EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON OZONE-INDUCED LUNG INJURY IN HUMAN SUBJECTS
Epidemiological, in vitro and animal studies suggest that dietary antioxidants can modulate the cellular and physiologic effects of ozone (O3) inhalation in humans. To determine whether antioxidants can influence human susceptibility to O3-induced changes in lung function and a...
Finamore, Alberto; Bensehaila, Sarra
2017-01-01
The highly nutritional and ecofriendly Spirulina (Arthrospira platensis) has hypolipidemic, hypoglycemic, and antihypertensive properties. Spirulina contains functional compounds, such as phenolics, phycocyanins, and polysaccharides, with antioxidant, anti-inflammatory, and immunostimulating effects. Studies conducted on Spirulina suggest that it is safe in healthy subjects, but attitude to eating probably affects the acceptability of Spirulina containing foods. Although the antioxidant effect of Spirulina is confirmed by the intervention studies, the concerted modulation of antioxidant and inflammatory responses, suggested by in vitro and animal studies, requires more confirmation in humans. Spirulina supplements seem to affect more effectively the innate immunity, promoting the activity of natural killer cells. The effects on cytokines and on lymphocytes' proliferation depend on age, gender, and body weight differences. In this context, ageing and obesity are both associated with chronic low grade inflammation, immune impairment, and intestinal dysbiosis. Microbial-modulating activities have been reported in vitro, suggesting that the association of Spirulina and probiotics could represent a new strategy to improve the growth of beneficial intestinal microbiota. Although Spirulina might represent a functional food with potential beneficial effects on human health, the human interventions used only supplements. Therefore, the effect of food containing Spirulina should be evaluated in the future. PMID:28182098
Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F
2016-09-01
Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.
Glutamine and antioxidants: status of their use in critical illness.
van Zanten, Arthur R H
2015-03-01
Many studies in critically ill patients have addressed enteral or parenteral supplementation of glutamine and antioxidants to counteract assumed deficiencies and induce immune-modulating effects to reduce infections and improve outcome. Older studies showed marked reductions in mortality, infectious morbidity and length of stay. Recent studies no longer show beneficial effects and in contrast even demonstrated increased mortality. This opiniating review focuses on the latest information and the consequences for the use of glutamine and antioxidants in critically ill patients. Positive effects in systematic reviews and meta-analyses are based on results from older, smaller and mainly single-centre studies. New information has challenged the conditional deficiency hypothesis concerning glutamine in critically ill patients. The recent REDOXS and MetaPlus trials studying the effects of glutamine, selenium and other antioxidants have shown no benefits and increased mortality. Given that the first dictum in medicine is to do no harm, we cannot be confident that immune-modulating nutrient supplementation with glutamine and antioxidants is effective and well tolerated for critically ill patients. Until more data are available, it is probably better not to routinely administer glutamine and antioxidants in nonphysiological doses to mechanically ventilated critically ill patients.
Zou, Ping; Li, Kecheng; Liu, Song; He, Xiaofei; Zhang, Xiaoqian; Xing, Ronge; Li, Pengcheng
2016-04-13
In this study, sulfated chitooligosaccharide (SCOS) was applied to wheat seedlings to investigate its effect on the plants' defense response under salt stress. The antioxidant enzyme activities, chlorophyll contents, and fluorescence characters of wheat seedlings were determined at a certain time. The results showed that treatment with exogenous SCOS could decrease the content of malondialdehyde, increase the chlorophyll contents, and modulate fluorescence characters in wheat seedlings under salt stress. In addition, SCOS was able to regulate the activities of antioxidant enzymes containing superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase. Similarly, the mRNA expression levels of several antioxidant enzymes were efficiently modulated by SCOS. The results indicated that SCOS could alleviate the damage of salt stress by adjusting the antioxidant enzyme activities of plant. The effect of SCOS on the photochemical efficiency of wheat seedlings was associated with its enhanced capacity for antioxidant enzymes, which prevented structure degradation of the photosynthetic apparatus under NaCl stress. Furthermore, the effective activities of alleviating salt stress indicated the activities of SCOS were closely related with the sulfate group.
Rational: Ozone is known to induce a variety of pulmonary effects including decrement of spirometric lung function and inflammatory reaction, and antioxidant genes are known to play an important role in modulating the effects. It is unclear, however, if such effects may occur at...
Machala, M; Kubínová, R; Horavová, P; Suchý, V
2001-03-01
A series of homoisoflavonoids and chalcones, isolated from the endemic tropical plant Dracaena cinnabari Balf. (Agavaceae), were tested for their potential to inhibit cytochrome P4501A (CYP1A) enzymes and Fe-enhanced in vitro peroxidation of microsomal lipids in C57B1/6 mouse liver. The effects of the polyphenolic compounds were compared with those of prototypal flavonoid modulators of CYP1A and the well-known antioxidant, butylated hydroxytoluene. 2-Hydroxychalcone and partly 4,6-dihydroxychalcone were found to be strong inhibitors of CYP1A-dependent 7-ethoxyresorufin O-deethylase (EROD) activity in vitro comparable to the effects of quercetin and chrysin. The first screening of flavonoids and chalcones of Dracaena cinnabari for antioxidant activity was done in an in vitro microsomal peroxidation assay. While chalcones were shown to be poor antioxidants, 7,8-methylenedioxy-3(4-hydroxybenzyl) chromane, as one of the tested homoisoflavonoids, exhibited a strong antioxidant activity comparable to that of the strongest flavonol antioxidant, quercetin. Copyright 2001 John Wiley & Sons, Ltd.
Thakare, Vishnu N; Dhakane, Valmik D; Patel, Bhoomika M
2017-04-01
Protocatechuic acid ethyl ester (PCA), a phenolic compound, exhibits neuroprotective effects through improving endogenous antioxidant enzymatic and nonezymatic system. Based on the role of oxidative stress in modulating depressive disorders and the relationship between neuroprotective and antioxidant potential of PCA, we studied if its antidepressant like effect is associated by modulation of cerebral cortex and hippocampal antioxidant alterations. Acute restraint stress (ARS) is known to induce depressive like behavior by neuronal oxidative damage in mice. Swiss albino mice subjected to ARS exhibited an increased immobility time in forced swim test, elevated serum corticosterone and produced oxidative stress dependent alterations in cerebral cortex and hippocampus mainly increased thiobarbituric acid reactive substances and reduced catalase (CAT), superoxide dismutase (SOD) activity. Treatment with PCA was able to prevent stress induced immobility time in forced swim test without altering locomotor activity in mice. Further, PCA treatment attenuated the elevation of serum corticosterone, lipid peroxidation and restored enzymatic antioxidants in cerebral cortex and hippocampus in ARS mice. Altogether, the experimental findings demonstrate the notion that PCA exhibit antidepressant like activity might be related, at least in part, to its capability of modulating antioxidant defense system and oxidative damage induced by ARS in cerebral cortex and hippocampus in mice and thus maintain the pro-/anti-oxidative homeostasis.
[Antioxidant and anti-inflammatory modulation of exercise during aging].
Galle, Fernando Alexis; Martella, Diana; Bresciani, Guilherme
2018-06-10
Aging is characterised by a gradual loss of the functional reserve. This, along with the fostering of sedentary habits and the increase in risk factors, causes a deterioration of antioxidant defences and an increase of the circulatory levels of inflammatory and oxidative markers, boosting a low-rate chronic inflammation, defined as inflamm-aging. This phenomenon is present in the aetiopathology of chronic diseases, as well as in cognitive deterioration cases associated with aging. The objective of this review is to describe the modulation of antioxidant and anti-inflammatory effects of physical exercise of moderate intensity and volume in the elderly. Evidence of its effectiveness as a non-pharmacological resource is presented, which decreases some deleterious effects of aging. This is mainly due to its neuroprotective action, the increase in circulating anti-inflammatory markers, and the improvement of antioxidant defence derived from its practice. Copyright © 2018 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello
2015-12-01
Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.
Guerra, Joyce Ferreira da Costa; Magalhães, Cíntia Lopes de Brito; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia
2011-01-01
Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control and streptozotocin-induced diabetic rats. Diet supplementation with 2% açai was found to increase mRNA levels for gamma-glutamylcysteine synthetase and glutathione peroxidase in liver tissue and to decrease reactive oxygen species production by neutrophils. Compared to control animals, diabetic rats exhibited lower levels of mRNA coding for Zn-superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase and higher levels of reactive oxygen species production by neutrophils, thiobarbituric acid-reactive substances and carbonyl proteins in hepatic tissues. Although açai supplementation was not effective in restore gene expression of antioxidant enzymes in diabetic rats, it showed a protective effect, decreasing thiobarbituric acid-reactive substances levels and increasing reduced glutathione content in the liver. These findings suggest that açai can modulate reactive oxygen species production by neutrophils and that it has a significant favorable effect on the liver antioxidant defense system under fisiological conditions of oxidative stress and partially revert deleterious effects of diabetes in the liver. PMID:22128218
Effects of genistein on early-stage cutaneous wound healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Eunkyo; Lee, Seung Min; Jung, In-Kyung
2011-07-08
Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected bymore » antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results suggest that genistein supplementation reduces oxidative stress by increasing antioxidant capacity and modulating proinflammatory cytokine expression during the early stage of wound healing.« less
Hirzel, Estelle; Lindinger, Peter W; Maseneni, Swarna; Giese, Maria; Rhein, Véronique Virginie; Eckert, Anne; Hoch, Matthias; Krähenbühl, Stephan; Eberle, Alex N
2013-10-01
Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an important role as signaling and regulating molecules in human adipocytes. In order to evaluate the differential modulating roles of antioxidants, we treated human adipocytes differentiated from human bone marrow-derived mesenchymal stem cells with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals only. All three substances slightly decreased state III respiration immediately after addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen consumption, whereas curcumin and resveratrol had no effect. Intracellular ATP levels were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert potent modulating effects on ROS signaling in human adipocyte with marginal effects on metabolic parameters.
USDA-ARS?s Scientific Manuscript database
This study was conducted to investigate the effects of in ovo injection of selenium (Se) from 3 different sources on modulating the immune and antioxidant responses in broiler chickens in experimental necrotic enteritis (NE). SE contents of Sodium selenite (Na2SeO3 [SS]), Se-enriched yeast (YS), and...
Effect of pineal tetrapeptide on antioxidant defense in Drosophila melanogaster.
Khavinson, V K; Myl'nikov, S V
2000-04-01
Effects of synthetic pineal tetrapeptide L-Ala-L-Glu-L-Asp-L-Glu (Epithalon) on specific catalase activity and the content of conjugated hydroperoxides in highly inbred Drosophila melanogaster lines differing in reproductive functions were studied. It was shown that Epithalon is a potent modulator of the antioxidant defense, whose biological activity 1000-fold surpasses that of the complex pineal peptide preparation Epithalamin.
Redox Modulations, Antioxidants, and Neuropsychiatric Disorders
Fraunberger, Erik A.; Laliberté, Victoria L. M.; Duong, Angela; Andreazza, Ana C.
2016-01-01
Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders. PMID:26640614
USDA-ARS?s Scientific Manuscript database
While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...
Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo
2014-01-01
Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401
Angiomodulatory properties of Rhodiola spp. and other natural antioxidants.
Radomska-Leśniewska, Dorota M; Skopiński, Piotr; Bałan, Barbara J; Białoszewska, Agata; Jóźwiak, Jarosław; Rokicki, Dariusz; Skopińska-Różewska, Ewa; Borecka, Anna; Hevelke, Agata
2015-01-01
Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient.
Effects of ginger and its pungent constituents on transient receptor potential channels.
Kim, Young-Soo; Hong, Chan Sik; Lee, Sang Weon; Nam, Joo Hyun; Kim, Byung Joo
2016-12-01
Ginger extract is used as an analeptic in herbal medicine and has been reported to exert antioxidant effects. Transient receptor potential (TRP) canonical 5 (TRPC5), TRP cation channel, subfamily M, member 7 (TRPM7; melastatin 7), and TRP cation channel, subfamily A, member 1 (TRPA1; ankyrin 1) are non-selective cation channels that are modulated by reactive oxygen/nitrogen species (ROS/RNS) and subsequently control various cellular processes. The aim of this study was to evaluate whether ginger and its pungent constituents modulate these channels and exert antioxidant effects. It was found that TRPC5 and TRPA1 currents were modulated by ginger extract and by its pungent constituents, [6]-gingerol, zingerone and [6]-shogaol. In particular, [6]-shogaol markedly and dose-dependently inhibited TRPC5 currents with an IC50 of value of ~18.3 µM. Furthermore, the strong dose-dependent activation of TRPA1 currents by [6]-shogaol was abolished by A‑967079 (a selective TRPA1 inhibitor). However, ginger extract and its pungent constituents had no effect on TRPM7 currents. These results suggest the antioxidant effects of ginger extract and its pungent constituents are mediated through TRPC5 and TRPA1, and that [6]-shogaol is predominantly responsible for the regulation of TRPC5 and TRPA1 currents by ginger extract.
Schachtele, Scott J.; Hu, Shuxian; Lokensgard, James R.
2012-01-01
Reactive oxygen species (ROS) produced by brain-infiltrating macrophages and neutrophils, as well as resident microglia, are pivotal to pathogen clearance during viral brain infection. However, unchecked free radical generation is also responsible for damage to and cytotoxicity of critical host tissue bystander to primary infection. These unwanted effects of excessive ROS are combated by local cellular production of antioxidant enzymes, including heme oxygenase-1 (HO-1) and glutathione peroxidase 1 (Gpx1). In this study, we showed that experimental murine herpes encephalitis triggered robust ROS production, as well as an opposing upregulation of the antioxidants HO-1 and Gpx1. This antioxidant response was insufficient to prevent tissue damage, neurotoxicity, and mortality associated with viral brain infection. Previous studies corroborate our data supporting astrocytes as the major antioxidant producer in brain cell cultures exposed to HSV-1 stimulated microglia. We hypothesized that stimulating opposing antioxidative responses in astrocytes, as well as neurons, would mitigate the effects of ROS-mediated neurotoxicity both in vitro and during viral brain infection in vivo. Here, we demonstrate that the addition of sulforaphane, a potent stimulator of antioxidant responses, enhanced HO-1 and Gpx1 expression in astrocytes through the activation of nuclear factor-E2-related factor 2 (Nrf2). Additionally, sulforaphane treatment was found to be effective in reducing neurotoxicity associated with HSV-stimulated microglial ROS production. Finally, intraperitoneal injections of sulforaphane into mice during active HSV infection reduced neuroinflammation via a decrease in brain-infiltrating leukocytes, macrophage- and neutrophil-produced ROS, and MHCII-positive, activated microglia. These data support a key role for astrocyte-produced antioxidants in modulating oxidative stress and neuronal damage in response to viral infection. PMID:22558388
Targeted modulation of reactive oxygen species in the vascular endothelium.
Shuvaev, Vladimir V; Muzykantov, Vladimir R
2011-07-15
'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.
Cocoa and Chocolate in Human Health and Disease
Doughty, Kim; Ali, Ather
2011-01-01
Abstract Cocoa contains more phenolic antioxidants than most foods. Flavonoids, including catechin, epicatechin, and procyanidins predominate in antioxidant activity. The tricyclic structure of the flavonoids determines antioxidant effects that scavenge reactive oxygen species, chelate Fe2+ and Cu+, inhibit enzymes, and upregulate antioxidant defenses. The epicatechin content of cocoa is primarily responsible for its favorable impact on vascular endothelium via its effect on both acute and chronic upregulation of nitric oxide production. Other cardiovascular effects are mediated through anti-inflammatory effects of cocoa polyphenols, and modulated through the activity of NF-κB. Antioxidant effects of cocoa may directly influence insulin resistance and, in turn, reduce risk for diabetes. Further, cocoa consumption may stimulate changes in redox-sensitive signaling pathways involved in gene expression and the immune response. Cocoa can protect nerves from injury and inflammation, protect the skin from oxidative damage from UV radiation in topical preparations, and have beneficial effects on satiety, cognitive function, and mood. As cocoa is predominantly consumed as energy-dense chocolate, potential detrimental effects of overconsumption exist, including increased risk of weight gain. Overall, research to date suggests that the benefits of moderate cocoa or dark chocolate consumption likely outweigh the risks. Antioxid. Redox Signal. 15, 2779–2811. PMID:21470061
Pereira, Ana Carolina da Silva; Dionísio, Ana Paula; Wurlitzer, Nedio Jair; Alves, Ricardo Elesbão; de Brito, Edy Souza; e Silva, Ana Mara de Oliveira; Brasil, Isabella Montenegro; Mancini Filho, Jorge
2014-08-15
Fruits are a rich source of a variety of biologically active compounds that can have complementary and overlapping mechanisms of action, including detoxification, enzyme modulation and antioxidant effects. Although the effects of tropical fruits have been examined individually, the interactive antioxidant capacity of the bioactive compounds in these formulations has not been sufficiently explored. For this reason, this study investigated the effect of two tropical fruit juices (FA and FB) on lipid peroxidation and antioxidant enzymes in rats. Seven groups, with eight rats each, were fed a normal diet for 4 weeks, and were force-fed daily either water (control), 100, 200, or 400 mg of FA or FB per kg. The results showed that the liver superoxide dismutase and catalase activities (FA200), erythrocytes glutathione peroxidase (FB400) and thiobarbituric acid-reactive substances (FB100, FA400, FB200, FB400) were efficiently reduced by fruit juices when compared with control; whereas HDL-c increased (FB400). Copyright © 2014. Published by Elsevier Ltd.
Modulation of endogenous antioxidant system by wine polyphenols in human disease.
Rodrigo, Ramón; Miranda, Andrés; Vergara, Leonardo
2011-02-20
Numerous studies indicate that moderate red wine consumption is associated with a protective effect against all-cause mortality. Since oxidative stress constitutes a unifying mechanism of injury of many types of disease processes, it should be expected that polyphenolic antioxidants account for this beneficial effect. Nevertheless, beyond the well-known antioxidant properties of these compounds, they may exert several other protective mechanisms. Indeed, the overall protective effect of polyphenols is due to their large array of biological actions, such as free radical-scavenging, metal chelation, enzyme modulation, cell signalling pathways modulation and gene expression effects, among others. Wine possesses a variety of polyphenols, being resveratrol its most outstanding representative, due to its pleiotropic biological properties. The presence of ethanol in wine aids to polyphenol absorption, thereby contributing to their bioavailability. Before absorption, polyphenols must be hydrolyzed by intestinal enzymes or by colonic microflora. Then, they undergo intestinal and liver metabolism. There have been no reported polyphenol adverse effects derived from intakes currently associated with the normal diet. However, supplements for health-protection should be cautiously used as no level definition has been given to make sure the dose is safe. The role of oxidative stress and the beneficial effects of wine polyphenols against cardiovascular, cancer, diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and ageing are reviewed. Future large scale randomized clinical trials should be conducted to fully establish the therapeutic use of each individual wine polyphenol against human disease. Copyright © 2010 Elsevier B.V. All rights reserved.
Simon, Emmanuel; Aswini, P; Sameer Kumar, V B; Mankadath, Gokuldas
2018-05-01
Curcumin is a polyphenol derived from the herb Curcuma longa, which has been extensively studied in terms of its antitumour, antioxidant, and chemopreventive activity as well as various other effects. In the present work we compared curcumin with its synthetic analogue dimethoxycurcumin (dimc) in terms of its antioxidant enzyme-modulating effects in human peripheral blood mononuclear cells (PBMC). We found that these compounds modulate antioxidant enzymes differentially. Both curcumin and dimethoxycurcumin effected a decrease in lipid peroxidation status in PBMC, however, curcumin had better activity in this regard. An increase in the activity of catalase was seen in the case of curcumin-treated PBMC, whereas dimc increased catalase activity significantly to almost twofold level. Real time-polymerase chain reaction (RT-PCR) analysis revealed significant up-regulation of catalase at mRNA level post treatment with curcumin as well as dimc, however, dimc had better activity in this regard. Glutathione reductase (GR) activity and reduced glutathione levels increased in the case of peripheral blood mononuclear cells (PBMC) treated with curcumin, however, the trend was reversed with dimethoxycurcumin where, both glutathione reductase activity and reduced glutathione levels were significantly reduced. RT-PCR analysis of glutathione reductase mRNA levels showed decrease in mRNA levels post treatment with dimethoxycurcumin (dimc) further corroborating GR enzyme assay results, however, we could not obtain significant result post curcumin treatment. NFkB reporter assay and western blot analysis of nuclear as well as cytosolic fractions of NFkB revealed that curcumin inhibits NFkB activation whereas inhibition was much less with dimc. It has been reported that curcumin and dimc exerts differential cytotoxicity in normal and tumour cells and the reason for this had been attributed to the differential uptake of these compounds by normal cells and tumour cells. Based on our results we propose that differential modulation of antioxidant enzymes via NFkB pathway could be the reason behind differential cytotoxicity of dimc as well as curcumin in normal cells and tumour cells in addition to differential uptake of these compounds as reported previously.
Human duodenal proteome modulations by glutamine and antioxidants.
Thébault, Sandrine; Deniel, Nicolas; Galland, Alexandra; Lecleire, Stéphane; Charlionet, Roland; Coëffier, Moïse; Tron, François; Vaudry, David; Déchelotte, Pierre
2010-03-01
Glutamine (Gln) has protective, anti-inflammatory effects in animal models and humans. Antioxidant nutrients may exert synergistic effects on intestinal functions. Therefore, these combined nutrients may have a therapeutic potential during intestinal inflammation. This study was designed to investigate in humans the effects of a supplement composed of Gln and high-dosed antioxidant micronutrients compared to isomolar Gln only, on duodenal proteome. Enteral perfusion of Gln (0.8 mmol x kg(-1) x h(-1)) or supplement was performed in two groups of six healthy volunteers during 5 h before taking endoscopic duodenal biopsies. Protein expression was analyzed by 2-DE and the relevant proteins identified by MS/MS. About 1500 protein spots were revealed in both supplement and Gln conditions. Comparative proteomics analysis indicated that 11 proteins were differentially and significantly (p≤0.05) expressed in response to the supplement. These proteins were essentially implicated in metabolism pathways, e.g. fatty acid binding protein-1 and 40S ribosomal protein SA expressions were downregulated while manganese superoxide dismutase and retinal dehydrogenase-1 expressions were upregulated. This study provides new information on human duodenal proteome and its nutritional modulation, and supports further clinical investigations designed to evaluate the effects of Gln plus antioxidants during intestinal inflammation and cancer. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of the Antioxidant Effects of γ-Oryzanol: Involvement of the Nrf2 Pathway
Rungratanawanich, W.; Serafini, M. M.; Guarienti, M.; Catanzaro, M.; Marziano, M.; Memo, M.; Lanni, C.
2018-01-01
γ-Oryzanol (ORY) is well known for its antioxidant potential. However, the mechanism by which ORY exerts its antioxidant effect is still unclear. In this paper, the antioxidant properties of ORY were investigated for its potential effects as a reactive oxygen and nitrogen species (ROS/RNS) scavenger and in activating antioxidant-promoting intracellular pathways utilizing the human embryonic kidney cells (HEK-293). The 24 h ORY exposure significantly prevented hydrogen peroxide- (H2O2-) induced ROS/RNS production at 3 h, and this effect was sustained for at least 24 h. ORY pretreatment also enhanced the activity of antioxidant enzymes: superoxide dismutase (SOD) and glutathione peroxidase (GPX). Interestingly, ORY induced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation and upregulation of Nrf2-dependent defensive genes such as NAD(P)H quinone reductase (NQO1), heme oxygenase-1 (HO-1), and glutathione synthetase (GSS) at mRNA and protein levels in both basal condition and after H2O2 insult. Thus, this study suggested an intriguing effect of ORY in modulating the Nrf2 pathway, which is also involved in regulating longevity as well as age-related diseases. PMID:29725495
Characterization of the Antioxidant Effects of γ-Oryzanol: Involvement of the Nrf2 Pathway.
Rungratanawanich, W; Abate, G; Serafini, M M; Guarienti, M; Catanzaro, M; Marziano, M; Memo, M; Lanni, C; Uberti, D
2018-01-01
γ -Oryzanol (ORY) is well known for its antioxidant potential. However, the mechanism by which ORY exerts its antioxidant effect is still unclear. In this paper, the antioxidant properties of ORY were investigated for its potential effects as a reactive oxygen and nitrogen species (ROS/RNS) scavenger and in activating antioxidant-promoting intracellular pathways utilizing the human embryonic kidney cells (HEK-293). The 24 h ORY exposure significantly prevented hydrogen peroxide- (H 2 O 2 -) induced ROS/RNS production at 3 h, and this effect was sustained for at least 24 h. ORY pretreatment also enhanced the activity of antioxidant enzymes: superoxide dismutase (SOD) and glutathione peroxidase (GPX). Interestingly, ORY induced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation and upregulation of Nrf2-dependent defensive genes such as NAD(P)H quinone reductase (NQO1), heme oxygenase-1 (HO-1), and glutathione synthetase (GSS) at mRNA and protein levels in both basal condition and after H 2 O 2 insult. Thus, this study suggested an intriguing effect of ORY in modulating the Nrf2 pathway, which is also involved in regulating longevity as well as age-related diseases.
Wan Ngah, Wan Zurinah; Abdul Karim, Norwahidah
2017-01-01
During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF) and N-acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts. PMID:28243354
Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Abele, D; Philipp, E E R
2013-05-01
Predation is known to impact growth and reproduction, and the physiological state of the prey, including its susceptibility to oxidative stress. In this study, we investigated how prolonged exposure to predators modulates tissue specific antioxidant defense and oxidative damage in the short-lived epibenthic scallop Argopecten ventricosus (2years maximum lifespan). Scallops that were experimentally exposed to predators had not only lower antioxidant capacities (superoxide dismutase and catalase), but also lower oxidative damage (protein carbonyls and TBARS=thiobarbituric acid reactive substances including lipid peroxides) in gills and mantle compared to individuals not exposed to predators. In contrast, oxidative damage in the swimming muscle was higher in predator-exposed scallops. When predator-exposed scallops were on the verge of spawning, levels of oxidative damage increased in gills and mantle in spite of a parallel increase in antioxidant defense in both tissues. Levels of oxidative damage increased also in the swimming muscle whereas muscle antioxidant capacities decreased. Interestingly, post-spawned scallops restored antioxidant capacities and oxidative damage to immature levels, suggesting they can recover from spawning-related oxidative stress. Our results show that predator exposure and gametogenesis modulate oxidative damage in a tissue specific manner and that high antioxidant capacities do not necessarily coincide with low oxidative damage. Copyright © 2013 Elsevier Inc. All rights reserved.
Angiomodulatory properties of Rhodiola spp. and other natural antioxidants
Radomska-Leśniewska, Dorota M.; Skopiński, Piotr; Bałan, Barbara J.; Białoszewska, Agata; Jóźwiak, Jarosław; Rokicki, Dariusz; Borecka, Anna; Hevelke, Agata
2015-01-01
Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient. PMID:26557041
Dietary antioxidants and human cancer.
Borek, Carmia
2004-12-01
Epidemiological studies show that a high intake of anti-oxidant-rich foods is inversely related to cancer risk. While animal and cell cultures confirm the anticancer effects of antioxidants, intervention trials to determine their ability to reduce cancer risk have been inconclusive, although selenium and vitamin E reduced the risk of some forms of cancer, including prostate and colon cancer, and carotenoids have been shown to help reduce breast cancer risk. Cancer treatment by radiation and anticancer drugs reduces inherent antioxidants and induces oxidative stress, which increases with disease progression. Vitamins E and C have been shown to ameliorate adverse side effects associated with free radical damage to normal cells in cancer therapy, such as mucositis and fibrosis, and to reduce the recurrence of breast cancer. While clinical studies on the effect of anti-oxidants in modulating cancer treatment are limited in number and size, experimental studies show that antioxidant vitamins and some phytochemicals selectively induce apoptosis in cancer cells but not in normal cells and prevent angiogenesis and metastatic spread, suggesting a potential role for antioxidants as adjuvants in cancer therapy.
Samoilova, Zoya; Smirnova, Galina; Muzyka, Nadezda; Oktyabrsky, Oleg
2014-04-01
Antioxidant activity of green and black tea and extracts of medicinal plants and their ability to modulate antibiotic susceptibility in Escherichia coli were studied. Among a number of extracts tested the maximal capacity to scavenge DPPH radicals and chelate iron in chemical tests was found in green and black tea, Arctostaphylos uva-ursi and Vaccinium vitis-idaea. These extracts contained high level of polyphenols and in aerobic conditions exhibited prooxidant features, producing H2O2 and inducing expression of the katG gene encoding catalase HPI in E. coli cells. A good correlation between the polyphenol content and the ability of extracts to protect bacteria against peroxide stress was observed (r = 0.88). Polyphenol-rich extracts and iron chelators demonstrated the highest modulating effect on the antibiotic susceptibility by changing the time period before lysis started and by influencing the colony-forming ability of bacteria. The direction of the modulating effect was dependent on nature of antibiotic applied: under treatment with ciprofloxacin and ampicillin the extracts predominantly provided protective effects, while under treatment with kanamycin a bactericidal action was enhanced. Mechanism of modulating action of extracts on bacterial antibiotic susceptibility probably involves antioxidant, preferentially iron-chelating, or prooxidant properties of polyphenols. Copyright © 2013 Elsevier GmbH. All rights reserved.
Wambi, Chris O; Sanzari, Jenine K; Sayers, Carly M; Nuth, Manunya; Zhou, Zhaozong; Davis, James; Finnberg, Niklas; Lewis-Wambi, Joan S; Ware, Jeffrey H; El-Deiry, Wafik S; Kennedy, Ann R
2009-08-01
Abstract Dietary antioxidants have radioprotective effects after gamma-radiation exposure that limit hematopoietic cell depletion and improve animal survival. The purpose of this study was to determine whether a dietary supplement consisting of l-selenomethionine, vitamin C, vitamin E succinate, alpha-lipoic acid and N-acetyl cysteine could improve survival of mice after proton total-body irradiation (TBI). Antioxidants significantly increased 30-day survival of mice only when given after irradiation at a dose less than the calculated LD(50/30); for these data, the dose-modifying factor (DMF) was 1.6. Pretreatment of animals with antioxidants resulted in significantly higher serum total white blood cell, polymorphonuclear cell and lymphocyte cell counts at 4 h after 1 Gy but not 7.2 Gy proton TBI. Antioxidants significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGFbeta1 and increased bone marrow cell counts and spleen mass after TBI. Maintenance of the antioxidant diet resulted in improved recovery of peripheral leukocytes and platelets after sublethal and potentially lethal TBI. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival after proton TBI.
Ruiz-Gutiérrez, V; Vázquez, C M; Santa-Maria, C
2001-06-01
Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n - 3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n - 3 lipids may enhance the efficiency of the antioxidant defence system and may yield a benefit in the hypertension status. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid, but different content of natural antioxidants, had similar effects on the antioxidant enzyme activities studied.
2011-01-01
Background Diabetic foot ulcers are serious complications for diabetic patients, yet the precise mechanism that underlines the treatment of these diabetic complications remains unclear. We hypothesized that dietary antioxidant supplementation with vitamin C, combined either with vitamin E or with vitamin E and NAC, improves delayed wound healing through modulation of blood glucose levels, oxidative stress, and inflammatory response. Methods Diabetes was induced by administration of alloxan monohydrate. Mice were divided into 4 groups; CON (non-diabetic control mice fed AIN 93 G purified rodent diet), DM (diabetic mice fed AIN 93 G purified rodent diet), VCE (diabetic mice fed 0.5% vitamin C and 0.5% vitamin E supplemented diet), and Comb (diabetic mice fed 0.5% vitamin C, 0.5% vitamin E, and 2.5% NAC supplemented diet). After 10 days of dietary antioxidant supplementation, cutaneous full-thickness excisional wounds were performed, and the rate of wound closure was examined. TBARS as lipid peroxidation products and vitamin E levels were measured in the liver. Expression levels of oxidative stress and inflammatory response related proteins were measured in the cutaneous wound site. Results Dietary antioxidant supplementation improved blood glucose levels and wound closure rate and increased liver vitamin E, but not liver TBARS levels in the diabetic mice as compared to those of the CON. In addition, dietary antioxidant supplementation modulated the expression levels of pIκBα, HO-1, CuZnSOD, iNOS and COX-2 proteins in the diabetic mice. Conclusions These findings demonstrated that delayed wound healing is associated with an inflammatory response induced by hyperglycaemia, and suggests that dietary antioxidant supplementation may have beneficial effects on wound healing through selective modulation of blood glucose levels, oxidative stress, and inflammatory response. PMID:22088091
Cocoa and chocolate in human health and disease.
Katz, David L; Doughty, Kim; Ali, Ather
2011-11-15
Cocoa contains more phenolic antioxidants than most foods. Flavonoids, including catechin, epicatechin, and procyanidins predominate in antioxidant activity. The tricyclic structure of the flavonoids determines antioxidant effects that scavenge reactive oxygen species, chelate Fe2+ and Cu+, inhibit enzymes, and upregulate antioxidant defenses. The epicatechin content of cocoa is primarily responsible for its favorable impact on vascular endothelium via its effect on both acute and chronic upregulation of nitric oxide production. Other cardiovascular effects are mediated through anti-inflammatory effects of cocoa polyphenols, and modulated through the activity of NF-κB. Antioxidant effects of cocoa may directly influence insulin resistance and, in turn, reduce risk for diabetes. Further, cocoa consumption may stimulate changes in redox-sensitive signaling pathways involved in gene expression and the immune response. Cocoa can protect nerves from injury and inflammation, protect the skin from oxidative damage from UV radiation in topical preparations, and have beneficial effects on satiety, cognitive function, and mood. As cocoa is predominantly consumed as energy-dense chocolate, potential detrimental effects of overconsumption exist, including increased risk of weight gain. Overall, research to date suggests that the benefits of moderate cocoa or dark chocolate consumption likely outweigh the risks.
Red Orange: Experimental Models and Epidemiological Evidence of Its Benefits on Human Health
Galvano, Fabio; Mistretta, Antonio; Marventano, Stefano; Nolfo, Francesca; Calabrese, Giorgio; Buscemi, Silvio; Drago, Filippo; Veronesi, Umberto; Scuderi, Alessandro
2013-01-01
In recent years, there has been increasing public interest in plant antioxidants, thanks to the potential anticarcinogenic and cardioprotective actions mediated by their biochemical properties. The red (or blood) orange (Citrus sinensis (L.) Osbeck) is a pigmented sweet orange variety typical of eastern Sicily (southern Italy), California, and Spain. In this paper, we discuss the main health-related properties of the red orange that include anticancer, anti-inflammatory, and cardiovascular protection activities. Moreover, the effects on health of its main constituents (namely, flavonoids, carotenoids, ascorbic acid, hydroxycinnamic acids, and anthocyanins) are described. The red orange juice demonstrates an important antioxidant activity by modulating many antioxidant enzyme systems that efficiently counteract the oxidative damage which may play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes, and cancer. The beneficial effects of this fruit may be mediated by the synergic effects of its compounds. Thus, the supply of natural antioxidant compounds through a balanced diet rich in red oranges might provide protection against oxidative damage under differing conditions and could be more effective than, the supplementation of an individual antioxidant. PMID:23738032
El-Horany, Hemat E; El-Latif, Rania N Abd; ElBatsh, Maha M; Emam, Marwa N
2016-07-01
Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-de-Arce, Karen; Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago; Foncea, Rocio
2005-12-16
It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-{kappa}B activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNAmore » and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy.« less
Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy
Gill, Alexander J.; Kolson, Dennis L.
2013-01-01
The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529
Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.
2009-01-01
The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433
Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water γ-radiolysis
NASA Astrophysics Data System (ADS)
Santacruz-Gomez, Karla; Sarabia-Sainz, A.; Acosta-Elias, M.; Sarabia-Sainz, M.; Janetanakit, Woraphong; Khosla, Nathan; Melendrez, R.; Pedroza Montero, Martin; Lal, Ratnesh
2018-03-01
Water radiolysis involves chemical decomposition of the water molecule into free radicals after exposure to ionizing radiation. These free radicals have deleterious effects on normal cell physiology. Carboxylated nanodiamonds (cNDs) appear to modulate the deleterious effects of γ-irradiation on the pathophysiology of red blood cells (RBCs). In the present work, the antioxidant activity of hydrated cNDs (h-cNDs) on limiting oxidative damage (the water radiolysis effect) by γ-irradiation was confirmed. Our results show that h-cNDs have remarkable free radical scavenging ability and preserve the enzymatic activity of catalase after γ-irradiation. The underlying mechanism through which nanodiamonds exhibit antioxidant activity appears to depend on their colloidal stability. This property of detonation synthesized nanodiamonds is improved after carboxylation, which in turn influences changes in the hydrogen bond strength in water. The observed stability of h-cNDs in water and their antioxidant activity correlates with their protective effect on RBCs against γ-irradiation.
Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida
2007-08-08
Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.
Swimming exercise enhances the hippocampal antioxidant status of female Wistar rats.
Stone, Vinícius; Kudo, Karen Yurika; Marcelino, Thiago Beltram; August, Pauline Maciel; Matté, Cristiane
2015-05-01
Moderate exercise is known to have health benefits, while both sedentarism and strenuous exercise have pro-oxidant effects. In this study, we assessed the effect of moderate exercise on the antioxidant homeostasis of rats' hippocampi. Female Wistar rats were submitted to a 30-minute swimming protocol on 5 days a week, for 4 weeks. Control rats were immersed in water and carefully dried. Production of hippocampal reactive species, activity of antioxidant enzymes, and glutathione levels in these animals were determined up to 30 days after completion of the 4-week protocol. Production of reactive species and hippocampal glutathione levels were increased 1 day after completion of the 4-week protocol, and returned to control levels after 7 days. Antioxidant enzyme activities were increased both 1 day (catalase) and 7 days (superoxide dismutase and glutathione peroxidase) after completion of the protocol. Thirty days after completion of the protocol, none of the antioxidant parameters evaluated differed from those of controls. Our results reinforce the benefits of aerobic exercise, which include positive modulation of antioxidant homeostasis in the hippocampi. The effects of exercise are not permanent; rather, an exercise regimen must be continued in order to maintain the neurometabolic adaptations.
Bettio, Luis E B; Freitas, Andiara E; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S
2014-12-01
Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS. Copyright © 2014 Elsevier Inc. All rights reserved.
Isopropyl Caffeate: A Caffeic Acid Derivative—Antioxidant Potential and Toxicity
Montenegro, Camila de Albuquerque; de Oliveira, Kardilandia Mendes; de Oliveira Filho, Abrahão Alves; da Paz, Alexandre Rolim; de Araújo, Marianna Oliveira; Lima, Caliandra Maria Bezerra Luna; Diniz, Margareth de Fátima Formiga Melo; Pessôa, Hilzeth de Luna Freire
2018-01-01
Phenolic compounds, among them isopropyl caffeate, possess antioxidant potential, but not without toxicity and/or adverse effects. The present study aimed to evaluate the antioxidant activity and toxicity of isopropyl caffeate through in silico, in vitro and in vivo testing. The results showed that isopropyl caffeate presents no significant theoretical risk of toxicity, with likely moderate bioactivity: GPCR binding, ion channel modulation, nuclear receptor binding, and enzyme inhibition. Isopropyl caffeate induced hemolysis only at the concentrations of 500 and 1000 μg/ml. We observed types A and O erythrocyte protection from osmotic stress, no oxidation of erythrocytes, and even sequestrator and antioxidant behavior. However, moderate toxicity, according to the classification of GHS, was demonstrated through depressant effects on the central nervous system, though there was no influence on water and food consumption or on weight gain, and it did present possible hepatoprotection. We conclude that the effects induced by isopropyl caffeate are due to its antioxidant activity, capable of preventing production of free radicals and oxidative stress, a promising molecule with pharmacological potential. PMID:29849905
Antioxidant effects of statins in the management of cardiometabolic disorders.
Lim, Soo; Barter, Philip
2014-01-01
Redox systems are key players in vascular health. A shift in redox homeostasis-that results in an imbalance between reactive oxygen species (ROS) generation and endogenous antioxidant defenses has the potential to create a state of oxidative stress that subsequently plays a role in the pathogenesis of a number of diseases, including those of the cardiovascular and metabolic system. Statins, which are primarily used to reduce the concentration of low-density lipoprotein cholesterol, have also been shown to reduce oxidative stress by modulating redox systems. Studies conducted both in vitro and in vivo support the role of oxidative stress in the development of atherosclerosis and cardiovascular diseases. Oxidative stress may also be responsible for various diabetic complications and the development of fatty liver. Statins reduce oxidative stress by blocking the generation of ROS and reducing the NAD+/NADH ratio. These drugs also have effects on nitric oxide synthase, lipid peroxidation and the adiponectin levels. It is possible that the antioxidant properties of statins contribute to their protective cardiovascular effects, independent of the lipid-lowering actions of these agents. However, possible adverse effects of statins on glucose homeostasis may be related to the redox system. Therefore, studies investigating the modulation of redox signaling by statins are warranted.
Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana
2013-01-01
It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986
An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds.
Fusi, Jonathan; Bianchi, Sara; Daniele, Simona; Pellegrini, Silvia; Martini, Claudia; Galetta, Fabio; Giovannini, Luca; Franzoni, Ferdinando
2018-05-01
Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences. Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase (SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of AMPK. Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by immunoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and peroxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly increased the SIRT1 expression and the activation of AMPK. Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to increase SIRT1 expression and AMPK activation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Peixoto, Herbenya; Roxo, Mariana; Krstin, Sonja; Röhrig, Teresa; Richling, Elke; Wink, Michael
2016-02-17
Acai fruits (Euterpe precatoria) are rich in antioxidant anthocyanins. Acai consumption is believed to have many health benefits; however, relevant detailed scientific investigations are limited. The current study aimed to investigate an anthocyanin-rich extract from E. precatoria fruits (AE) with regard to its antioxidant and antiaging properties using the model organism Caenorhabditis elegans. AE can protect the worms against oxidative stress and can ameliorate accumulation of reactive oxygen species in vivo. The expression of stress-response genes, such as sod-3::GFP, was upregulated while hsp-16::GFP was down-regulated after AE treatment. Studies with DAF-16/FOXO mutants indicated that some of the antioxidant effects are mediated by this transcription factor. AE can modulate the development of age-related markers, such as pharyngeal pumping. Despite the apparent antioxidant activity, no lifespan-prolonging effect was observed.
Haberlea rhodopensis: pharmaceutical and medical potential as a food additive.
Todorova, Roumiana; Atanasov, Atanas T
2016-01-01
This review discusses the potential of Haberlea rhodopensis as a food additive. The following are described: plant distribution, reproduction, cultivation, propagation and resurrection properties; extraction, isolation and screening of biologically active compounds; metabolite changes during dehydration; phytotherapy-related properties such as antioxidant potential and free radical-scavenging activities, antioxidant skin effect, antibacterial activity, cytotoxic activity and cancer-modulating effect, radioprotective effect, chemoprotective effect, immunologic effect; present use in homoeopathy and cosmetics, pharmacological and economical importance; perspectives based on the ethnobotanical data for medicinal, cosmetic or ritual attributes. H. rhodopensis showed unique medical and pharmaceutical potential, related to antioxidant, antimicrobial, antimutagenic, anticancer, radioprotective, chemoprotective and immunological properties. H. rhodopensis extracts lack any cytotoxic activity and could be used in phytotherapy. The metabolic profiling of H. rhodopensis extracts revealed the presence of biologically active compounds, possessing antiradical and other physiological activities, useful for design of in vitro synthesised analogues and drugs.
Divyashri, G; Krishna, G; Muralidhara; Prapulla, S G
2015-12-01
Accumulating evidence suggests that probiotic bacteria play a vital role in modulating various aspects integral to the health and well-being of humans. In the present study, probiotic attributes and the antioxidant, anti-inflammatory and neuromodulatory potential of Enterococcus faecium CFR 3003 were investigated by employing suitable model systems. E. faecium exhibited robust resistance to gastrointestinal stress conditions as it could withstand acid stress at pH 1.5, 2 and 3. The bacterium also survived at a bile salt concentration of 0.45 %, and better tolerance was observed towards pepsin and trypsin. E. faecium produced lactic acid as a major metabolic product, followed by butyric acid. Lyophilized cell-free supernatant (LCS) of E. faecium exhibited significant antioxidant capacity evaluated against 1,1-diphenyl-2-picryl-hydrazyl, ascorbate auto-oxidation, oxygen radical absorbance and reducing power. Interestingly, E. faecium, Lactobacillus rhamnosus GG MTCC 1408 and LCS showed a significant anti-inflammatory effect by negatively modulating TNF-α production and upregulating IL-10 levels in LPS-stimulated macrophage cell lines. In an in vivo mice model, the propensity of probiotic supplements to modulate endogenous oxidative markers and redox status in brain regions was assessed. Young mice provided with oral supplements (daily for 28 days) of E. faecium and L. rhamnosus exhibited diminished oxidative markers in the brain and enhanced activities of antioxidant enzymes with a concomitant increase in γ-aminobutyric acid and dopamine levels. Collectively, our findings clearly suggest the propensity of these bacteria to protect against tissue damage mediated through free radicals and inflammatory cytokines. Although the underlying molecular mechanisms need further studies, it is tempting to speculate that probiotics confer a neuroprotective advantage in vivo against oxidative damage-mediated neurodegenerative conditions.
Zhao, Danyue; Shah, Nagendra P
2016-12-01
Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.
Vallejo, María José; Salazar, Lizeth; Grijalva, Marcelo
2017-01-01
Medicinal and aromatic plants (MAPs) are known and have been long in use for a variety of health and cosmetics applications. Potential pharmacological usages that take advantage of bioactive plant-derived compounds' antimicrobial, antifungal, anti-inflammatory, and antioxidant properties are being developed and many new ones explored. Some phytochemicals could trigger ROS-mediated cytotoxicity and apoptosis in cancer cells. A lot of effort has been put into investigating novel active constituents for cancer therapeutics. While other plant-derived compounds might enhance antioxidant defenses by either radical scavenging or stimulation of intracellular antioxidant enzymes, the generation of reactive oxygen species (ROS) leading to oxidative stress is one of the strategies that may show effective in damaging cancer cells. The biochemical pathways involved in plant-derived bioactive compounds' properties are complex, and in vitro platforms have been useful for a comprehensive understanding of the mechanism of action of these potential anticancer drugs. The present review aims at compiling the findings of particularly interesting studies that use cancer cell line models for assessment of antioxidant and oxidative stress modulation properties of plant-derived bioactive compounds.
Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection
Martínez-Huélamo, Miriam; Boronat, Anna; de la Torre, Rafael
2017-01-01
Strong adherence to a Mediterranean diet is associated with improved cognitive function and a lower prevalence of mild cognitive impairment. Olive oil and red wine are rich sources of polyphenols which are responsible in part for the beneficial effects on cognitive functioning. Polyphenols induce endogenous antioxidant defense mechanisms by modulating transcription factors such as the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This review discusses the scientific data supporting the modulating effect of olive oil and red wine polyphenols on Nrf2 expression, and the potential health benefits associated with cognitive functioning. PMID:28954417
Dueñas-García, I E; Heres-Pulido, M E; Arellano-Llamas, M R; De la Cruz-Núñez, J; Cisneros-Carrillo, V; Palacios-López, C S; Acosta-Anaya, L; Santos-Cruz, L F; Castañeda-Partida, L; Durán-Díaz, A
2017-05-01
4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO 4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO 4 resulted in genotoxicity; the three antioxidants and FeSO 4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO 4 , were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO 4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO. Copyright © 2017. Published by Elsevier Ltd.
Aliko, Valbona; Qirjo, Mihallaq; Sula, Eldores; Morina, Valon; Faggio, Caterina
2018-05-01
The manganese contamination has become a global problem, recently, because it is perceived as a real threat to the human health and the environment. It is well-known that overexposure to Mn 2+ may have negative physiological effects on fish and other organisms inhabiting heavy metal polluted waters. To the best of our knowledge, studies relating with manganese effects on fish antioxidant enzyme response in the blood, immunocompetence and erythron profile alteration, are scarce. In this study, the acute sub-lethal effects of manganese on blood antioxidant response, immune status and erythron profile were determined by exposing the freshwater model organism, Carassius auratus, to two doses of this metal (3.88 ± 0.193 mg/L and 7.52 ± 0.234 mg/L Mn 2+ ) for 96 h. Significant increases in blood antioxidant enzyme activity like superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), were observed in fish exposed to manganese. Furthermore, plasmatic glucose and cortisol levels increased, while total protein decreased significantly. White blood cell differential count revealed a significant increase in monocyte and neutrophil number and a significant decrease of lymphocyte's number in fish exposed to manganese compared with those of control group. That can be considered as a clear evidence of altered immune system. Measured of erythron profile revealed a significant increasing of cellular and nuclear alteration of red blood cells, with karryorhectic, dividing and micronucleated erythrocytes in exposed fish, indicating the cytotoxic and genotoxic effects Mn 2+ ions. Our data shown also that manganese could trigger antioxidant response, modulate immune response and induce erythron profile modification leading to eryptosis, compromising the blood oxygen carrying capacity, and overall health status in fish. This may suggest those parameters consider as useful biomarkers for monitoring effects of sub-lethal metal exposure on fish. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A
2014-06-01
A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.
Coriander (Coriandrum sativum): A promising functional food toward the well-being.
Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2018-03-01
Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy.
Lima, Patricia Azevedo de; Sampaio, Leticia Pereira de Brito; Damasceno, Nágila Raquel Teixeira
2014-12-01
A ketogenic diet is an important therapy used in the control of drug-refractory seizures. Many studies have shown that children and adolescents following ketogenic diets exhibit an over 50% reduction in seizure frequency, which is considered to be clinically relevant. These benefits are based on a diet containing high fat (approximately 90% fat) for 24 months. This dietary model was proposed in the 1920s and has produced variable clinical responses. Previous studies have shown that the mechanisms underlying seizure control involve ketone bodies, which are produced by fatty acid oxidation. Although the pathways involved in the ketogenic diet are not entirely clear, the main effects of the production of ketone bodies appear to be neurotransmitter modulation and antioxidant effects on the brain. This review highlights the impacts of the ketogenic diet on the modulation of neurotransmitters, levels of biogenic monoamines and protective antioxidant mechanisms of neurons. In addition, future perspectives are proposed.
Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young
2013-01-01
Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling. PMID:24066081
Lu, Xikun; Brennan, Margaret A; Serventi, Luca; Liu, Jianfu; Guan, Wenqiang; Brennan, Charles S
2018-10-30
This study reports the effects of addition of mushroom powder on the nutritional properties, predictive in vitro glycaemic response and antioxidant potential of durum wheat pasta. Addition of the mushroom powder enriched the pasta as a source of protein, and soluble and insoluble dietary fibre compared with durum wheat semolina. Incorporation of mushroom powder significantly decreased the extent of starch degradation and the area under the curve (AUC) of reducing sugars released during digestion, while the total phenolic content and antioxidant capacities of samples increased. A mutual inhibition system between the degree of starch gelatinisation and antioxidant capacity of the pasta samples was observed. These results suggest that mushroom powder could be incorporated into fresh semolina pasta, conferring healthier characteristics, namely lowering the potential glycaemic response and improving antioxidant capacity of the pasta. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ghayomi, F; Navaei-Nigjeh, M; Baeeri, M; Rezvanfar, M A; Abdollahi, M
2016-08-01
Chlorpyrifos (CP) is an organophosphorus pesticide that induces oxidative stress through the production of free radicals and depletes intracellular antioxidant reserves. In this study, the efficacy of three antioxidants (melatonin, coenzyme Q10 (CoQ10), and vinpocetine) on alleviation of toxic effects of CP was evaluated. Cytotoxicity of CP, in the presence or absence of effective doses of melatonin, CoQ10, and vinpocetine, was determined in human peripheral blood lymphocytes after 72-h exposure. The levels of acetylcholinesterase (AChE) activity along with tumor necrosis factor α (TNF-α), as inflammatory index, were measured. Further, the viability and oxidative stress markers including cellular mitochondrial activity, cell death modes (apoptosis vs. necrosis), total antioxidant power (TAP), total thiol molecules (TTM), lipid peroxidation (LPO), and myeloperoxidase (MPO) activity were measured. CoQ10 and also the combination of the three antioxidants were the most notable in opposing toxicity of CP and led to increasing TAP and TTM; improvement of AChE activity; and lowering LPO, MPO, TNF-α, and apoptosis compared to CP alone. CP toxicity overwhelms the intracellular antioxidant defense mechanisms. Exogenous supplementation with antioxidants, such as the ones we have investigated, seems to be effective in the prevention of cytotoxicity of CP. © The Author(s) 2015.
Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice.
Tung, Bui Thanh; Rodriguez-Bies, Elisabet; Thanh, Hai Nguyen; Le-Thi-Thu, Huong; Navas, Plácido; Sanchez, Virginia Motilva; López-Lluch, Guillermo
2015-12-01
Oxidative stress has been considered one of the causes of aging. For this reason, treatments based on antioxidants or those capable of increasing endogenous antioxidant activity have been taken into consideration to delay aging or age-related disease progression. In this paper, we determine if resveratrol and exercise have similar effect on the antioxidant capacity of different organs in old mice. Resveratrol (6 months) and/or exercise (1.5 months) was administered to old mice. Markers of oxidative stress (lipid peroxidation and glutathione) and activities and levels of antioxidant enzymes (SOD, catalase, glutathione peroxidase, glutathione reductase and transferase and thioredoxin reductases, NADH cytochrome B5-reductase and NAD(P)H-quinone acceptor oxidoreductase) were determined by spectrophotometry and Western blotting in different organs: liver, kidney, skeletal muscle, heart and brain. Both interventions improved antioxidant activity in the major organs of the mice. This induction was accompanied by a decrease in the level of lipid peroxidation in the liver, heart and muscle of mice. Both resveratrol and exercise modulated several antioxidant activities and protein levels. However, the effect of resveratrol, exercise or their combination was organ dependent, indicating that different organs respond in different ways to the same stimulus. Our data suggest that physical activity and resveratrol may be of great importance for the prevention of age-related diseases, but that their organ-dependent effect must be taken into consideration to design a better intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir
2014-03-01
4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependentmore » increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of antioxidant proteins is regulated via MAP kinases, Nrf2 and caveolae. • 4-HNE is an effective signaling molecule in keratinocytes.« less
Puntel, Robson Luiz; Roos, Daniel Henrique; Paixão, Márcio Weber; Braga, Antônio Luiz; Zeni, Gilson; Nogueira, Cristina Wayne; Rocha, Joao Batista Teixeira
2007-01-30
The aim of this paper was to investigate the mechanism(s) involved in the sodium oxalate pro-oxidative activity in vitro and the potential protection by diphenyl diselenide ((PhSe)(2)) and diphenyl ditelluride ((PhTe)(2)) using supernatants of homogenates from brain, liver and kidney. Oxalate causes a significant increase in the TBARS (thiobarbituric acid reactive species) production up to 4mmol/l and it had antioxidant activity from 8 to 16mmol/l in the brain and liver. Oxalate had no effect in kidney homogenates. The difference among tissues may be related to the formation of insoluble crystal of oxalate in kidney, but not in liver and brain homogenates. (PhSe)(2) and (PhTe)(2) reduced both basal and oxalate-induced TBARS in rat brain homogenates, whereas in liver homogenates they were antioxidant only on oxalate-induced TBARS production. (PhSe)(2) showed a modest effect on renal TBARS production, whereas (PhTe)(2) did not modulate TBARS in kidney preparations. Oxalate at 2mmol/l did not change deoxyribose degradation induced by Fe(2+) plus H(2)O(2), whereas at 20mmol/l it significantly prevents its degradation. Oxalate (up to 4mmol/l) did not alter iron (10micromol/l)-induced TBARS production in the brain preparations, whereas at 8mmol/l onwards it prevents iron effect. In liver preparations, oxalate amplifies iron pro-oxidant activity up to 4mmol/l, preventing iron-induced TBARS production at 16mmol/l onwards. These results support the antioxidant effect of organochalcogens against oxalate-induced TBARS production. In addition, our results suggest that oxalate pro- and antioxidant activity in vitro could be related to its interactions with iron ions.
New hydrazones of ferulic acid: synthesis, characterization and biological activity.
Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa
2014-01-01
The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.
Mancini-Filho, Jorge; Novoa, Alexis Vidal; González, Ana Elsa Batista; de Andrade-Wartha, Elma Regina S; de O e Silva, Ana Mara; Pinto, José Ricardo; Mancini, Dalva Assunção Portari
2009-01-01
Phenolic compounds are found in seaweed species together with other substances presenting antioxidant activity. The objective of this work was to evaluate the antioxidant activity of the free phenolic acids (FPA) fraction from the seaweed Halimeda monile, and its activity to protect the expression of hepatic enzymes in rats, under experimental CCl4 injury. The antioxidant activity was measured by the DPPH method. The FPA fraction (80 mg/kg, p.o.) was administered during 20 consecutive days to rats. The peroxidation was performed by thiobarbituric acid reactive substances (TBARS). The SOD and CAT enzymatic expressions were measured by RT/PCR. The histology technique was used to evaluate liver injuries. The expression of both, CAT and SOD genes, was more preserved by FPA. Only partial injury could be observed by histology in the liver of rats receiving FPA as compared with the control group; and CCl4 administration induced 60% more peroxidation as compared with the rats receiving FPA. These data suggest that FPA could modulate the antioxidant enzymes and oxidative status in the liver through protection against adverse effects induced by chemical agents.
Base excision repair, the redox environment and therapeutic implications.
Storr, S J; Woolston, C M; Martin, S G
2012-01-01
Control of redox homeostasis is crucial for a number of cellular processes with deregulation leading to a number of serious consequences including oxidative damage such induction of DNA base lesions. The DNA lesions caused by oxidative damage are principally repaired by the base excision repair (BER) pathway. Pharmacological inhibition of BER is becoming an increasingly active area of research with the emergence of PARP inhibitors in cancer therapy. The redox status of the cell is modulated by a number of systems, including a large number of anti-oxidant enzymes who function in the control of superoxide and hydrogen peroxide, and ultimately in the release of the damaging hydroxyl radical. Here we provide an overview of reactive oxygen species (ROS) production and its modulation by antioxidant enzymes. The review also discusses the effect of ROS on the BER pathway, particularly in relation to cancer. Finally, as the modulation of the redox environment is of interest in cancer therapy, with certain agents having the potential to reverse chemo- and radiotherapy resistance or treat therapy related toxicity, we discuss redox modulating agents currently under development.
Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G
2011-05-11
Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; Khan, Amjad A
2014-01-01
The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect.
Barman, Susmita; Srinivasan, Krishnapura
2017-02-01
Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.
Li, Qian; Cui, Jing; Fang, Chen; Liu, Min; Min, Guowen; Li, Liang
2017-01-01
Oxidative stress and neuroinflammation are mainly involved in the pathogenic mechanisms of Alzheimer's disease (AD). Amyloid-β (Aβ), the main component of senile plaques, is a kind of strong inducer of oxidative stress. Glutathione is an endogenous antioxidant protecting cells from oxidative injury. S-adenosylmethionine (SAM) produced in the methionine cycle is the primary methyl donor and the precursor of glutathione. In this study, the Aβ intrahippocampal injection rat model and cultured SH-SY5Y cells were used to explore the neuroprotective effect of SAM. We found that SAM could protect cells against Aβ-induced cellular injury by inhibition of oxidative stress and neuroinflammation. SAM administration could increase the endogenous antioxidant glutathione and potentiate the antioxidant enzymes activities. SAM might act as an antioxidant and be a potential candidate therapy for AD patients.
Misra, Biswapriya B; Dey, Satyahari
2013-03-15
Sandalwood finds numerous mentions across diverse traditional medicinal systems in use worldwide. The objective of this study was to evaluate the in vivo anti-hyperglycemic and antioxidant potential of sandalwood oil and its major constituent α-santalol. The in vivo anti-hyperglycemic experiment was conducted in alloxan-induced diabetic male Swiss albino mice models. The in vivo antioxidant experiment was performed in d-galactose mediated oxidative stress induced male Swiss albino mice models. Intraperitoneal administration of α-santalol (100mg/kg BW) and sandalwood oil (1g/kg BW) for an week modulated parameters such as body weight, blood glucose, serum bilirubin, liver glycogen, and lipid peroxides contents to normoglycemic levels in the alloxan-induced diabetic mice. Similarly, intraperitoneal administration of α-santalol (100mg/kg BW) and sandalwood oil (1g/kg BW) for two weeks modulated parameters such as serum aminotransferases, alkaline phosphatase, bilirubin, superoxide dismutase, catalase, free sulfhydryl, protein carbonyl, nitric oxide, liver lipid peroxide contents, and antioxidant capacity in d-galactose mediated oxidative stress induced mice. Besides, it was observed that the beneficial effects of α-santalol were well complimented, differentially by other constituents present in sandalwood oil, thus indicating synergism in biological activity of this traditionally used bioresource. Copyright © 2012 Elsevier GmbH. All rights reserved.
Pari, L; Latha, M
2004-07-01
Clinical research has confirmed the efficacy of several plants in the modulation of oxidative stress associated with diabetes mellitus. Scoparia dulcis plant extract is tried for prevention and treatment of diabetes mellitus induced experimentally by streptozotocin injection. A single dose of streptozotocin (45 mg/kg body weight) produced decrease in insulin, hyperglycemia, increased lipid peroxidation (Thiobarbituric reactive substances and lipid hydroperoxides) and decreased antioxidant levels (vitamin C, vitamin E, reduced glutathione, ceruloplasmin). Oral administration of an aqueous extract of Scoparia dulcis plant (200 mg/kg body weight) for 6 weeks to diabetic rats significantly increased the plasma insulin and plasma antioxidants and significantly decreased lipid peroxidation. The effect of Scoparia dulcis plant extract at 200 mg/kg body weight was better than that of glibenclamide, a reference drug.
Del Bo', Cristian; Porrini, Marisa; Campolo, Jonica; Parolini, Marina; Lanti, Claudia; Klimis-Zacas, Dorothy; Riso, Patrizia
2016-03-01
We previously reported that a portion of blueberries reversed endothelial dysfunction induced by acute cigarette smoking. Since smoking-induced endothelial dysfunction is associated with a condition of oxidative stress, we evaluated whether the observed effect was mediated by modulation of markers of oxidative stress and antioxidant defence. Fourteen out of 16 male healthy smokers previously enrolled, participated in a three-armed randomized controlled study with the following experimental conditions: smoking treatment (one cigarette); blueberry treatment (300g of blueberries) + smoking (one cigarette); control treatment (300ml of water with sugar) + smoking (one cigarette). The cigarette was smoked 100min after blueberry/control/water consumption. Each treatment was separated by 1 week of washout period. Plasma vitamin (C, B12 and folate) and aminothiol concentrations, endogenous [formamidopyrimidine-DNA glycosylase (FPG)-sensitive sites] and oxidatively induced DNA damage (resistance to H2O2-induced DNA damage) in peripheral blood mononuclear cells (PBMCs) were measured at baseline and 20, 60, 90, 120min and 24h after smoking. On the whole, analysis of variance did not show a significant effect of treatment on the modulation of markers of oxidative stress and antioxidant defence but revealed an effect of time for plasma concentrations of vitamin C (P = 0.003), B12 (P < 0.001), folate (P < 0.001), total cysteine (P = 0.007) and cysteine-glycine (P = 0.010) that increased following the three treatments after smoking. No significant effect of treatment was observed for the levels of FPG-sensitive sites (P > 0.05) and H2O2-induced DNA damage (P > 0.05) in PBMCs. In conclusion, the consumption of a single blueberry portion failed to modulate markers of oxidative stress and antioxidant defence investigated in our experimental conditions. Further studies are necessary to elucidate this finding and help clarifying the mechanisms of protection of blueberries against smoking-induced endothelial dysfunction. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pouchieu, Camille; Deschasaux, Mélanie; Hercberg, Serge; Druesne-Pecollo, Nathalie; Latino-Martel, Paule; Touvier, Mathilde
2014-10-01
The level of evidence regarding the association between red and processed meat intakes and breast cancer risk is still low, due to insufficient prospective studies. Moreover, mechanistic data suggest that some antioxidants may modulate this relationship but epidemiological evidence is lacking. Our objectives were to investigate relationships between red and processed meat intakes and breast cancer risk, and to study whether an antioxidant supplementation modulates these associations, which, to our knowledge, has never been investigated before. The SU.VI.MAX study was a randomized, double-blind, placebo-controlled trial in which participants received a combination of low-dose antioxidants or a placebo from 1994 to 2002. This observational prospective analysis included 4684 women among whom 190 developed a first incident breast cancer between 1994 and 2007 [mean (range) follow-up=11.3 (0-13)years]. Baseline dietary data were assessed by repeated dietary records in 1994-1995. Associations between quartiles of red and processed meat intakes and breast cancer risk were characterized by multivariate Cox proportional hazards models. Breast cancer risk was directly associated with processed meat intake [hazard ratio (HR)Q4vsQ1=1.45 (0.92-2.27), Ptrend=0.03] and this association was stronger when excluding cooked ham [HRQ4vsQ1=1.90 (1.18-3.05), Ptrend=0.005]. In stratified analyses, processed meat intake was directly associated with breast cancer risk in the placebo group only [HRQ4vsQ1=2.46 (1.28-4.72), Ptrend=0.001], but not in the supplemented group [HRQ4vsQ1=0.86 (0.45-1.63), Ptrend=0.7]. Processed meat intake was prospectively associated with increased breast cancer risk. This study also suggests that antioxidants may modulate this association by counteracting the potential pro-carcinogenic effects of processed meat on breast cancer. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd
2012-12-01
The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.
Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd
2012-01-01
OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging. PMID:23295600
Nardi, Alessandro; Benedetti, Maura; Fattorini, Daniele; Regoli, Francesco
2018-03-01
Ocean acidification (OA) may affect sensitivity of marine organisms to metal pollution modulating chemical bioavailability, bioaccumulation and biological responsiveness of several cellular pathways. In this study, the smooth scallop Flexopecten glaber was exposed to various combinations of reduced pH (pH/pCO 2 7.4/∼3000 μatm) and Cd (20 μg/L). The analyses on cadmium uptake were integrated with those of a wide battery of biomarkers including metallothioneins, single antioxidant defenses and total oxyradical scavenging capacity in digestive gland and gills, lysosomal membrane stability and onset of genotoxic damage in haemocytes. Reduced pH slightly increased concentration of Cd in scallop tissues, but no effects were measured in terms of metallothioneins. Induction of some antioxidants by Cd and/or low pH in the digestive gland was not reflected in variations of the total oxyradical scavenging capacity, while the investigated stressors caused a certain inhibition of antioxidants and reduction of the scavenging capacity toward peroxyl radical in the gills. Lysosomal membrane stability and onset of genotoxic damages showed high sensitivity with possible synergistic effects of the investigated factors. The overall results suggest that indirect effects of ocean acidification on metal accumulation and toxicity are tissue-specific and modulate oxidative balance through different mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène
2017-03-01
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of several essential oils extracted from lemon-scented herbal plants. The present study was designed to investigate the antioxidant activities of citral and assess its possible protective effects against aspirin-induced toxicity in vitro. We used IEC-6 cells (rat small intestine epithelial cells). The antioxidant activities were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), β-carotene/linoleic acid and Ferric reducing antioxidant power (FRAP). Cytotoxicity was evaluated by cell viability, anti-oxidant enzyme activities, malondialdehyde (MDA) production and by the expression of MAPKs (Mitogen-Activated Protein Kinases) pathways. According to results, citral showed an important antioxidant activity. It inhibited the oxidation of linoleic acid, a moderate DPPH was found and it showed a Ferric reducing antioxidant potential with an EC 50 value of 125±28.86μg/mL. Then, the co-treatment of aspirin with citral significantly decreased the aspirin-induced cell death, and the MDA level. It modulated the superoxide dismutase (SOD) and glutathione (GSH) activities. Also, the activation of MAPKs was attenuated by citral. These findings suggest that citral can protect IEC-6 cells against aspirin-induced oxidative stress that may help to discover new chemicals out of natural antioxidant substances. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Il'ina, T N; Vinogradova, I A; Iliukha, V A; Khizhkin, E A; Anisimov, V N; Khavinson, V Kh
2008-01-01
The influences of different light condition, melatonin and epithalon on liver antioxidant system in 6-, 12-, 18- and 24-month-old rats of both sexes were studied. The activities of antioxidant enzymes as well as concentration of tocopherol demonstrate high stability. The maximal number of significant changes in antioxidant system parameters was found under continuous light exposure. Light condition, sex and preparation modulated age-related changes of antioxidant system.
Lubos, Edith; Loscalzo, Joseph
2011-01-01
Abstract Reactive oxygen species, such as superoxide and hydrogen peroxide, are generated in all cells by mitochondrial and enzymatic sources. Left unchecked, these reactive species can cause oxidative damage to DNA, proteins, and membrane lipids. Glutathione peroxidase-1 (GPx-1) is an intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. Certain reactive oxygen species, such as hydrogen peroxide, are also essential for growth factor-mediated signal transduction, mitochondrial function, and maintenance of normal thiol redox-balance. Thus, by limiting hydrogen peroxide accumulation, GPx-1 also modulates these processes. This review explores the molecular mechanisms involved in regulating the expression and function of GPx-1, with an emphasis on the role of GPx-1 in modulating cellular oxidant stress and redox-mediated responses. As a selenocysteine-containing enzyme, GPx-1 expression is subject to unique forms of regulation involving the trace mineral selenium and selenocysteine incorporation during translation. In addition, GPx-1 has been implicated in the development and prevention of many common and complex diseases, including cancer and cardiovascular disease. This review discusses the role of GPx-1 in these diseases and speculates on potential future therapies to harness the beneficial effects of this ubiquitous antioxidant enzyme. Antioxid. Redox Signal. 15, 1957–1997. PMID:21087145
Priyadarsini, Ramamurthi Vidya; Manikandan, Palrasu; Kumar, Gurram Harish; Nagini, Siddavaram
2009-05-01
The neem tree has attracted considerable research attention as a rich source of limonoids that have potent antioxidant and anti-cancer properties. The present study was designed to evaluate the chemopreventive potential of the neem limonoids azadirachtin and nimbolide based on in vitro antioxidant assays and in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Both azadirachtin and nimbolide exhibited concentration-dependent anti-radical scavenging activity and reductive potential in the order: nimbolide > azadirachtin > ascorbate. Administration of both azadirachtin and nimbolide inhibited the development of DMBA-induced HBP carcinomas by influencing multiple mechanisms including prevention of procarcinogen activation and oxidative DNA damage, upregulation of antioxidant and carcinogen detoxification enzymes and inhibition of tumour invasion and angiogenesis. On a comparative basis, nimbolide was found to be a more potent antioxidant and chemopreventive agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.
Skin protection against UV light by dietary antioxidants.
Fernández-García, Elisabet
2014-09-01
There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.
Debnath, Biswojit; Hussain, Mubasher; Irshad, Muhammad; Mitra, Sangeeta; Li, Min; Liu, Shuang; Qiu, Dongliang
2018-02-11
Acid rain (AR) is a serious global environmental issue causing physio-morphological changes in plants. Melatonin, as an indoleamine molecule, has been known to mediate many physiological processes in plants under different kinds of environmental stress. However, the role of melatonin in acid rain stress tolerance remains inexpressible. This study investigated the possible role of melatonin on different physiological responses involving reactive oxygen species (ROS) metabolism in tomato plants under simulated acid rain (SAR) stress. SAR stress caused the inhibition of growth, damaged the grana lamella of the chloroplast, photosynthesis, and increased accumulation of ROS and lipid peroxidation in tomato plants. To cope the detrimental effect of SAR stress, plants under SAR condition had increased both enzymatic and nonenzymatic antioxidant substances compared with control plants. But such an increase in the antioxidant activities were incapable of inhibiting the destructive effect of SAR stress. Meanwhile, melatonin treatment increased SAR-stress tolerance by repairing the grana lamella of the chloroplast, improving photosynthesis and antioxidant activities compared with those in SAR-stressed plants. However, these possible effects of melatonin are dependent on concentration. Moreover, our study suggests that 100-μM melatonin treatment improved the SAR-stress tolerance by increasing photosynthesis and ROS scavenging antioxidant activities in tomato plants.
Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong
2014-11-01
Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.
Protective Effect of Antioxidants on Neuronal Dysfunction and Plasticity in Huntington's Disease
Velusamy, Thirunavukkarasu; Panneerselvam, Archana S.; Purushottam, Meera; Anusuyadevi, Muthuswamy; Pal, Pramod Kumar; Jain, Sanjeev; Essa, Musthafa Mohamed
2017-01-01
Huntington's disease (HD) is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult neurogenesis in HD. PMID:28168008
Magcwebeba, Tandeka Unathi; Riedel, Sylvia; Swanevelder, Sonja; Swart, Pieter; De Beer, Dalene; Joubert, Elizabeth; Andreas Gelderblom, Wentzel Christoffel
2016-11-01
The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo. © 2016 Royal Pharmaceutical Society.
Escribano-Lopez, Irene; Diaz-Morales, Noelia; Rovira-Llopis, Susana; de Marañon, Arantxa Martinez; Orden, Samuel; Alvarez, Angeles; Bañuls, Celia; Rocha, Milagros; Murphy, Michael P; Hernandez-Mijares, Antonio; Victor, Victor M
2016-12-01
It is not known if the mitochondria-targeted antioxidants such as mitoquinone (MitoQ) can modulate oxidative stress and leukocyte-endothelium interactions in T2D patients. We aimed to evaluate the beneficial effect of MitoQ on oxidative stress parameters and leukocyte-endothelium interactions in leukocytes of T2D patients. The study population consisted of 98 T2D patients and 71 control subjects. We assessed metabolic and anthropometric parameters, mitochondrial reactive oxygen species (ROS) production, glutathione peroxidase 1 (GPX-1), NFκB-p65, TNFα and leukocyte-endothelium interactions. Diabetic patients exhibited higher weight, BMI, waist circumference, SBP, DBP, glucose, insulin, HOMA-IR, HbA1c, triglycerides, hs-CRP and lower HDL-c with respect to controls. Mitochondrial ROS production was enhanced in T2D patients and decreased by MitoQ. The antioxidant also increased GPX-1 levels and PMN rolling velocity and decreased PMN rolling flux and PMN adhesion in T2D patients. NFκB-p65 and TNFα were augmented in T2D and were both reduced by MitoQ treatment. Our findings support that the antioxidant MitoQ has an anti-inflammatory and antioxidant action in the leukocytes of T2D patients by decreasing ROS production, leukocyte-endothelium interactions and TNFα through the action of NFκB. These data suggest that mitochondria-targeted antioxidants such as MitoQ should be investigated as a novel means of preventing cardiovascular events in T2D patients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih
2016-01-01
Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462
Rosa, Antonella; Atzeri, Angela; Nieddu, Mariella; Appendino, Giovanni
2017-06-01
The heterodimeric phloroglucinyl pyrone arzanol (Arz) has raised considerable interest because of its antiviral, anti-inflammatory, and antioxidant activity. We have investigated the effect of methylation of the pyrone moiety on the antioxidant activity and cytotoxicity of Arz. This manoeuvre, that left the polyphenolic moiety unscathed, was nevertheless detrimental for antioxidant activity in both the cholesterol thermal degradation- and the Cu 2+ -induced liposome oxidation assays, providing evidence of structure-activity relationships that go beyond the preservation of the polyphenolic pharmacophore. The antioxidant activity of Arz was retained also in the Fe-NTA model of in vivo oxidative stress, with protective effect on the oxidative degradation of plasmatic lipids, unsaturated fatty acids and cholesterol. Both Arz and methylarzanol (Me-Arz) were devoid of toxic effect on colonic differentiated Caco-2 cells up to 100μM, but significantly reduced cancer Caco-2 cell viability at lower dosages. Arz could also selectively reduce viability of other cancer cell lines, [murine melanoma cells (B16F10 cells), human cervical carcinoma cells (HeLa cells)], suggesting that it can act as a selective modulator of cell processes typical of cancer cells. Taken together, our results qualify Arz as a lead structure for further in vivo investigation of its pharmacological potential. Copyright © 2017 Elsevier B.V. All rights reserved.
Famurewa, Ademola C; Ekeleme-Egedigwe, Chima A; Nwali, Sophia C; Agbo, Ngozi N; Obi, Joy N; Ezechukwu, Goodness C
2018-05-04
Research findings that suggest beneficial health effects of dietary supplementation with virgin coconut oil (VCO) are limited in the published literature. This study investigated the in vivo effects of a 5-week VCO-supplemented diet on lipid profile, hepatic antioxidant status, hepatorenal function, and cardiovascular risk indices in normal rats. Rats were randomly divided into 3 groups: 1 control and 2 treatment groups (10% and 15% VCO-supplemented diets) for 5 weeks. Serum and homogenate samples were used to analyze lipid profile, hepatorenal function markers, hepatic activities of antioxidant enzymes, and malondialdehyde level. Lipid profile of animals fed VCO diets showed significant reduction in total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels; high-density lipoprotein (HDL) level increased significantly (p < .05) compared to control; and there were beneficial effects on cardiovascular risk indices. The level of malondialdehyde (MDA), a lipid peroxidation marker, remarkably reduced and activities of hepatic antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)-were markedly increased in VCO diet-fed rats. The VCO diet significantly modulated creatinine, sodium (Na + ), potassium (K + ), chloride (Cl - ), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) compared to control. The findings suggest a beneficial effect of VCO on lipid profile, renal status, hepatic antioxidant defense system, and cardiovascular risk indices in rats.
Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years.
Federico, Alessandro; Dallio, Marcello; Loguercio, Carmelina
2017-01-24
Silymarin is the extract of Silybum marianum , or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
At the interface of antioxidant signalling and cellular function: Key polyphenol effects
Kerimi, Asimina
2016-01-01
The hypothesis that dietary (poly)phenols promote well‐being by improving chronic disease‐risk biomarkers, such as endothelial dysfunction, chronic inflammation and plasma uric acid, is the subject of intense current research, involving human interventions studies, animal models and in vitro mechanistic work. The original claim that benefits were due to the direct antioxidant properties of (poly)phenols has been mostly superseded by detailed mechanistic studies on specific molecular targets. Nevertheless, many proposed mechanisms in vivo and in vitro are due to modulation of oxidative processes, often involving binding to specific proteins and effects on cell signalling. We review the molecular mechanisms for 3 actions of (poly)phenols on oxidative processes where there is evidence in vivo from human intervention or animal studies. (1) Effects of (poly) phenols on pathways of chronic inflammation leading to prevention of some of the damaging effects associated with the metabolic syndrome. (2) Interaction of (poly)phenols with endothelial cells and smooth muscle cells, leading to effects on blood pressure and endothelial dysfunction, and consequent reduction in cardiovascular disease risk. (3) The inhibition of xanthine oxidoreductase leading to modulation of intracellular superoxide and plasma uric acid, a risk factor for developing type 2 diabetes. PMID:26887821
Pratap, Uday P; Anand, Krithika; Yasmine, Fariya; Hima, Lalgi; Priyanka, Hannah P; Thyagarajan, Srinivasan
2016-01-01
The mechanisms of immunomodulatory effects of Morinda citrifolia (Noni) were examined through intracellular signaling pathways in the splenocytes and their modulation by phytochemicals using bioinformatics tools. Noni fruit juices without seeds (NSL) and with seeds (NWS) were co-incubated in vitro with splenocytes from young, middle-aged and old F344 male rats and proliferation of lymphocytes, cytokine production, antioxidant enzyme activities and intracellular signaling markers were measured. NSL decreased lymphoproliferation in early middle-aged rats, and IL-2 and IFN-γ production in old rats. In contrast, NWS enhanced lymphoproliferation in young and old rats, IL-2 and IFN-γ production in middle-aged and old rats. The activities of antioxidant enzymes were augmented by NWS and NSL in old rats. NWS reversed age-related increase in lipid peroxidation in all age-groups, while NSL increased lipid peroxidation in old rats. NSL increased p-ERK in old rats and decreased p-CREB in young and middle-aged rats. In contrast, NWS decreased p-ERK in all age groups and increased p-CREB in old rats. Both NSL and NWS increased p-Akt expression in middle-aged and old rats. Both NSL and NWS suppressed p-NF-κB expression in middle-aged and old rats. Docking studies demonstrated that Noni phytochemicals, damnacanthal, myricetin and ursolic acid, are potent inhibitors of ERK with binding sites in the catalytic and phosphorylation sites of the molecule. These results suggest that Noni fruit juices with or without seeds modulate cell-mediated immunity and antioxidant enzyme activities based on the phytochemicals that may differentially influence cell signaling and therefore, age-associated immunity.
Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa
2013-01-01
Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553
Di Lorenzo, Arianna; Nabavi, Seyed Fazel; Sureda, Antoni; Moghaddam, Akbar Hajizadeh; Khanjani, Sedigheh; Arcidiaco, Patrizia; Nabavi, Seyed Mohammad; Daglia, Maria
2016-03-01
Growing evidence suggests that oxidative stress plays a role in the development of chronic diseases such as cardiovascular disease and some psychiatric disorders. Tea consumption exerts beneficial effects against damage induced by cerebral ischemia-reperfusion in ischemic stroke and depressive symptoms in depression. The aim of this study was to evaluate, in vivo, the protective activity of green tea (GT) and GABA green tea (GGT) against post-stroke depression (PSD), a common consequence of stroke. The antidepressive-like effects of GT and GGT were determined by behavioral tests in a mouse model of post-stroke depression. The antioxidant activity was evaluated by GSH, SOD, and TBARS measurements on mouse brain. The chemical composition of tea extracts was characterized through chromatographic methods. GGT and GT resulted active in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior, and at least in part, antioxidant endogenous defenses. The higher polyphenol, theanine, glutamine, and caffeine content may justify the higher activity found in GGT. This work represents the first attempt to demonstrate the positive effect of tea, and especially GGT, on post-stroke depression and to correlate this effect with the antioxidant activity and phytochemical composition of tea. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oral administration of antioxidants improves skin wound healing in diabetic mice.
Pessoa, Ana Flávia Marçal; Florim, Juliana Costa; Rodrigues, Hosana Gomes; Andrade-Oliveira, Vinicius; Teixeira, Simone A; Vitzel, Kaio Fernando; Curi, Rui; Saraiva Câmara, Niels Olsen; Muscará, Marcelo N; Lamers, Marcelo Lazzaron; Santos, Marinilce Fagundes
2016-11-01
Oxidative stress aggravates several long-term complications in diabetes mellitus. We evaluated the effectiveness of the oral administration of antioxidants (vitamins E and C, 40 and 100 mg/kg b.w., respectively) on skin wound healing acceleration in alloxan-induced diabetic mice. Mice were wounded 30 days after the induction of diabetes. Antioxidants were effective in preventing oxidative stress, as assessed by TBARS. The enzymes catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase were increased in diabetics on the 3rd day post-wounding; catalase and glutathione peroxidase remained still augmented in diabetics after 14th day postwounding, and the treatment with vitamins restored their activities to control. After 3 days, diabetic mice showed lower infiltration of inflammatory cells (including CD11b + and Ly6G + cells) and reduced levels of KC, TNF-α, IL-1β, and IL-12 p40 when compared with control mice. The treatment restored cytokine levels. After 14 days, diabetic mice showed late wound closure, persistent inflammation and delayed reepithelialization, accompanied by an increase in MIG + /CD206 - macrophages whereas CD206 + /MIG - macrophages were decreased. Cytokines IL-12p40, TNF-α, IL-1β, and KC were increased and normal levels were restored after treatment with antioxidants. These results suggest that oxidative stress plays a major role in diabetic wound healing impairment and the oral administration of antioxidants improves healing by modulating inflammation and the antioxidant system with no effect on glycemia. © 2016 by the Wound Healing Society.
Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.
Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme
2017-02-01
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Han, Sang Yun; Kim, Eunji; Hwang, Kyeonghwan; Ratan, Zubair Ahmed; Hwang, Hyunsik; Kim, Eun-Mi; Kim, Doman; Park, Junseong; Cho, Jae Youl
2018-05-15
Epigallocatechin gallate (EGCG) is a well-studied polyphenol with antioxidant effects. Since EGCG has low solubility and stability, many researchers have modified EGCG residues to ameliorate these problems. A novel EGCG derivative, EGCG-5'- O -α-glucopyranoside (EGCG-5'Glu), was synthesized, and its characteristics were investigated. EGCG-5'Glu showed antioxidant effects in cell and cell-free systems. Under SNP-derived radical exposure, EGCG-5'Glu decreased nitric oxide (NO) production, and recovered ROS-mediated cell viability. Moreover, EGCG-5'Glu regulated apoptotic pathways (caspases) and cell survival molecules (phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1)). In another radical-induced condition, ultraviolet B (UVB) irradiation, EGCG-5'Glu protected cells from UVB and regulated the PI3K/PDK1/AKT pathway. Next, the proliferative effect of EGCG-5'Glu was examined. EGCG-5'Glu increased cell proliferation by modulating nuclear factor (NF)-κB activity. EGCG-5'Glu protects and repairs cells from external damage via its antioxidant effects. These results suggest that EGCG-5'Glu could be used as a cosmetics ingredient or dietary supplement.
Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties
2013-01-01
For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847
Role of taurine in the vasculature: an overview of experimental and human studies
Abebe, Worku; Mozaffari, Mahmood S
2011-01-01
Taurine is a sulfur-containing amino acid-like endogenous compound found in substantial amounts in mammalian tissues. It exerts a diverse array of biological effects, including cardiovascular regulation, antioxidation, modulation of ion transport, membrane stabilization, osmoregulation, modulation of neurotransmission, bile acid conjugation, hypolipidemia, antiplatelet activity and modulation of fetal development. This brief review summarizes the role of taurine in the vasculature and modulation of blood pressure, based on experimental and human studies. Oral supplementation of taurine induces antihypertensive effects in various animal models of hypertension. These effects of taurine have been shown to be both centrally and peripherally mediated. Consistent with this, taurine produces endothelium-dependent and independent relaxant effects in isolated vascular tissue preparations. Oral administration of taurine also ameliorates impairment of vascular reactivity, intimal thickening, arteriosclerosis, endothelial apoptosis, oxidative stress and inflammation, associated primarily with diabetes and, to a lesser extent with obesity, hypertension and nicotine-induced vascular adverse events. In rat aortic vascular smooth muscle cells (VSMCs), taurine acts as an antiproliferative and antioxidant agent. In endothelial cells, taurine inhibits apoptosis, inflammation, oxidative stress and cell death while increasing NO generation. Oral taurine in hypertensive human patients alleviates the symptoms of hypertension and also reverses arterial stiffness and brachial artery reactivity in type 1 diabetic patients. However, despite these favorable findings, there is a need to further establish certain aspects of the reported results and also consider addressing unresolved related issues. In addition, the molecular mechanism (s) involved in the vascular effects of taurine is largely unknown and requires further investigations. Elucidation of the mechanisms through which taurine affects the vasculature could facilitate the development of therapeutic and/or diet-based strategies to reduce the burdens of vascular diseases. PMID:22254206
Nakamura, Yukiko K.; Omaye, Stanley T.
2010-01-01
In addition to exhibiting antioxidant properties, conjugated linoleic acid (CLA) and vitamin E may modulate gene expression of endogenous antioxidant enzymes. Depending on cellular microenvironments, such modulation reflects either antioxidant or prooxidant outcomes. Although epidemiological/experimental studies have indicated that CLA and vitamin E have health promoting properties, recent findings from clinical trials have been inconclusive. Discrepancies between the results found from prospective studies and recent clinical trials might be attributed to concentration-dependent cellular microenvironment alterations. We give a perspective of possible molecular mechanisms of actions of these lipophilic compounds and their implications for interventions of reactive oxygen species (ROS)-related diseases. PMID:22254050
Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.
Murugan, K; Harish, S R
2007-11-01
The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.
Ozgur, Elcin; Güler, Göknur; Seyhan, Nesrin
2010-11-01
To investigate oxidative damage and antioxidant enzyme status in the liver of guinea pigs exposed to mobile phone-like radiofrequency radiation (RFR) and the potential protective effects of N-acetyl cysteine (NAC) and epigallocatechin-gallate (EGCG) on the oxidative damage. Nine groups of guinea pigs were used to study the effects of exposure to an 1800-MHz Global System for Mobile Communications (GSM)-modulated signal (average whole body Specific Absorption Rate (SAR) of 0.38 W/kg, 10 or 20 min per day for seven days) and treatment with antioxidants. Significant increases in malondialdehyde (MDA) and total nitric oxide (NO(x)) levels and decreases in activities of superoxide dismutase (SOD), myeloperoxidase (MPO) and glutathione peroxidase (GSH-Px) were observed in the liver of guinea pigs after RFR exposure. Only NAC treatment induces increase in hepatic GSH-Px activities, whereas EGCG treatment alone attenuated MDA level. Extent of oxidative damage was found to be proportional to the duration of exposure (P < 0.05). Mobile phone-like radiation induces oxidative damage and changes the activities of antioxidant enzymes in the liver. The adverse effect of RFR may be related to the duration of mobile phone use. NAC and EGCG protect the liver tissue against the RFR-induced oxidative damage and enhance antioxidant enzyme activities.
Bernal-Vicente, Agustina; Pascual, José A; Tittarelli, Fabio; Hernández, José A; Diaz-Vivancos, Pedro
2015-08-30
Compost is emerging as an alternative plant growing medium in efforts to achieve more sustainable agriculture. The addition of specific microorganisms such as Trichoderma harzianum to plant growth substrates increases yields and reduces plant diseases, but the mechanisms of such biostimulants and the biocontrol effects are not yet fully understood. In this work we investigated how the addition of citrus and vineyard composts, either alone or in combination with T. harzianum T-78, affects the antioxidant defence system in melon plants under nursery conditions. Compost application and/or Trichoderma inoculation modulated the antioxidant defence system in melon plants. The combination of citrus compost and Trichoderma showed a biostimulant effect that correlated with an increase in ascorbate recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase) and peroxidase. Moreover, the inoculation of both composts with Trichoderma increased the activity of antioxidant enzymes, especially those involved in ascorbate recycling. Based on the long-established relationship between ascorbic acid and plant defence responses as well as plant growth and development, it can be suggested that ascorbate recycling activities play a major role in the protection provided by Trichoderma and its biostimulant effect and that these outcomes are linked to increases in antioxidant enzymes. We can conclude that the combination of citrus compost and T. harzianum T-78 constitutes a viable, environmentally friendly strategy for improving melon plant production. © 2014 Society of Chemical Industry.
Ismail Suhaimy, Noor Wahida; Noor Azmi, Ahmad Khusairi; Mohtarrudin, Norhafizah; Cheema, Manraj Singh
2017-01-01
Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids. PMID:28168011
Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi
2018-07-15
Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.
Coffee Consumption and Oxidative Stress: A Review of Human Intervention Studies.
Martini, Daniela; Del Bo', Cristian; Tassotti, Michele; Riso, Patrizia; Del Rio, Daniele; Brighenti, Furio; Porrini, Marisa
2016-07-28
Research on the potential protective effects of coffee and its bioactives (caffeine, chlorogenic acids and diterpenes) against oxidative stress and related chronic disease risk has been increasing in the last years. The present review summarizes the main findings on the effect of coffee consumption on protection against lipid, protein and DNA damage, as well as on the modulation of antioxidant capacity and antioxidant enzymes in human studies. Twenty-six dietary intervention studies (involving acute and chronic coffee intake) have been considered. Overall, the results suggest that coffee consumption can increase glutathione levels and improve protection against DNA damage, especially following regular/repeated intake. On the contrary, the effects of coffee on plasma antioxidant capacity and antioxidant enzymes, as well as on protein and lipid damage, are unclear following both acute and chronic exposure. The high heterogeneity in terms of type of coffee, doses and duration of the studies, the lack of information on coffee and/or brew bioactive composition, as well as the choice of biomarkers and the methods used for their evaluation, may partially explain the variability observed among findings. More robust and well-controlled intervention studies are necessary for a thorough understanding of the effect of coffee on oxidative stress markers in humans.
Ahmed, Sarfraz; Sulaiman, Siti Amrah; Baig, Atif Amin; Ibrahim, Muhammad; Liaqat, Sana; Fatima, Saira; Jabeen, Sadia; Shamim, Nighat
2018-01-01
Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research. PMID:29492183
Chainy, Gagan Bihari Nityananda; Paital, Biswaranjan; Dandapat, Jagneswar
2016-01-01
Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons.
Chainy, Gagan Bihari Nityananda; Paital, Biswaranjan; Dandapat, Jagneswar
2016-01-01
Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons. PMID:27127682
Vegetarian diets and public health: biomarker and redox connections.
Benzie, Iris F F; Wachtel-Galor, Sissi
2010-11-15
Vegetarian diets are rich in antioxidant phytochemicals. However, they may not act as antioxidants in vivo, and yet still have important signaling and regulatory functions. Some may act as pro-oxidants, modulating cellular redox tone and oxidizing redox sensitive sites. In this review, evidence for health benefits of vegetarian diets is presented from different perspectives: epidemiological, biomarker, evolutionary, and public health, as well as antioxidant. From the perspective of molecular connections between diet and health, evidence of a role for plasma ascorbic acid as a biomarker for future disease risk is presented. Basic concepts of redox-based cell signaling are presented, and effects of antioxidant phytochemicals on signaling, especially via redox tone, sulfur switches and the Antioxidant Response Element (ARE), are explored. Sufficient scientific evidence exists for public health policy to promote a plant-rich diet for health promotion. This does not need to wait for science to provide all the answers as to why and how. However, action and interplay of dietary antioxidants in the nonequilibrium systems that control redox balance, cell signaling, and cell function provide rich ground for research to advance understanding of orthomolecular nutrition and provide science-based evidence to advance public health in our aging population.
Saravanan, Ramalingam; Ramachandran, Vinayagam
2013-09-01
The present study was to evaluate the protective effects of Rebaudioside A (Reb A) on antioxidant status and lipid profile in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats by a single intraperitoneal administration of STZ (40mg/kg b.w). Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, hydroperoxides and decreased levels of insulin. The activity of enzymatic antioxidants (superoxide dismutase, catalase and glutathione peroxidase) and the levels of non enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione) were decreased in diabetic rats. The levels of total cholesterol (TC), triglycerides (TGs), free fatty acids (FFAs), phospholipids (PLs), low density lipoproteins (LDL-cholesterol) and very low-density lipoproteins (VLDL-cholesterol) in the plasma significantly increased, while plasma high-density lipoproteins (HDL-cholesterol) were significantly decreased in diabetic rats. Oral administration of Reb A (200mg/kg b.w) brought back plasma glucose, insulin, lipid peroxidation products, enzymatic, non-enzymatic antioxidants and lipid profile levels to near normal. The results of the present investigation suggests that Reb A, a natural sweetener exhibits antilipid peroxidative, antihyperlipidemic and antioxidant properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Pontigo, Sofía; Godoy, Karina; Jiménez, Héctor; Gutiérrez-Moraga, Ana; Mora, María de la Luz; Cartes, Paula
2017-01-01
Silicon (Si) has been well documented to alleviate aluminum (Al) toxicity in vascular plants. However, the mechanisms underlying these responses remain poorly understood. Here, we assessed the effect of Si on the modulation of Si/Al uptake and the antioxidant performance of ryegrass plants hydroponically cultivated with Al (0 and 0.2 mM) in combination with Si (0, 0.5, and 2.0 mM). Exposure to Al significantly increased Al concentration, mainly in the roots, with a consequent reduction in root growth. However, Si applied to the culture media steadily diminished the Al concentration in ryegrass, which was accompanied by an enhancement in root dry matter production. A reduced concentration of Si in plant tissues was also observed when plants were simultaneously supplied with Al and Si. Interestingly, Si transporter genes ( Lsi1 and Lsi2 ) were down-regulated in roots after Si or Al was applied alone; however, both Lsi1 and Lsi2 were up-regulated as a consequence of Si application to Al-treated plants, denoting that there is an increase in Si requirement in order to cope with Al stress in ryegrass. Whereas Al addition triggered lipid peroxidation, Si contributed to an attenuation of Al-induced oxidative stress by increasing phenols concentration and modulating the activities of superoxide dismutase (SOD), catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes. Differential changes in gene expression of SOD isoforms ( Mn-SOD, Cu/Zn-SOD , and Fe-SOD ) and the profile of peroxide (H 2 O 2 ) generation were also induced by Si in Al-stressed plants. This, to the best of our knowledge, is the first study to present biochemical and molecular evidence supporting the effect of Si on the alleviation of Al toxicity in ryegrass plants.
Ignea, Codruţa; Dorobanţu, Cristina Mihaela; Mintoff, Christopher Paul; Branza-Nichita, Norica; Ladomery, Michael R; Kefalas, Panagiotis; Chedea, Veronica Sanda
2013-12-15
Grape seed extracts (GSEs) were investigated in yeast cells harbouring defects in their antioxidant system (regarding the cellular growth and growth recovery from H2O2 insult). GSEs antioxidant activity was detected in wild-type and mutant strains Δcta1, Δgsh1 and Δoye2glr1, while pro-oxidant activity in Δsod1 cells was seen. Assessment of proliferation of prostate cancer PC3 and HBV-replicating HepG2 2.2.15 cells treated with GSEs has shown higher cytotoxicity of red grape seed extract (RW) than white grape seed extract (WW) subjective to dose and period of administration. No antiviral effect was detected by measuring the secreted virion particles in HepG2 2.2.15 cells treated with GSEs. The GSEs play a dual antioxidant/pro-oxidant role in vivo according with the cellular antioxidant system deficiencies and exhibit cytotoxic properties in PC3 and HepG2 2.2.15 cell lines, but no antiviral action against HBV. Copyright © 2013 Elsevier Ltd. All rights reserved.
Baldwin, Carol M; Bootzin, Richard R; Schwenke, Dawn C; Quan, Stuart F
2005-12-01
Cognitive deficits and cardiovascular disease (CVD) are comorbid conditions frequently associated with obstructive sleep apnea (OSA). Oxygen free radical release and its differential regulation of cytokine synthesis and immune modulation resulting from OSA-related hypoxic events have been hypothesized as the underlying mechanism(s) for the cognitive deficits and CVD in OSA. A number of studies have suggested that increased levels of oxidative stress and/or antioxidant deficiencies may also be risk factors in cognitive decline and CVD. The influence of antioxidant nutrients and supplements, such as Vitamins B6, B12, C, E, folic acid, alpha-lipoic acid and Coenzyme Q(10) on cognitive decline and CVD have been investigated. The influence of antioxidant nutrients or supplements on OSA remains to be investigated. Even if dietary or supplemental antioxidants do not prove to be effective therapies for OSA, dietary assessment and prescription to increase dietary intake of neuro- and cardio-protective nutrients may make it possible to reduce some of the cognitive and cardiovascular sequelae associated with OSA.
