carbonyl and oxidative stress. However, a possible role of antioxidant system in the organisms' defence against carbonyl stress is poor understood. In addition, the influence of glyoxal on living organisms is less studied than the effect of such carbonyl reactive species as malonic aldehyde or methylglyoxal. To study a potential role of antioxidant system in organisms' defence against carbonyl stress induced by glyoxal, the baker's yeast Saccharomyces cerevisiae was used. It has been found that strains with different defects in the antioxidant defence were more sensitive to glyoxal as compared with parental wild strain. Therefore, the data obtained in the present study confirm the relationship between carbonyl and oxidative stress and reveal the important role of antioxidant system in baker's yeast defence against carbonyl stress induced by glyoxal.

  18. Effects of myosmine on antioxidative defence in rat liver.

    PubMed

    Simeonova, Rumyana; Vitcheva, Vessela; Gorneva, Galina; Mitcheva, Mitka

    2012-03-01

    Myosmine [3-(1-pyrrolin-2-yl) pyridine] is an alkaloid structurally similar to nicotine, which is known to induce oxidative stress. In this study we investigated the effects of myosmine on enzymatic and non-enzymatic antioxidative defence in rat liver. Wistar rats received a single i.p. injection of 19 mg kg-1 of myosmine and an oral dose of 190 mg kg-1 by gavage. Nicotine was used as a positive control. Through either route of administration, myosmine altered the hepatic function by decreasing the levels of reduced glutathione, superoxide dismutase, and glutathione peroxidase activities on one hand and by increasing malondialdehyde, catalase, and glutathione reductase activity on the other. Compared to control, both routes caused significant lipid peroxidation in the liver and altered hepatic enzymatic and non-enzymatic antioxidative defences. The pro-oxidant effects of myosmine were comparable with those of nicotine. PMID:22450200

  19. Temporal variation in the antioxidant defence system and lipid peroxidation in the gills and mantle of hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Company, Rui; Serafim, Angela; Cosson, Richard; Fiala-Médioni, Aline; Dixon, David; João Bebianno, Maria

    2006-07-01

    Hydrothermal vent mussels are exposed continually to toxic compounds, including high metal concentrations and other substances like dissolved sulphide, methane and natural radioactivity. Fluctuations in these parameters appear to be common because of the characteristic instability of the hydrothermal environment. Temporal variation in the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), total glutathione peroxidases (Total GPx), selenium dependent glutathione peroxidases (Se-GPx)), metallothioneins and lipid peroxidation (LPO) in the gills and mantle of the mussel Bathymodiolus azoricus from Menez-Gwen hydrothermal vent site was evaluated and related to the accumulated metal concentrations (Ag, Cu, Cd, Fe, Mn and Zn) in the tissues. Maximum antioxidant enzyme activities in the gills were detected in the beginning of summer, followed by a gradual decrease throughout the following months. One year after, the levels of antioxidant enzyme activities were similar to those reported one year before. LPO in this tissue exhibited a similar temporal variation trend. A different pattern of temporal variation in antioxidant enzyme activities was observed in the mantle, with a gradual increase from summer to the end of autumn (November). LPO in the mantle exhibited an almost reverse trend of temporal variation to that of antioxidant enzyme activities in this tissue. Antioxidant defences in the gills of B. azoricus were significantly enhanced with increasing concentrations of Ag, Cu and Mn, while negative relationships between antioxidant enzymes and Cd, Cu, Mn and Zn concentrations in the mantle were observed, suggesting different pathways of reactive oxygen species (ROS) production and that these tissues responded differently to the metal accumulation. However, temporal variation in biomarkers of defence and damage were in general similar to coastal bivalve species and can be associated with temporal variations of the physiological status due to reproduction

  20. Comparative analyses of genotoxicity, oxidative stress and antioxidative defence system under exposure of methyl parathion and hexaconazole in barley (Hordeum vulgare L.).

    PubMed

    Dubey, Pragyan; Mishra, Amit Kumar; Singh, Ashok Kumar

    2015-12-01

    The present study aims to evaluate the comparative effects of methyl parathion and hexaconazole on genotoxicity, oxidative stress, antioxidative defence system and photosynthetic pigments in barley (Hordeum vulgare L. variety karan-16). The seeds were exposed with three different concentrations, i.e. 0.05, 0.1 and 0.5 % for 6 h after three pre-soaking durations 7, 17 and 27 h which represents G1, S and G2 phases of the cell cycle, respectively. Ethyl methane sulphonate, a well-known mutagenic agent and double distilled water, was used as positive and negative controls, respectively. The results indicate significant decrease in mitotic index with increasing concentrations of pesticides, and the extent was higher in methyl parathion. Chromosomal aberrations were found more frequent in methyl parathion than hexaconazole as compared to their respective controls. Treatment with the pesticides induced oxidative stress which was evident with higher contents of H2O2 and lipid peroxidation, and the increase was more prominent in methyl parathion. Contents of total phenolics were increased; however, soluble protein content showed a reverse trend. Among the enzymatic antioxidants, activities of superoxide dismutase and peroxidase were significantly up-regulated, and more increase was noticed in hexaconazole. Increments in total chlorophyll and carotenoid contents were observed up to 0.1 % but decreased at higher concentration (0.5 %), and the reductions were more prominent in methyl parathion than hexaconazole as compared to their respective controls. Methyl parathion treatment caused more damage in the plant cells of barley as compared to hexaconazole, which may be closely related to higher genotoxicity and oxidative stress.

  1. Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi.

    PubMed

    Rizzo, Angela M; Negroni, Manuela; Altiero, Tiziana; Montorfano, Gigliola; Corsetto, Paola; Berselli, Patrizia; Berra, Bruno; Guidetti, Roberto; Rebecchi, Lorena

    2010-06-01

    Reactive oxygen species (ROS) are formed in all aerobic organisms, potentially leading to oxidative damage of all biological molecules. A number of defence mechanisms have developed to protect the organism from attack by ROS. Desiccation tolerance is correlated with an increase in the antioxidant potential in several organisms, but the regulation of the antioxidant defence system is complex and its role in desiccation-tolerant organisms is not yet firmly established. To determine if anhydrobiotic tardigrades have an antioxidant defence system, capable of counteracting ROS, we compared the activity of several antioxidant enzymes, the fatty acid composition and Heat shock protein expression in two physiological states (desiccated vs. hydrated) of the tardigrade Paramacrobiotus richtersi. In hydrated tardigrades, superoxide dismutase and catalase show comparable activities, while in desiccated specimens the activity of superoxide dismutase increases. Both glutathione peroxidase and glutathione were induced by desiccation. The percentage of fatty acid composition of polyunsaturated fatty acids and the amount of thiobarbituric acid reactive substances are higher in desiccated animals than in hydrated ones. Lastly, desiccated tardigrades did not differ significantly from the hydrated ones in the relative levels of Hsp70 and Hsp90. These results indicate that the possession of antioxidant metabolism could represent a crucial strategy to avoid damages during desiccation in anhydrobiotic tardigrades.

  2. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species.

    PubMed

    Chainy, Gagan Bihari Nityananda; Paital, Biswaranjan; Dandapat, Jagneswar

    2016-01-01

    Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons. PMID:27127682

  3. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species

    PubMed Central

    Chainy, Gagan Bihari Nityananda; Paital, Biswaranjan; Dandapat, Jagneswar

    2016-01-01

    Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons. PMID:27127682

  4. Effects of Saccharomyces cerevisiae extract on haematological parameters, immune function and the antioxidant defence system in breeder hens fed aflatoxin contaminated diets.

    PubMed

    Matur, E; Ergul, E; Akyazi, I; Eraslan, E; Inal, G; Bilgic, S; Demircan, H

    2011-10-01

    The study was conducted to investigate the efficacy of Saccharomyces cerevisiae extract (SC) on haematological parameters, immune function, and the antioxidant defence system in breeder hens fed a diet contaminated with low level aflatoxin (AF). Forty-eight Ross 308 breeder hens were fed on diets containing AF (0 or 100 µg/kg) and SC (0 or 1 g/kg) in a 2 × 2 factorial arrangement. Red blood cell (RBC), white blood cell (WBC), and platelet counts, differential leucocyte counts, blood CD3+, CD4+, CD8+ and CD5+ T cell ratios, phagocytic activity and oxidative burst of heterophils, plasma and liver catalase activity, and malondialdehyde (MDA) and ascorbic acid concentrations were measured. 3. Plasma and liver MDA concentrations increased (P < 0·05), liver catalase activity decreased (P < 0·05) and total WBC count tended to decrease (P = 0·082) in hens fed the contaminated diet. WBC count, monocyte percentage, phagocytic activity and oxidative burst of heterophils increased (P < 0·05), and plasma MDA concentration tended to decrease (P = 0.088) in SC extract supplemented hens. There was a significant interaction between AF and SC on heterophil, lymphocyte, CD5+ cell percentages, and plasma catalase activity. Blood heterophil percentage decreased but lymphocyte percentage increased in hens fed on the AF contaminated diet without SC supplementation. SC supplementation counteracted the negative effect of AF on heterophils and lymphocytes. The CD5+ cell percentage decreased in unsupplemented hens fed the AF contaminated diet and this negative effect was minimised in SC supplemented hens. Plasma catalase activity increased in SC supplemented hens fed the uncontaminated diet whereas the effect of SC decreased in hens fed the AF contaminated diet. 4. The SC reduced some of the some adverse effects of AF, and improved functions of the non-specific immune system. Therefore, the SC extract which has been used for improving productive performance

  5. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster.

    PubMed

    de Aguiar, Lais Mattos; Figueira, Fernanda Hernandes; Gottschalk, Marco Silva; da Rosa, Carlos Eduardo

    2016-01-01

    Glyphosate is a non-selective and post-emergent herbicide that affects plant growth. Animal exposure to this herbicide can lead to adverse effects, such as endocrine disruption, oxidative stress and behavioural disorders. Drosophilids have been utilized previously as an effective tool in toxicological tests. In the present study, the effects of a glyphosate-based herbicide (Roundup [Original]) were investigated regarding oxidative stress, the antioxidant defence system and acetylcholinesterase (AChE) activity in Drosophila melanogaster. Flies (of both genders) that were 1 to 3days old were exposed to different glyphosate concentrations (0.0mg/L=control, 1.0mg/L, 2.0mg/L, 5.0mg/L and 10.0mg/L) in the diet for 24h and 96h. After the exposure periods, reactive oxygen species (ROS) levels, antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO) levels were quantified. In addition, the mRNA expression of antioxidant genes (i.e., keap1, sod, sod2, cat, irc, gclc, gclm, gss, trxt, trxr-1 and trxr-2) was evaluated via RT-PCR. Additionally, AChE activity was evaluated only after the 96h exposure period. The results indicated that Roundup exposure leads to a reduction in ROS levels in flies exposed for 96h. ACAP levels and gene expression of the antioxidant defence system exhibited an increase from 24h, while LPO did not show any significant alterations in both exposure periods. AChE activity was not affected following Roundup exposure. Our data suggest that Roundup exposure causes an early activation of the antioxidant defence system in D. melanogaster, and this can prevent subsequent damage caused by ROS.

  6. Salinity stress constrains photosynthesis in Fraxinus ornus more when growing in partial shading than in full sunlight: consequences for the antioxidant defence system

    PubMed Central

    Fini, Alessio; Guidi, Lucia; Giordano, Cristiana; Baratto, Maria Camilla; Ferrini, Francesco; Brunetti, Cecilia; Calamai, Luca; Tattini, Massimiliano

    2014-01-01

    plants growing under partial shading more severely than that of plants growing under full sun during summer. The results suggest co-ordination within the antioxidant defence network aimed at detoxifying salt-induced generation of reactive oxygen species. PMID:25006177

  7. Effects of glutathione modulation on oxidative stress and enzymatic antioxidant defence in yeast Pachysolen tannophilus.

    PubMed

    Saharan, Rajesh K; Sharma, Sukesh C

    2011-03-01

    The aim of this study was to explore the relationship of intracellular glutathione with various oxidative stress markers and the stress protectant marker trehalose. In the first group of yeast cells, diethyl maleate was used for depletion of glutathione. A second group of yeast cells were incubated with amino acids constituting glutathione (GIu, Cys, Gly) to increase glutathione level. Increased level of oxidative stress marker like ROS, protein carbonyl formation and lipid peroxidation and decreased viability in glutathione-depleted cells were observed in the present study. The increased activity of antioxidant enzymes SOD and CAT in the glutathione depleted group suggests the interaction of different antioxidant defence system in Pachysolen tannophilus. Furthermore, the increased levels of trehalose in glutathione-depleted group shows that trehalose acts as a stress reducer in glutathione depleted Pachysolen tannophilus.

  8. Impact of acute Cd²⁺ exposure on the antioxidant defence systems in the skin and red blood cells of common carp (Cyprinus carpio).

    PubMed

    Ferencz, Ágnes; Hermesz, Edit

    2015-05-01

    Cd(2+)-induced oxidative stress and its effects on the expression of stress biomarkers and on macromolecule damage in the skin and blood of common carp were studied. Both tissues play important roles in the defence mechanisms against external hazards, serving as an anatomical barrier and as connecting tissue between the organs. In the skin, the production of peroxynitrite anion and hydrogen peroxide was almost doubled after exposure to 10 mg/L Cd(2+). The accumulation of these oxidant molecules suggests an intensive production of superoxide anion and nitrogen monoxide and the development of oxidative and/or nitrosative stress. Although the metallothioneins and the components of the glutathione redox system were activated in the skin, the accumulation of reactive intermediates led to the enhanced damage of lipid molecules after 24 h of metal exposure. In the blood, the basal levels of metallothionein messenger RNAs (mRNAs) were 2-2.5-fold of that measured in the skin. This high level of metallothionein expression could be the reason that the blood was less affected by an acute Cd(2+) challenge and the metallothionein and glutathione systems were not activated.

  9. Probiotics: beneficial factors of the defence system.

    PubMed

    Antoine, Jean Michel

    2010-08-01

    Probiotics, defined as living micro-organisms that provide a health benefit to the host when ingested in adequate amounts, have been used traditionally as food components to help the body to recover from diarrhoea. They are commonly ingested as part of fermented foods, mostly in fresh fermented dairy products. They can interact with the host through different components of the gut defence systems. There is mounting clinical evidence that some probiotics, but not all, help the defence of the host as demonstrated by either a shorter duration of infections or a decrease in the host's susceptibility to pathogens. Different components of the gut barrier can be involved in the strengthening of the body's defences: the gut microbiota, the gut epithelial barrier and the immune system. Many studies have been conducted in normal free-living subjects or in subjects during common infections like the common cold and show that some probiotic-containing foods can improve the functioning of or strengthen the body's defence. Specific probiotic foods can be included in the usual balanced diet of consumers to help them to better cope with the daily challenges of their environment.

  10. Nitric oxide, antioxidants and prooxidants in plant defence responses

    PubMed Central

    Groß, Felicitas; Durner, Jörg; Gaupels, Frank

    2013-01-01

    In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione—the latter alone or in conjunction with S-nitrosoglutathione reductase—in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD). PMID:24198820

  11. PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum.

    PubMed

    Bhanja, S; Chainy, G B N

    2010-05-01

    The objective of the present study was to evaluate the effect of 6-n-propylthiouracil (PTU)-induced hypothyroidism on oxidative stress parameters, expression of antioxidant defence enzymes, cell proliferation and apoptosis in the developing cerebellum. PTU challenged neonates showed significant decrease in serum T(3) and T(4) levels and marked increase in TSH levels. Significantly elevated levels of cerebellar H(2)O(2) and lipid peroxidation were observed in 7 days old hypothyroid rats, along with increased activities of superoxide dismutase and glutathione peroxidase and decline in catalase activity. In 30 days old hypothyroid rats, a significant decline in cerebellar lipid peroxidation, superoxide dismutase and glutathione peroxidase activity and expression was observed along with an up-regulation in catalase activity and expression. Expression of antioxidant enzymes was studied by Western blot and semi-quantitative rt-PCR. A distinct increase in cell proliferation as indicated by proliferating cell nuclear antigen (PCNA) immunoreactivity was observed in the internal granular layer of cerebellum of 7 days old hypothyroid rats and significant drop in PCNA positive cells in the cerebellar molecular layer and internal granular layer of 30 days old PTU treated rats as compared to controls. In situ end labeling by TUNEL assay showed increased apoptosis in cerebellum of hypothyroid rats in comparison to controls. These results suggest that the antioxidant defence system of the developing cerebellum is sensitive to thyroid hormone deficiency and consequent alterations in oxidative stress status may play a role in regulation of cell proliferation of the cerebellum during neonatal brain development.

  12. Rapid evolution of antioxidant defence in a natural population of Daphnia magna.

    PubMed

    Oexle, S; Jansen, M; Pauwels, K; Sommaruga, R; De Meester, L; Stoks, R

    2016-07-01

    Natural populations can cope with rapid changes in stressors by relying on sets of physiological defence mechanisms. Little is known onto what extent these physiological responses reflect plasticity and/or genetic adaptation, evolve in the same direction and result in an increased defence ability. Using resurrection ecology, we studied how a natural Daphnia magna population adjusted its antioxidant defence to ultraviolet radiation (UVR) during a period with increasing incident UVR reaching the water surface. We demonstrate a rapid evolution of the induction patterns of key antioxidant enzymes under UVR exposure in the laboratory. Notably, evolutionary changes strongly differed among enzymes and mainly involved the evolution of UV-induced plasticity. Whereas D. magna evolved a strong plastic up-regulation of glutathione peroxidase under UVR, it evolved a lower plastic up-regulation of glutathione S-transferase and superoxide dismutase and a plastic down-regulation of catalase. The differentially evolved antioxidant strategies were collectively equally effective in dealing with oxidative stress because they resulted in the same high levels of oxidative damage (to lipids, proteins and DNA) and lowered fitness (intrinsic growth rate) under UVR exposure. The lack of better protection against UVR may suggest that the UVR exposure did not increase between both periods. Predator-induced evolution to migrate to lower depths that occurred during the same period may have contributed to the evolved defence strategy. Our results highlight the need for a multiple trait approach when focusing on the evolution of defence mechanisms. PMID:27018861

  13. Respiratory tract lining fluid antioxidants: the first line of defence against gaseous pollutants.

    PubMed

    Kelly, F J; Cotgrove, M; Mudway, I S

    1996-01-01

    All tissues are vulnerable to oxidant damage, but by virtue of its location, anatomy and function, the epithelial surface of the lung is one of the most vulnerable targets in the body. Recent studies have shown that epithelial lining fluid (ELF), a thin layer of fluid which covers the epithelial surface of the respiratory tract, contains an interesting complement of antioxidants, some of which, like glutathione, are present in concentrations much higher than those found in plasma. It is likely that ELF forms the first line of defence against inhaled toxins such as ozone and nitrogen dioxide. By employing an ex vivo exposure system we have demonstrated that when lung lining fluid is in contact with environmentally relevant concentrations of ozone or nitrogen dioxide, there is differential consumption of the water-soluble antioxidants in the order, uric acid > ascorbic acid > glutathione. Given that the majority of ozone and nitrogen dioxide reacts within the ELF compartment, the antioxidant composition of this fluid is critically important in determining an individual's sensitivity to gaseous pollutants.

  14. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.

    PubMed

    Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano

    2009-09-01

    the evolution of O. europaea in sunny environments, suggest that under partial shading, the antioxidant defence system may be ineffective to counter salt-induced oxidative damage.

  15. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2

    PubMed Central

    Bell, Karen F.S.; Al-Mubarak, Bashayer; Martel, Marc-André; McKay, Sean; Wheelan, Nicola; Hasel, Philip; Márkus, Nóra M.; Baxter, Paul; Deighton, Ruth F.; Serio, Andrea; Bilican, Bilada; Chowdhry, Sudhir; Meakin, Paul J.; Ashford, Michael L.J.; Wyllie, David J.A.; Scannevin, Robert H.; Chandran, Siddharthan; Hayes, John D.; Hardingham, Giles E.

    2015-01-01

    Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development. PMID:25967870

  16. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress.

    PubMed

    Mukhopadyay, Mainaak; Bantawa, Pranay; Das, Akan; Sarkar, Bipasa; Bera, Biswajit; Ghosh, Parthadeb; Mondal, Tapan Kumar

    2012-12-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an aluminum (Al) hyperaccumulator plant and is commercially important due to its high content of antioxidants. Although Al induced growth is well-known for the plants growing in acid soil, yet the cause underlying the stimulatory effect of Al has not been fully understood. To investigate the possible role of Al in growth induction, we studied morphological, physiological as well as biochemical changes of tea plant under different Al concentrations (0-4,000 μM). In hydroponics, Al (15 μM), enhanced shoot and root growth, but at higher concentrations, it caused oxidative damage which culminated in a cascade of biochemical changes, Al content increased concurrently with the maturity of the leaf as well as stem tissues than their younger counterparts. Hematoxylin staining indicated that Al accumulation started after 6 h of exposure in the tips of young roots and accumulation was dose dependent. The physiological parameters such as pigments, photosynthetic rate, transpiration and stomatal conductance were declined due to Al toxicity. Alteration in activated oxygen metabolism was also evidenced by increasing lipid peroxidation, membrane injury, evolution of superoxide anions and accumulation of H(2)O(2). Contents of phenols initially exhibited an acceleration which gradually plummeted at higher levels whereas total sugar and starch contents decimated beyond 15 μM of Al concentration. Activities of antioxidant defense enzymes were increased with the elevated concentration of Al. Expression of citrate synthase gene was up-regulated in the mature leaves, young as well as old roots simultaneously with increased concentration of Al in those parts; indicating the formation of Al-citrate complex. These results cooperatively specified that Al concentration at lower level promoted growth but turned out to be a stressor at elevated stages indicating the sensitivity of the cultivar (T-78) to Al.

  17. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways.

    PubMed

    Machado-Silva, Alice; Cerqueira, Paula Gonçalves; Grazielle-Silva, Viviane; Gadelha, Fernanda Ramos; Peloso, Eduardo de Figueiredo; Teixeira, Santuza Maria Ribeiro; Machado, Carlos Renato

    2016-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is an obligatory intracellular parasite with a digenetic life cycle. Due to the variety of host environments, it faces several sources of oxidative stress. In addition to reactive oxygen species (ROS) produced by its own metabolism, T. cruzi must deal with high ROS levels generated as part of the host's immune responses. Hence, the conclusion that T. cruzi has limited ability to deal with ROS (based on the lack of a few enzymes involved with oxidative stress responses) seems somewhat paradoxical. Actually, to withstand such variable sources of oxidative stress, T. cruzi has developed complex defence mechanisms. This includes ROS detoxification pathways that are distinct from the ones in the mammalian host, DNA repair pathways and specialized polymerases, which not only protect its genome from the resulting oxidative damage but also contribute to the generation of genetic diversity within the parasite population. Recent studies on T. cruzi's DNA repair pathways as mismatch repair (MMR) and GO system suggested that, besides a role associated with DNA repair, some proteins of these pathways may also be involved in signalling oxidative damage. Recent data also suggested that an oxidative environment might be beneficial for parasite survival within the host cell as it contributes to iron mobilization from the host's intracellular storages. Besides contributing to the understanding of basic aspects of T. cruzi biology, these studies are highly relevant since oxidative stress pathways are part of the poorly understood mechanisms behind the mode of action of drugs currently used against this parasite. By unveiling new peculiar aspects of T. cruzi biology, emerging data on DNA repair pathways and other antioxidant defences from this parasite have revealed potential new targets for a much needed boost in drug development efforts towards a better treatment for Chagas disease. PMID:27036062

  18. Tidal height influences the levels of enzymatic antioxidant defences in Mytilus edulis.

    PubMed

    Letendre, Julie; Chouquet, Bastien; Manduzio, Hélène; Marin, Matthieu; Bultelle, Florence; Leboulenger, François; Durand, Fabrice

    2009-03-01

    We investigated the potential variability of enzymatic antioxidant activities in blue mussels Mytilus edulis from a single intertidal population but living at different tidal heights. Activity levels of antioxidant enzymes (Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase) were measured in the gills and digestive gland of mussels sampled at high shore (HS, air-exposure>6h/12h) and low shore (LS, air-exposure<2h/12h) of an intertidal zone (Yport, Normandie, France) for two consecutive autumns. In both tissues, levels of each enzymatic activity (except GST) were clearly higher in HS mussels than in LS for the two years. These results suggest an ability to acclimate the enzymatic antioxidant defences to the degree of undergone stress, confirming the importance of environmental conditions in the antioxidant responses. Therefore, the location of organisms on the shore should be taken into account in sampling for ecotoxicological studies.

  19. Ecological mechanisms for the coevolution of mating systems and defence.

    PubMed

    Campbell, Stuart A

    2015-02-01

    The diversity of flowering plants is evident in two seemingly unrelated aspects of life history: sexual reproduction, exemplified by the stunning variation in flower form and function, and defence, often in the form of an impressive arsenal of secondary chemistry. Researchers are beginning to appreciate that plant defence and reproduction do not evolve independently, but, instead, may have reciprocal and interactive (coevolutionary) effects on each other. Understanding the mechanisms for mating-defence interactions promises to broaden our understanding of how ecological processes can generate these two rich sources of angiosperm diversity. Here, I review current research on the role of herbivory as a driver of mating system evolution, and the role of mating systems in the evolution of defence strategies. I outline different ecological mechanisms and processes that could generate these coevolutionary patterns, and summarize theoretical and empirical support for each. I provide a conceptual framework for linking plant defence with mating system theory to better integrate these two research fields.

  20. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling.

    PubMed

    Cox, Andrew G; Winterbourn, Christine C; Hampton, Mark B

    2010-01-15

    Prxs (peroxiredoxins) are a family of proteins that are extremely effective at scavenging peroxides. The Prxs exhibit a number of intriguing properties that distinguish them from conventional antioxidants, including a susceptibility to inactivation by hyperoxidation in the presence of excess peroxide and the ability to form complex oligomeric structures. These properties, combined with a high cellular abundance and reactivity with hydrogen peroxide, have led to speculation that the Prxs function as redox sensors that transmit signals as part of the cellular response to oxidative stress. Multicellular organisms express several different Prxs that can be categorized by their subcellular distribution. In mammals, Prx 3 and Prx 5 are targeted to the mitochondrial matrix. Mitochondria are a major source of hydrogen peroxide, and this oxidant is implicated in the damage associated with aging and a number of pathologies. Hydrogen peroxide can also act as a second messenger, and is linked with signalling events in mitochondria, including the induction of apoptosis. A simple kinetic competition analysis estimates that Prx 3 will be the target for up to 90% of hydrogen peroxide generated in the matrix. Therefore, mitochondrial Prxs have the potential to play a major role in mitochondrial redox signalling, but the extent of this role and the mechanisms involved are currently unclear.

  1. Early antioxidative defence responses in the aquatic worms (Limnodrilus sp.) in Porsuk Creek in Eskisehir (Turkey).

    PubMed

    Oztetik, Elif; Cicek, Arzu; Arslan, Naime

    2013-07-01

    Certain oligochaeta specimens have been universally applied as bioindicators to reflect the organic and inorganic pollution in rivers and play a major role in the decomposition of pollutants. The aim of this study was to investigate the water quality in Porsuk Creek in Eskisehir (Turkey) through the specimens from two different species that belong to Limnodrilus genus, using their biomonitoring compatibilities for the accumulated trace element concentrations and to describe the applicability of antioxidative systems as biomarkers of pollution in Tubificinae. Therefore, some parameters that serve as biomarkers for antioxidative defence, total protein, glutathione (GSH) contents and glutathione S-transferase (GST) activities, were determined in Limnodrilus hoffmeisteri and Limnodrilus udekemianus. The study was completed with the chemical analysis of the trace elements from these specimens and also from the water samples. As a conclusion, the observed elevation in GSH levels and GST activities reflect the contribution of oxidative stress in toxicity mechanisms due to the accumulation of trace elements, and the study also suggests a general induction of detoxification metabolisms in the presence of several pollutants in benthic sediment-dwelling worms. According to the average value, the trace element levels for two species are as follows: Fe > Al > Zn > Mn > Pb > Cu > Ni > B > Cd = Cr = Hg. As Porsuk Creek is used for many purposes, such as irrigation, drinking water and fish production, discharges of all types of wastes should be under stringent control to avoid the unwanted health effects to its habitants and to humans. PMID:22514119

  2. Early antioxidative defence responses in the aquatic worms (Limnodrilus sp.) in Porsuk Creek in Eskisehir (Turkey).

    PubMed

    Oztetik, Elif; Cicek, Arzu; Arslan, Naime

    2013-07-01

    Certain oligochaeta specimens have been universally applied as bioindicators to reflect the organic and inorganic pollution in rivers and play a major role in the decomposition of pollutants. The aim of this study was to investigate the water quality in Porsuk Creek in Eskisehir (Turkey) through the specimens from two different species that belong to Limnodrilus genus, using their biomonitoring compatibilities for the accumulated trace element concentrations and to describe the applicability of antioxidative systems as biomarkers of pollution in Tubificinae. Therefore, some parameters that serve as biomarkers for antioxidative defence, total protein, glutathione (GSH) contents and glutathione S-transferase (GST) activities, were determined in Limnodrilus hoffmeisteri and Limnodrilus udekemianus. The study was completed with the chemical analysis of the trace elements from these specimens and also from the water samples. As a conclusion, the observed elevation in GSH levels and GST activities reflect the contribution of oxidative stress in toxicity mechanisms due to the accumulation of trace elements, and the study also suggests a general induction of detoxification metabolisms in the presence of several pollutants in benthic sediment-dwelling worms. According to the average value, the trace element levels for two species are as follows: Fe > Al > Zn > Mn > Pb > Cu > Ni > B > Cd = Cr = Hg. As Porsuk Creek is used for many purposes, such as irrigation, drinking water and fish production, discharges of all types of wastes should be under stringent control to avoid the unwanted health effects to its habitants and to humans.

  3. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana

    PubMed Central

    Turkan, Ismail

    2014-01-01

    Inefficient chaperone activity in endoplasmic reticulum (ER) causes accumulation of unfolded proteins and is called ER stress, which triggers the unfolded protein response. For proper oxidative protein folding, reactive oxygen species (ROS) such as H2O2 are produced in the ER. Although the role of ROS during abiotic stresses such as salinity is well documented, the role of ER-related ROS production and its signalling is not yet known. Moreover, how H2O2 production, redox regulation, and antioxidant defence are affected in salt-treated plants when ER protein-folding machinery is impaired needs to be elucidated. For this aim, changes in NADPH-oxidase-dependent ROS signalling and H2O2 content at sequential time intervals and after 48h of ER stress, induced by tunicamycin (Tm), salinity, and their combination were determined in Arabidopsis thaliana. The main root growth was inhibited by ER stress, while low levels of Tm caused an increase in lateral root density. Salt stress and Tm induced the expression of ER-stress-related genes (bZIP17, bZIP28, bZIP60, TIN1, BiP1, BiP3) and ERO1. Tm induced expression of RBOHD and RBOHF, which led to an early increase in H2O2 and triggered ROS signalling. This study is the first report that ER stress induces the antioxidant system and the Asada–Halliwell pathway of A. thaliana in a similar way to salinity. ER stress caused oxidative damage, as evident by increased H2O2 accumulation, lipid peroxidation, and protein oxidation. As a result, this study shows that ER stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of A. thaliana. PMID:24558072

  4. Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch.

    PubMed Central

    Blount, Jonathan D; Metcalfe, Neil B; Arnold, Kathryn E; Surai, Peter F; Devevey, Godefroy L; Monaghan, Pat

    2003-01-01

    Early nutrition has recently been shown to have pervasive, downstream effects on adult life-history parameters including lifespan, but the underlying mechanisms remain poorly understood. Damage to biomolecules caused by oxidants, such as free radicals generated during metabolic processes, is widely recognized as a key contributor to somatic degeneration and the rate of ageing. Lipophilic antioxidants (carotenoids, vitamins A and E) are an important component of vertebrate defences against such damage. By using an avian model, we show here that independent of later nutrition, individuals experiencing a short period of low-quality nutrition during the nestling period had a twofold reduction in plasma levels of these antioxidants at adulthood. We found no effects on adult external morphology or sexual attractiveness: in mate-choice trials females did not discriminate between adult males that had received standard- or lower-quality diet as neonates. Our results suggest low-quality neonatal nutrition resulted in a long-term impairment in the capacity to assimilate dietary antioxidants, thereby setting up a need to trade off the requirement for antioxidant activity against the need to maintain morphological development and sexual attractiveness. Such state-dependent trade-offs could underpin the link between early nutrition and senescence. PMID:12964996

  5. Changes in the antioxidant defence and in selenium concentration in tissues of vanadium exposed rats.

    PubMed

    Sanchez-Gonzalez, Cristina; Bermudez-Peña, Carmen; Trenzado, Cristina E; Goenaga-Infante, Heidi; Montes-Bayon, María; Sanz-Medel, Alfredo; Llopis, Juan

    2012-08-01

    Vanadium is an element whose role as a micronutrient for humans is not yet completely established, but which has been shown to possess hypoglycaemic properties in diabetes. In an earlier study, we showed that in STZ-diabetic rats, exposure to 1 mg V per day has no effect on glycaemia or on antioxidant status. When the exposure was raised to 3 mg V per day there was a hypoglycaemic effect, together with reduced Se in the tissues, which reduced antioxidant defences. The aim of the present study was to examine whether exposure to 1 mg V per day modifies Se nutritional status and/or antioxidant defences in healthy rats. Two groups of rats were examined: control and vanadium-treated. Vanadium, as bis(maltolato)oxovanadium(iv), was supplied in the drinking water. The experiment had a duration of five weeks. Selenium was measured in excreta, serum, skeletal muscle, kidneys, liver, heart, femur and adipose tissue. Number of red (RBC) and white (WBC) blood cells and haemoglobin (Hb) were determined in samples of whole blood. Glutathione peroxidase (GPx), glutathione transferase (GST), catalase (CAT) and NAD(P)H:quinine-oxidoreductase1 (NQO1) activity, and malondialdehyde (MDA) in the liver were evaluated. Treatment significantly reduced food intake, produced an anaemic state, and decreased Se absorption and Se content in serum, kidneys and the liver. GPx, GST and NQO1 activity were decreased in the liver, while MDA levels rose. We conclude that healthy rats are more sensitive than diabetic ones to the effects of V. This should be taken into account for populations that are particularly exposed to V for environmental reasons, and/or that consume V as a nutritional supplement.

  6. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures.

  7. Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

    PubMed Central

    Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  8. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress.

    PubMed

    Sinha, Amit Kumar; AbdElgawad, Hamada; Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h-48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h-180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  9. Antioxidant defence in UV-irradiated tobacco leaves is centred on hydrogen-peroxide neutralization.

    PubMed

    Majer, Petra; Czégény, Gyula; Sándor, Györgyi; Dix, Philip J; Hideg, Eva

    2014-09-01

    Greenhouse grown tobacco (Nicotiana tabacum L. cv. Petit Havana) plants were exposed to supplemental UV centred at 318 nm and corresponding to 13.6 kJ m(-2) d(-1) biologically effective UV-B (280-315 nm) radiation. After 6 days this treatment decreased photosynthesis by 30%. Leaves responded by a large increase in UV-absorbing pigment content and antioxidant capacities. UV-stimulated defence against ROS was strongest in chloroplasts, since activities of plastid enzymes FeSOD and APX had larger relative increases than other, non-plastid specific SODs or peroxidases. In addition, non-enzymatic defence against hydroxyl radicals was doubled in UV treated leaves as compared to controls. In UV treated leaves, the extent of activation of ROS neutralizing capacities followed a peroxidases > hydroxyl-radical neutralization > SOD order. These results suggest that highly effective hydrogen peroxide neutralization is the focal point of surviving UV-inducible oxidative stress and argue against a direct signalling role of hydrogen peroxide in maintaining adaptation to UV, at least in laboratory experiments.

  10. Additive effect of alcohol and nicotine on lipid peroxidation and antioxidant defence mechanism in rats.

    PubMed

    Ashakumary, L; Vijayammal, P L

    1996-01-01

    Cigarette smoking has been established as a major risk factor for atherosclerosis and also for lung cancer. Nicotine is one of the major toxic components of cigarette smoke that is believed to be partly responsible for the deleterious effect of cigarette smoke. Alcohol intake is another major risk factor for the development of cardiovascular disease. Lipid peroxidation is a process associated with the pathogenesis of atherosclerosis. The concentration of lipid peroxides is found to be increased in alcohol-treated rats. On nicotine administration along with alcohol, an additive effect was observed in lipid peroxidation and the antioxidant defence mechanism. The activity of scavenging enzymes superoxide dismutase, catalase and glutathione reductase was found to be decreased, while the activity of glutathione peroxidase and the concentration of glutathione were increased. PMID:8854216

  11. Antioxidant defence of colostrum and milk in consecutive lactations in sows

    PubMed Central

    2012-01-01

    Background Parturition is supposed to be related to oxidative stress, not only for the mother, but also for the newborn. Moreover, it is not clear whether consecutive pregnancies, parturitions, and lactations are similar to each other in regards to intensity of metabolic processes or differ from each other. The aim of the study was to compare dynamic changes of antioxidative parameters in colostrum and milk of sows taken during 72 h postpartum from animals in consecutive lactations. Activities of glutathione peroxidase (GSH-Px), glutathione transferase (GSH-Tr), and superoxide dismutase (SOD), and amount of vitamin A and C were measured. Healthy pregnant animals were divided into 4 groups according to the assessed lactation: A -1st lactation (n = 10), B - 2nd and 3rd lactation (n = 7), C - 4th and 5th lactation (n = 11), D - 6th - 8th lactation (n = 8). The colostrum was sampled immediately after parturition and after 6, 12, 18 and 36 h while the milk was assessed at 72 h after parturition. Spectrophotometric methods were used for measurements. Results The activity of antioxidative enzymes and the concentration of vitamin A increased with time postpartum. The concentration of vitamin C was the highest between the 18th and 36th h postpartum. Conclusions Dynamic changes in the values of antioxidant parameters measured during the study showed that sows milk provides the highest concentration of antioxidants in the 2nd and 3rd and 4th and 5th lactation giving the best defence against reactive oxygen species to newborns and mammary glands. PMID:22429994

  12. The effects of dietary thiamin on oxidative damage and antioxidant defence of juvenile fish.

    PubMed

    Li, Xue-Yin; Huang, Hui-Hua; Hu, Kai; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-06-01

    The present study explored the effects of thiamin on antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). In a 60-day feeding trial, a total of 1,050 juvenile Jian carp (8.20 ± 0.02 g) were fed graded levels of thiamin at 0.25, 0.48, 0.79, 1.06, 1.37, 1.63 and 2.65 mg thiamin kg(-1) diets. The results showed that malondialdehyde and protein carbonyl contents in serum, hepatopancreas, intestine and muscle were significantly decreased with increasing dietary thiamin levels (P < 0.05). Conversely, the anti-superoxide anion capacity and anti-hydroxyl radical capacity in serum, hepatopancreas, intestine and muscle were the lowest in fish fed the thiamin-unsupplemented diet. Meanwhile, the activities of catalase (CAT), glutathione peroxidase, glutathione S-transferase and glutathione reductase, and the contents of glutathione in serum, hepatopancreas, intestine and muscle were enhanced with increasing dietary thiamin levels (P < 0.05). Superoxide dismutase (SOD) activity in serum, hepatopancreas and intestine followed a similar trend as CAT (P < 0.05). However, SOD activity in muscle was not affected by dietary thiamin level (P > 0.05). The results indicated that thiamin could improve antioxidant defence and inhibit lipid peroxidation and protein oxidation of juvenile Jian carp.

  13. Landscape settings as part of earth wall systems for defence

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk

    2013-04-01

    Remnants of earth wall systems from different periods are preserved in many European countries. They were built for different functions, such as defence, demarcating ownership or keeping wild animals or cattle in or out a terrain, and often changed function over time. Earth walls date from a past in which man had limited access to man- and horsepower. In the case of defence systems, our ancestors made use of the landscape settings to improve the strength. The poster gives an overview of landscape settings used for this purpose, from prehistoric up to medieval age, for building round and linear earth wall defence systems. Round earth walls systems are found on: • High viewpoints along a river, often in combination with marshland at its feet, • Almost completely cut-off meanders of antecedent rivers. This natural setting offered an ideal defence. It allowed an almost 360 degree view and exposed the enemy for a long time when passing the river, while the steep slopes and narrow entrance made the hill fort difficult to access, • Islands in lakes, • Bordering a lake at one side, • Confluences of rivers, • Hills near the sea and a natural harbour with possibilities for defence, • High flat hill tops of medium size with steep sides. Of each situation examples are presented. Linear earth wall defence systems For linear defence earth walls no overview of landscape settings can be given, for lack of sufficient data. The Celtic, 10 m steep Beech Bottom Dyke earth wall system from around 20 A.D. connects two steeply incised river valleys. For building the Hadrian Wall (UK) the Romans made use of earth walls paralleling the steepest cuesta of the Cheviot hills. The Viking Danewerk (Ger), was built on push moraines and used the coastal marsh lands at their feet for defence. And the defence of the earth wall around the Velder (NL, probably 13th century) made use of the many small streams crossing this marshy coversand landscape, by diverting them into a canal

  14. Complement in disease: a defence system turning offensive.

    PubMed

    Ricklin, Daniel; Reis, Edimara S; Lambris, John D

    2016-07-01

    Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches.

  15. The protein quality control system manages plant defence compound synthesis.

    PubMed

    Pollier, Jacob; Moses, Tessa; González-Guzmán, Miguel; De Geyter, Nathan; Lippens, Saskia; Vanden Bossche, Robin; Marhavý, Peter; Kremer, Anna; Morreel, Kris; Guérin, Christopher J; Tava, Aldo; Oleszek, Wieslaw; Thevelein, Johan M; Campos, Narciso; Goormachtig, Sofie; Goossens, Alain

    2013-12-01

    Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondary metabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Here we show that, in the legume Medicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD) quality control system to manage the production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membrane-anchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulation is prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.

  16. Influence of cow or goat milk consumption on antioxidant defence and lipid peroxidation during chronic iron repletion.

    PubMed

    Díaz-Castro, Javier; Pérez-Sánchez, Luis J; Ramírez López-Frías, Mercedes; López-Aliaga, Inmaculada; Nestares, Teresa; Alférez, María J M; Ojeda, M Luisa; Campos, Margarita S

    2012-07-14

    Despite Fe deficiency and overload having been widely studied, no studies are available about the influence of milk consumption on antioxidant defence and lipid peroxidation during the course of these highly prevalent cases. The objective of the present study was to assess the influence of cow or goat milk-based diets, either with normal or Fe-overload, on antioxidant defence and lipid peroxidation in the liver, brain and erythrocytes of control and anaemic rats after chronic Fe repletion. Weanling male rats were randomly divided into two groups: a control group receiving a normal-Fe diet (45 mg/kg) and an anaemic group receiving a low-Fe diet (5 mg/kg) for 40 d. Control and anaemic rats were fed goat or cow milk-based diets, either with normal Fe or Fe-overload (450 mg/kg), for 30 or 50 d. Fe-deficiency anaemia did not have any effect on antioxidant enzymes or lipid peroxidation in the organs studied. During chronic Fe repletion, superoxide dismutase (SOD) activity was higher in the group of animals fed the cow milk diet compared with the group consuming goat milk. The slight modification of catalase and glutathione peroxidise activities in animals fed the cow milk-based diet reveals that these enzymes are unable to neutralise and scavenge the high generation of free radicals produced. The animals fed the cow milk diet showed higher rates of lipid peroxidation compared with those receiving the goat milk diet, which directly correlated with the increase in SOD activity. It was concluded that goat milk has positive effects on antioxidant defence, even in a situation of Fe overload, limiting lipid peroxidation. PMID:22018161

  17. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.).

    PubMed

    Yu, Fangming; Liu, Kehui; Li, Mingshun; Zhou, Zhenming; Deng, Hua; Chen, Bin

    2013-01-01

    The effects of 60-d cadmium (Cd) exposure on enzymatic and non-enzymatic antioxidative system of Oryza sativa L. seedlings at tillering stage were studied using soil culture experiment. Research findings showed that chlorophyll content of Oryza sativa L. declined with the increase in soil metal concentration. Cd pollution induced the antioxidant stress by inducing O2(-1) and H2O2, which increased in plants; at the same time, MDA as the final product of peroxidation of membrane lipids, accumulated in plant. The antioxidant enzyme system was initiated under the Cd exposure, i.e. almost all the activities of superoxide dismutase (SOD), peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase were elevated both in leaves and roots. The non-protein thiols including phytochelatins and glutathione to scavenge toxic free radicals caused by Cd stress was also studied. The contents of phytochelatins and glutathione were about 3.12-6.65-fold and 3.27-10.73-fold in leaves, against control; and the corresponding values were about 3.53-9.37-fold and 1.41-5.11-fold in roots, accordingly.

  18. Antioxidant peptidomics reveals novel skin antioxidant system.

    PubMed

    Yang, Hailong; Wang, Xu; Liu, Xiuhong; Wu, Jing; Liu, Cunbao; Gong, Weiming; Zhao, Zhiqiang; Hong, Jing; Lin, Donghai; Wang, Yizheng; Lai, Ren

    2009-03-01

    It is generally agreed that reactive oxygen species (ROS) contribute to skin aging, skin disorders, and skin diseases. Skin possesses an extremely efficient antioxidant system. This antioxidant activity is conferred by two systems: antioxidant enzymes and small molecules that can scavenge ROS by donating electrons. No gene-encoded secreted ROS scavengers have been reported. Amphibian skin is a multifunctional organ acting in defense, respiration, and water regulation, although it seems susceptible. Amphibian skins are easily harmed by biological or non-biological attacks such as microorganism infection or radiation injury. Among vertebrates, skins of amphibian are exposed to more dangers of radiation injury than others. Radiation toxicity occurs by directly attacking the genetic material and/or by generating ROS. In addition, amphibian skin respiration and inflammatory response also induce ROS generation. It is rational to hypothesize that amphibian skins should have potent free radical scavenging and radioprotective ability for their survival. Rana pleuraden is distributed in Southwest of China; it lives in the subtropical plateau (altitude around 2300 m) where there is strong ultraviolet radiation and long duration of sunshine. By peptidomics and genomics approaches, a large amount of antioxidant peptides belonging to 11 different groups with variable structures were isolated from the skin secretions of R. pleuraden. Their free radical scavenging and anti-inflammatory abilities were studied. All of these peptide share highly homologous preproregions, although mature antioxidant peptides have very divergent primary structures, suggesting the possibility of a common ancestor. Some peptides were also found to have multifunctional properties, such as combined antioxidant, anti-inflammatory, and antimicrobial activities. According to our knowledge, no gene-encoded specific antioxidant peptides have been reported except metallothionein. Our work possibly reveals a new

  19. Folic acid supplemented goat milk has beneficial effects on hepatic physiology, haematological status and antioxidant defence during chronic Fe repletion.

    PubMed

    Alférez, María J M; Rivas, Emilio; Díaz-Castro, Javier; Hijano, Silvia; Nestares, Teresa; Moreno, Miguel; Campos, Margarita S; Serrano-Reina, Jose A; López-Aliaga, Inmaculada

    2015-02-01

    The aim of the current study was to asses the effect of goat or cow milk-based diets, either normal or Fe-overloaded and folic acid supplement on some aspects of hepatic physiology, enzymatic antioxidant defence and lipid peroxidation in liver, brain and erythrocyte of control and anaemic rats after chronic Fe repletion. 160 male Wistar rats were placed on 40 d in two groups, a control group receiving normal-Fe diet and the Fe-deficient group receiving low Fe diet. Lately, the rats were fed with goat and cow milk-based diets during 30 d, with normal-Fe content or Fe-overload and either with normal folic or folic acid supplemented. Fe-overload increased plasma alanine transaminase and aspartate transaminase levels when cow milk was supplied. Dietary folate supplementation reduced plasma transaminases levels in animals fed goat milk with chronic Fe overload. A remarkable increase in the superoxide dismutase activity was observed in the animals fed cow milk. Dietary folate supplement lead to a decrease on the activity of this enzyme in all the tissues studied with both milk-based diets. A concomitant increment in catalase was also observed. The increase in lipid peroxidation products levels in rats fed cow milk with Fe-overload, suggest an imbalance in the functioning of the enzymatic antioxidant defence. In conclusion, dietary folate-supplemented goat milk reduces both plasma transaminases levels, suggesting a hepatoprotective effect and has beneficial effects in situation of Fe-overload, improving the antioxidant enzymes activities and reducing lipid peroxidation.

  20. Folic acid supplemented goat milk has beneficial effects on hepatic physiology, haematological status and antioxidant defence during chronic Fe repletion.

    PubMed

    Alférez, María J M; Rivas, Emilio; Díaz-Castro, Javier; Hijano, Silvia; Nestares, Teresa; Moreno, Miguel; Campos, Margarita S; Serrano-Reina, Jose A; López-Aliaga, Inmaculada

    2015-02-01

    The aim of the current study was to asses the effect of goat or cow milk-based diets, either normal or Fe-overloaded and folic acid supplement on some aspects of hepatic physiology, enzymatic antioxidant defence and lipid peroxidation in liver, brain and erythrocyte of control and anaemic rats after chronic Fe repletion. 160 male Wistar rats were placed on 40 d in two groups, a control group receiving normal-Fe diet and the Fe-deficient group receiving low Fe diet. Lately, the rats were fed with goat and cow milk-based diets during 30 d, with normal-Fe content or Fe-overload and either with normal folic or folic acid supplemented. Fe-overload increased plasma alanine transaminase and aspartate transaminase levels when cow milk was supplied. Dietary folate supplementation reduced plasma transaminases levels in animals fed goat milk with chronic Fe overload. A remarkable increase in the superoxide dismutase activity was observed in the animals fed cow milk. Dietary folate supplement lead to a decrease on the activity of this enzyme in all the tissues studied with both milk-based diets. A concomitant increment in catalase was also observed. The increase in lipid peroxidation products levels in rats fed cow milk with Fe-overload, suggest an imbalance in the functioning of the enzymatic antioxidant defence. In conclusion, dietary folate-supplemented goat milk reduces both plasma transaminases levels, suggesting a hepatoprotective effect and has beneficial effects in situation of Fe-overload, improving the antioxidant enzymes activities and reducing lipid peroxidation. PMID:25394837

  1. The histone methylase KMTox interacts with the redox-sensor peroxiredoxin-1 and targets genes involved in Toxoplasma gondii antioxidant defences.

    PubMed

    Sautel, Céline F; Ortet, Philippe; Saksouk, Nehmé; Kieffer, Sylvie; Garin, Jérôme; Bastien, Olivier; Hakimi, Mohamed-Ali

    2009-01-01

    The ability of living cells to alter their gene expression patterns in response to environmental changes is essential for viability. Oxidative stress represents a common threat for all aerobic life. In normally growing cells, in which hydrogen peroxide generation is transient or pulsed, the antioxidant systems efficiently control its concentration. Intracellular parasites must also protect themselves against the oxidative burst imposed by the host. In this work, we have investigated the role of KMTox, a new histone lysine methyltransferase, in the obligate intracellular parasite Toxoplasma gondii. KMTox is a nuclear protein that holds a High Mobility Group domain, which is thought to recognize bent DNA. The enzyme methylates both histones H4 and H2A in vitro with a great preference for the substrate in reduced conditions. Importantly, KMTox interacts specifically with the typical 2-cys peroxiredoxin-1 and the binding is to some extent enhanced upon oxidation. It appears that the cellular functions that are primarily regulated by the KMTox are antioxidant defences and maintenance of cellular homeostasis. KMTox may regulate gene expression in T. gondii by providing the rapid re-arrangement of chromatin domains and by interacting with the redox-sensor TgPrx1 contribute to establish the antioxidant 'firewall' in T. gondii. PMID:19017266

  2. Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydroxypyrimidines, and their role in antioxidant defence.

    PubMed

    Winterbourn, C C; Munday, R

    1990-01-01

    Dialuric Acid, the reduced form of the beta-cell toxin alloxan, and the related fava bean derivatives divicine and isouramil, autoxidize rapidly in neutral solution by a radical mechanism. GSH promotes redox cycling of each compound, with concomitant GSH oxidation and H2O2 production. With superoxide dismutase present, there is a lag period in which little oxidation occurs, followed by rapid oxidation. GSH extends this lag and decreases the subsequent rate of oxidation, so that with superoxide dismutase and a sufficient excess of GSH, coupled oxidation of GSH and each pyrimidine is almost completely suppressed. This mechanism may be a means whereby GSH in combination with superoxide dismutase protects against the cytotoxic effects of these reactive pyrimidines. Superoxide dismutase may also protect cells against oxidative stress in other situations where GSH acts as a radical scavenger, and we propose that the concerted action of GSH and superoxide dismutase constitutes an important antioxidant defence. PMID:2354807

  3. Thermal Imaging And Its Application In Defence Systems

    NASA Astrophysics Data System (ADS)

    Akula, Aparna; Ghosh, Ripul; Sardana, H. K.

    2011-10-01

    Thermal imaging is a boon to the armed forces namely army, navy and airforce because of its day night working capability and ability to perform well in all weather conditions. Thermal detectors capture the infrared radiation emitted by all objects above absolute zero temperature. The temperature variations of the captured scene are represented as a thermogram. With the advent of infrared detector technology, the bulky cooled thermal detectors having moving parts and demanding cryogenic temperatures have transformed into small and less expensive uncooled microbolometers having no moving parts, thereby making systems more rugged requiring less maintenance. Thermal imaging due to its various advantages has a large number of applications in military and defence. It is popularly used by the army and navy for border surveillance and law enforcement. It is also used in ship collision avoidance and guidance systems. In the aviation industry it has greatly mitigated the risks of flying in low light and night conditions. They are widely used in military aviation to identify, locate and target the enemy forces. Recently, they are also being incorporated in civil aviation for health monitoring of aircrafts.

  4. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines.

    PubMed

    Vergani, Lodovica; Floreani, Maura; Russell, Aaron; Ceccon, Mara; Napoli, Eleonora; Cabrelle, Anna; Valente, Lucia; Bragantini, Federica; Leger, Bertrand; Dabbeni-Sala, Federica

    2004-09-01

    Three pairs of parental (rho+) and established mitochondrial DNA depleted (rho0) cells, derived from bone, lung and muscle were used to verify the influence of the nuclear background and the lack of efficient mitochondrial respiratory chain on antioxidant defences and homeostasis of intracellular reactive oxygen species (ROS). Mitochondrial DNA depletion significantly lowered glutathione reductase activity, glutathione (GSH) content, and consistently altered the GSH2 : oxidized glutathione ratio in all of the rho0 cell lines, albeit to differing extents, indicating the most oxidized redox state in bone rho0 cells. Activity, as well as gene expression and protein content, of superoxide dismutase showed a decrease in bone and muscle rho0 cell lines but not in lung rho0 cells. GSH peroxidase activity was four times higher in all three rho0 cell lines in comparison to the parental rho+, suggesting that this may be a necessary adaptation for survival without a functional respiratory chain. Taken together, these data suggest that the lack of respiratory chain prompts the cells to reduce their need for antioxidant defences in a tissue-specific manner, exposing them to a major risk of oxidative injury. In fact bone-derived rho0 cells displayed the highest steady-state level of intracellular ROS (measured directly by 2',7'-dichlorofluorescin, or indirectly by aconitase activity) compared to all the other rho+ and rho0 cells, both in the presence or absence of glucose. Analysis of mitochondrial and cytosolic/iron regulatory protein-1 aconitase indicated that most ROS of bone rho0 cells originate from sources other than mitochondria. PMID:15355341

  5. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray.

    PubMed

    Hayder, Nawel; Bouhlel, Ines; Skandrani, Ines; Kadri, Malika; Steiman, Régine; Guiraud, Pascale; Mariotte, Anne-Marie; Ghedira, Kamel; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila

    2008-04-01

    Antioxidant activity of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside, isolated from the leaves of Myrtus communis, was determined by the ability of each compound to inhibit xanthine oxidase activity, lipid peroxidation and to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl. Antimutagenic activity was assessed using the SOS chromotest and the Comet assay. The IC50 values of lipid peroxidation by myricetin-3-o-galactoside and myricetin-3-o-rhamnoside are respectively 160 microg/ml and 220 microg/ml. At a concentration of 100 microg/ml, the two compounds showed the most potent inhibitory effect of xanthine oxidase activity by respectively, 57% and 59%. Myricetin-3-o-rhamnoside was a very potent radical scavenger with an IC50 value of 1.4 microg/ml. Moreover, these two compounds induced an inhibitory activity against nifuroxazide, aflatoxine B1 and H2O2 induced mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress using a cDNA micro-array. Myricetin-3-o-galactoside and myricetin-3-o-rhamnoside modulated the expression patterns of cellular genes involved in oxidative stress, respectively (GPX1, TXN, AOE372, SEPW1, SHC1) and (TXNRD1, TXN, SOD1 AOE372, SEPW1), in DNA damaging repair, respectively (XPC, LIG4, RPA3, PCNA, DDIT3, POLD1, XRCC5, MPG) and (TDG, PCNA, LIG4, XRCC5, DDIT3, MSH2, ERCC5, RPA3, POLD1), and in apoptosis (PARP). PMID:18222061

  6. The Protective Role of Antioxidants in the Defence against ROS/RNS-Mediated Environmental Pollution

    PubMed Central

    Poljšak, Borut; Fink, Rok

    2014-01-01

    Overproduction of reactive oxygen and nitrogen species can result from exposure to environmental pollutants, such as ionising and nonionising radiation, ultraviolet radiation, elevated concentrations of ozone, nitrogen oxides, sulphur dioxide, cigarette smoke, asbestos, particulate matter, pesticides, dioxins and furans, polycyclic aromatic hydrocarbons, and many other compounds present in the environment. It appears that increased oxidative/nitrosative stress is often neglected mechanism by which environmental pollutants affect human health. Oxidation of and oxidative damage to cellular components and biomolecules have been suggested to be involved in the aetiology of several chronic diseases, including cancer, cardiovascular disease, cataracts, age-related macular degeneration, and aging. Several studies have demonstrated that the human body can alleviate oxidative stress using exogenous antioxidants. However, not all dietary antioxidant supplements display protective effects, for example, β-carotene for lung cancer prevention in smokers or tocopherols for photooxidative stress. In this review, we explore the increases in oxidative stress caused by exposure to environmental pollutants and the protective effects of antioxidants. PMID:25140198

  7. Response of antioxidant defences to Zn stress in three duckweed species.

    PubMed

    Uruç Parlak, Kadiriye; Demirezen Yilmaz, Dilek

    2012-11-01

    In the plants, Lemna gibba, Lemna minor and Spirodela polyrrhiza L., the effect of different concentrations of zinc (0.01, 0.05, 0.1, 0.5 and 1.5mgL(-1) Zn) applied for four day was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacolperoxidase (GPX) activity of the plants. According to results, Zn contents in plants increased with increasing Zn supply levels. The level of photosynthetic pigments and soluble proteins reduced only upon exposure to high Zn concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Zn concentration. These results suggested an alleviation of stress that was possibly the result of antioxidants such as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) as well as guaiacol peroxidise (GPOX), which increased linearly with increasing Zn levels. Cellular antioxidant levels showed an increase suggesting a defensive mechanism to preserve against oxidative stress given rise to by Zn. Besides, the proline amount in L. gibba, L. minor and S. polyrrhiza increased with increasing zinc levels. These conclusions proposed that L. gibba, L. minor and S. polyrrhiza are supplied with an efficient antioxidant mechanism against Zn-induced oxidative stress which saves the plant's photosynthetic machinery from damage. It is concluded that higher zinc levels cause oxidative stress in L. gibba, L. minor and S. polyrrhiza cells and may reason membrane damage through production of ROS and interferes with chlorophyll metabolism. PMID:23009815

  8. Response of antioxidant defences to Zn stress in three duckweed species.

    PubMed

    Uruç Parlak, Kadiriye; Demirezen Yilmaz, Dilek

    2012-11-01

    In the plants, Lemna gibba, Lemna minor and Spirodela polyrrhiza L., the effect of different concentrations of zinc (0.01, 0.05, 0.1, 0.5 and 1.5mgL(-1) Zn) applied for four day was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacolperoxidase (GPX) activity of the plants. According to results, Zn contents in plants increased with increasing Zn supply levels. The level of photosynthetic pigments and soluble proteins reduced only upon exposure to high Zn concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Zn concentration. These results suggested an alleviation of stress that was possibly the result of antioxidants such as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) as well as guaiacol peroxidise (GPOX), which increased linearly with increasing Zn levels. Cellular antioxidant levels showed an increase suggesting a defensive mechanism to preserve against oxidative stress given rise to by Zn. Besides, the proline amount in L. gibba, L. minor and S. polyrrhiza increased with increasing zinc levels. These conclusions proposed that L. gibba, L. minor and S. polyrrhiza are supplied with an efficient antioxidant mechanism against Zn-induced oxidative stress which saves the plant's photosynthetic machinery from damage. It is concluded that higher zinc levels cause oxidative stress in L. gibba, L. minor and S. polyrrhiza cells and may reason membrane damage through production of ROS and interferes with chlorophyll metabolism.

  9. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells.

    PubMed

    Stein, Katrin; Borowicki, Anke; Scharlau, Daniel; Glei, Michael

    2010-10-01

    Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1.4- to 3.7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.

  10. TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich's Ataxia.

    PubMed

    Calap-Quintana, Pablo; Soriano, Sirena; Llorens, José Vicente; Al-Ramahi, Ismael; Botas, Juan; Moltó, María Dolores; Martínez-Sebastián, María José

    2015-01-01

    Friedreich's ataxia (FRDA), the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (TORC1) signalling improves the impaired motor performance phenotype of FRDA model flies. Pharmacologic inhibition of TORC1 signalling by rapamycin also restored this phenotype and increased the lifespan and ATP levels. Furthermore, rapamycin reduced the altered levels of malondialdehyde + 4-hydroxyalkenals and total glutathione of the model flies. The rapamycin-mediated protection against oxidative stress is due in part to an increase in the transcription of antioxidant genes mediated by cap-n-collar (Drosophila ortholog of Nrf2). Our results suggest that autophagy is indeed necessary for the protective effect of rapamycin in hyperoxia. Rapamycin increased the survival and aconitase activity of model flies subjected to high oxidative insult, and this improvement was abolished by the autophagy inhibitor 3-methyladenine. These results point to the TORC1 pathway as a new potential therapeutic target for FRDA and as a guide to finding new promising molecules for disease treatment.

  11. Enzymatic antioxidant system in vascular inflammation and coronary artery disease

    PubMed Central

    Lubrano, Valter; Balzan, Silvana

    2015-01-01

    In biological systems there is a balance between the production and neutralization of reactive oxygen species (ROS). This balance is maintained by the presence of natural antioxidants and antioxidant enzymes such as superoxide dismutase (SOD), catalase and glutathione peroxidase. The enhancement of lipid peroxidation or the decrease of antioxidant protection present in metabolic diseases or bad lifestyle can induce endothelial dysfunction and atherosclerosis. Clinical studies have shown that oxidative stress can increase ROS reducing the formation of antioxidant defences, especially in subjects with coronary artery disease (CAD). Some observation indicated that in the early stages of the disease there is a homeostatic up-regulation of the antioxidant enzyme system in response to increased free radicals to prevent vascular damage. As soon as free radicals get to chronically elevated levels, this compensation ceases. Therefore, SOD and the other enzymes may represent a good therapeutic target against ROS, but they are not useful markers for the diagnosis of CAD. In conclusion antioxidant enzymes are reduced in presence of metabolic disease and CAD. However the existence of genes that promote their enzymatic activity could contribute to create new drugs for the treatment of damage caused by metabolic diseases or lifestyle that increases the plasma ROS levels. PMID:26618108

  12. The Learning Management System at the Defence University: Awareness and Application

    ERIC Educational Resources Information Center

    Juhary, Jowati

    2013-01-01

    This brief paper examines the issues of awareness and application of a Learning Management System (LMS) used at the National Defence University of Malaysia (NDUM), Kuala Lumpur Malaysia. The paper argues that due to the discouraging responses from academics at the university on using the LMS, proactive measures must be taken immediately in order…

  13. A single blueberry (Vaccinium corymbosum) portion does not affect markers of antioxidant defence and oxidative stress in healthy volunteers following cigarette smoking.

    PubMed

    Del Bo', Cristian; Porrini, Marisa; Campolo, Jonica; Parolini, Marina; Lanti, Claudia; Klimis-Zacas, Dorothy; Riso, Patrizia

    2016-03-01

    We previously reported that a portion of blueberries reversed endothelial dysfunction induced by acute cigarette smoking. Since smoking-induced endothelial dysfunction is associated with a condition of oxidative stress, we evaluated whether the observed effect was mediated by modulation of markers of oxidative stress and antioxidant defence. Fourteen out of 16 male healthy smokers previously enrolled, participated in a three-armed randomized controlled study with the following experimental conditions: smoking treatment (one cigarette); blueberry treatment (300g of blueberries) + smoking (one cigarette); control treatment (300ml of water with sugar) + smoking (one cigarette). The cigarette was smoked 100min after blueberry/control/water consumption. Each treatment was separated by 1 week of washout period. Plasma vitamin (C, B12 and folate) and aminothiol concentrations, endogenous [formamidopyrimidine-DNA glycosylase (FPG)-sensitive sites] and oxidatively induced DNA damage (resistance to H2O2-induced DNA damage) in peripheral blood mononuclear cells (PBMCs) were measured at baseline and 20, 60, 90, 120min and 24h after smoking. On the whole, analysis of variance did not show a significant effect of treatment on the modulation of markers of oxidative stress and antioxidant defence but revealed an effect of time for plasma concentrations of vitamin C (P = 0.003), B12 (P < 0.001), folate (P < 0.001), total cysteine (P = 0.007) and cysteine-glycine (P = 0.010) that increased following the three treatments after smoking. No significant effect of treatment was observed for the levels of FPG-sensitive sites (P > 0.05) and H2O2-induced DNA damage (P > 0.05) in PBMCs. In conclusion, the consumption of a single blueberry portion failed to modulate markers of oxidative stress and antioxidant defence investigated in our experimental conditions. Further studies are necessary to elucidate this finding and help clarifying the mechanisms of protection of blueberries against

  14. MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize

    PubMed Central

    Zhu, Yuan; Zuo, Mingxing; Liang, Yali; Jiang, Mingyi; Zhang, Jianhua; Scheller, Henrik Vibe; Tan, Mingpu; Zhang, Aying

    2013-01-01

    Brassinosteroid (BR)-induced antioxidant defence has been shown to enhance stress tolerance. In this study, the role of the maize 65kDa microtubule-associated protein (MAP65), ZmMAP65-1a, in BR-induced antioxidant defence was investigated. Treatment with BR increased the expression of ZmMAP65-1a in maize (Zea mays) leaves and mesophyll protoplasts. Transient expression and RNA interference silencing of ZmMAP65-1a in mesophyll protoplasts further revealed that ZmMAP65-1a is required for the BR-induced increase in expression and activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Both exogenous and BR-induced endogenous H2O2 increased the expression of ZmMAP65-1a. Conversely, transient expression of ZmMAP65-1a in maize mesophyll protoplasts enhanced BR-induced H2O2 accumulation, while transient silencing of ZmMAP65-1a blocked the BR-induced expression of NADPH oxidase genes and inhibited BR-induced H2O2 accumulation. Inhibiting the activity and gene expression of ZmMPK5 significantly prevented the BR-induced expression of ZmMAP65-1a. Likewise, transient expression of ZmMPK5 enhanced BR-induced activities of the antioxidant defence enzymes SOD and APX in a ZmMAP65- 1a-dependent manner. ZmMPK5 directly interacted with ZmMAP65-1a in vivo and phosphorylated ZmMAP65-1a in vitro. These results suggest that BR-induced antioxidant defence in maize operates through the interaction of ZmMPK5 with ZmMAP65-1a. Furthermore, ZmMAP65-1a functions in H2O2 self-propagation via regulation of the expression of NADPH oxidase genes in BR signalling. PMID:23956414

  15. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence.

    PubMed

    Xie, Yanjie; Xu, Daokun; Cui, Weiti; Shen, Wenbiao

    2012-06-01

    Previous pharmacological results confirmed that haem oxygenase-1 (HO-1) is involved in protection of cells against ultraviolet (UV)-induced oxidative damage in soybean [Glycine max (L.) Merr.] seedlings, but there remains a lack of genetic evidence. In this study, the link between Arabidopsis thaliana HO-1 (HY1) and UV-C tolerance was investigated at the genetic and molecular levels. The maximum inducible expression of HY1 in wild-type Arabidopsis was observed following UV-C irradiation. UV-C sensitivity was not observed in ho2, ho3, and ho4 single and double mutants. However, the HY1 mutant exhibited UV-C hypersensitivity, consistent with the observed decreases in chlorophyll content, and carotenoid and flavonoid metabolism, as well as the down-regulation of antioxidant defences, thereby resulting in severe oxidative damage. The addition of the carbon monoxide donor carbon monoxide-releasing molecule-2 (CORM-2), in particular, and bilirubin (BR), two catalytic by-products of HY1, partially rescued the UV-C hypersensitivity, and other responses appeared in the hy1 mutant. Transcription factors involved in the synthesis of flavonoid or UV responses were induced by UV-C, but reduced in the hy1 mutant. Overall, the findings showed that mutation of HY1 triggered UV-C hypersensitivity, by impairing carotenoid and flavonoid synthesis and antioxidant defences.

  16. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence

    PubMed Central

    Xie, Yanjie; Xu, Daokun; Cui, Weiti; Shen, Wenbiao

    2012-01-01

    Previous pharmacological results confirmed that haem oxygenase-1 (HO-1) is involved in protection of cells against ultraviolet (UV)-induced oxidative damage in soybean [Glycine max (L.) Merr.] seedlings, but there remains a lack of genetic evidence. In this study, the link between Arabidopsis thaliana HO-1 (HY1) and UV-C tolerance was investigated at the genetic and molecular levels. The maximum inducible expression of HY1 in wild-type Arabidopsis was observed following UV-C irradiation. UV-C sensitivity was not observed in ho2, ho3, and ho4 single and double mutants. However, the HY1 mutant exhibited UV-C hypersensitivity, consistent with the observed decreases in chlorophyll content, and carotenoid and flavonoid metabolism, as well as the down-regulation of antioxidant defences, thereby resulting in severe oxidative damage. The addition of the carbon monoxide donor carbon monoxide-releasing molecule-2 (CORM-2), in particular, and bilirubin (BR), two catalytic by-products of HY1, partially rescued the UV-C hypersensitivity, and other responses appeared in the hy1 mutant. Transcription factors involved in the synthesis of flavonoid or UV responses were induced by UV-C, but reduced in the hy1 mutant. Overall, the findings showed that mutation of HY1 triggered UV-C hypersensitivity, by impairing carotenoid and flavonoid synthesis and antioxidant defences. PMID:22419743

  17. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    PubMed Central

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-01-01

    Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  18. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGES

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  19. The oxidant defence system in water-buffaloes (Bubalus bubalis) experimentally infected with Anaplasma marginale.

    PubMed

    Reddy, G R; More, T; Sharma, S P; Singh, L N

    1988-03-01

    The glutathione (GSH) -oxidant defence system protects the erythrocytes and leucocytes from oxidative damage. Leucocyte -superoxide dismutase (SOD), GSH-peroxidase (GSH-px), GSH-reductase (GR), GSH-S-transferase (GSH-S-t) and arginase were examined in samples from buffaloes infected with Anaplasma marginale. All the enzymes, except arginase, were also studied in the red cell haemolysates from these animals. GSH-S-t, GSH- and glutathione-reductase (GR) levels in leucocytes decreased in infected animals suggesting a decline in the efficiency of the GSH-oxidant defence system. SOD levels increased but there was no change in leucocyte-arginase activity due to infection. Infection caused no significant changes in red cell SOD, GSH-px, GR and GSH. However, GSH-S-t significantly decreased (P less than 0.05).

  20. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.

    PubMed

    Levasseur, Anthony; Bekliz, Meriem; Chabrière, Eric; Pontarotti, Pierre; La Scola, Bernard; Raoult, Didier

    2016-03-10

    Since their discovery, giant viruses have revealed several unique features that challenge the conventional definition of a virus, such as their large and complex genomes, their infection by virophages and their presence of transferable short element transpovirons. Here we investigate the sensitivity of mimivirus to virophage infection in a collection of 59 viral strains and demonstrate lineage specificity in the resistance of mimivirus to Zamilon, a unique virophage that can infect lineages B and C of mimivirus but not lineage A. We hypothesized that mimiviruses harbour a defence mechanism resembling the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system that is widely present in bacteria and archaea. We performed de novo sequencing of 45 new mimivirus strains and searched for sequences specific to Zamilon in a total of 60 mimivirus genomes. We found that lineage A strains are resistant to Zamilon and contain the insertion of a repeated Zamilon sequence within an operon, here named the 'mimivirus virophage resistance element' (MIMIVIRE). Further analyses of the surrounding sequences showed that this locus is reminiscent of a defence mechanism related to the CRISPR-Cas system. Silencing the repeated sequence and the MIMIVIRE genes restores mimivirus susceptibility to Zamilon. The MIMIVIRE proteins possess the typical functions (nuclease and helicase) involved in the degradation of foreign nucleic acids. The viral defence system, MIMIVIRE, represents a nucleic-acid-based immunity against virophage infection. PMID:26934229

  1. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.

    PubMed

    Levasseur, Anthony; Bekliz, Meriem; Chabrière, Eric; Pontarotti, Pierre; La Scola, Bernard; Raoult, Didier

    2016-03-10

    Since their discovery, giant viruses have revealed several unique features that challenge the conventional definition of a virus, such as their large and complex genomes, their infection by virophages and their presence of transferable short element transpovirons. Here we investigate the sensitivity of mimivirus to virophage infection in a collection of 59 viral strains and demonstrate lineage specificity in the resistance of mimivirus to Zamilon, a unique virophage that can infect lineages B and C of mimivirus but not lineage A. We hypothesized that mimiviruses harbour a defence mechanism resembling the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system that is widely present in bacteria and archaea. We performed de novo sequencing of 45 new mimivirus strains and searched for sequences specific to Zamilon in a total of 60 mimivirus genomes. We found that lineage A strains are resistant to Zamilon and contain the insertion of a repeated Zamilon sequence within an operon, here named the 'mimivirus virophage resistance element' (MIMIVIRE). Further analyses of the surrounding sequences showed that this locus is reminiscent of a defence mechanism related to the CRISPR-Cas system. Silencing the repeated sequence and the MIMIVIRE genes restores mimivirus susceptibility to Zamilon. The MIMIVIRE proteins possess the typical functions (nuclease and helicase) involved in the degradation of foreign nucleic acids. The viral defence system, MIMIVIRE, represents a nucleic-acid-based immunity against virophage infection.

  2. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2015-12-01

    Supplementary ultraviolet-B (ambient+3.6  kJ m(-2) day(-1)) induced changes on morphological, physiological, and biochemical characteristics (specifically the defence strategies: UV-B protective compounds and antioxidants) of Coleus forskohlii were investigated under field conditions at 30, 60, and 90 days after transplantation. Levels of secondary metabolites increased under s-UV-B stress; flavonoids and phenolics (primary UV-B screening agents) were recorded to be higher in leaves which are directly exposed to s-UV-B. This was also verified by enhanced activities of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR). Antioxidants, both enzymatic (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) and non-enzymatic (ascorbic acid and α-tocopherol) also increased in the treated organs of the test plant, higher contents being recorded in roots except for ascorbic acid. On the contrary, protein and chlorophyll content (directly implicated in regulating plant growth and development) declined under s-UV-B. These alterations in plant biochemistry led the plant to compromise on its photosynthate allocation towards growth and biomass production as evidenced by a reduction in its height and biomass. The study concludes that s-UV-B is a potent stimulating factor in increasing the concentrations of defense compounds and antioxidants in C. forskohlii to optimize its performance under stress.

  3. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2015-12-01

    Supplementary ultraviolet-B (ambient+3.6  kJ m(-2) day(-1)) induced changes on morphological, physiological, and biochemical characteristics (specifically the defence strategies: UV-B protective compounds and antioxidants) of Coleus forskohlii were investigated under field conditions at 30, 60, and 90 days after transplantation. Levels of secondary metabolites increased under s-UV-B stress; flavonoids and phenolics (primary UV-B screening agents) were recorded to be higher in leaves which are directly exposed to s-UV-B. This was also verified by enhanced activities of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR). Antioxidants, both enzymatic (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) and non-enzymatic (ascorbic acid and α-tocopherol) also increased in the treated organs of the test plant, higher contents being recorded in roots except for ascorbic acid. On the contrary, protein and chlorophyll content (directly implicated in regulating plant growth and development) declined under s-UV-B. These alterations in plant biochemistry led the plant to compromise on its photosynthate allocation towards growth and biomass production as evidenced by a reduction in its height and biomass. The study concludes that s-UV-B is a potent stimulating factor in increasing the concentrations of defense compounds and antioxidants in C. forskohlii to optimize its performance under stress. PMID:26461242

  4. Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms.

    PubMed

    Kanugula, Anantha Koteswararao; Gollavilli, Paradesi Naidu; Vasamsetti, Sathish Babu; Karnewar, Santosh; Gopoju, Raja; Ummanni, Ramesh; Kotamraju, Srigiridhar

    2014-08-01

    Accumulating evidence from in vitro, in vivo, clinical and epidemiological studies shows promising results for the use of statins against many cancers including breast carcinoma. However, the molecular mechanisms responsible for the anti-proliferative and anti-invasive properties of statins still remain elusive. In this study, we investigated the involvement of nitric oxide, iron homeostasis and antioxidant defence mechanisms in mediating the anti-proliferative and anti-invasive properties of hydrophobic statins in MDA-MB-231, MDA-MB-453 and BT-549 metastatic triple negative breast cancer cells. Fluvastatin and simvastatin significantly increased cytotoxicity which was reversed with mevalonate. Interestingly, fluvastatin downregulated transferrin receptor (TfR1), with a concomitant depletion of intracellular iron levels in these cells. Statin-induced effects were mimicked by geranylgeranyl transferase inhibitor (GGTI-298) but not farnesyl transferase inhibitor (FTI-277). Further, it was observed that TfR1 downregulation is mediated by increased nitric oxide levels via inducible nitric oxide synthase (iNOS) expression. NOS inhibitors (asymmetric dimethylarginine and 1400W) counteracted and sepiapterin, a precursor of tetrahydrobiopterin, exacerbated statin-induced depletion of intracellular iron levels. Notably, fluvastatin increased manganese superoxide dismutase (by repressing the transcription factor DNA damage-binding protein 2), catalase and glutathione which, in turn, diminished H2 O2 levels. Fluvastatin-induced downregulation of TfR1, matrix metalloproteinase-2, -9 and inhibition of invasion were reversed in the presence of aminotriazole, a specific inhibitor of catalase. Finally, we conclude that fluvastatin, by altering iron homeostasis, nitric oxide generation and antioxidant defence mechanisms, induces triple negative breast cancer cell death.

  5. Antioxidant defence-related genetic variants are not associated with higher risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence

    PubMed Central

    Vodusek, Ana Lina; Goricar, Katja; Gazic, Barbara; Dolzan, Vita

    2016-01-01

    Background Thyroid cancer is one of the most common secondary cancers after treatment of malignancy in childhood or adolescence. Thyroid gland is very sensitive to the carcinogenic effect of ionizing radiation, especially in children. Imbalance between pro- and anti-oxidant factors may play a role in thyroid carcinogenesis. Our study aimed to assess the relationship between genetic variability of antioxidant defence-related genes and the risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. Patients and methods In a retrospective study, we compared patients with childhood or adolescence primary malignancy between 1960 and 2006 that developed a secondary thyroid cancer (cases) with patients (controls), with the same primary malignancy but did not develop any secondary cancer. They were matched for age, gender, primary diagnosis and treatment (especially radiotherapy) of primary malignancy. They were all genotyped for SOD2 p.Ala16Val, CAT c.-262C>T, GPX1 p.Pro200Leu, GSTP1 p.Ile105Val, GSTP1 p.Ala114Val and GSTM1 and GSTT1 deletions. The influence of polymorphisms on occurrence of secondary cancer was examined by McNemar test and Cox proportional hazards model. Results Between 1960 and 2006 a total of 2641 patients were diagnosed with primary malignancy before the age of 21 years in Slovenia. Among them 155 developed a secondary cancer, 28 of which were secondary thyroid cancers. No significant differences in the genotype frequency distribution were observed between cases and controls. Additionally we observed no significant influence of investigated polymorphisms on time to the development of secondary thyroid cancer. Conclusions We observed no association of polymorphisms in antioxidant genes with the risk for secondary thyroid cancer after treatment of malignancy in childhood or adolescence. However, thyroid cancer is one of the most common secondary cancers in patients treated for malignancy in childhood or adolescence and

  6. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway

    PubMed Central

    Weech, Marie-Hélène; Chapleau, Mélanie; Pan, Li; Ide, Christine; Bede, Jacqueline C.

    2008-01-01

    Arabidopsis thaliana (L.) Heynh. genotypes limited in their ability to mount either octadecanoid-dependent induced resistance (IR–) or systemic acquired resistance (SAR–) were used to characterize the roles of these pathways in plant–herbivore interactions. Molecular and biochemical markers of IR were analysed in plants subject to herbivory by caterpillars of the beet armyworm, Spodoptera exigua Hübner, which had either intact or impaired salivary secretions since salivary enzymes, such as glucose oxidase, have been implicated in the ability of caterpillars to circumvent induced plant defences. Transcript expression of genes encoding laccase-like multicopper oxidase [AtLMCO4 (polyphenol oxidase)] and defensin (AtPDF1.2) showed salivary-specific patterns which were disrupted in the SAR– mutant plants. The activity of octadecanoid-associated anti-nutritive proteins, such as LMCO and trypsin inhibitor, showed similar patterns. Gene and protein changes parallel plant hormone levels where elevated jasmonic acid was observed in wild-type plants fed upon by caterpillars with impaired salivary secretions compared with plants subject to herbivory by normal caterpillars. This salivary-specific difference in jasmonic acid levels was alleviated in SAR– mutants. These results support the model that caterpillar saliva interferes with jasmonate-dependent plant defences by activating the SAR pathway. PMID:18487634

  7. Developments in aspects of ecological phytochemistry: the role of cis-jasmone in inducible defence systems in plants.

    PubMed

    Pickett, John A; Birkett, Michael A; Bruce, Toby J A; Chamberlain, Keith; Gordon-Weeks, Ruth; Matthes, Michaela C; Napier, Johnathan A; Smart, Lesley E; Woodcock, Christine M

    2007-01-01

    The challenges and opportunities for protecting agricultural production of food and other materials will be met through exploiting the induction of defence pathways in plants to control pests, diseases and weeds. These approaches will involve processes that can be activated by application of natural products, patented in terms of this use, to "switch on" defence pathways. Already, a number of secondary metabolite defence compounds are known for which the pathways are conveniently clustered genomically, e.g. the benzoxazinoids (hydroxamic acids) and the avenacins. For the former, it is shown that the small molecular weight lipophilic activator cis-jasmone can induce production of these compounds and certain genes within the pathway. Numerous groups around the world work on inducible defence systems. The science is rapidly expanding and involves studying the interacting components of defence pathways and the switching mechanisms activated by small molecular weight lipophilic compounds. Examples are described of how plant breeding can exploit these systems and how heterologous gene expression will eventually give rise to a new range of GM crops for food and energy, without the need for external application of synthetic pesticides. PMID:18023830

  8. Developments in aspects of ecological phytochemistry: the role of cis-jasmone in inducible defence systems in plants.

    PubMed

    Pickett, John A; Birkett, Michael A; Bruce, Toby J A; Chamberlain, Keith; Gordon-Weeks, Ruth; Matthes, Michaela C; Napier, Johnathan A; Smart, Lesley E; Woodcock, Christine M

    2007-01-01

    The challenges and opportunities for protecting agricultural production of food and other materials will be met through exploiting the induction of defence pathways in plants to control pests, diseases and weeds. These approaches will involve processes that can be activated by application of natural products, patented in terms of this use, to "switch on" defence pathways. Already, a number of secondary metabolite defence compounds are known for which the pathways are conveniently clustered genomically, e.g. the benzoxazinoids (hydroxamic acids) and the avenacins. For the former, it is shown that the small molecular weight lipophilic activator cis-jasmone can induce production of these compounds and certain genes within the pathway. Numerous groups around the world work on inducible defence systems. The science is rapidly expanding and involves studying the interacting components of defence pathways and the switching mechanisms activated by small molecular weight lipophilic compounds. Examples are described of how plant breeding can exploit these systems and how heterologous gene expression will eventually give rise to a new range of GM crops for food and energy, without the need for external application of synthetic pesticides.

  9. Effects of Inulin Supplementation in Low- or High-Fat Diets on Reproductive Performance of Sows and Antioxidant Defence Capacity in Sows and Offspring.

    PubMed

    Wang, Y S; Zhou, P; Liu, H; Li, S; Zhao, Y; Deng, K; Cao, D D; Che, L Q; Fang, Z F; Xu, S Y; Lin, Y; Feng, B; Li, J; Wu, D

    2016-08-01

    This experiment was conducted to investigate the effects of inulin supplementation in low- or high-fat diets on both the reproductive performance of sow and the antioxidant defence capacity in sows and offspring. Sixty Landrace × Yorkshire sows were randomly allocated to four treatments with low-fat diet (L), low-fat diet containing 1.5% inulin (LI), high-fat diet (H) and high-fat diet containing 1.5% inulin (HI). Inulin-rich diets lowered the within-litter birth weight coefficient of variation (CV, p = 0.05) of piglets, increased the proportion of piglets weighing 1.0-1.5 kg at farrowing (p < 0.01), reduced the loss of body weight (BW) and backfat thickness (BF) during lactation (p < 0.05) and decreased the duration of farrowing as well as improved sow constipation (p < 0.05). Sows fed fat-rich diets gained more BW during gestation (p < 0.01), farrowed a greater number of total (+1.65 pigs, p < 0.05) and alive (+1.52 pigs p < 0.05) piglets and had a heavier (+2.06 kg, p < 0.05) litter weight at birth as well as a decreased weaning-to-oestrous interval (WEI, p < 0.01) compared with sows fed low-fat diets. However, it is worth noting that the H diet significantly decreased the serum activities of superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) and increased the serum malondialdehyde (MDA) levels in sows and piglets (p < 0.05). In contrast, HI diet enhanced the activities of T-SOD and GSH-Px and decreased the serum MDA concentrations (p < 0.05) in sows and piglets. In summary, the fat-rich diets fed to sows during gestation had beneficial effects on reproductive performance, but aggravated the oxidative stress in sow and piglets. Inulin-rich diets fed to sow during gestation had beneficial effects on within-litter uniformity of piglet birthweight and enhanced the antioxidant defence capacity of sows and piglets.

  10. [The changes of processes of free radical oxidation of lipids and proteins, antioxidant defence in rats with hypofunction of the thyroid gland in conditions of iodine and copper deficiency].

    PubMed

    Voronych-Semchenko, N M; Huranych, T V

    2014-01-01

    Thyroid status, copper balance, correlation of processes of peroxide oxidation of lipids (POL), proteins (POP), antioxidant defence (AOD) were examined in experiments on rats with hypofunction of thyroid gland under iodine monodeficit (HTGI) and combined iodine and copper deficit (HTGI+Cu). It was determined that a combined deficit of microelements is accompanied by a distribution of copper content between different tissues (increase in red blood cell mass and cerebrum, decrease in myocardium), essential changes of indexes of hypotalamo-hypophysis-thyroid axis, oxygen-dependent metabolism, antiradical defense, exacerbating the effects of negative influence of each of them on organism. It was established that HTGI+Cu causes a suppression of oxygen-dependent processes. In thyroid gland, it is shown a decrease of content of dyenic conjugates (DC) by 69,70% , of TBA-reacting products (TBA-RP) by 47,72% in diencephalon, the volume of modified proteins (VMP) - by 37,10-98,98% in the tissues of diencephalons. The results obtained let us to suggest a pivotal role ofmicroelement dysbalance and metabolic mechanisms in pathogenesis of cardiological pathology under thyroid dysfunction. The development of HTGI +Cu exhausts the resources of AOD: decreases the activity of catalase (on 47,05%), superoxide dismutase (on 33,13%), ceruloplasmine (on 33,93%) and saturation of transferrin with iron (on 56,76%) against the background of selective rise in the activity of glu-tationreductase (in 2,8 time) in comparison with the control data. The long-term disturbances ofantyoxidative defence can be the reason of manifestation of oxygendependent processes and the development of pathological changes in separate physiological systems of organism.

  11. A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells.

    PubMed

    Favero, Gaia; Rodella, Luigi Fabrizio; Nardo, Lorenzo; Giugno, Lorena; Cocchi, Marco Angelo; Borsani, Elisa; Reiter, Russel J; Rezzani, Rita

    2015-08-01

    Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. The loss of cells during aging in vital tissues and organs is related to several factors including oxidative stress and inflammation. Skeletal muscle degeneration is common in elderly people; in fact, this tissue is particularly vulnerable to oxidative stress since it requires large amounts of oxygen, and thus, oxidative damage is abundant and accumulates with increasing age. Melatonin (N-acetyl-5-methoxytryptamine) is a highly efficient scavenger of reactive oxygen species and it also exhibits beneficial anti-inflammatory and anti-aging effects. This study investigated the susceptibility of rat L6 skeletal muscle cells to an induced oxidative stress following their exposure to hydrogen peroxide (50 μM) and evaluating the potential protective effects of pre-treatment with melatonin (10 nM) compared to the known beneficial effect of alpha-lipoic acid (300 μM). Hydrogen peroxide-induced obvious oxidative stress; it increased the expression of tumour necrosis factor-alpha and in turn promoted nuclear factor kappa-B and overrode the endogenous defence mechanisms. Conversely, pre-treatment of the hydrogen peroxide-exposed cells to melatonin or alpha-lipoic acid increased endogenous antioxidant enzymes, including superoxide dismutase-2 and heme oxygenase-1; moreover, they ameliorated significantly oxidative stress damage and partially reduced alterations in the muscle cells, which are typical of aging. In conclusion, melatonin was equally effective as alpha-lipoic acid; it exhibited marked antioxidant and anti-aging effects at the level of skeletal muscle in vitro even when it was given in a much lower dose than alpha-lipoic acid.

  12. Vampires, Pasteur and reactive oxygen species. Is the switch from aerobic to anaerobic metabolism a preventive antioxidant defence in blood-feeding parasites?

    PubMed

    Oliveira, Pedro L; Oliveira, Marcus F

    2002-08-14

    Several species of parasites show a reduction of their respiratory activity along their developmental cycles after they start to feed on vertebrate blood, relying on anaerobic degradation of carbohydrates to achieve their energy requirements. Usually, these parasites choose not to breathe despite of living in an environment of high oxygen availability such as vertebrate blood. Absence of the 'Pasteur effect' in most of these parasites has been well documented. Interestingly, together with the switch from aerobic to anaerobic metabolism in these parasites, there is clear evidence pointing to an increase in their antioxidant defences. As the respiratory chain in mitochondria is a major site of production of reactive oxygen species (ROS), we propose here that the arrest of respiration constitutes an adaptation to avoid the toxic effects of ROS. This situation would be especially critical for blood-feeding parasites because ROS produced in mitochondria would interact with pro-oxidant products of blood digestion, such as haem and/or iron, and increase the oxidative damage to the parasite's cells.

  13. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice.

    PubMed

    Garratt, Michael; Pichaud, Nicolas; King, Edith D Aloise; Brooks, Robert C

    2013-08-01

    Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.

  14. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems

    PubMed Central

    2015-01-01

    The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom. PMID:26813803

  15. TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich’s Ataxia

    PubMed Central

    Calap-Quintana, Pablo; Soriano, Sirena; Llorens, José Vicente; Al-Ramahi, Ismael; Botas, Juan; Moltó, María Dolores; Martínez-Sebastián, María José

    2015-01-01

    Friedreich’s ataxia (FRDA), the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (TORC1) signalling improves the impaired motor performance phenotype of FRDA model flies. Pharmacologic inhibition of TORC1 signalling by rapamycin also restored this phenotype and increased the lifespan and ATP levels. Furthermore, rapamycin reduced the altered levels of malondialdehyde + 4-hydroxyalkenals and total glutathione of the model flies. The rapamycin-mediated protection against oxidative stress is due in part to an increase in the transcription of antioxidant genes mediated by cap-n-collar (Drosophila ortholog of Nrf2). Our results suggest that autophagy is indeed necessary for the protective effect of rapamycin in hyperoxia. Rapamycin increased the survival and aconitase activity of model flies subjected to high oxidative insult, and this improvement was abolished by the autophagy inhibitor 3-methyladenine. These results point to the TORC1 pathway as a new potential therapeutic target for FRDA and as a guide to finding new promising molecules for disease treatment. PMID:26158631

  16. The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles

    PubMed Central

    Gali Ramamoorthy, Thanuja; Laverny, Gilles; Schlagowski, Anna-Isabel; Zoll, Joffrey; Messaddeq, Nadia; Bornert, Jean-Marc; Panza, Salvatore; Ferry, Arnaud; Geny, Bernard; Metzger, Daniel

    2015-01-01

    The transcriptional coregulators PGC-1α and PGC-1β modulate the expression of numerous partially overlapping genes involved in mitochondrial biogenesis and energetic metabolism. The physiological role of PGC-1β is poorly understood in skeletal muscle, a tissue of high mitochondrial content to produce ATP levels required for sustained contractions. Here we determine the physiological role of PGC-1β in skeletal muscle using mice, in which PGC-1β is selectively ablated in skeletal myofibres at adulthood (PGC-1β(i)skm−/− mice). We show that myofibre myosin heavy chain composition and mitochondrial number, muscle strength and glucose homeostasis are unaffected in PGC-1β(i)skm−/− mice. However, decreased expression of genes controlling mitochondrial protein import, translational machinery and energy metabolism in PGC-1β(i)skm−/− muscles leads to mitochondrial structural and functional abnormalities, impaired muscle oxidative capacity and reduced exercise performance. Moreover, enhanced free-radical leak and reduced expression of the mitochondrial anti-oxidant enzyme Sod2 increase muscle oxidative stress. PGC-1β is therefore instrumental for skeletal muscles to cope with high energetic demands. PMID:26674215

  17. Free radicals, antioxidant defense systems, and schizophrenia.

    PubMed

    Wu, Jing Qin; Kosten, Thomas R; Zhang, Xiang Yang

    2013-10-01

    The etiopathogenic mechanisms of schizophrenia are to date unknown, although several hypotheses have been suggested. Accumulating evidence suggests that excessive free radical production or oxidative stress may be involved in the pathophysiology of schizophrenia as evidenced by increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. This review aims to summarize the basic molecular mechanisms of free radical metabolism, the impaired antioxidant defense system and membrane pathology in schizophrenia, their interrelationships with the characteristic clinical symptoms and the implications for antipsychotic treatments. In schizophrenia, there is accumulating evidence of altered antioxidant enzyme activities and increased levels of lipid peroxidation, as well as altered levels of plasma antioxidants. Moreover, free radical-mediated abnormalities may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment with antipsychotic drugs, as well as the development of tardive dyskinesia (TD). Finally, the potential therapeutic strategies implicated by the accumulating data on oxidative stress mechanisms for the treatment of schizophrenia are discussed.

  18. Systemic antioxidants and skin health.

    PubMed

    Nguyen, Gloria; Torres, Abel

    2012-09-01

    Most dermatologists agree that antioxidants help fight free radical damage and can help maintain healthy skin. They do so by affecting intracellular signaling pathways involved in skin damage and protecting against photodamage, as well as preventing wrinkles and inflammation. In today's modern world of the rising nutraceutical industry, many people, in addition to applying topical skin care products, turn to supplementation of the nutrients missing in their diets by taking multivitamins or isolated, man-made nutraceuticals, in what is known as the Inside-Out approach to skin care. However, ingestion of large quantities of isolated, fragmented nutrients can be harmful and is a poor representation of the kind of nutrition that can be obtained from whole food sources. In this comprehensive review, it was found that few studies on oral antioxidants benefiting the skin have been done using whole foods, and that the vast majority of current research is focused on the study of compounds in isolation. However, the public stands to benefit greatly if more research were to be devoted toward the impact that physiologic doses of antioxidants (obtained from fruits, vegetables, and whole grains) can have on skin health, and on health in general.

  19. Viewing AIDS from a glycobiological perspective: potential linkages to the human fetoembryonic defence system hypothesis.

    PubMed

    Clark, G F; Dell, A; Morris, H R; Patankar, M; Oehninger, S; Seppälä, M

    1997-01-01

    proposed model for the protection of the developing human and gametes designated the human fetoembryonic defence system hypothesis. A striking relationship now emerging is that the same unusual carbohydrate sequences associated with these immunosuppressive glycodelins are also specifically expressed on intravascular helminthic parasites, Helicobacter pylori, human tumour cells, and HIV infected T lymphocytes. The information presented in this review suggests that two new corollaries should be added to our recently proposed defence system hypothesis: (i) mimicry or acquisition of glycans that are used in this protective system by pathogens or tumour cells may enable them to either subvert or misdirect the human immune response, thereby greatly increasing their pathogenicity; and (ii) expression of glycoproteins used in this system by normal cells and tissues outside the reproductive system may protect them from immune responses, especially in those cases where major histocompatibility recognition is either absent or minimal. A better understanding of this hypothesis and its corollaries may enable us to address the molecular mechanisms underlying not only AIDS but also a host of other very serious pathological conditions in the human.

  20. Biosensors for antioxidant evaluation in biological systems.

    PubMed

    Mello, Lucilene Dornelles; Kisner, Alexandre; Goulart, Marilia Oliveira Fonseca; Kubota, Lauro Tatsuo

    2013-02-01

    The prevention of oxidative reactions in a biological medium as well as the role of reactive oxygen species (ROS) in chronic degenerative diseases are questions that continue to be investigated. Electrochemical biosensors have shown attractive features to evaluate the oxidative stress condition at a level comparable to chromatographic and spectroscopic techniques. The biosensors developed so far are based on direct analysis of specific indicators such as biomarkers of oxidative stress on the monitoring of reactive oxygen species the free radicals in cells or tissues, aiming to obtain a correlation between the index obtained from these indicators with the oxidative stress levels in cells. In this review we will provide an overview of the development of electrochemical biosensors to evaluate the content of antioxidants and reactive oxygen species in physiological systems. Some discussion regarding the analysis of antioxidant capacity at the single cell level is also presented.

  1. Characteristics of Antioxidant Systems of Yellow Fraction of Red Deer's (Cervus elaphus L.) Semen During the Rutting Period.

    PubMed

    Koziorowska-Gilun, M; Szurnicka, M; Dziekonska, A; Kordan, W; Giżejewski, Z; Filipowicz, K

    2016-04-01

    The objective of this study was to make the preliminary characterization of the antioxidant defence systems of the yellow fraction (YF) of red deer's (Cervus elaphus L.) semen during the rutting period. The semen was collected using artificial vagina (AV). The studies included spectrophotometric determination of antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). We also analysed the contents of low-molecular antioxidants such as L-glutathione (GSH + GSSG), L-ascorbate (ASC) and total antioxidant status (TAS). Additionally, the samples were subjected to PAGE and stained for SOD and GPx activities. It was demonstrated that the yellow fraction exhibited activities of SOD and GPx, with the highest activities in September and October. CAT activity was not detected. Staining for the SOD and GPx activities confirmed three protein bands with SOD activity and one protein band with GPx activity. The content of GSH + GSSG was similar in trials dating from October to December contrary to the content of ASC which was high in samples from September and October. The stable rate of TAS was observed during the whole rutting period. The results of this study showed that the YF of red deer semen is equipped with basic battery of antioxidant enzymes comprising SOD and GPx, with the supporting role of GSH + GSSG and ASC. Moreover, the samples obtained at the peak of the rutting period occurring from September to October had the highest enzymatic activity in comparison with remaining months of the rutting period, which contributed to the high quality of the semen by preventing it from the formation of oxidative stress during the short period of intense sexual activity of male red deer. The better understanding of the mechanisms of antioxidant defence systems in the YF of deer's semen may contribute to the potential use of this fraction in technology of wild ruminant semen preservation. PMID:26854018

  2. Neuroprotective effects of hydroalcoholic extract of Ocimum sanctum against H2O2 induced neuronal cell damage in SH-SY5Y cells via its antioxidative defence mechanism.

    PubMed

    Venuprasad, M P; Hemanth Kumar, Kandikattu; Khanum, Farhath

    2013-10-01

    Oxidative stress mediates the cell damage in several ailments including neurodegenerative conditions. Ocimum sanctum is widely used in Indian ayurvedic medications to cure various ailments. The present study was carried out to investigate the antioxidant activity and neuroprotective effects of hydroalcoholic extract of O. sanctum (OSE) on hydrogen peroxide (H2O2)-induced oxidative challenge in SH-SY5Y human neuronal cells. The extract exhibited strong antioxidant activity against DPPH, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical and hydroxyl radicals with IC50 values of 395 ± 16.2, 241 ± 11.5 and 188.6 ± 12.2 μg/ml respectively, which could be due to high amount of polyphenols and flavonoids. The observed data demonstrates 41.5% cell survival with 100 μM H2O2 challenge for 24 h, which was restored to 73% by pre-treatment with OSE for 2 h. It also decreased the lactate dehydrogenase leakage and preserved the cellular morphology. Similarly OSE inhibited lipid peroxidation, DNA damage, reactive oxygen species generation and depolarization of mitochondrial membrane. The extract restored superoxide dismutase and catalase enzyme/protein levels and further downregulated HSP-70 over-expression. These findings suggest that OSE ameliorates H2O2 induced neuronal damage via its antioxidant defence mechanism and might be used to treat oxidative stress mediated neuronal disorders. PMID:23996399

  3. [Metabolism, intensity of lipid peroxidation and the antioxidant defense system in humans during chamber experiments with long-term isolation].

    PubMed

    Markin, A A; Stroganova, L B; Vostrikova, L V; Balashov, O I; Nichiporuk, I A

    1997-01-01

    Blood biochemical parameters of lipid, protein, carbohydrate and energy metabolism were measured in a 135-day chamber experiment. Also, dynamics of the intensity of lipid peroxidation and status of the antioxidant defence system were evaluated. Results of the investigation showed that extended chamber isolation led to modifications of several biochemical parameters including hemoglobin, bilirubin, cholesterol and its fractions, elevated transaminase activity which are typical for long-term space mission. However, these were not accompanied by substantive changes in protein, energy and carbohydrate metabolisms, or intensity of free radical processes. Effects of prolonged stay in chamber was successfully counterbalanced by organism.

  4. Antioxidants in health and disease

    PubMed Central

    Young, I; Woodside, J

    2001-01-01

    Free radical production occurs continuously in all cells as part of normal cellular function. However, excess free radical production originating from endogenous or exogenous sources might play a role in many diseases. Antioxidants prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition. This article reviews the basic chemistry of free radical formation in the body, the consequences of free radical induced tissue damage, and the function of antioxidant defence systems, with particular reference to the development of atherosclerosis. Key Words: free radicals • antioxidants • oxidative stress • coronary heart disease • atherosclerosis PMID:11253127

  5. Scuba diving activates vascular antioxidant system.

    PubMed

    Sureda, A; Batle, J M; Ferrer, M D; Mestre-Alfaro, A; Tur, J A; Pons, A

    2012-07-01

    The aim was to study the effects of scuba diving immersion on plasma antioxidant defenses, nitric oxide production, endothelin-1 and vascular endothelial growth factor levels. 9 male divers performed an immersion at 50 m depth for a total time of 35 min. Blood samples were obtained before diving at rest, immediately after diving, and 3 h after the diving session. Leukocyte counts, plasma 8oxoHG, malondialdehyde and nitrite levels significantly increased after recovery. Activities of lactate dehydrogenase, creatine kinase, catalase and superoxide significantly increased immediately after diving and these activities remained high after recovery. Plasma myeloperoxidase activity and protein levels and extracellular superoxide dismutase protein levels increased after 3 h. Endothelin-1 concentration significantly decreased after diving and after recovery. Vascular endothelial growth factor concentration significantly increased after diving when compared to pre-diving values, returning to initial values after recovery. Scuba diving at great depth activated the plasma antioxidant system against the oxidative stress induced by elevated pO₂ oxygen associated with hyperbaria. The decrease in endothelin-1 levels and the increase in nitric oxide synthesis could be factors that contribute to post-diving vasodilation. Diving increases vascular endothelial growth factor plasma levels which can contribute to the stimulation of tissue resistance to diving-derived oxidative damage.

  6. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  7. Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system.

    PubMed

    Palmer, Debbie M; Kitchin, Jennifer Silverman

    2010-01-01

    It is believed that oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system's ability to neutralize the reactive intermediates. Oxidative damage occurs because of both intrinsic and extrinsic mechanisms. Together, intrinsic and extrinsic damage are the primary causes of skin aging. The skin uses a series of intrinsic antioxidants to protect itself from free radical damage. Naturally occurring extrinsic antioxidants have also been widely shown to offset and alleviate these changes. Unlike sunscreens, which have an SPF rating system to guide consumers in their purchases, there is no widely accepted method to choose antioxidant anti-aging products. ORAC (Oxygen Radical Absorbance Capacity) and ABEL-RAC (Analysis By Emitted Light-Relative Antioxidant Capacity), are both accepted worldwide as a standard measure of the antioxidant capacity of foods, and are rating systems that could be applied to all antioxidant skincare products. The standardization of antioxidant creams could revolutionize the cosmeceutical market and give physicians and consumers the ability to compare and choose effectively.

  8. Analysis of defence systems and a conjugative IncP-1 plasmid in the marine polyaromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME.

    PubMed

    Yakimov, Michail M; Crisafi, Francesca; Messina, Enzo; Smedile, Francesco; Lopatina, Anna; Denaro, Renata; Pieper, Dietmar H; Golyshin, Peter N; Giuliano, Laura

    2016-08-01

    Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities. PMID:27345842

  9. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study

    PubMed Central

    Kłapcińska, B; Podgórski, T; Szade, B; Tyl, K; Hadzik, A

    2015-01-01

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years) taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood samples were taken before and immediately after the test and after 1 h of recovery. Blood antioxidant status was evaluated based on activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], glutathione reductase [GR]), concentrations of non-enzymatic antioxidants (reduced glutathione [GSH], uric acid), total plasma polyphenols, ferric reducing ability of plasma (FRAP), thiobarbituric acid reactive substances (TBARS) and activities of creatine kinase (CK) and lactate dehydrogenase (LDH) as muscle damage markers. In order to evaluate potential health benefits of the acai berry, the post-treatment changes in lipid profile parameters (triglycerides, cholesterol and its fractions) were analysed. Six weeks’ consumption of acai berry-based juice blend had no effect on sprint performance, but it led to a marked increase in the total antioxidant capacity of plasma, attenuation of the exercise-induced muscle damage, and a substantial improvement of serum lipid profile. These findings strongly support the view of the health benefits of supplementation with the acai berry-based juice blend, mainly attributed to its high total polyphenol content and the related high in vivo antioxidant and hypocholesterolaemic activities of this supplement. PMID:26060341

  10. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study.

    PubMed

    Sadowska-Krępa, E; Kłapcińska, B; Podgórski, T; Szade, B; Tyl, K; Hadzik, A

    2015-06-01

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years) taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood samples were taken before and immediately after the test and after 1 h of recovery. Blood antioxidant status was evaluated based on activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], glutathione reductase [GR]), concentrations of non-enzymatic antioxidants (reduced glutathione [GSH], uric acid), total plasma polyphenols, ferric reducing ability of plasma (FRAP), thiobarbituric acid reactive substances (TBARS) and activities of creatine kinase (CK) and lactate dehydrogenase (LDH) as muscle damage markers. In order to evaluate potential health benefits of the acai berry, the post-treatment changes in lipid profile parameters (triglycerides, cholesterol and its fractions) were analysed. Six weeks' consumption of acai berry-based juice blend had no effect on sprint performance, but it led to a marked increase in the total antioxidant capacity of plasma, attenuation of the exercise-induced muscle damage, and a substantial improvement of serum lipid profile. These findings strongly support the view of the health benefits of supplementation with the acai berry-based juice blend, mainly attributed to its high total polyphenol content and the related high in vivo antioxidant and hypocholesterolaemic activities of this supplement.

  11. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice

    PubMed Central

    Zhang, Hong; Liu, Yanpei; Wen, Feng; Yao, Dongmei; Wang, Lu; Guo, Jin; Ni, Lan; Zhang, Aying; Tan, Mingpu; Jiang, Mingyi

    2014-01-01

    C2H2-type zinc finger proteins (ZFPs) have been shown to play important roles in the responses of plants to oxidative and abiotic stresses, and different members of this family might have different roles during stresses. Here a novel abscisic acid (ABA)- and hydrogen peroxide (H2O2)-responsive C2H2-type ZFP gene, ZFP36, is identified in rice. The analyses of ZFP36-overexpressing and silenced transgenic rice plants showed that ZFP36 is involved in ABA-induced up-regulation of the expression and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Overexpression of ZFP36 in rice plants was found to elevate the activities of antioxidant enzymes and to enhance the tolerance of rice plants to water stress and oxidative stress. In contrast, an RNA interference (RNAi) mutant of ZFP36 had lower activities of antioxidant enzymes and was more sensitive to water stress and oxidative stress. ABA-induced H2O2 production and ABA-activated mitogen-activated protein kinases (MAPKs) were shown to regulate the expression of ZFP36 in ABA signalling. On the other hand, ZFP36 also regulated the expression of NADPH oxidase genes, the production of H2O2, and the expression of OsMPK genes in ABA signalling. These results indicate that ZFP36 is required for ABA-induced antioxidant defence, for the tolerance of rice plants to water stress and oxidative stress, and for the regulation of the cross-talk between NADPH oxidase, H2O2, and MAPK in ABA signalling. PMID:25071223

  12. Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols.

    PubMed

    Di Mascio, P; Murphy, M E; Sies, H

    1991-01-01

    Reactive oxygen species occur in tissues and can damage DNA, proteins, carbohydrates, and lipids. These potentially deleterious reactions are controlled by a system of enzymatic and nonenzymatic antioxidants which eliminate prooxidants and scavenge free radicals. The ability of the lipid-soluble carotenoids to quench singlet molecular oxygen may explain some anticancer properties of the carotenoids, independent of their provitamin A activity. Tocopherols are the most abundant and efficient scavengers of hydroperoxyl radicals in biological membranes. Water-soluble antioxidants include ascorbate and cellular thiols. Glutathione is an important substrate for enzymatic antioxidant functions and is capable of nonenzymatic radical scavenging. Thiols associated with membrane proteins may also be important to the antioxidant systems. Interactions between the thiols, tocopherols, and other compounds enhance the effectiveness of cellular antioxidant defense. PMID:1985387

  13. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

    PubMed

    Pyne, Michael E; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-01-01

    Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided. PMID:27641836

  14. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

    PubMed

    Pyne, Michael E; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-09-19

    Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided.