Yuan, Linhong; Liu, Jinmeng; Zhen, Jie; Xu, Yao; Chen, Shuying; Halm-Lutterodt, Nicholas Van; Xiao, Rong
2017-01-01
Abstract To explore the effect of fruit and vegetable (FV) juice on biomarkers of oxidative damage and antioxidant gene expression in rats, 36 adult male Wistar rats were randomly divided into control, low FV juice dosage or high FV juice dosage treatment groups. The rats were given freshly extracted FV juice or the same volume of saline water daily for five weeks. After intervention, serum and tissues specimens were collected for biomarker and gene expression measurement. FV juice intervention increased total antioxidant capacity, glutathione, vitamin C, β-carotene, total polyphenols, flavonoids levels andglutathione peroxidaseenzyme activity in rat serum or tissues (p < 0.05). FV juice intervention caused reduction of malondialdehyde levels in rat liver (p < 0.05) and significantly modulated transcript levels of glutamate cysteine ligase catalytic subunit (GCLC) and NAD(P)H:quinone oxidoreductase l (NQO1)in rat liver and brain (p < 0.05). The results underline the potential of FV juice to improve the antioxidant capacity and to prevent the oxidative damage in liver, brain and colon. PMID:28323302
NASA Astrophysics Data System (ADS)
Mu, Cuimin; Ren, Xianyun; Ge, Qianqian; Wang, Jiajia; Li, Jian
2017-04-01
The dinoflagellate Prorocentrum minimum, one of the most widespread red tide causing species, affects marine aquaculture and ecosystems worldwide. In this study, ridgetail white prawn Exopalaemon carinicauda were exposed to P. minimum cells (5 × 104 cells mL-1) to investigate its harmful effects on the shrimp. Antioxidant activities and histological changes were used as indicators of health status of the shrimp. In 72 hours, the mortality of E. carinicauda was not affected, but its antioxidant response and histology were statistically different from those of control. Elevated superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and depressed catalase (CAT) activity were observed in gill; while increased SOD, glutathione S-transferase (GST), CAT activities and modulated GPX activity were observed in hepatopancreas. Thus, antioxidant activities in gill and hepatopancreas seem to respond differentially to harmful alga exposure. Increased malondialdehyde (MDA) content in early a few hours indicates the damage of the antioxidant defense system. Although MDA content recovered to a low level thereafter, a series of histological abnormalities including accumulation or infiltration of hemocytes, tissue lesions and necrosis were discovered in gill and hepatopancreas. Exposure to P. minimum induced sublethal effects on E. carinicauda, including temporary oxidative damage and histological injury.
Ávila, Felipe; Echeverria, Guadalupe; Perez, Druso; Trejo, Sebastian; Leighton, Federico
2017-01-01
This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat. PMID:28243359
Urquiaga, Ines; Ávila, Felipe; Echeverria, Guadalupe; Perez, Druso; Trejo, Sebastian; Leighton, Federico
2017-01-01
This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers ( N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls ( p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 ( p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat.
Safari, Roghieh; Hoseinifar, Seyed Hossein; Kavandi, Morteza
2016-12-01
The present study explores the effect of dietary sodium propionate on mucosal immune response and expression of antioxidant enzyme genes in zebra fish (Danio rerio). Six hundred healthy zebra fish (0.42 ± 0.06 g) supplied, randomly stocked in 12 aquariums and fed on basal diets supplemented with different levels of sodium propionate [0 (control), 5, 10 and 20 g kg -1 ] for 8 weeks. At the end of the feeding trial, mucosal immune parameters (TNF-α, IL-1β, Lyz), antioxidant enzyme (SOD, CAT) as well as heat shock protein 70 (HSP70) gene expression were measured. The results revealed feeding on sodium propionate significantly up-regulated inflammatory response genes (TNF-α, IL-1β, Lyz) in a dose-dependent manner (P < 0.05). However, antioxidant enzyme genes significantly down-regulated in the treated group compared with control (P < 0.05). Also, HSP70 gene expression was higher in the liver of fish fed the basal diet and deceased with elevation of sodium propionate levels in the diet. These results showed beneficial effects of dietary sodium propionate on mucosal immune response as well as the antioxidant defense of zebra fish.
Ciaraldi, Theodore P.; Nogueira, Leonardo; Coe, Taylor; Perkins, Guy; Hogan, Michael; Maisel, Alan S.; Henry, Robert R.; Ceballos, Guillermo; Villarreal, Francisco
2013-01-01
Background Type 2 diabetes (T2D) and heart failure (HF) are associated with high levels of skeletal muscle (SkM) oxidative stress (OS). Health benefits attributed to flavonoids have been ascribed to antioxidation. However, for flavonoids with similar antioxidant potential, end-biological effects vary widely suggesting other mechanistic venues for reducing OS. Decreases in OS may follow the modulation of key regulatory pathways including antioxidant levels (e.g. glutathione) and enzymes such as mitochondrial superoxide dismutase (SOD2) and catalase. Methods We examined OS-related alterations in SkM in T2D/HF patients (as compared vs. healthy controls) and evaluated the effects of three-month treatment with (−)-epicatechin (Epi) rich cocoa (ERC). To evidence Epi as the mediator of the improved OS profile we examined the effects of pure Epi (vs. water) on SkM OS regulatory systems in a mouse model of insulin resistance and contrasted results vs. normal mice. Results There were severe alterations in OS regulatory systems in T2D/HF SkM as compared with healthy controls. Treatment with ERC induced recovery in glutathione levels and decreases in the nitrotyrosilation and carbonylation of proteins. With treatment, key transcriptional factors translocate into the nucleus leading to increases in SOD2 and catalase protein expression and activity levels. In insulin resistant mice, there were alterations in muscle OS and pure Epi replicated the beneficial effects of ERC found in humans. Conclusions Major perturbations in SkM OS can be reversed with ERC in T2D/HF patients. Epi likely mediates such effects and may provide an effective means to treat conditions associated with tissue OS. PMID:23870648
Ramaiyan, Breetha; Bettadahalli, Sadashivaiah; Talahalli, Ramaprasad Ravichandra
2016-09-02
Maternal nutrition modulates fetal metabolic programming and development later. Maternal dyslipidemia effects on oxidative stress (OS) in offsprings and its modulation by dietary fatty acids over generations remains to be elucidated. The objective of present study was to assess the long-term (three generations) effect of omega-3 fatty acids on OS under dyslipidemia. Weanling female Wistar rats were fed with control diet (7% lard), high fat diet (35% lard, HFL), high fat with fish oil (21% fish oil + 14% lard, HFF), high fat with canola oil (21% canola oil + 14% lard, HFC) and high fat with sunflower oil (21% sunflower oil + 14% lard, HFS). Following 60 days feeding, the female rats were mated with sexually matured males (fed normal chow diet) and continued with the above diet regimen during pregnancy and lactation. The pups after lactation were continued with their maternal diet for 60 days and subjected to mating and feeding trial as above for two generations. Serum lipid profiles, OS markers (lipid peroxidation, nitric oxide release and protein carbonyl) and antioxidant defence enzymes (catalase, SOD, glutathione peroxidase and glutathione transferase) were assessed in serum, liver and uterus of rats fed on experimental and control diets for three generations. Feeding HFL diet increased blood lipids, OS and lowered the antioxidant enzymes activity in serum, liver and uterus (p < 0.05). The reduction in the antioxidant enzymes in HFL group were higher in third followed by second generation compared to first generation (p < 0.05). Omega-3 fatty acids prevented the dyslipidemia induced loss of antioxidant enzyme activities in serum, liver and uterus. Our data show for the first time that offsprings born to dyslipidemic mothers' exhibit diminished enzymatic antioxidant defence and its progressive reduction in future generation, and dietary omega-3 fatty acids restore the enzymatic antioxidant defence in offsprings and suppress the markers of OS. Copyright © 2016 Elsevier Inc. All rights reserved.
Paskova, Veronika; Veronika, Paskova; Paskerova, Hana; Hana, Paskerova; Pikula, Jiri; Jiri, Pikula; Bandouchova, Hana; Hana, Bandouchova; Sedlackova, Jana; Jana, Sedlackova; Hilscherova, Klara; Klara, Hilscherova
2011-10-01
Wild birds are continually exposed to many anthropogenic and natural stressors in their habitats. Over the last decades, mass mortalities of wild birds constitute a serious problem and may possibly have more causations such as natural toxins including cyanotoxins, parasitic diseases, industrial chemicals and other anthropogenic contaminants. This study brings new knowledge on the effects of controlled exposure to multiple stressors in birds. The aim was to test the hypothesis that influence of cyanobacterial biomass, lead and antigenic load may combine to enhance the effects on birds, including modulation of antioxidative and detoxification responses. Eight treatment groups of model species Japanese quail (Coturnix coturnix japonica) were exposed to various combinations of these stressors. The parameters of detoxification and oxidative stress were studied in liver and heart after 30 days of exposure. The antioxidative enzymatic defense in birds seems to be activated quite efficiently, which was documented by the elevated levels and activities of antioxidative and detoxification compounds and by the low incidence of damage to lipid membranes. The greatest modulations of glutathione level and activities of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and lipid peroxidation were shown mostly in the groups with combined multiple exposures. The results indicate that the antioxidative system plays an important role in the protective response of the tissues to applied stressors and that its greater induction helps to protect the birds from more serious damage. Most significant changes of these "defense" parameters in case of multiple stressors suggest activation of this universal mechanism in situation with complex exposure and its crucial role in protection of the bird health in the environment. Copyright © 2011 Elsevier Inc. All rights reserved.
Sanchez-Barcelo, Emilio J; Mediavilla, Maria D; Alonso-Gonzalez, Carolina; Reiter, Russel J
2012-06-01
The possible oncostatic properties of melatonin on different types of neoplasias have been studied especially in hormone-dependent adenocarcinomas. Despite the promising results of these experimental investigations, the use of melatonin in breast cancer treatment in humans is still uncommon. This article reviews the usefulness of this indoleamine for specific aspects of breast cancer management, particularly in reference to melatonin's antiestrogenic and antioxidant properties: i) treatments oriented to breast cancer prevention, especially when the risk factors are obesity, steroid hormone treatment or chronodisruption by exposure to light at night (LAN); ii) treatment of the side effects associated with chemo- or radiotherapy. The clinical utility of melatonin depends on the appropriate identification of its actions. Because of its SERM (selective estrogen receptor modulators) and SEEM (selective estrogen enzyme modulators) properties, and its virtual absence of contraindications, melatonin could be an excellent adjuvant with the drugs currently used for breast cancer prevention (antiestrogens and antiaromatases). The antioxidant actions also make melatonin a suitable treatment to reduce oxidative stress associated with chemotherapy, especially with anthracyclines, and radiotherapy.
Rojas, Patricia; Serrano-García, Norma; Medina-Campos, Omar N; Pedraza-Chaverri, José; Ogren, Sven O; Rojas, Carolina
2011-10-01
EGb761 is a well-defined mixture of active compounds extracted from Ginkgo biloba leaves. This extract is used clinically due to its neuroprotective effects, exerted probably via its potent antioxidant or free radical scavenger action. Previous studies suggest that oxidative stress, via free radical production, may play an important role in depression and animal models for depression-like behavior. Preclinical studies have suggested that antioxidants may have antidepressants properties. The aim of this study was to investigate the antidepressant-like of EGb761 due to its antioxidant role against oxidative stress induced in the forced swimming test, the most widely used preclinical model for assessing antidepressant-like behavior. Male BALB/c mice were pretreated with EGb761 (10mg/kg, ip) daily for 17 days followed by the forced swimming test and spontaneous locomotor activity. Animals were sacrificed to evaluate lipid peroxidation, different antioxidant enzyme activities, serotonin and dopamine content in midbrain, hippocampus and prefrontal cortex. EGb761 significantly decreased the immobility time (39%) in the forced swimming test. This antidepressant-like effect of EGb761 was associated with a reduction in lipid peroxidation and superoxide radical production (indicated by a downregulation of Mn-superoxide dismutase activity), both of which are indicators of oxidative stress. The protective effect of EGb761 is not related to excitatory or inhibitory effects in locomotor activity, and was also associated with the modulation of serotonergic and dopaminergic neurotransmission. It is suggested that EGb761 produces an antidepressant-like effect, and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects. Copyright © 2011 Elsevier B.V. All rights reserved.
Resveratrol Prevents Ammonia Toxicity in Astroglial Cells
Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem
2012-01-01
Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918
Tocopherols in the Prevention and Treatment of Atherosclerosis and Related Cardiovascular Disease.
Mathur, Pankaj; Ding, Zufeng; Saldeen, Tom; Mehta, Jawahar L
2015-09-01
Oxidants/antioxidants play an important role in cellular homeostasis. The human body has endogenous molecules that work as antioxidants, such as glutathione, superoxide dismutase, peroxidases, and catalase. Exogenous substances in the diet, such as β-carotene, ascorbate, and vitamin E, are vital antioxidants. Of these, vitamin E is likely the most important antioxidant in the human diet, and many studies have been performed to elucidate its role in health and disease. Vitamin E is a family of several compounds, of which α-tocopherol is the most widely known analog. α-Tocopherol exhibits antioxidative property in vitro and inhibits oxidation of low-density lipoprotein cholesterol. In addition, α-tocopherol shows anti-inflammatory activity and modulates expression of proteins involved in the uptake, transport, and degradation of atherogenic lipids. Though α-tocopherol exhibits important antioxidant, anti-inflammatory, and antiatherogenic features in vitro, α-tocopherol supplements have failed to consistently reduce atherosclerosis-related events in human trials. The conflicting results have led to reconsideration of the importance previously given to α-tocopherol and led to interest in other members of vitamin E family, especially γ-tocopherol, which exerts a much more potent antioxidant, anti-inflammatory, and cardioprotective effect than α-tocopherol. This reconsideration has been backed by solid laboratory and clinical research. We suggest that the absence of γ-tocopherol in traditional preparations may be one reason for the lack of consistent salutary effects of vitamin E preparations in clinical trials. This review summarizes our current understanding of tocopherols as antioxidant molecules and emerging evidence of an important role of γ-tocopherol in the pathophysiology of atherosclerosis-related cardiovascular disease. © 2015 Wiley Periodicals, Inc.
Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe
2015-01-01
Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID:26345627
Effects of smoking and antioxidant micronutrients on risk of colorectal cancer.
Hansen, Rikke Dalgaard; Albieri, Vanna; Tjønneland, Anne; Overvad, Kim; Andersen, Klaus Kaae; Raaschou-Nielsen, Ole
2013-04-01
Antioxidant intake has been reported to increase the risk of colorectal cancer (CRC) for smokers, yet reduce the risk for nonsmokers. We investigated the association between tobacco smoking and risk of colon or rectal cancer, and whether dietary and supplemental intake of the antioxidant vitamins A, C, E, β-carotene, selenium, zinc, and manganese affects the risk of CRC among smokers. Data on smoking habits and antioxidant intake were analyzed for 54,208 participants in the Danish Prospective Diet, Cancer and Health Study. Of these participants, 642 were diagnosed with colon cancer and 348 were diagnosed with rectal cancer. Hazard ratios and 95% confidence intervals were estimated using Cox proportional hazard models. Principal components were used to analyze intake of combinations of antioxidants. Ever smoking increased the risk for CRC (hazard ratio, 1.19; 95% confidence interval, 1.03-1.37), especially for rectal cancer. Smoking for at least 20 years was associated with a 26% increase in risk of CRC, compared with never smokers, and smoking 20 g tobacco or more each day was associated with a 30% increase in risk. Smoking for more than 30 years, or more than 20 g tobacco each day, was associated with a 48% increase in risk of rectal cancer. We did not observe an interaction between smoking and antioxidant consumption on risk of CRC. Tobacco smoking increases the risk for CRC. We did not observe that consumption of antioxidant micronutrients modulates the effects of smoking on CRC risk. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria
2016-04-28
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress.
Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria
2016-01-01
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579
The role of nutraceuticals in anti-aging medicine.
Vranesić-Bender, Darija
2010-12-01
'Nutraceuticals' is a wide term including all kinds of food with health or medical effect. Regulations in the world on functional food and nutraceuticals are developed along with the development of new products. This nomenclature is not aligned across legal regulations in different countries. There are several theories trying to interpret the phenomenon of aging and the most interesting theory in terms of nutrition is free radical theory and the possible role of antioxidants in aging process. A large group of substances including vitamins, carotenoids, flavonoids and minerals have in vitro or in vivo clinically significant antioxidant characteristics. There is great interest in anti-aging substances derived from food, and the most popular ingredients are antioxidants, especially coenzyme Q10, phytoestrogens, probiotics and omega-3 fatty acids. These substances have beneficial effect on digestive and immune systems, and modulate inflammatory and degenerative processes in the body. The challenge in the future will be strategic combining of cosmeceuticals and nutraceuticals in order to intervene in biological aging processes and degenerative skin changes.
Olejnik, Anna; Rychlik, Joanna; Kidoń, Marcin; Czapski, Janusz; Kowalska, Katarzyna; Juzwa, Wojciech; Olkowicz, Mariola; Dembczyński, Radosław; Moyer, Mary Pat
2016-01-01
Purple carrot (PC) is a potential dietary constituent, which represents a valuable source of antioxidants and can modulate the reactive oxygen species (ROS) level in the gastrointestinal tract. Antioxidant capacity of a PC extract subjected to digestion process simulated in the artificial alimentary tract, including the stomach, small intestine and colon, was analyzed in normal human cells of colon mucosa. Results indicated that the extract obtained upon passage through the gastrointestinal tract, which could come into contact with the colonic cells in situ, was less potent than the extract, which was not subjected to digestion process. Digested PC extract exhibited intracellular ROS-inhibitory capacity, with 1mg/mL showing the ROS clearance of 18.4%. A 20.7% reduction in oxidative DNA damage due to colon mucosa cells' treatment with digested PC extract was observed. These findings indicate that PC extract is capable of colonic cells' protection against the adverse effects of oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nauman, Mohd; Kale, R K; Singh, Rana P
2018-03-07
Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and antioxidants and therefore, might be mainly responsible for the antioxidant properties of S. aegyptiaca, while acetylsalicylic acid provided its maximum anti-inflammatory activity.
Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease
Steven, Sebastian; Münzel, Thomas; Daiber, Andreas
2015-01-01
Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease. PMID:26251902
Oxidants, antioxidants, and respiratory tract lining fluids.
Cross, C E; van der Vliet, A; O'Neill, C A; Louie, S; Halliwell, B
1994-01-01
Respiratory tract lining fluids (RTLFs) are a heterogeneous group of substances covering the respiratory tract epithelial cells (RTECs) from nasal mucosa to alveoli. Antioxidant contained in the RTLFs can be expected to provide an initial defense against inhaled environmental toxins. The major antioxidants in RTLF include mucin, uric acid, protein (largely albumin), ascorbic acid, and reduced glutathione (GSH). RTLF antioxidants can be augmented by such processes as transudation/exudation of plasma constituents; RTEC secretory processes, including glandular mucus secretion; and cellular antioxidants derived from lysis of RTECs and of inflammatory cells. The antioxidant composition of RTLFs and their role in modulating normal and pathophysiologic RTEC functions under conditions of oxidative stress are yet to be fully characterized. PMID:7705296
Dietary Modulation of Oxidative Stress in Alzheimer's Disease.
Thapa, Arjun; Carroll, Nick J
2017-07-21
Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.
Serafini, Mauro; Peluso, Ilaria
2016-01-01
The health benefits of plant food-based diets could be related to both integrated antioxidant and anti-inflammatory mechanisms exerted by a wide array of phytochemicals present in fruit, vegetables, herbs and spices. Therefore, there is mounting interest in identifying foods, food extracts and phytochemical formulations from plant sources which are able to efficiently modulate oxidative and inflammatory stress to prevent diet-related diseases. This paper reviews available evidence about the effect of supplementation with selected fruits, vegetables, herbs, spices and their extracts or galenic formulation on combined markers of redox and inflammatory status in humans. PMID:27881064
Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila
2016-06-01
The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiruthiga, P.V.; Pandian, S. Karutha; Devi, K. Pandima, E-mail: devikasi@yahoo.co
2010-09-01
PAHs are a ubiquitous class of environmental contaminants that have a large number of hazardous consequences on human health. An important prototype of PAHs, B(a)P, is notable for being the first chemical carcinogen to be discovered and the one classified by EPA as a probable human carcinogen. It undergoes metabolic activation to QD, which generate ROS by redox cycling system in the body and oxidatively damage the macromolecules. Hence, a variety of antioxidants have been tested as possible protectors against B(a)P toxicity. Silymarin is one such compound, which has high human acceptance, used clinically and consumed as dietary supplement aroundmore » the world for its strong anti-oxidant efficacy. Silymarin was employed as an alternative approach for treating B(a)P induced damage and oxidative stress in PBMC, with an emphasis to provide the molecular basis for the effect of silymarin against B(a)P induced toxicity. PBMC cells exposed to either benzopyrene (1 {mu}M) or silymarin (2.4 mg/ml) or both was monitored for toxicity by assessing LPO, PO, redox status (GSH/GSSG ratio), glutathione metabolizing enzymes GR and GPx and antioxidant enzymes CAT and SOD. This study also investigated the protective effect of silymarin against B(a)P induced biochemical alteration at the molecular level by FT-IR spectroscopy. Our findings were quite striking that silymarin possesses substantial protective effect against B(a)P induced oxidative stress and biochemical changes by restoring redox status, modulating glutathione metabolizing enzymes, hindering the formation of protein oxidation products, inhibiting LPO and further reducing ROS mediated damages by changing the level of antioxidant enzymes. The results suggest that silymarin exhibits multiple protections and it should be considered as a potential protective agent for environmental contaminant induced immunotoxicity.« less
Ahmad, Ausaf; Rasheed, Naila; Chand, Kailash; Maurya, Rakesh; Banu, Naheed; Palit, Gautam
2012-01-01
Background & objectives: Ocimum sanctum (OS) is known to possess various therapeutic properties. We have earlier isolated and characterized three OS compounds; Ocimarin, Ocimumoside A and Ocimumoside B. However, their role in modulating stress-induced central changes is unexplored. Thus, the present study was aimed to investigate the effect of these OS compounds on restraint stress (RS)-induced changes in the monoaminergic and antioxidant systems in the frontal cortex, striatum and hippocampus of rats. Methods: RS was produced by immobilizing (restraining) the Sprague Dawley rats for a period of 2.5 h inside cylindrical steel tubes. The monoamine levels and the in vivo antioxidant status in brain regions were evaluated by HPLC-EC and spectrophotometric assays, respectively. Results: RS significantly increased the dopamine levels in the frontal cortex and decreased in the striatum and hippocampus, and accompanied with selective increase of dopamine metabolites compared to the NS control group. The serotonin and its metabolite levels were significantly increased, while noradrenaline levels were decreased by RS in the three brain regions studied. The activities of superoxide dismutase and glutathione peroxidase in the frontal cortex and striatum were significantly increased by RS with decreased glutathione levels and increased lipid peroxidation. Pre-treatment with Ocimumoside A and B (40 mg/kg po) for a period of 3 days prevented the RS-induced changes with an efficacy similar to that of standard anti-stress (Panax quinquefolium; 100 mg/kg po) and antioxidant (Melatonin; 20 mg/kg ip) drugs, while, Ocimarin failed to modulate these changes. OS compounds per se had no effect on these parameters. Interpretation & conclusions: The present findings showed the anti-stress potential of Ocimumoside A and B in relation to their simultaneous modulatory effects on the central monoaminergic and antioxidant systems implicating their therapeutic importance in stress-related disorders. Further studies are required to understand the mechanism of action of these compounds. PMID:22664506
Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula.
Galasso, Christian; Orefice, Ida; Toscano, Alfonso; Vega Fernández, Tomás; Musco, Luigi; Brunet, Christophe; Sansone, Clementina; Cirino, Paola
2018-05-28
The carotenoid astaxanthin has strong antioxidant properties with beneficial effects for various degenerative diseases. This carotenoid is produced by some microalgae species when cultivated in particular conditions, and, interestingly, it is a predominant carotenoid in aquatic animals throughout a broad range of taxa. Recently, astaxanthin was detected in the eggs of the sea urchin Arbacia lixula in relevant concentrations when this organism was maintained in culture. These results have paved the way for deeper research into astaxanthin production by this species, particularly in regards to how astaxanthin production can be modulated by diet. Results showed that the highest content of astaxanthin in eggs was observed in sea urchins fed on a diet enriched with Spirulina platensis . This result was confirmed by the high antioxidant activity recorded in the egg extracts of these animals. Our results suggest that (i) the sea urchin A. lixula is able to synthesize astaxanthin from precursors obtained from food, and (ii) it is possible to modulate the astaxanthin accumulation in sea urchin eggs by modifying the proportions of different food ingredients provided in their diet. This study demonstrates the large potential of sea urchin cultivation for the eco-sustainable production of healthy supplements for nutraceutical applications.
Varadharaj, Saradhadevi; Kelly, Owen J.; Khayat, Rami N.; Kumar, Purnima S.; Ahmed, Naseer; Zweier, Jay L.
2017-01-01
In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases. PMID:29164133
Ding, Xiaotao; Jiang, Yuping; He, Lizhong; Zhou, Qiang; Yu, Jizhu; Hui, Dafeng; Huang, Danfeng
2016-01-01
To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation. PMID:27752105
Ienaga, Kazuharu; Park, Chan Hum; Yokozawa, Takako
2013-07-01
HMH (5-hydroxy-1-methylhydantoin; NZ-419) is a mammalian creatinine metabolite and an intrinsic antioxidant. HMH prevents the progression of chronic kidney disease in rats when a sufficient amount is taken orally. We assessed whether intrinsic and higher levels of HMH could protect tubular epithelial cells, LLC-PK(1) cells, against known cellular damage caused by xenobiotics, such as cisplatin and cephaloridine, or by hypoxia/reoxygenation treatment. Both cell damage and peroxidation, monitored as the leakage of lactate dehydrogenase (LDH) and malondialdehyde (MDA), respectively, from cells into the media, were inhibited by HMH in a concentration-dependent manner. The minimum effective concentration of HMH (2.5 μM) seemed to be too low for HMH to only be a direct hydroxyl radical scavenger. Additional antioxidant effect(s) inhibiting reactive oxygen species generation and/or modulating signal transduction pathways were suggested. The possibility that intrinsic HMH could be a protectant for the kidney was indicated. At the same time, for sufficient inhibition, higher concentrations than intrinsic HMH concentrations may be necessary. Patterns of efficacies of HMH on LDH and MDA against different kinds of cellular damage were compared with our reported data on those of corresponding, naturally occurring antioxidants. A common and specific inhibitory mechanism as well as common target(s) in kidney injuries were indicated. Copyright © 2012 Elsevier GmbH. All rights reserved.
Beneficial effects of pro-/antioxidant-based nutraceuticals in the skin rejuvenation techniques.
de Luca, C; Deeva, I; Mikhal'Chik, E; Korkina, L
2007-04-15
Modern technologies of skin rejuvenation include many physical and chemical intervention tools--laser irradiation, oxygen and ozone therapy, chemical peels, plastic surgery operations--affecting by different mechanisms the sensitive physiological free radical/antioxidant balance in the skin. All these interventions induce from mild to severe tissue damage, providing beneficial biochemical stimuli for skin re-epithelization and rejuvenation. Paradoxically, free radical production in the course of tissue inflammation helps to combat free radical damage consequent to the ageing process. We have studied two animal models (experimental burn and trichloracetic peeling), reproducing on the Wistar rat the effects generated by the commonly practiced aesthetic medicine procedures of laser resurfacing and chemical peels, demonstrating that the severe oxidative stress induced both systemically and on skin can be modulated by the oral pre- and post treatment administration of specific nutraceutical formulations. Potent antioxidants (RRR-alpha-tocopherol, coenzyme Q10), enhancing antioxidant defences, coupled with mild pro-oxidants, enhancers of a specific immune defense (soy phospholipids, L-methionine), at the blood and the skin levels, proved in fact to be beneficial in vivo, on the rat, for skin healing, trophism and accelerated re-epithelization. Data obtained allow us to predict the possibility of innovative protocols for dermocosmetology, enabling successful lowering of the risk of permanent adverse effects, and prolonging the duration of the beneficial effects of dermocosmetologic procedures.
Beberok, Artur; Wrześniok, Dorota; Otręba, Michał; Miliński, Maciej; Rok, Jakub; Buszman, Ewa
2015-03-01
Fluoroquinolone antibiotics provide broad-spectrum coverage for a number of infectious diseases, including respiratory as well as urinary tract infections. One of the important adverse effects of these drugs is phototoxicity which introduces a serious limitation to their use. To gain insight the molecular mechanisms underlying the fluoroquinolones-induced phototoxic side effects, the impact of two fluoroquinolone derivatives with different phototoxic potential, norfloxacin and moxifloxacin, on melanogenesis and antioxidant enzymes activity in normal human melanocytes HEMa-LP was determined. Both drugs induced concentration-dependent loss in melanocytes viability. The value of EC50 for these drugs was found to be 0.5 mM. Norfloxacin and moxifloxacin suppressed melanin biosynthesis; antibiotics were shown to inhibit cellular tyrosinase activity and to reduce melanin content in melanocytes. When comparing the both analyzed fluoroquinolones, it was observed that norfloxacin possesses greater inhibitory effect on tyrosinase activity in melanocytes than moxifloxacin. The extent of oxidative stress in cells was assessed by measuring the activity of antioxidant enzymes: SOD, CAT, and GPx. It was observed that norfloxacin caused higher depletion of antioxidant status in melanocytes when compared with moxifloxacin. The obtained results give a new insight into the mechanisms of fluoroquinolones toxicity directed to pigmented tissues. Moreover, the presented differences in modulation of biochemical processes in melanocytes may be an explanation for various phototoxic activities of the analyzed fluoroquinolone derivatives in vivo.
Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek
2017-01-01
Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896
Evaluation of Antioxidant and Antiangiogenic Properties of Caesalpinia Echinata Extracts
da Silva Gomes, Elisangela Christhianne Barbosa; Jimenez, George Chaves; da Silva, Luis Claudio Nascimento; de Sá, Fabrício Bezerra; de Souza, Karen Pena Cavalcanti; Paiva, Gerson S.; de Souza, Ivone Antônia
2014-01-01
Natural products contain important combinations of ingredients, which may to some extent help to modulate the effects produced by oxidation substrates in biological systems. It is known that substances capable of modulating the action of these oxidants on tissue may be important allies in the control of neovascularization in pathological processes. The aim of this study was to evaluate the antioxidant and antiangiogenic properties of an ethanol extract of Caesalpinia echinata. The evaluation of antioxidant properties was tested using two methods (DPPH inhibition and sequestration of nitric oxide). The antiangiogenic properties were evaluated using the inflammatory angiogenesis model in the corneas of rats. The extract of C. echinata demonstrated a high capacity to inhibit free radicals, with IC50 equal to 42.404 µg/mL for the DPPH test and 234.2 µg/mL for nitric oxide. Moreover, it showed itself capable of inhibiting the inflammatory angiogenic response by 77.49%. These data suggest that biochemical components belonging to the extract of C. echinata interfere in mechanisms that control the angiogenic process, mediated by substrates belonging to the arachidonic acid cascade, although the data described above also suggest that the NO buffer may contribute to some extent to the reduction in the angiogenic response. PMID:24563668
Dato, Serena; Crocco, Paolina; D'Aquila, Patrizia; de Rango, Francesco; Bellizzi, Dina; Rose, Giuseppina; Passarino, Giuseppe
2013-08-08
Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.
Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong
2013-09-15
To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.
Park, Jun Chul; Han, Jeonghoon; Lee, Min-Chul; Seo, Jung Soo; Lee, Jae-Seong
2017-08-01
Triclosan (TCS) is an antimicrobial agent that has been widely dispersed and detected in the marine environment. However, the effects of TCS in marine invertebrates are poorly understood. In this study, the effects of TCS on life cycle history (e.g. mortality and fecundity) along with cellular reactive oxygen species (ROS) levels, GSH content, antioxidant enzymatic activities, and mRNA expression levels of oxidative stress-mediated genes were measured in the copepod Tigriopus japonicus. The no observed effect concentration (NOEC) and median lethal concentration (LC50) of TCS in the adult stage were determined to be 300μg/L and 437.476μg/L, respectively, while in the nauplius stages the corresponding values were 20μg/L, and 51.76μg/L, respectively. Fecundity was significantly reduced (P<0.05) in response to TCS at 100μg/L. Concentration- and time-dependent analysis of ROS, GSH content (%), and antioxidant enzymatic activities (e.g. GST, GPx, and SOD) were significantly increased (P<0.05) in response to TCS exposure. Additionally, mRNA expression of detoxification (e.g., CYPs) and antioxidant (e.g., glutathione S-transferase-sigma isoforms, Cu/Zn superoxide dismutase, catalase) genes was modulated in response to TCS exposure at different concentrations over a 24h period. Our results revealed that TCS can induce reduced fecundity and oxidative stress with transcriptional regulation of oxidative stress-mediated genes with activation of the antioxidant system in the copepod T. japonicus. Copyright © 2017 Elsevier B.V. All rights reserved.
Carvedilol and antioxidant proteins in a type I diabetes animal model.
Diogo, Cátia V; Deus, Cláudia M; Lebiedzinska-Arciszewska, Magdalena; Wojtala, Aleksandra; Wieckowski, Mariusz R; Oliveira, Paulo J
2017-01-01
Patients with diabetes are at a high risk of developing both micro- and macrovascular disease. Hyperglycaemia seems to be the main factor in the pathogenesis of diabetic cardiomyopathy, often based on increased oxidative stress. Carvedilol, a β-adrenergic blocker, has intrinsic antioxidant properties and was previously described to be effective in the protection of cardiac mitochondria against oxidative stress. The objective of this study was to evaluate the effect of carvedilol on hyperglycaemia-induced oxidative damage and mitochondrial abnormalities in cardiac and skeletal muscle in streptozotocin-treated rats. Body mass, blood glucose, the level of protein carbonylation, caspase-9- and caspase-3-like activities, mitochondrial proteins, the status of antioxidant defence system and stress-related proteins were evaluated in streptozotocin vs streptozotocin + carvedilol (1 mg/kg/day)-treated rats. The results showed that carvedilol decreased blood glucose in streptozotocin-treated animals. Content of catalase in the heart and SOD2, SOD1 and catalase in skeletal muscle were increased by carvedilol treatment in streptozotocin-treated animals. At this particular time point, streptozotocin-induced hyperglycaemia did not cause caspase activation or increase in protein carbonylation status. The data showed that carvedilol increased the level of antioxidant enzymes, what may contribute to preserve cell redox balance during hyperglycaemia. We also showed here for the first time that carvedilol effects on streptozotocin-treated rats are tissue dependent, with a more predominant effect on skeletal muscle. Based on data showing modulation of the antioxidant network in the heart, carvedilol may be beneficial in diabetic patients without advanced disease complications, delaying their progression. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.
Park, Daehoon; Choi, Eun H.
2014-01-01
This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues. PMID:25068311
Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua
2016-01-01
Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583
Shi, Haitao; Ye, Tiantian; Zhong, Bao; Liu, Xun; Chan, Zhulong
2014-11-01
As an important second messenger, calcium is involved in plant cold stress response, including chilling (<20 °C) and freezing (<0 °C). In this study, exogenous application of calcium chloride (CaCl2 ) improved both chilling and freezing stress tolerances, while ethylene glycol-bis-(β-aminoethyl) ether-N,N,N,N-tetraacetic acid (EGTA) reversed CaCl2 effects in bermudagrass (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation. © 2014 Institute of Botany, Chinese Academy of Sciences.
Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.
2013-01-01
This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (P<0.05) increase in creatinine, uric acid, urea, and blood urea nitrogen (BUN) levels as well as kidney malondialdehyde (MDA) content, with concomitant decrease in kidney vitamin C and GSH contents. Furthermore, activities of kidney antioxidant enzymes such as, SOD, Catalase, and GST were significantly (P<0.05) altered in cisplatin administered rats. However, consumption of diets supplemented with the dye for 20 days prior to cisplatin administration protected the kidney and attenuates oxidative stress through modulation of in vivo antioxidant status. The determined anthocyanin content of the dye is 121.5 mg Cyanidin-3-rutinoside equivalent/100 g, thus, the observed nephroprotective effect of H. sabdariffa dye could be attributed to its anthocyanin content. PMID:24711761
Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.
García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro
2016-03-15
This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mishra, Sunil K; Tiwari, Shashi; Shrivastava, Atul; Srivastava, Shishir; Boudh, Goutam K; Chourasia, Shivendra K; Chaturvedi, Upma; Mir, Snober S; Saxena, Anil K; Bhatia, Gitika; Lakshmi, Vijai
2014-04-01
The aim of the present study was to evaluate the antidyslipidemic effect of ethanolic extract of Rheum emodi rhizomes and its constituents in Triton-WR-1339 and high-fat diet (HFD)-induced dyslipidemic rats. In preliminary screening, the ethanolic extract showed significant activity in Triton-treated rats. Bioassay-guided fractionation of the ethanolic extract resulted in the identification of four anthraquinone derivatives, viz. chrysophanol, emodin, chrysophanol 8-O-β-D-glucopyranoside and emodin 8-O-β-D-glucopyranoside as active constituents. All these compounds significantly reduced plasma lipid levels. The most active compound emodin showed significant lipid-lowering activity in the HFD-fed model. In addition, these compounds showed significant antioxidant activity. The effect of emodin on enzymes modulating lipid metabolism confirms and supports the efficiency of emodin as a potent antidyslipidemic agent.
NASA Astrophysics Data System (ADS)
Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal
2015-01-01
The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.
Kade, I J; Balogun, B D; Rocha, J B T
2013-10-25
The antioxidant mechanism of ebselen in rats brain is largely linked with its glutathione peroxidase (GPx) rather than its peroxiredoxin mimicry ability. However, the precise molecular dynamics between the GPx-mimicry of ebselen and thiol utilization is yet to be fully clarified and thus still open. Herein, we investigated the influence of dithiothreitol (DTT) on the antioxidant action of ebselen against oxidant-induced cerebral lipid peroxidation and deoxyribose degradation. Furthermore, the critical inhibitory concentrations of ebselen on the activities of sulphydryl enzymes such as cerebral sodium pump, δ-aminolevulinic acid dehydratase (δ-ALAD) and lactate dehydrogenase (LDH) were also investigated. We observe that ebselen (at ≥42 μM) markedly inhibited lipid peroxidation in the presence and absence of DTT, whereas it inhibited deoxyribose degradation only in the presence of DTT. Furthermore, under in vitro conditions, ebselen inhibited the thiol containing enzymes; cerebral sodium pump (at ≥40 μM), δ-ALAD (≥10 μM) and LDH (≥1 μM) which were either prevented or reversed by DTT. However, the inhibition of the activities of these sulphydryl proteins in diabetic animals was prevented by ebselen. Summarily, it is apparent that the effective in vitro inhibitory doses of ebselen on the activity of the sulphydryl proteins are far less than its antioxidant doses. In addition, the presence of DTT is evidently a critical requirement for ebselen to effect its antioxidant action against deoxyribose degeradation and not lipid peroxidation. Consequently, we conclude that ebselen possibly utilizes available thiols on sulphydryl proteins to effect its GPx mimicry antioxidant action against lipid peroxidation in rat brain homogenate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zamora, Zullyt B.; Borrego, Aluet; López, Orlay Y.; Delgado, René; González, Ricardo; Menéndez, Silvia; Hernández, Frank; Schulz, Siegfried
2005-01-01
Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-prooxidant balance for preservation of cell redox state by the increase of antioxidant endogenous systems in both in vivo and in vitro experimental models. Our aim is to analyze the effect of ozone oxidative preconditioning on serum TNF-α levels and as a modulator of oxidative stress on hepatic tissue in endotoxic shock model (mice treated with lipopolysaccharide (LPS)). Ozone/oxygen gaseous mixture which was administered intraperitoneally (0.2, 0.4, and 1.2 mg/kg) once daily for five days before LPS (0.1 mg/kg, intraperitoneal). TNF-α was measured by cytotoxicity on L-929 cells. Biochemical parameters such as thiobarbituric acid reactive substances (TBARS), enzymatic activity of catalase, glutathione peroxidase, and glutathione-S transferase were measured in hepatic tissue. One hour after LPS injection there was a significant increase in TNF-α levels in mouse serum. Ozone/oxygen gaseous mixture reduced serum TNF-α levels in a dose-dependent manner. Statistically significant decreases in TNF-α levels after LPS injection were observed in mice pretreated with ozone intraperitoneal applications at 0.2 (78%), 0.4 (98%), and 1.2 (99%). Also a significant increase in TBARS content was observed in the hepatic tissue of LPS-treated mice, whereas enzymatic activity of glutathion-S transferase and glutathione peroxidase was decreased. However in ozone-treated animals a significant decrease in TBARS content was appreciated as well as an increase in the activity of antioxidant enzymes. These results indicate that ozone oxidative preconditioning exerts inhibitory effects on TNF-α production and on the other hand it exerts influence on the antioxidant-prooxidant balance for preservation of cell redox state by the increase of endogenous antioxidant systems. PMID:15770062
2014-01-01
Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms. PMID:25002023
Rašković, Aleksandar; Milanović, Isidora; Pavlović, Nebojša; Ćebović, Tatjana; Vukmirović, Saša; Mikov, Momir
2014-07-07
Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride-induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride-induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms.
Kim, Hyunjin; Pan, Jeong Hoon; Kim, Sung Hwan; Lee, Jin Hyup; Park, Jeen-Woo
2018-05-19
The key role of oxidative stress in alcoholic liver disease (ALD) has been established by the large body of evidence from previous studies. Excessive consumption of ethanol induces the production of a variety of reactive oxygen species (ROS) in the liver, such as superoxide, H 2 O 2 , and hydroxyl radical. These products activate oxidant-sensitive signaling cascades and modulators of apoptosis. Because ROS accumulation is closely related to ALD, a number of studies have investigated the benefits of antioxidants. Recent studies demonstrated that polyphenol chlorogenic acid (CGA) has antioxidant properties and health benefits, such as reduction of relative risk of cardiovascular diseases and hepatoprotective effects against acetaminophen toxicity. However, the protective effects of CGA against ALD have not been studied in detail. We hypothesize that CGA plays a role in preventing ALD through its antioxidant properties. In this study, we investigated the protective effects of CGA against liver injuries in vivo. Reduced alcohol-induced-steatosis, apoptotic cell death, and fibrosis due to reduced levels of oxidative stress were observed. These findings suggest that CGA treatment can be an effective approach to attenuate ALD through the suppression of oxidative stress. Copyright © 2018. Published by Elsevier B.V.
Tayari, Masoumeh; Moosavi-Nejad, Zahra; Moosavi Nejad, Fatemeh; Rezaei-Tavirani, Mostafa; Dehghan Shasaltaneh, Marzieh
2011-01-01
Haptoglobin (Hp) is a mammalian serum glycoprotein showing a genetic polymorphism with three types, 1-1, 2-2 and 1-2. Hp appears to conserve the recycling of heme-iron by forming an essentially irreversible but non-covalent complex with hemoglobin which is released into the plasma by erythrocyte lysis. As an important consequence, Haptoglobin-Hemoglobin complex (Hp-Hb) shows considerable antioxidant property. In this study, antioxidant activity of Hp (2-2)-Hb complex on hydrogen peroxide has been studied and analyzed in the absence and presence of two beta-lactam antibiotics in-vitro. For this purpose, non-Michaelis behavior of peroxidase activity of Hp (2-2)-Hb complex was analyzed using Eadie-Hofstee, Clearance and Hill plots, in the absence and presence of pharmaceutical dose of ampicillin and coamoxiclav. The results have shown that peroxidase activity of Hp (2-2)-Hb complex is modulated via homotropic effect of hydrogen peroxide as an allostric substrate. On the other hand antioxidant property of Hp (2-2)-Hb complex increased via heterotropic effect of both antibiotics on the peroxidase activity of the complex. Both drugs also have mild effect on quality of homotropic property of the peroxidase activity of Hp (2-2)-Hb complex. Therefore, it can be concluded from our study that both beta-lactam antibiotics can increase peroxidase activity of Hp (2-2)-Hb complex via heterotropic effect. Thus, the two antibiotics (especially ampicillin) may help those individuals with Hp (2-2) phenotype to improve the Hp-Hb complex efficiency of removing hydrogen peroxide from serum under oxidative stress. This can be important in the individuals with phenotype Hp 2-2 who have less antioxidant activity relative to other phenotypes and are susceptible to cardiovascular disorders, as has been reported by other researchers.
Law, Yat-Yin; Chiu, Hui-Fang; Lee, Hui-Hsin; Shen, You-Cheng; Venkatakrishnan, Kamesh; Wang, Chin-Kun
2016-02-01
Osteoporosis is a chronic inflammatory condition that is characterized by the loss of bone mineral density (BMD). The current study was undertaken to evaluate the impact of onion juice intake on the bone mineral density (BMD) and bone loss in corroboration with antioxidant effects in human (in vivo) as well as inhibitory effects on the differentiation of osteoclasts in the cell line (in vitro). For in vitro studies, the RAW 264.7 (osteoclast progenitor) cells were used to examine the anti-osteoclastogenic effect of onion. In the case of in vivo studies, twenty-four subjects were divided into two groups and advised to intake 100 mL of onion juice or placebo for 8 weeks. Anthropometric measurements and blood samples were collected at the initial, 2(nd), 6(th), 8(th) and 10(th) week. The result of in vitro studies indicated that onion extract would effectively inhibit the osteoclastogenesis and its differentiation. Significant changes in the levels of alkaline phosphatase (ALP), free radicals, total antioxidant capacity (TEAC) and various antioxidants were observed in onion administered subjects. The BMD of three postmenopausal women was also found to be mildly improved on supplementation with onion juice. Onion juice consumption showed a positive modulatory effect on the bone loss and BMD by improving antioxidant activities and thus can be recommended for treating various bone-related disorders, especially osteoporosis.
Gomez-Cabrera, Mari Carmen; Salvador-Pascual, Andrea; Cabo, Helena; Ferrando, Beatriz; Viña, Jose
2015-09-01
Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise. Copyright © 2015 Elsevier Inc. All rights reserved.
Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties.
Inoue, Teruo; Komoda, Hiroshi; Uchida, Toshihiko; Node, Koichi
2008-10-01
Oxidative stress as well as inflammation plays a pivotal role in the pathogenesis of atherosclerosis. Although, various anti-oxidative dietary supplements have been evaluated for their ability to prevent atherosclerosis, no effective ones have been determined at present. "Camu-camu" (Myrciaria dubia) is an Amazonian fruit that offers high vitamin C content. However, its anti-oxidative property has not been evaluated in vivo in humans. To assess the anti-oxidative and anti-inflammatory properties of camu-camu in humans, 20 male smoking volunteers, considered to have an accelerated oxidative stress state, were recruited and randomly assigned to take daily 70 ml of 100% camu-camu juice, corresponding to 1050 mg of vitamin C (camu-camu group; n=10) or 1050 mg of vitamin C tablets (vitamin C group; n=10) for 7 days. After 7 days, oxidative stress markers such as the levels of urinary 8-hydroxy-deoxyguanosine (P<0.05) and total reactive oxygen species (P<0.01) and inflammatory markers such as serum levels of high sensitivity C reactive protein (P<0.05), interleukin (IL)-6 (P<0.05), and IL-8 (P<0.01) decreased significantly in the camu-camu group, while there was no change in the vitamin C group. Our results suggest that camu-camu juice may have powerful anti-oxidative and anti-inflammatory properties, compared to vitamin C tablets containing equivalent vitamin C content. These effects may be due to the existence of unknown anti-oxidant substances besides vitamin C or unknown substances modulating in vivo vitamin C kinetics in camu-camu.
Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings
NASA Astrophysics Data System (ADS)
Genişel, Mucip; Erdal, Serkan
2016-04-01
The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.
Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan
2015-01-01
Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101
USDA-ARS?s Scientific Manuscript database
Vitamin E, a major natural antioxidant, has been previously shown to attenuate pro-inflammatory response to immune challenge in cattle. Our objective was to evaluate the effect of short-term treatment with alpha-tocopherol in newborn calves on selected elements of the pro-inflamatory response to LPS...
Rodríguez, Marianela; Taleisnik, Edith; Lenardon, Sergio; Lascano, Ramiro
2010-09-15
Symptom development in a susceptible sunflower line inoculated with Sunflower chlorotic mottle virus (SuCMoV) was followed in the second pair of leaves at different post-inoculation times: before symptom expression (BS), at early (ES) and late (LS) symptom expression. Sugar and starch increases and photoinhibition were observed as early effects BS, and were maintained or enhanced later on, however, chlorophyll loss was detected only at LS. Photoinhibition correlated with a drastic decrease in D1 protein level. The progress of infection was accompanied by decreasing levels of apoplastic reactive oxygen species (ROS). In infected leaves, higher antioxidant enzyme activities (superoxide dismutase, SOD; ascorbate peroxidase, APX; glutathione reductase, GR) were observed from BS. The purpose of this work was to evaluate whether the early increases in carbohydrate accumulation may participate in SuCMoV symptom expression. Similar effects on photoinhibition, apoplastic ROS generation and antioxidant activity were generated when healthy leaves were treated with sugars. These results suggest that photoinhibitory processes and lower apoplastic superoxide levels induced by SuCMoV infection may be modulated by sugar increases. Copyright 2010 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Marquardt, Drew; Williams, Justin; Kucerka, Norbert; Atkinson, Jeffrey; Katsaras, John; Wassall, Stephen; Harroun, Thad
2013-03-01
There are no proven health benefits to supplementing with Vitamin E, so why do we require it for healthy living? The whole notion that vitamin E is an in-vivo antioxidant is now being seriously questioned. Using neutron diffraction and supporting techniques, we have correlated vitamin E's location in model membranes with its antioxidant activity. experiments were conducted using phosphatidylcholine (PC) bilayers whose fatty acid chains varied in their degree of unsaturation. We observe vitamin E up-right in all lipids examined, with its overall height in the bilayer lipid dependant. Interestingly we observe vitamin E's hydroxyl in the headgroup region of the bilayer for both the fully saturated and poly unsaturated lipids. Vitamin E was most effective at intercepting water borne oxidants than radical initiated within the bilayer core. However for lipids where vitamin E resides slightly lower (glycerol backbone) we observe comparable antioxidant activity against both water borne and hydrocarbon borne oxidants. Thus showing lipid species can modulate the location of vitamin E's activity.
Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong
2017-09-01
Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.
Mangiferin Modulation of Metabolism and Metabolic Syndrome
Fomenko, Ekaterina Vladimirovna; Chi, Yuling
2016-01-01
The recent emergence of a worldwide epidemic of metabolic disorders, such as obesity and diabetes, demands effective strategy to develop nutraceuticals or pharmaceuticals to halt this trend. Natural products have long been and continue to be an attractive source of nutritional and pharmacological therapeutics. One such natural product is mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L. Reports on biological and pharmacological effects of MGF increased exponentially in recent years. MGF has documented antioxidant and anti-inflammatory effects. Recent studies indicate that it modulates multiple biological processes involved in metabolism of carbohydrates and lipids. MGF has been shown to improve metabolic abnormalities and disorders in animal models and humans. This review focuses on the recently reported biological and pharmacological effects of MGF on metabolism and metabolic disorders. PMID:27534809
Trifluoroacetylated tyrosine-rich D-tetrapeptides have potent antioxidant activity.