  15. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum

    PubMed Central

    Pyne, Michael E.; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism’s genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism’s defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism’s restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism’s central metabolism within the context of metabolic engineering is provided. PMID:27641836

  16. Effects of energy restriction and fish oil supplementation on renal guanidino levels and antioxidant defences in aged lupus-prone B/W mice.

    PubMed

    Kim, You Jung; Yokozawa, Takako; Chung, Hae Young

    2005-06-01

    Energy restriction (ER) and dietary fish oil (FO) are known to reduce the severity of glomerulonephritis and increase the lifespan of lupus-prone (NZB x NZW) F1 (B/W) mice. In the present study, mice were fed either ad libitum or energy-restricted (a 40 % lower energy intake than the diet ad libitum), semi-purified diets containing 5 % maize oil or 5 % fish oil supplementation. To estimate the renal damage associated with oxidative stress, the total amounts of reactive oxygen species (ROS), cyclooxygenase-derived ROS and levels of guanidino compounds were measured. Additionally, we assessed the putative action of ER and FO on several key antioxidant enzymes measured in the kidney post-mitochondrial fraction. Results showed that the age-related increase in creatinine level was significantly reduced by ER and FO in old mice. In contrast, arginine and guanidino acetic acid levels showed a decrease with age but were increased by ER and FO. The GSH:GSSG ratio showed a significant decrease with age, whereas ER and FO feeding prevented the decrease. The age-related decrease in antioxidant scavenging superoxide dismutase, catalase and glutathione peroxidase activities were all reversed by ER and FO. The moderately decreased glutathione reductase and glutathione-S-transferase activities with age were significantly increased by ER and FO. Furthermore, the increased total ROS and cyclooxygenase-derived ROS levels were effectively reduced by ER and FO. In conclusion, our data strongly indicate that ER and FO maintain antioxidant status and GSH:GSSG ratio, thereby protecting against renal deterioration from oxidative insults during ageing.

  17. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine.

    PubMed

    Verhagen, Bas W M; Trotel-Aziz, Patricia; Couderchet, Michel; Höfte, Monica; Aziz, Aziz

    2010-01-01

    Non-pathogenic rhizobacteria Pseudomonas spp. can reduce disease in plant tissues through induction of a defence state known as induced systemic resistance (ISR). This resistance is based on multiple bacterial determinants, but nothing is known about the mechanisms underlying rhizobacteria-induced resistance in grapevine. In this study, the ability of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa 7NSK2 to induce resistance in grapevine against Botrytis cinerea is demonstrated. Both strains also triggered an oxidative burst and phytoalexin (i.e. resveratrol and viniferin) accumulation in grape cells and primed leaves for accelerated phytoalexin production upon challenge with B. cinerea. Treatment of cell cultures with crude cell extracts of bacteria strongly enhanced oxidative burst, but resulted in comparable amounts of phytoalexins and resistance to B. cinerea to those induced by living bacteria. This suggests the production of bacterial compounds serving as inducers of disease resistance. Using other strains with different characteristics, it is shown that P. fluorescens WCS417 (Pch-deficient), P. putida WCS358 (Pch- and SA-deficient) and P. fluorescens Q2-87 (a DAPG producer) were all capable of inducing resistance to an extent similar to that induced by CHA0. However, in response to WCS417 (Pch-negative) the amount of H2O2 induced is less than for the CHA0. WCS417 induced low phytoalexin levels in cells and lost the capacity to prime for phytoalexins in the leaves. This suggests that, depending on the strain, SA, pyochelin, and DAPG are potentially effective in inducing or priming defence responses. The 7NSK2 mutants, KMPCH (Pch- and Pvd-negative) and KMPCH-567 (Pch-, Pvd-, and SA-negative) induced only partial resistance to B. cinerea. However, the amount of H2O2 triggered by KMPCH and KMPCH-567 was similar to that induced by 7NSK2. Both mutants also led to a low level of phytoalexins in grapevine cells, while KMPCH slightly primed grapevine leaves

  18. Oral supplementation with melon superoxide dismutase extract promotes antioxidant defences in the brain and prevents stress-induced impairment of spatial memory.

    PubMed

    Nakajima, Sanae; Ohsawa, Ikuroh; Nagata, Kazufumi; Ohta, Shigeo; Ohno, Makoto; Ijichi, Tetsuo; Mikami, Toshio

    2009-06-01

    The purpose of this study was to investigate the effect of antioxidant ingestion on stress-induced impairment of cognitive memory. Male C57BL/6 mice were divided into four groups as follows: (1) control mice (C mice) fed in a normal cage without immobilization; (2) restraint-stressed (RS mice) fed in a small cage; (3) vitamin E mice (VE mice), mice were fed in a small cage with a diet supplemented with vitamin E; (4) GliSODin mice (GS mice) fed in a small cage with a diet supplemented with GliSODin. RS, VE and GS mice were exposed to 12 h of immobilization daily. Five weeks later, spatial learning was measured using the Morris Water Maze (MWM) test. After water maze testing, we performed immunohistochemical analysis using 4-hydroxy-2-noneral (4-HNE) and an anti-Ki67 antibody. 4-HNE is a marker of lipid peroxidation. RS mice showed impaired spatial learning performance and an increased number of 4-HNE-positive cells in the granule cell layer (GCL) of the hippocampal dentate gyrus when compared to C mice. Moreover, RS mice showed a decreased number of Ki67-positive cells in the subgranular zone (SGZ). GS mice showed better spatial learning memory than RS mice. The number of 4-HNE-positive cells in the GCL of GS mice was significantly less than that of RS mice. The number of Ki67-positive cells in the SGZ of GS mice was significantly greater than that of RS mice. These finding suggests that GliSODin prevents stress-induced impairment of cognitive function and maintains neurogenesis in the hippocampus through antioxidant activity.

  19. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.

    PubMed

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.

  20. Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System

    PubMed Central

    Butschi, Alex; Wälti, Martin A.; Egloff, Pascal; Stutz, Katrin; Yan, Shi; Wilson, Iain B. H.; Hengartner, Michael O.; Aebi, Markus; Allain, Frédéric H.-T.; Künzler, Markus

    2012-01-01

    Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism

  1. A systems biology perspective on Nrf2-mediated antioxidant response

    SciTech Connect

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-04-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  2. Multi radar tracking and multi sensor tracking in air defence systems

    NASA Astrophysics Data System (ADS)

    Berle, F. J.

    1983-10-01

    The netting of radars and the integration of other complementary sensors provide advantages with respect to system survivability and achieve a better quality air picture because of the resulting higher data rate. The paper describes an MST concept resulting from an extension of an operational MRT system and presents the results of a computer evaluation of the concept, emphasizing the processing of data from passive sensors and radars operating in passive mode. Three examples of different target density and number indicate the difficulties of processing sensor data in a jamming situation. Several possibilities of improvements are indicated.

  3. Hepatoprotective effect of juglone on dimethylnitrosamine-induced liver fibrosis and its effect on hepatic antioxidant defence and the expression levels of α-SMA and collagen III.

    PubMed

    Zhou, De-Jiang; Mu, Dong; Jiang, Ming-De; Zheng, Shu-Mei; Zhang, Yong; He, Sheng; Weng, Min; Zeng, Wei-Zheng

    2015-09-01

    The present study aimed to investigate the antifibrotic effects of juglone on dimethylnitrosamine (DMN)‑induced fibrosis in rats. Juglone, which is a quinone, significantly decreased DMN‑induced rat hepatic fibrosis, which was associated with increased superoxide dismutase (SOD) activity, decreased oxidative stress and reduced levels of α‑smooth muscle actin (α‑SMA) and collagen (Col) III in the liver. Serum levels of alanine aminotransferase, aspartate aminotransferase, hyaluronic acid, laminin, type III precollagen and type IV collagen were significantly reduced by treatment with juglone. Liver fibrosis was induced in male Sprague‑Dawley rats by subcutaneous injections of DMN solution and hepatic fibrosis was assessed using Massons trichome staining. The expression levels of α‑SMA and Col III were determined using immunohistochemical techniques. The activities of SOD and malondialdehyde in liver homogenates were also determined. The results suggested that juglone augmented the antioxidative capability of the liver, possibly by stimulating the activity of SOD, which promoted the inactivation of hepatic stellate cells (HSCs) and decreased the accumulation of extracellular matrix collagen in the liver, thereby alleviating hepatic fibrosis. Silymarin was used as a positive control for liver fibrosis protection. It was hypothesized that juglone alleviates or mitigates oxidative stress‑mediated hepatic fibrosis by upregulating the expression of peroxisome proliferator‑activated receptor γ and inhibiting the activation of HSC.

  4. E6* oncoprotein expression of human papillomavirus type-16 determines different ultraviolet sensitivity related to glutathione and glutathione peroxidase antioxidant defence.

    PubMed

    Mouret, Stéphane; Sauvaigo, Sylvie; Peinnequin, André; Favier, Alain; Beani, Jean-Claude; Leccia, Marie-Thérèse

    2005-06-01

    Clinical observations of non-melanoma skin cancer in immunocompromised patients, such as organ transplant recipients, suggest co-operative effects of human papillomavirus (HPV) and ultraviolet (UV) radiation. The aim of the present study is to evaluate UV sensitivity and DNA damage formation according to antioxidant status in HPV16-infected keratinocytes. We used SKv cell lines, infected with HPV16 and well characterized for their proliferative and tumorigenic capacities. We showed that SKv cell lines presented various E6* (a truncated form of E6) RNA levels. We demonstrated that the higher oncoprotein RNA expression level was associated with a higher resistance to solar-simulated radiation, more specifically to UVB radiation and to hydrogen peroxide. Moreover, this high resistance was associated with a low oxidative DNA damage formation after UV radiation and was related to high glutathione content and glutathione peroxidase activities. Therefore, the results of our study suggest that E6* levels could modulate the glutathione/glutathione peroxidase pathway providing a mechanism to protect HPV-infected keratinocytes against an environmental oxidative stress, such as UV radiation.

  5. Health systems as defences against the consequences of poverty: equity in health as social justice.

    PubMed

    Mburu, F M

    1983-01-01

    The main development problems in the Third World are known to be gross socioeconomic inequality, widespread poor health status accompanied by high fertility and infant mortality rates, low life expectancy, mass illiteracy and mass poverty. In most of these countries governments invest a great deal of scarce resources toward the consequences of poverty rather than it causes. The paucity of resources for such social services is exacerbated by continuously increasing demands and needs which have to be satisfied. Unmet needs tend to cause apathy in the population. For purposes of controlling poverty and its consequences, these must be clearly formulated and relevant policies, a commitment to implement such policies, adequate administrative capacity and reasonably adequate resources. In the case of the health services system, the same requirements apply. Above all, the health system has to be directed toward the greatest needs of the population. This must involve policy makers, implementors and the consumer community. This paper argues that health systems cannot be an effective weapon against the consequences of poverty unless the above kinds of policy exist and are implemented.

  6. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy.

    PubMed

    Kranz, Lena M; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-06-16

    Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy. PMID:27281205

  7. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Kranz, Lena M.; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C.; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N.; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A.; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-06-01

    Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.

  8. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy.

    PubMed

    Kranz, Lena M; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-06-01

    Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.

  9. Diverse opportunities in defence

    NASA Astrophysics Data System (ADS)

    Brown, Gareth

    2016-08-01

    Working at the UK's defence laboratory gives Gareth Brown the ability to apply his physics and mathematics knowledge to real-world applications - and not necessarily in the ways you might expect. This article is Crown copyright

  10. Alternations of salivary antioxidant enzymes in systemic lupus erythematosus.

    PubMed

    Zaieni, S H; Derakhshan, Z; Sariri, R

    2015-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic systemic inflammation. Oxidative stress may play a role in the pathogenesis of SLE. An increase in free radicals or an impaired antioxidant defense system in SLE causes oxidative stress. Therefore, oxidative damage plays an important role in the pathogenesis of SLE. Variations in antioxidant activity have been previously studied in serum of patients with this disease. However, salivary factors have not been evaluated. Considering that saliva, the noninvasive biological fluid, could be a reflection of the state of health, the purpose of this study was evaluation of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activity in the saliva of patients with SLE. During the course of the practical part of the project, 30 patients with SLE and 30 healthy controls were selected to donate their saliva samples. After centrifugation of un-stimulated saliva, biological activity of POD, CAT and SOD were evaluated on their appropriate substrates using spectrophotometric methods and the results were statistically analyzed. The results showed that activities of antioxidant enzymes SOD and CAT were significantly reduced in saliva of SLE patients as compared to controls. The results suggest that antioxidant status was impaired in the saliva of SLE patients, and antioxidant status of saliva could be one of the non-invasive markers for SLE.

  11. Changes in antioxidant defense systems induced by thiram in V79 Chinese hamster fibroblasts.

    PubMed

    Grosicka-Maciag, E; Kurpios, D; Czeczot, H; Szumiło, M; Skrzycki, M; Suchocki, P; Rahden-Staroń, I

    2008-02-01

    The role of antioxidant defence systems in protection against oxidative damage of lipids and proteins induced by fungicide thiram during in vitro exposure was investigated in cultured Chinese hamster V79 cells with normal, depleted, and elevated glutathione (GSH) levels. We analyzed the catalytic activities of superoxide dismutases (SOD1 and SOD2), Se-dependent and Se-independent glutathione peroxidases (GSH-Px), glutathione reductase (GR), and catalase (CAT), as well as total glutathione/glutathione disulfide ratio (GSH(total)/GSSG). Thiram treatment resulted in an increase in activities of SOD1, Se-dependent GSH-Px, and GR at the highest tested dose (150 microM). On the contrary, inhibition of CAT and Se-independent GSH-Px activities, and no significant changes in the level of SOD2 activity was observed at any tested doses (100-150 microM). GSH(total)/GSSG ratio in the 100 microM thiram treated cells was not significantly changed comparing to the control, despite significant decrease of GSH total (50%). In 150 microM thiram treated cells the ratio falls to 43% of control value. Pretreatment with l-buthionine sulfoximine (L-BSO), an inhibitor of GSH synthesis, significantly enhanced decrease in CAT and Se-independent GSH-Px activities, as well as GSH(total)/GSSG ratio, and reduced Se-dependent GSH-Px activity, following exposure to thiram. Simultaneously, L-BSO pretreatment enhanced increase in SOD1 activity, and had no effect on SOD2, following thiram exposure. Pretreatment with N-acetyl cysteine (NAC), a GSH precursor, prevented enzymatic changes in CAT, Se-dependent GSH-Px, GR, SOD1 activities, and significantly decreased SOD2 activity following exposure to thiram. GSH(total)/GSSG ratio was restored to the control value. This study suggests that following the changes in antioxidant defense systems thiram can act through the production of free radicals.

  12. Involvement of the antioxidant system in differential sensitivity of Carcinus maenas to fenitrothion exposure.

    PubMed

    Rodrigues, A P; Gravato, C; Guimarães, L

    2013-10-01

    Carcinus maenas is an invertebrate with worldwide distribution and high ability to adapt to different environments, which is frequently used in environmental monitoring. Despite this, it is not clear how historical exposure to moderate contamination may influence sensitivity to further chemical stress in this important decapod species. This study investigated differential responses to organophosphate fenitrothion of C. maenas from a moderately contaminated estuary and a low impacted one, using in vitro and in vivo biomarker assays. To clarify potential differences in sensitivity, a biochemical characterisation of muscle cholinesterases was first performed. The results indicated acetylcholinesterase (AChE) as the main form present in C. maenas muscle. Exposure assays revealed that crabs from the moderately contaminated site were less sensitive to fenitrothion showing lower AChE inhibition than those from the low impacted site. Other biomarker changes detected in these animals were: increased anaerobic metabolism (muscle lactate dehydrogenase), enhanced phase II biotransformation (glutathione S-transferases in the digestive gland) and antioxidant defences (i.e., activities of glutathione reductase, glutathione peroxidase and catalase, and levels of total glutathiones in the digestive gland). Altogether, the results pointed out a role for the glutathione redox system towards tolerance to fenitrothion exposure. PMID:24056931

  13. Photoprotection by sunscreens with topical antioxidants and systemic antioxidants to reduce sun exposure.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Lim, Henry W; Cox, Mary Jude; Becker, Daniel G; Horowitz, Jed H; Nichter, Larry S; Britt, L D; Long, William B

    2004-01-01

    Skin cancer is the most common cancer diagnosed in the United States, and its incidence continues to rise. Epidemiological studies have documented that excessive sun exposure increases the risk of developing nonmelanoma skin cancer. Consequently, it is mandatory that the skin be protected from the damage that occurs from ultraviolet (UV) exposure. It is the purpose of this report to review the scientific basis for photoprotection by sunscreens, topical antioxidants, and systemic antioxidants to minimize the harmful effect of sun exposure. The US Food and Drug Administration regulates sunscreen products as over-the-counter drugs. Sunscreens are chemical or organic UV absorbers and nonchemical or inorganic UV absorbers. Other important sunscreen considerations include the sunscreen vehicle, sunscreen photostability, sunscreen preservatives, and sunscreen photoallergy and phototoxicity. Topical and systemic antioxidants have now been shown to supplement the photoprotective effects of sunscreen. The Skin Cancer Foundation, the only national and international nonprofit organization concerned exclusively with cancer of the skin, is playing a leadership role in eliminating skin cancer in our world.

  14. Systemic reduction of rice blast by inhibitors of antioxidant enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic acquired disease resistance (SAR) of plants may result from an oxidative burst in their tissues caused by both increased production of ROS and decreased antioxidant activity, in particular, enzymatic. Here we tested whether the exogenous inhibitors of superoxide dismutase (SOD) and catalase...

  15. The insanity defence.

    PubMed

    Milliken, A D

    1985-08-01

    The recent A.P.A. Statement on the Insanity Defence is a document important to all psychiatrists and medicolegal professionals in North America. Its contents are reviewed and contrasted with current Canadian practice on the insanity defence, as well as the proposals of the Mental Disorder Project of the Canadian Department of Justice. The American Psychiatric Association's proposal on the definition of mental disorder is contrasted with the current practice. It is also suggested that the proposal of the Mental Disorder Project to change the disposition of insanity acquittees will lead to difficulties similar to those which provoked the current crisis in the United States.

  16. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae).

    PubMed

    Pankoke, Helga; Gehring, René; Müller, Caroline

    2015-11-01

    Iridoid glycosides are plant defence compounds with potentially detrimental effects on non-adapted herbivores. Some plant species possess β-glucosidases that hydrolyse iridoid glycosides and thereby release protein-denaturing aglycones. To test the hypothesis that iridoid glycosides and plant β-glucosidases form a dual defence system, we used Plantago lanceolata and a polyphagous caterpillar species. To analyse the impact of leaf-age dependent differences in iridoid glycoside concentrations and β-glucosidase activities on insect performance, old or young leaves were freeze-dried and incorporated into artificial diets or were provided freshly to the larvae. We determined larval consumption rates and the amounts of assimilated nitrogen. Furthermore, we quantified β-glucosidase activities in artificial diets and fresh leaves and the amount of iridoid glycosides that larvae feeding on fresh leaves ingested and excreted. Compared to fresh leaves, caterpillars grew faster on artificial diets, on which larval weight gain correlated positively to the absorbed amount of nitrogen. When feeding fresh young leaves, larvae even lost weight and excreted only minute proportions of the ingested iridoid glycosides intact with the faeces, indicating that the hydrolysis of these compounds might have interfered with nitrogen assimilation and impaired larval growth. To disentangle physiological effects from deterrent effects of iridoid glycosides, we performed dual choice feeding assays. Young leaves, their methanolic extracts and pure catalpol reduced larval feeding in comparison to the respective controls, while aucubin had no effect on larval consumption. We conclude that the dual defence system of P. lanceolata consisting of iridoid glycosides and β-glucosidases interferes with the nutrient utilisation via the hydrolysis of iridoid glycosides and also mediates larval feeding behaviour in a concentration- and substance-specific manner. PMID:26306994

  17. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory.

    PubMed

    Klauser, Dominik; Desurmont, Gaylord A; Glauser, Gaétan; Vallat, Armelle; Flury, Pascale; Boller, Thomas; Turlings, Ted C J; Bartels, Sebastian

    2015-08-01

    A number of plant endogenous elicitors have been identified that induce pattern-triggered immunity upon perception. In Arabidopsis thaliana eight small precursor proteins, called PROPEPs, are thought to be cleaved upon danger to release eight peptides known as the plant elicitor peptides Peps. As the expression of some PROPEPs is induced upon biotic stress and perception of any of the eight Peps triggers a defence response, they are regarded as amplifiers of immunity. Besides the induction of defences directed against microbial colonization Peps have also been connected with herbivore deterrence as they share certain similarities to systemins, known mediators of defence signalling against herbivores in solanaceous plants, and they positively interact with the phytohormone jasmonic acid. A recent study using maize indicated that the application of ZmPep3, a maize AtPep-orthologue, elicits anti-herbivore responses. However, as this study only assessed the responses triggered by the exogenous application of Peps, the biological significance of these findings remained open. By using Arabidopsis GUS-reporter lines, it is now shown that the promoters of both Pep-receptors, PEPR1 and PEPR2, as well as PROPEP3 are strongly activated upon herbivore attack. Moreover, pepr1 pepr2 double mutant plants, which are insensitive to Peps, display a reduced resistance to feeding Spodoptera littoralis larvae and a reduced accumulation of jasmonic acid upon exposure to herbivore oral secretions. Taken together, these lines of evidence extend the role of the AtPep-PEPR system as a danger detection mechanism from microbial pathogens to herbivores and further underline its strong interaction with jasmonic acid signalling.

  18. Enzymatic Antioxidant Systems in Early Anaerobes: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    Ślesak, Ireneusz; Ślesak, Halina; Zimak-Piekarczyk, Paulina; Rozpądek, Piotr

    2016-05-01

    It is widely accepted that cyanobacteria-dependent oxygen that was released into Earth's atmosphere ca. 2.5 billion years ago sparked the evolution of the aerobic metabolism and the antioxidant system. In modern aerobes, enzymes such as superoxide dismutases (SODs), peroxiredoxins (PXs), and catalases (CATs) constitute the core of the enzymatic antioxidant system (EAS) directed against reactive oxygen species (ROS). In many anaerobic prokaryotes, the superoxide reductases (SORs) have been identified as the main force in counteracting ROS toxicity. We found that 93% of the analyzed strict anaerobes possess at least one antioxidant enzyme, and 50% have a functional EAS, that is, consisting of at least two antioxidant enzymes: one for superoxide anion radical detoxification and another for hydrogen peroxide decomposition. The results presented here suggest that the last universal common ancestor (LUCA) was not a strict anaerobe. O2 could have been available for the first microorganisms before oxygenic photosynthesis evolved, however, from the intrinsic activity of EAS, not solely from abiotic sources.

  19. Vitamin A supplementation modifies the antioxidant system in rats

    PubMed Central

    Cha, Jung-Hwa; Yu, Qi-Ming

    2016-01-01

    BACKGROUND/OBJECTIVES It has been shown that vitamin A supplementation has different effects on skeletal health and the antioxidant system. Deficiency or excess of this vitamin can lead to health problems. Vitamin A can work as either an antioxidant or prooxidant depending on its concentration. The present study was conducted to investigate the effects of different doses of vitamin A supplementation on the antioxidant system in rats. MATERIALS/METHODS Forty Spargue-Dawley male rats were divided into four groups according to the dose of vitamin A received: 0 (A0), 4,000 (A1), 8,000 (A2), and 20,000 (A3) IU retinyl palmitate/kg diet. After a feeding period of 4 wks, lipid peroxide levels, glutathione concentration, antioxidant enzyme activities, and vitamins A and E concentrations were measured. Histopathological changes were observed in rat liver tissue using an optical microscope and transmission electron microscope. RESULTS Lipid peroxide levels in plasma were significantly decreased in the A1 and A2 groups compared to the A0 rats. Erythrocyte catalase and hepatic superoxide dismutase activities of the A2 group were significantly higher than those of the A0 group. Hepatic glutathione peroxidase activity was significantly lower in the A3 group compared to the other groups. Total glutathione concentrations were significantly higher in the A1 and A2 groups than in the A0 group. Histological examination of liver tissue showed that excessive supplementation of vitamin A might lead to lipid droplet accumulation and nuclear membrane deformation. CONCLUSIONS These results indicate that appropriate supplementation of vitamin A might have a beneficial effect on the antioxidant system in rats. PMID:26865913

  20. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    PubMed Central

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  1. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    PubMed

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  2. Antioxidant relevance to human health.

    PubMed

    Wahlqvist, Mark L

    2013-01-01

    Human ecology requires both oxygen and water with the generation from food of an immediate energy source, ATP, by oxidative phosphorylation. A continuing balance between oxidation and antioxidation is necessary for longer less-disabled lives, taking account of oxidative stresses and the critical roles of oxidants in defence against infection, tissue repair and signalling. Antioxidant capacity is derived both exogenously (from food, beverage and sunlight) and endogenously (from enzymatic and non-enzymatic pathways). A number of oxidant food factors service antioxidant metallo-enzymes. The capacity operates extra- or intracellularly. Uric acid is the major antioxidant in primate blood. Uric acid synthesis is increased by dietary fructose from fruit, sugary foods and drinks. This indirect antioxidant effect of fruit is separate from that attributable to its flavonoids. Alcohol also increases serum uric acid. Urate excess and retention is associated with disease. The high prevalence of hyperuricaemia in NE Asia presents a major public health dilemma in regard to putative benefits and risks. Foods with high antioxidant activity include berries, nuts and legumes, tomatoes and sweet potato leaves. Each of the antioxidants in these foods is pleiotropic being inter-alia anti-inflammatory, anti-angiogenic or anti-neoplastic. Moreover, food matrices and patterns contribute to the safety of antioxidant consumption. There is no evidence to date that isolated antioxidants as food supplements improve health outcomes or survival; and some that indicate unacceptable risk. Their use as biomarkers of food cannot justify their isolated use. Nevertheless, a spectrum of dietary pluripotential antioxidants for tissues, metabolic and immune systems is advantageous.

  3. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L.

    PubMed

    Ahuja, Ishita; Borgen, Birgit Hafeld; Hansen, Magnor; Honne, Bjørn Ivar; Müller, Caroline; Rohloff, Jens; Rossiter, John Trevor; Bones, Atle Magnar

    2011-10-01

    Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate-myrosinase system or the 'mustard oil bomb'. The 'mustard oil bomb' which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as 'myrosin cells' and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed. PMID:21778185

  4. Oilseed rape seeds with ablated defence cells of the glucosinolate–myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L.

    PubMed Central

    Ahuja, Ishita; Borgen, Birgit Hafeld; Hansen, Magnor; Honne, Bjørn Ivar; Müller, Caroline; Rohloff, Jens; Rossiter, John Trevor; Bones, Atle Magnar

    2011-01-01

    Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate–myrosinase system or the ‘mustard oil bomb’. The ‘mustard oil bomb’ which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as ‘myrosin cells’ and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed. PMID:21778185

  5. Oxidative Damage and Antioxidative Therapy in Systemic Sclerosis

    PubMed Central

    Grygiel-Górniak, Bogna

    2014-01-01

    Systemic sclerosis (SSc) is an autoimmune connective tissue disorder of unknown etiology. This disease is characterized by a large variety of clinical patterns, which include the fibrosis of skin and visceral organs causing a variety of clinical manifestations. Genetic and environmental factors participate in the etiology of this disease; however, recently many studies underline the oxidative background influencing the course and complications of this disease. Reactive oxygen species (ROS) synthesized in SSc can mediate extra- and intracellular oxidative processes affecting endothelial cells and fibroblasts. The estimation of prooxidative markers in the pathogenesis of SSc can enable the identification of useful markers for disease activity and, thus, may help in planning appropriate therapy focusing on the fibrotic or vascular pattern. Recently, many attempts have been made to find antioxidative molecules (nutritional and pharmacological) reducing the prooxidant state in a variety of cells—mainly in endothelium and proliferating fibroblasts. This paper presents both the background of oxidative stress processes in systemic sclerosis mediated by different mechanisms and the evidence suggesting which of the dietary and pharmacological antioxidants can be used as therapeutic targets for this disease. PMID:25313270

  6. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries.

    PubMed

    Jin, Peng; Wang, Shiow Y; Gao, Haiyan; Chen, Hangjun; Zheng, Yonghua; Wang, Chien Y

    2012-05-01

    The effects of cultural system and essential oil treatment on antioxidant capacities in raspberries were evaluated. Raspberries were hand-harvested from organic and conventional farms in Maryland, USA, and were treated with essential oil including carvacrol, anethole, cinnamic acid, perillaldehyde, cinnamaldehyde, and linalool. Results from this study showed that raspberries grown from organic culture exhibited higher value of antioxidant capacities and individual flavonoids contents. Moreover, the organic culture also enhanced the activities of antioxidant enzymes. In addition, essential oil treatments promoted the antioxidant enzymes activities and antioxidant capacities of raspberries, and the most effective compound was perillaldehyde. In conclusion, raspberries produced from organic culture contained significantly higher antioxidant capacities than those produce from conventional culture. Postharvest essential oil treatments have positive effect on enhancing antioxidant capacities in raspberries from both organic and conventional cultures.

  7. Possibility of determination of the level of antioxidants in human body using spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Timofeeva, E.; Gorbunova, E.

    2016-08-01

    In this work, the processes of antioxidant defence against aggressive free radicals in human body were investigated theoretically; and the existing methods of diagnosis of oxidative stress and disturbance of antioxidant activity were reviewed. Also, the kinetics of free radical reactions in the oxidation of luminol and interaction antioxidants (such as chlorophyll in the multicomponent system of plant's leaves and ubiquinone) with the UV radiation were investigated experimentally by spectroscopic method. The results showed that this method is effective for recording the luminescence of antioxidants, free radicals, chemiluminescent reactions and fluorescence. In addition these results reveal new opportunities for the study of the antioxidant activity and antioxidant balance in a multicomponent system by allocating features of the individual components in spectral composition. A creation of quality control method for drugs, that are required for oxidative stress diagnosis, is a promising direction in the development of given work.

  8. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  9. [Antioxidant defense system state in blood plasma and heart muscle of rats under the influence of histamine and sodium hypochlorite].

    PubMed

    Bishko, O I; Harasym, N P; Sanahurs'kyĭ, D I

    2014-01-01

    There is a wide spectrum of antihistamine drugs in the pharmaceutical market, however all these chemical preparations cause side effects. Therefore, new alternative ways for histamine detoxication are to be found. For this aim in our experiment sodium hypochlorite was used because its solution possesses strong oxidizing properties. The influence of histamine and sodium hypochlorite on the antioxidant defence system state of blood plasma and cardiac muscle in rats has been researched. It was shown, that the investigated factors result in the disruption of the antioxidant system. It was found that histamine injection in concentration of 1 and 8 μg/kg in plasma leads to the increase of superoxide dismutase activity during all the experiment. When studying enzymes, that catalyze hydroperoxides and H2O2 decomposition it was shown that under the influence of histamine in a dose 1 μg/kg, the glutathione peroxidase activity increased on the 1st day of the experiment. However, on the 7th day of the experiment the increase of both glutathione peroxidase and catalase activity was fixed. The deviation in superoxide dismutase function in rats plasma under the action of sodium hypochlorite has been established. The activity of enzymes that decompose H2O2 and hydroperoxides were inhibited. Under the influence of histamine in the heart tissues we have stated the disturbance of superoxide dismutase work and increase ofcatalase activity and decrease of glutathione peroxidase activity. The influence of sodium hypochlorite on the myocardium of intact animals as well as joint influence of sodium hypochlorite and histamine result in the increase of superoxide dismutase and catalase activity and lead to the considerable decline of activity of glutathione peroxidase.

  10. Non-immunological defence mechanisms of the gut.

    PubMed Central

    Sarker, S A; Gyr, K

    1992-01-01

    Non-immunological defence mechanisms represent an important line of intestinal defence in addition to humoral and cellular immunity. This review summarises the evidence for the role of the non-immunological defence system. Protective factors that have been amply documented are gastric juice, intestinal motility, and intestinal flora. Components of pancreatic juice, lysozyme, and epithelial cell turnover may also be involved. Special attention is given to gastric acid, infection with Helicobacter pylori, and hypochlorhydria and their association with infectious diarrhoea. Epidemic hypochlorhydria is discussed since this increases sensitivity to intestinal infections in third world countries. PMID:1644343

  11. [Indices of lipid peroxidation and antioxidant defense system and prostanoid level in patients with uterine cancer].

    PubMed

    Antipova, S V

    2000-10-01

    The state of peroxydal oxidation of lipids, system of antioxidant defense and content of prostanoids in patients with cancer of the corpus uteri were investigated. Syndrome of endogenous intoxication with lowering of antioxidant potential and dysbalance of cyclic nucleotides and prostaglandines was established. The severity of above-cited disorders increased significantly after operation and during conduction of radiotherapy. This demanded administration of antioxidant and detoxicational therapy in complex of preoperative preparation.

  12. Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment.

    PubMed

    Léchaudel, Mathieu; Lopez-Lauri, Félicie; Vidal, Véronique; Sallanon, Huguette; Joas, Jacques

    2013-04-15

    Depending on the position of the fruit in the tree, mango fruit may be exposed to high temperature and intense light conditions that may lead to metabolic and physiological disorders and affect yield and quality. The present study aimed to determine how mango fruit adapted its functioning in terms of fruit water relations, epicarp characteristics and the antioxidant defence system in peel, to environmental conditions. The effect of contrasted temperature and light conditions was evaluated under natural solar radiation and temperature by comparing well-exposed and shaded fruit at three stages of fruit development. The sun-exposed and shaded peels of the two sides of the well-exposed fruit were also compared. Depending on fruit position within the canopy and on the side of a well-exposed fruit, the temperature gradient over a day affected fruit characteristics such as transpiration, as revealed by the water potential gradient as a function of the treatments, and led to a significant decrease in water conductance for well-exposed fruits compared to fruits within the canopy. Changes in cuticle thickness according to fruit position were consistent with those of fruit water conductance. Osmotic potential was also affected by climatic environment and harvest stage. Environmental conditions that induced water stress and greater light exposure, like on the sunny side of well-exposed fruit, increased the hydrogen peroxide, malondialdehyde and total and reduced ascorbate contents, as well as SOD, APX and MDHAR activities, regardless of the maturity stage. The lowest values were measured in the peel of the shaded fruit, that of the shaded side of well-exposed fruit being intermediate. Mango fruits exposed to water-stress-induced conditions during growth adapt their functioning by reducing their transpiration. Moreover, oxidative stress was limited as a consequence of the increase in antioxidant content and enzyme activities. This adaptive response of mango fruit to its

  13. Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment.

    PubMed

    Léchaudel, Mathieu; Lopez-Lauri, Félicie; Vidal, Véronique; Sallanon, Huguette; Joas, Jacques

    2013-04-15

    Depending on the position of the fruit in the tree, mango fruit may be exposed to high temperature and intense light conditions that may lead to metabolic and physiological disorders and affect yield and quality. The present study aimed to determine how mango fruit adapted its functioning in terms of fruit water relations, epicarp characteristics and the antioxidant defence system in peel, to environmental conditions. The effect of contrasted temperature and light conditions was evaluated under natural solar radiation and temperature by comparing well-exposed and shaded fruit at three stages of fruit development. The sun-exposed and shaded peels of the two sides of the well-exposed fruit were also compared. Depending on fruit position within the canopy and on the side of a well-exposed fruit, the temperature gradient over a day affected fruit characteristics such as transpiration, as revealed by the water potential gradient as a function of the treatments, and led to a significant decrease in water conductance for well-exposed fruits compared to fruits within the canopy. Changes in cuticle thickness according to fruit position were consistent with those of fruit water conductance. Osmotic potential was also affected by climatic environment and harvest stage. Environmental conditions that induced water stress and greater light exposure, like on the sunny side of well-exposed fruit, increased the hydrogen peroxide, malondialdehyde and total and reduced ascorbate contents, as well as SOD, APX and MDHAR activities, regardless of the maturity stage. The lowest values were measured in the peel of the shaded fruit, that of the shaded side of well-exposed fruit being intermediate. Mango fruits exposed to water-stress-induced conditions during growth adapt their functioning by reducing their transpiration. Moreover, oxidative stress was limited as a consequence of the increase in antioxidant content and enzyme activities. This adaptive response of mango fruit to its

  14. Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum.

    PubMed

    Chen, Bilian; Huang, Jian; Wang, Juan; Huang, Lingling

    2008-01-15

    Ultrasound is a special physical stimulus that has a variety of biological effects. This study provides a first systemic investigation on the ultrasound-induced oxidation and protection actions of the antioxidant defense system in Porphyridium cruentum. The hydroxyl radical and superoxide anion radical scavenging ability of the cells and the electrolyte leakage of the cell membrane were examined. The change of glutathione and carotenoids produced with/without ultrasonic processing were measured; the enzyme activities of superoxide dismutase, catalase, and membrane bound ATPases (Na(+)/K(+)-ATPase, Ca(2+)/Mg(2+)-ATPase) were evaluated for either ultrasound-treated or untreated P. cruentum. The hydroxyl radical and superoxide anion radical scavenging ability of ultrasound-treated P. cruentum increase 49.8 and 76.0%, respectively, of which the electrolyte leakage and malonyldialdehyde accumulation are also found increased 48.6 and 48.0%, respectively, indicating a state of oxidative stress. A significant enhancement of the activities of superoxide dismutase by 53.5%, catalase, membrane bound ATPases (Na(+)/K(+)-ATPase, Ca(2+)/Mg(2+)-ATPase increased by 67.7 and 69.3%, respectively), and the increment of glutathione and carotenoids production are also observed. These results suggested that oxidative stress manifested by elevated reactive oxygen species levels and malonyldialdehyde contents might be resulted from the biophysical responses of P. cruentum to the physical stimuli, and most likely the enhanced antioxidation ability of the algal cells stimuli by ultrasonic comes from the enhancement of enzymatic and nonenzymatic preventive substances as observed in this work.

  15. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system.

    PubMed

    Amir Aslani, Banafsheh; Ghobadi, Sirous

    2016-02-01

    Free radical generation occurs continuously within cells as a consequence of common metabolic processes. However, in high concentrations, whether from endogenous or exogenous sources, free radicals can lead to oxidative stress; a harmful process that cause serious damages to all biomolecules in our body hence impairs cell functions and even results in cell death and diseased states. Oxidative injuries accumulate over time and participate in cancer development, cardiovascular and neurodegenerative disorders as well as aging. Nature has bestowed the human body with a complex web of antioxidant defense system including enzymatic antioxidants like glutathione peroxidase and glutathione reductase, catalase and superoxide dismutase as well as non-enzymatic antioxidants such as thiol antioxidants, melatonin, coenzyme Q, and metal chelating proteins, which are efficient enough to fight against excessive free radicals. Also, nutrient antioxidants such as vitamin C, vitamin E, carotenoids, polyphenols, and trace elements are known to have high antioxidant potency to assist in minimizing harmful effects of reactive species. The immune system is also extremely vulnerable to oxidant and antioxidant balance as uncontrolled free radical production can impair its function and defense mechanism. The present paper reviews the ways by which free radicals form in the body and promote tissue damage, as well as the role of the antioxidants defense mechanisms. Finally, we will have a brief glance at oxidants and antioxidants relevance to the immune system.

  16. The effect of Sacoglottis gabonensis stem bark extract, a Nigerian alcoholic beverage additive, on the natural antioxidant defences during 2,4-dinitrophenyl hydrazine-induced membrane peroxidation in vivo.

    PubMed

    Maduka, H C C; Okoye, Z S C

    2002-07-01

    This study was designed to ascertain/verify whether Sacoglottis gabonensis stem bark extract has biological antioxidant activity in membrane lipid peroxidation using male weanling rats as the experimental animals and, if so, to attempt to establish/deduce the possible mechanism(s) of the antioxidant action of the bark extract. Lipid peroxidation was induced experimentally with a single intraperitoneal 2,4-dinitrophenyl hydrazine (2,4-DNPH) at the end of a 3-day administration with the bark extract in drinking water. Three hours later, the liver and red blood cells were analysed for the three primary antioxidant enzymes, namely catalase, superoxide dismutase (SOD) and glutathione peroxidase, and two nonenzymic antioxidants, namely vitamin E (alpha-tocopherol) and vitamin C (ascorbic acid) levels. Results showed that pretreatment with the bark extract exhibited divergent effects on natural antioxidant enzymes: It impaired the enzyme-inducing action of 2,4-DNPH (and of ethanol) on liver and red blood cell catalase but reduced the SOD depressing effect of the experimental oxidant (2,4-DNPH) and ethanol. Neither 2,4-DNPH nor the extract had any measurable effect on glutathione peroxidase. The bark extract also exerted a sparing effect on tissue antioxidant vitamins, ascorbic acid and vitamin E, effectively inhibiting their depletion by 2,4-DNPH or ethanol in the liver, red blood cells and brain. It is being concluded that the mechanism of antioxidant action of the bark extract against membrane peroxidation is multifactorial/multisystem, involving inhibition of catalase, enhancing the SOD capability of the liver and red blood cells and sparing tissue depletion/utilization of vitamins C (ascorbic acid) and E (alpha-tocopherol).

  17. Role of the methylcitrate cycle in growth, antagonism and induction of systemic defence responses in the fungal biocontrol agent Trichoderma atroviride.

    PubMed

    Dubey, Mukesh K; Broberg, Anders; Jensen, Dan Funck; Karlsson, Magnus

    2013-12-01

    Methylisocitrate lyase (MCL), a signature enzyme of the methylcitrate cycle, which cleaves methylisocitrate to pyruvate and succinate, is required for propionate metabolism, for secondary metabolite production and for virulence in bacteria and fungi. Here we investigate the role of the methylcitrate cycle by generating an mcl deletion mutant in the fungal biocontrol agent Trichoderma atroviride. Gene expression analysis shows that a basal expression of mcl is observed in all growth conditions tested. Phenotypic analysis of an mcl deletion mutant suggests the requirement of MCL in propionate resistance, growth, conidial pigmentation and germination, and abiotic stress tolerance. A plate confrontation assay did not show a difference between the WT and the Δmcl strain in antagonism towards Botrytis cinerea. However, the Δmcl strain displays reduced antagonism towards B. cinerea based on a secretion assay. Furthermore, an in vitro root colonization assay shows that the Δmcl strain had reduced ability to colonize Arabidopsis thaliana roots, which results in reduced induction of systemic resistance towards B. cinerea. These data show that MCL is important not only for growth and development in T. atroviride but also in antagonism, root colonization and induction of defence responses in plants.

  18. Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress

    PubMed Central

    Park, Ji Young; Han, Xia; Piao, Mei Jing; Oh, Min Chang; Fernando, Pattage Madushan Dilhara Jayatissa; Kang, Kyoung Ah; Ryu, Yea Seong; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Background: Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction. Methods: The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay. Results: Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide. Conclusions: Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction. PMID:27051648

  19. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system.

    PubMed

    Arora, A; Nair, M G; Strasburg, G M

    1998-06-01

    Structurally diverse plant phenolics were examined for their abilities to inhibit lipid peroxidation induced either by Fe(II) and Fe(III) metal ions or by azo-derived peroxyl radicals in a liposomal membrane system. The antioxidant abilities of flavonoids were compared with those of coumarin and tert-butylhydroquinone (TBHQ). The antioxidant efficacies of these compounds were evaluated on the basis of their abilities to inhibit the fluorescence intensity decay of an extrinsic probe, 3-(p-(6-phenyl)-I,3,5-hexatrienyl)phenylpropionic acid (DPH-PA), caused by the free radicals generated during lipid peroxidation. All the flavonoids tested exhibited higher antioxidant efficacies against metal-ion-induced peroxidations than peroxyl-radical-induced peroxidation, suggesting that metal chelation may play a larger role in determining the antioxidant activities of these compounds than has previously been believed. Distinct structure-activity relationships were also revealed for the antioxidant abilities of the flavonoids. Presence of hydroxyl substituents on the flavonoid nucleus enhanced activity, whereas substitution by methoxy groups diminished antioxidant activity. Substitution patterns on the B-ring especially affected antioxidant potencies of the flavonoids. In cases where the B-ring could not contribute to the antioxidant activities of flavonoids, hydroxyl substituents in an catechol structure on the A-ring were able to compensate and become a larger determinant of flavonoid antioxidant activity. PMID:9641252

  20. Role of Host-Defence Peptides in Eye Diseases

    PubMed Central

    Kolar, Satya S.; McDermott, Alison M.

    2013-01-01

    The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarized. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed. PMID:21584809

  1. Induced plant defence responses: scientific and commercial development possibilities.

    PubMed

    Dietrich, R A; Lawton, K; Friedrich, L; Cade, R; Willits, M; Maleck, K

    1999-01-01

    Recent work has demonstrated that plants have endogenous defence mechanisms that can be induced as a response to attack by insects and pathogens. There are two well-studied examples of these induced defence responses. Systemic acquired resistance (SAR) results in increased resistance to a broad spectrum of pathogens throughout a plant in response to localized necrosis caused by pathogen infection. The second example is the systemic induction of proteinase inhibitors to deter feeding by herbivores following an initial event of feeding. In addition, there is now preliminary evidence for other induced defence response pathways. By understanding the breadth of induced defence responses and the mechanisms used to control these pathways, novel plant protection strategies may be developed for use in agronomic settings. Rather than reducing crop losses caused by pests or pathogens by using chemicals that are designed to kill the offending organism, the plant's own defence mechanisms can be used to limit damage due to pests. Novel crop protection strategies based on genetic or chemical regulation of these induced responses show great potential. The first example of a crop protection product that acts by inducing an endogenous defence response pathway is now on the market. Bion reduces the level of pathogen infection in plants by activating SAR.

  2. In silico comparative analysis and expression profile of antioxidant proteins in plants.

    PubMed

    Sheoran, S; Pandey, B; Sharma, P; Narwal, S; Singh, R; Sharma, I; Chatrath, R

    2013-02-27

    The antioxidant system in plants is a very important defensive mechanism to overcome stress conditions. We examined the expression profile of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) using a bioinformatics approach. We explored secondary structure prediction and made detailed studies of signature pattern of antioxidant proteins in four plant species (Triticum aestivum, Arabidopsis thaliana, Oryza sativa, and Brassica juncea). Fingerprinting analysis was done with ScanProsite, which includes a large collection of biologically meaningful signatures. Multiple sequence alignment of antioxidant proteins of the different plant species revealed a conserved secondary structure region, indicating homology at the sequence and structural levels. The secondary structure prediction showed that these proteins have maximum tendency for α helical structure. The sequence level similarities were also analyzed with a phylogenetic tree using neighbor-joining method. In the antioxidant enzymes SOD, CAT and APX, three major families of signature were predominant and common; these were PKC_PHOSPHO_SITE, CK2_PHOSPHO_SITE and N-myristoylation site, which are functionally related to various plant signaling pathways. This study provides new strategies for screening of biomodulators involved in plant stress metabolism that will be useful for designing degenerate primers or probes specific for antioxidant. These enzymes could be the first line of defence in the cellular antioxidant defence pathway, activated due to exposure to abiotic stresses.

  3. In silico comparative analysis and expression profile of antioxidant proteins in plants.

    PubMed

    Sheoran, S; Pandey, B; Sharma, P; Narwal, S; Singh, R; Sharma, I; Chatrath, R

    2013-01-01

    The antioxidant system in plants is a very important defensive mechanism to overcome stress conditions. We examined the expression profile of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) using a bioinformatics approach. We explored secondary structure prediction and made detailed studies of signature pattern of antioxidant proteins in four plant species (Triticum aestivum, Arabidopsis thaliana, Oryza sativa, and Brassica juncea). Fingerprinting analysis was done with ScanProsite, which includes a large collection of biologically meaningful signatures. Multiple sequence alignment of antioxidant proteins of the different plant species revealed a conserved secondary structure region, indicating homology at the sequence and structural levels. The secondary structure prediction showed that these proteins have maximum tendency for α helical structure. The sequence level similarities were also analyzed with a phylogenetic tree using neighbor-joining method. In the antioxidant enzymes SOD, CAT and APX, three major families of signature were predominant and common; these were PKC_PHOSPHO_SITE, CK2_PHOSPHO_SITE and N-myristoylation site, which are functionally related to various plant signaling pathways. This study provides new strategies for screening of biomodulators involved in plant stress metabolism that will be useful for designing degenerate primers or probes specific for antioxidant. These enzymes could be the first line of defence in the cellular antioxidant defence pathway, activated due to exposure to abiotic stresses. PMID:23512671

  4. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells

    PubMed Central

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes—catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and ·O−2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells. PMID:26388737

  5. Antioxidant responses in Phanerochaete chrysosporium exposed to Astrazone Red FBL textile dye.

    PubMed

    Demirci, Ozlem; Hamamcı, Dilek Asma

    2013-01-01

    Interest in environmental-pollutant-induced oxidative stress and knowledge of the interactions between reactive oxygen species and cellular systems have increased in toxicology and microbial ecology considerably in recent decades. These reactive oxidants are produced by a variety of environmental sources: ionizing radiations, ultraviolet light, redox cycling drugs, hyperoxia, ischemia and redox-active xenobiotics or during metabolism of environmental pollutants, such as heavy metals in mining industries, dyes in wastewater of textile industries, pesticides and polycyclic hydrocarbons, i.e. foreign materials. In this study, the effect of dye on the antioxidative defence system of Phanerochaete chrysosporium was investigated, and we showed the ability of Phanerochaete chrysosporium to antioxidative response and defence system exposed to Astrazone Red FBL. Catalase, glutathione reductase, glutathione s-transferase activities and level of glutathione decreased, depending on the period of growth in each exposure to low and high concentration group (20 and 50 ppm) compared with the control group.

  6. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review

    PubMed Central

    BLOKHINA, OLGA; VIROLAINEN, EIJA; FAGERSTEDT, KURT V.

    2003-01-01

    antioxidant status have been obtained. Experiments on overexpression of antioxidant production do not always result in the enhancement of the antioxidative defence, and hence increased antioxidative capacity does not always correlate positively with the degree of protection. Here we present a consideration of factors which possibly affect the effectiveness of antioxidant protection under oxygen deprivation as well as under other environmental stresses. Such aspects as compartmentalization of ROS formation and antioxidant localization, synthesis and transport of antioxidants, the ability to induce the antioxidant defense and cooperation (and/or compensation) between different antioxidant systems are the determinants of the competence of the antioxidant system. PMID:12509339

  7. Immune defence against Candida fungal infections.

    PubMed

    Netea, Mihai G; Joosten, Leo A B; van der Meer, Jos W M; Kullberg, Bart-Jan; van de Veerdonk, Frank L

    2015-10-01

    The immune response to Candida species is shaped by the commensal character of the fungus. There is a crucial role for discerning between colonization and invasion at mucosal surfaces, with the antifungal host defence mechanisms used during mucosal or systemic infection with Candida species differing substantially. Here, we describe how innate sensing of fungi by pattern recognition receptors and the interplay of immune cells (both myeloid and lymphoid) with non-immune cells, including platelets and epithelial cells, shapes host immunity to Candida species. Furthermore, we discuss emerging data suggesting that both the innate and adaptive immune systems display memory characteristics after encountering Candida species.

  8. Revenge of the phages: defeating bacterial defences.

    PubMed

    Samson, Julie E; Magadán, Alfonso H; Sabri, Mourad; Moineau, Sylvain

    2013-10-01

    Bacteria and their viral predators (bacteriophages) are locked in a constant battle. In order to proliferate in phage-rich environments, bacteria have an impressive arsenal of defence mechanisms, and in response, phages have evolved counter-strategies to evade these antiviral systems. In this Review, we describe the various tactics that are used by phages to overcome bacterial resistance mechanisms, including adsorption inhibition, restriction-modification, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems and abortive infection. Furthermore, we consider how these observations have enhanced our knowledge of phage biology, evolution and phage-host interactions. PMID:23979432

  9. Oxidative stress and Down syndrome. Do antioxidants play a role in therapy?

    PubMed

    Muchová, J; Žitňanová, I; Ďuračková, Z

    2014-01-01

    Oxidative stress is a phenomenon associated with imbalance between production of free radicals and reactive metabolites (e.g. superoxide and hydrogen peroxide) and the antioxidant defences. Oxidative stress in individuals with Down syndrome (DS) has been associated with trisomy of the 21st chromosome resulting in DS phenotype as well as with various morphological abnormalities, immune disorders, intellectual disability, premature aging and other biochemical abnormalities. Trisomy 21 in patients with DS results in increased activity of an important antioxidant enzyme Cu/Zn superoxide dismutase (SOD) which gene is located on the 21st chromosome along with other proteins such as transcription factor Ets-2, stress inducing factors (DSCR1) and precursor of beta-amyloid protein responsible for the formation of amyloid plaques in Alzheimer disease. Mentioned proteins are involved in the management of mitochondrial function, thereby promoting mitochondrial theory of aging also in people with DS. In defence against toxic effects of free radicals and their metabolites organism has built antioxidant defence systems. Their lack and reduced function increases oxidative stress resulting in disruption of the structure of important biomolecules, such as proteins, lipids and nucleic acids. This leads to their dysfunctions affecting pathophysiology of organs and the whole organism. This paper examines the impact of antioxidant interventions as well as positive effect of physical exercise on cognitive and learning disabilities of individuals with DS. Potential therapeutic targets on the molecular level (oxidative stress markers, gene for DYRK1A, neutrophic factor BDNF) after intervention of natural polyphenols are also discussed. PMID:24908086

  10. In Defence of the Lecture

    ERIC Educational Resources Information Center

    Webster, R. Scott

    2015-01-01

    In response to the lecture format coming under "attack" and being replaced by online materials and smaller tutorials, this paper attempts to offer not only a defence but also to assert that the potential value of the lecture is difficult to replicate through other learning formats. Some of the criticisms against lectures will be…

  11. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases

    PubMed Central

    Reinisalo, Mika; Kårlund, Anna; Koskela, Ali; Kaarniranta, Kai; Karjalainen, Reijo O.

    2015-01-01

    Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed. PMID:26180583

  12. Antioxidant system responses in two co-occurring green-tide algae under stress conditions

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhao, Xinyu; Tang, Xuexi

    2016-01-01

    Green tides have occurred every year from 2007 to 2014 in the Yellow Sea. Ulva prolifera (Müller) J. Agardh has been identified as the bloom-forming alga, co-occurring with U. intestinalis. We observed distinct strategies for both algal species during green tides. U. prolifera exhibited a high abundance initially and then decreased dramatically, while U. intestinalis persisted throughout. The antioxidant system responses of these two macroalgae were compared in the late phase of a green tide (in-situ) and after laboratory acclimation. Lipid peroxidation and antioxidant system responses differed significantly between the two. Malondialdehyde and hydrogen peroxide contents increased significantly in-situ in U. prolifera, but not in U. intestinalis. In U. prolifera, we observed a significant decrease in total antioxidant ability (T-AOC), antioxidant enzymes (SOD and Apx), and non-enzyme antioxidants (GSH and AsA) in-situ. U. intestinalis showed the same pattern of T-AOC and SOD, but its Gpx, Apx, and GSH responses did not differ significantly. The results suggest that U. prolifera was more susceptible than U. intestinalis to the harsh environmental changes during the late phase of a Yellow Sea green tide. The boom and bust strategy exhibited by U. prolifera and the persistence of U. intestinalis can be explained by differences in enzyme activity and antioxidant systems.

  13. The Forum for Defence of the Brazilian Unified Health System (Sistema Único de Saúde) and its role in building community participation in the fight against the privatization of health.

    PubMed

    de Lara, Lutiane; Guareschi, Neuza Maria de Fátima

    2016-03-01

    Based on a Foucauldian framework, this article discusses the involvement of the Forum for Defence of the Sistema Único de Saúde in the fight against health care privatization. Community participation is a locus of experience that produces subjects implicated in the production of public health care. The locus of experience in this instance derives from the rejection of private elements that historically have been part of Brazilian public policies. It is an experience that produces workers and service users as agents able to defend the public system and endowed with instituting power.

  14. Oxidants, antioxidants and carcinogenesis.

    PubMed

    Ray, Gibanananda; Husain, Syed Akhtar

    2002-11-01

    Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of

  15. [Antioxidant system in the darkling beetle (Tenebrio molitor) in ontogenesis].

    PubMed

    Gulevskiĭ, A K; Grishchenkova, E A; Relina, L I

    2006-01-01

    The level of antioxidant protection and lipid peroxidation (LP) intensity in the darkling beetle Tenebrio molitor on different developmental stages were assessed. Each stage was shown to be characterized by its own peculiarities of prooxidant-antioxidant balance. Thus, maximal intensity of oxidative processes estimated by LP intermediate product (diene conjugates and ketodiens) accumulation is attributable to pupae, and minimal intensity--to the 3rd-5th instar larvae. Superoxide dismutase activity increases gradually during the life cycle. A decline in catalase (CAT) and glutathione reductase (GR) activities occurred on the stage of pupae. CAT activity in imago was equal to the larva values, and GR activity in imago even exceeded the larva values. At the same time GR activity in T. molitor was detected only at 37 degrees C under our experimental conditions. No statistically significant changes in glutathione reduced content were observed in the insects during the life cycle.

  16. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox.

    PubMed

    Laguerre, Mickaël; Bayrasy, Christelle; Panya, Atikorn; Weiss, Jochen; McClements, D Julian; Lecomte, Jérôme; Decker, Eric A; Villeneuve, Pierre

    2015-01-01

    The polar paradox states that polar antioxidants are more active in bulk lipids than their nonpolar counterparts, whereas nonpolar antioxidants are more effective in oil-in-water emulsion than their polar homologs. However, recent results, showing that not all antioxidants behave in a manner proposed by this hypothesis in oil and emulsion, lead us to revisit the polar paradox and to put forward new concepts, hypotheses, and theories. In bulk oil, new evidences have been brought to demonstrate that the crucial site of oxidation is not the air-oil interface, as postulated by the polar paradox, but association colloids formed with traces of water and surface active molecules such as phospholipids. The role of these association colloids on lipid oxidation and its inhibition by antioxidant is also addressed as well as the complex influence of the hydrophobicity on the ability of antioxidants to protect lipids from oxidation. In oil-in water emulsion, we have covered the recently discovered non linear (or cut-off) influence of the hydrophobicity on antioxidant capacity. For the first time, different mechanisms of action are formulated in details to try to account for this nonlinear effect. As suggested by the great amount of biological studies showing a cut-off effect, this phenomenon could be widespread in dispersed lipid systems including emulsions and liposomes as well as in living systems such as cultured cells. Works on the cut-off effect paves the way for the determination of the critical chain length which corresponds to the threshold beyond which antioxidant capacity suddenly collapses. The systematic search for this new physico-chemical parameter will allow designing novel phenolipids and other amphiphilic antioxidants in a rational fashion. Finally, in both bulk oils and emulsions, we feel that it is now time for a paradigm shift from the polar paradox to the next theories.

  17. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system.

    PubMed

    Arora, A; Nair, M G; Strasburg, G M

    1998-08-15

    Genistein and daidzein, the two major soy isoflavones, principally occur in nature as their glycosylated or methoxylated derivatives, which are cleaved in the large intestine to yield the free aglycones and further metabolites. The objective of this study was to compare the antioxidant activities of genistein and daidzein with their glycosylated and methoxylated derivatives and also those of their human metabolites. The abilities of these compounds to inhibit lipid peroxidation in a liposomal system were evaluated using fluorescence spectroscopy, and structural criteria that enhance antioxidant activity were established. The peroxidation initiators employed in the study were Fe(II) and Fe(III) metal ions and aqueous-phase, azo-derived peroxyl radicals. Both the parent isoflavonoids and their metabolites were more effective at suppressing metal-ion-induced peroxidations than the peroxyl-radical-induced peroxidation. Antioxidant activities for the isoflavone metabolites were comparable to or superior to those for the parent compounds. Equol and its 4-hydroxy and 5-hydroxy derivatives were the most potent antioxidants in the study, suggesting that absence of the 2, 3-double bond and the 4-oxo group on the isoflavone nucleus enhances antioxidant activity. Additionally, the number and position of hydroxyl groups were determining factors for isoflavonoid antioxidant activity, with hydroxyl substitution being of utmost importance at the C-4' position, of moderate importance at the C-5 position, and of little significance at the C-7 position. PMID:9705203

  18. Impact of the age of Biomphalaria alexandrina snails on Schistosoma mansoni transmission: modulation of the genetic outcome and the internal defence system of the snail

    PubMed Central

    Abou-El-Naga, Iman Fathy; Sadaka, Hayam Abd El-Monem; Amer, Eglal Ibrahim; Diab, Iman Hassan; Khedr, Safaa Ibrahim Abd El-Halim

    2015-01-01

    Of the approximately 34 identified Biomphalaria species,Biomphalaria alexandrina represents the intermediate host of Schistosoma mansoni in Egypt. Using parasitological and SOD1 enzyme assay, this study aimed to elucidate the impact of the age of B. alexandrina snails on their genetic variability and internal defence against S. mansoni infection. Susceptible and resistant snails were reared individually for self-reproduction; four subgroups of their progeny were used in experiment. The young susceptible subgroup showed the highest infection rate, the shortest pre-patent period, the highest total cercarial production, the highest mortality rate and the lowest SOD1 activity. Among the young and adult susceptible subgroups, 8% and 26% were found to be resistant, indicating the inheritance of resistance alleles from parents. The adult resistant subgroup, however, contained only resistant snails and showed the highest enzyme activity. The complex interaction between snail age, genetic background and internal defence resulted in great variability in compatibility patterns, with the highest significant difference between young susceptible and adult resistant snails. The results demonstrate that resistance alleles function to a greater degree in adults, with higher SOD1 activity and provide potential implications for Biomphalaria control. The identification of the most susceptible snail age enables determination of the best timing for applying molluscicides. Moreover, adult resistant snails could be beneficial in biological snail control. PMID:26061235

  19. The effect of Irisin on antioxidant system in liver.

    PubMed

    Batirel, Saime; Bozaykut, Perinur; Mutlu Altundag, Ergül; Kartal Ozer, Nesrin; Mantzoros, Christos S

    2014-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a global health problem and lead to subacute liver failure, cirrhosis and/or hepatocellular carcinoma. An increased generation of reactive oxygen species (ROS) and antioxidant depletion is found in the liver of obese patients with NAFLD. Irisin is a recently identified exercise-induced myokine. It increases total energy consumption, reduces body weight, and insulin resistance. It was shown that irisin levels were significantly lower in patients with NAFLD. The aim of the present study was to investigate the effect of irisin on prooxidant-antioxidant balance in liver. In the first phase; AML12 liver cells were divided into 4 groups: control, hydrogen peroxide (H2O2)-treated, 10nM irisin-treated and 50nM irisin-treated groups. ROS accumulation in these groups was analyzed by FACS. In the second phase; to see if there is any protective role of irisin on ROS production in the liver, AML12 liver cells were divided into 4 groups: control, H2O2 -treated, H2O2+10nM irisin-treated and H2O2+50nM-irisin treated groups. After measuring ROS accumulation again in these groups, the levels of enzymes related with prooxidant-antioxidant balance via oxidative stress in liver were measured by western blotting. In H2O2 treatment groups, ROS production was increased in AML12 liver cells, on the other hand in irisin treatment groups ROS production was slightly changed. Irisin might be a potential target for metabolic diseases like NAFLD. PMID:26461295

  20. The antioxidant system of seminal fluid during in vitro storage of sterlet Acipenser ruthenus sperm.

    PubMed

    Dzyuba, Viktoriya; Cosson, Jacky; Dzyuba, Borys; Yamaner, Gunes; Rodina, Marek; Linhart, Otomar

    2016-04-01

    The role of the seminal fluid antioxidant system in protection against damage to spermatozoa during in vitro sperm storage is unclear. This study investigated the effect of in vitro storage of sterlet Acipenser ruthenus spermatozoa together with seminal fluid for 36 h at 4 °C on spermatozoon motility rate and curvilinear velocity, thiobarbituric acid reactive substance level, and components of enzyme and non-enzyme antioxidant system (superoxide dismutase and catalase activity and uric acid concentration) in seminal fluid. Spermatozoon motility parameters after sperm storage were significantly decreased, while the level of thiobarbituric acid reactive substances, activity of superoxide dismutase and catalase, and uric acid concentration did not change. Our findings suggest that the antioxidant system of sterlet seminal fluid is effective in preventing oxidative stress during short-term sperm storage and prompt future investigations of changes in spermatozoon homeostasis and in spermatozoon plasma membrane structure which are other possible reasons of spermatozoon motility deterioration upon sperm storage.

  1. [Formation of the compensation answer in the system "lipid peroxidation - antioxidant protection" in rats with alimentary dislipidemia].

    PubMed

    Karaman, Iu K; Novgorodtseva, T P; Vitkina, T I; Lobanova, E G

    2011-01-01

    It is investigated conditions of system "lipid peroksidation - antioxidant protection" at rats of the line Wistar at prolonged formation alimentary dyslipidemia (DLP). It is established, that at formation DLP during 46 days in cells there was no increase in resistance and capacity of processes antioxidant protection. In prolonged DLP (90 days) was characterized by occurrence of the compensation-adaptive answer in the system "lipid peroksidation - antioxidant protection".

  2. IPNs from Cyclodextrin:Chitosan Antioxidants: Bonding, Bio-Adhesion, Antioxidant Capacity and Drug Release

    PubMed Central

    Perchyonok, V. Tamara; Grobler, Sias R.; Zhang, Shengmiao

    2014-01-01

    IPNs are unique “alloys” of cross-linked polymers in which at least one network is synthesized and/or cross-linked in the presence of the other. IPNs are also known as entanglements of polymer networks that are ideally held together only by permanent topological interactions. The objectives of this study are to evaluate novel chitosan-based functional drug delivery systems that can be successfully incorporated into “dual action bioactive tooth restorative materials”. These materials should be capable of inducing an improved wound healing prototype. The novel hydrogels will be investigated with respect to the antioxidant capacity of conventional antioxidants, such as resveratrol, β-carotene and propolis, as a designer drug delivery system, with the use of SEM imaging for the characterization of the surfaces, bio-adhesive property, antioxidant capacity, free radical defence, antioxidant, active ingredient stability and reactive features of novel materials. The additional benefit of the site-specific “functional restorative material” for use in dressings to deliver antibiotics to wound sites can provide tissue compatibility and reduced interference with wound healing. The materials were tested using an effective in vitro free radical generation model as functional additive prototypes for further development of “dual function restorative wound healing materials”. We quantified the effects of functional designer biomaterials on the dentin bond strength of a composite and evaluated the bio-adhesive capacity of the materials in the two separate “in vitro” systems. The added benefits of the chitosan/vitamin C/cyclodextrin (CD) host:guest complex-treated hydrogels involved a positive influence on the tetracycline release, increased dentin bond strength, as well as a demonstrated in vitro “built-in” free radical defence mechanism and, therefore, acting as a “proof of concept” for functional multi-dimensional restorative wound healing materials

  3. Effects of 30 Days Simulated Weightlessness on Antioxidant Defense System in Rat Liver

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Wu, Ping; Kan, Guang-Han; Liu, Xing-hua; Jiang, Shi-zhong; Sun, Xi-qing; Zhang, Shu

    2008-06-01

    Background The purpose of the present study was to investigate effects of weightlessness included in long-term spaceflight on antioxidant defense system and briefly to evaluate its potent consequences. Method Thirty-two male Sprague-Dawley rats were randomly divided into control, 30 d suspension, 1 d recovery and 7 d recovery group and each group included 8 rats. Lipid peroxidation, contents of antioxidants and activities of antioxidant enzymes in rat liver were measured. Results Compared with control group, hydroperoxide (LOOH) contents showed significantly increased (P<0.05), while glutathione (GSH) and total GSH concentration dramatically decreased (P<0.05 or 0.01) in suspension group and 1 d recovery group. Activities of catalase showed significantly decreased (P<0.05). The relative abundance of mRNA for Cu-Zn superoxide dismutase (Cu-Zn SOD) and GSH-Px was markedly decreased (P<0.05). Conclusion long-term space flight may injure antioxidant defense system and caused oxidative stress and damage. Our study suggested that potent harm to astronauts' health induced by wakened antioxidant defense system should be considered in long-term spaceflight, especially in future trip to Mars.

  4. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    Popov, A M; Osipov, A N; Korepanova, E A; Krivoshapko, O N; Artiukov, A A

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25481945

  5. Insect-plant interactions: endocrine defences.

    PubMed

    Bowers, W S

    1984-01-01

    It is the inevitable consequence of evolution that competitive species living together in a restricted space must try to exclude each other. Plants and insects are prime examples of this eternal competition, and although neither of these is in danger of extinction, their mutual defensive strategies are of compelling interest to the human race. Plant defences based on the insecticidal activity of certain of their secondary chemicals are readily apparent. Only through research into the fundamentals of insect physiology and biochemistry are more subtle defensive mechanisms revealed, linked to the disruption of the insect endocrine system. A diverse number of chemical structures are found in plants, which interfere with hormone-mediated processes in insects. Examples include: mimics of the insect's juvenile hormones such as juvabione from the balsam fir and the juvocimenes from sweet basil, which lethally disrupt insect development, and the precocenes found in Ageratum species, which act as anti-juvenile hormonal agents. The latter appear to serve as 'suicide substrates', undergoing activation into cytotoxins when acted on by specialized enzymes resident in the insect endocrine gland (corpus allatum) that is responsible for juvenile hormone biosynthesis and secretion. Consideration of these plant defensive strategies, which have been reached through aeons of evolutionary experimentation, may assist the human race in its defences against its principal competitors for food, fibre and health.

  6. The psychiatric defence and international criminal law.

    PubMed

    Tobin, John

    2007-01-01

    Following the development of the International Criminal Court (ICC) the mental state of the perpetrators of genocide, crimes against humanity and war crimes will become a more important issue in regard to defence and mitigating factors. This article examines how the International Criminal Tribunal for the Former Yugoslavia (ICTY) in particular has dealt with the mental illness defence to date, and how its judgements can serve as guidance for the ICC as it becomes the major international court of the future. The absence of a mental health defence in the Statutes of the ICTY and the International Criminal Tribunal for Rwanda has led to a reliance on the Rules of Procedure and Evidence of the two tribunals. There are major difficulties in using the mental health defence as it is defined in the Statutes of the ICC because of a requirement for the destruction of mental capacity as a valid defence. Fitness to plead and the defence of intoxication are also examined.

  7. [Carotenoids as natural antioxidants].

    PubMed

    Igielska-Kalwat, Joanna; Gościańska, Joanna; Nowak, Izabela

    2015-04-07

    Human organisms have many defence mechanisms able to neutralise the harmful effects of the reactive species of oxygen. Antioxidants play an important role in reducing the oxidative damage to the human organism. Carotenoids are among the strongest antioxidants. They have 11 coupled double bonds, so they can be classified as polyisoprenoids, show low polarity and can occur in acyclic, monocyclic or bicyclic forms. The carotenoids of the strongest antioxidant properties are lycopene, lutein, astaxanthin and β-carotene. Carotenoids with strong antioxidant properties have found wide application in medical, pharmaceutical and cosmetic industries. These compounds are highly active against both reactive oxygen species and free radicals. Comparing β-carotene, astaxanthin and lycopene with other antioxidants (e.g. vitamin C and E), it can be concluded that these compounds have higher antioxidant activity, e.g. against singlet oxygen. Astaxanthin is a stronger antioxidant compared to β-carotene, vitamin E and vitamin C, respectively 54, 14 and 65 times. Carotenoids have a salutary effect on our body, making it more resistant and strong to fight chronic diseases. The purpose of this article is to review the literature concerning free radicals and their adverse effects on the human body and carotenoids, as strong, natural antioxidants.

  8. Citrus juice extraction systems: effect on chemical composition and antioxidant activity of clementine juice.

    PubMed

    Álvarez, Rafael; Carvalho, Catarina P; Sierra, Jelver; Lara, Oscar; Cardona, David; Londoño-Londoño, Julian

    2012-01-25

    Clementines are especially appreciated for their delicious flavor, and recent years have seen a great increase in the consumption of clementine juice. In previous decades, antioxidant compounds have received particular attention because of widely demonstrated beneficial health effects. In this work, the organoleptic, volatile flavor, and antioxidant quality of clementine juice were studied with regard to the influence on them by different juice extraction systems: plug inside fruit and rotating cylinders. The results showed that juice extracted by the former method presented higher yields and hesperidin content, which was related to higher antioxidant activity, demonstrated by ORAC and LDL assays. The organoleptic quality was not affected by the processing technique, whereas there were significant differences in the chemical flavor profile. There are important differences in chemical and functional quality between juice extraction techniques, which must be taken into account when employing processing systems to produce high-quality products.

  9. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System.

    PubMed

    Huang, Yanyan; Liu, Zhen; Liu, Chaoqun; Ju, Enguo; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    In this work, for the first time, we constructed a novel multi-nanozymes cooperative platform to mimic intracellular antioxidant enzyme-based defense system. V2 O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2 O5 @pDA@MnO2 nanocomposite could serve as one multi-nanozyme model to mimic intracellular antioxidant enzyme-based defense procedure in which, for example SOD, CAT, and GPx co-participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy. PMID:27098681

  10. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Ahmad Khan, Luqman; Padoa, Carolyn J; van Vuuren, Sandy; Manzoor, Nikhat

    2015-03-01

    Thymol and carvacrol from the class of monoterpene phenols are one of the most potent plant essential oil components possessing antimicrobial effects. Known for their wide bioactive spectrum, these positional isomers of isopropyl cresol deplete ergosterol content, compromise membrane permeability, block efflux pumps and restore antifungal susceptibility to fluconazole in resistant Candida strains. Exposure to these natural compounds induces a cascade of stress responses, which are important to comprehend their microbicidal mechanisms. This study evaluates the antioxidant defense response to lower concentrations of thymol and carvacrol in Candida albicans. The antioxidant defense responses in C. albicans are important for developmental mechanisms pertaining to resistance against the immune system, infection establishment and drug resistance. In this view, primary and secondary antioxidant defense enzymes, and oxidative stress markers including glutathione and lipid peroxidation were determined in C. albicans cells exposed to lower concentrations of thymol and carvacrol. These compounds were found to induce oxidative stress and compromised the antioxidant defense system in C. albicans at lower concentrations. This study helps in understanding the 'in cell' antifungal mechanisms of natural monoterpene phenols originating from oxidative stress. Thymol and carvacrol induced membrane deterioration reported earlier, is further explained as a result of a toxic radical cascade mediated by lipid peroxidation. Findings reinforce the observed toxic oxidizing effects of these compounds as a consequence of direct damage to antioxidant components and not to their genetic manipulations. PMID:25681060

  11. Thymoquinone ameliorates lead-induced suppression of the antioxidant system in rat kidneys

    PubMed Central

    Mabrouk, Aymen; Cheikh, Hassen Ben

    2016-01-01

    Objective Alteration of the antioxidant status in the kidneys may be related to lead (Pb) intoxication. The present study aimed to investigate the possible beneficial effect of thymoquinone (TQ), the major active ingredient of the volatile oil of Nigella sativa seeds, on Pb-induced renal antioxidant defense system impairment. Methods A total of thirty two healthy adult male Wistar rats were randomly divided into four equal groups as follows: a control group, which received no treatment; a Pb group, which was exposed to 2,000 ppm of Pb acetate in drinking water; a Pb-TQ group, which was cotreated with Pb plus TQ (5 mg/kg/day, per os); and a TQ group receiving only TQ. All treatments were applied for five weeks. Results TQ alone did not induce any significant changes in the antioxidant defense system. By contrast, Pb exposure significantly decreased reduced glutathione level and superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase activities in the renal tissue. Interestingly, supplementation with TQ significantly improved the affected antioxidant parameters. Conclusion Our data are the first to provide evidence on the protective effect of TQ against Pb-induced renal antioxidant capacity impairment and suggest that this component might be a clinically promising alternative in Pb nephrotoxicity. PMID:27052350

  12. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    PubMed

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.

  13. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems.

    PubMed

    Oliviero, Teresa; Capuano, Edoardo; Cämmerer, Bettina; Fogliano, Vincenzo

    2009-01-14

    During the roasting of cocoa beans chemical reactions lead to the formation of Maillard reaction (MR) products and to the degradation of catechin-containing compounds, which are very abundant in these seeds. To study the modifications occurring during thermal treatment of fat and antioxidant rich foods, such as cocoa, a dry model system was set up and roasted at 180 degrees C for different times. The role played in the formation of MR products and in the antioxidant activity of the system by proteins, catechin, and cocoa butter was investigated by varying the model system formulation. Results showed that the antioxidant activity decreased during roasting, paralleling catechin concentration, thus suggesting that this compound is mainly responsible for the antioxidant activity of roasted cocoa beans. Model system browning was significantly higher in the presence of catechin, which contributed to the formation of water-insoluble melanoidins, which are mainly responsible for browning. HMF concentration was higher in casein-containing systems, and its formation was strongly inhibited in the presence of catechin. No effects related to the degree of lipid oxidation could be observed. Data from model systems obtained by replacing fat with water showed a much lower rate of MR development and catechin degradation but the same inhibitory effect of catechin on HMF formation. PMID:19086900

  14. Identification of plant defence genes in canola using Arabidopsis cDNA microarrays.

    PubMed

    Schenk, P M; Thomas-Hall, S R; Nguyen, A V; Manners, J M; Kazan, K; Spangenberg, G

    2008-09-01

    We report the identification of novel defence genes in canola by using a cDNA microarray from Arabidopsis. We examined changes that occur in the abundance of transcripts corresponding to 2375 Arabidopsis expressed sequence tags (selected for defence gene identification) following inoculation of canola plants with the fungal necrotrophic leaf pathogen, Alternaria brassicicola. Microarray data obtained from this cross-hybridisation experiment were compared to expression profiles previously obtained from the equivalent Arabidopsis experiment. Homology searches using a canola expressed sequence tag database with approximately 6000 unique clones led to identification of canola defence genes. Pathogen-responsive transcripts included those associated to known defence genes, reactive oxygen species metabolism, disease resistance and regulatory genes, and cell maintenance/metabolism genes. Using specific primers for quantitative real-time reverse transcriptase PCR, gene expression profiles in canola were obtained that demonstrated coordinated defence responses, including systemic responses in distal tissue and salicylic acid- and methyl jasmonate-mediated signalling against A. brassicicola.

  15. Effect of Putrescine Treatment on Chilling Injury, Fatty Acid Composition and Antioxidant System in Kiwifruit.

    PubMed

    Yang, Qingzhen; Wang, Feng; Rao, Jingping

    2016-01-01

    We investigated the effects of different concentrations (0, 1, 2 and 4 mM) of putrescine on chilling injury, fruit quality, ethylene production rate, fatty acid composition and the antioxidant system of cold-stored kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hongyang'). We achieved a significant decrease in ethylene production, maintained fruit quality and alleviated chilling injury during storage via treatment with 2 mM putrescine. Furthermore, putrescine treatment inhibited increases in superoxide anion production rate and H2O2 concentration, while maintaining higher membrane lipid unsaturation as well as increased activities of superoxide dismutase and catalase. In addition, putrescine treatment enhanced the activities of antioxidant enzymes related to the ascorbate-glutathione cycle while causing higher levels of ascorbic acid and reduced glutathione. Our results suggest that induced tolerance against chilling injury via putrescine treatment in cold-stored kiwifruit may be due to enhanced antioxidant activity, increased unsaturation of membrane lipids, and inhibited ethylene production. PMID:27607076

  16. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance.

    PubMed

    Zhang, Xiao-Yi; Hu, Chun-Gen; Yao, Jia-Ling

    2010-01-15

    Polyploidy is reported to show increased tolerance to environmental stress. In this work, tetraploid plants of Dioscorea zingiberensis were obtained by colchicine treatment of shoots propagated in vitro. The highest tetraploid induction rate was achieved by treatment with 0.15% colchicine for 24h. Diploid and tetraploid plants were exposed to normal (28 degrees C) and high temperature (42 degrees C) for 5d during which physiological indices were measured. Compared with diploid plants, relative electrolyte leakage and contents of malondialdehyde, superoxide anions and hydrogen peroxide were lower in tetraploids, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and glutathione reductase, were stimulated and antioxidants (ascorbic acid and glutathione) were maintained at high concentrations. These results indicate that tetraploid plants possess a stronger antioxidant defense system and increased heat tolerance. PMID:19692145

  17. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5

    PubMed Central

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed. PMID:26042463

  18. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5.

    PubMed

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed. PMID:26042463

  19. Dietary antioxidants: immunity and host defense.

    PubMed

    Puertollano, María A; Puertollano, Elena; de Cienfuegos, Gerardo Álvarez; de Pablo, Manuel A

    2011-01-01

    Natural antioxidants may be defined as molecules that prevent cell damage against free radicals and are critical for maintaining optimum health in both animals and humans. In all living systems, cells require adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive production of reactive oxygen species (ROS) and to prevent damage to the immune cells. During the inflammatory processes, the activation of phagocytes and/or the action of bacterial products with specific receptors are capable of promoting the assembly of the multicomponent flavoprotein NADPH oxidase, which catalyzes the production of high amounts of the superoxide anion radical (O(2)(-)). Under these particular circumstances, neutrophils and macrophages are recognized to produce superoxide free radicals and H(2)O(2), which are essential for defence against phagocytized or invading microbes. In this state, antioxidants are absolutely necessary to regulate the reactions that release free radicals. Antioxidant nutrients commonly included in the diet such as vitamin E, vitamin C, β-carotene, selenium, copper, iron and zinc improve different immune function exhibiting an important protective role in infections caused by bacteria, viruses or parasites. As a result, dietary antioxidants have been related to modulate the host susceptibility or resistance to infectious pathogens. Overall, numerous studies have suggested that the development of tolerance, and control of inflammation are strongly correlated with specific immune mechanisms that may be altered by an inadequate supply of either macronutrients or micronutrients. Therefore, the present paper will review the effects of dietary antioxidants on immune cell function and the impact on protection against infectious microorganisms. PMID:21506934

  20. Triage in the defence medical services.

    PubMed

    Horne, Simon T; Vassallo, J

    2015-06-01

    Triage of patients into categories according to their need for intervention is a core part of military medical practice. This article reviews how triage has evolved in the Defence Medical Services and how it might develop in the context of recent research. In particular, a simple model demonstrates that the ideal sensitivity and specificity of a triage system depends upon the availability of transport and the capacity of the receiving units. As a result, we may need to fundamentally change the way we approach triage in order to optimise outcomes-especially if casualty evacuation timelines become longer and smaller medical units more prevalent on future operations. Some pragmatic options for change are discussed. Finally, other areas of current research around triage are highlighted, perhaps showing where triage may go next.

  1. Evolution of hosts paying manifold costs of defence

    PubMed Central

    Cressler, Clayton E.; Graham, Andrea L.; Day, Troy

    2015-01-01

    Hosts are expected to incur several physiological costs in defending against parasites. These include constitutive energetic (or other resource) costs of a defence system, facultative resource costs of deploying defences when parasites strike, and immunopathological costs of collateral damage. Here, we investigate the evolution of host recovery rates, varying the source and magnitude of immune costs. In line with previous work, we find that hosts paying facultative resource costs evolve faster recovery rates than hosts paying constitutive costs. However, recovery rate is more sensitive to changes in facultative costs, potentially explaining why constitutive costs are hard to detect empirically. Moreover, we find that immunopathology costs which increase with recovery rate can erode the benefits of defence, promoting chronicity of infection. Immunopathology can also lead to hosts evolving low recovery rate in response to virulent parasites. Furthermore, when immunopathology reduces fecundity as recovery rate increases (e.g. as for T-cell responses to urogenital chlamydiosis), then recovery and reproductive rates do not covary as predicted in eco-immunology. These results suggest that immunopathological and resource costs have qualitatively different effects on host evolution and that embracing the complexity of immune costs may be essential for explaining variability in immune defence in nature. PMID:25740895

  2. Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola.

    PubMed

    Fortunato, Alessandro Antônio; Debona, Daniel; Bernardeli, Arthur Martins Almeida; Rodrigues, Fabrício Ávila

    2015-08-01

    Considering the importance of target spot, caused by the fungus Corynespora cassiicola, to reduce soybean yield in Brazil and that more basic information regarding the soybean-C. cassiicola interaction is needed, the present study aimed to investigate whether the cellular damage caused by C. cassiicola infection could activate the antioxidant system and whether a more efficient antioxidant system could be associated with an increase in soybean resistance to target spot. The activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase, glutathione S-transferase as well as the concentrations of ascorbate (AsA), hydrogen peroxide (H2O2), superoxide (O2•-), and malondialdehyde (MDA) were measured in soybean plants from two cultivars differing in resistance to the pathogen. The number of lesions per square centimeter was significantly reduced by 14% in plants from cultivar Fundacep 59 compared with plants from cultivar TMG 132. The area under the disease progress curve was significantly lower, by 15%, in plants from Fundacep 59 than in plants from TMG 132. Generally, antioxidant enzyme activities and AsA concentration significantly increased in response to C. cassiicola infection in plants from both cultivars, however more prominent increases were recorded for plants from Fundacep 59. The concentrations of MDA, H2O2, and O2•- also increased, particularly for plants from TMG 132. The results from this study highlight the importance of a more efficient antioxidative system in the removal of reactive oxygen species generated in soybean plants during C. cassiicola infection, contributing to the resistance to target spot.

  3. Development of an active food packaging system with antioxidant properties based on green tea extract.

    PubMed

    Carrizo, Daniel; Gullo, Giuseppe; Bosetti, Osvaldo; Nerín, Cristina

    2014-01-01

    A formula including green tea extract (GTE) was developed as an active food packaging material. This formula was moulded to obtain an independent component/device with antioxidant properties that could be easily coupled to industrial degassing valves for food packaging in special cases. GTE components (i.e., gallic acid, catechins and caffeine) were identified and quantified by HPLC-UV and UPLC-MS and migration/diffusion studies were carried out. Antioxidant properties of the formula alone and formula-valve were measured with static and dynamic methods. The results showed that the antioxidant capacity (scavenging of free radicals) of the new GTE formula was 40% higher than the non-active system (blank). This antioxidant activity increased in parallel with the GTE concentration. The functional properties of the industrial target valve (e.g., flexibility) were studied for different mixtures of GTE, and good results were found with 17% (w/w) of GTE. This new active formula can be an important addition for active packaging applications in the food packaging industry, with oxidative species-scavenging capacity, thus improving the safety and quality for the consumer and extending the shelf-life of the packaged food.

  4. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation. PMID:25036598

  5. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    PubMed

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  6. Antioxidant effect of fractions from chicken breast and beef loin homogenates in phospholipid liposome systems.

    PubMed

    Min, Byungrok; Cordray, Joseph C; Ahn, Dong Uk

    2011-09-15

    The antioxidant effects of meat fractions from chicken breast and beef loin were compared. Five meat fractions - homogenate (H), precipitate (P), supernatant (S), high-molecular-weight (HMW) and low-molecular-weight (LMW) fractions - were prepared from chicken breast or beef loin. Each of the fractions were added to a phospholipid liposome model system containing catalysts (metmyoglobin, ferrous and ferric ion) or iron chelating agents to determine the effects of each fraction on the development of lipid oxidation during incubation at 37°C for 120min. All fractions from chicken breast showed stronger antioxidant effects against iron-catalyzed lipid oxidation than those from beef loin. Iron chelating capacity of water-soluble LMW and water-insoluble (P) fractions from both meats were responsible for their high antioxidant capacities. High concentration of myoglobin, which served as a source of various catalysts, was partially responsible for the high susceptibility of beef loin to lipid oxidation. Storage-stable ferric ion reducing capacity (FRC) was detected in all fractions from both meats, and was a rate-limiting factor for lipid oxidation in the presence of free ionic iron. Higher antioxidant capacity and lower myoglobin content in chicken breast were primarily responsible for its higher oxidative stability than beef loin. DTPA-unchelatable compounds, such as ferrylmyoglobin and/or hematin were the major catalysts for lipid oxidation in beef loin, but free ionic iron and storage-stable FRC also played important roles during prolonged storage. PMID:25212135

  7. Biotransformation and nitroglycerin-induced effects on antioxidative defense system in rat erythrocytes and reticulocytes.

    PubMed

    Marković, Snežana D; Dorđević, Nataša Z; Curčić, Milena G; Stajn, Andraš S; Spasić, Mihajlo B

    2014-01-01

    The effects of nitroglycerin (glyceryl trinitrate - GTN) are mediated by liberated nitric oxide (NO) and formed reactive nitrogen species, which induces oxidative stress during biotransformation in red blood cells (RBCs). The aim of this study was to evaluate effects of GTN on antioxidative defense system (AOS) in rat erythrocytes (without) and reticulocytes (with functional mitochondria). Rat erythrocyte and reticulocyte-rich RBC suspensions were aerobically incubated (2 h, 37°C) without (control) or in the presence of different concentrations of GTN (0.1-1.5 mM). After incubation, concentrations of non-enzymatic components of AOS, activities of antioxidative enzymes and oxidative pentose phosphate (OPP) pathway activity were followed in RBC suspensions. In rat reticulocytes, GTN decreased the activity of mitochondrial MnSOD and increased the activity of CuZnSOD. In rat RBCs, GTN induced increase of Vit E concentration (at high doses), but decreased glutathione content and activities of all glutathione-dependent antioxidative enzymes; the OPP pathway activity significantly increased. GTN biotransformation and induction of oxidative stress were followed by general disbalance of antioxidative capacities in both kinds of RBCs. We suggest that oxidative stress, MnSOD inhibition and depletion of glutathione pool in response to GTN treatment lead to decreased bioavailability of NO after GTN biotransformation in rat reticulocytes.

  8. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation.

  9. Metabolomic Assessment of Induced and Activated Chemical Defence in the Invasive Red Alga Gracilaria vermiculophylla

    PubMed Central

    Nylund, Göran M.; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  10. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla.

    PubMed

    Nylund, Göran M; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  11. Mitochondria-targeted antioxidants.

    PubMed

    Oyewole, Anne O; Birch-Machin, Mark A

    2015-12-01

    Redox homeostasis is maintained by the antioxidant defense system, which is responsible for eliminating a wide range of oxidants, including reactive oxygen species (ROS), lipid peroxides, and metals. Mitochondria-localized antioxidants are widely studied because the mitochondria, the major producers of intracellular ROS, have been linked to the cause of aging and other chronic diseases. Mitochondria-targeted antioxidants have shown great potential because they cross the mitochondrial phospholipid bilayer and eliminate ROS at the heart of the source. Growing evidence has identified mitochondria-targeted antioxidants, such as MitoQ and tiron, as potentially effective antioxidant therapies against the damage caused by enhanced ROS generation. This literature review summarizes the current knowledge on mitochondria-targeted antioxidants and their contribution to the body's antioxidant defense system. In addition to addressing the concerns surrounding current antioxidant strategies, including difficulties in targeting antioxidant treatment to sites of pathologic oxidative damage, we discuss promising therapeutic agents and new strategic approaches.

  12. Platelets: at the nexus of antimicrobial defence.

    PubMed

    Yeaman, Michael R

    2014-06-01

    Platelets have traditionally been viewed as fragmentary mediators of coagulation. However, recent molecular and cellular evidence suggests that they have multiple roles in host defence against infection. From first-responders that detect pathogens and rapidly deploy host-defence peptides, to beacons that recruit and enhance leukocyte functions in the context of infection, to liaisons that facilitate the T cell-B cell crosstalk that is required in adaptive immunity, platelets represent a nexus at the intersection of haemostasis and antimicrobial host defence. In this Review, I consider recent insights into the antimicrobial roles of platelets, which are mediated both directly and indirectly to integrate innate and adaptive immune responses to pathogens.

  13. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes

    PubMed Central

    2010-01-01

    Background Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was to investigate the presence of melatonin and testosterone in ram seminal plasma and their variations between the breeding and non-breeding seasons. In addition, we analyzed the possible correlations between these hormones and the antioxidant enzyme defence system activity. Methods Seminal plasma from nine Rasa Aragonesa rams were collected for one year, and their levels of melatonin, testosterone, superoxide dismutase (SOD), glutathione reductase (GRD), glutathione peroxidase (GPX) and catalase (CAT) were measured. Results All samples presented measurable quantities of hormones and antioxidant enzymes. Both hormones showed monthly variations, with a decrease after the winter solstice and a rise after the summer solstice that reached the maximum levels in October-November, and a marked seasonal variation (P < 0.01) with higher levels in the breeding season. The yearly pattern of GRD and catalase was close to that of melatonin, and GRD showed a significant seasonal variation (P < 0.01) with a higher activity during the breeding season. Linear regression analysis between the studied hormones and antioxidant enzymes showed a significant correlation between melatonin and testosterone, GRD, SOD and catalase. Conclusions These results show the presence of melatonin and testosterone in ram seminal plasma, and that both hormones have seasonal variations, and support the idea that seasonal variations of fertility in the ram involve interplay between melatonin and the antioxidant defence system. PMID:20540737

  14. Antioxidant efficacy of Nasturtium officinale extracts using various in vitro assay systems.

    PubMed

    Bahramikia, Seifollah; Yazdanparast, Razieh

    2010-12-01

    Nasturtium officinale R. Br. (watercress), of the family Brassicaceae, has been long used as a home remedy or a medicinal plant by the people of southeastern Iran. The aim of this study was to investigate the antioxidant activity of N. officinale extract using various in vitro assay systems, including the ferric reducing antioxidant power and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) assays, 1,1-diphenyl-2-picrylhydrazyl, hydrogen peroxide, nitric oxide radical scavenging, and ferrous ion chelating activity, as well as the inhibitory effect on ferrous ion/ascorbate induced lipid peroxidation, in rat liver homogenate. The results revealed that N. officinale extract possesses potent reducing power in a ferric reducing antioxidant power assay, concentration-dependent scavenging ability on 2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonate, 1,1-diphenyl-2-picrylhydrazyl, nitric oxide radicals, and hydrogen peroxide, as well as chelating ability on ferrous ions. Furthermore, N. officinale extract prevented thiobarbituric acid reactive substances formation in ferrous ion/ascorbate induced lipid peroxidation in rat liver homogenate in a dose-dependent manner. In addition, this N. officinale extract had the phenolic and flavonoid contents of 96.2 mg gallic acid equivalents/g dried extract and 63.2 mg catechin equivalents/g dried extract, respectively. The cumulative results clearly indicate that N. officinale extract possesses potent antioxidant properties probably mediated through direct trapping of free radicals, reducing power, and also through metal chelating. Based on its antioxidative potential, N. officinale extract might find applications in the prevention of free radical-related diseases.

  15. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants

    PubMed Central

    Cort, Aysegul; Ozben, Tomris; Saso, Luciano; De Luca, Chiara

    2016-01-01

    Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed. PMID:26881027

  16. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup.

    PubMed

    Lynch, Z R; Schlenke, T A; de Roode, J C

    2016-05-01

    It may be intuitive to predict that host immune systems will evolve to counter a broad range of potential challenges through simultaneous investment in multiple defences. However, this would require diversion of resources from other traits, such as growth, survival and fecundity. Therefore, ecological immunology theory predicts that hosts will specialize in only a subset of possible defences. We tested this hypothesis through a comparative study of a cellular immune response and a putative behavioural defence used by eight fruit fly species against two parasitoid wasp species (one generalist and one specialist). Fly larvae can survive infection by melanotically encapsulating wasp eggs, and female flies can potentially reduce infection rates in their offspring by laying fewer eggs when wasps are present. The strengths of both defences varied significantly but were not negatively correlated across our chosen host species; thus, we found no evidence for a trade-off between behavioural and cellular immunity. Instead, cellular defences were significantly weaker against the generalist wasp, whereas behavioural defences were similar in strength against both wasps and positively correlated between wasps. We investigated the adaptive significance of wasp-induced oviposition reduction behaviour by testing whether wasp-exposed parents produce offspring with stronger cellular defences, but we found no support for this hypothesis. We further investigated the sensory basis of this behaviour by testing mutants deficient in either vision or olfaction, both of which failed to reduce their oviposition rates in the presence of wasps, suggesting that both senses are necessary for detecting and responding to wasps.

  17. Altruistic defence behaviours in aphids

    PubMed Central

    2010-01-01

    Background Altruistic anti-predatory behaviours pose an evolutionary problem because they are costly to the actor and beneficial to the recipients. Altruistic behaviours can evolve through indirect fitness benefits when directed toward kin. The altruistic nature of anti-predatory behaviours is often difficult to establish because the actor can obtain direct fitness benefits, or the behaviour could result from selfish coercion by others, especially in eusocial animals. Non-eusocial parthenogenetically reproducing aphids form colonies of clone-mates, which are ideal to test the altruistic nature of anti-predatory defence behaviours. Many aphids release cornicle secretions when attacked by natural enemies such as parasitoids. These secretions contain an alarm pheromone that alerts neighbours (clone-mates) of danger, thereby providing indirect fitness benefits to the actor. However, contact with cornicle secretions also hampers an attacker and could provide direct fitness to the actor. Results We tested the hypothesis that cornicle secretions are altruistic by assessing direct and indirect fitness consequences of smearing cornicle secretions onto an attacker, and by manipulating the number of clone-mates that could benefit from the behaviour. We observed parasitoids, Aphidius rhopalosiphi, foraging singly in patches of the cereal aphid Sitobion avenae of varied patch size (2, 6, and 12 aphids). Aphids that smeared parasitoids did not benefit from a reduced probability of parasitism, or increase the parasitoids' handling time. Smeared parasitoids, however, spent proportionately more time grooming and less time foraging, which resulted in a decreased host-encounter and oviposition rate within the host patch. In addition, individual smearing rate increased with the number of clone-mates in the colony. Conclusions Cornicle secretions of aphids were altruistic against parasitoids, as they provided no direct fitness benefits to secretion-releasing individuals, only indirect

  18. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains.

    PubMed

    Abreu, Renata Viana; Silva-Oliveira, Eliane Moretto; Moraes, Márcio Flávio Dutra; Pereira, Grace Schenatto; Moraes-Santos, Tasso

    2011-10-01

    Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive

  19. [Use of adaptogens for antioxidant system correction in complex treatment of mandibular fractures].

    PubMed

    Ushnitsky, I D; Terenteva, Z V; Kerschengolts, B M; Vinocurov, M M; Voronov, I V; Egorova, L I

    2015-01-01

    Antioxidatic protection has been studied in 84 patients with mandibular fractures between the ages of 21 and 40; the patients were divided into two groups. Activation of lipid peroxidation in both groups was revealed. The increase of antioxidant's activity system in 37.18% in the main study group that along with traditional treatment received Epsorin was determined. No complications in the main group during the post-surgery period were recorded. PMID:26271700

  20. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation.

    PubMed

    Weiss, Linda C; Leimann, Julian; Tollrian, Ralph

    2015-09-01

    The freshwater crustacean Daphnia adapts to changing predation risks by forming inducible defences. These are only formed when they are advantageous, saving associated costs when the defence is superfluous. However, in order to be effective, the time lag between the onset of predation and the defence formation has to be short. Daphnia longicephala develop huge protective crests upon exposure to chemical cues (kairomones) from its predator the heteropteran backswimmer Notonecta glauca. To analyse time lags, we determined kairomone-sensitive stages and the developmental time frames of inducible defences. Moreover, we looked at additive effects that could result from the summation of prolonged kairomone exposure. Kairomones are perceived by chemoreceptors and integrated by the nervous system, which alters the developmental program leading to defence formation. The underlying neuronal and developmental pathways are not thoroughly described and surprisingly, the location of the kairomone receptors is undetermined. We show that D. longicephala start to sense predator cues at the onset of the second juvenile instar, defences develop with a time lag of one instar and prolonged kairomone exposure does not impact the magnitude of the defence. By establishing a method to reversibly impair chemosensors, we show the first antennae as the location of kairomone-detecting chemoreceptors. This study provides fundamental information on kairomone perception, kairomone-sensitive stages, developmental time frames and lag times of inducible defences in D. longicephala that will greatly contribute to the further understanding of the neuronal and developmental mechanisms of predator-induced defences in Daphnia.

  1. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation

    PubMed Central

    Weiss, Linda C.; Leimann, Julian; Tollrian, Ralph

    2015-01-01

    ABSTRACT The freshwater crustacean Daphnia adapts to changing predation risks by forming inducible defences. These are only formed when they are advantageous, saving associated costs when the defence is superfluous. However, in order to be effective, the time lag between the onset of predation and the defence formation has to be short. Daphnia longicephala develop huge protective crests upon exposure to chemical cues (kairomones) from its predator the heteropteran backswimmer Notonecta glauca. To analyse time lags, we determined kairomone-sensitive stages and the developmental time frames of inducible defences. Moreover, we looked at additive effects that could result from the summation of prolonged kairomone exposure. Kairomones are perceived by chemoreceptors and integrated by the nervous system, which alters the developmental program leading to defence formation. The underlying neuronal and developmental pathways are not thoroughly described and surprisingly, the location of the kairomone receptors is undetermined. We show that D. longicephala start to sense predator cues at the onset of the second juvenile instar, defences develop with a time lag of one instar and prolonged kairomone exposure does not impact the magnitude of the defence. By establishing a method to reversibly impair chemosensors, we show the first antennae as the location of kairomone-detecting chemoreceptors. This study provides fundamental information on kairomone perception, kairomone-sensitive stages, developmental time frames and lag times of inducible defences in D. longicephala that will greatly contribute to the further understanding of the neuronal and developmental mechanisms of predator-induced defences in Daphnia. PMID:26400980

  2. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    PubMed

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications. PMID:25816598

  3. Oxidative stress and antioxidant systems in Guava (Psidium guajava L.) fruits during ripening.

    PubMed

    Mondal, Koushik; Malhotra, Sarla P; Jain, Veena; Singh, Randhir

    2009-10-01

    Two varieties of guava viz., L-49 and Hisar Safeda differing in their shelf lives were analyzed for various components of oxidative stress and of enzymatic and non-enzymatic antioxidative system at different stages of fruit ripening. Indices of oxidative stress viz., lipoxygenase activity, malondialdehyde value and H2O2 content increased throughout during ripening in both the varieties. The extent of oxidative stress was more pronounced in Hisar Safeda (shelf life 3-4 days) than in L-49 (shelf life 7-8 days). Except for superoxide dismutase, activities of all other antioxidative enzymes viz., catalase, peroxidase, ascorbate peroxidase and glutathione reductase increased up to color turning stage and decreased thereafter. Superoxide dismutase activity, however, increased upto ripe stage followed by a decline. Contents of ascorbic acid and glutathione (total, oxidized and reduced) were found to be the maximum at turning and mature stage, respectively. It is inferred that ripening of guava fruit is accompanied by a progressive increase in oxidative/peroxidative stress which induces antioxidant system but not until later stages of ripening. Over-accumulation of ROS due to dysfunctioning of ROS scavenging system at later stages of fruit ripening appears to be responsible for loss of tissue structure as observed in ripened and over-ripened fruits.

  4. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    PubMed

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications.

  5. COMBINED EFFECTS OF CO2 AND O3 ON ANTIOXIDATIVE AND PHOTOPROTECTIVE DEFENSE SYSTEMS IN NEEDLES OF PONDEROSA PINE

    EPA Science Inventory

    To determine interactive effects of important environmental stresses on biochemical defense mechanisms of tree seedlings, we studied responses to elevated O3 and elevated atmospheric CO2 on antioxidative and photoprotective systems in needles of ponderosa pine (Pinus ponderosa Do...

  6. Glutathione and γ-glutamylcysteine in the antioxidant and survival functions of mitochondria.

    PubMed

    Quintana-Cabrera, Ruben; Bolaños, Juan P

    2013-02-01

    Mitochondria are both the main producers and targets of ROS (reactive oxygen species). Among the battery of antioxidants that protect mitochondria from ROS, GSH is thought to be essential for the organelle antioxidant function. However, mitochondria cannot synthesize GSH de novo, thus depending on an efficient transport from the cytosol to maintain their redox status. In the present article, we review recent data suggesting that the cellular redox control might not be the main function of GSH, and that its immediate precursor, γGC (γ-glutamylcysteine), can take over the antioxidant role of GSH and protect the mitochondria from excess ROS. Together, GSH and γGC may thus represent an as yet unrecognized defence system relevant for degenerative processes associated with the imbalance in the cellular redox control. PMID:23356267

  7. UK photonics in defence and security

    NASA Astrophysics Data System (ADS)

    Gracie, C.; Tooley, I.; Wilson, A.

    2008-10-01

    The UK is globally recognised as strong in Photonics. However its Photonics sector is fragmented and the size and sectors of interest have not previously been established. The UK government has instigated the formation of the Photonics Knowledge Transfer Network (PKTN) to bring the Photonics community together. The UK features in Defence & Security; Communications; Measurement; Medical Technology; Lighting; Solar Energy; Information Technology and Flat Panels. This expertise is scattered through out the UK in geographic areas each with a breadth of Photonic interests. The PKTN has mapped the UK capability in all Photonics sectors. This paper will present the capability of the Companies, Research Institutions and Infrastructure making up the Defence & Security Photonics scene in the UK. Large Defence companies in the UK are well known throughout the world. However, there are a large number of SMEs, which may not be as well known in the supply chain. These are being actively encouraged by the UK MoD to engage with the Defence & Security Market and shall be discussed here. The presentation will reference a number of organisations which help to fund and network the community, such as the Defence Technology Centres. In addition the Roadmap for Defence & Security in the UK, produced for the UK Photonics Strategy (July 2006) by the Scottish Optoelectronics Association will be described and the plans in taking it forward under the PKTN will be revealed.

  8. Cholinesterases inhibitory and antioxidant activities of Harpagophytum procumbens from in vitro systems.

    PubMed

    Georgiev, Milen I; Alipieva, Kalina; Orhan, Ilkay Erdogan

    2012-02-01

    A previous report showed that extracts of cell suspension and transformed root cultures of Harpagophytum procumbens (commonly known as Devil's claw), an African plant with high medicinal value, exhibit strong antiinflammatory characteristics. The present work tests the ability of extracts, phenylethanoid-containing fractions and the major phenylethanoid glycoside isolated from the Devil's claw cultures, to inhibit acetylcholinesterase and butyrylcholinesterase, and the antioxidant activity in iron-related systems (e.g. ferric-reducing antioxidant power and ferrous ion-chelating capacity). The results indicated that the phenylethanoid fractions may be attractive for various commercial purposes since they displayed significant cholinesterase inhibitory activity (even higher than that of pure galanthamine in the case of butyrylcholinesterase inhibition assay). Crude methanolic extracts from cell and hairy root cultures of Devil's claw exhibited strong ferrous ion-chelating capacity (1.5-2 times higher than pure butylated hydroxyanisole, used as positive standard). PMID:21721061

  9. Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants.

    PubMed

    Martí, M Carmen; Camejo, Daymi; Fernández-García, Nieves; Rellán-Alvarez, Rubén; Marques, Silvia; Sevilla, Francisca; Jiménez, Ana

    2009-11-15

    The refining process in the petrochemical industry generates oil refinery sludges, a potentially contaminating waste product, with a high content of hydrocarbons and heavy metals. Faster degradation of hydrocarbons has been reported in vegetated soils than in non-vegetated soils, but the impact of these contaminants on the plants physiology and on their antioxidant system is not well known. In this study, the effect of the addition of petroleum sludge to soil on the physiological parameters, nutrient contents, and oxidative and antioxidant status in alfalfa was investigated. An inhibition of alfalfa growth and an induction of oxidative stress, as indicated by an increase in protein oxidation, were found. Also, the superoxide dismutase isoenzymes, peroxidase, and those enzymes involved in the ascorbate-glutathione cycle showed significant activity increases, parallel to an enhancement of total homoglutathione, allowing plants being tolerant to this situation. This information is necessary to establish successful and sustainable plant-based remediation strategies.

  10. Crystalline fibrillar gel formation in aqueous surfactant-antioxidant system.

    PubMed

    Joseph, Linet Rose; Tata, B V R; Sreejith, Lisa

    2015-08-01

    Cetyltrimethylammonium bromide (CTAB) is a well-known cationic surfactant capable to micellize into diverse morphologies in aqueous medium. We observed the formation of an opaque gel state from aqueous CTAB solution in the presence of the aromatic additive, para-coumaric acid (PCA). Optical microscopic images revealed the presence of large fibrils in the system at room temperature. Gel nature of the fibrils was confirmed by rheological measurements. Presence of interstitial water in the fibrils was recognized with Raman spectroscopy. On heating the sample above 30 (°) C, the fibrillar gel state changes to a transparent liquid state with Newtonian flow properties. Dynamic light scattering study hinted the presence of small micelles in the solution above 30 (°) C. Thus the system showed a temperature-dependent structural transition from opaque water-swollen gel to transparent micellar liquid. The formation of water-swollen fibrillar network is attributed to surfactant-additive intermolecular interactions in aqueous medium. Transition to micelle phase above 30 (°) C is related to Kraft transition which is observed at significantly lower temperature for CTAB in the absence of PCA. The structural features of PCA play a key role in promoting fibrillar network formation and elevating the Kraft transition in aqueous solution of CTAB.

  11. Martial art training enhances the glutathione antioxidant system in middle-aged adults.

    PubMed

    Douris, Peter C; Elokda, Ahmed S; Handrakis, John P; Principal, Suze; Rondo, Eleni; Bovell, Juan; Coughlin, William P; Mastroianni, Charles N; Wong, Michael J; Zimmerman, Thomas

    2009-08-01

    The purpose of this study was to compare the antioxidant capacity of physically active middle-aged martial artists to age-matched sedentary controls. Nine sedentary subjects (mean age 52.9 yr) and 9 martial artists (mean age 51.8 yr) who practice Soo Bahk Do, a Korean martial art and were age- and sex-matched performed a graded exercise test (GXT) using a modified Bruce protocol. Ages ranged from 41 to 58 years. A GXT has been shown to be an effective technique for inducing oxidative stress. Glutathione (GSH) is the body's most highly concentrated antioxidant, is the central component of the antioxidant system, and plays an essential role in protecting tissues against oxidative stress. Free radical oxidation leads to the transformation of GSH to glutathione disulfide (GSSG). Venous blood samples for GSH and GSSG were collected before and immediately after the GXT. Repeated measures analysis of variance were performed on the resting baseline values and immediate post-GXT values of GSH, GSSG, and GSH:GSSG to compare groups. The blood GSH, GSSG, and GSH:GSSG levels were significantly different (p < 0.001) between the 2 groups at rest and after the GXT. The Soo Bahk Do practitioners had higher resting levels of GSH and lower levels of GSSG and responded more effectively to acute oxidative stress than the age-matched sedentary controls. Soo Bahk Do appears to enhance the antioxidant defense system and may be an effective intervention for improving overall health by protecting against the adverse effects of oxidative stress that is associated with the free radical theory of aging. Health professionals should be aware of alternative methods of training, conditioning, and exercise that can improve the general adaptation response to oxidative stress.