Sandomenico, Annamaria; Severino, Valeria; Apone, Fabio; De Lucia, Adriana; Caporale, Andrea; Doti, Nunzianna; Russo, Anna; Russo, Rosita; Rega, Camilla; Del Giacco, Tiziana; Falcigno, Lucia; Ruvo, Menotti; Chambery, Angela
2017-03-01
The term "oxidative stress" indicates a set of chemical reactions unleashed by a disparate number of events inducing DNA damage, lipid peroxidation, protein modification and other effects, which are responsible of altering the physiological status of cells or tissues. Excessive Reactive Oxygen Species (ROS) levels may accelerate ageing of tissues or induce damage of biomolecules thus promoting cell death or proliferation in dependence of cell status and of targeted molecules. In this context, new antioxidants preventing such effects may have a relevant role as modulators of cell homeostasis and as therapeutic agents. Following an approach of peptide libraries synthesis and screening by an ORAC FL assay, we have isolated potent anti-oxidant compounds with well-defined structures. Most effective peptides are N-terminally trifluoroacetylated (CF 3 ) and have the sequence tyr-tyr-his-pro or tyr-tyr-pro-his. Slight changes in the sequence or removal of the CF 3 group strongly reduced antioxidant ability, suggesting an active role of both the fluorine atoms and of peptide structure. We have determined the NMR solution structures of the active peptides and found a common structural motif that could underpin the radical scavenging activity. The peptides protect keratinocytes from exogenous oxidation, thereby from potential external damaging cues, suggesting their use as skin ageing protectant and as cell surviving agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Benchekroun, Mohamed; Romero, Alejandro; Egea, Javier; León, Rafael; Michalska, Patrycja; Buendía, Izaskun; Jimeno, María Luisa; Jun, Daniel; Janockova, Jana; Sepsova, Vendula; Soukup, Ondrej; Bautista-Aguilera, Oscar M; Refouvelet, Bernard; Ouari, Olivier; Marco-Contelles, José; Ismaili, Lhassane
2016-11-10
Novel multifunctional tacrines for Alzheimer's disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.
Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line.
Perna, Angelica; De Luca, Antonio; Adelfi, Laura; Pasquale, Tammaro; Varriale, Bruno; Esposito, Teresa
2018-02-15
The thyroid gland is one of the largest endocrine glands in the body. The vast majority of TCs (> 90%) originate from follicular cells and are defined as differentiated thyroid cancers (DTC) and the two histological subtypes are the papillary TC with its variants and the follicular TC. Curcumin possesses a wide variety of biological functions, and thanks to its properties, it has gained considerable attention due to its profound medicinal values (Prasad, Gupta, Tyagi, and Aggarwal, Biotechnol Adv 32:1053-1064, 2014). We have undertaken the present work in order to define the possible role of curcumin in modulating the genetic expression of cell markers and to understand the effectiveness of this nutraceutical in modulating the regression of cancer phenotype. As a template we used the TPC-1 cells treated with the different extracts of turmeric, and examined the levels of expression of different markers (proliferative, inflammatory, antioxidant, apoptotic). Treatment with the three different curcumin extracts displays anti-inflammatory, antioxidant properties and it is able to influence cell cycle with slightly different effects upon the extracts. Furthermore curcumin is able to influence cell metabolic activity vitality. In conclusion curcumin has the potential to be developed as a safe therapeutic but further studies are needed to verify its antitumor ability in vivo.
Melega, Simone; Canistro, Donatella; Pagnotta, Eleonora; Iori, Renato; Sapone, Andrea; Paolini, Moreno
2013-02-18
In recent years, health protection by natural products has received considerable attention, and a multitude of nutraceuticals have been characterized and their use promoted. Dietary consumption of Cruciferous vegetables, rich in glucosinolates (GLs), and their myrosinase-mediated hydrolysis products isothiocyanates (ITCs), were associated with reductions in cancer risk. In this study, the chemo-preventive potential of sprout extract of Tuscan black cabbage (Brassica oleracea L. var. acephala subvar. Laciniata L.) (TBCSE), through modulation of the xenobiotic-metabolizing apparatus and antioxidant defenses, was investigated in Sprague-Dawley rat liver. TBCSE was administered either orally or intraperitoneally, at a dose of 15mg/kg b.w., daily for twenty-one consecutive days, in the absence or presence of exogenous myrosinase, β-thioglucoside glucohydrolase (MYR), to distinguish the effects of intact GLs and ITCs, in the context of the extract. A complex, mild modulation pattern of P450-related monooxygenases was observed, mainly regarding CYP content (up to 36% loss), NADPH cytochrome (P450) c-reductase (up to 26% loss), CYP1A1 (up to 23% loss), but no evident distinctions among the effects of the extracts containing GLs or ITCs, were noted. In contrast, significant inductions of phase-II enzymes (up to 107% for UDP-glucuronosyl-transferase, and up to 36% for glutathione S-transferase) were recorded only where the GLs to ITCs conversion had occurred. A boosting effect on catalase (up to 38%), NAD(P)H:quinone reductase (up to 70%), glutathione reductase and glutathione peroxidase (up to 10%) was also recorded, suggesting an indirect antioxidant capacity of the extracts. Overall, the general phase-I inhibition, together with the up-regulation of detoxifying phase-II and antioxidant enzymes, exerted by the TBCSE supplementation, seem to be in line with the classical chemopreventive theory, but whether the addition of exogenous MYR is relevant, still remains to be clarified. These results are in support of the potential health-promoting application of TBCSE, as a nutraceutical. Copyright © 2012 Elsevier B.V. All rights reserved.
DNA repair phenotype and dietary antioxidant supplementation.
Guarnieri, Serena; Loft, Steffen; Riso, Patrizia; Porrini, Marisa; Risom, Lotte; Poulsen, Henrik E; Dragsted, Lars O; Møller, Peter
2008-05-01
Phytochemicals may protect cellular DNA by direct antioxidant effect or modulation of the DNA repair activity. We investigated the repair activity towards oxidised DNA in human mononuclear blood cells (MNBC) in two placebo-controlled antioxidant intervention studies as follows: (1) well-nourished subjects who ingested 600 g fruits and vegetables, or tablets containing the equivalent amount of vitamins and minerals, for 24 d; (2) poorly nourished male smokers who ingested 500 mg vitamin C/d as slow- or plain-release formulations together with 182 mg vitamin E/d for 4 weeks. The mean baseline levels of DNA repair incisions were 65.2 (95 % CI 60.4, 70.0) and 86.1 (95 % CI 76.2, 99.9) among the male smokers and well-nourished subjects, respectively. The male smokers also had high baseline levels of oxidised guanines in MNBC. After supplementation, only the male smokers supplemented with slow-release vitamin C tablets had increased DNA repair activity (27 (95 % CI 12, 41) % higher incision activity). These subjects also benefited from the supplementation by reduced levels of oxidised guanines in MNBC. In conclusion, nutritional status, DNA repair activity and DNA damage are linked, and beneficial effects of antioxidants might only be observed among poorly nourished subjects with high levels of oxidised DNA damage and low repair activity.
Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Leicht, Anthony S
2018-05-16
The aims of the current study were to investigate the oxidant and antioxidant status of liver tissue challenged by doxorubicin and to examine the possible protective effects of aerobic exercise on doxorubicin-induced oxidative stress. Seventy-two rats were divided into three age groups (Young, Adult, and Elderly) with three treatment subgroups consisting of eight rats per age group: doxorubicin, aerobic exercise + doxorubicin, and aerobic exercise + saline. The experimental groups performed regular treadmill running for 3 weeks. Doxorubicin was administered by i.p. injection at a dosage of 20 mg kg -1 while the aerobic exercise + saline group received saline of a comparable volume. Heat shock protein 70, malondialdehyde, glutathione peroxidase, and protein carbonyl were determined from the liver homogenates following the intervention period. Treatment with doxorubicin induced hepatotoxicity in all groups with lower values of oxidative stress in young compared with the older groups. The inclusion of aerobic exercise training significantly increased heat shock protein 70 and antioxidant enzyme levels (glutathione peroxidase) whereas it decreased oxidative stress biomarkers (malondialdehyde and protein carbonyl) for all age groups. These results suggest that aerobic exercise training may be a potential, non-drug strategy to modulate doxorubicin-induced hepatotoxicity through its positive impact on antioxidant levels and oxidative stress biomarkers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasperczyk, Aleksandra; Dobrakowski, Michał; Czuba, Zenon P.
We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher inmore » the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.« less
Aydın, Birsen
2017-03-01
Argan oil (AO) is rich in minor compounds such as polyphenols and tocopherols which are powerful antioxidants. Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Mitochondrial oxidative stress and dysfunction is one of the most probable molecular mechanisms of neurodegenerative diseases. Female Sprague Dawley rats were exposed to ACR (50mg/kg i.p. three times a week), AO (6ml/kg,o.p, per day) or together for 30days. The activities of cytosolic enzymes such as xanthine oxidase (XO), glucose 6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), mitochondrial oxidative stress, oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, mitochondrial metabolic function, adenosine triphosphate (ATP) level and acetylcholinesterase (AChE) activity were assessed in rat brain. Cytosolic and mitochondrial antioxidant enzymes were significantly diminished in the brains of rats treated with ACR compared to those in control. Besides, ACR treatment resulted in a significant reduction in brain ATP level, mitochondrial metabolic function, OXPHOS and TCA enzymes. Administration of AO restored both the cytosolic and mitochondrial oxidative stress by normalizing nicotinamide adenine dinucleotide phosphate (NADPH) generating enzymes. In addition, improved mitochondrial function primarily enhancing nicotinamide adenine dinucleotide (NADH) generated enzymes activities and ATP level in the mitochondria. The reason for AO's obvious beneficial effects in this study may be due to synergistic effects of its different bioactive compounds which is especially effective on mitochondria. Modulation of the brain mitochondrial functions and antioxidant systems by AO may lead to the development of new mitochondria-targeted antioxidants in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
da Silveira Vasconcelos, Mirele; Gomes-Rochette, Neuza F; de Oliveira, Maria Liduína M; Nunes-Pinheiro, Diana Célia S; Tomé, Adriana R; Maia de Sousa, Francisco Yuri; Pinheiro, Francisco Geraldo M; Moura, Carlos Farley H; Miranda, Maria Raquel A; Mota, Erika Freitas
2015-01-01
Cashew apple is a tropical pseudofruit consumed as juice due to its excellent nutritional and sensory properties. In spite of being well known for its important antioxidant properties, the cashew apple has not been thoroughly investigated for its therapeutic potential. Thereby, this study evaluated the antioxidant capacity, anti-inflammatory, and wound-healing activities of cashew apple juice. Juices from ripe and immature cashew apples were analyzed for antioxidant, anti-inflammatory, and wound-healing properties. Those were evaluated in murine models of xylene-induced ear edema and wound excision. Swiss mice were treated with cashew juice by gavage. Edema thickness was measured and skin lesions were analyzed by planimetry and histology. Both antioxidant content and total antioxidant activity were higher in ripe cashew apple juice (RCAJ) than in unripe cashew apple juice (UNCAJ). The UNCAJ presented the main anti-inflammatory activity by a significant inhibition of ear edema (66.5%) when compared to RCAJ (10%). Moreover, UNCAJ also showed the best result for wound contraction (86.31%) compared to RCAJ (67.54%). Despite of higher antioxidant capacity, RCAJ did not promote better anti-inflammatory, and healing responses, which may be explained by the fact that treatment increased antioxidants level leading to a redox “imbalance” turning down the inflammatory response modulation exerted by reactive oxygen species (ROS). The results suggest that UNCAJ presents a greater therapeutic activity due to a synergistic effect of its phytochemical components, which improve the immunological mechanisms as well as an optimal balance between ROS and antioxidants leading to a better wound healing process. PMID:25819683
Pallotta, Valeria; Gevi, Federica; D'alessandro, Angelo; Zolla, Lello
2014-07-01
Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP.
Brai, Bartholomew I C; Adisa, Rahmat A; Odetola, Adebimpe A
2014-01-01
Natural products from plants have received considerable attention in recent years due to their diverse pharmacological properties, including antioxidants and hepatoprotective activities. The protective effects of aqueous extract of Persea americana (AEPA) against carbon tetrachloride (CCl4)-induced hepatotoxicity in male albino rats was investigated. Liver damage was induced in rats by administering a 1:1 (v/v) mixture of CCl4 and olive oil [3 ml/kg, subcutaneously (sc)] after pre-treatment for 7 days with AEPA. Hepatoprotective effects of AEPA was evaluated by estimating the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and levels of total bilirubin (TBL). The effects of AEPA on biomarkers of oxidative damage (lipid peroxidation) and antioxidant enzymes namely, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were measured in liver post mitochondrial fraction. AEPA and Reducdyn® showed significant (p<0.05) hepatoprotective activity by decreasing the activities of ALT, AST, ALP and reducing the levels of TBL. The activities of antioxidant enzymes, levels of malondialdehyde and protein carbonyls were also decreased dose-dependently in the AEPA-treated rats. Pre-treatment with AEPA also decreased the serum levels of glutathione significantly. These data revealed that AEPA possesses significant hepatoprotective effects against CCl4-induced toxicity attributable to its constituent phytochemicals. The mechanism of hepatoprotection seems to be through modulation of antioxidant enzyme system.
García-Villalba, R; Larrosa, M; Possemiers, S; Tomás-Barberán, F A; Espín, J C
2014-06-01
Preclinical studies suggest a potential protective effect of oleuropein in osteoporosis, and one of the proposed mechanisms is the modulation of the oxidative stress. Oleuropein bioavailability and its effect on antioxidant status in pre- and postmenopausal women are unknown. The aim of the present study was to investigate the oral bioavailability of an olive leaf extract rich in oleuropein (40 %) and its effect on antioxidant status in postmenopausal women compared to premenopausal women. Premenopausal (n = 8) and postmenopausal women (n = 8) received 250 mg of olive leaf extract, blood samples (t = 0, 1, 2, 3, 4, 6, 8, 12, 16 and 24 h) were taken, and 24-h urine divided into five fractions was collected. Olive-leaf-extract-derived metabolites were analyzed in plasma and urine by HPLC-ESI-QTOF and UPLC-ESI-QqQ, and pharmacokinetics parameters were determined. Ferric reducing antioxidant ability and malondialdehyde levels were measured in plasma. Plasma levels of hydroxytyrosol glucuronide, hydroxytyrosol sulfate, oleuropein aglycon glucuronide and oleuropein aglycon derivative 1 were higher in postmenopausal women. MDA levels were significantly decreased (32%) in postmenopausal women and inversely correlated with hydroxytyrosol sulfate levels. Postmenopausal women excreted less sulfated metabolites in urine than premenopausal women. Our results suggest that postmenopausal women could be a target population for the intake of olive phenolics in order to prevent age-related and oxidative stress-related processes such as osteoporosis.
In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents.
Sudati, Jéssie Haigert; Fachinetto, Roselei; Pereira, Romaiana Picada; Boligon, Aline Augusti; Athayde, Margareth Linde; Soares, Felix Antunes; de Vargas Barbosa, Nilda Berenice; Rocha, João Batista Teixeira
2009-08-01
Valeriana officinalis L. (Valerian) is widely used as a traditional medicine to improve the quality of sleep. Although V. officinalis have been well documented as promising pharmacological agent; the exact mechanisms by which this plant act is still unknown. Limited literature data have indicated that V. officinalis extracts can exhibit antioxidant properties against iron in hippocampal neurons in vitro. However, there is no data available about the possible antioxidant effect of V. officinalis against other pro-oxidants in brain. In the present study, the protective effect of V. officinalis on lipid peroxidation (LPO) induced by different pro-oxidant agents with neuropathological importance was examined. Ethanolic extract of valerian (0-60 microg/ml) was tested against quinolinic acid (QA); 3-nitropropionic acid; sodium nitroprusside; iron sulfate (FeSO4) and Fe2+/EDTA induced LPO in rat brain homogenates. The effect of V. officinalis in deoxyribose degradation and reactive oxygen species (ROS) production was also investigated. In brain homogenates, V. officinalis inhibited thiobarbituric acid reactive substances induced by all pro-oxidants tested in a concentration dependent manner. Similarly, V. officinalis caused a significant decrease on the LPO in cerebral cortex and in deoxyribose degradation. QA-induced ROS production in cortical slices was also significantly reduced by V. officinalis. Our results suggest that V. officinalis extract was effective in modulating LPO induced by different pro-oxidant agents. These data may imply that V. officinalis extract, functioning as antioxidant agent, can be beneficial for reducing insomnia complications linked to oxidative stress.
Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats.
Caravan, Ionut; Sevastre Berghian, Alexandra; Moldovan, Remus; Decea, Nicoleta; Orasan, Remus; Filip, Gabriela Adriana
2016-09-01
Menopause is accompanied by enhanced oxidative stress and behavioral changes, effects attenuated by antioxidants. The aim of this study was to evaluate the effects of caffeine on behavior and oxidative stress in an experimental model of menopause. Female rats were divided into the following groups: sham-operated (CON), sham-operated and caffeine-treated (CAF), ovariectomized (OVX), ovariectomized and caffeine-treated (OVX+CAF). Caffeine (6 mg/kg) and vehicle were administered for 21 days (subchronic) and 42 days (chronic), using 2 experimental subsets. Behavioral tests and oxidative stress parameters in the blood, whole brain, and hippocampus were assessed. The subchronic administration of caffeine decreased the lipid peroxidation and improved the antioxidant defense in the blood and brain. The GSH/GGSG ratio in the brain was improved by chronic administration, with reduced activities of antioxidant enzymes and enhanced nitric oxide and malondialdehyde levels. In particular, the lipid peroxidation in the hippocampus decreased in both experiments. The rats became hyperactive after 21 days of treatment, but no effect was observed after chronic administration. In both experimental subsets, caffeine had anxiolytic effects as tested in elevated plus maze. The administration of low doses of caffeine, for a short period of time, may be a new therapeutic approach to modulating the oxidative stress and anxiety in menopause.
Nestling rearing is antioxidant demanding in female barn swallows ( Hirundo rustica)
NASA Astrophysics Data System (ADS)
Costantini, David; Bonisoli-Alquati, Andrea; Rubolini, Diego; Caprioli, Manuela; Ambrosini, Roberto; Romano, Maria; Saino, Nicola
2014-07-01
Reproduction is a demanding activity, since organisms must produce and, in some cases, protect and provision their progeny. Hence, a central tenet of life-history theory predicts that parents have to trade parental care against body maintenance. One physiological cost thought to be particularly important as a modulator of such trade-offs is oxidative stress. However, evidence in favour of the hypothesis of an oxidative cost of reproduction is contradictory. In this study, we manipulated the brood size of wild barn swallows Hirundo rustica soon after hatching of their nestlings to test whether an increase in nestling rearing effort translates into an increased oxidative damage and a decreased antioxidant protection at the end of the nestling rearing period. We found that, while plasma oxidative damage was unaffected by brood size enlargement, females rearing enlarged broods showed a decrease in plasma non-enzymatic antioxidants during the nestling rearing period. This was not the case among females rearing reduced broods and among males assigned to either treatment. Moreover, individuals with higher plasma oxidative damage soon after the brood size manipulation had lower plasma non-enzymatic antioxidants at the end of the nestling rearing period, suggesting that non-enzymatic antioxidants were depleted to buffer the negative effects of high oxidative damage. Our findings point to antioxidant depletion as a potential mechanism mediating the cost of reproduction among female birds.
Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes.
La Marca, Margherita; Beffy, Pascale; Pugliese, Annalisa; Longo, Vincenzo
2013-01-01
Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.
Iglesias, Jacobo; Pazos, Manuel; Lois, Salomé; Medina, Isabel
2010-06-23
Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.
Cichoń, Natalia; Bijak, Michał; Miller, Elżbieta; Saluk, Joanna
2017-07-01
As a result of ischaemia/reperfusion, massive generation of reactive oxygen species occurs, followed by decreased activity of antioxidant enzymes. Extremely low frequency electromagnetic fields (ELF-EMF) can modulate oxidative stress, but there are no clinical antioxidant studies in brain stroke patients. The aim of our study was to investigate the effect of ELF-EMF on clinical and antioxidant status in post-stroke patients. Fifty-seven patients were divided into two groups: ELF-EMF and non-ELF-EMF. Both groups underwent the same 4-week rehabilitation program. Additionally, the ELF-EMF group was exposed to an ELF-EMF field of 40 Hz, 7 mT for 15 min/day for 4 weeks (5 days a week). The activity of catalase and superoxide dismutase was measured in hemolysates, and total antioxidant status (TAS) determined in plasma. Functional status was assessed before and after the series of treatments using Activities of Daily Living (ADL), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Applied ELF-EMF significantly increased enzymatic antioxidant activity; however, TAS levels did not change in either group. Results show that ELF-EMF induced a significant improvement in functional (ADL) and mental (MMSE, GDS) status. Clinical parameters had positive correlation with the level of enzymatic antioxidant protection. Bioelectromagnetics. 38:386-396, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Aloe vera: Potential candidate in health management via modulation of biological activities
Rahmani, Arshad H.; Aldebasi, Yousef H.; Srikar, Sauda; Khan, Amjad A.; Aly, Salah M.
2015-01-01
Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities. PMID:26392709
Antibacterial, anti-inflammatory, and antioxidant effects of Yinzhihuang injection.
Liu, Juan; Qiu, Hong; Zhu, Zhaorong; Zou, Tangbin
2015-01-01
The Yinzhihuang injection, a traditional Chinese medicine, has been the recent target of increasing interest due to its anti-inflammatory properties. The molecular basis by which Yinzhihuang injection could cure Riemerella anatipestifer (RA) serositis in ducks is unclear. This study evaluated the antibacterial, anti-inflammatory and antioxidant effects of Yinzhihuang injection, using disease models of RA-induced infectious serositis in ducks and heptane-induced inflammation in mice and rats. The duck mortality rate was reduced from 60% to 20% and both the inflammatory response and histological damage were ameliorated by treatment with Yinzhihuang injection (0.02 g/kg). Further studies indicated that superoxide dismutase (SOD), nitric oxide synthase (NOS), and inducible nitric oxide synthase (iNOS) were elevated while malondialdehyde (MDA), nitric oxide (NO) and RA growth were inhibited when the ducks were treated by Yinzhihuang injection. In addition, Yinzhihuang injection (0.04 g/ml) effectively inhibited xylene-induced auricle swelling in mice, (demonstrating an inhibition rate of 35.21%), egg albumen-induced paw metatarsus swelling in rats, (demonstrating an inhibition rate of 22.30%), and agar-induced formation of granulation tissue. These results suggest that Yinzhihuang injection ameliorates RA-induced infectious serositis in ducks by modulation of inflammatory mediators and antioxidation.
Yang, Lin; Chen, Jia-Hou; Xu, Tong; Zhou, Ai-Shen; Yang, Hong-Kun
2012-10-05
To evaluate the effects of rice protein (RP) on glutathione metabolism and oxidative damage. Seven-week-old male Wistar rats were fed diets containing casein and RP without cholesterol for 3weeks. Plasma and liver lipid levels, hepatic accumulation of total glutathione (T-GSH), oxidized glutathione (GSSG), reduced glutathione (GSH), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In the liver, the total antioxidative capacity (T-AOC), mRNA levels of glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modulatory subunit (GCLM), and the activities of hepatic catalase (CAT), total superoxide dismutase (T-SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSHPx) were also measured. T-AOC, GCLC and GCLM mRNA levels, antioxidative enzyme activities (T-SOD and CAT) and glutathione metabolism related enzyme activities (γ-GCS, GST, GR and GSHPx) were effectively stimulated by RP feeding compared to casein, and RP significantly reduced the hepatic accumulation of MDA and PCO in rats. These results indicate that lipid-lowering activity was induced by RP feeding. The present study demonstrates that RP improves oxidative stress primarily through enzymatic and non-enzymatic antioxidative defense mechanisms, reflected by enhancing the antioxidative status and attenuating the oxidative damage to lipids and proteins. These results suggest that RP can prevent hyperlipidemia in part through modifying glutathione metabolism, and sulfur amino acids may be the main modulator of this antioxidative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.
Rodríguez-Bies, Elizabeth; Navas, Plácido; López-Lluch, Guillermo
2015-01-01
Aging affects many biochemical, cellular, and physiological processes in the organisms. Accumulation of damage based on oxidized macromolecules is found in many age-associated diseases. Coenzyme Q (Q) is one of the main molecules involved in metabolic and antioxidant activities in cells. Q-dependent antioxidant activities are importantly involved on the protection of cell membranes against oxidation. Many studies indicate that Q decay in most of the organs during aging. In our study, no changes in Q levels were found in old animals in comparison with young animals. On the other hand, the interventions, caloric restriction based on every-other-day feeding procedure, and physical exercise were able to increase Q levels in muscle, but only in old and not in young animals. Probably, this effect prevented the increase in lipid peroxidation found in aged animals and also protein carbonylation. Further, Q-dependent antioxidant activities such as NADH-cytochrome b5 reductase and NAD(P)H-quinone oxidoreductase 1 are also modulated by both exercise and every other day feeding. Taken together, we demonstrate that exercise and dietary restriction as every-other-day procedure can regulate endogenous synthesized Q levels and Q-dependent antioxidant activities in muscle, preventing oxidative damage in aged muscle. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fish Peroxiredoxins and Their Role in Immunity
Valero, Yulema; Martínez-Morcillo, Francisco J.; Esteban, M. Ángeles; Chaves-Pozo, Elena; Cuesta, Alberto
2015-01-01
Peroxiredoxins (Prxs) are a family of antioxidant enzymes that protect cells from oxidative damage. In addition, Prxs may act as modulators of inflammation, protect against cell death and tumour progression, and facilitate tissue repair after damage. The most studied roles of Prx1 and Prx2 are immunological. Here we present a review on the effects of some immunostimulant treatments and bacterial, viral, or parasitic infections on the expression of fish Prxs at the gene and/or protein level, and point to their important role in immunity. The Prxs show antioxidant activity as well as a protective effect against infection. Some preliminary data are presented about the role of fish Prx1 and Prx2 in virus resistance although further studies are needed before the role of fish Prx in immunity can be definitively defined. PMID:26633533
Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses
Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui
2016-01-01
Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 ∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971
El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A
2010-01-01
The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These findings are discussed in the light of the potential of A. vera plant extracts for developing efficient, specific and non-toxic anticancer drugs that are affordable for developing countries.
Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.
Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B
2017-08-01
Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration
2004-01-01
Hong, Dextromethorphan modulates the AP-1 DNA bind- Med. 14 (1993) 633-642. ing activity induced by kainic acid, Brain Res. 824 (1999) 125-132. [71 S.C...Hong, The effect of dextromethorphan on kainic acid-induced after kainic acid-induced seizures, Free Radical Biol. Med. 18 seizures in the rat...Bing, G., Bronstein, D., McMillian, M., Hong, J.-S. (1996) the effects of dextromethorphan on kainic acid-induced seizures in the rat. J. Neurotoxic
Nardi, Geisson Marcos; Farias Januario, Adriana Graziele; Freire, Cassio Geremia; Megiolaro, Fernanda; Schneider, Kétlin; Perazzoli, Marlene Raimunda Andreola; Do Nascimento, Scheley Raap; Gon, Ana Cristina; Mariano, Luísa Nathália Bolda; Wagner, Glauber; Niero, Rivaldo; Locatelli, Claudriana
2016-01-01
Background: Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. Objective: The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). Materials and Methods: Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. Results: High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. Conclusion: These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this study were the investigation and comparison of chemical composition, antioxidant activity “in vitro” and “in vivo” and anti inflammatory property of berry fruits bought dry form.In summary, two main findings can be addressed with this study: (1) Berry fruits presented antioxidant and anti inflammatory activities “in vitro” and “in vivo”; (2) the extracts of GOJI, CRAN, and BLUE modulate the inflammatory process by different mechanisms. PMID:27114691
The effects of cocoa on the immune system.
Pérez-Cano, Francisco J; Massot-Cladera, Malen; Franch, Angels; Castellote, Cristina; Castell, Margarida
2013-01-01
Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of T helper type 2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.
The effects of cocoa on the immune system
Pérez-Cano, Francisco J.; Massot-Cladera, Malen; Franch, Àngels; Castellote, Cristina; Castell, Margarida
2013-01-01
Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of T helper type 2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions. PMID:23759861
Morry, Jingga; Ngamcherdtrakul, Worapol; Gu, Shenda; Goodyear, Shaun M.; Castro, David J.; Reda, Moataz M.; Sangvanich, Thanapon; Yantasee, Wassana
2015-01-01
Fibrotic diseases such as scleroderma have been linked to increased oxidative stress and upregulation of pro-fibrotic genes. Recent work suggests a role of NADPH oxidase 4 (NOX4) and heat shock protein 47 (HSP47) in inducing excessive collagen synthesis, leading to fibrotic diseases. Herein, we elucidate the relationship between NOX4 and HSP47 in fibrogenesis and propose to modulate them altogether as a new strategy to treat fibrosis. We developed a nanoparticle platform consisting of polyethylenimine (PEI) and polyethylene glycol (PEG) coating on a 50-nm mesoporous silica nanoparticle (MSNP) core. The nanoparticles effectively delivered small interfering RNA (siRNA) targeting HSP47 (siHSP47) in an in vitro model of fibrosis based on TGF-β stimulated fibroblasts. The MSNP core also imparted an antioxidant property by scavenging reactive oxygen species (ROS) and subsequently reducing NOX4 levels in the in vitro fibrogenesis model. The nanoparticle was far superior to n-acetyl cysteine (NAC) at modulating pro-fibrotic markers. In vivo evaluation was performed in a bleomycin-induced scleroderma mouse model, which shares many similarities to human scleroderma disease. Intradermal administration of siHSP47-nanoparticles effectively reduced HSP47 protein expression in skin to normal level. In addition, the antioxidant MSNP also played a prominent role in reducing the pro-fibrotic markers, NOX4, alpha smooth muscle actin (α-SMA), and collagen type I (COL I), as well as skin thickness of the mice. PMID:26196532
Hibiscus sabdariffa L. - a phytochemical and pharmacological review.
Da-Costa-Rocha, Inês; Bonnlaender, Bernd; Sievers, Hartwig; Pischel, Ivo; Heinrich, Michael
2014-12-15
Hibiscus sabdariffa L. (Hs, roselle; Malvaceae) has been used traditionally as a food, in herbal drinks, in hot and cold beverages, as a flavouring agent in the food industry and as a herbal medicine. In vitro and in vivo studies as well as some clinical trials provide some evidence mostly for phytochemically poorly characterised Hs extracts. Extracts showed antibacterial, anti-oxidant, nephro- and hepato-protective, renal/diuretic effect, effects on lipid metabolism (anti-cholesterol), anti-diabetic and anti-hypertensive effects among others. This might be linked to strong antioxidant activities, inhibition of α-glucosidase and α-amylase, inhibition of angiotensin-converting enzymes (ACE), and direct vaso-relaxant effect or calcium channel modulation. Phenolic acids (esp. protocatechuic acid), organic acid (hydroxycitric acid and hibiscus acid) and anthocyanins (delphinidin-3-sambubioside and cyanidin-3-sambubioside) are likely to contribute to the reported effects. More well designed controlled clinical trials are needed which use phytochemically characterised preparations. Hs has an excellent safety and tolerability record. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers
Cojocneanu Petric, Roxana; Braicu, Cornelia; Raduly, Lajos; Zanoaga, Oana; Dragos, Nicolae; Monroig, Paloma; Dumitrascu, Dan; Berindan-Neagoe, Ioana
2015-01-01
Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy. PMID:26273208
Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications
2015-01-01
Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574
Citrus juice modulates bone strength in male senescent rat model of osteoporosis.
Deyhim, Farzad; Garica, Kristy; Lopez, Erica; Gonzalez, Julia; Ino, Sumiyo; Garcia, Michelle; Patil, Bhimanagouda S
2006-05-01
An experiment evaluated the effect of citrus juice on enhancing serum antioxidant status and on osteoporosis prevention in orchidectomized rats. Thirty-six 1-y-old male rats were randomized to two groups: a sham-control group (n = 9) and an orchidectomized group (n = 27). The orchidectomized group was divided into three groups of nine and assigned to one of the following treatments: orchidectomy, orchidectomy plus orange juice, and orchidectomy plus grapefruit juice. Sixty days after initiation of the study, all rats were killed, blood was collected, and serum was harvested for total antioxidant status and indices of bone formation and resorption. Femoral density and biomechanical properties were monitored. Orchidectomy decreased (P < 0.05) total antioxidant capacity, femoral density, and biomechanical properties and increased (P < 0.05) alkaline phosphatase, acid phosphatase, and urinary excretion of hydroxyproline compared with the sham-control group. In contrast to orchidectomy, orchidectomy plus orange juice and orchidectomy plus grapefruit juice reversed (P < 0.05) orchidectomy-induced antioxidant suppression, decreased (P < 0.05) alkaline phosphatase and acid phosphatase activities, moderately restored (P = 0.07) femoral density, increased (P < 0.05) femoral strength, significantly delayed time-induced femoral fracture, and decreased (P < 0.05) urinary excretion of hydroxyproline. The present study supports the supposition in that drinking citrus juice positively affects serum antioxidant status and bone strength.
Graziani, Manuela; Sarti, Paolo; Arese, Marzia; Magnifico, Maria Chiara; Badiani, Aldo; Saso, Luciano
2017-01-01
Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.
Ramel, A; Wagner, K; Elmadfa, I
2004-01-01
Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566
Dawidowicz, Andrzej L; Olszowy, Małgorzata
2014-01-01
This study discusses the similarities and differences between the antioxidant activities of some essential oils: thyme (Thymus vulgaris), basil (Ocimum basilicum), peppermint (Mentha piperita), clove (Caryophyllus aromaticus), summer savory (Satureja hortensis), sage (Salvia hispanica) and lemon (Citrus limon (L.) Burm.) and of their main components (thymol or estragole or menthol or eugenol or carvacrol or camphor or limonene) estimated by using 2,2'-Diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and β-carotene bleaching assays. The obtained data show that the antioxidant properties of essential oil do not always depend on the antioxidant activity of its main component, and that they can be modulated by their other components. The conclusions concerning the interaction of essential oil components depend on the type of method applied for assessing the antioxidant activity. When comparing the antioxidant properties of essential oils and their main components, the concepts of synergism, antagonism and additivity are very relevant.
Ying, Wu; Li, Zheng-Cai; Li-Qing, Yao; Mai, Li; Mei, Tang
2018-05-09
Schisandrin B (Sch B), one of Fructus Schisandrae's main effective components, protects neurons from oxidative stress in the central nervous system. Here we investigated the neuroprotective effect of Sch B in the acute oxidative stress damage and attempted to define the possible mechanisms. From the elevated plus maze (EPM) and open field test (OFT), we found that forcing swimming, an acute stressor, significantly induced anxiety-like behavior which was alleviated by Sch B (p.o.) treatment. In addition, the Sch B treatment suppressed toxicity, malondialdehyde (MDA) and reactive oxygen species (ROS), an important factor for neuron damage. The antioxidant molecules under the control of Nrf2 pathway, such as superoxide dismutase (SOD) and glutathione (GSH), were significantly increased by Sch B treatment. Moreover, a higher percentage of intact cells in the amygdala further verified the neuroprotective effect of Sch B in Nissl staining. Several proteins such as Nrf2 and its endogenous inhibitor Keap1, were abnormal expressed in force swimming mice but were significantly reversed by Sch B treatment. Herein, our results suggested that Sch B may be a potential therapeutic agent against anxiety disease that is associated with oxidative stress. The possible mechanism is attributed to its neuroprotection through enhancing antioxidant effect.
Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco
2016-10-01
Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boušová, Iva; Bártíková, Hana; Matoušková, Petra; Lněničková, Kateřina; Zappe, Lukáš; Valentová, Kateřina; Szotáková, Barbora; Martin, Jan; Skálová, Lenka
2015-10-01
Consumption of antioxidant-enriched diets is 1 method of addressing obesity, which is associated with chronic oxidative stress and changes in the activity/expression of various enzymes. In this study, we hypothesized that the modulation of antioxidant enzymes and redox status through a cranberry extract (CBE)-enriched diet would differ between obese and nonobese mice. The CBE used in this study was obtained from the American cranberry (Vaccinium macrocarpon, Ericaceae), a popular constituent of dietary supplements that is a particularly rich source of (poly)phenols and has strong antioxidant properties. The present study was designed to test and compare the in vivo effects of 28-day consumption of a CBE-enriched diet (2%) on the antioxidant status of nonobese mice and mice with monosodium glutamate-induced obesity. Plasma, erythrocytes, liver, and small intestine were studied concurrently to obtain more complex information. The specific activities, protein, and messenger RNA expression levels of antioxidant enzymes as well as the levels of malondialdehyde and thiol (SH) groups were analyzed. Cranberry extract treatment increased the SH group content in plasma and the glutathione S-transferase activity in the erythrocytes of the obese and nonobese mice. In addition, in the obese animals, the CBE treatment reduced the malondialdehyde content in erythrocytes and increased quinone oxidoreductase (liver) and catalase (erythrocytes and small intestine) activities. The elevation of hepatic quinone oxidoreductase activity was accompanied by an increase in the corresponding messenger RNA levels. The effects of CBE on the activity of antioxidant enzymes and redox status were more pronounced in the obese mice compared with the nonobese mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Manuka honey protects middle-aged rats from oxidative damage
Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo
2013-01-01
OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958
Manuka honey protects middle-aged rats from oxidative damage.
Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo
2013-11-01
This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.
Kulasekaran, Gopinath; Ganapasam, Sudhandiran
2015-11-01
Oxidative stress and mitochondrial dysfunction are implicated in neuronal apoptosis associated with Huntington's disease. Naringin is the flavanone present in grapefruit and related citrus species possess diverse pharmacological and therapeutic properties including antioxidant, anti-apoptotic, and neuroprotective properties. The aim of this study was to investigate the protective effect of naringin on 3-nitropropionic acid (3-NP)-induced neurotoxicity in pheochromocytoma cells (PC12) cells and to explore its mechanism of action. Naringin protects PC12 cells from 3-NP neurotoxicity, as evaluated the by cell viability assays. The lactate dehydrogenase release was decreased upon naringin treatment in 3-NP-induced PC12 cells. Naringin treatment enhances the antioxidant defense by increasing the activities of enzymatic antioxidants and the level of reduced glutathione. The increase in levels of reactive oxygen species and lipid peroxidation induced by 3-NP were significantly decreased by naringin. PC12 cells induced with 3-NP showed decrease in the mitochondrial membrane potential and mitochondrial respiratory complex enzymes, succinate dehydrogenase and cytochrome c oxidase activities, and it was significantly altered to near normal upon naringin treatment. Naringin reduced the 3-NP-induced apoptosis through the modulation in expressions of B-cell lymphoma 2 and Bcl-2-associated X protein. Further, naringin enhances the nuclear translocation of Nrf2 and induces the quinone oxidoreductase-1 and Heme oxygenase-1 expressions through the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. Taken together, the above findings suggest that naringin augments cellular antioxidant defense capacity and reduces the 3-NP-induced neurotoxicity in PC12 cells through the PI-3K/Akt-dependent Nrf2 activation in PC12 cells.
Modulating Oxidative Stress and Inflammation in Elders: The MOXIE Study
Ellis, Amy Cameron; Dudenbostel, Tanja; Locher, Julie L.; Crowe-White, Kristi
2016-01-01
Cardiovascular disease (CVD) is the leading cause of death among women in the United States. Endothelial dysfunction and arterial stiffness increase with advancing age and are early predictors of future CVD outcomes. We designed the Modulating Oxidative Stress and Inflammation in Elders (MOXIE) study to examine the effects of 100% watermelon juice as a “food-first” intervention to reduce CVD risk among African American (AA) and European American (EA) women aged 55–69 years. Vascular dysfunction is more pronounced in AA compared to EA women due in part to lower nitric oxide bioavailability caused by higher oxidative stress. However, bioactive compounds in watermelon may improve vascular function by increasing nitric oxide bioavailability and antioxidant capacity. This trial will use a randomized, placebo-controlled, crossover design to investigate the potential of 100% watermelon juice to positively impact various robust measures of vascular function as well as serum biomarkers of oxidative stress and antioxidant capacity. This nutrition intervention and its unique methodology to examine both clinical and mechanistic outcomes are described in this article. PMID:27897608
Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles
Schanen, Brian C.; Das, Soumen; Reilly, Christopher M.; Warren, William L.; Self, William T.; Seal, Sudipta; Drake, Donald R.
2013-01-01
Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies. PMID:23667525
Yu, Xiao; Yang, Mei; Dong, Jilin; Shen, Ruiling
2018-03-01
This study aimed to explore the dynamic changes in the antioxidant activities and phenolic acid profiles of oat and buckwheat vinegars during different production stages. The results showed that both oat and buckwheat vinegar products comparably attenuated D-galactose-induced oxidative damage in mice serum and liver, indicating no obvious dose dependence within the tested concentrations. However, oat vinegar product revealed more favorable in vitro antioxidant activities than those in buckwheat vinegar product as evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities. Moreover, the alcoholic fermentation, acetic acid fermentation and fumigating induced successive increase in DPPH radical scavenging abilities and phenolic acid contents of the fermentation substrates of oat and buckwheat vinegars. Importantly, the different fermentation processes of oat and buckwheat vinegars were accompanied by the dynamic migration and transformation of specific phenolic acids across bound, esterified and free fractions. Thus, the antioxidant activities of oat and buckwheat vinegars could be improved through targeted modulation of the generation of specific phenolic acid fractions during production processes. We had evaluated the in vitro and in vivo antioxidant activities and phenolic acid contents of oat and buckwheat vinegars, and further explored the dynamic changes of bound, esterified and free phenolic acid fractions during successive fermentation processes of oat and buckwheat vinegars. This study provided the theoretical guidance for obtaining minor grain vinegar with the optimal antioxidant activities through targeted modulation of fermentation processes. © 2018 Institute of Food Technologists®.
Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong
2017-03-01
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Serafini, Mauro; Peluso, Ilaria
2016-01-01
The health benefits of plant food-based diets could be related to both integrated antioxidant and antiinflammatory mechanisms exerted by a wide array of phytochemicals present in fruit, vegetables, herbs and spices. Therefore, there is mounting interest in identifying foods, food extracts and phytochemical formulations from plant sources which are able to efficiently modulate oxidative and inflammatory stress to prevent diet-related diseases. This paper reviews available evidence about the effect of supplementation with selected fruits, vegetables, herbs, spices and their extracts or galenic formulation on combined markers of redox and inflammatory status in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Khan, Gazala N; Merajver, Sofia D
2007-01-01
Although anti- angiogenesis strategies have generated much enthusiasm for therapeutic applications, it is still unknown whether they would be feasible for prevention. The possibility of interfering very early in tumor progression by modulating the cancer angiogenic switch is appealing. In this chapter, we review progress with in vitro and in vivo models that show that anti-angiogenic interventions may be amenable to long- term chemopreventive measures. In particular, some approaches that are nearly ready for major applications are anti-oxidant nutraceuticals and copper deficiency. We use these strategies as paradigms of how to make progress in this difficult but important area of translational research.
Antioxidative and anti-carcinogenic activities of tea polyphenols.
Yang, Chung S; Lambert, Joshua D; Sang, Shengmin
2009-01-01
Tea (Camellia sinensis, Theaceace), a popular beverage consumed world-wide, has been studied for its preventive effects against cancer as well as cardiovascular, neurodegenerative, and other diseases. Most of the proposed beneficial effects have been attributed to the polyphenolic compounds in tea, but the nature of these activities and the molecular mechanisms of their actions remain unclear. Tea polyphenols are known to be strong antioxidants. Prevention of oxidative stress, modulation of carcinogen metabolism, and prevention of DNA damage have been suggested as possible cancer preventive mechanisms for tea and tea polyphenols. In this chapter, we discuss these topics in the light of biotransformation and bioavailability of tea polyphenols. We also review the preventive effects of tea polyphenols in animal models of carcinogenesis and some of the possible post-initiation mechanisms of action. Finally, we discuss the effects of tea consumption on cancer risk in humans. It is our aim to raise some of the unanswered questions regarding cancer prevention by tea and to stimulate further research in this area.
Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Mazzoni, Luca; Capocasa, Franco; Sabbadini, Silvia; Alvarez-Suarez, Josè M; Afrin, Sadia; Rosati, Carlo; Pandolfini, Tiziana; Molesini, Barbara; Sánchez-Sevilla, José F; Amaya, Iraida; Mezzetti, Bruno; Battino, Maurizio
2018-01-24
Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.
NASA Astrophysics Data System (ADS)
Halasa, Salaheldin; Dickinson, Eva
2014-02-01
From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.
Piotrowska, H; Kujawska, M; Nowicki, M; Petzke, E; Ignatowicz, E; Krajka-Kuźniak, V; Zawierucha, P; Wierzchowski, M; Murias, M; Jodynis-Liebert, J
2017-02-01
The aim of the study was to examine whether antioxidant properties of 3,4,4',5-tetramethoxystilbene (DMU-212) contribute to its anticarcinogenic activity and whether DMU-212 affects the expression of apoptosis-related genes. Two-stage model of hepatocarcinogenesis was used; male Wistar rats were challenged with N-nitrosodiethylamine (NDEA), 200 mg/kg body weight (b.w.), intraperitoneal, then phenobarbital (PB) in drinking water (0.05%) was administered. Simultaneously, DMU-212 was given per os at a dose 20 or 50 mg/kg b.w. two times a week for 16 weeks. DMU-212 caused a moderate decrease in hepatic thiobarbituric acid reactive substances and protein carbonyls concentration elevated in rats treated with NDEA/PB. The activity of antioxidant enzymes examined reduced by NDEA/PB treatment was not restored in rats coadministered with DMU-212. Effects of DMU-212 on messenger RNA (mRNA) expression of antioxidant enzymes in rats challenged with NDEA/PB were diversified; no changes in their protein expression were noted in any of the groups. The expression of 17,000 genes was analyzed by Affymetrix® Rat Gene 1.1 ST Array; 15 apoptosis-related genes were selected and validated by RT-q PCR. The combined treatment with NDEA/PB and DMU-212 increased the mRNA level of some genes driving mitochondria-mediated apoptosis, whereas the mRNA expression of some anti-apoptotic genes triggering receptor-mediated apoptosis was reduced. The expression of genes encoding caspases-4, -8, -9, and -12 was also increased in rats treated with DMU-212. Although antioxidant effect of DMU-212 in rats challenged with NDEA/PB was moderate, its potential anticarcinogenic properties were demonstrated as evidenced by modulation of apoptosis-related genes.
Davison, Glen; Callister, Robin; Williamson, Gary; Cooper, Karen A; Gleeson, Michael
2012-02-01
Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.
Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel
2013-08-01
There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo.
Amigo-Benavent, Miryam; Clemente, Alfonso; Caira, Simonetta; Stiuso, Paola; Ferranti, Pasquale; del Castillo, M Dolores
2014-06-01
This research investigates how in vitro digestion contributes to the release of antioxidant peptides crypted in soybean β-conglycinin (7S) and its deglycosylated form (D7S). It also investigates the uptake of the bioactive peptides by human intestinal Caco-2 cells using a bicameral system, and their effect on the antioxidant cell defense. Phytochemomics is used as a tool for achieving this goal. The peptides are obtained by mimicking human physiological gastrointestinal digestion conditions. The antioxidant capacity of the peptides is tested by ABTS•(+) radical cation decolorization (2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)) and oxygen radical absorbance capacity assays. The antioxidant power of the peptides recovered from the basolateral chamber is also evaluated by an analysis of biomarkers of cellular oxidative stress such as cell proliferation, alkaline phosphatase, and secretion of nitric oxide, lipid peroxidation, superoxide dismutase and catalase. Peptides from D7S were more active than those of 7S in the modulation of the cell proliferation, oxidative status and differentiation of Caco-2 cells treated with H2 O2 . Differences in the bioactivity of the peptides of both proteins can be explained by analysis of the structural data obtained by mass spectrophotometry. Our findings support the bioavailability of antioxidant peptides of 7S. The antioxidant properties of 7S soy protein were influenced by events such as glycosylation, digestion, and absorption. Deglycosylation seems to be an innovative strategy for improving the properties of 7S. Deglycosylation might enhance 7S antioxidant power and reduce its immunoreactivity. The combined use of advanced analytical techniques and biochemical analyses (phytochemomics) has been a key part of this study. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli
2016-04-01
A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shadwell, Naomi; Villalobos, Fatima; Kern, Mark; Hong, Mee Young
2013-05-01
Dark chocolate contains high levels of antioxidants which are linked to a reduced risk of cardiovascular disease. Chocolate blooming occurs after exposure to high temperatures. Although bloomed chocolate is safe for human consumption, it is not known whether or not the biological function of bloomed chocolate is affected. We hypothesized that bloomed chocolate would reduce the antioxidant potential and lipid-lowering properties of chocolate through altered expression of related genes. Thirty Sprague-Dawley rats were divided into 3 groups and fed either the control (CON), regular dark chocolate (RDC), or bloomed dark chocolate (BDC) diet. After 3 weeks, serum lipid levels and antioxidant capacity were measured. Hepatic expression of key genes was determined by real time polymerase chain reaction (PCR). Sensory characteristics of bloomed versus regular chocolate were assessed in 28 semi-trained panelists. Rats fed RDC exhibited greater serum antioxidant capacities compared to the CON (P < .05). Antioxidant levels of BDC were not different from RDC or CON. Both RDC and BDC lowered TG compared to CON (P < .05). The rats fed RDC had higher high-density lipoprotein levels compared to the CON (P < .05). In rats given RDC, fatty acid synthase gene expression was down-regulated and low-density lipoprotein receptor transcription was up-regulated (P < .05). Sensory panelists preferred the appearance and surface smoothness of the regular chocolate compared to bloomed chocolate (P < .001). Although blooming blunted the robust antioxidant response produced by regular dark chocolate, these results suggest that bloomed dark chocolate yields similarly beneficial effects on most blood lipid parameters or biomarkers. However, regular dark chocolate may be more beneficial for the improvement of antioxidant status and modulation of gene expression involved in lipid metabolism and promoted greater sensory ratings. Copyright © 2013 Elsevier Inc. All rights reserved.
da Silveira Vasconcelos, Mirele; Gomes-Rochette, Neuza F; de Oliveira, Maria Liduína M; Nunes-Pinheiro, Diana Célia S; Tomé, Adriana R; Maia de Sousa, Francisco Yuri; Pinheiro, Francisco Geraldo M; Moura, Carlos Farley H; Miranda, Maria Raquel A; Mota, Erika Freitas; de Melo, Dirce Fernandes
2015-12-01
Cashew apple is a tropical pseudofruit consumed as juice due to its excellent nutritional and sensory properties. In spite of being well known for its important antioxidant properties, the cashew apple has not been thoroughly investigated for its therapeutic potential. Thereby, this study evaluated the antioxidant capacity, anti-inflammatory, and wound-healing activities of cashew apple juice. Juices from ripe and immature cashew apples were analyzed for antioxidant, anti-inflammatory, and wound-healing properties. Those were evaluated in murine models of xylene-induced ear edema and wound excision. Swiss mice were treated with cashew juice by gavage. Edema thickness was measured and skin lesions were analyzed by planimetry and histology. Both antioxidant content and total antioxidant activity were higher in ripe cashew apple juice (RCAJ) than in unripe cashew apple juice (UNCAJ). The UNCAJ presented the main anti-inflammatory activity by a significant inhibition of ear edema (66.5%) when compared to RCAJ (10%). Moreover, UNCAJ also showed the best result for wound contraction (86.31%) compared to RCAJ (67.54%). Despite of higher antioxidant capacity, RCAJ did not promote better anti-inflammatory, and healing responses, which may be explained by the fact that treatment increased antioxidants level leading to a redox "imbalance" turning down the inflammatory response modulation exerted by reactive oxygen species (ROS). The results suggest that UNCAJ presents a greater therapeutic activity due to a synergistic effect of its phytochemical components, which improve the immunological mechanisms as well as an optimal balance between ROS and antioxidants leading to a better wound healing process. © 2015 by the Society for Experimental Biology and Medicine.
Singh, Bimala; Kale, R K; Rao, A R
2004-04-01
Cashew nut shell oil has been reported to possess tumour promoting property. Therefore an attempt has been made to study the modulatory effect of cashew nut (Anlacardium occidentale) kernel oil on antioxidant potential in liver of Swiss albino mice and also to see whether it has tumour promoting ability like the shell oil. The animals were treated orally with two doses (50 and 100 microl/animal/day) of kernel oil of cashew nut for 10 days. The kernel oil was found to enhance the specific activities of SOD, catalase, GST, methylglyoxalase I and levels of GSH. These results suggested that cashew nut kernel oil had an ability to increase the antioxidant status of animals. The decreased level of lipid peroxidation supported this possibility. The tumour promoting property of the kernel oil was also examined and found that cashew nut kernel oil did not exhibit any solitary carcinogenic activity.
Rupasinghe, Sukitha Namal; Siriwardena, Ajith K
2017-04-01
Micronutrient antioxidant therapy did not relieve pain in a European randomized trial of patients with chronic pancreatitis without malnutrition. However, intervention was undertaken only for 6 months leaving unanswered the question of whether long-term antioxidant therapy may modulate chronic pancreatitis. The aim of this study is to assess the outcome of long-term use of micronutrient antioxidant therapy in patients with chronic pancreatitis. This is a single center clinical cohort report of patients with chronic pancreatitis prescribed micronutrient antioxidant therapy and followed for up to 10 years. Data were collected on demographic detail, clinic pain assessment, insulin requirements, interventions and outcome. A group of 30 patients with a diagnosis of chronic pancreatitis constitute the study population. Median age at time of diagnosis was 40 years (range 14-66); 19 (63%) were male and the median duration of symptoms was 2 years (range 0-18). Alcohol was the dominant cause in 22 (73%) patients and 16 (53%) patients were Cambridge stage 1. Twenty-four (80%) patients had pain at presentation. During antioxidant treatment of 4 years (range 1-10), pain decreased but the proportion with abdominal pain compared to those who were pain-free remained constant (P=0.16; two-way ANOVA with Bonferroni correction). There was a significant increase in requirement for insulin (P=0.028) with time together with use of both endoscopic and surgical interventions. This is the first study to report long-term disease-specific outcome in patients with chronic pancreatitis prescribed micronutrient antioxidant therapy. There appears to be no effect of intervention on outcome.
Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.
Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F
2015-01-01
The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries.
2012-01-01
Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise. PMID:23173926
Bansal, Yogita; Silakari, Om
2014-11-01
Polyfunctional compounds comprise a novel class of therapeutic agents for treatment of multifactorial diseases. The present study reports a series of benzimidazole-non-steroidal anti-inflammatory drugs (NSAIDs) conjugates (1-10) as novel polyfunctional compounds synthesized in the presence of orthophosphoric acid. The compounds were evaluated for anti-inflammatory (carageenan-induced paw edema model), immunomodulatory (direct haemagglutination test and carbon clearance index models), antioxidant (in vitro and in vivo) and for ulcerogenic effects. Each of the compound has retained the anti-inflammatory activity of the corresponding parent NSAID while exhibiting significantly reduced gastric ulcers. Additionally, the compounds are found to possess potent immunostimulatory and antioxidant activities. The compound 8 was maximally potent (antibody titre value 358.4 ± 140.21, carbon clearance index 0.053 ± 0.002 and antioxidant EC50 value 0.03 ± 0.006). These compounds, exhibiting such multiple pharmacological activities, can be taken as lead for the development of potent drugs for the treatment of chronic multifactorial diseases involving inflammation, immune system modulation and oxidative stress such as cancers. The Lipinski's parameters suggested the compounds to be bear drug like properties.
Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming
2016-11-02
Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.
de-Faria, Felipe Meira; Almeida, Ana Cristina Alves; Luiz-Ferreira, Anderson; Takayama, Christiane; Dunder, Ricardo José; da Silva, Marcelo Aparecido; Salvador, Marcos José; Abdelnur, Patrícia Verardi; Eberlin, Marcos Nogueira; Vilegas, Wagner; Toma, Walber; Souza-Brito, Alba Regina Monteiro
2012-01-01
Rhizophora mangle, the red mangrove, has long been known as a traditional medicine. Its bark has been used as astringent, antiseptic, hemostatic, with antifungic and antiulcerogenic properties. In this paper, we aimed to evaluate the antioxidant properties of a buthanolic fraction of the R. mangle bark extract (RM) against experimental gastric ulcer in rats. Unib-Wh rats received pretreatment of R. mangle after the induction of gastric injury with absolute ethanol and ischemia-reperfusion. Gastric tissues from both methods were prepared to the enzymatic assays, the levels of sulfhydril compounds (GSH), lipid peroxides (LPO), and the activities of glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and myeloperoxidase (MPO) were measured. The RM protected the gastric mucosa in both methods used, ethanol-induced gastric ulcer and ischemia-reperfusion, probably, by modulating the activities of the enzymes SOD, GPx, and GR and increasing or maintaining the levels of GSH; in adittion, LPO levels were reduced. The results suggest that the RM antioxidant activity leads to tissue protection; thus one of the antiulcer mechanisms present on the pharmacological effects of R. mangle is the antioxidant property. PMID:22654592
Ademiluyi, Adedayo O; Oboh, Ganiyu; Ogunsuyi, Opeyemi B; Akinyemi, Ayodele J
2012-10-01
This study sought to investigate the modulatory effects of dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on antioxidant status and renal damage induced by gentamycin in rats. Renal damage was induced in albino rats pretreated with dietary inclusion of ginger and turmeric (2% and 4%) by intraperitoneal (i.p.) administration of gentamycin (100 mg/kg body weight) for three days. Assays for renal damage biomarkers (plasma creatinine, plasma urea, blood urea nitrogen and plasma uric acid), malondialdehyde (MDA) content and reduced glutathione (GSH) content as well as renal antioxidant enzymes (catalase, glutathione-S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) were carried out. The study revealed significant (p < 0.05) increases in renal damage biomarkers following gentamycin administration with severe alteration in kidney antioxidant status. However, pretreatment with ginger and turmeric rhizome (2% and 4%) prior to gentamycin administration significantly (p < 0.05) protected the kidney and attenuated oxidative stress by modulating renal damage and antioxidant indices. This finding therefore suggests that dietary inclusion of ginger and turmeric rhizomes may protect against gentamycin-induced nephrotoxicity and oxidative stress.
Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila
2017-10-01
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
Ademiluyi, Adedayo O; Oboh, Ganiyu; Owoloye, Tosin R; Agbebi, Oluwaseun J
2013-06-01
To investigate the ameliorative effect of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity in rats. Adult male rats were randomly divided into four groups with six animals in each group. Groups 1 and 2 were fed basal diet while Groups 3 and 4 were fed diets containing 2% and 4% garlic respectively for 27 d prior to gentamycin administration. Hepatotoxicity was induced by the intraperitoneal administration of gentamycin (100 mg/kg body weight) for 3 d. The liver and plasma were studied for hepatotoxicity and antioxidant indices. Gentamycin induces hepatic damage as revealed by significant (P<0.05) elevation of liver damage marker enzymes (aspartate transaminase and alanine aminotransferase) and reduction in plasma albumin level. Gentamycin also caused a significant (P<0.05) alteration in plasma and liver enzymatic (catalase, glutathione and super oxygen dehydrogenises) and non-enzymatic (glutathione and vitamin C) antioxidant indices with concomitant increase in the malondialdehyde content; however, there was a significant (P<0.05) restoration of the antioxidant status coupled with significant (P<0.05) decrease in the tissues' malondialdehyde content, following consumption of diets containing garlic. These results suggest that dietary inclusion of garlic powder could protect against gentamycin-induced hepatotoxicity, improve antioxidant status and modulate oxidative stress; a function attributed to their phenolic constituents.
Ahmed, Nawal A; Radwan, Nasr M; Aboul Ezz, Heba S; Salama, Noha A
2017-01-01
Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm 2 , SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.
Effects of boric acid and 2-aminoethoxydiphenyl borate on necrotizing enterocolitis.
Yazıcı, Selçuk; Akşit, Hasan; Korkut, Oğuzhan; Sunay, Bahar; Çelik, Tanju
2014-01-01
The aim was to study the effects of boric acid (BA) and 2-aminoethoxydiphenyl borate (2-APB) on oxidative stress and inflammation in an experimental necrotizing enterocolitis (NEC) rat model. Experimental NEC was induced in 40 newborn Sprague-Dawley rats by asphyxia and hypothermia applied in 3 consecutive days. Rats were subdivided into 4 subgroups as NEC, NEC+BA, NEC+2-APB, and controls. BA and 2-APB were applied daily before the procedure. Serum total antioxidant status, superoxide dismutase (SOD), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and erythrocyte glutathione (GSH) levels were measured. Pathological changes for NEC in intestinal architecture were evaluated by a grading system. Pretreatment with BA and 2-APB resulted in a decrease in NEC incidence. In all of the NEC groups, decreased serum levels of GSH and SOD were measured. Boron limited GSH consumption but had no effect on SOD levels. Total antioxidant status levels were not statistically different among groups. In our experimental NEC model, BA, but not 2-APB, prevented the increase of TNF-α. Pretreatment with BA and 2-APB downregulated the activity levels of IL-6 in NEC. In the experimental NEC model, BA and 2-APB partly prevent NEC formation, modulate the oxidative stress parameters, bring a significant decrease in GSH consumption, and enhance the antioxidant defense mechanism, but have no effect on total antioxidant status. BA inhibits the hypoxia and hypothermia-induced increase in both IL-6 and TNF-a, but 2-APB only in IL-6. Boron may be beneficial in preventing NEC.
Lee, Hye-Jin; Han, Jeong-Hwa; Park, Yoo Kyoung; Kang, Myung-Hee
2018-04-01
Glutathione s-transferase ( GST ) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of β-carotene, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.
Genebra, Tania; Santos, Raquen Raissa; Francisco, Rita; Pinto-Marijuan, Marta; Brossa, Ricard; Serra, Ana Teresa; Duarte, Catarina M. M.; Chaves, Maria Manuela; Zarrouk, Olfa
2014-01-01
The main effects of three different irrigation regimes, i.e., sustained deficit irrigation (SDI), regulated deficit irrigation (RDI) and non-irrigated (NI), on seed traits namely proanthocyanidins (PAs) were evaluated in the wine grape cultivar Aragonez (syn. Tempranillo) grown in Alentejo (Portugal) over two growing seasons. Results showed that while the number of seeds per berry was not affected by water availability, seed fresh weight differed among treatments, the NI treatment exhibiting the lowest values. The biosynthetic pathway of flavanols appeared to be modified by the irrigation treatment, and several genes responsible for PA synthesis were up-regulated in the most stressed seeds (RDI and NI). However, this effect had no impact on PA content, suggesting the influence of other factors such as oxidation and/or degradation of PAs at late stages of maturation in grape seeds. The seeds’ non-enzymatic antioxidant capacities (oxygen radical absorbance capacity (ORAC) and hydroxyl radical adverting capacity (HORAC)) were modulated by water deficit and correlated well with PA content. The impact of irrigation strategy on PA biosynthesis, content, and anti-radical activity during seed ripening is discussed in the context of increasing interest in the role of PAs in the color and taste of wine, and the potential health benefits relating to their antioxidant capacity. PMID:25000262
Heaton, Marieta Barrow; Paiva, Michael; Siler-Marsiglio, Kendra
2011-01-01
Background This study investigated ethanol influences on intracellular events which predispose developing neurons toward apoptosis, and the capacity of the antioxidant α-tocopherol (vitamin E) and the neurotrophin brain-derived neurotrophic factor (BDNF) to modulate these effects. Assessments were made of the following: (1) ethanol-induced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane, a key upstream event in the initiation of apoptotic cell death; (2) disruption of the mitochondrial membrane potential (MMP) as a result of ethanol exposure, an important process in triggering the apoptotic cascade; and (3) generation of damaging reactive oxygen species (ROS) as a function of ethanol exposure. Methods These interactions were investigated in cultured postnatal day 8 neonatal rat cerebellar granule cells, a population vulnerable to developmental ethanol exposure in vivo and in vitro. Bax mitochondrial translocation was analyzed via subcellular fractionation followed by Western blot, and mitochondrial membrane integrity was determined using the lipophilic dye, JC-1, which exhibits potential-dependent accumulation in the mitochondrial membrane as a function of the MMP. Results Brief ethanol exposure in these preparations precipitated Bax translocation, but both vitamin E and BDNF reduced this effect to control levels. Ethanol treatment also resulted in a disturbance of the MMP, and this effect was blunted by the antioxidant and the neurotrophin. ROS generation was enhanced by a short ethanol exposure in these cells, but the production of these harmful free radicals was diminished to control levels by co-treatment with either vitamin E or BDNF. Conclusions These results indicate that both antioxidants and neurotrophic factors have the potential to ameliorate ethanol neurotoxicity, and suggest possible interventions which could be implemented in preventing or lessening the severity of the damaging effects of ethanol in the developing central nervous system seen in the fetal alcohol syndrome (FAS). PMID:21332533
The Antioxidants Changes in Ornamental Flowers during Development and Senescence
Cavaiuolo, Marina; Cocetta, Giacomo; Ferrante, Antonio
2013-01-01
The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed. PMID:26784342
Sadi, Gökhan; Bozan, Davut; Yildiz, Huseyin Bekir
2014-08-01
Resveratrol is a strong antioxidant that exhibits blood glucose-lowering effects, which might contribute to its usefulness in preventing complications associated with diabetes. The present study aimed to investigate resveratrol effects on catalase (CAT) and glutathione peroxidase (GPx) gene and protein expression, their phosphorylation states and activities in rat liver of STZ-induced diabetes. Diabetes increased the levels of total protein phosphorylation and p-CAT, while mRNA expression, protein levels, and activity were reduced. Although diabetes induced transcriptional repression over GPx, it did not affect the protein levels and activity. When resveratrol was administered to diabetic rats, an increase in activity was associated with an increase in p-GPx levels. Decrease in Sirtuin1 (SIRT1) and nuclear factor erythroid 2-related factor (Nrf2) and increase in nuclear factor kappa B (NFκB) gene expression in diabetes were associated with a decrease in CAT and GPx mRNA expression. A possible compensatory mechanism for reduced gene expression of antioxidant enzymes is proved to be nuclear translocation of redox-sensitive Nrf2 and NFκB in diabetes which is confirmed by the increase in nuclear and decrease in cytoplasmic protein levels of Nrf2 and NFκB. Taken together, these findings revealed that an increase in the oxidized state in diabetes intricately modified the cellular phosphorylation status and regulation of antioxidant enzymes. Gene regulation of antioxidant enzymes was accompanied by nuclear translocation of Nrf2 and NFκB. Resveratrol administration also activated a coordinated cytoprotective response against diabetes-induced changes in liver tissues.
Santus, Pierachille; Corsico, Angelo; Solidoro, Paolo; Braido, Fulvio; Di Marco, Fabiano
2014-01-01
The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a “multilevel cycle” responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of “multilevel cycle” helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results. PMID:24787454
Jakovetić Tanasković, Sonja; Luković, Nevena; Grbavčić, Sanja; Stefanović, Andrea; Jovanović, Jelena; Bugarski, Branko; Knežević-Jugović, Zorica
2018-01-01
This study focuses on the influence of operating conditions on Alcalase-catalyzed egg white protein hydrolysis performed in a continuously stirred tank reactor coupled with ultrafiltration module (10 kDa). The permeate flow rate did not significantly affect the degree of hydrolysis (DH), but a significant increase in process productivity was apparent above flow rate of 1.9 cm 3 min -1 . By contrast, an increase in enzyme/substrate ( E / S ) ratio provided an increase in DH, but a negative correlation was observed between E / S ratio and productivity. The relationship between operating conditions and antioxidant properties of the hydrolysates, measured by three methods, was studied using Box-Behnken experimental design and response surface methodology. The statistical analysis showed that each variable (impeller speed, E / S ratio, and permeate flow rate) had a significant effect on the antioxidant capacity of all tested systems. Nevertheless, obtained response functions revealed that antioxidative activity measured by DPPH, ABTS and FRAP methods were affected differently by the same operating conditions. High impeller speeds and low permeate flow rates favor ABTS while high impeller speeds and high permeate flow rates had a positive effect on the DPPH scavenging activity. On the other hand, the best results obtained with FRAP method were achieved under moderate operating conditions. The integration of the reaction and ultrafiltration membrane separation in a continuous manner appears to be a right approach to improve and intensify the enzymatic process, enabling the production of peptides with desired antioxidant activity.
Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine.
Rodrigo, Ramón; Rivera, Gonzalo
2002-08-01
Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.
Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina
2015-11-01
Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Sadek, Kadry; Abouzed, Tarek; Nasr, Sherif
2016-04-01
The effect of monosodium glutamate (MSG) on brain tissue and the relative ability of lycopene to avert these neurotoxic effects were investigated. Thirty-two male Wistar rats were distributed into 4 groups: group I, untreated (placebo); group II, injected with MSG (5 mg·kg(-1)) s.c.; group III, gastrogavaged with lycopene (10 mg·kg(-1)) p.o.; and group IV received MSG with lycopene with the same mentioned doses for 30 days. The results showed that MSG induced elevation in lipid peroxidation marker and perturbation in the antioxidant homeostasis and increased the levels of brain and serum cholinesterase (ChE), total creatine phosphokinase (CPK), creatine phosphokinase isoenzymes BB (CPK-BB), and lactate dehydrogenase (LDH). Glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities and gene expression were increased and glutathione content was reduced in the MSG-challenged rats, and these effects were ameliorated by lycopene. Furthermore, MSG induced apoptosis in brain tissues reflected in upregulation of pro-apoptotic Bax while lycopene upregulated the anti-apoptotic Bcl-2. Our results indicate that lycopene appears to be highly effective in relieving the toxic effects of MSG by inhibiting lipid peroxidation and inducing modifications in the activity of cholinesterase and antioxidant pathways. Interestingly, lycopene protects brain tissue by inhibiting apoptosis signaling induced by MSG.
de Santana Costa, Marília Gabriela; Mazzafera, Paulo; Balbuena, Tiago Santana
2017-05-01
Eucalyptus grandis and Eucalyptus globulus are among the most widely cultivated trees, differing in lignin composition and plantation areas, as E. grandis is mostly cultivated in tropical regions while E. globulus is preferred in temperate areas. As temperature is a key modulator in plant metabolism, a large-scale proteome analysis was carried out to investigate changes in the antioxidant system and the lignification metabolism in plantlets grown at different temperatures. Our strategy allowed the identification of 3111 stem proteins. A total of 103 antioxidant proteins were detected in the stems of both species. Hierarchical clustering revealed that alterations in the antioxidant proteins are more prominent when Eucalyptus seedlings were exposed to high temperature and that the superoxide isoforms coded by the gene Eucgr.B03930 are the most abundant antioxidant enzymes induced by thermal stimulus. Regarding the lignin biosynthesis, our proteomics approach resulted in the identification of 13 of the 17 core proteins involved in this metabolism, corroborating with gene predictions and the proposed lignin toolbox. Quantitative analyses revealed significant differences in 8 protein isoforms, including the ferulate 5-hydroxylase isoform F5H1, a key enzyme in catalyzing the synthesis of sinapyl alcohol, and the cinnamyl alcohol dehydrogenase isoform CAD2, the last enzyme in monolignol biosynthesis. Data are available via ProteomeXchange with identifier PXD005743. Copyright © 2017 Elsevier Ltd. All rights reserved.
Koçkar, M Cem; Nazıroğlu, Mustafa; Celik, Omer; Tola, H Tahsin; Bayram, Dilek; Koyu, Ahmet
2010-12-02
Doxorubicin (DOX) is a chemotherapeutic agent, and is widely used in cancer treatment. The most common side effect of DOX was indicated on cardiovascular system by experimental studies. There are some studies suggesting oxidative stress-induced toxic changes on liver related to DOX administration. The aim of the present study was to evaluate whether antioxidant N-acetylcysteine (NAC) relieves oxidative stress in DOX- induced liver injury in rat. Twenty-four male rats were equally divided into three groups. First group was used as a control. Second group received single dose of DOX. NAC for 10 days was given to constituting the third group after giving one dose of DOX. After 10 days of the experiment, liver tissues were taken from all animals. Lipid peroxidation (LP) levels were higher in the DOX group than in control whereas LP levels were lower in the DOX+NAC group than in control. Vitamin C and vitamin E levels were lower in the DOX group than in control whereas vitamin C and vitamin E levels were higher in the DOX+NAC group than in the DOX group. Reduced glutathione levels were higher in the DOX+NAC group than in control and DOX group. Glutathione peroxidase, vitamin A and β-carotene values were not changed in the three groups by DOX and NAC administrations. In histopathological evaluation of DOX group, there were mononuclear cell infiltrations, vacuolar degeneration, hepatocytes with basophilic nucleus and sinusoidal dilatations. The findings were totally recovered by NAC administration. In conclusion, N-acetylcysteine induced modulator effects on the doxorubicin-induced hepatoxicity by inhibiting free radical production and supporting the antioxidant vitamin levels. Copyright © 2010 John Wiley & Sons, Ltd.
Coëffier, Moïse; Claeyssens, Sophie; Lecleire, Stéphane; Leblond, Jonathan; Coquard, Aude; Bôle-Feysot, Christine; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre
2008-11-01
Available data suggest that nutrients can affect intestinal protein metabolism, which contributes to the regulation of gut barrier function. We aimed to assess whether an oral nutritional supplement (ONS) containing glutamine (as the dipeptide Ala-Gln), carbohydrates, and antioxidants would modulate duodenal protein metabolism in healthy humans. Thirty healthy control subjects were included and, over a period of 5 h, received by nasogastric tube either saline or ONS providing 11.7 kcal/kg as 0.877 g Ala-Gln/kg, 3.9 g carbohydrates/kg, and antioxidants (29.25 mg vitamin C/kg, 9.75 mg vitamin E/kg, 195 microg beta-carotene/kg, 5.85 mg Se/kg, and 390 microg Zn/kg) or glutamine (0.585 g/kg, 2.34 kcal/kg). Simultaneously, a continuous intravenous infusion of l-[1-(13)C]-leucine was done until endoscopy. Leucine enrichment was assessed by using gas chromatography-mass spectrometric analysis, and mucosal fractional synthesis rate was calculated by using intracellular amino acid enrichment as precursor. Mucosal proteolytic pathways were also evaluated. ONS infusion resulted in a doubling increase (P < 0.01) of duodenal fractional synthesis rate and a significant (P < 0.05) decrease in cathepsin D-mediated proteolysis compared with saline, whereas proteasome and Ca(2+)-dependent activities were unaffected. ONS infusion significantly (P < 0.01) decreased duodenal glutathione but not glutathione disulfide concentrations or the ratio of glutathione to glutathione disulfide. Insulinemia increased after ONS infusion, whereas plasma essential amino acids decreased. Infusion of glutamine alone did not reproduce ONS effects. ONS infusion improves duodenal protein balance in healthy humans. Further investigations are needed to study the origin of these effects and to evaluate ONS supply in stressed persons.
Azmi, Nur Hanisah; Ismail, Norsharina; Imam, Mustapha Umar; Ismail, Maznah
2013-07-17
There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD. The total phenolic content and antioxidant capacity of the ethyl acetate extract of GBR were compared to that of brown rice (BR), and the cytotoxicity of both extracts were determined on human SH-SY5Y neuronal cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay. Based on its higher antioxidant potentials, the effect of the GBR extract on morphological changes due to hydrogen peroxide (H₂O₂)-induced oxidative damage in human SH-SY5Y neuronal cells was examined using inverted light microscope and fluorescence microscope by means of acridine orange-propidium iodide (AO/PI) staining. Also, evaluation of the transcriptional regulation of antioxidant and apoptotic genes was carried out using Multiplex Gene Expression System. The ethyl acetate extract of GBR had higher total phenolic content and antioxidant capacity compared to BR. The cytotoxicity results showed that GBR extract did not cause any damage to the human SH-SY5Y neuronal cells at concentrations of up to 20 ppm, and the morphological analyses showed that the GBR extract (up to 10 ppm) prevented H₂O₂-induced apoptotic changes in the cells. Furthermore, multiplex gene expression analyses showed that the protection of the cells by the GBR extract was linked to its ability to induce transcriptional changes in antioxidant (SOD 1, SOD 2 and catalase) and apoptotic (AKT, NF-Kβ, ERK1/2, JNK, p53 and p38 MAPK) genes that tended towards survival. Taken together, the results of our study showed that the ethyl acetate extract of GBR, with high antioxidant potentials, could prevent H₂O₂-induced oxidative damage in SH-SY5Y cells. The potential of GBR and its neuroprotective mechanism in ameliorating oxidative stress-related cytotoxicity is therefore worth exploring further.
Huang, Hui-Pei; Ou, Ting-Tsz; Wang, Chau-Jong
2013-01-01
Mulberry (桑葚子 sāng shèn zǐ), a traditional Chinese medicine (TCM) in Taiwan, has many bioactive substances, including polyphenol and anthocyanins compounds. Over the past decade, many scientific and medical studies have examined mulberry fruit for its antioxidation and antiinflammation effects both in vitro and in vivo. This review thus focuses on the recent advances of mulberry extracts (MEs) and their applications in the prevention and treatment of human cancer, liver disease, obesity, diabetes, and cardiovascular disease. The ME modulates several apoptotic pathways and matrix metalloproteinases (MMPs) to block cancer progression. Mulberry can increase detoxicated and antioxidant enzyme activities and regulate the lipid metabolism to treat hepatic disease resulting from alcohol consumption, high fat diet, lipopolysaccharides (LPS) and CCl4 exposure. Of the various compounds in ME, cyanidin 3-glucoside (C3G) is the most abundant, and the active compound studied in mulberry research. Herein, the antioxidant and antiinflammatory actions of C3G to improve diabetes and cardiovascular disease are also discussed. These studies provide strong evidence ME may possess the bioactivity to affect the pathogenesis of several chronic diseases. PMID:24716151
Huang, Hui-Pei; Ou, Ting-Tsz; Wang, Chau-Jong
2013-01-01
Mulberry ( sāng shèn zǐ), a traditional Chinese medicine (TCM) in Taiwan, has many bioactive substances, including polyphenol and anthocyanins compounds. Over the past decade, many scientific and medical studies have examined mulberry fruit for its antioxidation and antiinflammation effects both in vitro and in vivo. This review thus focuses on the recent advances of mulberry extracts (MEs) and their applications in the prevention and treatment of human cancer, liver disease, obesity, diabetes, and cardiovascular disease. The ME modulates several apoptotic pathways and matrix metalloproteinases (MMPs) to block cancer progression. Mulberry can increase detoxicated and antioxidant enzyme activities and regulate the lipid metabolism to treat hepatic disease resulting from alcohol consumption, high fat diet, lipopolysaccharides (LPS) and CCl4 exposure. Of the various compounds in ME, cyanidin 3-glucoside (C3G) is the most abundant, and the active compound studied in mulberry research. Herein, the antioxidant and antiinflammatory actions of C3G to improve diabetes and cardiovascular disease are also discussed. These studies provide strong evidence ME may possess the bioactivity to affect the pathogenesis of several chronic diseases.
Wali, Adil F.; Avula, Bharathi; Ali, Zulfiqar; Khan, Ikhlas A.; Mushtaq, Ahlam; Rehman, Muneeb U.; Akbar, Seema; Masoodi, Mubashir Hussain
2015-01-01
The aim of this study was to examine hepatoprotective effect of ethanolic extract of propolis (KPEt) from Kashmir Himalaya against isoniazid and rifampicin (INH-RIF) induced liver damage in rats. Hepatic cellular injury was initiated by administration of INH-RIF combination (100 mg/kg) intraperitoneal (i.p.) injection for 14 days. We report the protective effects of KPEt against INH-RIF induced liver oxidative stress, inflammation, and enzymatic and nonenzymatic antioxidants. Oral administration of KPEt at both doses (200 and 400 mg/kg body weight) distinctly restricted all modulating oxidative liver injury markers and resulted in the attenuation of INH-RIF arbitrated damage. The free radical scavenging activity of KPEt was evaluated by DPPH, nitric oxide, and superoxide radical scavenging assay. The components present in KPEt identified by ultra high performance liquid chromatography diode array detector time of flight-mass spectroscopy (UHPLC-DAD-QToF-MS) were found to be flavonoids and phenolic acids. The protective efficacy of KPEt is possibly because of free radical scavenging and antioxidant property resulting from the presence of flavonoids and phenolic acids. PMID:26539487
Monserrat, José Maria; Lima, Juliane Ventura; Ferreira, Josencler Luis Ribas; Acosta, Daiane; Garcia, Márcia Longaray; Ramos, Patricia Baptista; Moraes, Tarsila Barros; Dos Santos, Luciane Cougo; Amado, Lílian Lund
2008-09-01
Lipoic acid (LA) has been reported as a potential therapeutic agent due its antioxidants proprieties. It was considered its effect in different organs (gills, brain, muscle and liver) of the fish Corydoras paleatus (Callychthyidae). LA (70 mg/kg of body mass) was added to a commercial fish diet, organisms being fed daily (1% body weight). Sixty animals (mean mass: 2.37+/-0.09 g) were placed randomly in aquariums and received (+LA) or not (-LA) lipoic acid enriched diet during four weeks. After, fish were killed and the brain, muscle, gills and liver were dissected. LA treatment reduced significantly (p<0.05) reactive oxygen species concentration in brain and increased (p<0.05) glutamate-cysteine ligase activity in brain and liver of the same experimental group. LA fed organisms showed higher (p<0.05) brain glutathione-S-transferase activity, indicating that LA improves the detoxification and antioxidant capacity face components that waste glutathione in phase II reactions. A conspicuous reduction of protein oxidation was observed in muscle and liver of +LA organisms, indicating that the treatment was also effective in reducing oxidative stress parameters.
Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J.; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; de Paula Oliveira, Riva
2014-01-01
Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms. PMID:24594796
Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; Oliveira, Riva de Paula
2014-01-01
Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms.
Daily supplementation with GrandFusion® improves memory and learning in aged rats.
Yu, Jin; Zhu, Hong; Perry, Stephen; Taheri, Saeid; Kindy, Mark S
2017-03-24
Studies have shown that supplementation with extracts from various sources, including fruits and vegetables reverse the age-related changes in movement and cognition. We hypothesized that these beneficial effects result from the presence of anti-oxidants and anti-inflammatory compounds in the fruits and vegetables that contribute to reduced oxidative stress, inflammation and cell death while potentially enhancing neurogenesis. The present study was performed to determine the impact of supplementation with GrandFusion ® (GF) to aged Fisher 344 rats for 4 months to determine the impact on attenuation or reversal of the age-related deficits. When the aged rats consumed a diet enriched with the extracts the results showed an improved motor performance, and enhanced cognitive functions. In addition, the rats showed reduced oxidative stress and inflammation, and enhanced neurogenesis, Nrf2 and anti-oxidant expression. The effect of GF extracts on the augmentation of memory and learning is significant and may function through the modulation of antioxidant enzymes, signaling pathways and additional mechanisms to improve the aging process. These studies further support the recommendation of USDA for the consumption of fruits and vegetables to improve healthy aging.
Pallotta, Valeria; Gevi, Federica; D’Alessandro, Angelo; Zolla, Lello
2014-01-01
Background Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. Materials and methods In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. Results We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Discussion Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP. PMID:25074788
Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi
2017-09-11
To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.
Hasan, Md. Kamrul; Ahammed, Golam Jalal; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie
2015-01-01
Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H+-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production. PMID:26322055
Sestrins: novel antioxidant and AMPK-modulating functions regulated by exercise?
Sanchis-Gomar, Fabian
2013-08-01
Oxidative stress results from damage to tissues caused by free radicals and is increased by exercise. Peroxiredoxins (PRXs) maintain the cellular reducing environment by scavenging intracellular hydrogen peroxide. It has been recently noted that physical exercise has a positive effect on the PRX system, exerting a protective effect against oxidative stress-induced damage. However, other compounds, such as sestrins (SESNs), a stress-inducible protein family with antioxidant properties, should also be considered in the function of PRXs. SESNs are clearly involved in the regeneration process of PRXs and therefore may also be modulated by physical exercise. In addition, SESNs are clearly involved in TOR, AMPK, p53, FoxO, and PRXs signaling pathways. The aforementioned pathways are implicated in aging processes by inducing an increased resistance to subsequent stress, thus delaying age-related changes, such as sarcopenia and frailty, and consequently promoting longevity. Likewise, exercise also modulates these pathways. In fact, exercise is one of the most important recommended strategies to prevent sarcopenia and frailty, increase longevity, and improve health in the elderly. Loss of SESNs can cause several chronic pathologies, such as fat accumulation, mitochondrial dysfunction, cardiac arrhythmia, and/or muscle degeneration. Accordingly, physical inactivity leads to accumulation of visceral fat and consequently the activation of a network of inflammatory pathways, which promote development of insulin resistance, atherosclerosis, neurodegeneration, and tumor growth. To date, the SESNs-exercise relationship has not been explored. However, this emerging family of stress proteins may be part of the redox-based adaptive response to exercise. Copyright © 2013 Wiley Periodicals, Inc.
Calixto Júnior, João T.; Morais, Selene M.; Martins, Clécio G.; Vieira, Larissa G.; Morais-Braga, Maria Flaviana B.; Carneiro, Joara N. P.; Machado, Antonio J. P.; Menezes, Irwin R. A.; Tintino, Saulo R.; Coutinho, Henrique D. M.
2015-01-01
The high incidence of fungal infections has led to the continuous search for new drugs. Extracts of Luehea paniculata, a tree of multiple medicinal uses, were evaluated for anti-Candida activity, as well as its modulator potential of the Fluconazole antibiotic. Chemical prospecting of ethanol extracts of leaf and bark was carried out, the quantification of total phenols and flavonoids, characterized by the HPLC-DAD technique. The rosmarinic acid and the vitexin flavonoid were observed as major constituents in ELELP and ESWELP, respectively. Antioxidant activity was also evaluated by the method of scavenging the free radical DPPH, and quercetin was used as standard, obtaining IC50 values: 0.341 (mg/mL) for ELELP and 0.235 (mg/mL) for ESWELP. The microdilution assay was performed for antifungal activity against strains of Candida albicans, C. krusei, and C. tropicalis and showed minimum inhibitory concentrations values ≥1024 μg/mL. In the modulator action of extracts on Fluconazole against multiresistant clinical isolates of Candida (subinhibitory concentration minimum of 128 μg/mL), a significant synergism was observed, indicating that the extracts potentiated the antifungal effect against C. tropicalis, where antioxidant flavonoids could be responsible. This is the first report about modifying activity of the antibiotic action of a species of the genus Luehea. PMID:25821822
Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.
Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D
2016-02-05
Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.
Dutra, Márcio Ferreira; Bristot, Ivi Juliana; Batassini, Cristiane; Cunha, Núbia Broetto; Vizuete, Adriana Fernanda Kuckartz; de Souza, Daniela Fraga; Moreira, José Cláudio Fonseca; Gonçalves, Carlos-Alberto
2012-01-01
Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. [BMB Reports 2012; 45(11): 671-676] PMID:23187008
Narayanankutty, Arunaksharan; Kottekkat, Anagha; Mathew, Shaji E; Illam, Soorya P; Suseela, Indu M; Raghavamenon, Achuthan C
2017-03-01
Omega-3 fatty acids are well-known class of nutraceuticals with established health benefits. Recently, the oxidation products of these fatty acids are gaining attention, as they are likely to disturb body redox balance. Therefore, the efficacy of omega-3 fats under conditions of diminished antioxidant status, such as aging, is always a concern. Present study assessed the effects of omega-3 fats (DHA and EPA) together with or without vitamin-E in naturally aged rats. It was found that in omega-3 fats alone consumed rats the lipid profile was improved, while in omega-3 fat with vitamin-E-consumed group (OMVE), the hepato protective and antioxidant properties were pronounced, especially the redox status of brain tissue. It is possible that vitamin-E might have reduced the peroxidation of omega-3 fats, thereby allowing their synergistic effects. Hence, the use of vitamin-E along with omega-3 fat may be beneficial under aged conditions.
Abraham, Gerard; Dhar, Dolly Wattal
2010-09-01
Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.
Kim, Dong-Hyeon; Jeong, Dana; Kim, Hyunsook; Seo, Kun-Ho
2018-01-16
Kefir is a natural complex fermented milk product containing more than 50 species of probiotic bacteria and yeast, and has been demonstrated to have multiple properties conferring health benefits, including antiobesity, anti-hepatic steatosis, antioxidative, antiallergenic, antitumor, anti-inflammatory, cholesterol-lowering, constipation-alleviating, and antimicrobial properties. To better understand the underlying mechanisms of these benefits, we here review research on the effect of kefir (and kefir microorganisms) consumption to modulate the host gut microbiota. Owing to its excellent gastrointestinal resistance and colonization ability and wide ranges of microbial interaction, kefir has shown significant and wide-spectrum modulatory effects on the host gut microbiota. In particular, as a bacteria- and yeast-containing food, kefir can modulate both the gut microbiota and mycobiota. Since the association of this modulation with health benefit has only been addressed in a small number of recent studies thus far, further studies are needed to determine the precise mechanisms of the beneficial effects of kefir in relation to the modulation of the gut microbiota and mycobiota. Gaining this insight will surely help to take full advantage of this unique probiotic food.
Fabian, Elisabeth; Elmadfa, Ibrahim
2007-03-01
In recent years there has been increasing interest in the potential beneficial effects of probiotic bacteria, particularly concerning their immune-modulating effects. Considering the involvement of free radicals in immunological processes, we tried to verify and compare the effects of probiotic (Lactobacillus casei) and conventional yoghurt on antioxidant and oxidant parameters in plasma of humans. In this study female volunteers consumed 100 g/day of probiotic (n = 17) or conventional yoghurt (n = 16) for two weeks (T1-T2) and 200 g/day for another two weeks (T2-T3). A wash-out phase lasting two weeks followed. Total antioxidant capacity (TAC), albumin, and bilirubin were determined photometrically, uric acid was determined by enzymatic methods, and vitamin E, carotenoids, malondialdehyde (MDA), and conjugated dienes (CD) were measured using high-performance liquid chromatography (HPLC). In the period of continuous yoghurt intake (T1-T3), mean concentrations of the antioxidants vitamin E, lycopene, and zeaxanthin decreased significantly (p < 0.01) in the probiotic and in the control group. The average concentrations of lutein, beta-carotene, albumin, uric acid, and bilirubin decreased significantly (p < 0.05) in the probiotic group, only. These alterations led to a significant (p < 0.001) decrease of the average TAC values during the period T1-T3 in both tested groups. In the interval of daily yoghurt consumption (T1-T3) the mean plasma levels of oxidant parameters MDA and CD increased significantly in the probiotic (MDA: p < 0.01; CD: p < 0.001) and the control group (CD: p < 0.01). The average activity of the antioxidant enzyme superoxide dismutase (SOD) was quite constant throughout the study in both groups. The mean activities of GSH-Px and catalase decreased significantly (p < 0.001) in the probiotic group, only after consuming yoghurt daily for four weeks (T1-T3). Although several parameters changed significantly during the study, no significant differences were observed between both investigated groups. Therefore, the results indicate a possible influence of both probiotic and conventional yoghurt on the plasma levels of antioxidant and oxidant parameters.
Atitlán-Gil, Alfonso; Bretón-de la Loza, Martín M; Jiménez-Ortega, José C; Belefant-Miller, Helen; Betanzos-Cabrera, Gabriel
2017-01-01
Activated and micronized zeolites are used as detoxifying agents in humans. Detoxification is attributed to their ability to reduce lipid peroxidation by scavenging free radicals. To evaluate activated and micronized zeolites as modulators of cellular oxidative stress in Mexican smokers without lung diseases. Randomized clinical trial. Subjects were randomly divided into three groups: activated and micronized zeolites, n = 29; vitamin E, an accepted antioxidant, n = 29; and maltodextrin as control, n = 27. Each group received the corresponding supplementation, dissolved in water, once a day for 30 days as follows: activated and micronized zeolites, 5.4 g activated and micronized zeolite; vitamin E, 400 mg D-alpha tocopheryl acetate; and maltodextrin, 250 mg of maltodextrin. The thiobarbituric acid reactive substances assay was used to screen for lipid peroxidation. Catalase activity, plasma antioxidant capacity, and hydrogen peroxide levels were also measured. Results were analyzed by a one-way ANOVA and post hoc test of Bonferroni. Subjects administered activated and micronized zeolites had equivalent antioxidant activities as subjects administered vitamin E. Activated and micronized zeolites may be useful as a modulator of oxidative stress in smokers. However, inclusion of a comparison group of non-smokers would be useful in future studies to assess the degree to which zeolites reverse the oxidant stress.
Dorri, Mahyar; Hashemitabar, Shirin; Hosseinzadeh, Hossein
2018-01-10
Cinnamon (Cinnamomum zeylanicum, Lauraceae) is a food additive greatly used for its taste. However, recently this medicinal plant has been brought to attention due to its medical effects. Cinnamon has constituents such as cinnamaldehyde and cinnamic acid that offers some health benefits including antioxidant and free-radical scavenging properties, lowering of blood glucose, anti-cholesterolemic, analgesic, antimicrobial, anti-inflammatory, anti-yeast, anti-secretagogue, and anti-gastric ulcer effects. This review summarizes various in vitro and animal studies on the protective effects of cinnamon against natural and chemical toxins. These studies consider the antidotal and/or protective effects of cinnamon and its major constituents against natural toxins and chemical-induced toxicities. It has been mentioned that cinnamon and its main constituents can ameliorate the toxicity of chemical toxins in liver, kidney, blood, brain, embryo, reproductive system, heart, spleen in part through antioxidant effect, radical scavenging, reducing lipid peroxidation, anti-inflammatory, fungistatic and fungicidal activities, modulation of CK-MB, LDH, TNF-α, IL-6, mitogen-activated protein kinase (MAPK), and nuclear factor-ĸB (NF-ĸB) signaling pathways.
Duan, Fang-Fang; Guo, Ying; Li, Jing-Wan; Yuan, Ke
2017-01-01
Luteolin-6-C-neohesperidoside (LN) is a flavonoid isolated from moso bamboo leaf. This study was performed to evaluate the antifatigue effect of LN on a rat model undergoing the weight-loaded forced swimming test (FST). Briefly, male Sprague-Dawley rats (20-22 weeks old) were forced to undertake exhaustive swimming every other day for 3 weeks. Each swimming session was followed by the administration of distilled water, LN (25-75 mg/kg), or ascorbic acid (100 mg/kg) 1 h later. Oral administration of LN significantly improved exercise endurance; normalized alterations in energy metabolic markers; and decreased serum lactic acid, lactate dehydrogenase, and blood urea nitrogen levels of rats that underwent FST. Moreover, LN enhanced the activities of antioxidant enzymes and antioxidant capacity, as measured by enzyme activity assays, RT-PCR, and Western blotting, as well as decreasing the levels of proinflammatory cytokines such as tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 and increasing the level of anti-inflammatory (IL-10) in the liver and skeletal muscle. These results suggested that LN reduces both physical and mental effects of chronic fatigue, probably by attenuating oxidative stress injury and inflammatory responses in the liver and skeletal muscle. This study thus supports the use of LN in functional foods for antifatigue and antioxidant effects.
Nisticò, S; Ehrlich, J; Gliozzi, M; Maiuolo, J; Del Duca, E; Muscoli, C; Mollace, V
2015-01-01
Photoageing represents the addition of extrinsic chronic ultraviolet radiation-induced damage on intrinsic ageing and accounts for most age-associated changes in skin appearance. In this study, we evaluated the effect of 38% BPF, a highly concentrated extract of the bergamot fruit (Citrus bergamia) on UVB-induced photoageing by examining inflammatory cytokine expression, telomere length/telomerase alterations and cellular viability in human immortalized HaCaT keratinocytes. Our results suggest that 38% BPF protects HaCaT cells against UVB-induced oxidative stress and markers of photoageing in a dose-dependent manner and could be a useful supplement in skin care products. Together with antioxidant properties, BPF, a highly concentrated extract of the bergamot fruit, appears to modulate basic cellular signal transduction pathways leading to anti-proliferative, anti-aging and immune modulating responses.
Potential Antitumor Effects of Pomegranates and Its Ingredients.
Rahmani, Arshad H; Alsahli, Mohammed A; Almatroodi, Saleh A
2017-01-01
The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy.
Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong
2012-03-01
Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. Copyright © 2011 John Wiley & Sons, Ltd.
Wan, Chun; Zhang, Mingming; Fang, Qing; Xiong, Liang; Zhao, Xinqing; Hasunuma, Tomohisa; Bai, Fengwu; Kondo, Akihiko
2015-02-01
The mechanisms of how zinc protects the cells against acetic acid toxicity and acts as an antioxidant are still not clear. Here we present results of the metabolic profiling of the eukaryotic model yeast species Saccharomyces cerevisiae subjected to long term high concentration acetic acid stress treatment in the presence and absence of zinc supplementation. Zinc addition decreased the release of reactive oxygen species (ROS) in the presence of chronic acetic acid stress. The dynamic changes in the accumulation of intermediates in central carbon metabolism were observed, and higher contents of intracellular alanine, valine and serine were observed by zinc supplementation. The most significant change was observed in alanine content, which is 3.51-fold of that of the control culture in cells in the stationary phase. Subsequently, it was found that 0.5 g L(-1) alanine addition resulted in faster glucose consumption in the presence of 5 g L(-1) acetic acid, and apparently decreased ROS accumulation in zinc-supplemented cells. This indicates that alanine exerted its antioxidant effect at least partially through the detoxification of acetic acid. In addition, intracellular glutathione (GSH) accumulation was enhanced by zinc addition, which is related to the protection of yeast cells from the oxidative injury caused by acetic acid. Our studies revealed for the first time that zinc modulates cellular amino acid metabolism and redox balance, especially biosynthesis of alanine and glutathione to exert its antioxidant effect.
Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra
2014-01-01
Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441
Ozgur, Elcin; Sahin, Duygu; Tomruk, Arin; Guler, Goknur; Sepici Dinçel, Aylin; Altan, Nilgun; Seyhan, Nesrin
2015-02-01
The widespread and sustained use of mobile and cordless phones causes unprecedented increase of radiofrequency radiation (RFR). The aim of this experimental study was to investigate the effect of 900 MHz Global System for Mobile Communications (GSM)-modulated RFR (average whole body Specific Absorption Rate (SAR) of 0.4 W/kg, 10 or 20 min daily for consecutive 7 days) to the liver tissue of guinea pigs and the protective effects of antioxidant treatments. Adult male guinea pigs were randomly divided into nine groups as: Group I (sham/saline), Group II (sham/EGCG), Group III (sham/NAC), Group IV (10-min RF-exposure/saline), Group V (20-min RF-exposure/saline), Group VI (10-min RF-exposure/EGCG), Group VII (20-min RF-exposure/EGCG), Group VIII (10-min RF-exposure/NAC), and Group IX (20-min RF-exposure/NAC). Protein oxidation (PCO), advanced oxidation protein products (AOPP) and antioxidant enzyme activities of superoxide dismutase (SOD) were evaluated after the exposure and the treatments with N-acetylcysteine (NAC) and (-)-epigallocatechin-3-gallate (EGCG). Significant decreases in the activities of SOD were observed in the liver of guinea pigs after RFR exposure. Protein damage did not change due to RFR exposure. On the other hand, only NAC treatment induced increased PCO levels, whereas EGCG treatment alone elevated the level of AOPP. Due to antioxidants having pro-oxidant behavior, the well decided doses and treatment timetables of NAC and ECGC are needed.