  12. PM2.5, oxidant defence and cardiorespiratory health: a review

    PubMed Central

    2013-01-01

    Airborne fine particle mass concentrations (PM2.5) are used for ambient air quality management worldwide based in part on known cardiorespiratory health effects. While oxidative stress is generally thought to be an important mechanism in determining these effects, relatively few studies have specifically examined how oxidant defence may impact susceptibility to particulate air pollution. Here we review studies that explore the impact of polymorphisms in anti-oxidant related genes or anti-oxidant supplementation on PM2.5-induced cardiorespiratory outcomes in an effort to summarize existing evidence related to oxidative stress defence and the health effects of PM2.5. Recent studies of PM-oxidative burden were also examined. In total, nine studies were identified and reviewed and existing evidence generally suggests that oxidant defence may modify the impact of PM2.5 exposure on various health outcomes, particularly heart rate variability (a measure of autonomic function) which was the most common outcome examined in the studies reviewed. Few studies examined interactions between PM2.5 and oxidant defence for respiratory outcomes, and in general studies focused primarily on acute health effects. Therefore, further evaluation of the potential modifying role of oxidant defence in PM2.5-induced health effects is required, particularly for chronic outcomes. Similarly, while an exposure metric that captures the ability of PM2.5 to cause oxidative stress may offer advantages over traditional mass concentration measurements, little epidemiological evidence is currently available to evaluate the potential benefits of such an approach. Therefore, further evaluation is required to determine how this metric may be incorporated in ambient air quality management. PMID:23641908

  13. PM2.5, oxidant defence and cardiorespiratory health: a review.

    PubMed

    Weichenthal, Scott A; Godri-Pollitt, Krystal; Villeneuve, Paul J

    2013-05-04

    Airborne fine particle mass concentrations (PM2.5) are used for ambient air quality management worldwide based in part on known cardiorespiratory health effects. While oxidative stress is generally thought to be an important mechanism in determining these effects, relatively few studies have specifically examined how oxidant defence may impact susceptibility to particulate air pollution. Here we review studies that explore the impact of polymorphisms in anti-oxidant related genes or anti-oxidant supplementation on PM2.5-induced cardiorespiratory outcomes in an effort to summarize existing evidence related to oxidative stress defence and the health effects of PM2.5. Recent studies of PM-oxidative burden were also examined. In total, nine studies were identified and reviewed and existing evidence generally suggests that oxidant defence may modify the impact of PM2.5 exposure on various health outcomes, particularly heart rate variability (a measure of autonomic function) which was the most common outcome examined in the studies reviewed. Few studies examined interactions between PM2.5 and oxidant defence for respiratory outcomes, and in general studies focused primarily on acute health effects. Therefore, further evaluation of the potential modifying role of oxidant defence in PM2.5-induced health effects is required, particularly for chronic outcomes. Similarly, while an exposure metric that captures the ability of PM2.5 to cause oxidative stress may offer advantages over traditional mass concentration measurements, little epidemiological evidence is currently available to evaluate the potential benefits of such an approach. Therefore, further evaluation is required to determine how this metric may be incorporated in ambient air quality management.

  14. A Comparative Analysis of Sonic Defences in Bombycoidea Caterpillars

    PubMed Central

    Bura, Veronica L.; Kawahara, Akito Y.; Yack, Jayne E.

    2016-01-01

    Caterpillars have long been used as models for studying animal defence. Their impressive armour, including flamboyant warning colours, poisonous spines, irritating sprays, and mimicry of plant parts, snakes and bird droppings, has been extensively documented. But research has mainly focused on visual and chemical displays. Here we show that some caterpillars also exhibit sonic displays. During simulated attacks, 45% of 38 genera and 33% of 61 species of silk and hawkmoth caterpillars (Bombycoidea) produced sounds. Sonic caterpillars are found in many distantly-related groups of Bombycoidea, and have evolved four distinct sound types- clicks, chirps, whistles and vocalizations. We propose that different sounds convey different messages, with some designed to warn of a chemical defence and others, to startle predators. This research underscores the importance of exploring acoustic communication in juvenile insects, and provides a model system to explore how different signals have evolved to frighten, warn or even trick predators. PMID:27510510

  15. A Comparative Analysis of Sonic Defences in Bombycoidea Caterpillars.

    PubMed

    Bura, Veronica L; Kawahara, Akito Y; Yack, Jayne E

    2016-08-11

    Caterpillars have long been used as models for studying animal defence. Their impressive armour, including flamboyant warning colours, poisonous spines, irritating sprays, and mimicry of plant parts, snakes and bird droppings, has been extensively documented. But research has mainly focused on visual and chemical displays. Here we show that some caterpillars also exhibit sonic displays. During simulated attacks, 45% of 38 genera and 33% of 61 species of silk and hawkmoth caterpillars (Bombycoidea) produced sounds. Sonic caterpillars are found in many distantly-related groups of Bombycoidea, and have evolved four distinct sound types- clicks, chirps, whistles and vocalizations. We propose that different sounds convey different messages, with some designed to warn of a chemical defence and others, to startle predators. This research underscores the importance of exploring acoustic communication in juvenile insects, and provides a model system to explore how different signals have evolved to frighten, warn or even trick predators.

  16. A Comparative Analysis of Sonic Defences in Bombycoidea Caterpillars.

    PubMed

    Bura, Veronica L; Kawahara, Akito Y; Yack, Jayne E

    2016-01-01

    Caterpillars have long been used as models for studying animal defence. Their impressive armour, including flamboyant warning colours, poisonous spines, irritating sprays, and mimicry of plant parts, snakes and bird droppings, has been extensively documented. But research has mainly focused on visual and chemical displays. Here we show that some caterpillars also exhibit sonic displays. During simulated attacks, 45% of 38 genera and 33% of 61 species of silk and hawkmoth caterpillars (Bombycoidea) produced sounds. Sonic caterpillars are found in many distantly-related groups of Bombycoidea, and have evolved four distinct sound types- clicks, chirps, whistles and vocalizations. We propose that different sounds convey different messages, with some designed to warn of a chemical defence and others, to startle predators. This research underscores the importance of exploring acoustic communication in juvenile insects, and provides a model system to explore how different signals have evolved to frighten, warn or even trick predators. PMID:27510510

  17. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea.

    PubMed

    Wani, Arif Shafi; Ahmad, Aqil; Hayat, Shamsul; Fariduddin, Qazi

    2013-04-01

    The present study was carried out to examine salt-induced modulation in growth, photosynthetic characteristics and antioxidant system in two cultivars of Brassica juncea Czern and Coss varieties (Varuna and RH-30). The surface sterilized seeds of these varieties were sown in the soil amended with different levels (2.8, 4.2 or 5.6 dsm(-1)) of sodium chloride under a simple randomized block design. The salt treatment significantly decreased growth, net photosynthetic rate and its related attributes, chlorophyll fluorescence, SPAD value of chlorophyll, leaf carbonic anhydrase activity and leaf water potential, whereas electrolyte leakage, proline content, and activity of catalase, peroxidase and superoxide dismutase enzymes increased in both the varieties at 30 d stage of growth. The variety Varuna was found more resistant than RH-30 to the salt stress and possessed higher values for growth, photosynthetic attributes and antioxidant enzymes. Out of the graded concentrations (2.8, 4.2 or 5.6 dsm(-1)) of sodium chloride, 2.8 sm(-1) was least toxic and 5.6 dsm(-1) was most harmful. The variation in the responses of these two varieties to salt stress is attributed to their differential photosynthetic traits, SPAD chlorophyll value and antioxidant capacity, which can be used as potential markers for screening mustard plants for salt tolerance. PMID:23961235

  18. Antioxidant defense system parameters in isolated fish hepatocytes exposed to bisphenol A - Effect of vitamin C.

    PubMed

    Kaya, Özlem; Kaptaner, Burak

    2016-09-01

    In this study, isolated hepatocytes of pearl mullet (Alburnus tarichi) were exposed to bisphenol A (BPA) at concentrations of 25, 50, 100, and 200 μM for 24 h. Moreover, an in vitro antioxidant concentration of vitamin C (50 μM) was administrated to the culture medium along with the BPA exposures. Next, the antioxidant defense system parameters were analyzed. According to the results, the highest concentration of BPA (200 μM) proved to be severely toxic for the cells. The increased activities of superoxide dismutase (SOD) and glutathione-S-transferase (GST), the fluctuated activities of glutathione peroxidase (GPx), and the decreased content of reduced glutathione (GSH) were compared to the control group after the BPA exposures. Vitamin C co-administration was found to cause further increases in the SOD, GPx, and GST activities in some of the experimental groups and vitamin C could not restore the GSH content. Malondialdehyde (MDA) levels were observed to be unaffected in all exposure groups. These results show that BPA causes alterations in the antioxidant defenses of the isolated fish hepatocytes. In addition, vitamin C co-administration along with BPA was found to be non-protective against BPA-induced oxidative stress, consequently, aggravated a negative BPA impact. PMID:27630046

  19. Effect of Putrescine Treatment on Chilling Injury, Fatty Acid Composition and Antioxidant System in Kiwifruit

    PubMed Central

    Yang, Qingzhen; Wang, Feng; Rao, Jingping

    2016-01-01

    We investigated the effects of different concentrations (0, 1, 2 and 4 mM) of putrescine on chilling injury, fruit quality, ethylene production rate, fatty acid composition and the antioxidant system of cold-stored kiwifruit (Actinidia chinensis Planch. var. chinensis ‘Hongyang’). We achieved a significant decrease in ethylene production, maintained fruit quality and alleviated chilling injury during storage via treatment with 2 mM putrescine. Furthermore, putrescine treatment inhibited increases in superoxide anion production rate and H2O2 concentration, while maintaining higher membrane lipid unsaturation as well as increased activities of superoxide dismutase and catalase. In addition, putrescine treatment enhanced the activities of antioxidant enzymes related to the ascorbate–glutathione cycle while causing higher levels of ascorbic acid and reduced glutathione. Our results suggest that induced tolerance against chilling injury via putrescine treatment in cold-stored kiwifruit may be due to enhanced antioxidant activity, increased unsaturation of membrane lipids, and inhibited ethylene production. PMID:27607076

  20. Effects of Hg(II) exposure on MAPK phosphorylation and antioxidant system in D. melanogaster.

    PubMed

    Paula, M T; Zemolin, A P; Vargas, A P; Golombieski, R M; Loreto, E L S; Saidelles, A P; Picoloto, R S; Flores, E M M; Pereira, A B; Rocha, J B T; Merritt, T J S; Franco, J L; Posser, T

    2014-06-01

    The heavy metal mercury is a known toxin, but while the mechanisms involved in mercury toxicity have been well demonstrated in vertebrates, little is known about toxicological effects of this metal in invertebrates. Here, we present the results of our study investigating the effects associated with exposure of fruit fly Drosophila melanogaster to inorganic mercury (HgCl2 ). We quantify survival and locomotor performance as well as a variety of biochemical parameters including antioxidant status, MAPK phosphorylation and gene expression following mercury treatment. Our results demonstrate that exposure to Hg(II) through diet induced mortality and affected locomotor performance as evaluated by negative geotaxis, in D. melanogaster. We also saw a significant impact on the antioxidant system including an inhibition of acetylcholinesterase (Ache), glutathione S-transferase (GST) and superoxide dismutase (SOD) activities. We found no significant alteration in the levels of mRNA of antioxidant enzymes or NRF-2 transcriptional factor, but did detect a significant up regulation of the HSP83 gene. Mercury exposure also induced the phosphorylation of JNK and ERK, without altering p38(MAPK) and the concentration of these kinases. In parallel, Hg(II) induced PARP cleavage in a 89 kDa fragment, suggesting the triggering of apoptotic cell death in response to the treatment. Taken together, this data clarifies and extends our understanding of the molecular mechanisms mediating Hg(II) toxicity in an invertebrate model.

  1. Environmental contamination of chrysotile asbestos and its toxic effects on antioxidative system of Lemna gibba.

    PubMed

    Trivedi, A K; Ahmad, I; Musthapa, M S; Ansari, F A

    2007-04-01

    Asbestos was monitored in various plant samples around an asbestos cement factory. Asbestos residue was found on the surface of all plant samples monitored. Based on asbestos concentration found in different plant samples during monitoring and on the property of asbestos to cause reactive oxygen species-mediated oxidative stress in animal models, laboratory experiments were conducted to assess the toxicity of chrysotile asbestos on an aquatic macrophyte, duckweed (Lemna gibba.). L. gibba plants were exposed to four concentrations (0.5, 1.0, 2.0, and 5.0 microg/mL) of chrysotile asbestos under laboratory conditions, and alterations in the glutathione and ascorbate antioxidative system were estimated at postexposure days 7, 14, 21, and 28 in order to assess changes in their level as suitable biomarkers of chrysotile contamination. Chrysotile exposure caused a decrease in total and reduced glutathione and an enhancement in the oxidized glutathione as well as the reduced/oxidized glutathione ratio. An increase in ascorbate pool size, and reduced as well as oxidized ascorbate was found to be accompanied by a decrease in the ratio of reduced/oxidized ascorbate. Alteration in the glutathione and ascorbate level might be considered as a biomarker of exposure to an unsafe environment because these are essential compounds of the general antioxidative strategy to overcome oxidative stress due to environmental constraints. Because an increase in the oxidation rate of antioxidants weakens cellular defenses and indicates a precarious state, they could constitute indicators of toxicity. PMID:17354032

  2. Nanostructured Systems Containing Rutin: In Vitro Antioxidant Activity and Photostability Studies

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana S.; Lima, Fernanda; Ros, Simoní Da; Bulhões, Luis O. S.; de Carvalho, Leandro M.; Beck, Ruy C. R.

    2010-10-01

    The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency close to 100%. The in vitro antioxidant activity was evaluated by the formation of free radical ·OH after the exposure of hydrogen peroxide to a UV irradiation system. Rutin-loaded nanostructures showed lower rutin decay rates [(6.1 ± 0.6) 10-3 and (5.1 ± 0.4) 10-3 for nanocapsules and nanoemulsion, respectively] compared to the ethanolic solution [(35.0 ± 3.7) 10-3 min-1] and exposed solution [(40.1 ± 1.7) 10-3 min-1] as well as compared to exposed nanostructured dispersions [(19.5 ± 0.5) 10-3 and (26.6 ± 2.6) 10-3, for nanocapsules and nanoemulsion, respectively]. The presence of the polymeric layer in nanocapsules was fundamental to obtain a prolonged antioxidant activity, even if the mathematical modeling of the in vitro release profiles showed high adsorption of rutin to the particle/droplet surface for both formulations. Rutin-loaded nanostructures represent alternatives to the development of innovative nanomedicines.

  3. Modulation of Radiation-Induced Disturbances of Antioxidant Defense Systems by Ginsan

    PubMed Central

    2005-01-01

    There are numerous studies to indicate that irradiation induces reactive oxygen species (ROS), which play an important causative role in radiation damage of the cell. We evaluated the effects of ginsan, a polysaccharide fraction extracted from Panax ginseng, on the γ-radiation induced alterations of some antioxidant systems in the spleen of Balb/c mice. On the 5th day after sublethal whole-body irradiation, homogenized spleen tissues of the irradiated mice expressed only marginally increased mRNA levels of Mn-SOD (superoxide dimutase) in contrast to Cu/Zn-SOD, however, catalase mRNA was decreased by ∼50% of the control. In vivo treatment of non-irradiated mice with ginsan (100 mg kg−1, intraperitoneal administration) had no significant effect, except for glutathione peroxidase (GPx) mRNA, which increased to 144% from the control. However, the combination of irradiation with ginsan effectively increased the SODs and GPx transcription as well as their protein expressions and enzyme activities. In addition, the expression of heme oxygenase-1 and non-protein thiol induced by irradiation was normalized by the treatment of ginsan. Evidence indicated that transforming growth factor-β and other important cytokines such as IL-1, TNF and IFN-γ might be involved in evoking the antioxidant enzymes. Therefore, we propose that the modulation of antioxidant enzymes by ginsan was partly responsible for protecting the animal from radiation, and could be applied as a therapeutic remedy for various ROS-related diseases. PMID:16322811

  4. [Effects of manganese on antioxidant system of manganese-hyperaccumulator Phytolacca americana L.].

    PubMed

    Wang, Hai-Hua; Feng, Tao; Peng, Xi-Xu; Yan, Ming-Li; Tang, Xin-Ke

    2009-10-01

    A hydroponic experiment was conducted to study the growth, manganese (Mn) accumulation, lipid peroxidation, H2O2 concentration, and antioxidant system of Phytolacca americana L. exposed to different concentration Mn. With increasing Mn concentration in the medium, the plant Mn content increased significantly, and the Mn accumulation was in the sequence of leaf > stem > root. Comparing with the control, low concentration (5 mmol x L(-1)) Mn promoted the plant growth, decreased the leaf H2O2 concentration, and had less effects on the leaf malondialdehyde (MDA) content, while high concentration (> or = 10 mmol x L(-1)) Mn led to a remarkable increase of leaf H2O2 and MDA contents, indicating an evident oxidative damage occurred in leaves. The activities of ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase and the content of reduced ascorbate increased with increasing Mn concentration, while the SOD activity was inhibited significantly at 5 mmol x L(-1) of Mn but enhanced at > or = 10 mmol x L(-1) of Mn. The activities of catalase and peroxidase and the content of reduced glutathione increased at 5-10 mmol x L(-1) of Mn but dropped markedly at 20 mmol x L(-1) of Mn. All the results suggested that the Mn-induced oxidative damage and Mn accumulation might be responsible for the growth inhibition of P. americana plants at high Mn exposure, and the increase of antioxidative enzyme activities and low molecular antioxidant contents was, at least partly, contributed to the Mn tolerance and hyperaccumulation of P. americana. However, due to their different Mn concentration-dependent change modes, these antioxidants played different roles in the Mn tolerance of P. americana.

  5. Design of two electrode system for detection of antioxidant capacity with photoelectrochemical platform.

    PubMed

    Han, Dongxue; Ma, Weiguang; Wang, Lingnan; Ni, Shuang; Zhang, Nan; Wang, Wei; Dong, Xiandui; Niu, Li

    2016-01-15

    Recently, a flow photoelectrochemical cell has been first developed and applied to assay global antioxidant capacity in our group. Yet, shortcomings of liquid reference electrode such as sample contaminations from the leaking of the reference solution, mechanically fragile, temperature and light sensitivity, etc. are significant restrictions for integration and miniaturization of photoelectrochemical sensing instruments, which have greatly limited their practical applications. Bearing these problems, in this work a novel two electrode flow photoelectron-chemical system (two-EPCS) has been developed for detection of antioxidant capacity. It is noteworthy that the electrochemical modulation-free mode (detection at the potential of 0.0V) is performed, which has greatly simplified the analysis process and will result in significant simplifications of the instrument integrations. During the sample analysis, both standard antioxidants and commercial beverages were detected. Results evaluated from the two-EPCS are well agreed with those of the traditional three-EPCS at low potentials. By unloading of the reference electrode, it is of great convenience to design a novel photoelectrochemical microfluidic chip based on the two-EPCS, which has also been successfully applied for antioxidant capacity assay. It is satisfactory that comparable detection concentration range and sensitivity were accomplished by applying the microfluidic chip technique. Moreover, the two-EPCS is verified to be a universal platform which does not depend on selected optoelectronic materials but pervasive for general photocatalysts. Such a two-EPCS should be considered as a feasible alternative to the three-EPCS, which will become a promising candidate for industrial and commercial photoelectrochemical sensing instrument integrations in the future. PMID:26363494

  6. Antioxidant Defense System of Tadpoles (Eupemphix nattereri) Exposed to Changes in Temperature and pH.

    PubMed

    Freitas, Juliane S; Almeida, Eduardo A

    2016-04-01

    Amphibians are highly susceptible to environmental changes, mainly at the larval stage during which they are restricted to small and ephemeral aquatic habitats, which are subject to large fluctuations of abiotic parameters, such as temperature and pH. Consequently, tadpoles experience changes in biochemical, physiological, and molecular processes related to the maintenance of homeostasis, which may lead them to an oxidative stress state. In the present study, we investigated the effects of stress caused by changes in temperature and pH on the antioxidant enzymes catalase (CAT), glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR) and glutathione-S-transferase (GST) in tadpoles of Eupemphix nattereri. The results show that changes in temperature and pH conditions induce an antioxidant response in tadpoles. GST and GR showed temperature-dependent activities; GST activity was higher in tadpoles exposed to 28°C, whereas GR exhibited increased activity in response to 28°C and 36°C. At 32°C, both GST and GR had the lowest activity. CAT was induced by treatments with acidic (pH 5.0) and alkaline (pH 8.5) pH. Tadpoles exposed to acidic pH also had increased GR activity. The G6PDH was not changed in either experiment. Our data demonstrate that E. nattereri possesses an efficient antioxidant defense system for coping with the damaging effects of heat and acidity/alkalinity conditions in water. The alterations in antioxidant enzymes are probably a result of immediate physiological adaptation of individuals in response to increased production of ROS under environmental stress conditions. PMID:27032684

  7. Design of two electrode system for detection of antioxidant capacity with photoelectrochemical platform.

    PubMed

    Han, Dongxue; Ma, Weiguang; Wang, Lingnan; Ni, Shuang; Zhang, Nan; Wang, Wei; Dong, Xiandui; Niu, Li

    2016-01-15

    Recently, a flow photoelectrochemical cell has been first developed and applied to assay global antioxidant capacity in our group. Yet, shortcomings of liquid reference electrode such as sample contaminations from the leaking of the reference solution, mechanically fragile, temperature and light sensitivity, etc. are significant restrictions for integration and miniaturization of photoelectrochemical sensing instruments, which have greatly limited their practical applications. Bearing these problems, in this work a novel two electrode flow photoelectron-chemical system (two-EPCS) has been developed for detection of antioxidant capacity. It is noteworthy that the electrochemical modulation-free mode (detection at the potential of 0.0V) is performed, which has greatly simplified the analysis process and will result in significant simplifications of the instrument integrations. During the sample analysis, both standard antioxidants and commercial beverages were detected. Results evaluated from the two-EPCS are well agreed with those of the traditional three-EPCS at low potentials. By unloading of the reference electrode, it is of great convenience to design a novel photoelectrochemical microfluidic chip based on the two-EPCS, which has also been successfully applied for antioxidant capacity assay. It is satisfactory that comparable detection concentration range and sensitivity were accomplished by applying the microfluidic chip technique. Moreover, the two-EPCS is verified to be a universal platform which does not depend on selected optoelectronic materials but pervasive for general photocatalysts. Such a two-EPCS should be considered as a feasible alternative to the three-EPCS, which will become a promising candidate for industrial and commercial photoelectrochemical sensing instrument integrations in the future.

  8. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.).

    PubMed

    Cardeñosa, Vanessa; Girones-Vilaplana, Amadeo; Muriel, José Luis; Moreno, Diego A; Moreno-Rojas, José M

    2016-07-01

    Demand for and availability of blueberries has increased substantially over recent years, driven in part by their health-promoting properties. Three blueberry varieties ('Rocío', V2, and V3) were grown under two cultivation systems (open-field and plastic tunnels) and subjected to two irrigations regimes (100% and 80% of crop evapotranspiration) in two consecutive years (2011-2012). They were evaluated for their phytochemical composition and antioxidant capacity. Genotype influenced the antioxidant capacity and the content of the three groups of phenolics in the blueberries. The antioxidant activity and total flavonols content increased when the blueberries were grown under open-field conditions. Deficit irrigation conditions led to additional positive effects on their phenolics (delphinidn-3-acetilhexoside content was increased under plastic tunnel with deficit irrigation). In conclusion, the amount of phenolic compounds and the antioxidant capacity of blueberries were not negatively affected by water restriction; Moreover, several changes were recorded due to growing system and genotype.

  9. [Antioxidant properties of dihydroquercetin].

    PubMed

    Teselkin, Iu O; Zhambalova, B A; Babenkova, I V; Tiukavkina, N A

    1996-01-01

    The effect of dihydroquercetin on peroxidation process of liposome membranes from egg phospholipids induced by ferrous sulfate or Fe(2+)-ascorbate system was studied. It was shown that dihydroquercetin antioxidant activity matches antioxidant activity of alpha-tocopherol. It was suggested that the mechanism dihydroquercetin antioxidant action consists in scavenging of lipids radicals. PMID:8924461

  10. Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field.

    PubMed

    Cakmak, Turgay; Cakmak, Zeynep E; Dumlupinar, Rahmi; Tekinay, Turgay

    2012-07-15

    Impacts of electric and magnetic fields (EFs and MFs) on a biological organism vary depending on their application style, time, and intensities. High intensity MF and EF have destructive effects on plants. However, at low intensities, these phenomena are of special interest because of the complexity of plant responses. This study reports the effects of continuous, low-intensity static MF (7 mT) and EF (20 kV/m) on growth and antioxidant status of shallot (Allium ascalonicum L.) leaves, and evaluates whether shifts in antioxidant status of apoplastic and symplastic area help plants to adapt a new environment. Growth was induced by MF but EF applied emerged as a stress factor. Despite a lack of visible symptoms of injury, lipid peroxidation and H₂O₂ levels increased in EF applied leaves. Certain symplastic antioxidant enzyme activities and non-enzymatic antioxidant levels increased in response to MF and EF applications. Antioxidant enzymes in the leaf apoplast, by contrast, were found to show different regulation responses to EF and MF. Our results suggest that apoplastic constituents may work as potentially important redox regulators sensing and signaling environmental changes. Static continuous MF and EF at low intensities have distinct impacts on growth and the antioxidant system in plant leaves, and weak MF is involved in antioxidant-mediated reactions in the apoplast, resulting in overcoming a possible redox imbalance.

  11. Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field.

    PubMed

    Cakmak, Turgay; Cakmak, Zeynep E; Dumlupinar, Rahmi; Tekinay, Turgay

    2012-07-15

    Impacts of electric and magnetic fields (EFs and MFs) on a biological organism vary depending on their application style, time, and intensities. High intensity MF and EF have destructive effects on plants. However, at low intensities, these phenomena are of special interest because of the complexity of plant responses. This study reports the effects of continuous, low-intensity static MF (7 mT) and EF (20 kV/m) on growth and antioxidant status of shallot (Allium ascalonicum L.) leaves, and evaluates whether shifts in antioxidant status of apoplastic and symplastic area help plants to adapt a new environment. Growth was induced by MF but EF applied emerged as a stress factor. Despite a lack of visible symptoms of injury, lipid peroxidation and H₂O₂ levels increased in EF applied leaves. Certain symplastic antioxidant enzyme activities and non-enzymatic antioxidant levels increased in response to MF and EF applications. Antioxidant enzymes in the leaf apoplast, by contrast, were found to show different regulation responses to EF and MF. Our results suggest that apoplastic constituents may work as potentially important redox regulators sensing and signaling environmental changes. Static continuous MF and EF at low intensities have distinct impacts on growth and the antioxidant system in plant leaves, and weak MF is involved in antioxidant-mediated reactions in the apoplast, resulting in overcoming a possible redox imbalance. PMID:22647960

  12. The defence of therapeutic privilege in Australia.

    PubMed

    Mulheron, Rachael

    2003-11-01

    Therapeutic privilege is a defence that excuses a medical practitioner or other health professional from complying with the requirements of full disclosure to a patient in circumstances where it is reasonably considered that such disclosure would be harmful to that patient's health or welfare. Although the concept originated in the United States, the defence has been applied in Australia, and was specifically endorsed as part of Australian law by the High Court in Rogers v Whitaker (1992) 175 CLR 479. However, there has been negligible application of the defence since that endorsement. This article examines the doctrine of therapeutic privilege in the present Australian medico-legal environment. After an examination of the concept and its three constituetent elements, the article canvasses the limited instances of judicial approval of the defence prior to Rogers v Whitaker. The author then analyses, by reference to reported and unreported case law, why the defence has been so narrowly interpreted since, such that it has come to occupy an almost untenable position in Australia's medical jurisprudence.

  13. Anosognosia as motivated unawareness: the 'defence' hypothesis revisited.

    PubMed

    Turnbull, Oliver H; Fotopoulou, Aikaterini; Solms, Mark

    2014-12-01

    Anosognosia for hemiplegia has seen a century of almost continuous research, yet a definitive understanding of its mechanism remains elusive. Essentially, anosognosic patients hold quasi-delusional beliefs about their paralysed limbs, in spite of all the contrary evidence, repeated questioning, and logical argument. We review a range of findings suggesting that emotion and motivation play an important role in anosognosia. We conclude that anosognosia involves (amongst other things) a process of psychological defence. This conclusion stems from a wide variety of clinical and experimental investigations, including data on implicit awareness of deficit, fluctuations in awareness over time, and dramatic effects upon awareness of psychological interventions such as psychotherapy, reframing of the emotional consequences of the paralysis, and first versus third person perspectival manipulations. In addition, we review and refute the (eight) arguments historically raised against the 'defence' hypothesis, including the claim that a defence-based account cannot explain the lateralised nature of the disorder. We argue that damage to a well-established right-lateralised emotion regulation system, with links to psychological processes that appear to underpin allocentric spatial cognition, plays a key role in anosognosia (at least in some patients). We conclude with a discussion of implications for clinical practice. PMID:25481464

  14. Anosognosia as motivated unawareness: the 'defence' hypothesis revisited.

    PubMed

    Turnbull, Oliver H; Fotopoulou, Aikaterini; Solms, Mark

    2014-12-01

    Anosognosia for hemiplegia has seen a century of almost continuous research, yet a definitive understanding of its mechanism remains elusive. Essentially, anosognosic patients hold quasi-delusional beliefs about their paralysed limbs, in spite of all the contrary evidence, repeated questioning, and logical argument. We review a range of findings suggesting that emotion and motivation play an important role in anosognosia. We conclude that anosognosia involves (amongst other things) a process of psychological defence. This conclusion stems from a wide variety of clinical and experimental investigations, including data on implicit awareness of deficit, fluctuations in awareness over time, and dramatic effects upon awareness of psychological interventions such as psychotherapy, reframing of the emotional consequences of the paralysis, and first versus third person perspectival manipulations. In addition, we review and refute the (eight) arguments historically raised against the 'defence' hypothesis, including the claim that a defence-based account cannot explain the lateralised nature of the disorder. We argue that damage to a well-established right-lateralised emotion regulation system, with links to psychological processes that appear to underpin allocentric spatial cognition, plays a key role in anosognosia (at least in some patients). We conclude with a discussion of implications for clinical practice.

  15. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity.

    PubMed

    Garg, Neera; Bhandari, Purnima

    2016-09-01

    Salinity is the major environmental constraint that affects legume productivity by inducing oxidative stress. Individually, both silicon (Si) nutrition and mycorrhization have been reported to alleviate salt stress. However, the mechanisms adopted by both in mediating stress responses are poorly understood. Thus, pot trials were undertaken to evaluate comparative as well as interactive effects of Si and/or arbuscular mycorrhiza (AM) in alleviating NaCl toxicity in modulating oxidative stress and antioxidant defence mechanisms in two Cicer arietinum L. (chickpea) genotypes-HC 3 (salt-tolerant) and CSG 9505 (salt-sensitive). Plants subjected to different NaCl concentrations (0-100 mM) recorded a substantial increase in the rate of superoxide radical (O2 (·-)), H2O2, lipoxygenase (LOX) activity and malondialdehyde (MDA) content, which induced leakage of ions and disturbed Ca(2+)/Na(+) ratio in roots and leaves. Individually, Si and AM reduced oxidative burst by strengthening antioxidant enzymatic activities (superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPOX)). Si was relatively more efficient in reducing accumulation of stress metabolites, while mycorrhization significantly up-regulated antioxidant machinery and modulated ascorbate-glutathione (ASA-GSH) cycle. Combined applications of Si and AM complemented each other in reducing reactive oxygen species (ROS) build-up by further enhancing the antioxidant defence responses. Magnitude of ROS-mediated oxidative burden was lower in HC 3 which correlated strongly with more effective AM symbiosis, better capacity to accumulate Si and stronger defence response when compared with CSG 9505. Study indicated that Si and/or AM fungal amendments upgraded salt tolerance through a dynamic shift from oxidative destruction towards favourable antioxidant defence system in stressed chickpea plants.

  16. Actions of Adjunctive Nutritional Antioxidants in Periodontitis and Prevalent Systemic Inflammatory Diseases.

    PubMed

    El-Shinnawi, U; Soory, M

    2015-01-01

    Common risk markers for periodontitis and prevalent systemic comorbidities indicate similarities in their progression and molecular mechanisms involved. Resultant pro-oxidant disease profiles provide scope for attenuating their pathogeneses with appropriate adjunctive antioxidants. Levels of oxidative stress markers 8-hydroxy-deoxguanosine (8-HOdG) and malondialdehyde (MDA) are significantly higher in periodontitis and other chronic inflammatory conditions. There is a clear link between periodontitis and diseases associated with significant systemic inflammatory loading, such as metabolic syndrome. Micro- and macro-nutrients have proven to be effective in curbing molecular mechanisms that generate reactive oxygen and nitrogen species. A Mediterranean diet rich in fruits, vegetables, legumes, whole grain, nuts, fish, olive oil and red wine in moderation, could be attributed to the lower occurrence of cardiovascular disease, insulin resistance and other inflammatory diseases in this region. A significant number of naturally occurring flavonoids have been identified in these products. Flavonoids comprising flavonols, flavones and isoflavones are potent free radical scavengers, effective in inhibiting lipid peroxidation, with anti-atherosclerotic and antihypertensive effects.The phenolic compound oleocanthal isolated in virgin olive oil has similar anti-inflammatory actions to that of ibuprofen. The anti-atherogenic effects of MUFA and PUFA in nuts, enhance endothelial function by reducing total cholesterol, oxidized LDL, hs-CRP, sVCAM-1 levels, lipids, lipoproteins and inflammatory markers. Epigenetics influenced by environmental factors and interactions between genes and nutrients, are important considerations in influencing these effects. Using antioxidants as therapeutic adjuncts could enhance the antioxidant capacity of an inherent glutathione system and overcome oxidative effects, thereby mitigating therapeutic side-effects. PMID:25922082

  17. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  18. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.

  19. Actions of Adjunctive Nutritional Antioxidants in Periodontitis and Prevalent Systemic Inflammatory Diseases.

    PubMed

    El-Shinnawi, U; Soory, M

    2015-01-01

    Common risk markers for periodontitis and prevalent systemic comorbidities indicate similarities in their progression and molecular mechanisms involved. Resultant pro-oxidant disease profiles provide scope for attenuating their pathogeneses with appropriate adjunctive antioxidants. Levels of oxidative stress markers 8-hydroxy-deoxguanosine (8-HOdG) and malondialdehyde (MDA) are significantly higher in periodontitis and other chronic inflammatory conditions. There is a clear link between periodontitis and diseases associated with significant systemic inflammatory loading, such as metabolic syndrome. Micro- and macro-nutrients have proven to be effective in curbing molecular mechanisms that generate reactive oxygen and nitrogen species. A Mediterranean diet rich in fruits, vegetables, legumes, whole grain, nuts, fish, olive oil and red wine in moderation, could be attributed to the lower occurrence of cardiovascular disease, insulin resistance and other inflammatory diseases in this region. A significant number of naturally occurring flavonoids have been identified in these products. Flavonoids comprising flavonols, flavones and isoflavones are potent free radical scavengers, effective in inhibiting lipid peroxidation, with anti-atherosclerotic and antihypertensive effects.The phenolic compound oleocanthal isolated in virgin olive oil has similar anti-inflammatory actions to that of ibuprofen. The anti-atherogenic effects of MUFA and PUFA in nuts, enhance endothelial function by reducing total cholesterol, oxidized LDL, hs-CRP, sVCAM-1 levels, lipids, lipoproteins and inflammatory markers. Epigenetics influenced by environmental factors and interactions between genes and nutrients, are important considerations in influencing these effects. Using antioxidants as therapeutic adjuncts could enhance the antioxidant capacity of an inherent glutathione system and overcome oxidative effects, thereby mitigating therapeutic side-effects.

  20. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana.

    PubMed

    Ostaszewska-Bugajska, Monika; Rychter, Anna M; Juszczuk, Izabela M

    2015-08-15

    We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis. PMID:26339750

  1. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  2. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana.

    PubMed

    Ostaszewska-Bugajska, Monika; Rychter, Anna M; Juszczuk, Izabela M

    2015-08-15

    We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis.

  3. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems.

    PubMed

    Kiokias, Sotirios; Varzakas, Theodoros; Oreopoulou, Vassiliki

    2008-01-01

    It is well-known, that lipid antioxidants can retard the oxidative rancidity of foods caused by atmospheric oxidation, and thus protect oils, fats, and fat-soluble components from their quality degradation. In the last few years, much emphasis has been put on the promotion and use of natural antioxidants, commonly occurring in many fruits and vegetables and thereby produced from various natural extracts. This review gives a summary of previously reported work together with more recent trends in the field of natural antioxidants. Focus is given on the mechanism of actions and the inhibitory effect of certain vitamins against the oxidative degradation of oil-based systems. Moreover, the use of natural phenolics (flavonoids, olive-oil penolics, herb extracts etc.) as antioxidants in numerous lipid food applications is discussed. PMID:18274966

  4. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action.

    PubMed

    Kong, Baohua; Zhang, Huiyun; Xiong, Youling L

    2010-08-01

    Three experiments were conducted to assess the antioxidant efficacy of spice extracts in cooked meat. In experiment 1, antioxidant activity of 13 common spice extracts was screened in a liposome system. Six of the extracts (clove, rosemary, cassia bark, liquorice, nutmeg, and round cardamom), identified to have the greatest total phenolic contents, were strongly inhibitory of TBARS formation. In experiment 2, 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, ferric-reducing power, and metal chelation of these six spice extracts were evaluated. Clove exhibited the greatest reducing power, and all had strong DPPH scavenging activity. In experiment 3, clove, rosemary, and cassia bark extracts were further tested for in situ antioxidant efficacy. Cooked pork patties containing these spice extracts had markedly reduced TBARS formation and off-flavour scores but a more stable red colour, during storage. The results demonstrated strong potential of spice extracts as natural antioxidants in cooked pork products. PMID:20430533

  5. Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics.

    PubMed

    Godinho, Diogo P; Janssen, Arne; Dias, Teresa; Cruz, Cristina; Magalhães, Sara

    2016-01-01

    Herbivorous spider mites occurring on tomato plants (Solanum lycopersicum L.) cope with plant defences in various manners: the invasive Tetranychus evansi reduces defences below constitutive levels, whereas several strains of T. urticae induce such defences and others suppress them. In the Mediterranean region, these two species co-occur on tomato plants with T. ludeni, another closely related spider mite species. Unravelling how this third mite species affects plant defences is thus fundamental to understanding the outcome of herbivore interactions in this system. To test the effect of T. ludeni on tomato plant defences, we measured (1) the activity of proteinase inhibitors, indicating the induction of plant defences, in those plants, and (2) mite performance on plants previously infested with each mite species. We show that the performance of T. evansi and T. ludeni on plants previously infested with T. ludeni or T. evansi was better than on clean plants, indicating that these two mite species down-regulate plant defences. We also show that plants attacked by these mite species had lower activity of proteinase inhibitors than clean plants, whereas herbivory by T. urticae increased the activity of these proteins and resulted in reduced spider mite performance. This study thus shows that the property of down-regulation of plant defences below constitutive levels also occurs in T. ludeni.

  6. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    PubMed

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells.

  7. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    PubMed

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  8. Imbalance of the antioxidative system by plumbagin and Plumbago indica L. extract induces hepatotoxicity in mice

    PubMed Central

    Sukkasem, Nadta; Chatuphonprasert, Waranya; Tatiya-aphiradee, Nitima; Jarukamjorn, Kanokwan

    2016-01-01

    Background/Aim: Plumbago indica (PI) L. and its active constituent, plumbagin, has been traditionally claimed for several pharmacological activities; however, there is little information regarding their toxicity. The present study aims to examine the effects of plumbagin and PI extract (PI) on hepatic histomorphology and antioxidative system in mice. Materials and Methods: Adult male intelligent character recognition mice were intragastrically administered plumbagin (1, 5, and 15 mg/kg/day) or PI (20, 200, and 1,000 mg/kg/day) consecutively for 14 days. Hepatic histomorphology was examined. Plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, hepatic lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and the ratio of reduced to oxidized glutathione (GSH/GSSG) were determined. Results: Plumbagin and PI concentration-dependently induced hepatic injury based on histopathological changes via imbalance of antioxidative system. Plumbagin and PI significantly increased plasma ALT and AST levels, hepatic lipid peroxidation, and GPx activity but significantly decreased hepatic SOD and CAT activities. The GSH/GSSG ratio was significantly reduced by plumbagin. Conclusion: Plumbagin and PI caused hepatotoxic effects in the mice by unbalancing of the redox defense system. Therefore, plumbagin and PI-containing supplements should be used cautiously, especially when consumed in high quantities or for long periods. PMID:27104034

  9. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria.

    PubMed

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems.

  10. Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria

    PubMed Central

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  11. Photosynthesis and antioxidant defense system of Gynura Bicolor DC grown at different elevated CO2 levels

    NASA Astrophysics Data System (ADS)

    Wang, Minjuan; Liu, Hong; Fu, Yuming

    Atmospheric carbon dioxide concentration [CO _{2}] will increase in the future and will affect global climate and ecosystem productivity. However, this is not clearly an area that requires further study on the most appropriate [CO _{2}] selection for plant growth and quality in a closed, controlled environment. The aim of this study was to determine the variation of photosynthetic characteristics and antioxidant status under five CO _{2} concentration (400, 800, 1200, 2000 and 3000 umol mol (-1) ) on the leaf of Gynura bicolor DC. Here the results show that net photosynthetic rate(Pn), Chl content, edible biomass(EB), leaf blade width(LBW), root weight(RW), fructose(Fru) and sucrose(Suc) of Gynura bicolor DC increased under elevated [CO _{2}] of 800 umol mol (-1) , 1200 umol mol (-1) and 2000 umol mol (-1) . On the contrary, photosynthesis and biomass production declined significantly at 3000 umol mol (-1) CO _{2}, While Lipid peroxidation (LPO), malondialdehyde (MDA) and hydrogen peroxide (H _{2}O _{2}) achieved the highest levels. Furthermore, the contents of glutathione (GSH), vitamin C (VC), and vitamin E (VE), and total antioxidant capacity (T-AOC), the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) reached the highest level at 2000 umol mol ({-1) }CO _{2}. Results imply that a significant increase in growth and antioxidant defense system of Gynura bicolor DC occurred under 800-2000 umol mol (-1) of CO _{2} concentration provided a theoretical basis for the application for plants selection in Bioregeneration Life Support System (BLSS) and a closed controlled environment.

  12. Systemic DNA Damage Accumulation Under in Vivo Tumor Growth can be Inhibited by the Antioxidant Tempol

    PubMed Central

    Georgakilas, Alexandros G.; Redon, Christophe E.; Ferguson, Nicholas F.; Kryston, Thomas B.; Parekh, Palak; Dickey, Jennifer S.; Nakamura, Asako J.; Mitchell, James B.; Bonner, William M.; Martin, Olga A.

    2014-01-01

    Aims Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Results Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about 2-3 fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. Conclusions This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies. PMID:25069035

  13. Antioxidative system and oxidative stress markers in wild populations of Erica australis L. differentially exposed to pyrite mining activities.

    PubMed

    Márquez-García, Belén; Córdoba, Francisco

    2009-11-01

    Erica australis L. is a widely distributed shrub able to grow in a variety of environments. In the Iberian Pyritic Belt (SW Spain and Portugal), E. australis can be observed growing successfully in very acidic and highly metal-enriched soils. However, no data about the metal tolerance of this plant in wild populations have been reported so far. In this study, we have analysed metal contents in the leaves of E. australis from three wild populations growing in soils affected by metals in different ways (mine wastes, the terrace of a river affected by acid mine drainage and soils not affected by mining activities but enriched in metals due the geology of the area) and, taking into account that metals may generate reactive oxygen species, we also assayed the oxidative damages and the antioxidative defences. All plants contained high levels of Fe and Mn in the leaves, but plants exposed to mining activities also accumulate different levels of As, Ni, Mo, Pb, and Zn depending on the population considered. Our data show that E. australis responds to metal-catalysed production of reactive radicals by oxidising ascorbic acid, which is present at concentrations much higher than described in other plant species, but it is highly oxidised, close to 40%. Ascorbic acid may counteract reactive oxygen species, and no cell damage was produced, as shown by the low levels of H(2)O(2) and lipid peroxidation found compared with other plant species and no damage reflected in pigment levels. PMID:19726038

  14. The effect of methoxychlor on the epididymal antioxidant system of adult rats.

    PubMed

    Latchoumycandane, C; Chitra, K C; Mathur, P P

    2002-01-01

    Methoxychlor is widely used as a pesticide in many countries and has been shown to induce reproductive abnormalities in male rats, causing reduced fertility. The mechanism of action of methoxychlor on the male reproductive system is not clear. In the present study we investigated whether administration of methoxychlor induces oxidative stress in the epididymis and epididymal sperm of adult rats. Methoxychlor (50, 100, or 200 mg/kg body weight/day) was administered orally for 1, 4, or 7 days. The animals were killed using anesthetic ether 24 h after of the last treatment. Epididymal sperm were collected by cutting the epididymis into small pieces in Ham's F-12 medium at 35 degrees C. The body weight and weights of the testis, liver, and kidney did not show any significant changes in the methoxychlor-treated rats. The weight of the epididymis, seminal vesicles, and ventral prostate as well as epididymal sperm counts decreased after 50, 100, or 200 mg/kg/day for 7 days but remained unchanged after shorter courses of treatment. Epididymal sperm motility was decreased in a dose-dependent manner in the animals treated with methoxychlor for 4 or 7 days. The activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase were decreased while the levels of hydrogen peroxide and lipid peroxidation were increased in the epididymal sperm as well as in the caput, corpus, and cauda epididymis after 4 or 7 days of treatment. The activities of superoxide dismutase decreased while the levels of lipid peroxidation increased in the liver but not in the kidney in all groups. Co-administration of the antioxidant vitamin E (20 mg/kg body weight/ day) to the 200 mg/kg/d methoxychlor-treated rats for 7 days prevented significant changes in the antioxidant systems in the epididymis and epididymal sperm and prevented alterations in sperm counts and motility. The results indicated that methoxychlor induces oxidative stress in the

  15. [Changes in antioxidative system and cell ultrastructure in the fruit peels of apple during sunburn development].

    PubMed

    Hao, Yan-Yan; Huang, Wei-Dong

    2004-02-01

    Fruits from 6-year-old apple trees (Malus domestica Borkh cv. Fuji) were used as materials to test the changes of antioxidative system and cell ultrastructure of fruit peels during sunburn development. Fruit sunburn appeared in mid July, 2002. The process of apple fruit sunburn was divided into three phases (0 degrees : control): 1 degrees : bleaching, 2 degrees : brownness, and 3 degrees : necrosis. Fuji apple fruits in different sunburn state were picked. Phenolic compounds, membrane protective enzymes (SOD, POD, PPO, CAT), cell membrane lipid peroxidation and cell ultrastructure in fruit peel were studied. The result showed that the degree of cell membrane lipid peroxidation enhanced along with development of sunburn. The activity of membrane protective enzymes also increased remarkably. However, the cell structure kept its integrity, except some organelles which partly disassembled, and cytoplasm and vacuoles became enriched with electron-dense substances while fruit peels became pale. As peel became brown, chlorogenic acid, quercetin, rutin and myricetin accumulated, and cells of outer layers of the epidermis collapsed correspondingly, cell wall became thicker. It is suggested that changes in both cell ultrastructure and antioxidative system confirm that physiological state of fruit peels becomes disordered during sunburn development.

  16. Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension.

    PubMed

    Robaczewska, J; Kedziora-Kornatowska, K; Kozakiewicz, M; Zary-Sikorska, E; Pawluk, H; Pawliszak, W; Kedziora, J

    2016-06-01

    The risk of developing chronic hypertension increases with age. Among others factors, increased oxidative stress is a well-recognized etiological factor for the development of hypertension. The co-occurrence of oxidative stress and hypertension may occur as a consequence of a decrease in antioxidant defense system activity or elevated reactive oxygen species generation. Glutathione is a major intracellular thiol-disulfide redox buffer that serves as a cofactor for many antioxidant enzymes. Glutathione-related parameters are altered in hypertension, suggesting that there is an association between the glutathione-related redox system and hypertension. In this review, we provide mechanistic explanations for how glutathione maintains blood pressure. More specifically, we discuss glutathione's role in combating oxidative stress and maintaining nitric oxide bioavailability via the formation of nitrosothiols and nitrosohemoglobin. Although impaired vasodilator responses are observed in S-nitrosothiol-deficient red blood cells, this potential hypertensive mechanism is currently overlooked in the literature. Here we fill in this gap by discussing the role of glutathione in nitric oxide metabolism and controlling blood pressure. We conclude that disturbances in glutathione metabolism might explain age-dependent increases in blood pressure. PMID:27511994

  17. Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice

    PubMed Central

    Xia, Wei; Wu, Jianping; Yuan, Liyun; Wu, Jing; Tu, Di; Fang, Jun

    2014-01-01

    Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver. PMID:24378582

  18. Effect of low copper exposure on the antioxidant system and some immune parameters.

    PubMed

    Kvietkauskaite, Raimonda; Dringeliene, Aldona; Markevicius, Arvydas; Siaurys, Almantus; Acaite, Jezefa

    2004-08-01

    Low-level copper excess was produced in male BALB/c mice by oral supplementation of copper sulfate solution during a 19-w period. The control Group was supplied with pure drinking water and the 2 experimental Groups with CuSO4.5H2O solutions at 120 mg Cu/L or 300 mg Cu/L, respectively. Compared to the control Group, the copper-dosed animals were slightly smaller, the weight of liver was significantly reduced and liver copper content increased. Chronic copper impaired the liver antioxidant defense system by decreasing activities of Cu,Zn-superoxide dismutase and catalase to 14% and 11% respectively. No significant changes were observed in hematological parameters, but flow cytometry revealed altered phenotypic properties of lymphocytes: decreased suppressor (CD8+CD4-), natural killer and its precursor (CD4+CD8+) cell percent, but increased immunoregulatory index (helper (CD4+CD8-)/suppressor (CD8+CD4-) ratio). Prolonged exposure to low copper concentration had been shown a deleterious effect on both antioxidant defense system enzymes and phenotypic properties of immunocompetent cells of mice. PMID:15303382

  19. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress.

    PubMed

    Rainwater, D T; Gossett, D R; Millhollon, E P; Hanna, H Y; Banks, S W; Lucas, M C

    1996-11-01

    Four putative heat-tolerant tomato (Lycopersicum esculentum) cultivars (Tamasabro, Heat Wave, LHT-24, and Solar Set) and one putative heat-sensitive tomato cultivar (Floradade) were grown in the field under non-stress (average daily temperature of 26 degrees C) and heat-stress (average daily temperature of 34 degrees C) conditions. At anthesis, approximately five weeks after being transplanted to the field, leaf samples were collected for antioxidant analyses. Yield was determined by harvesting ripe fruit seven weeks after the collection of leaf samples. Heat stress resulted in a 79.1% decrease in yield for the heat-sensitive Floradade, while the fruit yield in the heat-tolerant cultivars Heat Wave, LHT-24, Solar Set, and Tamasabro was reduced 51.5%, 22.1%, 43.8%, and 34.8% respectively. When grown under heat stress, antioxidant activities were also greater in the heat-tolerant cultivars. Superoxide dismutase (SOD) activity increased up to 9-fold in the heat-tolerant cultivars but decreased 83.1% in the heat-sensitive Floradade. Catalase, peroxidase, and ascorbate peroxidase activity increased significantly in all cultivars. Only Heat Wave showed a significant increase in glutathione reductase in response to heat stress but all heat-tolerant cultivars exhibited significantly lower oxidized ascorbate/reduced ascorbate ratios, greater reduced glutathione/oxidized glutathione rations, and greater alpha-tocopherol concentrations compared to the heat-sensitive cultivar Floridade. These data indicate that the more heat-tolerant cultivars had an enhanced capacity for scavenging active oxygen species and a more active ascorbate-glutathione cycle and suggest a strong correlation between the ability to up-regulate the antioxidant defense system and the ability of tomatoes to produce greater yields when grown under heat stress.

  20. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins.

    PubMed

    Li, Ying; Zhou, Chuifan; Huang, Meiying; Luo, Jiewen; Hou, Xiaolong; Wu, Pengfei; Ma, Xiangqing

    2016-03-01

    We used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C. canadensis is able to take up significant amounts of Pb whilst greatly restricting its transportation to specific parts of the aboveground biomass. High Pb concentrations inhibited plant growth, increased membrane permeability, elevated antioxidant enzyme activity in roots, and caused a significant increase in root H2O2 and malondialdehyde content. Analysis of Pb content at the subcellular level showed that most Pb was associated with the cell wall fraction, followed by the nucleus-rich fraction, and with a minority present in the mitochondrial and soluble fractions. Furthermore, transmission electron microscopy and energy dispersive X-ray analysis of root cells revealed that the cell wall and intercellular space in C. canadensis roots are the main locations of Pb accumulation. Additionally, high Pb concentrations adversely affected the cellular structure of C. canadensis roots. The increased enzyme activity suggests that the antioxidant system may play an important role in eliminating or alleviating Pb toxicity in C. canadensis roots. However, the levels of non-protein sulfhydryl compounds, glutathione, and phytochelatin did not significantly change in either the roots or leaves under Pb-contaminated treatments. Our results provide strong evidence that cell walls restrict Pb uptake into the root and act as an important barrier protecting root cells, while demonstrating that antioxidant enzyme levels are correlated with Pb exposure. These findings demonstrate the roles played by these detoxification mechanisms in supporting Pb tolerance in C. canadensis. PMID:26733305

  1. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins.

    PubMed

    Li, Ying; Zhou, Chuifan; Huang, Meiying; Luo, Jiewen; Hou, Xiaolong; Wu, Pengfei; Ma, Xiangqing

    2016-03-01

    We used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C. canadensis is able to take up significant amounts of Pb whilst greatly restricting its transportation to specific parts of the aboveground biomass. High Pb concentrations inhibited plant growth, increased membrane permeability, elevated antioxidant enzyme activity in roots, and caused a significant increase in root H2O2 and malondialdehyde content. Analysis of Pb content at the subcellular level showed that most Pb was associated with the cell wall fraction, followed by the nucleus-rich fraction, and with a minority present in the mitochondrial and soluble fractions. Furthermore, transmission electron microscopy and energy dispersive X-ray analysis of root cells revealed that the cell wall and intercellular space in C. canadensis roots are the main locations of Pb accumulation. Additionally, high Pb concentrations adversely affected the cellular structure of C. canadensis roots. The increased enzyme activity suggests that the antioxidant system may play an important role in eliminating or alleviating Pb toxicity in C. canadensis roots. However, the levels of non-protein sulfhydryl compounds, glutathione, and phytochelatin did not significantly change in either the roots or leaves under Pb-contaminated treatments. Our results provide strong evidence that cell walls restrict Pb uptake into the root and act as an important barrier protecting root cells, while demonstrating that antioxidant enzyme levels are correlated with Pb exposure. These findings demonstrate the roles played by these detoxification mechanisms in supporting Pb tolerance in C. canadensis.

  2. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings.

    PubMed

    Mishra, Shruti; Jha, A B; Dubey, R S

    2011-07-01

    The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5-20 days. Arsenite (As(2)O(3); 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O (2) (.-) ), elevated levels of H(2)O(2) and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5-10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.