Maragkoudakis, Petros A; Mountzouris, Konstantinos C; Rosu, Craita; Zoumpopoulou, Georgia; Papadimitriou, Konstantinos; Dalaka, Eleni; Hadjipetrou, Andreas; Theofanous, Giorgos; Strozzi, Gian Paolo; Carlini, Nancy; Zervas, George; Tsakalidou, Effie
2010-07-31
This study aimed to evaluate the potential of a promising Lactobacillus plantarum isolate (PCA 236) from cheese as a probiotic feed supplement in lactating goats. The ability of L. plantarum to survive transit through the goat gastrointestinal tract and to modulate selected constituents of the gut microbiota composition, monitored at faecal level was assessed. In addition, L. plantarum effects on plasma immunoglobulins and antioxidant capacity of the animals as well as on the milk fatty acid composition were determined. For the purpose of the experiment a field study was designed, involving 24 dairy goats of the Damascus breed, kept in a sheep and goat dairy farm. The goats were divided in terms of body weight in two treatments of 12 goats each, namely: control (CON) without addition of L. plantarum and probiotic (PRO) treatment with in feed administration of L. plantarum so that the goats would intake 12 log CFU/day. The experiment lasted 5 weeks and at weekly time intervals individual faecal, blood and milk samples were collected and analysed. All faecal samples were examined for the presence of L. plantarum PCA 236. In addition, the culturable population levels of mesophilic aerobes, coliforms lactic acid bacteria (LAB), Streptococcus, Enterococcus, mesophilic anaerobes, Clostridium and Bacteroides in faeces were also determined by enumeration on specific culture media. In parallel, plasma IgA, IgM and IgG and antioxidant capacity of plasma and milk were determined. No adverse effects were observed in the animals receiving the lactobacillus during the experiment. Lactobacillus plantarum PCA 236 was recovered in the faeces of all animals in the PRO treatment. In addition, PRO treatment resulted in a significant (P
Makinde, Oluwamayowa; Rotimi, Kunle; Ikumawoyi, Victor; Adeyemo, Titilope; Olayemi, Sunday
2017-06-01
HIV and TB infections are both associated with elevated oxidative stress parameters. Anti-oxidant supplementation may offer beneficial effects in positively modulating oxidative stress parameters in HIV and HIV-TB infected patients. We investigated the effects of vitamin A and C supplementation on oxidative stress in HIV infected and HIV-TB co-infected subjects. 40 HIV/TB co-infected and 50 HIV mono-infected patients were divided into 2 equal groups. Participants provided demographic information and blood was collected to determine oxidative stress parameters before and after vitamin A (5000 IU) and C (2600 mg) supplementation for 1 month. There was a significantly (p < 0.05) higher level of Malondialdehyde (MDA) at baseline for HIV infected subjects compared with HIV-TB co-infected subjects. There was a significantly (p < 0.05) lower level of MDA and higher level of Catalase (CAT) in subjects administered supplementation compared to subjects without supplementation for the HIV infected group. There was a significantly lower level of Reduced Glutathione (GSH), Superoxide Dismutase (SOD) and higher level of MDA after one month of supplementation compared with baseline levels for HIV/TB co infected subjects. A similar result was also obtained for the HIV mono-infected groups which had a significantly lower level of SOD, MDA and CAT compared to the baseline. There was a significantly lower level of GSH and SOD, and higher level of MDA after supplementation compared with the baseline for HIV/TB co-infected subjects. Comparing the indices at baseline and post no-supplementation in HIV/TB co-infection showed no significant differences in the oxidative stress parameters. HIV/TB co-infection and HIV mono-infection seems to diminish the capacity of the anti-oxidant system to control oxidative stress, however exogenous anti-oxidant supplementation appears not to have beneficial roles in positively modulating the associated oxidative stress.
Guxens, Mònica; Aguilera, Inmaculada; Ballester, Ferran; Estarlich, Marisa; Fernández-Somoano, Ana; Lertxundi, Aitana; Lertxundi, Nerea; Mendez, Michelle A; Tardón, Adonina; Vrijheid, Martine; Sunyer, Jordi
2012-01-01
Air pollution effects on children's neurodevelopment have recently been suggested to occur most likely through the oxidative stress pathway. We aimed to assess whether prenatal exposure to residential air pollution is associated with impaired infant mental development, and whether antioxidant/detoxification factors modulate this association. In the Spanish INfancia y Medio Ambiente (INMA; Environment and Childhood) Project, 2,644 pregnant women were recruited during their first trimester. Nitrogen dioxide (NO2) and benzene were measured with passive samplers covering the study areas. Land use regression models were developed for each pollutant to predict average outdoor air pollution levels for the entire pregnancy at each residential address. Maternal diet was obtained at first trimester through a validated food frequency questionnaire. Around 14 months, infant mental development was assessed using Bayley Scales of Infant Development. Among the 1,889 children included in the analysis, mean exposure during pregnancy was 29.0 μg/m3 for NO2 and 1.5 μg/m3 for benzene. Exposure to NO2 and benzene showed an inverse association with mental development, although not statistically significant, after adjusting for potential confounders [β (95% confidence interval) = -0.95 (-3.90, 1.89) and -1.57 (-3.69, 0.56), respectively, for a doubling of each compound]. Stronger inverse associations were estimated for both pollutants among infants whose mothers reported low intakes of fruits/vegetables during pregnancy [-4.13 (-7.06, -1.21) and -4.37 (-6.89, -1.86) for NO2 and benzene, respectively], with little evidence of associations in the high-intake group (interaction p-values of 0.073 and 0.047). Inverse associations were also stronger in non-breast-fed infants and infants with low maternal vitamin D, but effect estimates and interactions were not significant. Our findings suggest that prenatal exposure to residential air pollutants may adversely affect infant mental development, but potential effects may be limited to infants whose mothers report low antioxidant intakes.
Antioxidant and Anti-Inflammatory Activities of Unexplored Brazilian Native Fruits
Infante, Juliana; Rosalen, Pedro Luiz; Lazarini, Josy Goldoni; Franchin, Marcelo; de Alencar, Severino Matias
2016-01-01
Brazilian native fruits are unmatched in their variety, but a poorly explored resource for the development of food and pharmaceutical products. The aim of this study was to evaluate the phenolic composition as well as the antioxidant and anti-inflammatory activities of the extracts of leaves, seeds, and pulp of four Brazilian native fruits (Eugenia leitonii, Eugenia involucrata, Eugenia brasiliensis, and Eugenia myrcianthes). GC—MS analyses of the ethanolic extracts showed the presence of epicatechin and gallic acid as the major compounds in these fruits. Antioxidant activity was measured using synthetic DPPH free-radical scavenging, β-carotene bleaching assay, and reactive oxygen species (ROO·, O2·−, and HOCl). The fruit extracts also exhibited antioxidant effect against biologically relevant radicals such as peroxyl, superoxide, and hypochlorous acid. In general, the pulps were the fruit fractions that exhibited the lowest antioxidant activities, whereas the leaves showed the highest ones. The anti-inflammatory activity was assessed in an in vivo model using the carrageenan-induced neutrophil migration assay, which evaluates the inflammatory response in the acute phase. The pulp, seeds, and leaves of these fruits reduced the neutrophil influx by 40% to 64%. Based on these results, we suggest that the anti-inflammatory activity of these native fruits is related to the modulation of neutrophil migration, through the inhibition of cytokines, chemokines, and adhesion molecules, as well as to the antioxidant action of their ethanolic extracts in scavenging the free-radicals released by neutrophils. Therefore, these native fruits can be useful to produce food additives and functional foods. PMID:27050817
El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M
2016-01-01
Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.
Rohini, G; Sabitha, K E; Devi, C S Shyamala
2004-08-01
Antioxidative property and tumor inhibitive property of B. monniera (20mg/kg body wt, sc) was examined in 3-methylcholanthrene induced fibrosarcoma rats. Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of glutathione (GSH) and the rate of lipid peroxidation (LPO) in the liver and kidney tissues were assessed. A significant increase was noted for the rate of LPO with a corresponding decrease in the antioxidant enzyme status in fibrosarcoma bearing rats. In fibrosarcoma bearing rats, the tumor markers like lactate dehydrogenase (LDH), creatine kinase (CK), alanine transaminase (ALT), aspartate transaminase (AST) and sialic acid (SA) were increased in the serum. Treatment with B. monniera extract significantly increased the antioxidant enzyme status, inhibited lipid peroxidation and reduced the tumor markers. It can be concluded that B.monniera extract promotes the antioxidant status, reduces the rate of lipid peroxidation and the markers of tumor progression in the fibrosarcoma bearing rats.
Jeelan Basha, Shaik; Mohan, Penumala; Yeggoni, Daniel Pushparaju; Babu, Zinka Raveendra; Kumar, Palaka Bhagath; Dinakara Rao, Ampasala; Subramanyam, Rajagopal; Damu, Amooru Gangaiah
2018-05-10
In line with the modern multi target-directed ligand paradigm of Alzheimer's disease (AD), a series of nineteen compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r and 7s exhibited excellent inhibitory potency (AChE, IC50 0.271 ± 0.012 to ± 0.075 M) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced A aggregation, low cytotoxicity and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r and 7s with AChE at physiological pH 7.2 using fluorescence, circular dichroism and molecular docking methods suggesting that these derivatives bind strongly to peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases
Sallam, Nada
2016-01-01
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential. PMID:26823952
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases.
Sallam, Nada; Laher, Ismail
2016-01-01
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun
2014-11-01
In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.
Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun
2014-01-01
In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416
Park, Chung Mu; Cho, Chung Won; Song, Young Sun
2014-04-01
Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. Copyright © 2014. Published by Elsevier Ltd.
[Coffee as hepatoprotective factor].
Szántová, Mária; Ďurkovičová, Zuzana
The mind about the coffee did change upon the recent studies and metaanalysis of the last years. Consensual protective effect of coffee on the progression of chronic liver diseases (NASH, viral hepatitis, liver cirrhosis, hepatocelullar carcinoma) was detected in experimental, clinical and large population studies together with decrease of mortality. Antioxidant, antifibrotic, insulinsensitizing and anticarcinogenic effect of coffee were detected. Modulation of genetic expression of key enzymes of fatty acid synthesis, modulation of mRNA included in autophagia, reduction of stress of endoplasmatic reticulum together with decrease of proinflammatory cytokines and decrease of fibrogenesis are main mechanisms. Chlorogenic acids, diterpens (cafestol, kahweol), caffein, polyfenols and melanoidins are key protective components of coffee. Inverse dose-dependent correlation of coffee consumption with liver diseases was found in clinical and population studies. Coffee is non-pharmacological tool of primary and secondary prevention of chronic liver diseases. Review of published data together with supposed mechanisms of hepatoprotection are given.Key words: coffee - hepatoprotective effect - metaanalysis.
Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik
2012-01-01
Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.
Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana
2016-02-04
Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. Copyright © 2015. Published by Elsevier Inc.
Kuntz, Sabine; Kunz, Clemens; Herrmann, Johannes; Borsch, Christian H; Abel, Georg; Fröhling, Bettina; Dietrich, Helmut; Rudloff, Silvia
2014-09-28
Anthocyanins (ACN) can exert beneficial health effects not only through their antioxidative potential but also through modulation of inflammatory parameters that play a major role in CVD. A randomised cross-over study was carried out to investigate the effects of ACN-rich beverage ingestion on oxidation- and inflammation-related parameters in thirty healthy female volunteers. The participants consumed 330 ml of beverages (placebo, juice and smoothie with 8·9 (SD 0·3), 983·7 (SD 37) and 840·9 (SD 10) mg/l ACN, respectively) over 14 d. Before and after each intervention, blood and 24 h urine samples were collected. Plasma superoxide dismutase (SOD) and catalase activities increased significantly after ACN-rich beverage ingestion (P<0·001), whereas after placebo juice ingestion no increase could be observed. Plasma glutathione peroxidase and erythrocyte SOD activities were not affected. An increase in Trolox equivalent antioxidant capacity could also be observed after juice (P<0·001) and smoothie (P<0·01) ingestion. The plasma and urinary concentrations of malondialdehyde decreased after ACN-rich beverage ingestion (P<0·001), whereas those of 8-OH-2-deoxyguanosine as well as inflammation-related parameters (IL-2, -6, -8 and -10, C-reactive peptide, soluble cluster of differentiation 40 ligand, TNF-α, monocyte chemoattractant protein-1 and soluble cell adhesion molecules) were not affected. Thus, ingestion of ACN-rich beverages improves antioxidant enzyme activities and plasma antioxidant capacity, thus protecting the body against oxidative stress, a hallmark of ongoing atherosclerosis.
Aguilar-Toalá, J E; Astiazarán-García, H; Estrada-Montoya, M C; Garcia, H S; Vallejo-Cordoba, B; González-Córdova, A F; Hernández-Mendoza, A
2018-06-03
It has been recognized that lactic acid bacteria exhibit antioxidant properties, which have been mainly endorsed to the intact viable bacteria. However, recent studies have shown that intracellular content (IC) may also be good sources of antioxidative metabolites, which may potentially contribute to oxidative homeostasis in vivo. Hence, the modulatory effect of the intracellular content of Lactobacillus casei CRL 431 (IC431) on aflatoxin B 1 (AFB 1 )-induced oxidative stress in rats was evaluated on the basis of its influence on hepatic lipid peroxidation (LPO), antioxidant status-antioxidant capacity (TAC), catalase (CAT), and glutathione peroxidase (GPx) activities; and on the oxidative stress index (OSi). Results demonstrated that CAT and GPx activities, and TAC, determined in plasma samples, were significantly (P < 0.05) higher in rats treated with AFB 1 plus IC431 (3.98 μM/min/mg protein, 1.88 μM/min/mg protein, and 238.7 μM Trolox equivalent, respectively) than AFB 1 -treated rats (3.47 μM/min/mg protein, 1.46 μM/min/mg protein, and 179.7 μM Trolox equivalent, respectively). Furthermore, plasma and liver tissue samples from rats treated with AFB 1 plus IC431 showed significantly (P < 0.05) lower LPO values (52 and 51%, respectively) and OSi (59 and 51%, respectively) than AFB 1 -treated rats. Hence, our results proved that the intracellular content of Lact. casei CRL 431 contains metabolites that are capable to modulate the antioxidant defense systems in living organism, which may help to ameliorate the damage associated to AFB 1 -induced oxidative stress.
Mohamed, Omnia Ismail; El-Nahas, Abeer Fekry; El-Sayed, Yasser Said; Ashry, Khaled Mohamed
2016-07-01
Spices and herbs are recognized sources of natural antioxidants that can protect from oxidative stress, thus play an important role in chemoprevention of liver diseases. Ginger is used worldwide primarily as a spicy condiment. This study evaluated the ability of ginger extract (GE) to ameliorate oxidative-hepatic toxicity induced by lead acetate (PbAc) in rats. Five groups of animals were used: group I kept as control; groups II, IV, and V received PbAc (1 ppm in drinking water daily for 6 weeks, and kept for an additional 2 weeks without PbAc exposure); group III treated orally with GE (350 mg/kg body weight, 4 d per week) for 6 weeks; group IV (protective) received GE for 2 weeks before and simultaneously with PbAc; and group V (treatment) received GE for 2 weeks after PbAc exposure. GC-MS analysis of GE revealed its content of gingerol (7.09%), quercetin (3.20%), dl-limonene (0.96%), and zingiberene (0.18%). Treatment of PbAc-treated rats with GE has no effect on hepatic Pb concentrations. However, it maintained serum aspartate aminotransferase level, increased hepatic glutathione (157%), glutathione S-transferase (GST) (228%), glutathione peroxidase (GPx) (138%) and catalase (CAT) (112%) levels, and reduced hepatic malondialdehyde (80%). Co-treatment of PbAc group with GE upregulated mRNA expression of antioxidant genes: GST-α1 (1.4-fold), GPx1 (1.8-fold), and CAT (8-fold), while post-treatment with GE upregulated only mRNA expression of GPx1 (1.5-fold). GE has an antioxidant protective efficacy against PbAc-induced hepatotoxicity, which appears more effective than its therapeutic application. However, the changes in antioxidant gene expression were not reflected at the protein level.
Bernal, Cristina; Martín-Pozuelo, Gala; Lozano, Ana B; Sevilla, Angel; García-Alonso, Javier; Canovas, Manuel; Periago, María J
2013-11-01
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders, covering steatosis to nonalcoholic steatohepatitis (NASH). Dietary factors may modulate its evolution, and antioxidants have been proposed as therapeutic agents. Among them, lycopene has been demonstrated to prevent the development of steatohepatitis and even to inhibit NASH-promoted early hepatocarcinogenesis induced by a high-fat diet in rats. These conclusions have been related to its antioxidant activity; however, NAFLD is more complex than a simple redox imbalance state since it disturbs several metabolic systems in the liver. In consequence, there is a lack of information related to the action of lycopene beyond antioxidant biomarkers. In this work, NAFLD was induced in rats using a hypercholesterolemic and high-fat diet to evaluate the effect of lycopene consumption from tomato juice on liver metabolism. Several classical antioxidant biomarkers related to NAFLD were measured to check the state of this disease after 7 weeks of the controlled diet. Moreover, a metabolomics platform was applied to measure more than 70 metabolites. Results showed clear differences in the classical antioxidant biomarkers as well as in the metabolic pattern, attending not only to the diet but also to the intake of lycopene from tomato juice. Interestingly, tomato juice administration partially reverted the metabolic pattern from a high-fat diet to a normal diet even in metabolites not related to the redox state, which could lead to new targets for therapeutic agents against NAFLD and to achieving a better understanding of the role of lycopene in liver metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.
Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun
2013-10-15
l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.
Singh, Jyotsna; Kakkar, Poonam
2013-12-01
A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.
The role of oxidative stress in the pathophysiology of hypertension.
Rodrigo, Ramón; González, Jaime; Paoletto, Fabio
2011-04-01
Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO), which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However, under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E, has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic strategies that could prevent or treat this disorder.
Xue, Bo; Song, Jiao; Liu, Longzhou; Luo, Jingxian; Tian, Guangming; Yang, Ye
2017-10-01
This study investigated the effects of epigallocatechin gallate (EGCG) on the growth performance and antioxidant capacity of 35-d-old broilers exposed to heat stress. Broilers, 14 d of age, were divided into four groups with six replicates per group (eight chickens/replicate). Thermoneutral group (Group TN) was fed the basal diet and maintained at 28°C for 24 h/d. The heat-stressed groups were housed at 35°C for 12 h/d and 28°C for 12 h/d and fed the basal diet supplemented with EGCG at 0, 300 and 600 mg/kg diet (Groups HS0, HS 300 and HS600, respectively). Compared with Group TN, heat-stressed groups showed significantly reduced gain, feed intake and serum total protein and glucose levels; inhibited serum alkaline phosphatase activities; and increased serum levels of uric acid, cholesterol and triglycerides and the activity of serum creatine kinase, lactate dehydrogenase and aspartate aminotransferase (p < 0.05). Compared with Group HS0, Group HS600 exhibited an increased gain and feed intake; and normalised blood parameters and enzyme activities. Compared with Group TN, the expression of antioxidant-related liver proteins was decreased in Group HS0 and increased in Groups HS300 and HS600 (p < 0.05). The results suggest that EGCG can improve the growth performance and alleviate the oxidant damage by modulating the antioxidant properties of broilers.
Poulose, Shibu M; Bielinski, Donna F; Carey, Amanda; Schauss, Alexander G; Shukitt-Hale, Barbara
2017-06-01
Açaí (Euterpe spp.), an exotic palm fruit, has recently emerged as a promising source of natural antioxidants with wide pharmacological and nutritional value. In this study, two different species of açaí pulp extracts, naturally grown in two distinct regions of the Amazon, namely, Euterpe oleracea Mart. (habitat: Brazilian floodplains of the Amazon) and Euterpe precatoria Mart. (habitat: Bolivian Amazon), were studied for their effects on brain health and cognition. Neurochemical analyses were performed in critical brain regions associated with memory and cognition of 19-month-old açaí-fed rats, in whom the cognitive benefits of açaí had been established. Results indicated significant reductions (P< 0.05) in prooxidant NADPH-oxidoreductase-2 (NOX2) and proinflammatory transcription factor NF-κB in açaí-fed rats. Measurement of Nrf2 expression, a transcription factor for antioxidant enzymes, and a possible link between oxidative stress, neuroinflammation and autophagy mechanisms, indicated significant overexpression (P<0.005) in the hippocampus and frontal cortex of the açaí-fed rats. Furthermore, significant activation of endogenous antioxidant enzymes GST and SOD were also observed in the açaí-fed animals when compared to control. Analysis of autophagy markers such as p62, phospho-mTOR, beclin1 and MAP1B-LC3 revealed differential expression in frontal cortex and hippocampus, mostly indicating an upregulation in the açaí-fed rats. In general, results were more profound for EP than EO in hippocampus as well as frontal cortex. Therefore, an açaí-enriched diet could possibly modulate Nrf2, which is known to modulate the intracellular redox status, thereby regulating the ubiquitin-proteosomal pathway, ultimately affecting cognitive function in the aging brain.
Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment.
Cazarin, Cinthia Bb; da Silva, Juliana K; Colomeu, Talita C; Batista, Angela G; Vilella, Conceição A; Ferreira, Anderson L; Junior, Stanislau Bogusz; Fukuda, Karina; Augusto, Fabio; de Meirelles, Luciana R; Zollner, Ricardo de L; Junior, Mário R Maróstica
2014-05-01
Inflammatory bowel disease is a chronic relapsing disease that affects millions of people worldwide; its pathogenesis is influenced by genetic, environmental, microbiological, and immunological factors. The aim of this study was to evaluate the effects of short- and long-term Passiflora edulis peel intake on the antioxidant status, microbiota, and short-chain fatty acids formation in rats with 2,4,6-trinitrobenzenesulphonic acid-induced colitis using two "in vivo" experiments: chronic (prevention) and acute (treatment). The colitis damage score was determined using macroscopic and microscopic analyses. In addition, the antioxidant activity in serum and other tissues (liver and colon) was evaluated. Bifidobacteria, lactobacilli, aerobic bacteria and enterobacteria, and the amount of short-chain fatty acids (acetic, butyric, and propionic acids) in cecum content were counted. Differences in the colon damage scores were observed; P. edulis peel intake improved serum antioxidant status. In the treatment protocol, decreased colon lipid peroxidation, a decreased number of aerobic bacteria and enterobacteria, and an improvement in acetic and butyric acid levels in the feces were observed. An improvement in the bifidobacteria and lactobacilli was observed in the prevention protocol. These results suggested that P. edulis peel can modulate microbiota and could be used as source of fiber and polyphenols in the prevention of oxidative stress through the improvement of serum and tissue antioxidant status.
Li, Yiwei; Go, Vay Liang W; Sarkar, Fazlul H
2015-01-01
Pancreatic cancer is one of the most aggressive malignancies in US adults. Experimental studies have found that antioxidant nutrients could reduce oxidative DNA damage, suggesting that these antioxidants may protect against pancreatic carcinogenesis. Several epidemiologic studies showed that dietary intake of antioxidants was inversely associated with the risk for pancreatic cancer, demonstrating the inhibitory effects of antioxidants on pancreatic carcinogenesis. Moreover, nutraceuticals, the anticancer agents from diet or natural plants, have been found to inhibit the development and progression of pancreatic cancer through the regulation of cellular signaling pathways. Importantly, nutraceuticals also up-regulate the expression of tumor-suppressive microRNAs (miRNAs) and down-regulate the expression of oncogenic miRNAs, leading to the inhibition of pancreatic cancer cell growth and pancreatic cancer stem cell self-renewal through modulation of cellular signaling network. Furthermore, nutraceuticals also regulate epigenetically deregulated DNAs and miRNAs, leading to the normalization of altered cellular signaling in pancreatic cancer cells. Therefore, nutraceuticals could have much broader use in the prevention and/or treatment of pancreatic cancer in combination with conventional chemotherapeutics. However, more in vitro mechanistic experiments, in vivo animal studies, and clinical trials are needed to realize the true value of nutraceuticals in the prevention and/or treatment of pancreatic cancer.
Li, Yiwei; Go, Vay Liang W.; Sarkar, Fazlul H.
2014-01-01
Pancreatic cancer is one of the most aggressive malignancies in US adults. The experimental studies have found that antioxidant nutrients could reduce oxidative DNA damage, suggesting that these antioxidants may protect against pancreatic carcinogenesis. Several epidemiologic studies showed that dietary intake of antioxidants was inversely associated with the risk of pancreatic cancer, demonstrating the inhibitory effects of antioxidants on pancreatic carcinogenesis. Moreover, nutraceuticals, the anti-cancer agents from diet or natural plants, have been found to inhibit the development and progression of pancreatic cancer through the regulation of cellular signaling pathways. Importantly, nutraceuticals also up-regulate the expression of tumor suppressive miRNAs and down-regulate the expression of oncogenic miRNAs, leading to the inhibition of pancreatic cancer cell growth and pancreatic Cancer Stem Cell (CSC) self-renewal through modulation of cellular signaling network. Furthermore, nutraceuticals also regulate epigenetically deregulated DNAs and miRNAs, leading to the normalization of altered cellular signaling in pancreatic cancer cells. Therefore, nutraceuticals could have much broader use in the prevention and/or treatment of pancreatic cancer in combination with conventional chemotherapeutics. However, more in vitro mechanistic experiments, in vivo animal studies, and clinical trials are needed to realize the true value of nutraceuticals in the prevention and/or treatment of pancreatic cancer. PMID:25493373
Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum
2016-07-01
We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.
Velalopoulou, Anastasia; Tyagi, Sonia; Pietrofesa, Ralph A.; Arguiri, Evguenia; Christofidou-Solomidou, Melpo
2015-01-01
Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure. PMID:26703588
Velalopoulou, Anastasia; Tyagi, Sonia; Pietrofesa, Ralph A; Arguiri, Evguenia; Christofidou-Solomidou, Melpo
2015-12-22
Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed's protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure.
2014-01-01
Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518
Intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia.
Menezes de Oliveira, Alane Cabral; Albuquerque Santos, Arianne; Rodrigues Bezerra, Alexandra; Machado Tavares, Myrian Cicyanne; Rocha de Barros, Amanda Maria; Costa Ferreira, Raphaela
2016-09-01
Oxidative stress appears to play a critical role in the pathogenesis of preeclampsia. Evidence suggests that adequate intake of antioxidants can modulate this condition. The objective of this study was to assess the intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia. In a cross-sectional study in the public health network of the city of Maceió, Brazil, a dietary survey was performed consisting of 24-hour food recalls, with subsequent adjustment of nutrients using the estimated average requirement as the cutoff point, and a questionnaire on frequency of consumption of antioxidants. We studied 90 pregnant women with preeclampsia (PWP) and 90 pregnant women without preeclampsia (PWoP) with mean ages of 25.8±6.7 years and 24.1±6.2 years (p=0.519), respectively. A low mean intake of antioxidants (vitamin A, selenium, zinc and copper) was observed in both PWP and PWoP, although intakes of vitamin A (p=0.045) and selenium (p=0.008) were higher in PWoP. In addition, we observed high coefficients of variation in nutrient intakes in both groups, which were higher for vitamin C (p<0.001), vitamin A (p=0.006) and copper (p=0.005) in PWP. Consumption of antioxidant nutrients by pregnant women with preeclampsia is inadequate, with considerable daily variations in intake, which points to a need for nutrition education strategies aimed at improving intakes, because diet is without doubt a key factor in the modulation of oxidative stress caused by preeclampsia. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract
Iravani, S.; Zolfaghari, B.
2011-01-01
In everyday life, our body generates free radicals and other reactive oxygen species which are derived either from the endogenous metabolic processes (within the body) or from external sources. Many clinical and pharmacological studies suggest that natural antioxidants can prevent oxidative damage. Among the natural antioxidant products, Pycnogenol® (French Pinus pinaster bark extract) has been received considerable attention because of its strong free radical-scavenging activity against reactive oxygen and nitrogen species. P. pinaster bark extract (PBE) contains polyphenolic compounds (these compounds consist of catechin, taxifolin, procyanidins of various chain lengths formed by catechin and epicatechin units, and phenolic acids) capable of producing diverse potentially protective effects against chronic and degenerative diseases. This herbal medication has been reported to have cardiovascular benefits, such as vasorelaxant activity, angiotensin-converting enzyme inhibiting activity, and the ability to enhance the microcirculation by increasing capillary permeability. Moreover, effects on the immune system and modulation of nitrogen monoxide metabolism have been reported. This article provides a brief overview of clinical studies describing the beneficial and health-promoting effects of PBE. PMID:22049273
Karathedath, Sreeja; Rajamani, Bharathi M; Musheer Aalam, Syed Mohammed; Abraham, Ajay; Varatharajan, Savitha; Krishnamurthy, Partha; Mathews, Vikram; Velayudhan, Shaji Ramachandran; Balasubramanian, Poonkuzhali
2017-01-01
Cytarabine (Ara-C) and Daunorubicin (Dnr) forms the backbone of acute myeloid leukemia (AML) therapy. Drug resistance and toxic side effects pose a major threat to treatment success and hence alternate less toxic therapies are warranted. NF-E2 related factor-2 (Nrf2), a master regulator of antioxidant response is implicated in chemoresistance in solid tumors. However, little is known about the role of Nrf2 in AML chemoresistance and the effect of pharmacological inhibitor brusatol in modulating this resistance. Primary AML samples with high ex-vivo IC50 to Ara-C, ATO, Dnr had significantly high NRF2 RNA expression. Gene-specific knockdown of NRF2 improved sensitivity to these drugs in resistant AML cell lines by decreasing the expression of downstream antioxidant targets of Nrf2 by compromising the cell's ability to scavenge the ROS. Treatment with brusatol, a pharmacological inhibitor of Nrf2, improved sensitivity to Ara-C, ATO, and Dnr and reduced colony formation capacity. AML cell lines stably overexpressing NRF2 showed increased resistance to ATO, Dnr and Ara-C and increased expression of downstream targets. This study demonstrates that Nrf2 could be an ideal druggable target in AML, more so to the drugs that function through ROS, suggesting the possibility of using Nrf2 inhibitors in combination with chemotherapeutic agents to modulate drug resistance in AML.
Wu, Chin-San
2017-09-01
The structural, antioxidant and cytocompatibility properties of membranes prepared from polyhydroxyalkanoate (PHA) and spent coffee ground (SCG) blends (PHA/SCG) were studied. Acrylic acid-grafted PHA (PHA-g-AA) was used to enhance the desirable characteristics of these membranes, which had better tensile properties than the corresponding PHA/SCG membranes. The water resistance of the PHA-g-AA/SCG membranes was greater than that of the PHA/SCG membranes, and a cytocompatibility evaluation with mouse normal tail fibroblasts (FBs) indicated that both materials were nontoxic. Cell cycle assays of FBs on PHA/SCG and PHA-g-AA/SCG membrane samples were not affected by the DNA content related to damage. Moreover, SCG enhanced the saccharide and polyphenol contents, and antioxidant properties, of the PHA-g-AA/SCG and PHA/SCG membranes. Therefore, we analysed the effects of these compounds' membranes on melanogenesis in B16-F10 melanoma cells. The results demonstrated that PHA/SCG and PHA-g-AA/SCG membranes reduced cellular tyrosinase activities in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
Nepali, Sarmila; Ki, Hyeon-Hui; Lee, Ji-Hyun; Lee, Hoon-Yeon; Kim, Dae-Ki; Lee, Young-Mi
2017-07-01
Hepatic injury occurs frequently during sepsis, and polysaccharides isolated from plants have been reported to have antiinflammatory and antioxidant effects in various models. However, the effect of wheatgrass-derived polysaccharide (WGP) has not been previously studied. In the present study, we investigated the effect of WGP on lipopolysaccharide (LPS)-induced hepatic injury in mice. Mice were pre-treated with WGP (100 or 200 mg/kg daily for 2 days) and then challenged with LPS (1 mg/kg, intraperitoneal), and sacrificed after 12 h. Wheatgrass-derived polysaccharide decreased serum aminotransferase levels and histological changes as compared with LPS-challenged mice. Wheatgrass-derived polysaccharide also significantly inhibited LPS-induced pro-inflammatory cytokine up-regulation and improved the oxidative status of liver tissues. Furthermore, these effects were found to be mediated by the suppression of the transcriptional activity of nuclear factor-kappa B (NF-κB), due to inhibitions of transforming growth factor beta (TGF-β)-activated kinase (TAK)-1 phosphorylation and inhibition of kappa B (IκB)-α degradation. In addition, WGP inhibited the activations of mitogen-activated protein kinases (MAPKs). Wheatgrass-derived polysaccharide also attenuated hepatic cell death by modulating caspase-3 and apoptosis associated mitochondrial proteins, such as, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax). Taken together, WGP possesses antiinflammatory, anti-oxidant and anti-apoptotic activity and ameliorates LPS-induced liver injury in mice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
2018-01-01
BACKGROUND/OBJECTIVES Glutathione s-transferase (GST) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. SUBJECTS/METHODS Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. RESULTS After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of β-carotene, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. CONCLUSIONS The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics. PMID:29629028
Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun
2014-01-01
Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant potential clearly differ between salmonid and cyprinid species. PMID:24740135
Martinez, Erin E.; Darke, Amy K.; Tangen, Catherine M.; Goodman, Phyllis J.; Fowke, Jay H.; Klein, Eric A.; Abdulkadir, Sarki A.
2014-01-01
NKX3.1 is an androgen-regulated prostate tumor suppressor protein. We previously found that antioxidant administration (N-acetylcysteine) in the Nkx3.1 knock-out mouse model promoted prostate epithelial proliferation, suggesting that NKX3.1 activity modifies the effect of antioxidant administration on prostate carcinogenesis. Interestingly, administration of the antioxidant vitamin E significantly increased prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT), suggesting our animal experiments may be relevant to humans. To determine whether NKX3.1 played a role in increased human prostate cancer risk associated with antioxidant administration in SELECT, we investigated the joint risk of antioxidant administration and NKX3.1 genotypes previously found to be associated with decreased NKX3.1 mRNA expression (rs11781886) or DNA-binding activity in vitro (rs2228013) in the SELECT biomarker case-cohort sub-study (1,866 cases; 3135 non-cases). Multivariable COX regression models were developed to determine the joint association of NKX3.1 genotypes with administration of vitamin E, selenium, or the combination, compared to placebo. The CC genotype at rs11781886 combined with selenium administration was associated with increased overall prostate cancer risk (HR 1.676, 95% CI 1.011-2.777, p=0.045) and low grade prostate cancer risk (HR 1.811, 95% CI 1.016-3.228, p=0.0441). Similarly, the rs11781886 minor allele (CC+CT) combined with vitamin E administration was significantly associated with increased prostate cancer risk (HR 1.450, 95% CI 1.117-1.882, p=0.0052). Our results indicate that variation in NKX3.1 expression combined with selenium or vitamin E treatment modifies the risk of prostate cancer. Genetic background may modulate the effects of antioxidant supplementation thought to act as chemoprevention agents. PMID:24894197
Palafox-Carlos, Hugo; Ayala-Zavala, Jesús Fernando; González-Aguilar, Gustavo A
2011-01-01
Antioxidants are abundant compounds primarily found in fresh fruits and vegetables, and evidence for their role in the prevention of degenerative diseases is continuously emerging. However, the bioaccessibility and bioavailability of each compound differs greatly, and the most abundant antioxidants in ingested fruit are not necessarily those leading to the highest concentrations of active metabolites in target tissues. Fruit antioxidants are commonly mixed with different macromolecules such as carbohydrates, lipids, and proteins to form a food matrix. In fruits and vegetables, carbohydrates are the major compounds found, mainly in free and conjugated forms. Dietary fiber, the indigestible cell wall component of plant material, is considered to play an important role in human diet and health. Most studies on antioxidant bioavailability are focused on foods and beverages from which antioxidants are easily released. There is evidence indicating that food microstructure affects the bioaccessibility and bioavailability of several nutrients, referring mostly to antioxidants. Nevertheless, the specific role of dietary fiber in the absorption of antioxidants has not been widely discussed. In this context, the purpose of the present review is to compile and analyze evidence relating to the association between dietary fiber and antioxidants, and the physical and chemical interactions that modulate their release from the chyme in the gastrointestinal tract. PMID:21535705
Ricevuto, E; Benedetti, M; Regoli, F; Spicer, J I; Gambi, M C
2015-12-01
Ocean acidification (OA) is occurring at a fast rate, resulting in changes of carbonate chemistry in the oceans and in lowering of the pH. Previous studies have documented significant changes in the antioxidant defenses of marine species in response to OA. Here, selected polychaete species, Platynereis dumerilii, Polyophthalmus pictus and Syllis prolifera, were sampled from a natural CO2 vent system (pH = 7.3) and from a non-venting 'control' site (pH = 8.1), and reciprocally transplanted in these areas for 30 days. Total antioxidant capacity toward different forms of oxyradicals was compared in native and transplanted polychaetes: the aim was to assess whether the environmental conditions at the vent site would act as a prooxidant stressor, and the capability of polychaetes to modulate their antioxidant capacity to counteract a varied oxyradicals formation. None of the investigated species enhanced the antioxidant potential during the experiment. A significant reduction of the capability to neutralize different forms of oxyradicals was observed in P. pictus and, partially, in S. prolifera when transplanted from control to naturally-acidified conditions. On the other hand, populations of P. dumerilii originating from the vent and of S. prolifera from both control and acidified sites, showed higher constitutive antioxidant efficiency toward peroxyl radicals and peroxynitrite, which may allow them to cope with short-term and chronic exposure to higher oxidative pressure without further enhancement of antioxidant defenses. Since low pH - high pCO2 is the greatest environmental difference between the control and the vent sites, we suggest that the pro-oxidant challenge due to such peculiarities may have different biological consequences in different polychaete species. Some appear more susceptible to oxidative effects, while others acquire a long term acclimatization to vent conditions through the enhancement of their basal antioxidant protection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K
2016-08-28
Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Britney; Li, Jing; Adhikari, Jagat
Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulatemore » nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.« less
Sulfur Mustard Toxicity Following Dermal Exposure
Paromov, Victor; Suntres, Zacharias; Smith, Milton; Stone, William L.
2007-01-01
Objective: Sulfur mustard (bis-2-(chloroethyl) sulfide) is a chemical warfare agent (military code: HD) causing extensive skin injury. The mechanisms underlying HD-induced skin damage are not fully elucidated. This review will critically evaluate the evidence showing that oxidative stress is an important factor in HD skin toxicity. Oxidative stress results when the production of reactive oxygen (ROS) and/or reactive nitrogen oxide species (RNOS) exceeds the capacity of antioxidant defense mechanisms. Methods: This review will discuss the role of oxidative stress in the pathophysiology of HD skin toxicity in both in vivo and in vitro model systems with emphasis on the limitations of the various model systems. Evidence supporting the therapeutic potential of antioxidants and antioxidant liposomes will be evaluated. Antioxidant liposomes are effective vehicles for delivering both lipophilic (incorporated into the lipid bilayers) and water-soluble (encapsulated in the aqueous inner-spaces) antioxidants to skin. The molecular mechanisms interconnecting oxidative stress to HD skin toxicity are also detailed. Results: DNA repair and inflammation, in association with oxidative stress, induce intracellular events leading to apoptosis or to a programmable form of necrosis. The free radical, nitric oxide (NO), is of considerable interest with respect to the mechanisms of HD toxicity. NO signaling pathways are important in modulating inflammation, cell death, and wound healing in skin cells. Conclusions: Potential future directions are summarized with emphasis on a systems biology approach to studying sulfur mustard toxicity to skin as well as the newly emerging area of redox proteomics. PMID:18091984
Giuliani, Maria Elisa; Benedetti, Maura; Arukwe, Augustine; Regoli, Francesco
2013-06-15
Antioxidant and biotransformation pathways are widely studied in marine organisms exposed to environmental stressors. However, mechanisms of responses and links between different intracellular levels are not always easy to elucidate and conflicting results are frequently observed between molecular and enzymatic data. In this study, transcriptional and catalytic responses of antioxidant and biotransformation parameters were analyzed after a 4-week exposure of a marine invertebrate, Mytilus galloprovincialis, to chemical mixtures from low polluted and highly polluted sediments. A significant, dose-dependent bioaccumulation was observed for polycyclic aromatic hydrocarbons, especially low molecular weight compounds. Among antioxidant defences, catalase and glutathione peroxidases did not exhibit variations in enzymatic activity, while the corresponding gene transcriptions were up- and down-regulated, respectively; unchanged mRNA levels of superoxide dismutase confirmed the non-synchronous pathways of variations for such antioxidants. Biotransformation responses also revealed inconsistent trends between transcriptional and catalytic variations of glutathione S-transferases, and a significant increase in mRNA levels for cytochrome P450 3A1. The overall results indicated that transcriptional responses might be sensitive but do not necessarily correspond to functional changes, being more useful as "exposure" rather than "effect" biomarkers. Data on gene transcription and catalytic activities should be carefully interpreted when assessing the impact of chemical pollutants and additional studies are needed on modulation of post-transcriptional mechanisms by environmental stressors. Copyright © 2013 Elsevier B.V. All rights reserved.
Fontani, Filippo; Marcucci, Tommaso; Picariello, Lucia; Tonelli, Francesco; Vincenzini, Maria Teresa; Iantomasi, Teresa
2014-04-15
Matrix metalloproteinases (MMPs) play a critical role in inflammation and ulcerations in gut of Crohn׳s disease (CD) patients. Intestinal subepithelial myofibroblasts (ISEMFs) secrete MMPs in response to inflammatory stimuli. Previous data showed in CD-ISEMFs increased oxidative status. The aim of this study was to investigate the role of ISEMFs in modulating the production of MMP-3 and TIMP-1, an inhibitor of MMPs activity. A relationship among oxidative stress, activity of antioxidants and MMP-3/TIMP-1 was also studied. ISEMFs isolated from CD patient colon and human colonic cell line of myofibroblasts (18Co) were used. Oxidative state was modulated by buthionine sulfoximine, an inhibitor of glutathione (GSH) synthesis, and N-acetylcysteine (NAC), GSH precursor. An up-regulation of MMP-3 due to increased oxidative state was found in CD-ISEMFs. Stimulation by tumor necrosis factor (TNF)α increased further MMP-3 levels. On the contrary, no change in TIMP-1 production was determined. NAC treatment decreased MMP-3 production in CD-ISMEFs and removed the enhancement due to TNFα. Similar effects were observed in 18Co cells treated with curcumin, antioxidant with anti-inflammatory properties. The involvement of MAPKs on MMP-3 redox regulation was also shown. This study demonstrates the involvement of ISEMFs and high oxidative state in the increased MMP-3 production found in intestinal mucosa of CD patients. NAC and curcumin normalize MMP-3 levels mainly in TNFα stimulated cells. A modulation of MMP-3 production by NAC and curcumin due to their direct action on transcriptional factors has been also suggested. Therefore, they could have a therapeutic use for the prevention and treatment of fistulaes in CD. Copyright © 2014 Elsevier Inc. All rights reserved.
Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells.
Quesada, Isabel M; Bustos, Mario; Blay, Mayte; Pujadas, Gerard; Ardèvol, Anna; Salvadó, M Josepa; Bladé, Cinta; Arola, Lluís; Fernández-Larrea, Juan
2011-02-01
Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins. Copyright © 2011 Elsevier Inc. All rights reserved.
Hennig, Bernhard; Ettinger, Adrienne S.; Jandacek, Ronald J.; Koo, Sung; McClain, Craig; Seifried, Harold; Silverstone, Allen; Watkins, Bruce; Suk, William A.
2007-01-01
Background Nutrition and lifestyle are well-defined modulators of chronic diseases. Poor dietary habits (such as high intake of processed foods rich in fat and low intake of fruits and vegetables), as well as a sedentary lifestyle clearly contribute to today’s compromised quality of life in the United States. It is becoming increasingly clear that nutrition can modulate the toxicity of environmental pollutants. Objectives Our goal in this commentary is to discuss the recommendation that nutrition should be considered a necessary variable in the study of human disease associated with exposure to environmental pollutants. Discussion Certain diets can contribute to compromised health by being a source of exposure to environmental toxic pollutants. Many of these pollutants are fat soluble, and thus fatty foods often contain higher levels of persistent organics than does vegetable matter. Nutrition can dictate the lipid milieu, oxidative stress, and antioxidant status within cells. The modulation of these parameters by an individual’s nutritional status may have profound affects on biological processes, and in turn influence the effects of environmental pollutants to cause disease or dysfunction. For example, potential adverse health effects associated with exposure to polychlorinated biphenyls may increase as a result of ingestion of certain dietary fats, whereas ingestion of fruits and vegetables, rich in antioxidant and anti-inflammatory nutrients or bioactive compounds, may provide protection. Conclusions We recommend that future directions in environmental health research explore this nutritional paradigm that incorporates a consideration of the relationships between nutrition and lifestyle, exposure to environmental toxicants, and disease. Nutritional interventions may provide the most sensible means to develop primary prevention strategies of diseases associated with many environmental toxic insults. PMID:17450213
Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto
2013-10-01
The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Winter, Frank Stéphane; Emakam, Francois; Kfutwah, Anfumbom; Hermann, Johannes; Azabji-Kenfack, Marcel; Krawinkel, Michael B.
2014-01-01
Dietary supplements are often used to improve the nutritional status of people living with HIV/AIDS (PLHIV). Arthrospira platensis (Asp), also known as Spirulina, is a cyanobacterium rich in proteins and micronutrients. Cell and animal trials described immune-modulating, antiretroviral and antioxidant activities. This pilot study describes the effects of the supplementation of 5 g/day of Asp on a pre-highly-active antiretroviral therapy (pre-HAART), HIV-infected, adult female population. It was conducted as a three-month randomized controlled trial (RCT) that compared a cup supplementation of five grams/day of Asp with a placebo of equal protein content and energy. The study included 73 HIV-infected women. The immediate outcome variables were CD4 T-cells, viral load and immune activation by CD8 T-cells expressing CD38. The antioxidant status was assessed by way of the total antioxidant capacity of the serum (TAOS). The renal function was documented by way of creatinine, urea and the calculated glomerular filtration rate. Statistical analyses were carried out with non-parametric tests, and the effect size of each interaction was calculated. No differences in the immunological and virological markers between the Asp and the placebo group could be observed. In the placebo group, 21 of 30 patients (70%) developed concomitant events, while in the Asp group, only 12 of 28 patients (43%) did. Both groups registered a significant weight increase; 0.5 kg (p < 0.05) in the Asp group and 0.65 kg (p < 0.05) in the placebo group. The antioxidant capacity increase of 56 (1–98) µM for Asp was significantly different from the decrease observed in the placebo group (p < 0.001). A slight increase in the creatinine level of 0.1 g/dL (p < 0.001) was observed in the Asp group, and no effect was observed in the urea levels. The improvement of the antioxidant capacity under Asp, shown for the first time on PLHIV, could become a focus for future research on the nutritional and health effects of Spirulina. The observed slight, but significant increase of serum creatinine needs further evaluation, especially with varying doses of Asp. PMID:25057105
Magnoni, Leonardo J.; Martos-Sitcha, Juan Antonio; Queiroz, Augusto; Calduch-Giner, Josep Alvar; Gonçalves, José Fernando Magalhães; Rocha, Cristina M. R.; Abreu, Helena T.; Schrama, Johan W.; Pérez-Sánchez, Jaume
2017-01-01
ABSTRACT Intensive aquaculture practices involve rearing fish at high densities. In these conditions, fish may be exposed to suboptimal dissolved O2 levels with an increased formation of reactive O2 species (ROS) in tissues. Seaweeds (SW) contain biologically active substances with efficient antioxidant capacities. This study evaluated the effects of dietary supplementation of heat-treated SW (5% Gracilaria vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea bream subjected to a hypoxic challenge. 168 fish (104.5 g average weight) were distributed in 24 tanks, in which eight tanks were fed one of three experimental diets for 34 days: (i) a control diet without SW supplementation, (ii) a control diet supplemented with Ulva, or (iii) a control diet with Gracilaria. Thereafter, fish from 12 tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia (1.3 mg O2 l−1) and subsequent recovery normoxia (8.6 mg O2 l−1). Hypoxic fish showed an increase in hematocrit values regardless of dietary treatment. Dietary modulation of the O2-carrying capacity was conspicuous during recovery, as fish fed SW supplemented diets displayed significantly higher haemoglobin concentration than fish fed the control diet. After the challenge, survival rates in both groups of fish fed SW were higher, which was consistent with a decrease in hepatic lipid peroxidation in these groups. Furthermore, the hepatic antioxidant enzyme activities were modulated differently by changes in environmental O2 condition, particularly in sea bream fed the Gracilaria diet. After being subjected to hypoxia, the gene expression of antioxidant enzymes and molecular chaperones in liver and heart were down regulated in sea bream fed SW diets. This study suggests that the antioxidant properties of heat-treated SW may have a protective role against oxidative stress. The nature of these compounds and possible mechanisms implied are currently being investigated. PMID:28495962
Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan
2016-01-01
Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453
Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang
2017-08-01
The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.
Probiotics as beneficial agents in the management of diabetes mellitus: a systematic review.
Razmpoosh, Elham; Javadi, Maryam; Ejtahed, Hanieh-Sadat; Mirmiran, Parvin
2016-02-01
Probiotics have been suggested to play an important role in the management of diabetes. We conducted a systematic review on the role of probiotics in modulating parameters related to diabetes in animal and human experiments. We searched Pubmed, Scopus and Cochrane central until June 2014, concerning the effects of probiotics on hyperglycemia, hyperinsulinemia and their anti-diabetic efficacies by modulating the activities of proinflammatory and antioxidant factors. Our initial search retrieved 1120 reports. After screening titles and abstracts, 72 full-text articles were reviewed for eligibility. Ultimately, 33 articles met our inclusion criteria consisting of five human and twenty eight animal reports. Lactobacillus strains were, in particular, used in all studies with or without other strains. We found that probiotics have beneficial effects on glycemic controls, as all human studies showed significant reductions in at least one of the primary outcome endpoints which were the levels of fasting plasma glucose, postprandial blood glucose, glycated haemoglobin, insulin, insulin resistance and onset of diabetes; similarly, all the animal reports, except for two, documented significant changes in these parameters. Regarding secondary outcome measures, that is, lipid profiles, pro-inflammatory and anti-oxidant factors, only one human and one animal study failed to show any significant changes in any of these parameters. This systematic review generally demonstrated beneficial effects of the probiotic administration, especially Lactobacillus sub-strains, on the management of diabetes-related blood parameters, although, more evidence, especially from human trials, is needed to confirm these effects and also to conduct a meta-analysis. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Abreu, Renata Viana; Silva-Oliveira, Eliane Moretto; Moraes, Márcio Flávio Dutra; Pereira, Grace Schenatto; Moraes-Santos, Tasso
2011-10-01
Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive function. Copyright © 2011 Elsevier Inc. All rights reserved.