  3. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea).

    PubMed

    Chen, Keting; Arora, Rajeev

    2011-02-01

    Osmopriming is a pre-sowing treatment that improves seed germination performance and stress tolerance. To understand osmopriming physiology, and its association with post-priming stress tolerance, we investigated the antioxidant system dynamics during three stages: during osmopriming, post-priming germination, and seedling establishment. Spinach seeds (Spinacia oleracea L. cv. Bloomsdale) were primed with -0.6 MPa PEG at 15°C for 8 d, and dried at room temperature for 2 d. Unprimed and primed germinating seeds/seedlings were subjected to a chilling and desiccation stresses. Seed/seedling samples were collected for antioxidant assays and germination performance and stress tolerance were evaluated. Our data indicate that: (1) during osmopriming the transition of seeds from dry to germinating state represses the antioxidant pathways (residing in dry seeds) that involve CAT and SOD enzymes but stimulates another pathway (only detectable in imbibed seeds) involving APX; (2) a renewal of antioxidant system, possibly required by seedling establishment, occurs after roughly 5 d of germination; (3) osmopriming strengthens the antioxidant system and increases seed germination potential, resulting in an increased stress tolerance in germinating seeds. Osmopriming-mediated promotive effect on stress tolerance, however, may diminish in relatively older (e.g. ~5-week) seedlings.

  4. In Defence of the Classroom Science Demonstration

    ERIC Educational Resources Information Center

    McCrory, Paul

    2013-01-01

    Science demonstrations are often criticised for their passive nature, their gratuitous exploitation and their limited ability to develop scientific knowledge and understanding. This article is intended to present a robust defence of the use of demonstrations in the classroom by identifying some of their unique and powerful benefits--practical,…

  5. The Man-in-the-Middle Defence

    NASA Astrophysics Data System (ADS)

    Anderson, Ross

    The man-in-the-middle defence is all about rehabilitating Charlie. For 20 years we’ve worried about this guy in the middle, Charlie, who’s forever intercalating himself into the communications between Alice and Bob, and people have been very judgemental about poor Charlie, saying that Charlie is a wicked person. Well, we’re not entirely convinced.

  6. Malaysian Defence and E-Learning

    ERIC Educational Resources Information Center

    Juhary, Jowati binti

    2005-01-01

    This paper begins with an analysis of the changing security scenario in the Asian region, with special focus on Malaysian defence strategies and foreign policies. Beginning in the mid 1990s, the Malaysian government shifted its attention away from the counter insurgency strategies of the early decades of independence to focus on wider questions of…

  7. [Effect of cinnarizine on the brain mitochondrial oxidative system, antioxidant blood activity, and the rat behavior in hypoxia].

    PubMed

    Belostotskaia, L I; Chaĭka, L A; Gomon, O N

    2003-01-01

    The effect of cinnarizine on the functional state of brain mitochondria, the activity of blood antioxidant system, and the behavior of rats was studied under model hypoxic hypoxia conditions. A four-day treatments with cinnarizine (50 mg/kg, twice per day via a gastric tube) prevents the hypoxic brain edema development, restores NAD+ dependent oxidation of a succinate substrate, normalizes emotional-exploratory activity, and causes hyperlocomotion of the experimental animals, while not influencing a high level of activity of the blood antioxidant system. PMID:14743704

  8. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  9. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.

  10. Irrigation with industrial wastewater activates antioxidant system and osmoprotectant accumulation in lettuce, turnip and tomato plants.

    PubMed

    Hashem, H A; Hassanein, R A; El-Deep, M H; Shouman, A I

    2013-09-01

    We focused on the impact of industrial wastes on the water quality of the El-Amia drain in Egypt and the effect of irrigation with industrial wastewater on the growth, cell membranes, photosynthetic pigment content, the antioxidant system and selected osmoprotectants (proline, total amino nitrogen and soluble sugars) in three crop plants: turnip, tomato and lettuce. Furthermore, the present work focused on the analysis of the heavy metal content and its accumulation in the studied plants. For this purpose, water samples were collected 1, 10 and 19 km from the beginning of the drain and used for irrigation, with fresh water as a control. We found that industrial wastewater contained significant amounts of heavy metals (Cd, Ni and Co) warranted a pollution problem as their amounts exceed the maximum recommended concentrations according to FAO guidelines for trace metals in irrigation water. The three crop plants accumulate significant amounts of heavy metals in their shoots and roots and showed a significant decrease in leaf area, fresh weight and dry weight of shoots and roots, accompanied by a marked reduction in photosynthetic pigment content and damage to cell membranes, as indicated by increased electrolyte leakage and a lower membrane stability index. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, soluble sugar and total amino nitrogen content in response to irrigation with wastewater may be defense mechanisms induced in response to heavy metal stress.

  11. Irrigation with industrial wastewater activates antioxidant system and osmoprotectant accumulation in lettuce, turnip and tomato plants.

    PubMed

    Hashem, H A; Hassanein, R A; El-Deep, M H; Shouman, A I

    2013-09-01

    We focused on the impact of industrial wastes on the water quality of the El-Amia drain in Egypt and the effect of irrigation with industrial wastewater on the growth, cell membranes, photosynthetic pigment content, the antioxidant system and selected osmoprotectants (proline, total amino nitrogen and soluble sugars) in three crop plants: turnip, tomato and lettuce. Furthermore, the present work focused on the analysis of the heavy metal content and its accumulation in the studied plants. For this purpose, water samples were collected 1, 10 and 19 km from the beginning of the drain and used for irrigation, with fresh water as a control. We found that industrial wastewater contained significant amounts of heavy metals (Cd, Ni and Co) warranted a pollution problem as their amounts exceed the maximum recommended concentrations according to FAO guidelines for trace metals in irrigation water. The three crop plants accumulate significant amounts of heavy metals in their shoots and roots and showed a significant decrease in leaf area, fresh weight and dry weight of shoots and roots, accompanied by a marked reduction in photosynthetic pigment content and damage to cell membranes, as indicated by increased electrolyte leakage and a lower membrane stability index. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, soluble sugar and total amino nitrogen content in response to irrigation with wastewater may be defense mechanisms induced in response to heavy metal stress. PMID:23790475

  12. Thyroid Hormones and Antioxidant Systems: Focus on Oxidative Stress in Cardiovascular and Pulmonary Diseases

    PubMed Central

    Mancini, Antonio; Raimondo, Sebastiano; Di Segni, Chantal; Persano, Mariasara; Gadotti, Giovanni; Silvestrini, Andrea; Festa, Roberto; Tiano, Luca; Pontecorvi, Alfredo; Meucci, Elisabetta

    2013-01-01

    In previous works we demonstrated an inverse correlation between plasma Coenzyme Q10 (CoQ10) and thyroid hormones; in fact, CoQ10 levels in hyperthyroid patients were found among the lowest detected in human diseases. On the contrary, CoQ10 is elevated in hypothyroid subjects, also in subclinical conditions, suggesting the usefulness of this index in assessing metabolic status in thyroid disorders. A Low-T3 syndrome is a condition observed in several chronic diseases: it is considered an adaptation mechanism, where there is a reduction in pro-hormone T4 conversion. Low T3-Syndrome is not usually considered to be corrected with replacement therapy. We review the role of thyroid hormones in regulation of antioxidant systems, also presenting data on total antioxidant capacity and Coenzyme Q10. Published studies suggest that oxidative stress could be involved in the clinical course of different heart diseases; our data could support the rationale of replacement therapy in low-T3 conditions. PMID:24351864

  13. [Progress in oxyR regulon- the bacterial antioxidant defense system--a review].

    PubMed

    Wang, Baowei; Shi, Qinshan; Ouyang, Yousheng; Chen, Yiben

    2008-11-01

    The bacterial antioxidant defense system, including oxyR; soxRS; perR and ohrR, is employed to cope with oxidative stress induced by respiration or environmental assaults. oxyR, encompasses the gene encoding OxyR and some other genes and operons regulated by it, has captured the highest attention among these regulons. To date, members of oxyR regulon have been confirmed to participate in many physiological processes including antioxidant defense, repression of spontaneous mutagenesis, virulence, iron metabolism and out membrane protein phase-variation. Though controversy still exists among researchers, molecular mechanism of transcription regulation by OxyR has been intensively investigated in Escherichia coli. The diverse physiological processes participated by oxyR regulon have facilitated its applied research, such as screening for mutagens and dealing with antimicrobial resistance problems frequently occurring in industrial plants. This paper reviewed the recent progress of oxyR regulon, focusing on members regulated; physiological processes participated; mechanics and factors affected its transcription regulation activity, in order to bring some insights to further investigation of antimicrobial resistance and mutagens screening.

  14. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.

    PubMed

    Marengo, Barbara; Nitti, Mariapaola; Furfaro, Anna Lisa; Colla, Renata; Ciucis, Chiara De; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Traverso, Nicola; Domenicotti, Cinzia

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy. PMID:27418953

  15. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.

    PubMed

    Marengo, Barbara; Nitti, Mariapaola; Furfaro, Anna Lisa; Colla, Renata; Ciucis, Chiara De; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Traverso, Nicola; Domenicotti, Cinzia

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

  16. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    PubMed Central

    Ciucis, Chiara De

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy. PMID:27418953

  17. Light acclimation, retrograde signalling, cell death and immune defences in plants.

    PubMed

    Karpiński, Stanisław; Szechyńska-Hebda, Magdalena; Wituszyńska, Weronika; Burdiak, Paweł

    2013-04-01

    This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA).

  18. Oxidative DNA damage and defence gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation.

    PubMed

    Risom, Lotte; Dybdahl, Marianne; Bornholdt, Jette; Vogel, Ulla; Wallin, Håkan; Møller, Peter; Loft, Steffen

    2003-11-01

    Exposure to diesel exhaust particles (DEP) is suspected to contribute to lung cancer and cardiopulmonary diseases. In recent years generation of reactive oxygen species capable of inducing cellular oxidative stress has been in focus as one of the underlying mechanisms behind the genotoxic effects of particles. However, the role of the antioxidative defence system still needs to be clarified, especially in relation to low-dose DEP exposures. The aim of this study was to characterize the effects of short-term exposure to DEP in terms of DNA damage and expression of key response genes towards oxidative stress in lungs of mice. Mice were exposed by inhalation to 20 or 80 mg/m3 DEP inhaled as either a single dose, or four lower doses (5 and 20 mg/m3) inhaled on four consecutive days. Our results indicate that HO-1 mRNA expression in lung tissue was up-regulated after both types of DEP exposures, whereas OGG1 expression was only up-regulated after repeated exposures. The level of oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was increased in the lung tissue after a single exposure, whereas increased levels of DNA strand breaks was observed in bronchoalveolar lavage cells after repeated DEP exposures. The levels of 8-oxodG and OGG1 mRNA in lung tissue were mirror images. This suggests that after repeated exposures, up-regulation of DNA repair counteracts an increased rate of 8-oxodG formation leaving the steady state level of 8-oxodG in DNA unchanged. In conclusion, this study indicates that a single high dose of DEP generates 8-oxodG in lung tissue, whereas the same dose inhaled as four low-exposures may up-regulate the antioxidative defence system and protect against generation of 8-oxodG. PMID:12919962

  19. 24-epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea.

    PubMed

    Fariduddin, Qazi; Ahmed, Mumtaz; Mir, Bilal A; Yusuf, Mohammad; Khan, Tanveer A

    2015-08-01

    The objective of this study was to establish relationship between manganese-induced toxicity and antioxidant system response in Brassica juncea plants and also to investigate whether brassinosteroids activate antioxidant system to confer tolerance to the plants affected with manganese induced oxidative stress. Brassica juncea plants were administered with 3, 6, or 9 mM manganese at 10-day stage for 3 days. At 31-day stage, the seedlings were sprayed with deionized water (control) or 10(-8) M of 24-epibrassinolide, and plants were harvested at 45-day stage to assess growth, leaf gas-exchange traits, and biochemical parameters. The manganese treatments diminished growth along with photosynthetic attributes and carbonic anhydrase activity in the concentration-dependent manner, whereas it enhanced lipid peroxidation, electrolyte leakage, accumulation of H2O2 as well as proline, and various antioxidant enzymes in the leaves of Brassica juncea which were more pronounced at higher concentrations of manganese. However, the follow-up application of 24-epibrassinolide to the manganese stressed plants improved growth, water relations, and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase, and superoxide dismutase and content of proline. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the manganese-stressed plants resulting in improved growth and photosynthetic attributes.

  20. Reduced antioxidant level and increased oxidative damage in intact liver lobes during ischaemia-reperfusion

    PubMed Central

    Váli, László; Taba, Gabriella; Szentmihályi, Klára; Fébel, Hedvig; Kurucz, Tímea; Pallai, Zsolt; Kupcsulik, Péter; Blázovics, Anna

    2006-01-01

    AIM: To determine whether increased blood flow of the liver can cause oxidative stress and hepatocyte damage, and to elaborate methods suitable for measuring the antioxidant defence during hepatic surgery on rat model. METHODS: In nembutal narcosis, the left lateral and the medial lobes of the liver were clipped for 45 min to make the total blood supply flow through the other lobes. Total antioxidant status, glutathione peroxidase and superoxide dysmutase activity, as well as the concentrations of diene conjugates and free sulphydril groups, H-donating ability and reducing power of the liver samples were determined. Chemiluminescent intensity of the liver was also measured. Metal ions (Al, Ca, Cu, Fe, Mg, Mn, Zn) and P and S concentrations of the liver were determined with an inductively coupled plasma optical emission spectrometer and Se content was measured by cathodic stripping voltammetry. RESULTS: Glutathione peroxidase and superoxide dysmutase activities of the liver decreased significantly in the hyperemia group compared to those observed in the sham operated group. The level of total antioxidant status was also significantly lower in the hyperemia group. H-donating ability, reducing power and free sulphydril group concentration showed the same tendency. A significant correlation (P<0.05) was found between the changes in non-specific antioxidant activities. This pointed to simultaneous activity of the antioxidant defence system. Al, Cu, Mn, Zn, and S were lower in the hyperemia group than in the sham operated group when the levels of Ca, Fe, Mg, Se and P ions were higher during hyperemia. CONCLUSION: Oxidative stress is one of the main factors for the injury of intact liver lobes during ischaemia-reperfusion. PMID:16534850

  1. Vitamins, stress and growth: the availability of antioxidants in early life influences the expression of cryptic genetic variation.

    PubMed

    Kim, S-Y; Noguera, J C; Tato, A; Velando, A

    2013-06-01

    Environmental inputs during early development can shape the expression of phenotypes, which has long-lasting consequences in physiology and life history of an organism. Here, we study whether experimentally manipulated availability of dietary antioxidants, vitamins C and E, influences the expression of genetic variance for antioxidant defence, endocrine signal and body mass in yellow-legged gull chicks using quantitative genetic models based on full siblings. Our experimental study in a natural population reveals that the expression of genetic variance in total antioxidant capacity in plasma increased in chicks supplemented with vitamins C and E despite the negligible effects on the average phenotype. This suggests that individuals differ in their ability to capture and transport dietary antioxidants or to respond to these extra resources, and importantly, this ability has a genetic basis. Corticosterone level in plasma and body mass were negatively correlated at the phenotypic level. Significant genetic variance of corticosterone level appeared only in control chicks nonsupplemented with vitamins, suggesting that the genetic variation of endocrine system, which transmits environmental cues to adaptively control chick development, appeared in stressful conditions (i.e. poor antioxidant availability). Therefore, environmental inputs may shape evolutionary trajectories of antioxidant capacity and endocrine system by affecting the expression of cryptic genetic variation.

  2. [Glutathione redox system, immune status, antioxidant enzymes and metabolism of purine nucleotides in hypothyroidism].

    PubMed

    Tapbergenov, S O; Sovetov, B S; Bekbosynova, R B; Bolysbekova, S M

    2015-01-01

    The immune status, components of the glutathione redox system, the activity of antioxidant enzymes and metabolism of purine nucleotides have been investigated in animals with experimental hypothyroidism. On day 8 after an increase in the number of leukocytes, lymphocytes, T-helpers and T-suppressors as well as increased number of B-lymphocytes was found in blood of thyroidectomized rats. This was accompanied by decreased activity of adenosine deaminase (AD), AMP-deaminase (AMPD), and 5'-nucleotidase (5'N) in blood, but the ratio of enzyme activity AD/AMPD increased. These changes in the activity of enzymes, involved in purine catabolism can be regarded as increased functional relationships between T and B lymphocytes in hypothyroidism. The functional changes of immune system cells were accompanied by increased activity of glutathione peroxidase (GPx), a decrease in the activity of superoxide dismutase (SOD), glutathione reductase (GR) and the ratio GH/GPx. Thyroidectomized rats had increased amounts of total, oxidized (GSSG) and reduced glutathione (GSH), but the ratio GSH/GSSG decerased as compared with control animals. In the liver, hypothyroidism resulted in activation of SOD, GPx, decreased activity of GR and decreased ratio GR/GPx. At the same time, the levels of total, oxidized, and reduced glutathione increased, but the ratio GSH/GSSG as well as activities of enzymes involved in purine nucleotide metabolism ratio (and their ratio 5'N/AD + AMPD) decreased. All these data suggest a functional relationship of the glutathione redox system not only with antioxidant enzymes, but also activity of enzymes involved purine nucleotide metabolism and immune status.

  3. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup.

    PubMed

    Lynch, Z R; Schlenke, T A; de Roode, J C

    2016-05-01

    It may be intuitive to predict that host immune systems will evolve to counter a broad range of potential challenges through simultaneous investment in multiple defences. However, this would require diversion of resources from other traits, such as growth, survival and fecundity. Therefore, ecological immunology theory predicts that hosts will specialize in only a subset of possible defences. We tested this hypothesis through a comparative study of a cellular immune response and a putative behavioural defence used by eight fruit fly species against two parasitoid wasp species (one generalist and one specialist). Fly larvae can survive infection by melanotically encapsulating wasp eggs, and female flies can potentially reduce infection rates in their offspring by laying fewer eggs when wasps are present. The strengths of both defences varied significantly but were not negatively correlated across our chosen host species; thus, we found no evidence for a trade-off between behavioural and cellular immunity. Instead, cellular defences were significantly weaker against the generalist wasp, whereas behavioural defences were similar in strength against both wasps and positively correlated between wasps. We investigated the adaptive significance of wasp-induced oviposition reduction behaviour by testing whether wasp-exposed parents produce offspring with stronger cellular defences, but we found no support for this hypothesis. We further investigated the sensory basis of this behaviour by testing mutants deficient in either vision or olfaction, both of which failed to reduce their oviposition rates in the presence of wasps, suggesting that both senses are necessary for detecting and responding to wasps. PMID:26859227

  4. Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system.

    PubMed

    Rai, Arti; Tripathi, Preeti; Dwivedi, Sanjay; Dubey, Sonali; Shri, Manju; Kumar, Smita; Tripathi, Pankaj Kumar; Dave, Richa; Kumar, Amit; Singh, Ragini; Adhikari, Bijan; Bag, Manas; Tripathi, Rudra Deo; Trivedi, Prabodh K; Chakrabarty, Debasis; Tuli, Rakesh

    2011-02-01

    World wide arsenic (As) contamination of rice has raised much concern as it is the staple crop for millions. Four most commonly cultivated rice cultivars, Triguna, IR-36, PNR-519 and IET-4786, of the West Bengal region were taken for a hydroponic study to examine the effect of arsenate (As(V)) and arsenite (As(III)) on growth response, expression of genes and antioxidants vis-à-vis As accumulation. The rice genotypes responded differentially under As(V) and As(III) stress in terms of gene expression and antioxidant defences. Some of the transporters were up-regulated in all rice cultivars at lower doses of As species, except IET-4786. Phytochelatin synthase, GST and γ-ECS showed considerable variation in their expression pattern in all genotypes, however in IET-4786 they were generally down-regulated in higher As(III) stress. Similarly, most of antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) increased significantly in Triguna, IR-36 and PNR-519 and decreased in IET-4786. Our study suggests that Triguna, IR-36 and PNR-519 are tolerant rice cultivars accumulating higher arsenic; however IET-4786 is susceptible to As-stress and accumulates less arsenic than other cultivars. PMID:21075415

  5. An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol

    PubMed Central

    Malhotra, Ashim; Bath, Sundeep; Elbarbry, Fawzy

    2015-01-01

    Resveratrol is a phenolic phytochemical, with a stilbene backbone, derived from edible plants such as grape and peanut. It is a bioactive molecule with physiological effects on multiple organ systems. Its effects range from the neuroprotective to the nephroprotective, including cardiovascular, neuronal, and antineoplastic responses as a part of its broad spectrum of action. In this review, we examine the effects of resveratrol on the following organ systems: the central nervous system, including neurological pathology such as Parkinson's and Alzheimer's disease; the cardiovascular system, including disorders such as atherosclerosis, ischemia-reperfusion injury, and cardiomyocyte hypertrophy; the kidneys, including primary and secondary nephropathies and nephrolithiasis; multiple forms of cancer; and metabolic syndromes including diabetes. We emphasize commonalities in extracellular matrix protein alterations and intracellular signal transduction system induction following resveratrol treatment. We summarize the known anti-inflammatory, antioxidative, and cytoprotective effects of resveratrol across disparate organ systems. Additionally, we analyze the available literature regarding the pharmacokinetics of resveratrol formulations used in these studies. Finally, we critically examine select clinical trials documenting a lack of effect following resveratrol treatment. PMID:26180596

  6. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    PubMed

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. PMID:25303462

  7. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues.

    PubMed

    Zafra-Rojas, Quinatzin Y; Cruz-Cansino, Nelly S; Quintero-Lira, Aurora; Gómez-Aldapa, Carlos A; Alanís-García, Ernesto; Cervantes-Elizarrarás, Alicia; Güemes-Vera, Norma; Ramírez-Moreno, Esther

    2016-01-01

    Blackberry processing generates up to 20% of residues composed mainly of peel, seeds and pulp that are abundant in flavonoids. The objective of this study was to optimize the ultrasound conditions, in a closed system, for antioxidants extraction, using the response surface methodology. Blackberry (Rubus fructicosus) residues were analyzed for total phenolics, total anthocyanins, and antioxidant activity by ABTS and DPPH. The selected independent variables were ultrasound amplitude (X₁: 80%-90%) and extraction time (X₂: 10-15 min), and results were compared with conventional extraction methods. The optimal conditions for antioxidants extraction were 91% amplitude for 15 min. The results for total phenolic content and anthocyanins and antioxidant activity by ABTS and DPPH were of 1201.23 mg gallic acid equivalent (GAE)/100 g dry weight basis (dw); 379.12 mg/100 g·dw; 6318.98 µmol Trolox equivalent (TE)/100 g·dw and 9617.22 µmol TE/100 g·dw, respectively. Compared to solvent extraction methods (water and ethanol), ultrasound achieved higher extraction of all compounds except for anthocyanins. The results obtained demonstrated that ultrasound is an alternative to improve extraction yield of antioxidants from fruit residues such as blackberry. PMID:27455210

  8. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  9. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings

    PubMed Central

    Ding, Xiaotao; Jiang, Yuping; He, Lizhong; Zhou, Qiang; Yu, Jizhu; Hui, Dafeng; Huang, Danfeng

    2016-01-01

    To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation. PMID:27752105

  10. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues.

    PubMed

    Zafra-Rojas, Quinatzin Y; Cruz-Cansino, Nelly S; Quintero-Lira, Aurora; Gómez-Aldapa, Carlos A; Alanís-García, Ernesto; Cervantes-Elizarrarás, Alicia; Güemes-Vera, Norma; Ramírez-Moreno, Esther

    2016-07-21

    Blackberry processing generates up to 20% of residues composed mainly of peel, seeds and pulp that are abundant in flavonoids. The objective of this study was to optimize the ultrasound conditions, in a closed system, for antioxidants extraction, using the response surface methodology. Blackberry (Rubus fructicosus) residues were analyzed for total phenolics, total anthocyanins, and antioxidant activity by ABTS and DPPH. The selected independent variables were ultrasound amplitude (X₁: 80%-90%) and extraction time (X₂: 10-15 min), and results were compared with conventional extraction methods. The optimal conditions for antioxidants extraction were 91% amplitude for 15 min. The results for total phenolic content and anthocyanins and antioxidant activity by ABTS and DPPH were of 1201.23 mg gallic acid equivalent (GAE)/100 g dry weight basis (dw); 379.12 mg/100 g·dw; 6318.98 µmol Trolox equivalent (TE)/100 g·dw and 9617.22 µmol TE/100 g·dw, respectively. Compared to solvent extraction methods (water and ethanol), ultrasound achieved higher extraction of all compounds except for anthocyanins. The results obtained demonstrated that ultrasound is an alternative to improve extraction yield of antioxidants from fruit residues such as blackberry.

  11. Ecotoxicological effects of the antioxidant additive propyl gallate in five aquatic systems.

    PubMed

    Zurita, Jorge L; Jos, Angeles; del Peso, Ana; Salguero, Manuel; López-Artíguez, Miguel; Repetto, Guillermo

    2007-06-01

    Propyl gallate is an antioxidant widely used in foods, cosmetics and pharmaceuticals. The occurrence and fate of additives in the aquatic environment is an emerging issue in environmental chemistry. To date, there is little available information about the adverse effects of propyl gallate on aquatic organisms. Therefore, the toxic effects were investigated, using five model systems from four trophic levels. The most sensitive system was the hepatoma fish cell line PLHC-1 according to total protein content, with an EC(50) of 10 microM and a NOAEL of 1 microM at 72 h, followed by the immobilization of Daphnia magna, the inhibition of bioluminescence of Vibrio fischeri, the salmonid fish cell line RTG-2 and the inhibition of the growth of Chlorella vulgaris. Although protein content, neutral red uptake, methylthiazol metabolization and acetylcholinesterase activity were reduced in PLHC-1 cells, stimulations were observed for lysosomal function, succinate dehydrogenase, glucose-6-phosphate dehydrogenase and ethoxyresorufin-O-deethylase activities. No changes were observed in metallothionein levels. The main morphological observations were the loss of cells and the induction of cell death mainly by necrosis but also by apoptosis. The protective and toxic effects of propyl gallate were evaluated. General antioxidants and calcium chelators did not modify the toxicity of propyl gallate, but an iron-dependent lipid peroxidation inhibitor gave 22% protection. The results also suggest that propyl gallate cytotoxicity is dependent on glutathione levels, which were modulated by malic acid diethyl ester and 2-oxothiazolidine-4-carboxylic acid. According to the results, propyl gallate should be classified as toxic to aquatic organisms. PMID:17382989

  12. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress.

    PubMed

    Martín, Roberto; Menchón, Cristina; Apostolova, Nadezda; Victor, Victor M; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-11-23

    Diamond nanoparticles (DNPs) obtained by explosive detonation have become commercially available. These commercial DNPs can be treated under Fenton conditions (FeSO(4) and H(2)O(2) at acidic pH) to obtain purer DNP samples with a small average particle size (4 nm) and a large population of surface OH groups (HO-DNPs). These Fenton-treated HO-DNPs have been used as a support of gold and platinum nanoparticles (≤2 nm average size). The resulting materials (Au/HO-DNP and Pt/HO-DNP) exhibit a high antioxidant activity against reactive oxygen species induced in a hepatoma cell line. In addition to presenting good biocompatibility, Au/HO- and Pt/HO-DNP exhibit about a two-fold higher antioxidant activity than glutathione, one of the reference antioxidant systems. The most active material against cellular oxidative stress was Au/HO-DNP. PMID:20939514

  13. Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages

    NASA Astrophysics Data System (ADS)

    Zhang, Jiazhi; Li, Xingyi; Zhou, Li; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-03-01

    Bisphenol A (BPA) is an important industrial raw material. Because of its widespread use and increasing release into environment, BPA has become a new environmental pollutant. Previous studies about BPA’s effects in plants focus on a certain growth stage. However, the plant’s response to pollutants varies at different growth stages. Therefore, in this work, BPA’s effects in soybean roots at different growth stages were investigated by determining the reactive oxygen species levels, membrane lipid fatty acid composition, membrane lipid peroxidation, and antioxidant systems. The results showed that low-dose BPA exposure slightly caused membrane lipid peroxidation but didn’t activate antioxidant systems at the seedling stage, and this exposure did not affect above process at other growth stages; high-dose BPA increased reactive oxygen species levels and then caused membrane lipid peroxidation at all growth stages although it activated antioxidant systems, and these effects were weaker with prolonging the growth stages. The recovery degree after withdrawal of BPA exposure was negatively related to BPA dose, but was positively related to growth stage. Taken together, the effects of BPA on antioxidant systems in soybean roots were associated with BPA exposure dose and soybean growth stage.

  14. Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages

    PubMed Central

    Zhang, Jiazhi; Li, Xingyi; Zhou, Li; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-01-01

    Bisphenol A (BPA) is an important industrial raw material. Because of its widespread use and increasing release into environment, BPA has become a new environmental pollutant. Previous studies about BPA’s effects in plants focus on a certain growth stage. However, the plant’s response to pollutants varies at different growth stages. Therefore, in this work, BPA’s effects in soybean roots at different growth stages were investigated by determining the reactive oxygen species levels, membrane lipid fatty acid composition, membrane lipid peroxidation, and antioxidant systems. The results showed that low-dose BPA exposure slightly caused membrane lipid peroxidation but didn’t activate antioxidant systems at the seedling stage, and this exposure did not affect above process at other growth stages; high-dose BPA increased reactive oxygen species levels and then caused membrane lipid peroxidation at all growth stages although it activated antioxidant systems, and these effects were weaker with prolonging the growth stages. The recovery degree after withdrawal of BPA exposure was negatively related to BPA dose, but was positively related to growth stage. Taken together, the effects of BPA on antioxidant systems in soybean roots were associated with BPA exposure dose and soybean growth stage. PMID:27030053

  15. Immune defence under extreme ambient temperature.

    PubMed

    Seppälä, Otto; Jokela, Jukka

    2011-02-23

    Owing to global climate change, the extreme weather conditions are predicted to become more frequent, which is suggested to have an even greater impact on ecological interactions than the gradual increase in average temperatures. Here, we examined whether exposure to high ambient temperature affects immune function of the great pond snail (Lymnaea stagnalis). We quantified the levels of several immune traits from snails maintained in a non-stressful temperature (15°C) and in an extreme temperature (30°C) that occurs in small ponds during hot summers. We found that snails exposed to high temperature had weaker immune defence, which potentially predisposes them to infections. However, while phenoloxidase and antibacterial activity of snail haemolymph were reduced at high temperature, haemocyte concentration was not affected. This suggests that the effect of high temperature on snail susceptibility to infections may vary across different pathogens because different components of invertebrate immune defence have different roles in resistance.

  16. Peptides as triggers of plant defence.

    PubMed

    Albert, Markus

    2013-12-01

    Plants are confronted with several biotic stresses such as microbial pathogens and other herbivores. To defend against such attackers, plants possess an array of pattern recognition receptors (PRRs) that sense the danger and consequently initiate a defence programme that prevents further damage and spreading of the pest. Characteristic pathogenic structures, so-called microbe-associated molecular patterns (MAMPs), serve as signals that allow the plant to sense invaders. Additionally, pathogens wound or damage the plant and the resulting release of damage-associated molecular patterns (DAMPs) serves as a warning signal. This review focuses on peptides that serve as triggers or amplifiers of plant defence and thus follow the definition of a MAMP or a DAMP. PMID:24014869

  17. The Man-in-the-Middle Defence

    NASA Astrophysics Data System (ADS)

    Anderson, Ross; Bond, Mike

    Eliminating middlemen from security protocols helps less than one would think. EMV electronic payments, for example, can be made fairer by adding an electronic attorney - a middleman which mediates access to a customer’s card. We compare middlemen in crypto protocols and APIs with those in the real world, and show that a man-in-the-middle defence is helpful in many circumstances. We suggest that the middleman has been unfairly demonised.

  18. An inducible morphological defence is a passive by-product of behaviour in a marine snail

    PubMed Central

    Bourdeau, Paul E.

    2010-01-01

    Many organisms have evolved inducible defences in response to spatial and temporal variability in predation risk. These defences are assumed to incur large costs to prey; however, few studies have investigated the mechanisms and costs underlying these adaptive responses. I examined the proximate cause of predator-induced shell thickening in a marine snail (Nucella lamellosa) and tested whether induced thickening leads to an increase in structural strength. Results indicate that although predators (crabs) induce thicker shells, the response is a passive by-product of reduced feeding and somatic growth rather than an active physiological response to predation risk. Physical tests indicate that although the shells of predator-induced snails are significantly stronger, the increase in performance is no different than that of snails with limited access to food. Increased shell strength is attributable to an increase in the energetically inexpensive microstructural layer rather than to material property changes in the shell. This mechanism suggests that predator-induced shell defences may be neither energetically nor developmentally costly. Positive correlations between antipredator behaviour and morphological defences may explain commonly observed associations between growth reduction and defence production in other systems and could have implications for the evolutionary potential of these plastic traits. PMID:19846462

  19. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea)

    PubMed Central

    Wilkins, Lucas; Osorio, Daniel; Hartley, Susan E.

    2015-01-01

    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour. PMID:26353086

  20. Natural selection on quantitative immune defence traits: a comparison between theory and data.

    PubMed

    Seppälä, O

    2015-01-01

    Parasites present a threat for free-living species and affect several ecological and evolutionary processes. Immune defence is the main physiological barrier against infections, and understanding its evolution is central for predicting disease dynamics. I review theoretical predictions and empirical data on natural selection on quantitative immune defence traits in the wild. Evolutionary theory predicts immune traits to be under stabilizing selection owing to trade-offs between immune function and life-history traits. Empirical data, however, support mainly positive directional selection, but also show variation in the form of selection among study systems, immune traits and fitness components. I argue that the differences between theory and empirical data may at least partly arise from methodological difficulties in testing stabilizing selection as well as measuring fitness. I also argue that the commonness of positive directional selection and the variation in selection may be caused by several biological factors. First, selection on immune function may show spatial and temporal variation as epidemics are often local/seasonal. Second, factors affecting the range of phenotypic variation in immune traits could alter potential for selection. Third, different parasites may impose different selective pressures depending on their characteristics. Fourth, condition dependence of immune defence can obscure trade-offs related to it, thus possibly modifying observed selection gradients. Fifth, nonimmunological defences could affect the form of selection by reducing the benefits of strong immune function. To comprehensively understand the evolution of immune defence, the role of above factors should be considered in future studies.

  1. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea).

    PubMed

    Green, Jonathan P; Foster, Rosie; Wilkins, Lucas; Osorio, Daniel; Hartley, Susan E

    2015-01-01

    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  2. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer.

    PubMed

    Fatouros, Nina E; Pineda, Ana; Huigens, Martinus E; Broekgaarden, Colette; Shimwela, Methew M; Figueroa Candia, Ilich A; Verbaarschot, Patrick; Bukovinszky, Tibor

    2014-08-22

    Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure. PMID:25009068

  3. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer

    PubMed Central

    Fatouros, Nina E.; Pineda, Ana; Huigens, Martinus E.; Broekgaarden, Colette; Shimwela, Methew M.; Figueroa Candia, Ilich A.; Verbaarschot, Patrick; Bukovinszky, Tibor

    2014-01-01

    Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure. PMID:25009068

  4. The problem of missile defence

    NASA Astrophysics Data System (ADS)

    Webber, Philip

    2014-05-01

    The idea of building a missile system to defend a nation from the horrors of nuclear attack first entered the public consciousness in the 1980s, when US president Ronald Reagan - backed by prominent (and controversial) scientific advisers such as the physicist Edward Teller - promoted the Strategic Defense Initiative as a supposedly impenetrable shield against the Soviet Union's nuclear arsenal.

  5. A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Cahill, David M; Conlan, Xavier A; Adholeya, Alok

    2014-10-15

    Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel "in vitro system" and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, "Holy Green", "Red Rubin", and "Basil Genovese" were identified as high polyphenolic producing cultivars while "Subja" was determined to be a low producer. The "in vitro system" enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies.

  6. A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Cahill, David M; Conlan, Xavier A; Adholeya, Alok

    2014-10-15

    Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel "in vitro system" and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, "Holy Green", "Red Rubin", and "Basil Genovese" were identified as high polyphenolic producing cultivars while "Subja" was determined to be a low producer. The "in vitro system" enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies. PMID:25275827

  7. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    PubMed

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  8. Antioxidant potential of aqueous extract of some food grain powder in meat model system.

    PubMed

    Yogesh, K; Jha, S N; Ahmad, Tanbir

    2014-11-01

    In-vitro antioxidant activity of some food grains [sprouted mung bean (Vigna radiata), mung bean, sprouted chana (Cicer arietinum), chana, corn (Zea mays), methi (Trigonella foenum-graecum) and rajma (Phaseolus vulgaris)] powder extracts (FGE) was estimated by DPPH free radical scavenging activity (SA) method. Total phenolics and reducing power were also estimated in these extracts. The antioxidant potential of these extracts was also estimated in a meat model system. Total phenolics in FGE ranged from 66.9 ± 3.4 to 248.6 ± 11.1 mg TAE/gdw respectively which differed significantly (P < 0.01) among various groups. These extracts also showed remarkable DPPH radical scavenging activity (43.9 ± 1.1 % to 69.9 ± 2.9 %). The reducing powerOD700 was observed maximum (P < 0.01) in sprouted mung bean extract as compared to corn powder extract. The correlation between DPPH free radical SA v/s total phenolics was significant (P < 0.01) with R = 0.775. correlation between DPPH free radical SA v/s reducing power and total phenolics v/s reducing power was also significant (P < 0.01) with R value 0.907 and 0.682 respectively. FGE treated raw chicken breast meat showed better (P < 0.01) oxidative stability than control groups. PMID:26396344

  9. [Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems].

    PubMed

    Zheng, You-fei; Hu, Cheng-da; Wu, Rong-jun; Liu, Rui-na; Zhao, Ze; Zhang, Jin-en

    2010-07-01

    Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched. Concrete expression of SOD activity first increased rapidly and then gradually decreased, the activity of POD showed a decrease firstly and then rapidly increased. From the jointing stage to the blooming stage and from the grain filling stage one to grain filling stage two, the activity of CAT rapidly increased first and then comparatively decreased, but the content of MDA kept steadily rising. The carotenoid content increased first and then decreased, heat dissipation of unit leaf area increased. These results indicate that antioxidant enzymes can not completely eliminate excessive reactive oxygen species in vivo of winter wheat, then lead to accumulation of reactive oxygen species, further exacerbate the lipid peroxidation, that result in the increase of membrane permeability, degradation of chlorophyll, reduction of net photosynthetic rate, imposing on the winter wheat leaves senescence process. PMID:20825039

  10. Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean.

    PubMed

    Hollmann, Gabriela; Ferreira, Gabrielle de Jesus; Geihs, Márcio Alberto; Vargas, Marcelo Alves; Nery, Luiz Eduardo Maia; Leitão, Álvaro; Linden, Rafael; Allodi, Silvana

    2015-03-01

    Ultraviolet (UV) radiation can produce biological damage, principally oxidative stress, by increasing the production of reactive oxygen species (ROS). This study evaluated biochemical impairments related to the oxidative stress induced by UVA, UVB and UVA+UVB (solar simulator-SIM) in environmental doses, during five consecutive days of exposure, in the brain and eyestalk of the crab Ucides cordatus. We evaluated these regions by sampling on the 1st, 3rd and 5th days of UV exposure for lipid peroxidation (LPO), antioxidant capacity against the peroxyl radical (ACAP), and the activities of catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Immunohistochemical and immunoblotting assays were performed for anti-activated-caspase 3 in the brains. After the first day of exposure, LPO increased in the eyestalks and brains of the UV-exposed animals; ACAP, and CAT, GPX and GST activities also increased in the brains. On the third day, the LPO values in the eyestalk remained high in the UV-exposed groups, while ACAP decreased in the brain and eyestalk and CAT activity remained high in all irradiated groups in both regions. On the fifth day, LPO decreased in the eyestalk and brain of the UV-exposed groups. These results may have been a consequence of the antioxidant defense system (ADS) activity, since CAT activity was high in both regions, ACAP was high in the eyestalks of the SIM group, and GPX activity remained high in the eyestalks of the UVA and UVB groups. Immunohistochemical assays and immunoblotting showed that there was apoptosis in the brains of the UV-exposed crabs. In conclusion, environmental doses of UV can cause oxidative damage to the CNS cells, including apoptosis.

  11. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol.

    PubMed

    Huang, Jin; Xu, Jianying; Tian, Lin; Zhong, Liangwei

    2014-02-01

    Long-term treatment with ambroxol (ABX), a bronchial expectorant, was found to prevent acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The underlying mechanism remains unclear. To address this, we have investigated the effect of ABX on critical antioxidant proteins thioredoxin (Trx) and thioredoxin reductase (TrxR) that are decreased in patients with AECOPD. Trx, TrxR and NADP(H) form Trx system, which is involved in regulating numerous oxidative stress-related events. In human bronchial epithelial cells, treatment with ABX from 0 to 200 μM gradually increased mRNA and protein levels of TrxR/Trx. At these ABX concentrations, TrxR activity was elevated progressively, whereas Trx activity exhibited a dose-dependent biphasic response, increasing at 50 and 75 μM, but decreasing at ABX over 150 μM. Pre-treatment with 75 μM ABX enhanced the capacity of the cells to eliminate reactive oxygen species, which was largely prevented by knockdown of cytosolic Trx (hTrx1). In a purified system, ABX shortened the initial lag phase during the reduction of insulin disulfide by Trx system. Pre-treatment of NADPH-reduced TrxR with ABX caused a dose- and time-dependent increase in thiolate/selenolate species, i.e. the catalytically active form of TrxR. Kinetic analysis demonstrated that the reduction of H2O2 by TrxR or Trx system were enhanced by 100 or 200 μM ABX. When hTrx1 was mixed with ABX in a molar ratio of 1:1 to 1:100 (which could occur in human plasma), changes in intrinsic Trp fluorescence occurred, and the response of reduced hTrx1 was especially remarkable. These data reveal an ABX-sensing mechanism of TrxR/Trx. We therefore conclude that the antioxidant actions of ABX at physiological concentrations are, at least partially, mediated by TrxR and/or Trx system.

  12. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol.

    PubMed

    Huang, Jin; Xu, Jianying; Tian, Lin; Zhong, Liangwei

    2014-02-01

    Long-term treatment with ambroxol (ABX), a bronchial expectorant, was found to prevent acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The underlying mechanism remains unclear. To address this, we have investigated the effect of ABX on critical antioxidant proteins thioredoxin (Trx) and thioredoxin reductase (TrxR) that are decreased in patients with AECOPD. Trx, TrxR and NADP(H) form Trx system, which is involved in regulating numerous oxidative stress-related events. In human bronchial epithelial cells, treatment with ABX from 0 to 200 μM gradually increased mRNA and protein levels of TrxR/Trx. At these ABX concentrations, TrxR activity was elevated progressively, whereas Trx activity exhibited a dose-dependent biphasic response, increasing at 50 and 75 μM, but decreasing at ABX over 150 μM. Pre-treatment with 75 μM ABX enhanced the capacity of the cells to eliminate reactive oxygen species, which was largely prevented by knockdown of cytosolic Trx (hTrx1). In a purified system, ABX shortened the initial lag phase during the reduction of insulin disulfide by Trx system. Pre-treatment of NADPH-reduced TrxR with ABX caused a dose- and time-dependent increase in thiolate/selenolate species, i.e. the catalytically active form of TrxR. Kinetic analysis demonstrated that the reduction of H2O2 by TrxR or Trx system were enhanced by 100 or 200 μM ABX. When hTrx1 was mixed with ABX in a molar ratio of 1:1 to 1:100 (which could occur in human plasma), changes in intrinsic Trp fluorescence occurred, and the response of reduced hTrx1 was especially remarkable. These data reveal an ABX-sensing mechanism of TrxR/Trx. We therefore conclude that the antioxidant actions of ABX at physiological concentrations are, at least partially, mediated by TrxR and/or Trx system. PMID:24103200

  13. Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil's claw root and garlic or salmon oil for antioxidant capacity.

    PubMed

    Betancor-Fernández, Alejandro; Pérez-Gálvez, Antonio; Sies, Helmut; Stahl, Wilhelm

    2003-07-01

    Pharmaceutical preparations derived from natural sources such as vegetables often contain compounds that contribute to the antioxidant defence system and apparently play a role in the protection against degenerative diseases. In the present study, commercial preparations containing extracts of turmeric, artichoke, devil's claw and garlic or salmon oil were investigated. The products were divided into fractions of different polarity, and their antioxidant activity was determined using the Trolox equivalent antioxidant capacity (TEAC) assay. This test is based on the efficacy of the test material to scavenge 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) derived radicals. Total phenols were determined in all fractions as well as specific carotenoids in the most lipophilic fraction to assess their contribution to the antioxidant activity. For comparison, the radical scavenging effect of selected constituents of the extracts such as curcumin, luteolin, kaempferol, chlorogenic acid, harpagoside, beta-carotene and alpha-tocopherol was investigated and compared with that of Trolox. Curcumin, luteolin, kaempferol, chlorogenic acid and beta-carotene showed an antioxidant activity superior to Trolox in the TEAC assay; harpagoside was barely active. All fractions of the turmeric extract preparation exhibited pronounced antioxidant activity, which was assigned to the presence of curcumin and other polyphenols. The antioxidant activity corresponding to the artichoke leaf extract was higher in the aqueous fractions than in the lipophilic fractions. Similarly, devil's claw extract was particularly rich in water-soluble antioxidants. Harpagoside, a major compound in devil's claw, did not contribute significantly to its antioxidant activity. The antioxidant capacity of the garlic preparation was poor in the TEAC assay. That of salmon oil was mainly attributed to vitamin E, which is added to the product for stabilization. In all test preparations, the antioxidant

  14. Cultivated Sea Lettuce is a Multiorgan Protector from Oxidative and Inflammatory Stress by Enhancing the Endogenous Antioxidant Defense System

    PubMed Central

    Ratnayake, Ranjala; Liu, Yanxia; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    The health-promoting effects of seaweeds have been linked to antioxidant activity that may counteract cancer-causing oxidative stress-induced damage and inflammation. While antioxidant activity is commonly associated with direct radical scavenging activity, an alternative way to increase the antioxidant status of a cell is to enhance the endogenous (phase II) defense system consisting of cytoprotective antioxidant enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). These enzymes are transcriptionally regulated by the antioxidant response element (ARE) via the transcription factor Nrf2. Extracts derived from cultivated Ulva sp., a green alga regarded as a marine vegetable (sea lettuce), potently activated the Nrf2-ARE pathway in IMR-32 neuroblastoma and LNCaP prostate cancer cells. RNA interference studies demonstrated that Nrf2 and PI3 kinase are essential for the phase II response in IMR-32 cells. Activity-enriched fractions induced Nrf2 nuclear translocation and target gene transcription, and boosted the cellular glutathione level and therefore antioxidant status. A single-dose gavage feeding of Ulva-derived fractions increased Nqo1 transcript levels in various organs. Nqo1 induction spiked in different tissues, depending on the specific chemical composition of each administered fraction. We purified and characterized four ARE inducers in this extract, including loliolide (1), isololiolide (2), a megastigmen (3), and a novel chlorinated unsaturated aldehyde (4). The ARE-active fractions attenuated lipopolysaccharide-induced iNOS and Cox2 gene expression in macrophagic RAW264.7 cells, decreasing nitric oxide (NO) and prostaglandin E2 (PGE2) production, respectively. Nqo1 activity and NO production were abrogated in nrf2−/− mouse embryonic fibroblasts, providing a direct link between the induction of phase II response and anti-inflammatory activity. PMID:24005795

  15. Prevention of Postoperative Atrial Fibrillation: Novel and Safe Strategy Based on the Modulation of the Antioxidant System

    PubMed Central

    Rodrigo, Ramón

    2012-01-01

    Postoperative atrial fibrillation (AF) is the most common arrhythmia following cardiac surgery with extracorporeal circulation. The pathogenesis of postoperative AF is multifactorial. Oxidative stress, caused by the unavoidable ischemia–reperfusion event occurring in this setting, is a major contributory factor. Reactive oxygen species (ROS)-derived effects could result in lipid peroxidation, protein carbonylation, or DNA oxidation of cardiac tissue, thus leading to functional and structural myocardial remodeling. The vulnerability of myocardial tissue to the oxidative challenge is also dependent on the activity of the antioxidant system. High ROS levels, overwhelming this system, should result in deleterious cellular effects, such as the induction of necrosis, apoptosis, or autophagy. Nevertheless, tissue exposure to low to moderate ROS levels could trigger a survival response with a trend to reinforce the antioxidant defense system. Administration of n−3 polyunsaturated fatty acids (PUFA), known to involve a moderate ROS production, is consistent with a diminished vulnerability to the development of postoperative AF. Accordingly, supplementation of n−3 PUFA successfully reduced the incidence of postoperative AF after coronary bypass grafting. This response is due to an up-regulation of antioxidant enzymes, as shown in experimental models. In turn, non-enzymatic antioxidant reinforcement through vitamin C administration prior to cardiac surgery has also reduced the postoperative AF incidence. Therefore, it should be expected that a mixed therapy result in an improvement of the cardioprotective effect by modulating both components of the antioxidant system. We present novel available evidence supporting the hypothesis of an effective prevention of postoperative AF including a two-step therapeutic strategy: n−3 PUFA followed by vitamin C supplementation to patients scheduled for cardiac surgery with extracorporeal circulation. The present study should

  16. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.).

    PubMed

    Cardeñosa, Vanessa; Girones-Vilaplana, Amadeo; Muriel, José Luis; Moreno, Diego A; Moreno-Rojas, José M

    2016-07-01

    Demand for and availability of blueberries has increased substantially over recent years, driven in part by their health-promoting properties. Three blueberry varieties ('Rocío', V2, and V3) were grown under two cultivation systems (open-field and plastic tunnels) and subjected to two irrigations regimes (100% and 80% of crop evapotranspiration) in two consecutive years (2011-2012). They were evaluated for their phytochemical composition and antioxidant capacity. Genotype influenced the antioxidant capacity and the content of the three groups of phenolics in the blueberries. The antioxidant activity and total flavonols content increased when the blueberries were grown under open-field conditions. Deficit irrigation conditions led to additional positive effects on their phenolics (delphinidn-3-acetilhexoside content was increased under plastic tunnel with deficit irrigation). In conclusion, the amount of phenolic compounds and the antioxidant capacity of blueberries were not negatively affected by water restriction; Moreover, several changes were recorded due to growing system and genotype. PMID:26920295

  17. [Lipid peroxidation and antioxidant defense system in rats after a 14-day space flight in the "Space-2044" spacecraft].

    PubMed

    Markin, A A; Zhuravlëva, O A

    1993-01-01

    After 14-day space flight of rats onboard Cosmos 2044 in their blood plasma, homogenates of liver, skeletal muscles and myocardium there were determined the parameters of peroxide oxidation of lipids (POL) and system of antioxidant defense: content of dienic conjugates (DC), malonic dialdehyde (MDA), schiff bases (SB), tocopherol (TF), total antioxidative activity (AOA, only in plasma), activity of antioxidative enzymes (only in tissues) superoxide (SOD), catalase, glutathione-peroxidase (GP), glutathione-reductase (GR). In the animal liver there was a decrease in SB content and an increase of SOD, catalase and GP activities. Skeletal muscles exhibited a reduced SB concentration. In myocardium there was a reduction of DC and SB levels, activity of GR with an increase of TF concentration, activity of SOD and catalase. In the blood plasma there occurred a decline of SB and TF contents and an elevation of MDA and total AOA concentrations. The authors drew a conclusion about a compensated process of POL in the tested animals and about the relation of the observed changes with body response to the final phase of the space mission and acute gravitational stress during a readaptation to the Earth environments. On the basis of the analysis of similar data from shorter-duration space experiments, the noted changes in the parameters of the system of POL and antioxidant defense are considered a universal response which does not directly depend on duration of the orbital phase of a space mission.

  18. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis.

    PubMed

    Rabe, Franziska; Ajami-Rashidi, Ziba; Doehlemann, Gunther; Kahmann, Regine; Djamei, Armin

    2013-07-01

    Salicylic acid (SA) is a key plant defence hormone which plays an important role in local and systemic defence responses against biotrophic pathogens like the smut fungus Ustilago maydis. Here we identified Shy1, a cytoplasmic U. maydis salicylate hydroxylase which has orthologues in the closely related smuts Ustilago hordei and Sporisorium reilianum. shy1 is transcriptionally induced during the biotrophic stages of development but not required for virulence during seedling infection. Shy1 activity is needed for growth on plates with SA as a sole carbon source. The trigger for shy1 transcriptional induction is SA, suggesting the possibility of a SA sensing mechanism in this fungus.

  19. [Analysis of the applicability of model systems to measuring the activity of lipid-soluble antioxidants by the electrochemiluminescent method].

    PubMed

    Lukin, Iu L

    1976-11-01

    A comparative study of two most common model systems (methanol-sodium citrate and chloroform-aceton-maleic acid (10(-3) M)) was carried out to measure lipid-soluble antioxidants by the method of electrochemiluminescence. alpha-naftole, pyrogalole, phenole, hydroquinone, acrylamide, cholesterine and alkohol lipid extract from rat liver were used as inhibitors. The analysis has shown that it is worthwhile to apply only the system chloroform-aceton-maleic acid as a model of electroluminescent studies.

  20. Abrus precatorius Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

    PubMed Central

    Reddy Palvai, Vanitha; Mahalingu, Sowmya; Urooj, Asna

    2014-01-01

    Natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. Antioxidant constituents of plant materials act as radical scavengers and convert the radicals to less reactive species. Abrus precatorius (AP) was analyzed for its proximate and phytochemical composition. The leaves were extracted with methanol (ME) and analyzed for antioxidant activity by radical scavenging method, reducing power, ferric reducing capacity, and in vitro inhibition of Fenton's reagent-induced oxidation in oil emulsion and microsomes. In addition, the effect of temperature (100°C, 15, and 30 min) and pH (4.5, 7, and 9) C on the antioxidant activity of ME was investigated. The leaves were rich in total polyphenols, flavonoids, β-carotene, glutathione, α-tocopherol, and ascorbic acid. The ME exhibited varying degree of antioxidant activity in a dose-dependent manner. The AP exhibited more inhibition of oxidation in microsomes (73%) than compared to oil emulsion (21%). Heat treatment resulted in an increase of radical scavenging activity of extract (28% to 43%). At pH 4.5 the extract exhibited more antioxidant activity and stability compared to pH 7 and 9. Data indicates that potential exists for the utilization of Abrus precatorius as a natural antioxidant. PMID:25383222

  1. Reproducing butterflies do not increase intake of antioxidants when they could benefit from them.

    PubMed

    Beaulieu, Michaël; Bischofberger, Ines; Lorenz, Isabel; Scheelen, Lucie; Fischer, Klaus

    2016-02-01

    The significance of dietary antioxidants may be limited by the ability of animals to exploit them. However, past studies have focused on the effects of dietary antioxidants after 'antioxidant forced-feeding', and have overlooked spontaneous antioxidant intake. Here, we found that reproducing female Bicyclus anynana butterflies had higher antioxidant defences and enhanced fecundity when forced to consume antioxidants (polyphenols). Interestingly, these positive effects were not constant across the oviposition period. When given the choice between food resources with and without antioxidants, reproducing butterflies did not target antioxidants when they could have benefited the most from them. Moreover, they did not consume more antioxidants than non-reproducing butterflies. These results emphasize that, despite potential positive effects of dietary antioxidants, the ability of animals to exploit them is likely to restrict their ecological significance.