Farzaei, Mohammad Hosein; Shams-Ardekani, Mohammad Reza; Abbasabadi, Zahra; Rahimi, Roja
2013-01-01
In traditional Iranian medicine (TIM), several edible fruits and spices are thought to have protective and healing effects on peptic ulcer (PU). The present study was conducted to verify anti-PU activity of these remedies. For this purpose, edible fruits and spices proposed for the management of PU in TIM were collected from TIM sources, and they were searched in modern medical databases to find studies that confirmed their efficacy. Findings from modern investigations support the claims of TIM about the efficacy of many fruits and spices in PU. The fruit of Phyllanthus emblica as a beneficial remedy for PU in TIM has been demonstrated to have antioxidant, wound healing, angiogenic, anti-H. pylori, cytoprotective, antisecretory, and anti-inflammatory properties. The fruit of Vitis vinifera has been found to be anti-H. pylori, anti-inflammatory, wound healing, angiogenic, cytoprotective, and antioxidant. The fruit and aril of seed from Myristica fragrans exert their beneficial effects in PU by increasing prostaglandin, modulation of nitric oxide and inflammatory mediators, wound healing, antisecretory, antacid, antioxidant, and anti-H. pylori activities, and improving angiogenesis. Pharmacological and clinical studies for evaluation of efficacy of all TIM fruits and spices in PU and their possible mechanisms of action are recommended. PMID:24066235
Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais
2013-01-01
Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495
Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami
2016-03-01
Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.
Lee, Yi-Chen; Cheng, Chun-Wen; Lee, Huei-Jane; Chu, Huei-Chuien
2017-11-01
Indomethacin is a nonsteroid anti-inflammatory drug (NSAID) that is used to alleviate pain and inflammation in clinical medicine. Previous studies indicated that NSAIDs can cause gastrointestinal mucosal complications, and it is associated with mucosal lipid peroxidation and oxidative damage. Based on the evidences, decreasing oxidative stress may be an ideal therapeutic strategy for preventing gastrointestinal ulcer. Apple (Rosaceae Malus sp.) is one of the most commonly consumed fruits worldwide. The abundant polyphenolic constituents have received increasing attention for decades. In both in vivo and in vitro studies, the reports showed that apple polyphenol (AP) seems to provide an indirect antioxidant protection by activating cellular antioxidant enzymes to defend against oxidative stress. To address this issue and develop AP into a healthy improvement supplement, we studied the effect and potential mechanisms of AP in indomethacin-treated animal. The results showed AP can decelerate the gastric lesion, significantly suppress lipid peroxidation, increase the level of glutathione and the activity of catalase, and regulate the MAPK signaling proteins. These findings imply that AP protects the gastric mucosa from indomethacin-caused lesions and the protection is at least partially attributable to its antioxidative properties. This alternative medical function of AP may be a safe and effective intervention for preventing indomethacin-induced gastric complications.
Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Sarraf Zadeh, Sadaf; Pour, Marieh Hossein; Ashabi, Ghorbangol; Khodagholi, Fariba; Ahmadiani, Abolhassan
2013-01-01
A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA) level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.
Scavenging properties of metronidazole on free oxygen radicals in a skin lipid model system.
Narayanan, Sabrina; Hünerbein, Andreas; Getie, Melkamu; Jäckel, Andreas; Neubert, Reinhard H H
2007-08-01
Reactive oxygen species (ROS) play a vital role in the pathophysiology of the skin disease rosacea, a chronic, genetically-determined and UV-triggered disease, leading to facial redness and blemishes and exhibiting a deep impact on a patient's self-esteem and quality of life. ROS can cause oxidative damage to nucleic acids, sugars, proteins and lipids, thereby contributing to adverse effects on the skin. Metronidazole has been the first-line topical agent therapy for many years; nevertheless the mechanism of action is still not well understood. The therapeutic efficacy of metronidazole has been attributed to its antioxidant effects, which can involve two pathways: decreased generation of ROS within tissues or scavenging and inactivation of existing ROS. Previous investigations have shown that metronidazole reduces ROS by decreasing ROS production in cellular in-vitro systems. The aim of the following study was to demonstrate that metronidazole additionally exhibits antioxidative properties in a cell-free system, by acting as an antioxidant scavenger. A simple skin lipid model (oxidative) system and a complex skin adapted lipid system in conjunction with thiobarbituric acid (TBA) test, a quantitative assay for the detection of malondialdehyde (MDA) and therefore lipid peroxidation, were used to determine the antioxidative properties of metronidazole after UV irradiation. Results clearly show that metronidazole has antioxidative properties in a cell-free environment, acting as a free radical scavenger. Simple skin lipid model: in the presence of 10, 100 and 500 microg mL(-1)metronidazole the MDA concentration was reduced by 25, 36 and 49%, respectively. Complex skin lipid system: in the presence of 100 and 500 microg mL(-1)metronidazole the MDA concentration was reduced by 19 and 34%, respectively. The results obtained in this study and from previous publications strongly suggest that metronidazole exhibits antioxidative effects via two mechanisms: decrease in ROS production through modulation of neutrophil activity and decrease in ROS concentration by exhibiting ROS scavenging properties. The remarkable clinical efficacy of metronidazole in the treatment of rosacea is probably due to its ability to decrease ROS via different mechanisms, thereby protecting skin components from induced damage.
Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana
2016-05-01
Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.
Resveratrol: An Antiaging Drug with Potential Therapeutic Applications in Treating Diseases.
Camins, Antoni; Junyent, Felix; Verdaguer, Ester; Beas-Zarate, Carlos; Rojas-Mayorquín, Argelia E; Ortuño-Sahagún, Daniel; Pallàs, Mercè
2009-12-15
The prevention of aging is one of the most fascinating areas in biomedicine. The first step in the development of effective drugs for aging prevention is a knowledge of the biochemical pathways responsible for the cellular aging process. In this context it seems clear that free radicals play a key role in the aging process. However, in recent years it has been demonstrated that the families of enzymes called sirtuins, specifically situin 1 (SIRT1), have an anti-aging action. Thus, the natural compound resveratrol is a natural compound that shows a very strong activation of SIRT1 and also shows antioxidant effects. By activating sirtuin 1, resveratrol modulates the activity of numerous proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1 alpha), the FOXO family, Akt (protein kinase B) and NFκβ. In the present review, we suggest that resveratrol may constitute a potential drug for prevention of ageing and for the treatment of several diseases due to its antioxidant properties and sirtuin activation.
Cámara-Lemarroy, Carlos R.; Guzmán-de la Garza, Francisco J.; Cordero-Pérez, Paula; Alarcón-Galván, Gabriela; Torres-Gonzalez, Liliana; Muñoz-Espinosa, Linda E.; Fernández-Garza, Nancy E.
2011-01-01
Ischemia/reperfusion (I/R) is a condition that stimulates an intense inflammatory response. No ideal treatment exists. Triflusal is an antiplatelet salicylate derivative with anti-inflammatory effects. S-adenosylmethionine is a metabolic precursor for glutathione, an endogenous antioxidant. Dextromethorphan is a low-affinity N-methyl-D-aspartate receptor inhibitor. There is evidence that these agents modulate some of the pathways involved in I/R physiopathology. Intestinal I/R was induced in rats by clamping the superior mesenteric artery for 60 minutes, followed by 60 minutes of reperfusion. Rats either received saline or the drugs studied. At the end of the procedure, serum concentrations of tumor necrosis factor-alpha (TNF-alpha), malonaldehyde (MDA), and total antioxidant capacity (TAC) were determined and intestinal morphology analyzed. I/R resulted in tissue damage, serum TNF-alpha and MDA elevations, and depletion of TAC. All drugs showed tissue protection. Only triflusal reduced TNF-alpha levels. All drugs lowered MDA levels, but only triflusal and S-adenosylmethionine maintained the serum TAC. PMID:22125445
Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin.
Hosseinzadeh, Azam; Javad-Moosavi, Seyed Ali; Reiter, Russel J; Hemati, Karim; Ghaznavi, Habib; Mehrzadi, Saeed
2018-05-15
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways. Copyright © 2018 Elsevier Inc. All rights reserved.
K V, Athira; Madhana, Rajaram Mohanrao; Kasala, Eshvendar Reddy; Samudrala, Pavan Kumar; Lahkar, Mangala; Gogoi, Ranadeep
2016-12-01
Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti-inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin-induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin-induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin-induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin. © 2016 Wiley Periodicals, Inc.
Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin
Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela
2012-01-01
Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055
Aljančić, Ivana S; Vučković, Ivan; Jadranin, Milka; Pešić, Milica; Dorđević, Iris; Podolski-Renić, Ana; Stojković, Sonja; Menković, Nebojša; Vajs, Vlatka E; Milosavljević, Slobodan M
2014-02-01
Dimers tomoroside A (1) and tomoroside B (2) of the co-occuring known chalcone monomer (3), along with the seven known flavonoid glucosides (4-10), were isolated from the aerial parts of Helichrysum zivojinii Černjavski & Soška. The structures of the isolated compounds were elucidated by spectroscopic techniques. Compound 1 inhibited topo IIα and hif-1α expression and stimulated doxorubicin anticancer effect, while 2 increased the expression of hif-1α, probably acting as antioxidant and redox status modulator. Notably, 2 synergized with Tipifarnib showing potential to improve the action of this new chemotherapeutic involved in the modulation of mitogene activated protein (MAP) kinase signaling pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potential Antitumor Effects of Pomegranates and Its Ingredients
Rahmani, Arshad H.; Alsahli, Mohammed A.; Almatroodi, Saleh A.
2017-01-01
The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy. PMID:28989248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqui, Shabeena; Ahsan, Haseeb; Khan, Mohammad Rashid
Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage overmore » a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats. • TRF down-regulated the expression of TGF-β, fibronectin and collagen in rats' kidney. • TRF ameliorated nephropathy by hypoglycemic, hypolipidemic and antioxidant activity. • Tocotrienols modulate the expression of TGF-β in DN in type-2 diabetic rats.« less
Iqbal, Noushina; Umar, Shahid; Per, Tasir S; Khan, Nafees A
2017-05-04
Salinity is a serious threat to plant growth and development worldwide reducing agricultural productivity each year. Ethylene is an important phytohormone that affects plants performance under normal and abiotic stress conditions. In this study, role of ethylene was investigated in mitigating salinity stress (100 mM NaCl) effects on photosynthesis in mustard plants subjected to different nitrogen (N; 5 and 10 mM) levels. Plants under salinity stress exhibited marked increase in proline and reduced glutathione (GSH) content and activity of antioxidant enzymes. Nitrogen supplementation at 10 mM was better than 200 µl l -1 ethephon treatment under no stress. However, under salinity stress, both N and ethephon were equally effective. The combined application of 10 mM N and ethephon to salinity stressed plants produced greatest increase in photosynthesis by increasing proline and antioxidant metabolism. Ethylene evolution was high under salinity stress, but treatment of 10 mM N and 200 µl l -1 ethephon greatly decreased ethylene evolution that was equivalent to the 10 mM N treatment alone. This concentration of ethylene decreased the oxidative stress and increased the photosynthetic nitrogen use efficiency (NUE) maximally to increase photosynthesis. The use of ethylene action inhibitor, norbornadiene (NBD) showed reduction in ethylene mediated effects in alleviating salinity. Norbornadiene decreased the photosynthetic-NUE, proline and GSH content that resulted in decrease in photosynthesis under salinity stress. This study indicated that ethylene regulated the proline and antioxidant metabolism under salinity stress to increase photosynthetic functions of mustard grown with low and optimum N. The modulation of ethylene could be adopted in agricultural practices to increase photosynthesis under salinity stress.
Zinc ion enhances GABA tea-mediated oxidative DNA damage.
Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih
2012-02-15
GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.
Erukainure, O L; Ajiboye, J A; Abbah, U A; Asieba, G O; Mamuru, S; Zaruwa, M Z; Manhas, N; Singh, P; Islam, M S
2018-05-01
The antioxidative effect of Monodora myristica seed acetone extract and its effect on chemical functional groups were investigated in sickled erythrocytes as well as molecular modeling of the antisickling potentials of its secondary metabolites. The extract was subjected to gas chromatography-mass spectrometry to identify the compounds present, which were then docked into the allosteric-binding site of deoxy-hemoglobin. The extract was incubated with sickled erythrocytes at 37°C for 6, 12, and 24 h and were subjected to antioxidative analysis for reduced glutathione (GSH), superoxide dismutase (SOD), catalase, and lipid peroxidation (LPO). Chemical functional group of the treated cells was analyzed via Fourier transform infrared spectroscopy (FTIR). The predominant compounds identified were 17-octadecynoic acid; oleic acid, androstan-3-one, 17-hydroxy-2-methyl- (2.beta.,5.beta.,17.beta.)-; estran-3-one, 17-(acetyloxy)-2-methyl-, (2.alpha., 5.alpha., 17.beta.), and (+)-3-carene, 10-(acetylmethyl)-. They all fitted well within the active site of Hb with good binding affinity, as evidenced by the negative CDocker interaction energies of their complexes ranging between -54.4 and -26.7 kcal/mol. Treatment with the extract exacerbated SOD and catalase activities as well as GSH level, while LPO was suppressed. This antioxidative activity was time and/or dose dependent, with 6 and 12 h incubation showing the optimum activity. FTIR analysis of the treated cells showed the presence of hydrophobic functional groups. The synergetic molecular interaction of the major compounds of the extract with the α-dimer of Hb depicts an antisickling effect of M. myristica acetone extract. This is accompanied by exacerbation of endogenous antioxidant enzymes activity and modification of the functional chemistry of the cells.
del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.
2014-01-01
The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory activities. PMID:24242245
Domitrović, Robert; Potočnjak, Iva
2016-01-01
Hepatoprotective effects of natural compounds have been frequently attributed to their antioxidant properties and the ability to mobilize endogenous antioxidant defense system. Because of involvement of oxidative stress in virtually all mechanisms of liver injury, it is a reasonable presumption that antioxidant properties of these compounds may play a key role in the mechanism of their hepatoprotective activity. Nevertheless, growing evidence suggests that other pharmacological activities of natural compounds distinct from antioxidant are responsible for their therapeutic effects. In this review, we discussed currently known molecular mechanisms of the hepatoprotective activity of 27 most intensively studied phytochemicals. These compounds have been shown to possess anti-inflammatory, antisteatotic, antiapoptotic, cell survival and antiviral activity through interference with multiple molecular targets and signaling pathways. Additionally, antifibrotic properties of phytochemicals have been closely associated with apoptosis of hepatic stellate cells and stimulation of extracellular matrix degradation. However, although these compounds exhibit a pronounced hepatoprotective effects in animal and cell culture models, the lack of clinical studies remains a bottleneck for their official acceptance by medical experts and physicians. Therefore, controlled clinical trials have an imperative in confirmation of the therapeutic activity of potentially hepatoprotective compounds. Understanding the principles of the hepatoprotective activity of phytochemicals could guide future drug development and help prevention of clinical trial failure. Also, the use of new delivery systems that enhances bioavailability of poorly water soluble compounds may improve the results already obtained. Most importantly, available data suggest that phytochemicals possess a various degree of modulation of specific signaling pathways, pointing out a need for usage of combinations of several hepatoprotective compounds in both experimental studies and clinical trials.
Duan, Fang-fang; Guo, Ying; Li, Jing-wan
2017-01-01
Luteolin-6-C-neohesperidoside (LN) is a flavonoid isolated from moso bamboo leaf. This study was performed to evaluate the antifatigue effect of LN on a rat model undergoing the weight-loaded forced swimming test (FST). Briefly, male Sprague-Dawley rats (20–22 weeks old) were forced to undertake exhaustive swimming every other day for 3 weeks. Each swimming session was followed by the administration of distilled water, LN (25–75 mg/kg), or ascorbic acid (100 mg/kg) 1 h later. Oral administration of LN significantly improved exercise endurance; normalized alterations in energy metabolic markers; and decreased serum lactic acid, lactate dehydrogenase, and blood urea nitrogen levels of rats that underwent FST. Moreover, LN enhanced the activities of antioxidant enzymes and antioxidant capacity, as measured by enzyme activity assays, RT-PCR, and Western blotting, as well as decreasing the levels of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 and increasing the level of anti-inflammatory (IL-10) in the liver and skeletal muscle. These results suggested that LN reduces both physical and mental effects of chronic fatigue, probably by attenuating oxidative stress injury and inflammatory responses in the liver and skeletal muscle. This study thus supports the use of LN in functional foods for antifatigue and antioxidant effects. PMID:28588747
Franceschelli, Sara; Gatta, Daniela Maria Pia; Pesce, Mirko; Ferrone, Alessio; Patruno, Antonia; de Lutiis, Maria Anna; Grilli, Alfredo; Felaco, Mario; Croce, Fausto; Speranza, Lorenza
2016-01-01
It is known that increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW) produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation. PMID:27598129
Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark
2015-03-01
Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (P< .05). C-reactive protein levels were significantly lower in watermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (P< .05). Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase were significantly lower in DSS-treated rats when watermelon was consumed (P< .05). Fatty acid synthase, 3-hydroxy-3methyl-glutaryl-CoA reductase, sterol regulatory element-binding protein 1, sterol regulatory element-binding protein 2, and cyclooxygenase-2 gene expression was significantly downregulated in the watermelon group without DSS (P< .05). These findings indicate that watermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
Valtueña, Silvia; Pellegrini, Nicoletta; Franzini, Laura; Bianchi, Marta A; Ardigò, Diego; Del Rio, Daniele; Piatti, PierMarco; Scazzina, Francesca; Zavaroni, Ivana; Brighenti, Furio
2008-05-01
It is unknown whether diets with a high dietary total antioxidant capacity (TAC) can modify oxidative stress, low-grade inflammation, or liver dysfunction, all of which are risk factors for type 2 diabetes and cardiovascular disease. We studied the effect of high- and low-TAC (HT and LT, respectively) diets on markers of antioxidant status, systemic inflammation, and liver dysfunction. In a crossover intervention, 33 healthy adults (19 men, 14 women) received the HT and LT diets for 2 wk each. Dietary habits were checked with a 3-d food record during both diet periods and the washout period. Fruit and vegetable, macronutrient, dietary fiber, and alcohol intakes did not differ significantly between the 2 diets, whereas dietary TAC, alpha-tocopherol, and ascorbic acid were significantly (P < 0.001) higher during the HT diet. Plasma alpha-tocopherol rose during the HT and decreased during the LT diet (P < 0.02 for difference) without changes in markers of oxidative stress except plasma malondialdehyde, which decreased unexpectedly during the LT diet (P < 0.05). Plasma high-sensitivity C-reactive protein, alanine aminotransferase, gamma-glutamyltranspeptidase, and alkaline phosphatase concentrations decreased during the HT compared with the LT diet (mean +/- SEM for pre-post changes: -0.72 +/- 0.37 compared with 1.05 +/- 0.60 mg/L, P < 0.01; -1.73 +/- 1.02 compared with 2.33 +/- 2.58 U/L, P < 0.01; -2.12 +/- 1.45 compared with 5.15 +/- 2.98 U/L, P < 0.05; and 1.36 +/- 1.34 compared with 5.06 +/- 2.00 U/L, P < 0.01, respectively). Selecting foods according to their TAC markedly affects antioxidant intake and modulates hepatic contribution to systemic inflammation without affecting traditional markers of antioxidant status.
Bellion, Phillip; Olk, Melanie; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine
2009-10-01
Beneficial health effects of diets containing fruits have partly been attributed to polyphenols which display a spectrum of bioactive effects, including antioxidant activity. However, polyphenols can also exert prooxidative effects in vitro. In this study, polyphenol-mediated hydrogen peroxide (H(2)O(2)) formation was determined after incubation of apple juice extracts (AEs) and polyphenols in cell culture media. Effects of extracellular H(2)O(2 )on total glutathione (tGSH; =GSH + GSSG) and cellular reactive oxygen species (ROS) level of HT-29 cells were studied by coincubation +/- catalase (CAT). AEs ( > or =30 microg/mL) significantly generated H(2)O(2) in DMEM, depending on their composition. Similarly, H(2)O(2) was measured for individual apple polyphenols/degradation products (phenolic acids > epicatechin, flavonols > dihydrochalcones). Highest concentrations were generated by compounds bearing the o-catechol moiety. H(2)O(2) formation was found to be pH dependent; addition of CAT caused a complete decomposition of H(2)O(2) whereas superoxide dismutase was less/not effective. At incubation of HT-29 cells with quercetin (1-100 microM), generated H(2)O(2) slightly contributed to antioxidant cell protection by modulation of tGSH- and ROS-level. In conclusion, H(2)O(2) generation in vitro by polyphenols has to be taken into consideration when interpreting results of such cell culture experiments. Unphysiologically high polyphenol concentrations, favoring substantial H(2)O(2 )formation, are not expected to be met in vivo, even under conditions of high end nutritional uptake.
Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing.
Bagdas, Deniz; Gul, Nihal Yasar; Topal, Ayse; Tas, Sibel; Ozyigit, Musa Ozgur; Cinkilic, Nilufer; Gul, Zulfiye; Etoz, Betul Cam; Ziyanok, Sedef; Inan, Sevda; Turacozen, Ozge; Gurun, Mine Sibel
2014-11-01
Chlorogenic acid (CGA) is a well-known natural antioxidant in human diet. To understand the effects of CGA on wound healing by enhancing antioxidant defense in the body, the present study sought to investigate the potential role of systemic CGA therapy on wound healing and oxidative stress markers of the skin. We also aimed to understand whether chronic CGA treatment has side effects on pivotal organs or rat bone marrow during therapy. Full-thickness experimental wounds were created on the backs of rats. CGA (25, 50, 100, 200 mg/kg) or vehicle was administered intraperitoneally for 15 days. All rats were sacrificed on the 16th day. Biochemical, histopathological, and immunohistochemical examinations were performed. Possible side effects were also investigated. The results suggested that CGA accelerated wound healing in a dose-dependent manner. CGA enhanced hydroxyproline content, decreased malondialdehyde and nitric oxide levels. and elevated reduced glutathione, superoxide dismutase, and catalase levels in wound tissues. Epithelialization, angiogenesis, fibroblast proliferation, and collagen formation increased by CGA while polymorph nuclear leukocytes infiltration decreased. CGA modulated matrix metalloproteinase-9 and tissue inhibitor-2 expression in biopsies. Otherwise, high dose of CGA increased lipid peroxidation of liver and kidney without affecting the heart and muscle samples. Chronic CGA increased micronuclei formation and induced cytotoxicity in the bone marrow. In conclusion, systemic CGA has beneficial effects in improving wound repair. Antioxidant, free radical scavenger, angiogenesis, and anti-inflammatory effects of CGA may ameliorate wound healing. High dose of CGA may induce side effects. In light of these observations, CGA supplementation or dietary CGA may have benefit on wound healing.
α-Terpineol reduces cancer pain via modulation of oxidative stress and inhibition of iNOS.
Gouveia, Daniele Nascimento; Costa, Janara Santos; Oliveira, Marlange Almeida; Rabelo, Thallita Kelly; Silva, Ana Mara de Oliveira E; Carvalho, Adriana Andrade; Miguel-Dos-Santos, Rodrigo; Lauton-Santos, Sandra; Scotti, Luciana; Scotti, Marcus Tullius; Santos, Márcio Roberto Viana Dos; Quintans-Júnior, Lucindo José; Albuquerque Junior, Ricardo Luiz Cavalcanti De; Guimarães, Adriana Gibara
2018-06-11
α-Terpineol (TP) is present in a wide range of essential oils of the genus Eucalyptus, with recognized potential for a range of biological effects, such as analgesic. Hence, our study aimed to investigate the effect of TP on cancer pain induced by sarcoma 180 in Swiss mice. Our results showed that TP reduced significantly mechanical hyperalgesia and spontaneous and palpation-induced nociception, improved paw use without reducing tumor growth and grip strength. Importantly, no evident biochemical and hematological toxicity was oberved. Furthermore, TP increased the tissue antioxidant capacity due to ferric-reducing antioxidant power (FRAP) and glutathione (GSH). TP also reduced inducible nitric oxide synthase (iNOS) immunocontent in the tumors. Molecular docking estimated that TP binds within the same range of iNOS regions (other iNOS inhibitors), such as N-Nitroarginine methyl ester (L-NAME). These data provide strong evidence that TP may be an interesting candidate for the development of new safe analgesic drugs that are effective for cancer pain control. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Golechha, Mahaveer; Sarangal, Vikas; Bhatia, Jagriti; Chaudhry, Uma; Saluja, Daman; Arya, Dharmveer Singh
2014-12-01
Oxidative stress and cognitive impairment are associated with PTZ-induced convulsions. Naringin is a bioflavonoid present in the grapefruit. It is a potent antioxidant, and we evaluated its effect on PTZ-induced convulsions. Rats were pretreated with normal saline, naringin (20, 40, and 80 mg/kg, i.p.), or diazepam (5mg/kg, i.p.) 30 min prior to the administration of PTZ. The administration of PTZ induced myoclonic jerks and generalized tonic-clonic seizures (GTSs). We observed that naringin significantly prolonged the induction of myoclonic jerks dose-dependently. Naringin (80 mg/kg, i.p.) pretreatment protected all rats, and this protective effect was annulled by the GABAA receptor antagonist, flumazenil. In addition, naringin reduced brain MDA and TNF-α levels and conserved GSH. The pretreatment also enhanced the performance of rats in the passive avoidance task. Our observations highlight the antioxidant, antiinflammatory, and anticonvulsant potential of naringin. Also, naringin modulates the GABAA receptor to produce anticonvulsant effects and to ameliorate cognitive impairment. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of antioxidants in redox regulation of diabetic cardiovascular complications.
Turan, Belma
2010-12-01
Cardiovascular dysfunction is leading cause for the mortality of diabetic individuals, in part due to a specific cardiomyopathy, and due to altered endothelial dependent/independent vascular reactivity. Cardiovascular complications result from multiple parameters including glucotoxicity, lipotoxicity, fibrosis and mitochondrial uncoupling. Oxidative stress arises from an imbalance between the production of reactive oxygen and nitrogen species (ROS and RNS) and the capability of biological system to readily detoxify reactive intermediates. Several studies have reported beneficial effects of a therapy with antioxidant agents, including trace elements and other antioxidants, against the cardiovascular system dysfunction due to the diabetes. Antioxidants act through different mechanisms to prevent oxidant-induced cell damages acting either directly or indirectly. They can reduce the generation of ROS, scavenge ROS, or interfere with ROS-induced alterations. Modulating mitochondrial activity is an important possibility to control ROS production. Hence, the use of PPARα agonist to reduce fatty acid oxidation and of trace elements such as selenium as antioxidant and other antioxidants such as vitamins E and C, contribute to the prevention of diabetes-induced cardiovascular dysfunction. The paradigm that, inhibiting the overproduction of superoxides and peroxides would prevent cardiac dysfunction in diabetes has been difficult to verify using conventional antioxidants like vitamins E and C. That led to use of catalytic antioxidants such as SOD/CAT mimetics. Hence, well-tuned, balanced and responsive antioxidant defence systems are vital for proper prevention against diabetic damage. Myocardial cell death is observed in the hearts of diabetic patients and animal models; however, its importance in the development of diabetic cardiomyopathy is not completely understood. This review aims to summarize our present knowledge on various strategies to control oxidative stress and antagonize cardiovascular dysfunction during diabetes. In here, we consider aspects of redox signaling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies identify redox-sensitive cardiac proteins, as well as those assessing redox signalling in cardiovascular disease.
Sirerol, J Antoni; Feddi, Fatima; Mena, Salvador; Rodriguez, María L; Sirera, Paula; Aupí, Miguel; Pérez, Salvador; Asensi, Miguel; Ortega, Angel; Estrela, José M
2015-08-01
The aim of our study was to investigate in the SKH-1 hairless mouse model the effect of pterostilbene (Pter), a natural dimethoxy analog of resveratrol (Resv), against procarcinogenic ultraviolet B radiation (UVB)-induced skin damage. Pter prevented acute UVB (360 mJ/cm(2))-induced increase in skin fold, thickness, and redness, as well as photoaging-associated skin wrinkling and hyperplasia. Pter, but not Resv, effectively prevented chronic UVB (180 mJ/cm(2), three doses/week for 6 months)-induced skin carcinogenesis (90% of Pter-treated mice did not develop skin carcinomas, whereas a large number of tumors were observed in all controls). This anticarcinogenic effect was associated with (a) maintenance of skin antioxidant defenses (i.e., glutathione (GSH) levels, catalase, superoxide, and GSH peroxidase activities) close to control values (untreated mice) and (b) an inhibition of UVB-induced oxidative damage (using as biomarkers 8-hydroxy-2'-deoxyguanosine, protein carbonyls, and isoprostanes). The molecular mechanism underlying the photoprotective effect elicited by Pter was further evaluated using HaCaT immortalized human keratinocytes and was shown to involve potential modulation of the Nrf2-dependent antioxidant response. Copyright © 2015 Elsevier Inc. All rights reserved.
Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects
NASA Astrophysics Data System (ADS)
Kennedy, Ann
The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for the radioprotection of hematopoietic cells against the cell killing effects of radiation, and for improving survival in irradiated animals. Preliminary data suggest similar antioxidant protective effects for animals exposed to potentially lethal doses of proton radiation. Studies were also performed to determine whether dietary antioxidants could affect the incidence rates of malignancies in CBA mice exposed to 300 cGy proton (1 GeV/n) radiation or 50 cGy iron ion (1 GeV/n) radiation [9]. Two antioxidant formulations were utilized in these studies; an AOX formulation containing the mixture of antioxidant agents developed from our previous studies and an antioxidant dietary formulation containing the soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI). BBI was evaluated in the form of BBI Concentrate (BBIC), which is the form of BBI utilized in human trials. BBIC has been utilized in human trials since 1992, as described [10]. The major finding in the long-term animal studies was that there was a reduced risk of malignant lymphoma in mice exposed to space radiations and maintained on diets containing the antioxidant formulations. In addition, the two different dietary countermeasures also reduced the yields of a variety of different rare tumor types, arising from both epithelial and connective tissue cells, observed in the animals exposed to space radiation. REFERENCES [1] Guan J. et al (2004) Radiation Research 162, 572-579. [2] Wan X.S. et al (2005) Radiation Research 163, 364-368. [3] Wan X.S. et al (2005) Radiation Research 163, 232-240. [4] Guan J. et al (2006) Radiation Research 165, 373-378. [5] Wan X.S. et al (2006) International Journal of Radiation Oncology, Biology, Physics 64, 1475-1481. [6] Kennedy A.R. et al (2006) Radiation Research 166, 327-332. [7] Kennedy A.R. et al (2007) Radiation & Environmental Biophysics 46(2), 201-3. [8]Wambi, C., Sanzari, J., Wan, X.S., Nuth, M., Davis, J., Ko, Y.-H., Sayers, C.M., Baran, M., Ware, J.H. and Kennedy, A.R. Dietary antioxidants protect hematopoietic cells and improve animal survival following total body irradiation. Radiation Res. (in press) [9] Kennedy, A.R., Davis, J.G., Carlton, W. and Ware, J.H. Effects of dietary antioxidant supplementation on the development of malignancies and other neoplastic lesions in mice exposed to proton or iron ion radiation. Radiation Res. (submitted) [10] Kennedy, A.R. The Status of Human Trials Utilizing Bowman-Birk Inhibitor Concentrate from Soybeans. In: Soy in Health and Disease Prevention, edited by Michihiro Sugano, CRC Press Press LLC, Boca Raton, Florida, Chapter 12, pp. 207-223, 2005. ACKNOWLEDGEMENTS; This work was supported by the National Space Biomedical Research Institute through NASA NCC 9-58.
Marques Cardoso, Luciana; Dias Novaes, Rômulo; Aparecida de Castro, Cynthia; Azevedo Novello, Alexandre; Vilela Gonçalves, Reggiani; Ricci-Silva, Maria Esther; de Oliveira Ramos, Humberto Josué; Gouveia Peluzio, Maria do Carmo; Viana Leite, João Paulo
2015-08-01
The significance of polyphenol intake for the prevention of chronic diseases is controversial. this study investigated the chemical composition and antioxidant potential of an anthocyanin-rich extract from Euterpe edulis fruits (LPEF) and its effects on liver steatosis in dyslipidemic apoE-/- knockout mice. mice were divided into G1 (C57BL/6) standard diet; G2 (apoE-/-) standard diet, G3 (apoE-/-) 2% LPEF, G4 (apoE-/-) 6% LPEF, G5 (apoE-/-) 10% LPEF, G6 (apoE-/-) 2% α-tocopherol acetate. After 75 days of treatment, the animals were euthanized. The LPEF contained a high level of monomeric anthocyanins (301.4 mg/100g) and marked antioxidant activity. Catalase activity was reduced in G3, G4, G5 and G6 compared to G2. Superoxide dismutase was reduced only in G4. The animals in G4, G5, and G6 showed low HDL and triglycerides levels compared to G2. The proportion of lipid droplets in liver tissue was reduced in G4 and G5 compared to G2, G3, and G6. The results indicated that E. edulis pulp is rich in anthocyanins and the LPEF dietary consumption can reduce the severity of liver steatosis in apoE-/- mice, an effect that is potentially mediated by the antioxidant activity of this extract and modulation of triglyceride serum levels. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Quercetin in brain diseases: Potential and limits.
Dajas, Federico; Abin-Carriquiry, Juan Andrés; Arredondo, Florencia; Blasina, Fernanda; Echeverry, Carolina; Martínez, Marcela; Rivera, Felicia; Vaamonde, Lucía
2015-10-01
Quercetin is a ubiquitous flavonoid present in beverages, food and plants that has been demonstrated to have a role in the prevention of neurodegenerative and cerebrovascular diseases. In neuronal culture, quercetin increases survival against oxidative insults. Antioxidation appears to be a necessary but not sufficient condition for its neuroprotective action and modulation of intracellular signaling and transcription factors, increasing the expression of antioxidant and pro survival proteins and modulating inflammation, appears as important for neuronal protection. Quercetin also regulates the activity of kinases, changing the phosphorylation state of target molecules, resulting in modulation of cellular function and gene expression. Concentrations of quercetin higher than 100 μM consistently show cytotoxic and apoptotic effects by its autoxidation and generation of toxic quinones. In vivo, results are controversial with some studies showing neuroprotection by quercetin and others not, requiring a drug delivery system or chronic treatments to show neuroprotective effects. The blood and brain bioavailability of free quercetin after ingestion is a complex and controversial process that produces final low concentrations, a fact that has led to suggestions that metabolites would be active by themselves and/or as pro-drugs that would release the active aglycone in the brain. Available studies show that in normal or low oxidative conditions, chronic treatments with quercetin contributes to re-establish the redox regulation of proteins, transcription factors and survival signaling cascades that promote survival. In the presence of highly oxidative conditions such as in an ischemic tissue, quercetin could become pro-oxidant and toxic. At present, evidence points to quercetin as a preventive molecule for neuropathology when administered in natural matrices such as vegetables and food. More research is needed to support its use as a lead compound in its free form in acute treatments, requiring new pharmaceutical formulations and/or structural changes to limit its pro-oxidant and toxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhong, Rong-Zhen; Fang, Yi; Qin, Gui-Xin; Li, Hao-Yang; Zhou, Dao-Wei
2015-09-16
To study the mechanisms of tea catechins (TCs) in goat muscles against oxidative stress, skeletal muscle cells (SMCs) induced by H2O2 or not were incubated with TCs or 3H-1,2-dithiole-3-thione (D3T) and were defined as H2O2, H2O2D3T, H2O2TC, D3T, and TC treatments, respectively. Results showed that, similar to effects of D3T, TCs regulated mRNA and protein expression of antioxidant enzymes by suppressing Keap1 protein expression in SMCs from 1.58 ± 0.12 to 0.71 ± 0.21 and 1.03 ± 0.11 in H2O2TC and TC groups, respectively; however, effects differed in oxidative condition of cells and among enzymes. In stressed cells, TCs increased catalase and glutathione S-transferases (GST) activities (P < 0.001), whereas both enzymes' activities decreased (P < 0.001) to 2.97 ± 0.37 U/mg protein or 42.1 ± 1.85 mU/mg protein, respectively, in unstressed SMCs. Subsequently, an in vivo experiment in goats fed grain supplemented with TCs or D3T following infusion with H2O2 was conducted to further verify mechanisms of TC action. As seen in vitro, TCs reduced Keap1 protein expression (P < 0.001) from 2.11 ± 0.37 to 1.34 ± 0.13 and 1.43 ± 0.23 in H2O2TC and TC groups, respectively, in muscle. However, dietary TCs increased plasma CuZn superoxide dismutase and GST activities (P < 0.001) regardless of oxidative stress. Moreover, feeding TCs to goats under both conditions increased meat color and tenderness (P ≤ 0.001). In conclusion, TCs protected goat muscles against oxidative stress and subsequently improved meat quality by modulating phase 2 antioxidant enzymes and Keap1 expression.
Tudose, Madalina; Culita, Daniela Cristina; Musuc, Adina Magdalena; Somacescu, Simona; Ghica, Cornel; Chifiriuc, Mariana Carmen; Bleotu, Coralia
2017-10-01
A novel nanocomposite was obtained through the covalent immobilization of lipoic acid on the surface of silver nanoparticles-decorated silica nanoparticles (SiO 2 @Ag). The hybrid organic - inorganic material obtained was characterized by Fourier transform infrared spectroscopy, thermal analysis, scanning and transmision electron microscopy, X-ray photoelectron spectroscopy and UV-Visible spectroscopy. Its antioxidant, cytotoxic, antimicrobial activity and influence on mammalian cells cycle were evaluated. The results of this study have shown that the functionalization of SiO 2 @Ag with lipoic acid resulted in a composite with increased specificity of interaction with different mammalian cell lines and antioxidant activity, but with decreased cytotoxicity and antimicrobial properties. Therefore, the SiO 2 @Ag functionalized with lipoic acid could be successfully used in certain concentrations to modulate the cell cycle, in order to obtain the desired anti-proliferative or stimulatory therapeutic effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Mahmoud-Awny, Magdy; Attia, Ahmed S.; Abd-Ellah, Mohamed F.; El-Abhar, Hanan Salah
2015-01-01
Mangiferin (MF), a xanthonoid from Mangifera indica, has been proved to have antisecretory and antioxidant gastroprotective effects against different gastric ulcer models; however, its molecular mechanism has not been previously elucidated. Therefore, the aim of this study was to test its modulatory effect on several signaling pathways using the ischemia/reperfusion model for the first time. Animals were treated with MF, omeprazole (OMP), and the vehicle. The mechanistic studies revealed that MF mediated its gastroprotective effect partly via inducing the expression of Nrf2, HO-1 and PPAR-γ along with downregulating that of NF-κB. Surprisingly, the effect of MF, especially the high dose, exceeded that mediated by OMP except for Nrf2. The molecular results were reflected on the biomarkers measured, where the antioxidant effect of MF was manifested by increasing total antioxidant capacity and glutathione, besides normalizing malondialdehyde level. Additionally, MF decreased the I/R-induced nitric oxide elevation, an effect that was better than that of OMP. In the serum, MF, dose dependently, enhanced endothelial nitric oxide synthase, while reduced the inducible isoform. Regarding the anti-inflammatory effect of MF, it reduced serum level of IL-1β and sE-selectin, effects that were mirrored on the tissue level of myeloperoxidase, the neutrophil infiltration marker. In addition, MF possessed an antiapoptotic character evidenced by elevating Bcl-2 level and reducing that of caspase-3 in a dose related order. As a conclusion, the intimated gastroprotective mechanisms of MF are mediated, partially, by modulation of oxidative stress, inflammation and apoptosis possibly via the Nrf2/HO-1, PPAR-γ/NF-κB signaling pathways. PMID:26196679
Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki
2015-01-01
The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.
Maurya, Brajesh Kumar; Trigun, Surendra Kumar
2016-01-01
Fisetin, a known antioxidant, has been found to be cytotoxic against certain cell lines. However, the mechanism by which it inhibits tumor growth in vivo remains unexplored. Recently, we have demonstrated that Aflatoxin-B1 (AFB1) induced hepatocarcinogenesis is associated with activation of oxidative stress-inflammatory pathway in rat liver. The present paper describes the effect of in vivo treatment with 20 mg/kg b.w. Fisetin on antioxidant enzymes vis-a-vis oxidative stress level and on the profile of certain proinflammatory cytokines in the hepatocellular carcinoma (HCC) induced by two doses of 1 mg/kg b.w. AFB1 i.p. in rats. The reduced levels of most of the antioxidant enzymes, coinciding with the enhanced level of reactive oxygen species in the HCC liver, were observed to regain their normal profiles due to Fisetin treatment. Also, Fisetin treatment could normalize the enhanced expression of TNFα and IL1α, the two proinflammatory cytokines, reported to be involved in HCC pathogenesis. These observations were consistent with the regression of neoplastic lesion and declined GST-pi (placental type glutathione-S-transferase) level, a HCC marker, in the liver of the Fisetin treated HCC rats. The findings suggest that Fisetin attenuates oxidative stress-inflammatory pathway of AFB1 induced hepatocarcinogenesis. PMID:26682000
Serini, Simona; Mondella, Nadia; Celleno, Leonardo; Lanza, Paola; Calviello, Gabriella
2014-01-01
Several advantages may derive from the use of dietary supplements containing multiple natural antioxidants and/or anti-inflammatory agents. At present, however, there is scarce information on the properties and potential of combined supplements. To fill the gap, the antioxidant and anti-inflammatory activities exerted by a combination of seven natural components (coenzyme Q10, krill oil, lipoic acid, resveratrol, grape seed oil, α-tocopherol, and selenium) contained in a dietary supplement used for the prevention of skin disorders were investigated in vitro. Each component was administered, alone or in combination, to human keratinocytes, and the inhibition of Reactive Oxygen Species production and lipid peroxidation as well as the ability to reduce inflammatory cytokine secretion and to modulate Nuclear Factor-κB pathway was evaluated. The combination exhibited high antioxidant activity and in specific conditions the combination's efficiency was higher than that of the most powerful components administered individually. Moreover, the combination showed remarkable anti-inflammatory properties. It reduced more efficiently than each component the secretion of Monocyte Chemoattractant Protein-1, a crucial cytokine for the development of chronic inflammation in skin, and inhibited Nuclear Factor-κB molecular pathway. Overall, our findings suggest that the combined formulation may have the potential to powerfully inhibit oxidative stress and inflammation at skin level. PMID:25197638
Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md. Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki
2015-01-01
The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition. PMID:26798635
Our great forgotten, chronic respiratory sufferers
Bordejé Laguna, María Luisa
2017-05-08
Lung’s own properties make that nutritional support, besides covering the requirements can modulate its infl ammatory response. Lung tissue has a low glucose stock. Fatty acids are the main energy producer of type II pneumocytes, which use them in order to form phospholipids, essential for surfactant whose creation and release decrease in acute lung injury (ALI). Glutamine is a good substratum for endocrine cells and type II pneumocytes. Due to high nutritional risk, it is important its assessments in disorders as COPD and acute respiratory distress syndrome (ADRS). Indirect calorimetry values the effect of ventilation and nutritional support, avoiding overfeeding. Hypophosphatemia and refeeding syndrome are frequent and need to be avoided because of their morbidity. In critically ill patients, malnutrition can lead to respiratory failure and increasing mechanical ventilation time. To avoid hypercapnia in weaning, glucose levels should be controlled. High lipids/carbohydrates ratio do not show usefulness in COPD neither mechanical ventilation removal. ALI patients beneficiate from an early start and the volume administered. Enteral nutrition with high fatty acids ratio (EPA, DHA and γ-linolenic acid) and antioxidants do not show any superiority. Omega-3 fatty acid in parenteral nutrition could modulate infl ammation and immunosuppression in a positive manner. The use of glutamine, vitamins or antioxidants in these patients could be justified.
Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong
2015-08-01
The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana
2002-02-01
Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.
NASA Astrophysics Data System (ADS)
Schupp, Nicole; Schinzel, Reinhard; Heidland, August; Stopper, Helga
2005-06-01
In patients with chronic renal failure, cancer incidence is increased. This may be related to an elevated level of genomic damage, which has been demonstrated by micronuclei formation as well as by comet assay analysis. Advanced glycation end products (AGEs) are markedly elevated in renal failure. In the comet assay, the model AGEs methylglyoxal- and carboxy(methyl)lysine-modified bovine serum albumin (BSA) induced significant DNA damage in colon, kidney, and liver cells. The addition of antioxidants prevented AGE-induced DNA damage, suggesting enhanced formation of reactive oxygen species (ROS). The coincubation with dimethylfumarate (DMF), an inhibitor of NF-κB translocation, reduced the genotoxic effect, thereby underscoring the key role of NF-κB in this process. One of the genes induced by NF-κB is angiotensinogen. The ensuing proteolytic activity yields angiotensin II, which evokes oxidative stress as well as proinflammatory responses. A modulator of the renin-angiotensin system (RAS), the angiotensin II (Ang II) receptor 1 antagonist, candesartan, yielded a reduction of the AGE-induced DNA damage, connecting the two signal pathways, RAS and AGE signaling. We were able to identify important participants in AGE-induced DNA damage: ROS, NF-κB, and Ang II, as well as modulators to prevent this DNA damage: antioxidants, DMF, and AT1 antagonists.
Chang, Jing; Kang, Xu; Yuan, Jiang-Lan
2018-07-01
Mulberry seed oil (MSO) is a kind of potential health-care lipids. This study, we investigated unsaturated fatty acids profiles of freshly squeezed MSO by GC-MS and modulated an oil-in-water emulsion system stabilized by acid hydrolyzed egg albumin (AHEA) to protect MSO from oxidation. The results showed that the content of total unsaturated fatty acids in MSO was almost 80%, of which 9, 12- and 10, 13-linoleic acid was over 60% and 10% respectively. In the case of the MSO-in-AHEA emulsions, it was observed that acid hydrolysis improved emulsifying effect, emulsifying stability and antioxidant activity of egg albumin (EA). The hydrolysates of EA (1%, w/w) acid hydrolyzed for 4 h at 85 °C had the best DPPH radical scavenging efficiency. It was suitable for EA to hydrolyze for 4 to 12 h at pH 2.5 and 85 °C because of their better emulsification and oxidation stability than the others. The results about AHEA could be valuable for designing delivery and protect systems for MSO or other bioactive component to avoid their oxidative damage or control their release. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hajizadeh Maleki, Behzad; Tartibian, Bakhtyar; Mooren, Frank C; FitzGerald, Leah Z; Krüger, Karsten; Chehrazi, Mohammad; Malandish, Abbas
2018-02-01
Our aim was to explore the putative beneficial effects of low-to-moderate intensity exercise training program in patients with irritable bowel syndrome (IBS). This study evaluated the changes in blood oxidative stress status, inflammatory biomarkers and IBS severity symptoms following 24 weeks of moderate aerobic exercise in sedentary IBS patients. A total of 109 female volunteers (aged 18-41 yrs) who fulfilled Rome III criteria for the diagnosis of IBS were screened and 60 were randomized to exercise (EX, n = 30) and non-exercise (NON-EX, n = 30) groups. Exercise intervention favorably attenuated inflammation as indicated by plasma cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-α), adenosine deaminase, oxidative stress (XO, MDA and NO) and enhanced antioxidants (SOD, CAT and GSH-Px) (P < .05), and these alterations correlate with promising improvements in IBS symptoms (P < .05). Taken together, low-to-moderate intensity exercise training program attenuates symptoms in IBS. Symptom improvement was associated with a reversal of the ratio of anti- to pro-inflammatory cytokines as well as facilitating blood redox homeostasis, suggesting an immune- and redox modulating function for exercise training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saini, Kumud; AbdElgawad, Hamada; Markakis, Marios N.; Schoenaers, Sébastjen; Asard, Han; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris
2017-01-01
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology. PMID:28824662
Biomolecular Modulation of Neurodegenerative Events during Ageing
Scarsella, Gianfranco; Librando, Aloisa; Pescosolido, Nicola
2015-01-01
The objective is to assess the modulation of retinal and optic nerve degenerative events induced by the combination of α-lipoic acid (ALA) and superoxide dismutase (SOD) in an animal model of ageing. For this study, 24 male Wistar-Harlan strain rats were left to age for up to 24 months. One group of rats was subjected to a diet supplemented with ALA and SOD for 8 weeks, while another group was used as a positive control and not subjected to any dietary treatment. To assess the cytoprotective effects of the antioxidants, a morphological analysis was carried out on sections of retina and optic nerve head, stained with haematoxylin-eosin, followed by an analysis of the modifications to nuclear DNA detected by the TUNEL technique. The lipid peroxidation assay was used to assess the damage induced by oxidative stress at cell membrane level. The molecules involved in apoptosis mediated by oxidative stress, such as caspase-3 and inducible nitric oxide synthase, were also assayed by immunolocalization and western blot. ALA and SOD are able to counteract senile neurodegenerative deterioration to the retina and optic nerve. Indeed, the combination of these antioxidant molecules can reduce oxidative stress levels and thus prevent both nuclear degradation and subsequent cell death. PMID:26583065
Chen, Yung-Tsung; Lin, Yu-Chun; Lin, Jin-Seng; Yang, Ning-Sun; Chen, Ming-Ju
2018-04-01
Non-alcoholic fatty liver disease (NAFLD) is a common disease that is concomitant with obesity, resulting in increased mortality. To date, the efficiency of NAFLD treatment still needs to be improved. Therefore, we aimed to evaluate the effect of Lactobacillus mali APS1, which was isolated from sugary kefir, on hepatic steatosis in rats fed a high-fat diet (HFD). Sprague Dawley rats were fed a control diet, a HFD with saline, and a HFD with APS1 intervention by gavage daily for 12 weeks. The results showed that APS1 significantly reduced body weight and body weight gain in HFD-fed rats. APS1 reduced hepatic lipid accumulation by regulating SIRT-1/PGC-1α/SREBP-1 expression. Moreover, APS1 increased hepatic antioxidant activity by modulating Nrf-2/HO-1 expression. Notably, APS1 manipulated the gut microbiota, resulting in increasing proportions of the phylum Bacteroidetes/Firmicutes and reducing the abundance of specific NAFLD-associated bacteria. These results suggested that APS1 ameliorated hepatic steatosis by modulating lipid metabolism and antioxidant activity via manipulating specific NAFLD-associated gut microbiota in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abozaid, Omayma A R; Moawed, Fatma S M; Farrag, Mostafa A; Abdel Aziz, Abdel Aziz A
2017-12-01
Cellular exposure to ionising radiation leads to oxidative stress events, which refer to elevated intracellular levels of reactive oxygen species (ROS). The elevated levels of ROS significantly contributed to γ-radiation (IR) induced cytotoxicity. In an attempt to minimise these cytotoxic effects, antioxidant compounds have been identified to counteract radiation- associated toxicities. We mainly aimed to study the protective effect of 4-(4-hydroxy-3-methoxyphenyl)-2-butanone (HMB) on IR-induced nephrotoxicity, whereas it was previously shown to have anti-inflammatory effects in different inflammation models. Animals were treated orally with HMB (25 mg/kg b.wt daily) then performed by whole-body gamma-irradiation of animals with 6 Gy; a single dose applied on the 15th day and animals were sacrificed at the end of the 23rd day. It was found that IR exposure significantly induced renal oxidative injury that accompanied by inflammatory disturbance. Also, NADPH oxidase and iNOS gene expressions were significantly up-regulated, while the mitochondrial enzymes (complex I & II) were significantly down-regulated in IR exposed animals. Additionally, Western immunoblotting analysis of signalling growth factor protein; p38 MAPK was significantly overexpressed. Interestingly, HMB treatment showed statistically significant amelioration in parameters with an improved histological structure upon the IR-induced nephrotoxicity. It can be concluded that modulation of NADPH-oxidase, iNOS and mitochondrial enzymes by HMB might be responsible for the amendment of the antioxidant status and impairment of p38 MAPK signal, thus attenuate the nephrotoxicity induced post IR exposure.