  2. Development of different comprehensive two dimensional systems for the separation of phenolic antioxidants.

    PubMed

    Cacciola, Francesco; Jandera, Pavel; Blahová, Eva; Mondello, Luigi

    2006-11-01

    Three different comprehensive 2-D HPLC systems for the separation of phenolic antioxidants have been developed on the basis of different selectivities of a PEG-silica column in the first dimension and a packed or monolithic C18 or a ZR-CARBON column, respectively, in the second dimension. Two-dimensional comprehensive liquid chromatography using a serially connected short PEG-silica column and a conventional C18-silica or a ZR-CARBON column in the second dimension was tested to improve the resolution of the earlier eluting compounds in the first dimension. Various types of interface were used to connect the columns in the first and in the second dimension: i) two injection sampling loops of 100 microL in conventional arrangement; ii) a 10-port 2-position valve equipped with two trapping X-Terra columns instead of loops; and iii) two analytical D2 columns in parallel. The mobile phase in the first dimension has a lower elution strength than in the second dimension, allowing band compression of the solutes transferred from the first to the second dimension. This effect was enhanced using trapping columns instead of sampling loops as the interface between the two dimensions, thus allowing a decrease in the time of analysis. These systems were used for the analysis of beer samples. The relative location of the components in the 2-D retention plane varied in relation to their chemical structure in each instrumental set-up and allowed positive peak identification. PMID:17154131

  3. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems.

    PubMed

    Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon

    2005-09-01

    Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.

  4. Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems.

    PubMed

    Yin, Jie; Becker, Eleonora Miquel; Andersen, Mogens L; Skibsted, Leif H

    2012-12-15

    The antioxidant effects of α-tocopherol (TOH) in combination with green tea extract (GTE), the green tea polyphenol (-)-epicatechin (EC) or the isomeric (+)-catechin (C), were investigated using different lipid systems based on high linoleic sunflower oil: bulk oil, o/w-emulsion and a phosphatidylcholine-based liposome system. Both polyphenols as well as TOH were efficient antioxidants in all systems when used alone, as detected by the formation of free radicals and conjugated dienes and by oxygen consumption. Strong synergistic effect was found for the combination of TOH and GTE in a methyl linoleate o/w-emulsion and in the pure bulk oil, while only an additive effect was observed in a liposome system. The synergism was already evident for the tendency for radical formation in the bulk oil as detected by electron spin resonance (ESR) spectroscopy. On the contrary, combinations of TOH with either EC or C showed clear synergistic effects in both heterogeneous systems, but antagonistic or additive effects in bulk oil. GTE may accordingly be used to protect both vegetable oils and their emulsions against oxidation through enhancement of the activity of their endogenous antioxidants, while GTE is less efficient in the protection of phospholipids as in liposomes.

  5. Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza.

    PubMed

    Song, Hui; Wang, You-Shao; Sun, Cui-Ci; Wang, Yu-Tu; Peng, Ya-Lan; Cheng, Hao

    2012-08-01

    The effects of polycyclic aromatic hydrocarbon (PAH) (pyrene) on superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase, peroxidase, malondialdehyde (MDA) and proline were studied in leaves, stems and roots of Bruguiera gymnorrhiza. The results showed that the responses of enzymatic and non-enzymatic antioxidants varied significantly among the three tissues studied. The activities of antioxidant enzymes in PAH-treated stems and roots fluctuated in different stress levels compared to the controls, while the antioxidant enzymes such as SOD, APX in leaves increased when stressed by PAH with a significant positive relation between PAH and leaf SOD or APX activity. Low PAH treatments could also stimulate proline in leaves and stems. MDA content was obviously accumulated in stems and roots under PAH stress while decreased in leaves, indicating that the increased antioxidant enzymes in leaves may partly alleviate lipid peroxidation. For pollution monitoring purpose, SOD and APX in leaves may be potential biomarkers of PAH pollution in intertidal estuaries.

  6. Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758).

    PubMed

    Koziorowska-Gilun, M; Gilun, P; Fraser, L; Koziorowski, M; Kordan, W; Stefanczyk-Krzymowska, S

    2013-02-01

    Antioxidants in the male reproductive tract are the main defence factors against oxidative stress caused by reactive oxygen species production, which compromises sperm function and male fertility. This study was designed to determine the activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the testicular and epididymidal tissues of adult male European bison (Bison bonasus). The reproductive tract tissues were subjected to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to quantify mRNA expression levels of five antioxidant enzymes: copper/zinc SOD (Cu/Zn SOD), secretory extracellular SOD (Ec-SOD), CAT, phospholipid hydroperoxide glutathione peroxidase (PHGPx) and GPx5. The corpus and cauda epididymidal tissues displayed greater (p < 0.05) SOD activity compared with the testicular tissue. It was found that CAT activity was lowest (p < 0.05) in the cauda epididymidis, whereas negligible GPx activity was detected in the reproductive tract tissues. There were no detectable differences in the mRNA expression level of Cu/Zn SOD among the different reproductive tract tissues. Small amounts of Ec-SOD mRNA were found in the reproductive tract, particularly in the epididymides. The caput and cauda epididymides exhibited greater (p < 0.05) level of CAT mRNA expression, whereas PHGPx mRNA was more (p < 0.05) expressed in the testis. Furthermore, extremely large amounts of GPx5 mRNA were detected in the caput epididymidal tissue compared with other tissues of the reproductive tract. It can be suggested that the activity of the antioxidant enzymes and the relative gene expression of the enzymes confirm the presence of tissue-specific antioxidant defence systems in the bison reproductive tract, which are required for spermatogenesis, epididymal maturation and storage of spermatozoa.

  7. Herbivory: Caterpillar saliva beats plant defences

    NASA Astrophysics Data System (ADS)

    Musser, Richard O.; Hum-Musser, Sue M.; Eichenseer, Herb; Peiffer, Michelle; Ervin, Gary; Murphy, J. Brad; Felton, Gary W.

    2002-04-01

    Blood-feeding arthropods secrete special salivary proteins that suppress the defensive reaction they induce in their hosts. This is in contrast to herbivores, which are thought to be helpless victims of plant defences elicited by their oral secretions. On the basis of the finding that caterpillar regurgitant can reduce the amount of toxic nicotine released by the tobacco plant Nicotiana tabacum, we investigate here whether specific salivary components from the caterpillar Helicoverpa zea might be responsible for this suppression. We find that the enzyme glucose oxidase counteracts the production of nicotine induced by the caterpillar feeding on the plant.

  8. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis. PMID:27573580

  9. Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants

    PubMed Central

    Jameson, Victoria J.A.; Cochemé, Helena M.; Logan, Angela; Hanton, Lyall R.; Smith, Robin A.J.; Murphy, Michael P.

    2015-01-01

    A series of mitochondria-targeted antioxidants comprising a lipophilic triphenylphosphonium cation attached to the antioxidant chroman moiety of vitamin E by an alkyl linker have been prepared. The synthesis of a series of mitochondria-targeted vitamin E derivatives with a range of alkyl linkers gave compounds of different hydrophobicities. This work will enable the dependence of antioxidant defence on hydrophobicity to be determined in vivo. PMID:26549895

  10. In Defence of Multimodal Re-Signification: A Response to Havard Skaar's "In Defence of Writing"

    ERIC Educational Resources Information Center

    Adami, Elisabetta

    2011-01-01

    Responding to "In defence of writing" by Havard Skaar, published in issue 43.1 of this journal (April 2009), the present article argues that (1) compared with text production "from scratch," producing texts through copy-and-paste requires a different type of--rather than less--semiotic work, and that (2) digitally produced writing may involve the…

  11. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato.

    PubMed

    Ahammed, Golam Jalal; Ruan, Yi-Ping; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2013-03-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants often found in the atmosphere. Phytoremediation of airborne PCBs is an emerging new concept to minimize potential human exposure. However, effects of atmospheric PCBs on plant growth, photosynthesis and antioxidant defence system are poorly understood area. Brassinosteroids have been reported to alleviate different abiotic stresses including organic pollutants-induced stress. Hence, we studied the effects of PCBs and 24-epibrassinolide (EBR) on biomass accumulation, photosynthetic machinery and antioxidant system in tomato plants. PCBs (0.4, 2.0 and 10 μg/l) mist spray significantly decreased dry weight, photosynthesis, chlorophyll contents in a dose dependent manner. Both stomatal and non-stomatal factors were involved in PCBs-induced photosynthetic inhibition. Likewise, the maximal photochemical efficiency of PSII (Fv/Fm), the quantum efficiency of PSII photochemistry (Φ(PSII)) and photochemical quenching coefficient were increasingly decreased by various levels of PCBs, suggesting an induction of photoinhibition. Increased accumulation of H(2)O(2) and O(2)(-) accompanied with high lipid peroxidation confirmed occurrence of oxidative stress upon PCBs exposure. Meanwhile, antioxidant enzymes activity was decreased following exposure to PCBs. Foliar application of EBR (100 nM) increased biomass, photosynthetic capacity, chlorophyll contents and alleviated photoinhibition by enhancing Fv/Fm, Φ(PSII) and qP. EBR significantly decreased harmful ROS accumulation and lipid peroxidation through the induction of antioxidant enzymes activity. Our results suggest a protective role of EBR against PCBs stress which may strengthen phytoremediation approaches by enhancing plant tolerance.

  12. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide.

    PubMed

    Taira, Junsei; Tsuchida, Eito; Katoh, Megumi C; Uehara, Masatsugu; Ogi, Takayuki

    2015-01-01

    This study was designed to assess the antioxidant capacity of betacyanins as indole derived plant pigments, such as betanin, phyllocactin and betanidin. The antioxidant capacity of the betacyanins was evaluated as an index of radical scavenging ability using the peroxyl radical generating system in the presence of AAPH and NO generating system using NOR3 as an NO donor. The peroxyl radical scavenging capacity was dose-dependent in the low concentration range (25-100 nM). The mol-Trolox equivalent activity/mol compound (mol-TEA/mol-compound) as an index of the antioxidant capacity indicated the following order at 10.70 ± 0.01, 3.31 ± 0.14 and 2.83 ± 0.01 mol-TEA/mol-compound for betanidin, betanin and phyllocactin, respectively. In addition, betacyanins reduced the nitrite-level in the low concentration range of 2.5-20 μM. The IC₅₀ values (μM) of nitrogen radical scavenging activity were 24.48, 17.51 and 6.81 for betanin, phyllocactin and betanidin. ESR studies provided evidence that the compounds directly scavenged NO. These results indicated that betacyanins have a strong antioxidant capacity, particularly betanidin with a catechol group had higher activity than those of the glycoside of betacyanins. This study demonstrated that the betacyanins will be useful as natural pigments to provide defence against oxidative stress.

  13. Comparative genomics tools applied to bioterrorism defence.

    PubMed

    Slezak, Tom; Kuczmarski, Tom; Ott, Linda; Torres, Clinton; Medeiros, Dan; Smith, Jason; Truitt, Brian; Mulakken, Nisha; Lam, Marisa; Vitalis, Elizabeth; Zemla, Adam; Zhou, Carol Ecale; Gardner, Shea

    2003-06-01

    Rapid advances in the genomic sequencing of bacteria and viruses over the past few years have made it possible to consider sequencing the genomes of all pathogens that affect humans and the crops and livestock upon which our lives depend. Recent events make it imperative that full genome sequencing be accomplished as soon as possible for pathogens that could be used as weapons of mass destruction or disruption. This sequence information must be exploited to provide rapid and accurate diagnostics to identify pathogens and distinguish them from harmless near-neighbours and hoaxes. The Chem-Bio Non-Proliferation (CBNP) programme of the US Department of Energy (DOE) began a large-scale effort of pathogen detection in early 2000 when it was announced that the DOE would be providing bio-security at the 2002 Winter Olympic Games in Salt Lake City, Utah. Our team at the Lawrence Livermore National Lab (LLNL) was given the task of developing reliable and validated assays for a number of the most likely bioterrorist agents. The short timeline led us to devise a novel system that utilised whole-genome comparison methods to rapidly focus on parts of the pathogen genomes that had a high probability of being unique. Assays developed with this approach have been validated by the Centers for Disease Control (CDC). They were used at the 2002 Winter Olympics, have entered the public health system, and have been in continual use for non-publicised aspects of homeland defence since autumn 2001. Assays have been developed for all major threat list agents for which adequate genomic sequence is available, as well as for other pathogens requested by various government agencies. Collaborations with comparative genomics algorithm developers have enabled our LLNL team to make major advances in pathogen detection, since many of the existing tools simply did not scale well enough to be of practical use for this application. It is hoped that a discussion of a real-life practical application of

  14. Quantitative electron spin resonance (ESR) analysis of antioxidative properties using the acetaldehyde/xanthine oxidase system

    NASA Astrophysics Data System (ADS)

    Souchard, J.-P.; Nepveu, F.

    1998-05-01

    We present a method for the quantitative ESR analysis of the antioxidant properties of drugs using the acetaldhehyde/xanthine oxidase (AC/XOD) superoxide generating system and 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as spin trap. In stoichiometric conditions (AC/XOD, 60 mM/0.018 U), the resulting paramagnetic DMPO adduct disappeared with superoxide dismutase and remained when catalase or DMSO were used. That adduct was dependent only on superoxide and resulted from the trapping of a carboxyl radical by DMPO (aN = 15.2 G, aH = 18.9 G). Similar results were obtained using 4-pyridyl-l-oxide-N-t-butyl nitrone (POBN) as spin trap. The ESR signal of the DMPO-CO2- adduct was very stable and allowed quantitative analysis of the antioxidative activity of redox molecules from an IC{50} value representing the concentration causing 50% inhibition of its intensity. Among the tested compounds, manganese(II), complexes were the most effective, 25 times as active as ascorbic acid or (+)catechin and 500-fold more antioxidative than Trolox^R. Nous présentons une méthode d'analyse quantitative de l'activité antioxydante de composés d'intérêt pharmaceutique basée sur le système acétaldéhyde/xanthine oxydase (AC/XOD), l'utilisation de la RPE et du piégeage de spin avec le 5,5-diméthyl-l-pyrroline-N-oxyde (DMPO). Dans les conditions stoechiométriques {AC/XOD, 60 mM/0,018 U/ml}, l'adduit radicalaire résultant de ce système disparaît en présence de superoxyde dismutase et persiste en présence de catalase ou de DMSO. Cet adduit ne dépend que de la présence de l'anion superoxyde et provient du piégeage d'un radical carboxyle CO2- sur le DMPO (aN = 15.2 G, aH = 18.9 G). Des résultats similaires ont été obtenus avec le piégeur de spin 4-pyridyl-l-oxyde-N-t-butyl nitrone (POBN). Le signal RPE de l'adduit DMPO-CO2- est très stable et permet la quantification de l'activité antioxydante de pharmacophores redox par la détermination de la CI{50}, concentration qui

  15. [Effects of cadmium stress on the antioxidative system in Ganoderma lucidum mycelia].

    PubMed

    Wang, Song-Hua; Zhang, Hua; Cui, Yuan-Rong; He, Qing-Yuan; Zhang, Qiang

    2008-06-01

    The study on the effects of different concentration (0, 10, 50, 100, 200 and 400 micromol x L(-1)) cadmium (Cd) on the antioxidative system in Ganoderma lucidum mycelia indicated that with increasing concentration of Cd, the fresh mass and the proline, total polysaccharides, and reduced polysaccharides contents of G. lucidum mycelia decreased, but non-protein thiol (NPT) content increased. At 400 micromol x L(-1) of Cd, the NPT content increased dramatically, being 5.7 times higher than control. Within the range of test Cd concentrations, the activities of CAT, GR and POD increased first and decreased then, with the peak at 100 micromol x L(-1) of Cd, while the activities of LOX and SOD increased with increasing Cd concentration, with the maximum at 400 micromol x L(-1) of Cd. Polyacrylamide gel electrophoresis analysis revealed that 100-400 micromol x L(-1) of Cd induced two additional isozymes bands of Mn-SOD, 10-200 micromol x L(-1) of Cd increased the intensity of constitutive isozymes of CAT, POD, SOD and LOX, while 400 micromol x L(-1) of Cd decreased the intensity of isozymes of POD significantly.

  16. Low Concentrations of Hydrogen Peroxide Activate the Antioxidant Defense System in Human Sperm Cells.

    PubMed

    Evdokimov, V V; Barinova, K V; Turovetskii, V B; Muronetz, V I; Schmalhausen, E V

    2015-09-01

    The effect of low concentrations of hydrogen peroxide (10-100 µM) on sperm motility and on the activity of the sperm enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDS) was investigated. Incubation of semen samples with 10 and 100 µM hydrogen peroxide increased the content of spermatozoa with progressive motility by 20 and 18%, respectively, and enhanced the activity of GAPDS in the sperm cells by 27 and 20% compared to a semen sample incubated without additions. It was also found that incubation with 10 µM hydrogen peroxide increased the content of reduced glutathione (GSH) in sperm cells by 50% on average compared to that in the control samples. It is supposed that low concentrations of hydrogen peroxide activate the pentose phosphate pathway, resulting in NADPH synthesis and the reduction of the oxidized glutathione by glutathione reductase yielding GSH. The formed GSH reduces the oxidized cysteine residues of the GAPDS active site, increasing the activity of the enzyme, which in turn enhances the content of sperm cells with progressive motility. Thus, the increase in motile spermatozoa in the presence of low concentrations of hydrogen peroxide can serve as an indicator of normal functioning of the antioxidant defense system in sperm cells.

  17. Modulation of glutathione-related antioxidant defense system of fish chronically treated by the fungicide propiconazole.

    PubMed

    Li, Zhi-Hua; Zlabek, Vladimir; Grabic, Roman; Li, Ping; Randak, Tomas

    2010-09-01

    Recently, residual fungicides are generally recognized as relevant sources of aquatic environmental pollutants. However, the toxicological effects of these contaminants have not been adequately researched. In this study, the chronic effect of PCZ, a triazole-containing fungicide commonly present in aquatic environment, on GSH-related antioxidant system and oxidative stress indices of rainbow trout (Oncorhynchus mykiss) were investigated. Fish were exposed at sub-lethal concentrations of PCZ (0.2, 50 and 500 microg/L) for 7, 20 and 30 days. GSH levels and GSH-related enzyme activities, including GPx, GR and GST, were quantified in three tissues-liver, gill and muscle. The levels of LPO and CP were also measured as makers of oxidative damage. In addition, the correlations of the measured parameters in various tissues were evaluated by using PCA. The results of this study indicate that chronic exposure of PCZ has resulted in different responses in various tissues and the gill was the most sensitive tissue; however, before these parameters are used as potential biomarkers for monitoring residual fungicides in aquatic environment, more detailed experiments in laboratory need to be performed in the future.

  18. Potassium contributes to zinc stress tolerance in peach (Prunus persica) seedlings by enhancing photosynthesis and the antioxidant defense system.

    PubMed

    Song, Z Z; Duan, C L; Guo, S L; Yang, Y; Feng, Y F; Ma, R J; Yu, M L

    2015-07-27

    Zinc (Zn) is considered to be a major industrial pollutant because excessive amounts can impair plant growth. In this paper, we found that peach 'Yoshihime' seedlings are promising Zn tolerant plants. However, heavy Zn toxicity (2 mM) damaged plant performance by disrupting biochemical processes, including photosynthesis, proline production, and K(+) nutrition. Notably, elevated external K(+) supply (10 mM) alleviated peach seedlings from Zn toxicity, evidenced by enhanced photosynthesis, antioxidant defense systems, and plant K(+) nutritional status. Moreover, the transcript levels of KUP (K(+) uptake) genes involved in K(+) acquisition, transport, and homeostasis were significantly upregulated following supply of sufficient K(+) upon Zn toxicity. In general, K(+) favorably contributes to improvements in internal K(+) homeostasis, via the help of K(+) transporters, further protecting plant photosynthesis and the antioxidative defense system. Our findings further benefit the study of the mechanisms underpinning heavy metal tolerance in woody plants.

  19. An Apparent Trade-Off between Direct and Signal-Based Induced Indirect Defence against Herbivores in Willow Trees

    PubMed Central

    Yoneya, Kinuyo; Uefune, Masayoshi; Takabayashi, Junji

    2012-01-01

    Signal-based induced indirect defence refers to herbivore-induced production of plant volatiles that attract carnivorous natural enemies of herbivores. Relationships between direct and indirect defence strategies were studied using tritrophic systems consisting of six sympatric willow species, willow leaf beetles (Plagiodera versicolora), and their natural predators, ladybeetles (Aiolocaria hexaspilota). Relative preferences of ladybeetles for prey-infested willow plant volatiles, indicating levels of signal-based induced indirect defence, were positively correlated with the vulnerability of willow species to leaf beetles, assigned as relative levels of direct defence. This correlation suggested a possible trade-off among the species, in terms of resource limitation between direct defence and signal-based induced indirect defence. However, analyses of volatiles from infested and uninfested plants showed that the specificity of infested volatile blends (an important factor determining the costs of signal-based induced indirect defence) did not affect the attractiveness of infested plant volatiles. Thus, the suggested trade-off in resource limitation was unlikely. Rather, principal coordinates analysis showed that this ‘apparent trade-off’ between direct and signal-based induced indirect defence was partially explained by differential preferences of ladybeetles to infested plant volatiles of the six willow species. We also showed that relative preferences of ladybeetles for prey-infested willow plant volatiles were positively correlated with oviposition preferences of leaf beetles and with the distributions of leaf beetles in the field. These correlations suggest that ladybeetles use the specificity of infested willow plant volatiles to find suitable prey patches. PMID:23251559

  20. The synthetic cationic lipid diC14 activates a sector of the Arabidopsis defence network requiring endogenous signalling components.

    PubMed

    Cambiagno, Damián Alejandro; Lonez, Caroline; Ruysschaert, Jean-Marie; Alvarez, María Elena

    2015-12-01

    Natural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified. In animal cells, nanoliposomes of the synthetic cationic lipid 3-tetradecylamino-tert-butyl-N-tetradecylpropionamidine (diC14) activate the TLR4-dependent immune cascade. Here, we have investigated whether this lipid induces Arabidopsis defence responses. At the local level, diC14 activated early and late defence gene markers (FRK1, WRKY29, ICS1 and PR1), acting in a dose-dependent manner. This lipid induced the salicylic acid (SA)-dependent, but not jasmonic acid (JA)-dependent, pathway and protected plants against Pseudomonas syringae pv. tomato (Pst), but not Botrytis cinerea. diC14 was not toxic to plant or pathogen, and potentiated pathogen-induced callose deposition. At the systemic level, diC14 induced PR1 expression and conferred resistance against Pst. diC14-induced defence responses required the signalling protein EDS1, but not NDR1. Curiously, the lipid-induced defence gene expression was lower in the fls2/efr/cerk1 triple mutant, but still unchanged in the single mutants. The amidine headgroup and chain length were important for its activity. Given the robustness of the responses triggered by diC14, its specific action on a defence pathway and the requirement for well-known defence components, this synthetic lipid is emerging as a useful tool to investigate the initial events involved in plant innate immunity.

  1. Heterogeneous Role of the Glutathione Antioxidant System in Modulating the Response of ESFT to Fenretinide in Normoxia and Hypoxia

    PubMed Central

    Magwere, Tapiwanashe; Burchill, Susan A.

    2011-01-01

    Glutathione (GSH) is implicated in drug resistance mechanisms of several cancers and is a key regulator of cell death pathways within cells. We studied Ewing's sarcoma family of tumours (ESFT) cell lines and three mechanistically distinct anticancer agents (fenretinide, doxorubicin, and vincristine) to investigate whether the GSH antioxidant system is involved in the reduced sensitivity to these chemotherapeutic agents in hypoxia. Cell viability and death were assessed by the trypan blue exclusion assay and annexin V-PI staining, respectively. Hypoxia significantly decreased the sensitivity of all ESFT cell lines to fenretinide-induced death, whereas the effect of doxorubicin or vincristine was marginal and cell-line-specific. The response of the GSH antioxidant system in ESFT cell lines to hypoxia was variable and also cell-line-specific, although the level of GSH appeared to be most dependent on de novo biosynthesis rather than recycling. RNAi-mediated knockdown of key GSH regulatory enzymes γ-glutamylcysteine synthetase or glutathione disulfide reductase partially reversed the hypoxia-induced resistance to fenretinide, and increasing GSH levels using N-acetylcysteine augmented the hypoxia-induced resistance in a cell line-specific manner. These observations are consistent with the conclusion that the role of the GSH antioxidant system in modulating the sensitivity of ESFT cells to fenretinide is heterogeneous depending on environment and cell type. This is likely to limit the value of targeting GSH as a therapeutic strategy to overcome hypoxia-induced drug resistance in ESFT. Whether targeting the GSH antioxidant system in conjunction with other therapeutics may benefit some patients with ESFT remains to be seen. PMID:22174837

  2. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel

  3. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    SciTech Connect

    Wang, Lu; Gallagher, Evan P.

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  4. Science and outreach for planetary defence

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.

    2011-10-01

    The recent IAA Planetary Defence Conference held in Romania, focused on a hot topic: from Threat to Action. It is true that we ought to protect the planet but also educate the population in this direction. Increasing rumours about pseudo-scientific issues, such as the impact with asteroids, comets or debris of spatial missions, the effects of the growing solar activity, the displacement of the terrestrial rotation axis following major earthquakes, let alone spreading news about the end-of-the-world, show how crucial it is to prepare people to understand what is going on in the universe and, in particular, on our planet, and how to deal with inevitable events. Another central question is in order: who should be in charge of this education? Perhaps the journalists, but they lack the necessary preparation to present correct and updated information to the public. Or the scientists, but they are extremely busy and concentrated on their projects aimed at defending the planet and at answering the vast array of questions that their research stirs up. Our goal is to answer the following question: to what extent is it the scientist's responsibility and to what extent the journalist's to educate people for the planetary defence? In addition, we shall suggest how they can effectively co-ordinate efforts to solve the current problems of a society submerged in increasingly sophisticated but decreasingly informed technologies.

  5. Cooperation in defence against a predator.

    PubMed

    Garay, József

    2009-03-01

    The origin and the evolutionary stability of cooperation between unrelated individuals is one of the key problems of evolutionary biology. In this paper, a cooperative defence game against a predator is introduced which is based on Hamilton's selfish herd theory and Eshel's survival game models. Cooperation is altruistic in the sense that the individual, which is not the target of the predator, helps the members of the group attacked by the predator and during defensive action the helper individual may also die in any attack. In order to decrease the long term predation risk, this individual has to carry out a high risk action. Here I show that this kind of cooperative behaviour can evolve in small groups. The reason for the emergence of cooperation is that if the predator does not kill a mate of a cooperative individual, then the survival probability of the cooperative individual will increase in two cases. If the mate is non-cooperative, then-according to the dilution effect, the predator confusion effect and the higher predator vigilance-the survival probability of the cooperative individual increases. The second case is when the mate is cooperative, because a cooperative individual has a further gain, the active help in defence during further predator attacks. Thus, if an individual can increase the survival rate of its mates (no matter whether the mate is cooperative or not), then its own predation risk will decrease.

  6. Antioxidant activity and inhibitory effects of lead (Leucaena leucocephala) seed extracts against lipid oxidation in model systems.

    PubMed

    Benjakul, Soottawat; Kittiphattanabawon, Phanat; Shahidi, Fereidoon; Maqsood, Sajid

    2013-08-01

    Antioxidant activity of brown lead (Leucaena leucocephala) seed extracts with and without prior chlorophyll removal was studied in comparison with mimosine. Both extracts showed similar hydroxyl radical (HO(•)) scavenging activity, hydrogen peroxide (H2O2) scavenging activity, singlet oxygen inhibition and hypochlorous acid (HOCl) scavenging capacity (p > 0.05). Nevertheless, the extract without prior chlorophyll removal had higher oxygen radical absorbance capacity than that with prior chlorophyll removal (p < 0.05). Generally, lead seed extracts with and without prior chlorophyll removal possessed a lower antioxidant activity, compared with mimosine. When lead seed extract without prior chlorophyll removal (100 and 200 ppm) was used in different lipid oxidation model systems, including β-carotene-linoleic acid and lecithin liposome systems, the preventive effect toward lipid oxidation was dose-dependent. At the same level of use, mimosine exhibited a higher efficacy in prevention of lipid oxidation in both systems as indicated by the lower increases in thiobarbituric acid reactive substances. A similar result was obtained in minced mackerel. Therefore, lead seed extract containing mimosine could act as a natural antioxidant to prevent lipid oxidation in foods. PMID:23729420

  7. Eriocalyxin B-induced apoptosis in pancreatic adenocarcinoma cells through thiol-containing antioxidant systems and downstream signalling pathways.

    PubMed

    Li, L; Yue, G G L; Pu, J X; Sun, H D; Fung, K P; Leung, P C; Han, Q B; Lau, C B S; Leung, P S

    2014-01-01

    Thiol-containing antioxidant systems play an important role in regulating cellular redox homeostasis. Several anti-cancer agents act by targeting these systems by inducing the production of reactive oxygen species (ROS). Our earlier studies have shown that Eriocalyxin B (EriB), a diterpenoid isolated from Isodon eriocalyx, possesses anti-pancreatic tumour activities in vitro and in vivo. The present study further demonstrated that only thiol-containing antioxidants, N-acetylcysteine (NAC) or dithiothreitol (DTT), inhibited EriB-induced cytotoxicity and apoptosis. EriB suppressed the glutathione and thioredoxin antioxidant systems, thus increasing the intracellular ROS levels and regulating the MAPK, NFκB pathways. Treatment with EriB depleted the intracellular thiol-containing proteins in CAPAN-2 cells. In vivo studies also showed that EriB treatment (2.5 mg/kg) reduced the pancreatic tumour weights significantly in nude mice with increased superoxide levels. Taken together, our results shed important new light on the molecular mechanisms of EriB acting as an apoptogenic agent and its therapeutic potential for pancreatic cancer. PMID:24894173

  8. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.

    PubMed

    Barbehenn, R V; Bumgarner, S L; Roosen, E F; Martin, M M

    2001-04-01

    This study demonstrates that an ascorbate-recycling system in the midgut lumen can act as an effective antioxidant defense in caterpillars that feed on prooxidant-rich foods. In tannin-sensitive larvae of the forest tent caterpillar, Malacosoma disstria (Lasiocampidae), ingested tannic acid is oxidized in the midgut lumen, generating significant quantities of peroxides, including hydrogen peroxide, which readily diffuses across cell membranes and is a powerful cytotoxin. By contrast, in the tannin-tolerant larvae of the white-marked tussock moth, Orgyia leucostigma (Lymantriidae), tannic acid oxidation and the generation of peroxides are suppressed. The superior defense of O. leucostigma against oxidative stress imposed by the oxidation of ingested polyphenols can be explained by the presence of higher concentrations of ascorbate and glutathione in the midgut lumen. In O. leucostigma at least 50% of the ingested ascorbate present in the anterior midgut is still present in the posterior midgut, whereas in M. disstria, only 10% of the ascorbate is present in the posterior half of the midgut. We propose that the maintenance of higher levels of ascorbate in the midgut lumen of O. leucostigma than in M. disstria is explained by the secretion of glutathione into the midgut lumen by O. leucostigma, thereby forming a complete ascorbate-recycling system. The concentration of glutathione in the midgut lumen of O. leucostigma is 3.5-fold higher than in M. disstria and more than double the concentration in the diet. Our results emphasize the importance of a defensive strategy in herbivorous insects based on the maintenance of conditions in the gut lumen that reduce or eliminate the potential prooxidant behavior of ingested phenols.

  9. Effects of ionizing radiation on the antioxidant system of microscopic fungi with radioadaptive properties found in the Chernobyl exclusion zone.

    PubMed

    Tugay, Tatyana I; Zheltonozhskaya, Marina V; Sadovnikov, Leonid V; Tugay, Andrei V; Farfán, Eduardo B

    2011-10-01

    Some microscopic fungi found in the area of the Chernobyl Exclusion Zone appear to have unique radioadaptive properties associated with their capability to respond positively to the effects of ionizing irradiation. On the one hand, this capability can be used potentially in bio-remediation technologies, and on the other hand, it requires additional, more thorough studies to identify its underlying mechanisms. Practically, no data are currently available on mechanisms for implementation of these radioadaptive properties by microscopic fungi. The objective of the completed study was to evaluate the functioning of the antioxidant system of a microscopic fungus as one of potential mechanisms for implementation of its radioadaptive properties. The study was performed using a model system simulating the soil radioactivity in the 5-km zone around the Chernobyl Nuclear Power Plant, with the ratio of the radioactive isotopes matching the radionuclide content in the fuel component of the Chernobyl fallout. The completed study was the first ever performed to identify a comprehensive response of the major components of the antioxidant system of the microscopic fungi to ionizing radiation, resulting in an induced melanin synthesis and increased activity of the known enzymes of antioxidant protection. Their response to ionizing radiation depended on the presence or absence of radioadaptive properties and phase of the fungal growth. Fungi with radioadaptive properties have a much higher susceptibility for inducing synthesis of melanin and antioxidant enzymes than fungi without radioadaptive properties (hereinafter referred to as the reference species or strains), which illustrates the contribution of these processes to "radiophilia" of the fungi.

  10. Aggregation, defence and warning signals: the evolutionary relationship.

    PubMed

    Ruxton, Graeme D; Sherratt, Thomas N

    2006-10-01

    In a seminal contribution, Fisher argued how distastefulness could incrementally evolve in a prey species that was distributed in family groups. Many defended prey species occur in aggregations, but did aggregation facilitate the evolution of defence as Fisher proposed or did the possession of a defence allow individuals to enjoy the benefits of group living? Contemporary theory suggests that it can work both ways: pre-existing defences can make the evolution of gregariousness easier, but gregariousness can also aid the evolution of defence and warning signals. Unfortunately, the key phylogenetic analyses to elucidate the ordering of events have been hampered by the relative rarity of gregarious species, which in itself indicates that aggregation is not a pre-requisite for defence. Like the underlying theory, experimental studies have not given a definitive answer to the relative timing of the evolution of defence and aggregation, except to demonstrate that both orderings are possible. Conspicuous signals are unlikely to have evolved in the absence of a defence and aggregated undefended prey are likely to be vulnerable to predation in the absence of satiation effects. It therefore seems most likely that defence generally preceded the evolution of both aggregation and signalling, but alternative routes may well be possible.

  11. Computed Tomography Technology: Development and Applications for Defence

    SciTech Connect

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-09-26

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT and E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  12. Costs of inducible defence along a resource gradient.

    PubMed

    Brönmark, Christer; Lakowitz, Thomas; Nilsson, P Anders; Ahlgren, Johan; Lennartsdotter, Charlotte; Hollander, Johan

    2012-01-01

    In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness. PMID:22291961

  13. Computed Tomography Technology: Development and Applications for Defence

    NASA Astrophysics Data System (ADS)

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-09-01

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT&E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  14. Comparative analysis of passive defences in spiders (Araneae).

    PubMed

    Pekár, Stano

    2014-07-01

    Being frequent prey of many predators, including especially wasps and birds, spiders have evolved a variety of defence mechanisms. Here I studied patterns of passive defences, namely anachoresis, crypsis, masquerade, aposematism and Batesian mimicry, in spiders. Using published information pertaining more than 1000 spider species, the phylogenetic pattern of different passive defences (i.e. defences that decrease the risk of an encounter with the predator) was investigated. Furthermore, I studied the effect of foraging guild, geographical distribution and diel activity on the frequency of defences as these determine the predators diversity, presence and perception. I found that crypsis (background matching) combined with anachoresis (hiding) was the most frequent defence confined mainly to families/genera at the base of the tree. Aposematism (warning coloration) and Batesian mimicry (imitation of noxious/dangerous model) were found in taxa that branched later in the tree, and masquerade (imitation of inedible objects) was confined to families at intermediate positions of the tree. Aposematism and Batesian mimicry were restricted to a few lineages. Masquerade was used particularly by web-building species with nocturnal activity. Aposematism was rare but mainly used by web-building diurnal species. Batesian mimicry was frequently observed in cursorial species with diurnal activity. Cryptic species were more common in temperate zones, whereas aposematic and mimetic species were more common in the tropics. Here I show that the evolution of passive defences in spiders was influenced by the ecology of species. Then, I discuss the evolutionary significance of the particularly defences.

  15. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    PubMed

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  16. Influence of droplet size on the antioxidant activity of rosemary extract loaded oil-in-water emulsions in mixed systems.

    PubMed

    Erdmann, Martin E; Zeeb, Benjamin; Salminen, Hanna; Gibis, Monika; Lautenschlaeger, Ralf; Weiss, Jochen

    2015-03-01

    The influence of droplet size on the antioxidant activity of oil-in-water emulsions loaded with rosemary extract in mixed emulsion systems was investigated. Firstly, differently sized hexadecane-in-water model emulsions (10% (w/w) hexadecane, 2% (w/w) Tween 80, pH 5 or 7) containing 4000 ppm rosemary extract in the oil phase or without added antioxidant were prepared using a high shear blender and/or high-pressure homogenizer. Secondly, emulsions were mixed with fish oil-in-water emulsions (10% (w/w) fish oil, 2% (w/w) Tween 80, pH 5 or 7) at a mixing ratio of 1 : 1. Optical microscopy and static light scattering measurements indicated that emulsions were physically stable for 21 days, except for the slight aggregation of emulsions with a mean droplet size d₄₃ of 4500 nm. The droplet size of hexadecane-in-water emulsions containing rosemary extract had no influence on the formation of lipid hydroperoxides at pH 5 and 7. Significantly lower concentrations of propanal were observed for the emulsions loaded with rosemary extract with a mean droplet size d₄₃ of 4500 nm from day 12 to 16 at pH 7. Finally, hexadecane-in-water emulsions containing rosemary extract significantly retarded lipid oxidation of fish oil-in-water emulsions in mixed systems, but no differences in antioxidant efficacy between the differently sized emulsions were observed at pH 5.

  17. Sulfur Mediated Alleviation of Mn Toxicity in Polish Wheat Relates to Regulating Mn Allocation and Improving Antioxidant System

    PubMed Central

    Sheng, Huajin; Zeng, Jian; Liu, Yang; Wang, Xiaolu; Wang, Yi; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress, polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and up-regulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via up-regulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to polish wheat plant against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role.

  18. Sulfur Mediated Alleviation of Mn Toxicity in Polish Wheat Relates to Regulating Mn Allocation and Improving Antioxidant System

    PubMed Central

    Sheng, Huajin; Zeng, Jian; Liu, Yang; Wang, Xiaolu; Wang, Yi; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress, polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and up-regulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via up-regulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to polish wheat plant against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role. PMID:27695467

  19. Antioxidant effect of onion oil (Allium cepa. Linn) on the damages induced by nicotine in rats as compared to alpha-tocopherol.

    PubMed

    Helen, A; Krishnakumar, K; Vijayammal, P L; Augusti, K T

    2000-07-27

    The beneficial effects of onion oil as an antioxidant has been assessed in nicotine administered rats by studying whether the peroxidative damage caused by nicotine can be effectively combated with the onion oil and the effects compared to vitamin E, a highly efficient antioxidant. Lipid peroxidation products and antioxidant defence system have been studied in liver, lungs, and heart. The rats were injected with nicotine (0.6 mg/kg body wt.) and simultaneously given onion oil (100 mg/kg body wt.) or vitamin E (100 mg/kg body wt.) for 21 days. Concentration of free fatty acids, TBA reactive substances (TBARS), conjugated dienes and hydroperoxides were significantly increased in the tissues of nicotine treated rats as compared to normal rats. Onion oil supplemented to nicotine treated rats showed increased resistance to lipid peroxidation and the effect was near to that of vitamin E fed rats. The activity of catalase and superoxide dismutase decreased in nicotine treated rats. Antioxidants-glutathione content, vitamin C and retinol showed no significant difference but liver vitamin E content significantly decreased in nicotine treated rats. On onion oil or vitamin E supplementation, the concentration of antioxidants were significantly raised in all the tissues studied, however, a significantly increased concentration of glutathione, vitamin E and retinol was noticed in vitamin E+nicotine treated rats. Thus, these results indicate that onion oil is an effective antioxidant against the oxidative damage caused by nicotine as compared to vitamin E. PMID:10906423

  20. Asymmetric selection and the evolution of extraordinary defences

    PubMed Central

    Urban, Mark C.; Bürger, Reinhard; Bolnick, Daniel I.

    2013-01-01

    Evolutionary biologists typically predict future evolutionary responses to natural selection by analyzing evolution on an adaptive landscape. Much theory assumes symmetric fitness surfaces even though many stabilizing selection gradients deviate from symmetry. Here we revisit Lande's adaptive landscape and introduce novel analytical theory that includes asymmetric selection. Asymmetric selection and the resulting skewed trait distributions bias equilibrium mean phenotypes away from fitness peaks, usually toward the flatter shoulder of the individual fitness surface. We apply this theory to explain a longstanding paradox in biology and medicine: the evolution of excessive defences against enemies. These so-called extraordinary defences can evolve in response to asymmetrical selection when marginal risks of insufficient defence exceed marginal costs of excessive defence. Eco-evolutionary feedbacks between population abundances and asymmetric selection further exaggerate these defences. Recognizing the effect of asymmetrical selection on evolutionary trajectories will improve the accuracy of predictions and suggest novel explanations for apparent sub-optimality. PMID:23820378

  1. A saponin-detoxifying enzyme mediates suppression of plant defences

    NASA Astrophysics Data System (ADS)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  2. Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants.

    PubMed

    Edeas, M; Attaf, D; Mailfert, A-S; Nasu, M; Joubet, R

    2010-06-01

    Glycation and oxidative stress are two important processes known to play a key role in complications of many disease processes. Oxidative stress, either via increasing reactive oxygen species (ROS), or by depleting the antioxidants may modulate the genesis of early glycated proteins in vivo. Maillard Reactions, occur in vivo as well as in vitro and are associated with the chronic complications of diabetes, aging and age-related diseases. Hyperglycaemia causes the autoxidation of glucose, glycation of proteins, and the activation of polyol metabolism. These changes facilitate the generation of reactive oxygen species and decrease the activity of antioxidant enzymes such as Cu,Zn-superoxide dismutase, resulting in a remarkable increase of oxidative stress. A large body of evidence indicates that mitochondria alteration is involved and plays a central role in various oxidative stress-related diseases. The damaged mitochondria produce more ROS (increase oxidative stress) and less ATP (cellular energy) than normal mitochondria. As they are damaged, they cannot burn or use glucose or lipid and cannot provide cell with ATP. Further, glucose, amino acids and lipid will not be correctly used and will accumulate outside the mitochondria; they will undergo more glycation (as observed in diabetes, obesity, HIV infection and lipodystrophia). The objective of this paper is to discuss how to stop the vicious circle established between oxidative stress, Maillard Reaction and mitochondria. The potential application of some antioxidants to reduce glycation phenomenon and to increase the antioxidant defence system by targeting mitochondria will be discussed. Food and pharmaceutical companies share the same challenge, they must act now, urgently and energetically. PMID:20031340

  3. [Effects of chilling stress on antioxidant system and ultrastructure of walnut cultivars].

    PubMed

    Tian, Jing-hua; Wang, Hong-xia; Zhang, Zhi-hua; Gao, Yi

    2015-05-01

    In order to reveal cold hardiness mechanisms and ascertain suitable cold hardiness biochemical indicators of walnut (Juglans regia) , three walnut cultivars ' Hartley' , 'Jinlong 1' and 'Jinlong 2' with strong to weak tolerance of chilling stress, were used to investigate variations of leaf antioxidant enzyme activity and superoxide anion (O2-·) content in one year-old branches under chilling stress at 1 °C in leaf-expansion period. The mesophyll cells ultrastructure of ' Hartley' and 'Jinlong 2' under chilling stress were also observed by transmission electron microscope. The results showed that the superoxide dismutase (SOD) and peroxidase (POD) enzyme activities were the strongest and O2-· content was the lowest in chilling-tolerant cultivar ' Hartley' under chilling stress among the three cultivars. The ultrastructure of the mesophyll cells was stable, and chilling injury symptoms of the leaves were not observed. In chilling-sensitive cultivar 'Jinlong 2' , the SOD, POD and catalase enzyme ( CAT) activities decreased sharply, and the O2-· content was kept at a high level under chilling stress. The ultrastructure of the mesophyll cells was injured obviously at 1 °C∟ for 72 hours. Most of chloroplasts were swollen, and grana lamella became thinner and fewer. A number of chloroplasts envelope and plasma membrane were damaged and became indistinct. At the same time, the edges of some of 'Jinlong 2' young leaves became water-soaked. It was concluded that the ultrastructure stability of mesophyll cells under chilling stress was closely related to walnut cold hardiness. SOD, POD enzyme activities and O2-· content in walnut leaves could be used as biochemical indicators of walnut cold hardiness in leaf-expansion period. There might be a correlation between the damage of cell membrane system and reactive oxygen accumulation under chilling stress.

  4. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system.

    PubMed

    Husain, K; Scott, B R; Reddy, S K; Somani, S M

    2001-10-01

    Ethanol consumption and cigarette smoking are common in societies worldwide and have been identified as injurious to human health. This study was undertaken to examine the interactive effects of chronic ethanol and nicotine consumption on the antioxidant defense system in different tissues of rat. Male Fisher-344 rats were divided into four groups of five animals each and treated for 6.5 weeks as follows: (1) Control rats were administered normal saline orally; (2) ethanol (20% [wt./vol.]) was given orally at a dose of 2 g/kg; (3) nicotine was administered subcutaneously at a dose of 0.1 mg/kg; and (4) a combination of ethanol plus nicotine was administered by the route and at the dose described above. The animals were killed 20 h after the last treatment, and liver, lung, kidney, and testes were isolated and analyzed. Chronic ingestion of ethanol resulted in a significant depletion of glutathione (GSH) content in liver, lung, and testes, whereas chronic administration of nicotine significantly depleted GSH content in liver and testes. The combination of ethanol plus nicotine resulted in a significant depletion of GSH content in liver, lung, and testes. Ethanol, nicotine, or a combination of ethanol plus nicotine significantly increased superoxide dismutase (SOD) activity in liver and decreased SOD activity in kidney. Ethanol, nicotine, or a combination of ethanol plus nicotine significantly decreased catalase (CAT) activity in liver and increased CAT activity in kidney and testes. Chronic ingestion of ethanol resulted in a significant decrease in glutathione peroxidase (GSH-Px) activity in liver and kidney, whereas a combination of ethanol plus nicotine increased GSH-Px activity in liver and decreased GSH-Px activity in kidney and testes. Ethanol, nicotine, or a combination of ethanol plus nicotine significantly increased lipid peroxidation, respectively, in liver. It is suggested that prolonged exposure to ethanol and nicotine produce similar, and in some cases

  5. [Effects of low magnesium on photosynthesis characteristics and antioxidant system in cucumber seedlings under low temperature].

    PubMed

    Zhu, Shuai; Wu, Guo-xiu; Cai, Huan; Liu, Zhang-lei; Liu, Jing; Yang, Rui; Ai, Xi-zhen

    2015-05-01

    The effects of low magnesium (30% Mg) stress on photosynthesis characteristics and antioxidant system in 'Jinyou 3' cucumber ( Cucumis sativa) seedlings under low temperature (day/ night temperature was 12 °C/8 °C) were investigated, with Hoagland nutrient solution treatment as the control. The results showed that the 30% Mg treatment showed a significantly lower Mg content in leaves, compared with the control. However, no marked difference in roots between the 30% Mg treatment and the control was found. Low temperature significantly decreased the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (g(s)), and carboxylation efficiency (CE), while increased the intercelluar CO2 concentration (Ci). The 30% Mg treatment showed significantly lower chlorophyll content, Pn, g(s) and CE, compared with the control. No marked change was found in Ci between the 30% Mg treatment and the control. Low magnesium stress resulted in a more serious damage in chloroplast membrane under low temperature, and showed lower chloroplasts, grains and lamellas, while more and larger starch grains in cucumber seedlings. Low magnesium stress also led to an increase in MDA content, while a decrease in activities of superoxide dismutase (SOD) , peroxidase (POD) , catalase ( CAT) , ascorbate peroxidase (APX) and glutathione reductase (GR). These data suggested that magnesium deficiency caused by its hindered transportation under low temperature was the main reason for the chlorosis of cucumber leaves. The decrease in Pn was mainly caused by the non-stomatal limitation. Low magnesium stress increased the influence of low temperature on Pn, and the resulting decline in Pn was caused by the stomatal limitation.

  6. [Effects of low magnesium on photosynthesis characteristics and antioxidant system in cucumber seedlings under low temperature].

    PubMed

    Zhu, Shuai; Wu, Guo-xiu; Cai, Huan; Liu, Zhang-lei; Liu, Jing; Yang, Rui; Ai, Xi-zhen

    2015-05-01

    The effects of low magnesium (30% Mg) stress on photosynthesis characteristics and antioxidant system in 'Jinyou 3' cucumber ( Cucumis sativa) seedlings under low temperature (day/ night temperature was 12 °C/8 °C) were investigated, with Hoagland nutrient solution treatment as the control. The results showed that the 30% Mg treatment showed a significantly lower Mg content in leaves, compared with the control. However, no marked difference in roots between the 30% Mg treatment and the control was found. Low temperature significantly decreased the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (g(s)), and carboxylation efficiency (CE), while increased the intercelluar CO2 concentration (Ci). The 30% Mg treatment showed significantly lower chlorophyll content, Pn, g(s) and CE, compared with the control. No marked change was found in Ci between the 30% Mg treatment and the control. Low magnesium stress resulted in a more serious damage in chloroplast membrane under low temperature, and showed lower chloroplasts, grains and lamellas, while more and larger starch grains in cucumber seedlings. Low magnesium stress also led to an increase in MDA content, while a decrease in activities of superoxide dismutase (SOD) , peroxidase (POD) , catalase ( CAT) , ascorbate peroxidase (APX) and glutathione reductase (GR). These data suggested that magnesium deficiency caused by its hindered transportation under low temperature was the main reason for the chlorosis of cucumber leaves. The decrease in Pn was mainly caused by the non-stomatal limitation. Low magnesium stress increased the influence of low temperature on Pn, and the resulting decline in Pn was caused by the stomatal limitation. PMID:26571651

  7. [Effects of microcystins on growth and antioxidant system of rice roots].

    PubMed

    Wang, Wei-Min; Deng, Yu; Zou, Hua; Liang, Chan-Juan

    2014-04-01

    The effect of different concentrations (1, 100, 1000 and 3 000 microg x L(-1)) of microcystins (MCs) on growth, absorb activity, antioxidant system and its accumulation in roots of rice seedlings were studied. The results show that MCs accumulation was positively correlated with MCs concentration. After the treatment with 1 microg x L(-1) MCs, the root growth and activity increased. Meanwhile, catalase (CAT) activity was increased to maintain H2O2 at normal levels. After the treatment with 100 microg x L(-1) MCs, the root growth and activity were inhibited whereas CAT had no obvious change. High concentrations (1000 microg x L(-1) and 3000 microg x L(-1)) of MCs not only inhibited root growth and activity, but decreased CAT activity, leading to excessive H2O2 accumulation and membrane peroxidation. After a 7-day recovery, MCs accumulations in roots in all treatment groups were all lower than those measured during the stress period. For the 100 microg x L(-1) MCs treated group, the inhibition on root growth and root activity, and membrane peroxidation were alleviated, better than those measured during the stress period. However, for 1000 microg x L(-1) and 3000 microg x L(-1) MCs treated groups, inhibition on root growth, root activity, and CAT activity were heavier than those during the stress period, and oxidation stress intensified further, indicating that the damage caused by high concentrations (1 000 microg x L(-1) and 3000 microg x L(-1)) of MCs on rice roots was irreversible. PMID:24946604

  8. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    PubMed Central

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-01-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment

  9. Inhibition of the baroreceptor reflex on stimulation in the brain stem defence centre

    PubMed Central

    Coote, J. H.; Hilton, S. M.; Perez-Gonzalez, J. F.

    1979-01-01

    1. In anaesthetized cats, the pattern of cardiovascular response characteristic of the defence reaction has been elicited by localized electrical stimulation within the appropriate region of the hypothalamus. The baroreceptor reflex response has been elicited by raising the pressure in a blind sac preparation of the carotid sinus or by electrical stimulation of the sinus nerve. 2. In addition to arterial blood pressure, heart rate and regional blood flows, activity was recorded in cardiac and renal sympathetic nerves, to assess more precisely the cardiomotor and vasomotor changes during interactions between brain stem stimulation and baroreceptor activation. 3. The sympatho-inhibitory and depressor effects of carotid sinus stimulation or electrical stimulation of the sinus nerve could be completely suppressed by stimulation within the hypothalamic defence area, as could the reflex bradycardia. It is concluded that this suppression is effected through the central nervous system. 4. Stimulation at points in the hypothalamus close to, but outside, the defence area, and which elicited increases in arterial pressure and sympathetic activity of similar magnitude to those from the defence area itself, did not abolish the sympatho-inhibitory or depressor effects of baroreceptor activation, though the reflex bradycardia was usually inhibited. It is suggested that this less localized change results from augmentation of the central inspiratory drive which inhibits the vagal outflow to the heart. ImagesFig. 1Fig. 3Fig. 4 PMID:572871

  10. Kin recognition affects plant communication and defence.

    PubMed

    Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi; Wetzel, William C; Evans, Richard Y

    2013-04-01

    The ability of many animals to recognize kin has allowed them to evolve diverse cooperative behaviours; such ability is less well studied for plants. Many plants, including Artemisia tridentata, have been found to respond to volatile cues emitted by experimentally wounded neighbours to increase levels of resistance to herbivory. We report that this communication was more effective among A. tridentata plants that were more closely related based on microsatellite markers. Plants in the field that received cues from experimentally clipped close relatives experienced less leaf herbivory over the growing season than those that received cues from clipped neighbours that were more distantly related. These results indicate that plants can respond differently to cues from kin, making it less likely that emitters will aid strangers and making it more likely that receivers will respond to cues from relatives. More effective defence adds to a growing list of favourable consequences of kin recognition for plants.

  11. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system.

    PubMed

    Bandyopadhyay, Prasun; Ghosh, Amit K; Ghosh, Chandrasekhar

    2012-06-01

    Tea and coffee are widely consumed beverages across the world and they are rich sources of various polyphenols. Polyphenols are responsible for the bitterness and astringency of beverages and are also well known to impart antioxidant properties which is beneficial against several oxidative stress related diseases like cancer, cardiovascular diseases, and aging. On the other hand, proteins are also known to display many important roles in several physiological activities. Polyphenols can interact with proteins through hydrophobic or hydrophilic interactions, leading to the formation of soluble or insoluble complexes. According to recent studies, this complex formation can affect the bioavailability and beneficiary properties of both the individual components, in either way. For example, polyphenol-protein complex formation can reduce or enhance the antioxidant activity of polyphenols; similarly it can also affect the digestion ability of several digestive enzymes present in our body. Surprisingly, no review article has been published recently which has focused on the progress in this area, despite numerous articles having appeared in this field. This review summarizes the recent trends and patterns (2005 onwards) in polyphenol-protein interaction studies focusing on the characterization of the complex, the effect of this complex formation on tea and coffee taste, antioxidant properties and the digestive system.

  12. Ionic liquid-based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds.

    PubMed

    Santos, João H; e Silva, Francisca A; Ventura, Sónia P M; Coutinho, João A P; de Souza, Ranyere L; Soares, Cleide M F; Lima, Álvaro S

    2015-01-01

    The comparative evaluation of distinct types of ionic liquid-based aqueous biphasic systems (IL-ABS) and more conventional polymer/salt-based ABS to the extraction of two antioxidants, eugenol and propyl gallate, is focused. In a first approach, IL-ABS composed of ILs and potassium citrate (C6H5K3O7/C6H8O7) buffer at pH 7 were applied to the extraction of two antioxidants, enabling the assessment of the impact of IL cation core on the extraction. The second approach uses ABS composed of polyethylene glycol (PEG) and potassium phosphate (K2HPO4/KH2PO4) buffer at pH 7 with imidazolium-based ILs as adjuvants. Their application to the extraction of the compounds allowed the investigation of the impact of the presence/absence of IL, the PEG molecular weight, and the alkyl side chain length of the imidazolium cation on the partition. It is possible to maximize the extractive performance of both antioxidants up to 100% using both types of IL-ABS. The IL enhances the performance of ABS technology. The data puts in evidence the pivotal role of the appropriate selection of the ABS components and design to develop a successful extractive process, from both environmental and performance points of view. PMID:25311237

  13. [Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation].

    PubMed

    Brazhe, N A; Baĭzhumanov, A A; Parshina, E Iu; Iusipovich, A I; Akhalaia, M Ia; Iarlykova, Iu V; Labetskaia, O I; Ivanova, S M; Morukov, B V; Maksimov, G V

    2011-01-01

    Effects of strict 105-d isolation on blood antioxidant status, erythrocyte membrane processes and oxygen-binding properties of hemoglobin were studied in 6 male volunteers (25 to 40 y.o.) in ground-based simulation of a mission to Mars (experiment Mars-105). The parameters were measured using venous blood samples collected during BDC, on days 35, 70 and 105 of the experiment and on days 7 and 14-15 after its completion. Methods of biochemistry (determination of enzyme activity and thin-layer chromatography) and biophysical (laser interference microscopy, Raman spectroscopy) showed changes in relative content of lipid and phospholipid fractions suggesting growth of membrane microviscosity and increase in TBA-AP (active products of lipids peroxidation interacting with thiobarbituric acid). A significant increase in glucose-6-phosphate dehydrogenase and superoxide dismutase activities against reduction of catalase activity points to both reparative processes in erythrocytes and disbalance between the number of evolving active forms of oxygen and antioxidant protection mechanisms in cells. Hemoglobin sensitivity of oxygen and blood level of oxyhemoglobin were found to increase, too. It is presumed that adaptation of organism to stresses experienced during and after the experiment may destroy balance of the antioxidant protection systems which is conducive to oxidation of membrane phospholipids, alteration of their content, increase of membrane microviscosity and eventual failure of the gas-exchange function of erythrocytes. PMID:21675192

  14. Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents.

    PubMed

    Xia, Fangshan; Wang, Xianguo; Li, Manli; Mao, Peisheng

    2015-09-01

    We observed the relationship between lifespan and mitochondria, including antioxidant systems, ultrastructure, and the hydrogen peroxide and malondialdehyde contents in 4 h imbibed oat (Avena sativa L.) seeds that were aged with different moisture contents (4%, 10% and 16%) for 0 (the control), 8, 16, 24, 32 and 40 d at 45 °C. The results showed that the decline in the oat seed vigor and in the integrity of the mitochondrial ultrastructure occurred during the aging process, and that these changes were enhanced by higher moisture contents. Mitochondrial antioxidants in imbibed oat seeds aged with a 4% moisture content were maintained at higher levels than imbibed oat seeds aged with a 10% and 16% moisture content. These results indicated that the levels of mitochondrial antioxidants and malondialdehyde after imbibition were related to the integrity of the mitochondrial membrane in aged oat seeds. The scavenging role of mitochondrial superoxide dismutase was inhibited in imbibed oat seeds aged at the early stage. Monodehydroascorbate reductase and dehydroascorbate reductase played more important roles than glutathione reductase in ascorbate regeneration in aged oat seeds during imbibition.

  15. Anti-ageing effects of protocatechuic acid from Alpinia on spleen and liver antioxidative system of senescent mice.

    PubMed

    Zhang, Xiuli; Shi, Gui-Fang; Liu, Xiu-zhen; An, Li-jia; Guan, Shui

    2011-06-01

    The effects of Alpinia protocatechuic acid (PCA) on spleen and liver antioxidant system in aged rats have been studied. Alpinia PCA, a phenolic compound, was first isolated from the dried fruits of Alpinia Oxyphylla Miq. in our laboratory. Young and aged rats were injected intraperitoneally with Alpinia PCA at single doses of 5 mg kg(-1) (low dose) or 10 mg kg(-1) (high dose) per day for 7 days. The activities of endogenous antioxidants and the content of lipid peroxide in spleen and liver were assayed. Compared with young group, aged rats had significantly lower splenic weights, lower activities of glutathione peroxidase (GSH-PX) and catalase (CAT), higher level of malondialdehyde (MDA) in spleen and liver. The results proved that Alpinia PCA significantly elevated the splenic weights, increased the activities of GSH-PX and CAT and decreased the MDA level of aged rats. All these suggested that Alpinia PCA was a potential anti-ageing agent, and its effects on spleen and liver were achieved at least partly by promoting endogenous antioxidant enzymatic activities and normalizing age-associated alterations. It may be therapeutically useful to minimize age-associated disorders where oxidative damage is the major cause.

  16. Effect of Compost Socks System on Antioxidant Capacity, Flavonoid Content, and Fruit Quality of Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of cultivation practices on fruit quality, antioxidant capacity, and flavonoid content in strawberries var. Allstar and Chandler (Fragaria x ananassa Duch.) was evaluated. Strawberry fruit used in this study were from plants grown in soils which had prior history of black root rot and red...

  17. Antioxidants delay clinical signs and systemic effects of ENU induced brain tumors in rats.

    PubMed

    Hervouet, E; Staehlin, O; Pouliquen, D; Debien, E; Cartron, P-F; Menanteau, J; Vallette, F M; Olivier, C

    2013-01-01

    According to our previous study suggesting that antioxidant properties of phytochemicals in the diet decrease glioma aggressiveness, we used a SUVIMAX-like diet ("Supplementation en VItamines et Minéraux AntioXydants") (enriched with alpha-tocopherol, beta carotene, vitamin C, zinc, and sodium selenite), adapted to rats. The present results showed that each of the antioxidants inhibited growth of glioma cells in vitro. When used in combination for in vivo studies, we showed a highly significant delay in the clinical signs of the disease, but not a statistical significant difference in the incidence of glioma in an Ethyl-nitrosourea (ENU)-model. The SUVIMAX-like diet decreased candidate markers of tumoral aggressiveness and gliomagenesis progression. The mRNA expressions of 2 common markers in human glioma: Mn-SOD (Manganese Superoxide Dismutase) and IGFBP5 (insulin growth factor binding protein) were reduced in the tumors of rats fed the antioxidant diet. In addition, the transcripts of two markers linked to brain tumor proliferation, PDGFRb (platelet-derived growth factor receptor beta) and Ki-67, were also significantly decreased. On the whole, our results suggest a protective role for antioxidants to limit aggressiveness and to some extent, progression of gliomas, in a rat model. PMID:23859036

  18. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    SciTech Connect

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Janusz; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  19. Comparison of taurine and pantoyltaurine as antioxidants in vitro and in the central nervous system of diabetic rats.

    PubMed

    Patel, Sanket N; Pandya, Kashyap; Clark, George J; Parikh, Mitul C; Lau-Cam, Cesar A

    2016-01-01

    This study has comparatively evaluated the antiradical and antilipid peroxidizing actions of taurine (TAU) and its N-pantoyl analog pantoyltaurine (PTAU) in vitro, and has determined the extent to which these findings agree with the in vivo ability of these compounds to prevent changes in plasma glucose and in indices of oxidative stress in the plasma, brain and spinal cord induced by the diabetogen streptozotocin (STZ) in Sprague-Dawley rats. Using free radical-generating and oxidizing systems, PTAU was found more effective than TAU in scavenging DPPH, hydroxyl, peroxyl, and superoxide anion radicals and peroxynitrite, and in preventing lipid peroxidation of a brain homogenate by iron (III)-dopamine and the oxidation of dopamine by iron (III). On the other hand, when administered intraperitoneally (i.p.) at a 1.2mM/kg dose, 75min and 45min before a single i.p., 60mg/kg, dose of (STZ), TAU was about equipotent with PTAU in attenuating STZ-induced increases in glucose, malondialdehyde (MDA) and nitric oxide (NO), and the loss of reduced glutathione (GSH) in plasma collected at 24h post STZ. Moreover, the analysis of concurrently collected brain and spinal cords samples revealed that both TAU and PTAU were able to equally reverse the increases in MDA and NO concentrations and to effectively counteract the decrease in the GSH/GSSG ratio caused by STZ. Likewise, both compounds were very effective in preventing the losses of tissue catalase, glutathione peroxidase and superoxide dismutase activities. A comparison of the results for spinal cord and for brain parts such as the cerebellum, cortex and brain stem suggested the existence of regional differences in antioxidant potency between TAU and PTAU, especially in terms of antioxidant enzymes. In general, differences in antiradical and antioxidant potencies between TAU and PTAU derived from in vitro test are not reliable indicators of the antioxidant potencies these compounds may subsequently manifest in a living

  20. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress.

    PubMed

    Shu, Sheng; Yuan, Ling-Yun; Guo, Shi-Rong; Sun, Jin; Yuan, Ying-Hui

    2013-02-01

    The effects of exogenous spermine (Spm) on plant growth, chlorophyll fluorescence, ultrastructure and anti-oxidative metabolism of chloroplasts were investigated in Cucumis sativus L. under NaCl stress. Salt stress significantly reduced plant growth, chlorophylls content and F(v)/F(m). These changes could be alleviated by foliar spraying with Spm. Salt stress caused an increase in malondialdehyde (MDA) content and superoxide anion [Formula: see text] generation rate in chloroplasts. Application of Spm significantly increased activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11) which decreased the levels of [Formula: see text] and MDA in the salt-stressed chloroplasts. Salt stress decreased the activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in the chloroplasts and reduced the contents of dehydroascorbate (DAsA) and glutathione (GSH), but increased monodehydroascorbate reductase (MDAR, EC 1.6.5.4) activity. On the other hand, Spm significantly increased the activities of antioxidant enzymes and levels of antioxidants in the salt-stressed chloroplasts. Further analysis of the ultrastructure of chloroplasts indicated that salinity induced destruction of the chloroplast envelope and increased the number of plastoglobuli with aberrations in thylakoid membranes. However, Spm application to salt-stressed plant leaves counteracted the adverse effects of salinity on the structure of the photosynthetic apparatus. These results suggest that Spm alleviates salt-induced oxidative stress through regulating antioxidant systems in chloroplasts of cucumber seedlings, which is associated with an improvement of the photochemical efficiency of PSII.

  1. Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system.

    PubMed

    Guler, Neslihan Saruhan; Pehlivan, Necla

    2016-06-01

    Hydrogen peroxide (H(2)O(2)) functions as a signal molecule in plants under abiotic and biotic stress. In this study, the role of exogenous H(2)O(2) in improving drought tolerance in two soybean cultivars (Glycine max L. Merrill) differing in their tolerance to drought was evaluated. Plants were grown in plastic pots with normal irrigation in a phytotron. Four weeks after radicle emergence, either 1 mM H(2)O(2) or distilled water was sprayed as foliar onto the leaves of each plant, after drought stress was applied. Leaf samples were harvested on the 4(th) and 7(th) days of the drought. Antioxidant-related enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) content was measured during the drought period. Drought stress decreased leaf water potential, relative water content and photosynthetic pigment content but enhanced lipid peroxidation and endogenous H(2)O(2) concentration. By contrast, exogenous low dose H(2)O(2) improved water status, pigment content and lipid peroxidation under drought stress. Endogenous H(2)O(2) concentration was reduced by exogenous H(2)O(2) as compared to drought treatment alone. H(2)O(2) pre-treatment induced all the antioxidant enzyme activities, to a greater extent than the control leaves, during drought. H(2)O(2) pretreatment further enhanced the activities of antioxidant enzymes in the tolerant cultivar compared to the sensitive cultivar. Results suggested that low dose H(2)O(2) pre-treatment alleviated water loss and H(2)O(2) content and increased drought stress tolerance by inducing the antioxidant system. PMID:27165528

  2. Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system.

    PubMed

    Guler, Neslihan Saruhan; Pehlivan, Necla

    2016-06-01

    Hydrogen peroxide (H(2)O(2)) functions as a signal molecule in plants under abiotic and biotic stress. In this study, the role of exogenous H(2)O(2) in improving drought tolerance in two soybean cultivars (Glycine max L. Merrill) differing in their tolerance to drought was evaluated. Plants were grown in plastic pots with normal irrigation in a phytotron. Four weeks after radicle emergence, either 1 mM H(2)O(2) or distilled water was sprayed as foliar onto the leaves of each plant, after drought stress was applied. Leaf samples were harvested on the 4(th) and 7(th) days of the drought. Antioxidant-related enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) content was measured during the drought period. Drought stress decreased leaf water potential, relative water content and photosynthetic pigment content but enhanced lipid peroxidation and endogenous H(2)O(2) concentration. By contrast, exogenous low dose H(2)O(2) improved water status, pigment content and lipid peroxidation under drought stress. Endogenous H(2)O(2) concentration was reduced by exogenous H(2)O(2) as compared to drought treatment alone. H(2)O(2) pre-treatment induced all the antioxidant enzyme activities, to a greater extent than the control leaves, during drought. H(2)O(2) pretreatment further enhanced the activities of antioxidant enzymes in the tolerant cultivar compared to the sensitive cultivar. Results suggested that low dose H(2)O(2) pre-treatment alleviated water loss and H(2)O(2) content and increased drought stress tolerance by inducing the antioxidant system.

  3. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    PubMed Central

    Shanely, R. Andrew; Nieman, David C.; Perkins-Veazie, Penelope; Henson, Dru A.; Meaney, Mary P.; Knab, Amy M.; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  4. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity.

    PubMed

    Shanely, R Andrew; Nieman, David C; Perkins-Veazie, Penelope; Henson, Dru A; Meaney, Mary P; Knab, Amy M; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  5. Role of the Immune System in Hypertension: Modulation by Dietary Antioxidants

    PubMed Central

    Vasdev, Sudesh; Stuckless, Jennifer; Richardson, Vernon

    2011-01-01

    Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B6, thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension. PMID:23204821

  6. The antioxidant paradox: less paradoxical now?

    PubMed Central

    Halliwell, Barry

    2013-01-01

    The term ‘antioxidant paradox’ is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's ‘total antioxidant capacity’ seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro‐oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants. PMID:22420826

  7. Deimatic Display in the European Swallowtail Butterfly as a Secondary Defence against Attacks from Great Tits

    PubMed Central

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Background Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey’s primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. Methodology/Principal Findings In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly’s startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. Conclusions/Significance We conclude that the swallowtail’s startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the

  8. Bio-inspired approaches to sensing for defence and security applications.

    PubMed

    Biggins, Peter D E; Kusterbeck, Anne; Hiltz, John A

    2008-05-01

    Interdisciplinary research in biotechnology and related scientific areas has increased tremendously over the past decade. This rapid pace, in conjunction with advances in microfabricated systems, computer hardware, bioengineering and the availability of low-powered miniature components, has now made it feasible to design bio-inspired materials, sensors and systems with tremendous potential for defence and security applications. To realize the full potential of biotechnology and bio-inspiration, there is a need to define specific requirements to meet the challenges of the changing world and its threats. One approach to assisting the defence and security communities in defining their requirements is through the use of a conceptual model. The distributed or intelligent autonomous sensing (DIAS) system is one such model. The DIAS model is not necessarily aimed at a single component, for instance a sensor, but can include a system, or even a system of systems in the same way that a single organism, a multi-cellular organism or group of organisms is configured. This paper provides an overview of the challenges to and opportunities for bio-inspired sensors and systems together with examples of how they are being implemented. Examples focus on both learning new things from biological organisms that have application to the defence and security forces and adapting known discoveries in biology and biochemistry for practical use by these communities. PMID:18427675

  9. Dietary antioxidants and environmental stress.

    PubMed

    Kelly, Frank J

    2004-11-01

    Air is one of our most important natural resources; however, it is also in the front line for receiving environmental pollution. Air quality decreased markedly following the industrial revolution, but it was not until the great London Smog in 1952 that air quality made it onto the political agenda. The introduction of the Clean Air Act in 1956 led to dramatic decreases in black smoke and SO2 concentrations over the next two decades, as domestic and industrial coal-burning activities ceased. However, as these improvements progressed, a new threat to public health was being released into the air in ever-increasing quantities. Rapid motorisation of society from the 1960s onwards has led to the increased release of atmospheric pollutants such as tiny particles (particulate matter of <10 microm in aerodynamic diameter) and oxides of N, and the generation of the secondary pollutant O3. These primary and secondary traffic-related pollutants have all proved to be major risks factors to public health. Recently, oxidative stress has been identified as a unifying feature underlying the toxic actions of these pollutants. Fortunately, the surface of the lung is covered with a thin layer of fluid containing a range of antioxidants that appear to provide the first line of defence against oxidant pollutants. As diet is the only source of antioxidant micronutrients, a plausible link now exists between the sensitivity to air pollution and the quality of the food eaten. However, many questions remain unanswered in relation to inter-individual sensitivity to ambient air pollution, and extent to which this sensitivity is modified by airway antioxidant defences. PMID:15831130

  10. Dietary antioxidants and environmental stress.

    PubMed

    Kelly, Frank J

    2004-11-01

    Air is one of our most important natural resources; however, it is also in the front line for receiving environmental pollution. Air quality decreased markedly following the industrial revolution, but it was not until the great London Smog in 1952 that air quality made it onto the political agenda. The introduction of the Clean Air Act in 1956 led to dramatic decreases in black smoke and SO2 concentrations over the next two decades, as domestic and industrial coal-burning activities ceased. However, as these improvements progressed, a new threat to public health was being released into the air in ever-increasing quantities. Rapid motorisation of society from the 1960s onwards has led to the increased release of atmospheric pollutants such as tiny particles (particulate matter of <10 microm in aerodynamic diameter) and oxides of N, and the generation of the secondary pollutant O3. These primary and secondary traffic-related pollutants have all proved to be major risks factors to public health. Recently, oxidative stress has been identified as a unifying feature underlying the toxic actions of these pollutants. Fortunately, the surface of the lung is covered with a thin layer of fluid containing a range of antioxidants that appear to provide the first line of defence against oxidant pollutants. As diet is the only source of antioxidant micronutrients, a plausible link now exists between the sensitivity to air pollution and the quality of the food eaten. However, many questions remain unanswered in relation to inter-individual sensitivity to ambient air pollution, and extent to which this sensitivity is modified by airway antioxidant defences.

  11. Specificity in Mesograzer-Induced Defences in Seagrasses

    PubMed Central

    Martínez-Crego, Begoña; Arteaga, Pedro; Ueber, Alexandra; Engelen, Aschwin H.; Santos, Rui; Molis, Markus

    2015-01-01

    Grazing-induced plant defences that reduce palatability to herbivores are widespread in terrestrial plants and seaweeds, but they have not yet been reported in seagrasses. We investigated the ability of two seagrass species to induce defences in response to direct grazing by three associated mesograzers. Specifically, we conducted feeding-assayed induction experiments to examine how mesograzer-specific grazing impact affects seagrass induction of defences within the context of the optimal defence theory. We found that the amphipod Gammarus insensibilis and the isopod Idotea chelipes exerted a low-intensity grazing on older blades of the seagrass Cymodocea nodosa, which reflects a weak grazing impact that may explain the lack of inducible defences. The isopod Synischia hectica exerted the strongest grazing impact on C. nodosa via high-intensity feeding on young blades with a higher fitness value. This isopod grazing induced defences in C. nodosa as indicated by a consistently lower consumption of blades previously grazed for 5, 12 and 16 days. The lower consumption was maintained when offered tissues with no plant structure (agar-reconstituted food), but showing a reduced size of the previous grazing effect. This indicates that structural traits act in combination with chemical traits to reduce seagrass palatability to the isopod. Increase in total phenolics but not in C:N ratio and total nitrogen of grazed C. nodosa suggests chemical defences rather than a modified nutritional quality as primarily induced chemical traits. We detected no induction of defences in Zostera noltei, which showed the ability to replace moderate losses of young biomass to mesograzers via compensatory growth. Our study provides the first experimental evidence of induction of defences against meso-herbivory that reduce further consumption in seagrasses. It also emphasizes the relevance of grazer identity in determining the level of grazing impact triggering resistance and compensatory

  12. Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure.

    PubMed

    Flores-Rojas, Nelida Cecilia; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2015-12-01

    Cylindrospermopsin toxicity and oxidative stress have been examined in aquatic animals, however, only a few studies with aquatic plants have been conducted focusing on the potential for bioaccumulation of cylindrospermopsin. The oxidative stress effects caused by cylindrospermopsin on macrophytes have not yet been specifically studied. The oxidative stress response of Lemna minor L. with exposure to cylindrospermopsin, was therefore tested in this study. The hydrogen peroxide concentration together with the activities of the antioxidant enzymes (catalase, peroxidase, glutathione reductase and glutathione S-transferase) were determined after 24h (hours) of exposure to varying concentrations (0.025, 0.25, 2.5 and 25μg/L) of cylindrospermopsin. Responses with longer exposure periods (48, 96, 168h) were tested only with exposure to 2.5 and 25μg/L cylindrospermopsin. Additionally, the content of the carotenoids was determined as a possible non-enzymatic antioxidant defence mechanism against cylindrospermopsin. The levels of hydrogen peroxide increased after 24h even at the lowest cylindrospermopsin exposure concentrations. Catalase showed the most representative antioxidant response observed after 24h and maintained its activity throughout the experiment. Catalase activity corresponded with the contents of hydrogen peroxide at 2.5 and 25μg/L cylindrospermopsin. The data suggest that glutathione S-transferase, glutathione reductase and the carotenoid content act together with catalase but are more sensitive to higher concentrations of cylindrospermopsin and after a longer exposure period (168h). The results indicate that cylindrospermopsin promotes oxidative stress in L. minor at concentrations of 2.5 and 25μg/L. However, L. minor has sufficient defence mechanisms in place against this cyanobacterial toxin. Even though L. minor exhibits the potential to managing and control cylindrospermopsin contamination in aquatic systems, further studies in tolerance limits to

  13. Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure.

    PubMed

    Flores-Rojas, Nelida Cecilia; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2015-12-01

    Cylindrospermopsin toxicity and oxidative stress have been examined in aquatic animals, however, only a few studies with aquatic plants have been conducted focusing on the potential for bioaccumulation of cylindrospermopsin. The oxidative stress effects caused by cylindrospermopsin on macrophytes have not yet been specifically studied. The oxidative stress response of Lemna minor L. with exposure to cylindrospermopsin, was therefore tested in this study. The hydrogen peroxide concentration together with the activities of the antioxidant enzymes (catalase, peroxidase, glutathione reductase and glutathione S-transferase) were determined after 24h (hours) of exposure to varying concentrations (0.025, 0.25, 2.5 and 25μg/L) of cylindrospermopsin. Responses with longer exposure periods (48, 96, 168h) were tested only with exposure to 2.5 and 25μg/L cylindrospermopsin. Additionally, the content of the carotenoids was determined as a possible non-enzymatic antioxidant defence mechanism against cylindrospermopsin. The levels of hydrogen peroxide increased after 24h even at the lowest cylindrospermopsin exposure concentrations. Catalase showed the most representative antioxidant response observed after 24h and maintained its activity throughout the experiment. Catalase activity corresponded with the contents of hydrogen peroxide at 2.5 and 25μg/L cylindrospermopsin. The data suggest that glutathione S-transferase, glutathione reductase and the carotenoid content act together with catalase but are more sensitive to higher concentrations of cylindrospermopsin and after a longer exposure period (168h). The results indicate that cylindrospermopsin promotes oxidative stress in L. minor at concentrations of 2.5 and 25μg/L. However, L. minor has sufficient defence mechanisms in place against this cyanobacterial toxin. Even though L. minor exhibits the potential to managing and control cylindrospermopsin contamination in aquatic systems, further studies in tolerance limits to

  14. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers

    PubMed Central

    Songisepp, Epp; Kals, Jaak; Kullisaar, Tiiu; Mändar, Reet; Hütt, Pirje; Zilmer, Mihkel; Mikelsaar, Marika

    2005-01-01

    improvement of some measurable laboratory indices of well-established physiological functions of host, e.g. markers of antioxidative defence system. PMID:16080791

  15. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.

    PubMed

    Slattery, Katie; Bentley, David; Coutts, Aaron J

    2015-04-01

    During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant-antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.

  16. Antioxidants and the Integrity of Ocular Tissues

    PubMed Central

    Cabrera, Marcela P.; Chihuailaf, Ricardo H.

    2011-01-01

    Oxygen-derived free radicals are normally generated in many pathways. These radicals can interact with various cellular components and induce cell injury. When free radicals exceed the antioxidant capacity, cell injury causes diverse pathologic changes in the organs. The imbalance between the generation of free radicals and antioxidant defence is known as oxidative stress. The eye can suffer the effect of oxidative damage due to the etiopathogenesis of some pathological changes related to oxidative stress. This paper reviews the role of oxidative stress in the onset and progression of damage in different eye structures, the involvement of the antioxidant network in protecting and maintaining the homeostasis of this organ, and the potential assessment methodologies used in research and in some cases in clinical practice. PMID:21789267

  17. The stimulatory effect of the octadecaneuropeptide ODN on astroglial antioxidant enzyme systems is mediated through a GPCR

    PubMed Central

    Hamdi, Yosra; Kaddour, Hadhemi; Vaudry, David; Douiri, Salma; Bahdoudi, Seyma; Leprince, Jérôme; Castel, Hélène; Vaudry, Hubert; Amri, Mohamed; Tonon, Marie-Christine; Masmoudi-Kouki, Olfa

    2012-01-01

    Astroglial cells possess an array of cellular defense systems, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damage caused by oxidative stress on the central nervous system. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including the octadecaneuropeptide (ODN). ODN is the ligand of both central-type benzodiazepine receptors (CBR), and an adenylyl cyclase- and phospholipase C-coupled receptor. We have recently shown that ODN is a potent protective agent that prevents hydrogen peroxide (H2O2)-induced inhibition of SOD and catalase activities and stimulation of cell apoptosis in astrocytes. The purpose of the present study was to investigate the type of receptor involved in ODN-induced inhibition of SOD and catalase in cultured rat astrocytes. We found that ODN induced a rapid stimulation of SOD and catalase gene transcription in a concentration-dependent manner. In addition, 0.1 nM ODN blocked H2O2-evoked reduction of both mRNA levels and activities of SOD and catalase. Furthermore, the inhibitory actions of ODN on the deleterious effects of H2O2 on SOD and catalase were abrogated by the metabotropic ODN receptor antagonist cyclo1-8[Dleu5]OP, but not by the CBR antagonist flumazenil. Finally, the protective action of ODN against H2O2-evoked inhibition of endogenous antioxidant systems in astrocytes was protein kinase A (PKA)-dependent, but protein kinase C-independent. Taken together, these data demonstrate for the first time that ODN, acting through its metabotropic receptor coupled to the PKA pathway, prevents oxidative stress-induced alteration of antioxidant enzyme expression and activities. The peptide ODN is thus a potential candidate for the development of specific agonists that would selectively mimic its protective activity. PMID:23181054

  18. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation

    PubMed Central

    Lázaro, Juan J.; Jiménez, Ana; Camejo, Daymi; Iglesias-Baena, Iván; Martí, María del Carmen; Lázaro-Payo, Alfonso; Barranco-Medina, Sergio; Sevilla, Francisca

    2013-01-01

    Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx), peroxiredoxin (Prx) and sulfiredoxin (Srx) in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress. PMID:24348485

  19. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    PubMed

    Tian, Jiyuan; Yu, Juan

    2009-12-01

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina. PMID:19818642

  20. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    PubMed

    Tian, Jiyuan; Yu, Juan

    2009-12-01

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina.

  1. Antioxidants in Translational Medicine

    PubMed Central

    Schmidt, Harald H.H.W.; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis

    2015-01-01

    Abstract Significance: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. Recent Advances: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Critical Issues: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Future Directions: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities. Antioxid. Redox Signal. 23, 1130–1143. PMID:26154592

  2. [The influence of general infrared sauna on the antioxidant systems in the blood of volunteers].

    PubMed

    Khodarev, V N; Zhemchuzhnova, N L; Olempieva, E V; Kuz'menko, N V

    2013-01-01

    This comprehensive clinical and laboratory study was designed to elucidate the antioxidant status of the volunteers before and after a course of general infrared irradiation. It was shown that the effect of high temperatures promotes the development of oxidative stress that is followed by the formation of adaptive reactions in the form of activation of antioxidant protection, enhancement of non-specific responses of the cells, increase of stability and restoration of structural homeostasis of erythrocyte membranes. The molecular mechanism of endothelium-independent vasodilation develops by the end of the treatment period; it may serve as the compensatory-adaptive reaction needed to maintain the adequate tone of the vascular wall and thereby to support the functioning of mechanisms supporting physical thermoregulation. The results of the study give evidence of the stimulatory influence of the described method on the adaptive and protective potential of the organism. It is concluded that the proposed scheme of physiotherapeutic treatment may be used for prophylactic purposes.

  3. Antioxidant properties of 4-methylcoumarins in in vitro cell-free systems.

    PubMed

    Morabito, Giuseppa; Trombetta, Domenico; Singh Brajendra, K; Prasad Ashok, K; Parmar Virinder, S; Naccari, Clara; Mancari, Ferdinando; Saija, Antonina; Cristani, Mariateresa; Firuzi, Omidreza; Saso, Luciano

    2010-09-01

    4-methylcoumarins that possess two hydroxyl groups ortho to each other in the benzenoid ring have shown to have excellent antioxidant and radical-scavenging properties in different experimental models. Furthermore, they cannot be metabolized by the liver P450 monoxygenases and thus cannot form 3,4-coumarin epoxides, which are believed to be mutagenic. Herein, we present a study on the structure activity relationship of eight synthetic 4-methylcoumarins, carried out by employing a series of different chemical cell-free tests. These compounds were tested by means of three assays involving one redox reaction with the oxidant (DPPH assay, ABTS.+ assay and FRAP). Other assays were employed to evaluate the antioxidant properties of the coumarins under investigation against NO, O2.- and HClO, which are some of the major reactive oxygen and nitrogen species causing damage in the human body. Finally, we have measured the protective capacity of these coumarins against the oxidative damage in a simple biomimetic model of phospholipid membranes. Our results confirm the good antioxidant activity of the 7,8-hydroxy-4-methylcoumarins. In general, their activity is not significantly affected by the introduction of an ethoxycarbonylmethyl or an ethoxycarbonylethyl moiety at the C3 position. A discrete antioxidant activity is retained also by the 7,8-diacetoxy-4-methylcoumarins, although they are less efficient than the corresponding 7,8-dihydroxy compounds. Furthermore, as demonstrated in the brine shrimp toxicity test, none of the tested coumarins significantly affect the larvae viability. Two of the 4-methylcoumarins (7,8-dihydroxy-4-methylcoumarin and 7,8-dihydroxy-3-ethoxycarbonylethyl-4-methylcoumarin), very interestingly, showed strong scavenging activities against the superoxide anion and were also very effective in protecting the lipid bilayer against peroxidation. On the basis of these findings, these 4-methylcoumarins may be considered as potential therapeutic candidates

  4. Contribution of Macromolecular Antioxidants to Dietary Antioxidant Capacity: A Study in the Spanish Mediterranean Diet.

    PubMed

    Pérez-Jiménez, Jara; Díaz-Rubio, M Elena; Saura-Calixto, Fulgencio

    2015-12-01

    Epidemiological and clinical studies show that diets with a high antioxidant capacity, such us those rich in plant food and beverages, are associated with significant decreases in the overall risk of cardiovascular disease or colorectal cancer. Current studies on dietary antioxidants and dietary antioxidant capacity focus exclusively on low molecular weight or soluble antioxidants (vitamins C and E, phenolic compounds and carotenoids), ignoring macromolecular antioxidants. These are polymeric phenolic compounds or polyphenols and carotenoids linked to plant food macromolecules that yield bioavailable metabolites by the action of the microbiota with significant effects either local and/or systemic after absorption. This study determined the antioxidant capacity of the Spanish Mediterranean diet including for the first time both soluble and macromolecular antioxidants. Antioxidant capacity and consumption data of the 54 most consumed plant foods and beverages were used. Results showed that macromolecular antioxidants are the major dietary antioxidants, contributing a 61% to the diet antioxidant capacity (8000 μmol Trolox, determined by ABTS method). The antioxidant capacity data for foods and beverages provided here may be used to estimate the dietary antioxidant capacity in different populations, where similar contributions of macromolecular antioxidants may be expected, and also to design antioxidant-rich diets. Including macromolecular antioxidants in mechanistic, intervention and observational studies on dietary antioxidants may contribute to a better understanding of the role of antioxidants in nutrition and health.

  5. Physicochemical properties and antioxidant potential of phosvitin-resveratrol complexes in emulsion system.

    PubMed

    Duan, Xiang; Li, Mei; Ma, Huijie; Xu, Xueming; Jin, Zhengyu; Liu, Xuebo

    2016-09-01

    Egg yolk phosvitin is the most highly phosphorylated protein found in the nature. The physicochemical properties of phosvitin-resveratrol complexes and their synergistic antioxidant activities in microemulsions were investigated. The particle diameters of microemulsions containing 0.5%, 1.0% and 2.0% phosvitin were 2.660, 0.501 and 0.414μm, respectively. The emulsifying activity index increased largely from 3.72 to 21.5m(2)/g with increasing phosvitin concentration from 0.5% to 2.0%. Fourier transform infrared spectroscopy and thermal analyses indicated that the microemulsions underwent a conformational change during homogenization. Antioxidant assays showed that phosvitin-resveratrol microemulsions exhibited a higher antioxidant activity than that of phosvitin-resveratrol primary emulsions. The MTT assay indicated that HepG2 cell viability remained higher than 80% at phosvitin concentration below 1.0mg/ml. This suggested that phosvitin, when coupled with polyphenol, can effectively inhibit lipid oxidation in food emulsions, which provided valuable insights into deep processing and application of egg proteins in food industry. PMID:27041304

  6. Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs)

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Valderrama, Raquel; Mata-Pérez, Capilla; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.

    2016-01-01

    Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance. PMID:26909095

  7. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings.

    PubMed

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Abdallah, Ferjani Ben; Woodward, Steve; Kallel, Monem

    2015-10-01

    Phosphogypsum (PG) is the solid waste product of phosphate fertilizer production and is characterized by high concentrations of salts, heavy metals, and certain natural radionuclides. The work reported in this paper examined the influence of PG amendment on soil physicochemical proprieties, along with its potential impact on several physiological traits of sunflower seedlings grown under controlled conditions. Sunflower seedlings were grown on agricultural soil substrates amended with PG at rates of 0, 2.5, and 5 %. The pH of the soil decreased but electrical conductivity and organic matter, calcium, phosphorus, sodium, and heavy metal contents increased in proportion to PG concentration. In contrast, no variations were observed in magnesium content and small increases were recorded in potassium content. The effects of PG on sunflower growth, leaf chlorophyll content, nutritional status, osmotic regulator content, heavy metal accumulation, and antioxidative enzymes were investigated. Concentrations of trace elements in sunflower seedlings grown in PG-amended soil were considerably lower than ranges considered phytotoxic for vascular plants. The 5 % PG dose inhibited shoot extension and accumulation of biomass and caused a decline in total protein content. However, chlorophyll, lipid peroxidation, proline and sugar contents, and activities of antioxidant enzymes such as superoxide dismutase and catalase increased. Collectively, these results strongly support the hypothesis that enzymatic antioxidation capacity is an important mechanism in tolerance of PG salinity in sunflower seedlings. PMID:25994270

  8. Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs).

    PubMed

    Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Chaki, Mounira; Valderrama, Raquel; Mata-Pérez, Capilla; Padilla, María N; Corpas, Francisco J; Barroso, Juan B

    2016-01-01

    Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance. PMID:26909095

  9. Antioxidant compositions

    SciTech Connect

    Braid, M.

    1980-08-12

    Compositions having highly effective antioxidant characteristics are provided comprising organic media, normally susceptible to oxidation, such as oils of lubricating viscosity, containing a minor amount sufficient to impart antioxidant properties thereto of the reaction product of a polysulfide and a hydrocarbylmagnesium halide or a grignard reagent.

  10. Antioxidant role of amyloid β protein in cell-free and biological systems: implication for the pathogenesis of Alzheimer disease.

    PubMed

    Sinha, Maitrayee; Bhowmick, Pritha; Banerjee, Anindita; Chakrabarti, Sasanka

    2013-03-01

    In contrast to many studies showing the pro-oxidative nature of amyloid peptide, this work shows that aggregated Aβ42 peptide in varying concentrations (2-20 μM) in cell-free systems inhibits the formation of hydroxyl radicals and H(2)O(2) from a mixture of iron (20 μM FeSO(4)) and ascorbate (2mM) as measured by benzoate hydroxylation assay and coumarin carboxylic acid assay. Aggregated Aβ42 in similar concentrations further prevents protein and lipid oxidation in isolated rat brain mitochondria incubated alone or with FeSO(4) and ascorbate. Moreover, mitochondria exposed to FeSO(4) and ascorbate show enhanced formation of reactive oxygen species and this phenomenon is also abolished by aggregated Aβ42. It is suggested that the antioxidant property of Aβ42 in various systems is mediated by metal chelation and it is nearly as potent as a typical metal chelator, such as diethylenetriaminepentaacetic acid, in preventing oxidative damage. However, aggregated Aβ42 causes mitochondrial functional impairment in the form of membrane depolarization and a loss of phosphorylation capacity without involving reactive oxygen species in the process. Thus, the present results suggest that the amyloid peptide exhibits a protective antioxidant role in biological systems, but also has toxic actions independent of oxidative stress. PMID:23041348

  11. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.

    PubMed

    Simoni, Jan; Villanueva-Meyer, Javier; Simoni, Grace; Moeller, John F; Wesson, Donald E

    2009-02-01

    Uncontrolled oxidative reactions of hemoglobin (Hb) are still the main unresolved problem for Hb-based blood substitute developers. Spontaneous oxidation of acellular ferrous Hb into a nonfunctional ferric Hb generates superoxide anion. Hydrogen peroxide, formed after superoxide anion dismutation, may react with ferrous/ferric Hb to produce toxic ferryl Hb, fluorescent heme degradation products, and/or protein-based free radicals. In the presence of free iron released from heme, superoxide anion and hydrogen peroxide might react via the Haber-Weiss and Fenton reactions to generate the hydroxyl radical. These highly reactive oxygen and heme species may not only be involved in shifting the cellular redox balance to the oxidized state that facilitates signal transduction and pro-inflammatory gene expression, but could also be involved in cellular and organ injury, and generation of vasoactive compounds such as isoprostanes and angiotensins. It is believed that these toxic species may be formed after administration of Hb-based blood substitutes, particularly in ischemic patients with a diminished ability to control oxidative reactions. Although varieties of antioxidant strategies have been suggested, this in vitro study examined the ability of the ascorbate-glutathione antioxidant system in preventing Hb oxidation and formation of its ferryl intermediate. The results suggest that although ascorbate is effective in reducing the formation of ferryl Hb, glutathione protects heme against excessive oxidation. Ascorbate without glutathione failed to protect the red blood cell membranes against Hb/hydrogen peroxide-mediated peroxidation. This study provides evidence that the ascorbate-glutathione antioxidant system is essential in attenuation of the pro-oxidant potential of redox active acellular Hbs, and superior to either ascorbate or glutathione alone. PMID:19178455

  12. Photosystem II functionality and antioxidant system changes during leaf rolling in post-stress emerging Ctenanthe setosa exposed to drought.

    PubMed

    Terzi, Rabiye; Saruhan, Neslihan; Sağlam, A; Nar, Hatice; Kadioğlu, A

    2009-12-01

    We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H 2 O 2 content increased at score 2 but decreased at the later scores. On the other hand, O 2 .- production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants. PMID:20015833

  13. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.

    PubMed

    Simoni, Jan; Villanueva-Meyer, Javier; Simoni, Grace; Moeller, John F; Wesson, Donald E

    2009-02-01

    Uncontrolled oxidative reactions of hemoglobin (Hb) are still the main unresolved problem for Hb-based blood substitute developers. Spontaneous oxidation of acellular ferrous Hb into a nonfunctional ferric Hb generates superoxide anion. Hydrogen peroxide, formed after superoxide anion dismutation, may react with ferrous/ferric Hb to produce toxic ferryl Hb, fluorescent heme degradation products, and/or protein-based free radicals. In the presence of free iron released from heme, superoxide anion and hydrogen peroxide might react via the Haber-Weiss and Fenton reactions to generate the hydroxyl radical. These highly reactive oxygen and heme species may not only be involved in shifting the cellular redox balance to the oxidized state that facilitates signal transduction and pro-inflammatory gene expression, but could also be involved in cellular and organ injury, and generation of vasoactive compounds such as isoprostanes and angiotensins. It is believed that these toxic species may be formed after administration of Hb-based blood substitutes, particularly in ischemic patients with a diminished ability to control oxidative reactions. Although varieties of antioxidant strategies have been suggested, this in vitro study examined the ability of the ascorbate-glutathione antioxidant system in preventing Hb oxidation and formation of its ferryl intermediate. The results suggest that although ascorbate is effective in reducing the formation of ferryl Hb, glutathione protects heme against excessive oxidation. Ascorbate without glutathione failed to protect the red blood cell membranes against Hb/hydrogen peroxide-mediated peroxidation. This study provides evidence that the ascorbate-glutathione antioxidant system is essential in attenuation of the pro-oxidant potential of redox active acellular Hbs, and superior to either ascorbate or glutathione alone.

  14. Photosystem II functionality and antioxidant system changes during leaf rolling in post-stress emerging Ctenanthe setosa exposed to drought.

    PubMed

    Terzi, Rabiye; Saruhan, Neslihan; Sağlam, A; Nar, Hatice; Kadioğlu, A

    2009-12-01

    We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H 2 O 2 content increased at score 2 but decreased at the later scores. On the other hand, O 2 .- production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants.

  15. Influence of droplet size on the antioxidant activity of rosemary extract loaded oil-in-water emulsions in mixed systems.

    PubMed

    Erdmann, Martin E; Zeeb, Benjamin; Salminen, Hanna; Gibis, Monika; Lautenschlaeger, Ralf; Weiss, Jochen

    2015-03-01

    The influence of droplet size on the antioxidant activity of oil-in-water emulsions loaded with rosemary extract in mixed emulsion systems was investigated. Firstly, differently sized hexadecane-in-water model emulsions (10% (w/w) hexadecane, 2% (w/w) Tween 80, pH 5 or 7) containing 4000 ppm rosemary extract in the oil phase or without added antioxidant were prepared using a high shear blender and/or high-pressure homogenizer. Secondly, emulsions were mixed with fish oil-in-water emulsions (10% (w/w) fish oil, 2% (w/w) Tween 80, pH 5 or 7) at a mixing ratio of 1 : 1. Optical microscopy and static light scattering measurements indicated that emulsions were physically stable for 21 days, except for the slight aggregation of emulsions with a mean droplet size d₄₃ of 4500 nm. The droplet size of hexadecane-in-water emulsions containing rosemary extract had no influence on the formation of lipid hydroperoxides at pH 5 and 7. Significantly lower concentrations of propanal were observed for the emulsions loaded with rosemary extract with a mean droplet size d₄₃ of 4500 nm from day 12 to 16 at pH 7. Finally, hexadecane-in-water emulsions containing rosemary extract significantly retarded lipid oxidation of fish oil-in-water emulsions in mixed systems, but no differences in antioxidant efficacy between the differently sized emulsions were observed at pH 5. PMID:25586114

  16. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training

    PubMed Central

    Cumming, Kristoffer T.; Raastad, Truls; Holden, Geir; Bastani, Nasser E.; Schneeberger, Damaris; Paronetto, Maria Paola; Mercatelli, Neri; Østgaard, Hege N.; Ugelstad, Ingrid; Caporossi, Daniela; Blomhoff, Rune; Paulsen, Gøran

    2014-01-01

    Abstract Reactive oxygen and nitrogen species are important signal molecules for adaptations to training. Due to the antioxidant properties of vitamin C and E, supplementation has been shown to blunt adaptations to endurance training. In this study, we investigated the effects of vitamin C and E supplementation and endurance training on adaptations in endogenous antioxidants and heat shock proteins (HSP). Thirty seven males and females were randomly assigned to receive Vitamin C and E (C + E; C: 1000 mg, E: 235 mg daily) or placebo (PLA), and underwent endurance training for 11 weeks. After 5 weeks, a subgroup conducted a high intensity interval session to investigate acute stress responses. Muscle and blood samples were obtained to investigate changes in proteins and mRNA related to the antioxidant and HSP system. The acute response to the interval session revealed no effects of C + E supplementation on NFκB activation. However, higher stress responses to exercise in C + E group was indicated by larger translocation of HSPs and a more pronounced gene expression compared to PLA. Eleven weeks of endurance training decreased muscle GPx1, HSP27 and αB‐crystallin, while mnSOD, HSP70 and GSH remained unchanged, with no influence of supplementation. Plasma GSH increased in both groups, while uric acid decreased in the C + E group only. Our results showed that C + E did not affect long‐term training adaptations in the antioxidant‐ and HSP systems. However, the greater stress responses to exercise in the C + E group might indicate that long‐term adaptations occurs through different mechanisms in the two groups. PMID:25293598

  17. Age-related development profiles of the antioxidative defense system and the peroxidative status of the pig heart.

    PubMed

    Das, D K; Flansaas, D; Engelman, R M; Rousou, J A; Breyer, R H; Jones, R; Lemeshow, S; Otani, H

    1987-01-01

    The developmental profiles of the antioxidative defense system and the peroxidative status of the heart during growth and development were studied in pigs of three different age groups. A unique age-specific myocardial lipid peroxidation expressed in terms of malonaldehyde formation occurred after incubation of neonatal and adult pig heart homogenates in the absence of any added factors. Very little malonaldehyde release was noticed in the 0- to 2-day age group, while considerably higher activity was found in the 8- to 10-day-old animals. The 2-month-old pig heart again formed very little malonaldehyde. Myocardial injury from lipid peroxidation was highest in the 0- to 2-day age group, as evidenced by the release of oxidized glutathione, lactate dehydrogenase (LDH) and creatine kinase (CK) activities. Release of glutathione, LDH and CK decreased with age and was minimal in the adult group. The antioxidative enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, increased during the first 10 days of neonatal growth and then levelled off. Glucose-6-phosphate dehydrogenase was present in appreciably lower amounts in adult hearts compared to neonatal hearts. Heart weight increased with aging, but myocardial water content decreased. Protein and DNA contents of hearts increased with age, such that the protein/DNA ratio almost doubled from the newborn to adult age. The results indicate that the newborn pig hearts are equipped with the antioxidative defense system, which undergoes significant development during the initial phase of neonatal growth and does not change appreciably thereafter. The results further suggest that the change in activity profile with aging is different for different enzymes, and the peroxidative status of the myocardium is not a function of these enzyme activities. PMID:3567255

  18. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla. PMID:26634608

  19. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla.

  20. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis.

    PubMed

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-08-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.

  1. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    PubMed Central

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-01-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage. PMID:25825039

  2. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests.

    PubMed

    Santamaria, M Estrella; Martínez, Manuel; Cambra, Inés; Grbic, Vojislava; Diaz, Isabel

    2013-08-01

    Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.

  3. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  4. Middle Devonian liverwort herbivory and antiherbivore defence.

    PubMed

    Labandeira, Conrad C; Tremblay, Susan L; Bartowski, Kenneth E; VanAller Hernick, Linda

    2014-04-01

    To test the extent of herbivory in early terrestrial ecosystems, we examined compression-impression specimens of the late Middle Devonian liverwort Metzgeriothallus sharonae, from the Catskill Delta deposit of eastern New York state. Shale fragments of field-collected specimens were processed by applying liquid nitrocellulose on exposed surfaces. After drying, the film coatings were lifted off and mounted on microscope slides for photography. Unprocessed fragments were photographed under cedarwood oil for enhanced contrast. An extensive repertoire of arthropodan-mediated herbivory was documented, representing three functional feeding groups and nine subordinate plant-arthropod damage types (DTs). The herbivory is the earliest occurrence of external foliage-feeding and galling in the terrestrial fossil record. Our evidence indicates that thallus oil body cells, similar to the terpenoid-containing oil bodies of modern liverworts, were probably involved in the chemical defence of M. sharonae against arthropod herbivores. Based on damage patterns of terrestrial plants and an accompanying but sparse body-fossil record, Devonian arthropodan herbivores were significantly smaller compared to those of the later Palaeozoic. These data collectively suggest that a broad spectrum herbivory may have had a more important role in early terrestrial ecosystems than previously thought.

  5. Simulation, human factors and defence anaesthesia.

    PubMed

    Mercer, S J; Whittle, C; Siggers, B; Frazer, R S

    2010-12-01

    Simulation in healthcare has come a long way since it's beginnings in the 1960s. Not only has the sophistication of simulator design increased, but the educational concepts of simulation have become much clearer. One particularly important area is that of non-technical skills (NTS) which has been developed from similar concepts in the aviation and nuclear industries. NTS models have been developed for anaesthetists and more recently for surgeons too. This has clear value for surgical team working and the recently developed Military Operational Surgical Training (MOST) course uses simulation and NTS to improve such team working. The scope for simulation in Defence medicine and anaesthesia does not stop here. Uses of simulation include pre-deployment training of hospital teams as well as Medical Emergency Response Team (MERT) and Critical Care Air Support Team (CCAST) staff. Future projects include developing Role 1 pre-deployment training. There is enormous scope for development in this important growth area of education and training. PMID:21302658

  6. Salinity change impairs pipefish immune defence.

    PubMed

    Birrer, Simone C; Reusch, Thorsten B H; Roth, Olivia

    2012-12-01

    Global change is associated with fast and severe alterations of environmental conditions. Superimposed onto existing salinity variations in a semi-enclosed brackish water body such as the Baltic Sea, a decrease in salinity is predicted due to increased precipitation and freshwater inflow. Moreover, we predict that heavy precipitation events will accentuate salinity fluctuations near shore. Here, we investigated how the immune function of the broad-nosed pipefish (Syngnathus typhle), an ecologically important teleost with sex-role reversal, is influenced by experimentally altered salinities (control: 18 PSU, lowered: 6 PSU, increased: 30 PSU) upon infection with bacteria of the genus Vibrio. Salinity changes resulted in increased activity and proliferation of immune cells. However, upon Vibrio infection, individuals at low salinity were unable to mount specific immune response components, both in terms of monocyte and lymphocyte cell proliferation and immune gene expression compared to pipefish kept at ambient salinities. We interpret this as resource allocation trade-off, implying that resources needed for osmoregulation under salinity stress are lacking for subsequent activation of the immune defence upon infection. Our data suggest that composition of small coastal fish communities may change due to elevated environmental stress levels and the incorporated consequences thereof. PMID:22982326

  7. Salinity change impairs pipefish immune defence.

    PubMed

    Birrer, Simone C; Reusch, Thorsten B H; Roth, Olivia

    2012-12-01

    Global change is associated with fast and severe alterations of environmental conditions. Superimposed onto existing salinity variations in a semi-enclosed brackish water body such as the Baltic Sea, a decrease in salinity is predicted due to increased precipitation and freshwater inflow. Moreover, we predict that heavy precipitation events will accentuate salinity fluctuations near shore. Here, we investigated how the immune function of the broad-nosed pipefish (Syngnathus typhle), an ecologically important teleost with sex-role reversal, is influenced by experimentally altered salinities (control: 18 PSU, lowered: 6 PSU, increased: 30 PSU) upon infection with bacteria of the genus Vibrio. Salinity changes resulted in increased activity and proliferation of immune cells. However, upon Vibrio infection, individuals at low salinity were unable to mount specific immune response components, both in terms of monocyte and lymphocyte cell proliferation and immune gene expression compared to pipefish kept at ambient salinities. We interpret this as resource allocation trade-off, implying that resources needed for osmoregulation under salinity stress are lacking for subsequent activation of the immune defence upon infection. Our data suggest that composition of small coastal fish communities may change due to elevated environmental stress levels and the incorporated consequences thereof.

  8. Middle Devonian liverwort herbivory and antiherbivore defence.

    PubMed

    Labandeira, Conrad C; Tremblay, Susan L; Bartowski, Kenneth E; VanAller Hernick, Linda

    2014-04-01

    To test the extent of herbivory in early terrestrial ecosystems, we examined compression-impression specimens of the late Middle Devonian liverwort Metzgeriothallus sharonae, from the Catskill Delta deposit of eastern New York state. Shale fragments of field-collected specimens were processed by applying liquid nitrocellulose on exposed surfaces. After drying, the film coatings were lifted off and mounted on microscope slides for photography. Unprocessed fragments were photographed under cedarwood oil for enhanced contrast. An extensive repertoire of arthropodan-mediated herbivory was documented, representing three functional feeding groups and nine subordinate plant-arthropod damage types (DTs). The herbivory is the earliest occurrence of external foliage-feeding and galling in the terrestrial fossil record. Our evidence indicates that thallus oil body cells, similar to the terpenoid-containing oil bodies of modern liverworts, were probably involved in the chemical defence of M. sharonae against arthropod herbivores. Based on damage patterns of terrestrial plants and an accompanying but sparse body-fossil record, Devonian arthropodan herbivores were significantly smaller compared to those of the later Palaeozoic. These data collectively suggest that a broad spectrum herbivory may have had a more important role in early terrestrial ecosystems than previously thought. PMID:24372344

  9. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain.

    PubMed

    Stringari, James; Nunes, Adriana K C; Franco, Jeferson L; Bohrer, Denise; Garcia, Solange C; Dafre, Alcir L; Milatovic, Dejan; Souza, Diogo O; Rocha, João B T; Aschner, Michael; Farina, Marcelo

    2008-02-15

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F(2)-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F(2)-isoprostanes levels at all time points. Significant negative correlations were found between F(2)-isoprostanes and GSH, as well as between F(2)-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at

  10. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    SciTech Connect

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.; Bohrer, Denise; Garcia, Solange C.; Dafre, Alcir L.; Milatovic, Dejan; Souza, Diogo O.; Rocha, Joao B.T.; Aschner, Michael; Farina, Marcelo

    2008-02-15

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F{sub 2}-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F{sub 2}-isoprostanes levels at all time points. Significant negative correlations were found between F{sub 2}-isoprostanes and GSH, as well as between F{sub 2}-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of

  11. Activation of defence reactions in Solanaceae: where is the specificity?

    PubMed

    Desender, Sabine; Andrivon, Didier; Val, Florence

    2007-01-01

    When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant-pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds. However, as most papers focus on incompatible interactions, there is still a lack of understanding about the similarities and differences between compatible and incompatible situations. This review targets the question of specificity in Solanaceae-pathogen interactions, by comparing defence patterns in plants challenged with virulent or avirulent pathogens (or with pathogen-associated molecular patterns from these). A special emphasis is made on analysing whether defence reactions in Solanaceae depend primarily on the type of elicitor, on the plant genotype/species, or on the type of interaction (compatible or incompatible).

  12. Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System

    PubMed Central

    Alva, Norma; Sanchez-Nuño, Sergio; Dewey, Shannamar; Gomes, Aldrin V.

    2016-01-01

    The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C) to subnormothermia (26°C and 22°C). Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS) were both activated. The 26S chymotrypsin-like (β5) proteasome activity was significantly increased in the 26°C (46%) and 22°C (42%) groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus. PMID:27800122