Tobacco smoke modulates ozone-induced toxicity in rat lungs and central nervous system.
Bhoopalan, Vanitha; Han, Sung Gu; Shah, Mrudang M; Thomas, David M; Bhalla, Deepak K
2013-01-01
Adult Sprague-Dawley (SD) male rats were exposed for a single 3 h period to air, ozone (O₃) or O₃) followed by tobacco smoke (O₃/TS). For pulmonary effects, bronchoalveolar lavage (BAL) cells and fluid were analyzed. Data revealed a significant increase in polymorphonuclear leukocytes (PMN), total protein and albumin concentrations in the O₃ group, reflecting inflammatory and toxic responses. A subsequent exposure to TS attenuated PMN infiltration into the airspaces and their recovery in the BAL. A similar reduction was observed for BAL protein and albumin in the O₃/TS group, but it was not statistically significant. We also observed a significant increase in BAL total antioxidant capacity following O₃ exposure, suggesting development of protective mechanisms for oxidative stress damage from O₃. Exposure to TS attenuated the levels of total antioxidant capacity. Lung tissue protein analysis showed a significant reduction of extracellular superoxide dismutase (EC-SOD) in the O₃ or O₃/TS group and catalase in the O₃/TS group. TS further altered O₃-induced EC-SOD and catalase protein expression, but the reductions were not significant. For effects in the central nervous system (CNS), we measured striatal dopamine levels by HPLC with electrochemical detection. O₃ exposure produced a nonsignificant decrease in the striatal dopamine content. The effect was partially reversed in the O₃/TS group. Overall, the results show that the toxicity of O₃ in the lung is modulated by TS exposure, and the attenuating trend, though nonsignificant in many cases, is contrary to the synergistic toxicity predicted for TS and O₃, suggesting limited cross-tolerance following such exposures.
Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin
2014-01-01
Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533
Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas
2012-01-01
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.
Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas
2012-01-01
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation. PMID:22912892
Han, Jeonghoon; Won, Eun-Ji; Lee, Min-Chul; Seo, Jung Soo; Lee, Su-Jae; Lee, Jae-Seong
2015-08-01
2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctane sulfonate (PFOS) are widely dispersed persistent organic pollutants (POPs) in the marine ecosystem. However, their toxic effects on marine organisms are still poorly understood. In this study, we investigated the effects of BDE-47 and PFOS on development and reproduction at the organismal level and reactive oxygen species (ROS) production and gene expression patterns of the defensome at the cellular level in the intertidal copepod Tigriopus japonicus. In copepods exposed to BDE-47 and PFOS, we observed developmental retardation and reduced fecundity, suggesting repercussions on in vivo endpoints through alterations to the normal molting and reproduction system of T. japonicus. BDE-47 and PFOS increased levels of ROS in T. japonicus in a concentration-dependent manner, indicating that POPs can induce oxidative stress through the generation of ROS. Additionally, transcript profiles of genes related to detoxification (e.g., CYPs), antioxidant functions (e.g., GST- sigma, catalase, MnSOD), apoptosis (e.g., p53, Rb), and cellular proliferation (e.g., PCNA) were modulated over 72h in response to BDE-47 (120μg/L) and PFOS (1000μg/L). These findings indicate that BDE-47 and PFOS can induce oxidative stress-mediated DNA damage repair systems with transcriptional regulation of detoxification, antioxidant, and apoptosis-related genes, resulting in developmental retardation and reduced fecundity in the copepod T. japonicus. Copyright © 2015 Elsevier B.V. All rights reserved.
RTA 408, A Novel Synthetic Triterpenoid with Broad Anticancer and Anti-Inflammatory Activity
Probst, Brandon L.; Trevino, Isaac; McCauley, Lyndsey; Bumeister, Ron; Dulubova, Irina; Wigley, W. Christian; Ferguson, Deborah A.
2015-01-01
Semi-synthetic triterpenoids are antioxidant inflammation modulator (AIM) compounds that inhibit tumor cell growth and metastasis. Compounds in the AIM class bind to Keap1 and attenuate Nrf2 degradation. In the nucleus, Nrf2 increases antioxidant gene expression and reduces pro-inflammatory gene expression. By increasing Nrf2 activity, AIMs reduce reactive oxygen species and inflammation in the tumor microenvironment, which reverses tumor-mediated immune evasion and inhibits tumor growth and metastasis. AIMs also directly inhibit tumor cell growth by modulating oncogenic signaling pathways, such as IKKβ/NF-κB. Here, we characterized the in vitro antioxidant, anti-inflammatory, and anticancer activities of RTA 408, a novel AIM that is currently being evaluated in patients with advanced malignancies. At low concentrations (≤ 25 nM), RTA 408 activated Nrf2 and suppressed nitric oxide and pro-inflammatory cytokine levels in interferon-γ-stimulated RAW 264.7 macrophage cells. At higher concentrations, RTA 408 inhibited tumor cell growth (GI50 = 260 ± 74 nM) and increased caspase activity in tumor cell lines, but not in normal primary human cells. Consistent with the direct effect of AIMs on IKKβ, RTA 408 inhibited NF-κB signaling and decreased cyclin D1 levels at the same concentrations that inhibited cell growth and induced apoptosis. RTA 408 also increased CDKN1A (p21) levels and JNK phosphorylation. The in vitro activity profile of RTA 408 is similar to that of bardoxolone methyl, which was well-tolerated by patients at doses that demonstrated target engagement. Taken together, these data support clinical evaluation of RTA 408 for cancer treatment. PMID:25897966
Klewicka, Elżbieta; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Klewicki, Robert
2015-07-16
An objective of this work was to assess the biological activity of beetroot juice (Chrobry variety, Beta vulgaris L. ssp. vulgaris), which was lactofermented by probiotic bacteria Lactobacillus brevis 0944 and Lactobacillus paracasei 0920. The oxidative status of blood serum, kidneys, and liver of rats consuming the fermented beetroot juice were determined. The experimental rats were divided into four groups on diet type: Basal diet, basal diet supplemented with fermented beetroot juice, basal diet and N-nitroso-N-methylurea treatment, and basal diet supplemented with fermented beetroot juice and N-nitroso-N-methylurea treatment. Mutagen N-nitroso-N-methylurea, which was added to diet in order to induce aberrant oxidative and biochemical processes and disadvantageous changes in the count and metabolic activity of the gut epithelium microbiota. The nutritional in vivo study showed that supplementing the diet of the rats with the lactofermented beetroot juice reduced the level of ammonia by 17% in the group treated with N-nitroso-N-methylurea. Furthermore, the positive modulation of the gut microflora and its metabolic activity was observed in groups of rats fed with the diet supplemented with the fermented beetroot juice. A concomitant decrease in the b-glucuronidase activity was a consequence of the gut epithelium microbiota modulation. The antioxidant capacity of blood serum aqueous fraction was increased by about 69% in the group of rats treated N-nitroso-N-methylurea mixed with the fermented beetroot juice and N-nitroso-N-methylurea versus to the N-nitroso-N-methylurea treatment, whereas the antioxidant parameters of the blood serum lipid fraction, kidneys, and liver remained unchanged.
Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye
2015-01-01
Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for cisplatin. PMID:25875356
2012-04-02
during cutaneous wound healing . Mediators Inflamm. 2010, 342328. Ringseis, R., Muller, A., Herter, C., Gahler, S., Steinhart, H., Eder, K., 2006. CLA...glutamylcysteine (GGC), a dipeptide and precursor of glutathione (GSH), and conjugated linoleic acid (CLA), a trans-fatty acid, exhibit antioxidant properties...synthesis in human endothelial cells. Changes in levels of 8-epi-PGF2a, thiobarbituric acid reac- tive substances (TBARS), GSH, total antioxidants , GSH
Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P
2011-12-01
The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.
Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats
Sim, Mi-Ok; Lee, Hae-In; Ham, Ju Ri; Seo, Kwon-Il; Kim, Myung-Joo
2015-01-01
BACKGROUND/OBJECTIVES Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system. PMID:26244074
Yang, Chun; Tan, Ye-xiong; Yang, Guang-zhen; Zhang, Jian; Pan, Yu-fei; Liu, Chen; Fu, Jing; Chen, Yao; Ding, Zhi-wen
2016-01-01
Oxidative stress status has a key role in hepatocellular carcinoma (HCC) development and progression. Normally, reactive oxygen species (ROS) levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors. How HCC cells respond to excessive oxidative stress remains elusive. Here, we identified a feedback loop between gankyrin, an oncoprotein overexpressed in human HCC, and Nrf2 maintaining the homeostasis in HCC cells. Mechanistically, gankyrin was found to interact with the Kelch domain of Keap1 and effectively competed with Nrf2 for Keap1 binding. Increased expression of gankyrin in HCC cells blocked the binding between Nrf2 and Keap1, inhibiting the degradation of Nrf2 by proteasome. Interestingly, accumulation and translocation of Nrf2 increased the transcription of gankyrin through binding to the ARE elements in the promoter of gankyrin. The positive feedback regulation involving gankyrin and Nrf2 modulates a series of antioxidant enzymes, thereby lowering intracellular ROS and conferring a steadier intracellular environment, which prevents mitochondrial damage and cell death induced by excessive oxidative stress. Our results indicate that gankyrin is a regulator of cellular redox homeostasis and provide a link between oxidative stress and the development of HCC. PMID:27091842
Protective effects of gallic acid against spinal cord injury-induced oxidative stress.
Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran
2015-08-01
The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.
Garofalo, Roberto P.; Kolli, Deepthi
2013-01-01
Abstract Respiratory syncytial virus (RSV) is one of the most important causes of upper and lower respiratory tract infections in infants and young children, for which no effective treatment is currently available. Although the mechanisms of RSV-induced airway disease remain incompletely defined, the lung inflammatory response is thought to play a central pathogenetic role. In the past few years, we and others have provided increasing evidence of a role of reactive oxygen species (ROS) as important regulators of RSV-induced cellular signaling leading to the expression of key proinflammatory mediators, such as cytokines and chemokines. In addition, RSV-induced oxidative stress, which results from an imbalance between ROS production and airway antioxidant defenses, due to a widespread inhibition of antioxidant enzyme expression, is likely to play a fundamental role in the pathogenesis of RSV-associated lung inflammatory disease, as demonstrated by a significant increase in markers of oxidative injury, which correlate with the severity of clinical illness, in children with RSV infection. Modulation of ROS production and oxidative stress therefore represents a potential novel pharmacological approach to ameliorate RSV-induced lung inflammation and its long-term consequences. Antioxid. Redox Signal. 18, 186–217. PMID:22799599
Modulation by Melatonin of the Pathogenesis of Inflammatory Autoimmune Diseases
Lin, Gu-Jiun; Huang, Shing-Hwa; Chen, Shyi-Jou; Wang, Chih-Hung; Chang, Deh-Ming; Sytwu, Huey-Kang
2013-01-01
Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease. PMID:23727938
Nadal-Serrano, Mercedes; Pons, Daniel Gabriel; Sastre-Serra, Jorge; Blanquer-Rosselló, M del Mar; Roca, Pilar; Oliver, Jordi
2013-09-01
Genistein is a biologically active isoflavone with estrogenic activity and can be found in a variety of soy products. This natural compound displays a wide array of biological activities, but it is best known for its ability to inhibit cancer progression, especially for hormone-related ones such as breast cancer. Genistein has been shown to bind both the estrogen receptor alpha (ERα) and the estrogen receptor beta (ERβ), although it has a higher affinity for the ERβ. The ERα/ERβ ratio is a prognostic marker for breast tumors, and ERβ expression could indicate the presence of tumors more benign in state, whereas ERα indicates malignant tumors. The objective of the present study was to investigate the effects of genistein on oxidative stress and mitochondrial functionality through its interaction with the estrogen receptor in breast cancer cell lines with different ERα/ERβ ratios. The lower ERα/ERβ ratio T47D cell line showed lower oxidative stress and greater mitochondrial functionality, along with an up-regulation of uncoupling protein 2 and sirtuins. On the other hand, genistein-treated MCF-7 cell line, with the highest ERα/ERβ ratio, reported no changes for the control situation. On the whole, our results show different genistein effects depending on ERα/ERβ ratio for oxidative stress regulation, mitochondrial functionality, and modulation of UCPs, antioxidant enzymes and sirtuins in breast cancer cell lines. Effects of genistein on oxidative stress and mitochondria could be due at least in part, to a higher ERβ presence, but could also be due to up-regulation of ERβ caused by the genistein treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki
2018-04-01
Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Di Matteo, Antonio; Sacco, Adriana; De Stefano, Rosalba; Frusciante, Luigi; Barone, Amalia
2012-12-01
In recent years, interest in tomato breeding for enhanced antioxidant content has increased as medical research has pointed to human health benefits from antioxidant dietary intake. Ascorbate is one of the major antioxidants present in tomato, and little is known about mechanisms governing ascorbate pool size in this fruit. In order to provide further insights into genetic mechanisms controlling ascorbate biosynthesis and accumulation in tomato, we investigated the fruit transcriptome profile of the Solanum pennellii introgression line 10-1 that exhibits a lower fruit ascorbate level than its cultivated parental genotype. Our results showed that this reduced ascorbate level is associated with an increased antioxidant demand arising from an accelerated oxidative metabolism mainly involving mitochondria, peroxisomes, and cytoplasm. Candidate genes for controlling ascorbate level in tomato fruit were identified, highlighting the role of glycolysis, glyoxylate metabolism, and purine breakdown in modulating the ascorbate pool size.
Gorcek, Zeynep; Erdal, Serkan
2015-11-01
Soil salinity is one of the most detrimental environmental factors affecting the growth of plants and limiting their agricultural productivity. This study investigated whether exogenous lipoic acid (LA) pretreatment plays a role in promoting salt tolerance in wheat seedlings. The seedlings were treated with LA (1.75 mmol L(-1)) and salt (100 mmol L(-1) NaCl) separately and a combination of them. Salt stress significantly reduced relative water content, leaf surface area, ribulose bisphosphate carboxylase expression, and chlorophyll content but increased the content of osmo-regulator protein, carbohydrates and proline. In addition, salinity led to an imbalance in the inorganic composition of wheat leaves. While it elevated Na(+) content compared to control, Ca content and K(+)/Na(+) ratio were reduced. Under saline conditions, despite increases in antioxidant enzyme activity and levels of antioxidant compounds (ascorbate and glutathione), the content of reactive oxygen species (superoxide anion, hydrogen peroxide) and malondialdehyde were higher than in control seedlings. LA significantly promoted osmo-regulator level and antioxidant enzyme activities compared to stressed seedlings alone. Also, it both increased levels of ascorbate and glutathione and regenerated their oxidised forms, thus contributing to maintaining cellular redox status. Similarly, LA prevented excessive accumulation of Na(+) and promoted K(+)/Na(+) ratio and Ca content. Reactive oxygen species content was significantly reduced, and the inhibitions in the above parameters markedly recovered. LA reduced salinity-induced oxidative damage and thus contributed to the growth and development of plants in saline soils by modulating ion homeostasis between plant and soil as well as in osmo-regulator content and antioxidant system. © 2014 Society of Chemical Industry.
Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance
McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven
2014-01-01
Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893
Zhao, Panfeng; Piao, Xiangshu; Zeng, Zhikai; Li, Ping; Xu, Xiao; Wang, Hongliang
2017-06-01
We investigated the effects of Forsythia suspensa extract (FSE) and chito-oligosaccharide (COS), alone or together, on performance and health status of weaned piglets. The treatments included a basal diet and three diets with 160 mg/kg COS, 100 mg/kg FSE, or 100 mg/kg FSE and 160 mg/kg COS. Supplementation with COS or FSE alone improved (P < 0.01) average daily gain and feed conversion ratio compared with the basal diet in the first 2 weeks. On day 14, COS or FSE supplementation separately produced stronger (P < 0.01) serum total antioxidant capacity and glutathione peroxidase activities and lower serum endotoxin (P < 0.05) and malondialdehyde (P < 0.01) concentrations, generated higher (P < 0.01) serum complement 4 concentration, peripheral blood lymphocyte proliferation and serum-specific ovalbumin antibody level than the basal diet. No differences in oxidative injury and immunity indices were detected on day 28. The combined FSE and COS produced similar results compared with FSE or COS when given alone. These data indicate FSE or COS can increase performance by modulating intestinal permeability, antioxidant status and immune function in younger pigs. There appears to be similar advantage in feeding the additives in combination over those obtained from feeding them separately. © 2016 Japanese Society of Animal Science.
Lakshmi, Arivazhagan; Subramanian, Sorimuthu Pillai
2014-09-02
Tangeretin, a citrus polymethoxyflavone, is an antioxidant modulator which has been shown to exhibit a surfeit of pharmacological properties. The present study was hypothesized to explore the therapeutic activity of tangeretin against 7,12-dimethylbenz[a]anthracene (DMBA) induced kidney injury in mammary tumor bearing rats. Recently, we have reported the chemotherapeutic effect of tangeretin in the breast tissue of DMBA induced rats. Breast cancer was induced by "air pouch technique" with a single dose of 25mg/kg of DMBA. Tangeretin (50mg/kg/day) was administered orally for four weeks. The renoprotective nature of tangeretin was assessed by analyzing the markers of oxidative stress, proinflammatory cytokines and antioxidant competence in DMBA induced rats. Tangeretin treatment revealed a significant decline in the levels of lipid peroxides, inflammatory cytokines and markers of DNA damage, and a significant improvement in the levels of enzymatic and non-enzymatic antioxidants in the kidney tissue. Similarly, mRNA, protein and immunohistochemical analysis substantiated that tangeretin treatment notably normalizes the renal expression of Nrf2/Keap1, its downstream regulatory proteins and the inflammatory cytokines in the DMBA induced rats. Histological and ultrastructural observations also evidenced that the treatment with tangeretin effectively protects the kidney from DMBA-mediated oxidative damage, hence, proving its nephroprotective nature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lee, Jihyun; Yang, Goowon; Kim, Young-Joo; Tran, Quynh Hoa; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun
2017-09-23
Persistent oxidative stress is recognized as a major cause of many pathological conditions as well as ageing. However, most clinical trials of dietary antioxidants have failed to produce successful outcomes in treating oxidative stress-induced diseases. Molecular hydrogen (H 2 ) has recently received considerable attention as a therapeutic agent owing to its novel antioxidant properties, a selective scavenger of hydroxyl and peroxynitrite radicals. Beyond this, numerous reports support that H 2 can modulate the activity of various cellular signal pathways. However, its effect on AMP-activated protein kinase (AMPK) signal pathway, a central regulator of energy hemostasis, has remained almost elusive. Here, we report that hydrogen-rich medium activated LKB1-AMPK signal pathway without ATP depletion, which in turn induced FoxO1-dependent transcription of manganese superoxide dismutase and catalase in mouse embryonic fibroblasts. Moreover, hydrogen-rich media effectively reduced the level of reactive oxygen species in cells treated with hydrogen peroxide and protected these cells from apoptosis in an AMPK-dependent manner. These results suggest that the LKB1-AMPK-FoxO1 signaling pathway is a critical mediator of the antioxidant properties of H 2 , further supporting the idea that H 2 acts as a signaling molecule to serve various physiological functions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile
2016-01-01
This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.
Perinatal hypothyroidism modulates antioxidant defence status in the developing rat liver and heart.
Zhang, Hongmei; Dong, Yan; Su, Qing
2017-02-01
In the present study, we investigated oxidative stress parameters and antioxidant defence status in perinatal hypothyroid rat liver and heart. We found that the proteincarbonyl content did not differ significantly between the three groups both in the pup liver and in the heart. The OH˙ level was significantly decreased in the hypothyroid heart but not in the liver compared with controls. A slight but not significant decrease in SOD activity was observed in both perinatal hypothyroid liver and heart. A significantly increased activity of CAT was observed in the liver but not in the heart of hypothyroid pups. The GPx activity was considerably increased compared with controls in the perinatal hypothyroid heart and was unaltered in the liver of hypothyroid pups. We also found that vitamin E levels in the liver decreased significantly in hypothyroidism and were unaltered in the heart of perinatal hypothyroid rats. The GSH content was elevated significantly in both hypothyroid liver and heart. The total antioxidant capacity was higher in the liver of the hypothyroid group but not in the hypothyroid heart. Thyroxine replacement could not repair the above changes to normal. In conclusion, perinatal hypothyroidism modulates the oxidative stress status of the perinatal liver and heart.
Alford, Aaron; Kozlovskaya, Veronika; Xue, Bing; ...
2017-12-18
Local modulation of oxidative stress is crucial for a variety of biochemical events including cellular differentiation, apoptosis, and defense against pathogens. Currently employed natural and synthetic antioxidants exhibit a lack of biocompatibility, bioavailability, and chemical stability, resulting in limited capability to scavenge reactive oxygen species (ROS). To mediate these drawbacks, we have developed a synergistic manganoporphyrin-polyphenol polymeric nanothin coating and hollow microcapsules with efficient antioxidant activity and controllable ROS modulation. These materials are produced by multilayer assembly of a natural polyphenolic antioxidant, tannic acid (TA), with a synthesized copolymer of polyvinylpyrrolidone containing a manganoporphyrin modality (MnP-PVPON) which mimics the enzymaticmore » antioxidant superoxide dismutase. The redox activity of the copolymer is demonstrated to dramatically increase the antioxidant response of MnP-PVPON/TA capsules versus unmodified PVPON/TA capsules through reduction of a radical cationic dye and to significantly suppress the proliferation of superoxide via cytochrome C competition. Inclusion of MnP-PVPON as an outer layer enhances radical-scavenging activity as compared to localization of the layer in the middle or inner part of the capsule shell. In addition, we demonstrate that TA is crucial for the synergistic radical-scavenging activity of the MnP-PVPON/TA system which exhibits a combined superoxide dismutase-like ability and catalase-like activity in response to the free radical superoxide challenge. The MnP-PVPON/TA capsules exhibit a negligible, 8% loss of shell thickness upon free radical treatment, while PVPON/TA capsules lose 39% of their shell thickness due to the noncatalytic free-radical-scavenging of TA, as demonstrated by small angle neutron scattering (SANS). Finally, we have found the manganoporphyrin-polyphenol capsules to be nontoxic to splenocytes from NOD mice after 48 h incubation. In conclusion, our study illustrates the strong potential of combining catalytic activity of manganoporphyrins with natural polyphenolic antioxidants to design efficient free-radical-scavenging materials that may eventually be used in antioxidant therapies and as free radical dissipating protective carriers of biomolecules for biomedical or industrial applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alford, Aaron; Kozlovskaya, Veronika; Xue, Bing
Local modulation of oxidative stress is crucial for a variety of biochemical events including cellular differentiation, apoptosis, and defense against pathogens. Currently employed natural and synthetic antioxidants exhibit a lack of biocompatibility, bioavailability, and chemical stability, resulting in limited capability to scavenge reactive oxygen species (ROS). To mediate these drawbacks, we have developed a synergistic manganoporphyrin-polyphenol polymeric nanothin coating and hollow microcapsules with efficient antioxidant activity and controllable ROS modulation. These materials are produced by multilayer assembly of a natural polyphenolic antioxidant, tannic acid (TA), with a synthesized copolymer of polyvinylpyrrolidone containing a manganoporphyrin modality (MnP-PVPON) which mimics the enzymaticmore » antioxidant superoxide dismutase. The redox activity of the copolymer is demonstrated to dramatically increase the antioxidant response of MnP-PVPON/TA capsules versus unmodified PVPON/TA capsules through reduction of a radical cationic dye and to significantly suppress the proliferation of superoxide via cytochrome C competition. Inclusion of MnP-PVPON as an outer layer enhances radical-scavenging activity as compared to localization of the layer in the middle or inner part of the capsule shell. In addition, we demonstrate that TA is crucial for the synergistic radical-scavenging activity of the MnP-PVPON/TA system which exhibits a combined superoxide dismutase-like ability and catalase-like activity in response to the free radical superoxide challenge. The MnP-PVPON/TA capsules exhibit a negligible, 8% loss of shell thickness upon free radical treatment, while PVPON/TA capsules lose 39% of their shell thickness due to the noncatalytic free-radical-scavenging of TA, as demonstrated by small angle neutron scattering (SANS). Finally, we have found the manganoporphyrin-polyphenol capsules to be nontoxic to splenocytes from NOD mice after 48 h incubation. In conclusion, our study illustrates the strong potential of combining catalytic activity of manganoporphyrins with natural polyphenolic antioxidants to design efficient free-radical-scavenging materials that may eventually be used in antioxidant therapies and as free radical dissipating protective carriers of biomolecules for biomedical or industrial applications.« less
Aguilera, Inmaculada; Ballester, Ferran; Estarlich, Marisa; Fernández-Somoano, Ana; Lertxundi, Aitana; Lertxundi, Nerea; Mendez, Michelle A.; Tardón, Adonina; Vrijheid, Martine; Sunyer, Jordi
2011-01-01
Background: Air pollution effects on children’s neurodevelopment have recently been suggested to occur most likely through the oxidative stress pathway. Objective: We aimed to assess whether prenatal exposure to residential air pollution is associated with impaired infant mental development, and whether antioxidant/detoxification factors modulate this association. Methods: In the Spanish INfancia y Medio Ambiente (INMA; Environment and Childhood) Project, 2,644 pregnant women were recruited during their first trimester. Nitrogen dioxide (NO2) and benzene were measured with passive samplers covering the study areas. Land use regression models were developed for each pollutant to predict average outdoor air pollution levels for the entire pregnancy at each residential address. Maternal diet was obtained at first trimester through a validated food frequency questionnaire. Around 14 months, infant mental development was assessed using Bayley Scales of Infant Development. Results: Among the 1,889 children included in the analysis, mean exposure during pregnancy was 29.0 μg/m3 for NO2 and 1.5 μg/m3 for benzene. Exposure to NO2 and benzene showed an inverse association with mental development, although not statistically significant, after adjusting for potential confounders [β (95% confidence interval) = –0.95 (–3.90, 1.89) and –1.57 (–3.69, 0.56), respectively, for a doubling of each compound]. Stronger inverse associations were estimated for both pollutants among infants whose mothers reported low intakes of fruits/vegetables during pregnancy [–4.13 (–7.06, –1.21) and –4.37 (–6.89, –1.86) for NO2 and benzene, respectively], with little evidence of associations in the high-intake group (interaction p-values of 0.073 and 0.047). Inverse associations were also stronger in non-breast-fed infants and infants with low maternal vitamin D, but effect estimates and interactions were not significant. Conclusions: Our findings suggest that prenatal exposure to residential air pollutants may adversely affect infant mental development, but potential effects may be limited to infants whose mothers report low antioxidant intakes. PMID:21868304
Nutrigenetics and modulation of oxidative stress.
Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed
2012-01-01
Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.
Shen, Hua; Robertson, Larry W; Ludewig, Gabriele
2016-02-01
Paraoxonase 1 (PON1), an antioxidant enzyme, is believed to play a critical role in many diseases, including cancer. PCBs are widespread environmental contaminants known to induce oxidative stress and cancer and to produce changes in gene expression of various pro-oxidant and antioxidant enzymes. Thus, it appeared of interest to explore whether PCBs may modulate the activity and/or gene expression of PON1 as well. In this study, we compared the effects of dioxin-like and non-dioxin-like PCBs and of various aryl hydrocarbon receptor (AhR) ligands on PON1 regulation and activity in male and female Sprague-Dawley rats. Our results demonstrate that (i) the non-dioxin-like PCB154, PCB155, and PCB184 significantly reduced liver and serum PON1 activities, but only in male rats; (ii) the non-dioxin-like PCB153, the most abundant PCB in many matrices, did not affect PON1 messenger RNA (mRNA) level in the liver but significantly decreased serum PON1 activity in male rats; (iii) PCB126, an AhR ligand and dioxin-like PCB, increased both PON1 activities and gene expression; and (iv) even though three tested AhR ligands induced CYP1A in several tissues to a similar extent, they displayed differential effects on the three PONs and AhR, i.e., PCB126 was an efficacious inducer of PON1, PON2, PON3, and AhR in the liver, while 3-methylcholantrene induced liver AhR and lung PON3, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR agonist, increased only PON3 in the lung, at the doses and exposure times used in these studies. These results show that PCBs may have an effect on the antioxidant protection by paraoxonases in exposed populations and that regulation of gene expression through AhR is highly diverse.
Patro, Ganesh; Bhattamisra, Subrat Kumar; Mohanty, Bijay Kumar; Sahoo, Himanshu Bhusan
2016-01-01
Objective: Mimosa pudica Linn. (Mimosaceae) is traditionally used as a folk medicine to treat various ailments including convulsions, alopecia, diarrhea, dysentery, insomnia, tumor, wound healing, snake bite, etc., Here, the study was aimed to evaluate the antioxidant potential of M. pudica leaves extract against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (in vitro) and its modulatory effect on rat brain enzymes. Materials and Methods: Total phenolic, flavonoid contents, and in vitro antioxidant potential against DPPH radical were evaluated from various extracts of M. pudica leaves. In addition, ethyl acetate extract of Mimosa pudica leaves (EAMP) in doses of 100, 200, and 400 mg/kg/day were administered orally for 7 consecutive days to albino rats and evaluated for the oxidative stress markers as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) from rat brain homogenate. Results: The ethyl acetate extract showed the highest total phenolic content and total flavonoid content among other extracts of M. pudica leaves. The percentage inhibition and IC50 value of all the extracts were followed dose-dependency and found significant (P < 0.01) as compared to standard (ascorbic acid). The oxidative stress markers as SOD, CAT, and GSH were increased significantly (P < 0.01) at 200 and 400 mg/kg of EAMP treated animals and decreased significantly the TBARS level at 400 mg/kg of EAMP as compared to control group. Conclusion: These results revealed that the ethyl acetate extract of M. pudica exhibits both in vitro antioxidant activity against DPPH and in vivo antioxidant activity by modulating brain enzymes in the rat. This could be further correlated with its potential to neuroprotective activity due to the presence of flavonoids and phenolic contents in the extract. SUMMARY Total phenolic, flavonoid contents and in-vitro antioxidant potential were evaluated from various extracts of M. pudica leaves. Again, in-vivo antioxidant evaluation from brain homogenate on oxidative stress markers as TBARS, SOD, CAT and GSH from rat was investigated. Our findings revealed that M. pudica possesses both in-vitro and in-vivo antioxidant activity due to presence of phenolics and flavonoids. PMID:26941532
Oliveira, Victor Constante; Constante, Sarah Alves Rodrigues; Orsolin, Priscila Capelari; Nepomuceno, Júlio César; de Rezende, Alexandre Azenha Alves; Spanó, Mário Antônio
2017-08-01
Metformin (MET) is an anti-diabetic drug used to prevent hepatic glucose release and increase tissue insulin sensitivity. Diabetic cancer patients are on additional therapy with anticancer drugs. Doxorubicin (DXR) is a cancer chemotherapeutic agent that interferes with the topoisomerase II enzyme and generates free radicals. MET (2.5, 5, 10, 25 or 50 mM) alone was examined for mutagenicity, recombinogenicity and carcinogenicity, and combined with DXR (0.4 mM) for antimutagenicity, antirecombinogenicity and anticarcinogenicity, using the Somatic Mutation and Recombination Test and the Test for Detecting Epithelial Tumor Clones in Drosophila melanogaster. MET alone did not induce mutation or recombination. Modulating effects of MET on DXR-induced DNA damage were observed at the highest concentrations. In the evaluation of carcinogenesis, MET alone did not induce tumors. When combined with DXR, MET also reduced the DXR-induced tumors at the highest concentrations. Therefore, in the present experimental conditions, MET alone did not present mutagenic/recombinogenic/carcinogenic effects, but it was able to modulate the effect of DXR in the induction of DNA damage and of tumors in D. melanogaster. It is believed that this modulating effect is mainly related to the antioxidant, anti-inflammatory and apoptotic effects of this drug, although such effects have not been directly evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik
2012-01-01
Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway. PMID:22312287
Ben Jannet, Soumaya; Hymery, Nolwenn; Bourgou, Soumaya; Jdey, Ahmed; Lachaal, Mokhtar; Magné, Christian; Ksouri, Riadh
2017-06-01
In this study, two Euphorbia species (i.e. terracina and paralias) were investigated for their cytotoxic and antioxidant activities. Cytotoxicity of plant methanol and chloroform fractions was examined towards human acute myeloid leukemia (THP1) and human colon epithelial (Caco2) cancer cell lines, as well as CD 14 and IEC-6 normal cells by targeting various modulators of apoptosis or inflammation. Moreover, secondary metabolite pools (phenolic classes, alkaloids, terpenes, saponins) and antioxidant activities (DPPH, ABTS and O 2 - scavenging, as well as FRAP tests) were assessed in plant extracts. Both Euphorbia species appeared to be rich in phenolic compounds and terpenoids, Moreover, E. terracina polar and apolar fractions and E. paralias polar fraction were highly active against THP1 cells, with IC 50 values of 2.08, 14.43 and 54.58μg/mL, respectively. However, no cytotoxicity was found against normal cells (CD14 + monocytes). The results indicate that the three fractions induce apoptosis in THP1 cell line after 6h of exposure. Furthermore, apoptosis caused by apolar fraction was related to a caspase-dependent process, whereas other death pathways seemed to be involved with the polar fractions. An enhanced production of reactive oxygen species was detected upon cell treatment with plant extracts. Interestingly, they have no effect on cytokine TNF-α secretion in THP1 and normal cells compared to untreated cells, indicating that the three fractions caused no inflammation. Euphorbia terracina and E. paralias polar fractions showed strong antioxidant activity with potent scavenging capacity against DPPH, ABTS and superoxide radicals. Moreover, these fractions displayed a very high ferric reducing power. These findings confirm the strong antioxidant capacity of Euphorbia plants and suggest a targeted anti-cancer effect with a potent anti-proliferative property of E. terracina and E. paralias extracts, which induce programmed cell death in leukemia cell lines but not in normal monocytes cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bengmark, Stig
2006-01-01
The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest. A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed. Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases. Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.
Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh
2016-10-01
Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.
Jaworek, Jolanta; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Szklarczyk, Joanna; Kot, Michalina; Pierzchalski, Piotr; Góralska, Marta; Ceranowicz, Piotr; Warzecha, Zygmunt; Dembinski, Artur; Bonior, Joanna
2017-01-01
Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK). Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1) Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK) release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2) Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3) In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated. PMID:28481310
Koch, Emily R; Deo, Permal
2016-09-01
Chronic hyperglycemia enhances the formation of advanced glycation endproducts (AGEs) and reactive oxygen species (ROS), contributing to diabetic complications. Thus, controlling blood glucose levels, inhibiting the formation of AGEs and reducing ROS are key therapeutic targets in early stage type 2 diabetes. The inhibitory effects of seven commercial liquid nutritional supplements against carbohydrate hydrolysing enzymes, α-amylase and α-glucosidase, was determined by dinitrosalicylic (DNS) reagent and p-nitrophenyl-α-D-glucopyranoside solution, respectively. Antiglycation activity was determined using the formation of fluorescent protein-bound AGEs. Total phenolic and flavonoid content and antioxidant properties (1,1-diphenyl-2-picrylhydrazyl antioxidant activity (DPPH) and ferric reducing antioxidant power (FRAP)) were determined for correlation among these components and inhibitory activities. Samoan noni juice showed the greatest inhibitory effects against α-amylase, whereas chlorophyll extracts showed the greatest inhibitory effect against α-glucosidase. Inhibition of α-glucosidase correlated with TFC (r(2) = 0.766; p < 0.01) and FRAP (r(2) = 0.750; p < 0.01) whereas no correlation was observed for α-amylase inhibition. All supplements inhibited fluorescent protein-bound AGEs, with the greatest effect exerted by Olive Leaf Extract, Blood Sugar Support (IC50 = 0.5 mg/ml). The IC50 values negatively correlated with TPC (r(2) = -0.707; p < 0.001) and DPPH scavenging activities (r(2) = 0.515; p < 0.05). The findings of this study highlight the potential of liquid nutritional supplements in managing and treating type 2 diabetes mellitus.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668
Kurup, Surya B; Mini, S
2017-04-01
Hyperglycemia-mediated oxidative stress plays a major role in the development of diabetic complications. Averrhoa bilimbi Linn. (Oxalidaceae) is a medicinal plant with fruits reported to possess antidiabetic activity. This study evaluated the beneficial effects of the ethyl acetate fraction of A. bilimbi fruit (ABAEE) on the antioxidant/oxidant status in diabetes mellitus. Diabetic rats were treated orally with the ethyl acetate fraction of A. bilimbi fruits at a dose of 25 mg/kg body weight for 60 days. Serum glucose, glycated hemoglobin, plasma insulin, hepatic toxicity markers, antioxidant enzymes, lipid peroxidation products, and liver histopathology were assayed checked after 60 days of extract treatment. Diabetic rats administered ABAEE showed a significant decline in serum glucose, glycated hemoglobin, and also significantly increases the level of plasma insulin, as well as a notable attenuation in thiobarbituric acid-reactive substances, conjugated dienes, and hydroperoxides. ABAEE also modulated hepatic antioxidant potential by significantly increasing the activities of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and reducing glutathione content. The results associated with ABAEE were more significant than those observed following treatment with the standard drug metformin. Histopathological observations showed that ABAEE effectively rescued hepatocytes from oxidative damage without affecting cellular function and structural integrity. High-performance liquid chromatography analysis of ABAEE indicated the presence of phenolic compound, quercetin, indicating that the antidiabetic effect of the extract might be related to quercetin. These results demonstrated the potential beneficial effect of ABAEE on streptozotocin-induced diabetes in rats. Copyright © 2016. Published by Elsevier B.V.
Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O
2017-04-01
Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.
Wang, Qiangqiang; Huang, Yunxuan; Qin, Chuixin; Liang, Ming; Mao, Xinliang; Li, Shuiming; Zou, Yongdong; Jia, Weizhang; Li, Haifeng; Ma, Chung Wah; Huang, Zebo
2016-01-01
Since excessive reactive oxygen species (ROS) is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa) was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps), which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps) are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.
Durani, Lina Wati; Tan, Jen Kit; Chua, Kien Hui
2017-01-01
Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways. PMID:28596968
Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana
2017-01-01
Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.
Alpha-lipoic acid and cardiovascular disease.
Wollin, Stephanie D; Jones, Peter J H
2003-11-01
Alpha-lipoic acid (ALA) has been identified as a powerful antioxidant found naturally in our diets, but appears to have increased functional capacity when given as a supplement in the form of a natural or synthetic isolate. ALA and its active reduced counterpart, dihydrolipoic acid (DHLA), have been shown to combat oxidative stress by quenching a variety of reactive oxygen species (ROS). Because this molecule is soluble in both aqueous and lipid portions of the cell, its biological functions are not limited solely to one environment. In addition to ROS scavenging, ALA has been shown to be involved in the recycling of other antioxidants in the body including vitamins C and E and glutathione. Not only have the antioxidant qualities of this molecule been studied, but there are also several reports pertaining to its blood lipid modulating characteristics, protection against LDL oxidation and modulation of hypertension. Therefore, ALA represents a possible protective agent against risk factors of cardiovascular disease (CVD). The objective of this review is to examine the literature pertaining to ALA in relation to CVD and describe the most powerful actions and potential uses of this naturally occurring antioxidant. Despite the numerous studies on ALA, many questions remain relating to the use of ALA as a supplement. There is no consensus on dosage, dose frequency, form of administration, and/or preferred form of ALA. However, collectively the literature increases our understanding of the potential uses for supplementation with ALA and identifies key areas for future research.
The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?
Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka
2013-03-01
Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.
The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?
Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka
2013-01-01
Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics. PMID:23946727
Impellizzeri, Daniela; Cordaro, Marika; Campolo, Michela; Gugliandolo, Enrico; Esposito, Emanuela; Benedetto, Filippo; Cuzzocrea, Salvatore; Navarra, Michele
2016-01-01
The flavonoid-rich fraction of bergamot juice (BJe) has demonstrated anti-inflammatory and antioxidant activities. The aim of work was to test the beneficial effects of BJe on the modulation of the ileum inflammation caused by intestinal ischemia/reperfusion (I/R) injury in mice. To understand the cellular mechanisms by which BJe may decrease the development of intestinal I/R injury, we have evaluated the activation of signaling transduction pathways that can be induced by reactive oxygen species production. Superior mesenteric artery and celiac trunk were occluded for 30 min and reperfused for 1 h. The animals were sacrificed after 1 h of reperfusion, for both histological and molecular examinations of the ileum tissue. The experimental results demonstrated that BJe was able to reduce histological damage, cytokines production, adhesion molecules expression, neutrophil infiltration and oxidative stress by a mechanism involved both NF-κB and MAP kinases pathways. This study indicates that BJe could represent a new treatment against inflammatory events of intestinal I/R injury. PMID:27471464
Impellizzeri, Daniela; Cordaro, Marika; Campolo, Michela; Gugliandolo, Enrico; Esposito, Emanuela; Benedetto, Filippo; Cuzzocrea, Salvatore; Navarra, Michele
2016-01-01
The flavonoid-rich fraction of bergamot juice (BJe) has demonstrated anti-inflammatory and antioxidant activities. The aim of work was to test the beneficial effects of BJe on the modulation of the ileum inflammation caused by intestinal ischemia/reperfusion (I/R) injury in mice. To understand the cellular mechanisms by which BJe may decrease the development of intestinal I/R injury, we have evaluated the activation of signaling transduction pathways that can be induced by reactive oxygen species production. Superior mesenteric artery and celiac trunk were occluded for 30 min and reperfused for 1 h. The animals were sacrificed after 1 h of reperfusion, for both histological and molecular examinations of the ileum tissue. The experimental results demonstrated that BJe was able to reduce histological damage, cytokines production, adhesion molecules expression, neutrophil infiltration and oxidative stress by a mechanism involved both NF-κB and MAP kinases pathways. This study indicates that BJe could represent a new treatment against inflammatory events of intestinal I/R injury.
Lee, You Jin; Ahn, Youngsook; Kwon, Oran; Lee, Mee Youn; Lee, Choong Hwan; Lee, Sungyoung; Park, Taesung; Kwon, Sung Won; Kim, Ji Yeon
2017-01-18
In the present study, we evaluated the antioxidative and anti-inflammatory effects of an aqueous extract of wolfberry fruit (WBE) in mild hypercholesterolemic and overweight subjects. This study was a double-blind randomized trial of two parallel groups of free-living subjects (n = 53). The participants consumed the contents of an 80 mL pouch containing 13.5 g WBE or placebo after one meal per day over an 8-week period. Following 8 weeks of WBE supplementation, we observed a slight but significant decrease in erythrocyte superoxide dismutase activity and an increase in catalase activity. Furthermore, to assess endogenous DNA damage in lymphocytes, the alkaline comet assay was performed, showing that the percentage of DNA in the tail was significantly decreased by 8-week WBE intake. Additionally, the proportion of significantly deregulated mRNAs related to oxidative or inflammatory stress was considerably higher in the WBE intake group. The present data indicate that WBE intake has antioxidative and anti-inflammatory effects in overweight and hypercholesterolemic subjects by modulating mRNA expression.
Neuroendocrine and oxidoreductive mechanisms of stress-induced cardiovascular diseases.
Pajović, S B; Radojcić, M B; Kanazir, D T
2008-01-01
The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition.
Capó, X; Martorell, M; Busquets-Cortés, C; Sureda, A; Riera, J; Drobnic, F; Tur, J A; Pons, A
2016-12-07
Functional beverages based on almonds and olive oil and enriched with α-tocopherol and docosahexaenoic acid (DHA) could be useful in modulating oxidative stress and enhancing physical performance in sportsmen. The aim of this work was to evaluate the effects of supplementation with functional beverages on physical performance, plasma and erythrocyte fatty acids' and polyphenol handling, oxidative and nitrative damage, and antioxidant and mitochondrial gene expression in young and senior athletes. Athletes performed maximal exercise tests before and after one month of dietary supplementation and blood samples were taken immediately before and one hour after each test. The beverages did not alter performance parameters during maximal exercise. Supplementation increased polyunsaturated and reduced saturated plasma fatty acids while increasing the DHA erythrocyte content; it maintained basal plasma and blood polyphenol levels, but increased the blood cell polyphenol concentration in senior athletes. Supplementation protects against oxidative damage although it enhances nitrative damage in young athletes. The beverages enhance the gene expression of antioxidant enzymes in peripheral blood mononuclear cells after exercise in young athletes.
Potential Health Benefits of Olive Oil and Plant Polyphenols.
Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena
2018-02-28
Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.
Mechanisms involved in the gastroprotective activity of esculin on acute gastric lesions in mice.
Rios, Emiliano Ricardo Vasconcelos; Rocha, Nayrton Flávio Moura; Venâncio, Edith Teles; Moura, Brinell Arcanjo; Feitosa, Mariana Lima; Cerqueira, Gilberto Santos; Soares, Pedro Marcos Gomes; Woods, David John; de Sousa, Francisca Cléa Florenço; Leal, Luzia Kalyne Almeida Moreira; Fonteles, Marta Maria de França
2010-10-06
This work describes the gastroprotective actions of esculin (6,7-dihydroxycoumarin-6-o-glucoside) against indomethacin- or ethanol-induced lesions and verifies the role of nitric oxide, ATP-dependent K(+) channels, prostaglandins, transient receptor potential vanilloid 1 and antioxidant effects in the gastroprotective mechanism of esculin in the ethanol-induced gastric lesion model. The intragastric administration of esculin at doses of 12.5, 25 and 50 mg/kg was able to protect the gastric mucosa against ethanol (0.2 mL/animal p.o.), and esculin at doses of 25 and 50 mg/kg protected against indomethacin-induced lesions (20mg/kg p.o.). Administration of l-NAME (10mg/kg i.p.), glibenclamide (10mg/kg i.p.) or indomethacin (10mg/kg p.o.), but not capsazepine (5mg/kg p.o.), was able to reduce the gastroprotection promoted by esculin (25mg/kg) on the ethanol-induced lesions. Measurements of nitrite, a NO metabolite, were increased in the group that was pretreated with esculin. In terms of antioxidant activity as a gastroprotective mechanism of esculin, the results show that pre-treatment with esculin decreased the amount of GSH, increased SOD activity, did not interfere with the CAT activity and decreased both the MPO activity and the MDA amount. In conclusion, pre-treatment with esculin confers significant gastroprotective and antioxidant activity and leads to a reduction in gastric injury; the mechanisms underlying these effects include stimulation of endogenous prostaglandins, nitric oxide synthesis, opening of K(ATP) channels and reduction of free radicals or modulation of antioxidant enzyme systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Bøhn, Siv K; Myhrstad, Mari C; Thoresen, Magne; Holden, Marit; Karlsen, Anette; Tunheim, Siv Haugen; Erlund, Iris; Svendsen, Mette; Seljeflot, Ingebjørg; Moskaug, Jan O; Duttaroy, Asim K; Laake, Petter; Arnesen, Harald; Tonstad, Serena; Collins, Andrew; Drevon, Christan A; Blomhoff, Rune
2010-09-16
Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. NCT00520819 http://clinicaltrials.gov. In an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays. Changes were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups. The observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes.
Lebda, Mohamed A; Sadek, Kadry M; Abouzed, Tarek K; Tohamy, Hossam G; El-Sayed, Yasser S
2018-01-01
The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Antioxidants Supplementation on Aging and Longevity
Bartosz, Grzegorz
2014-01-01
If aging is due to or contributed by free radical reactions, as postulated by the free radical theory of aging, lifespan of organisms should be extended by administration of exogenous antioxidants. This paper reviews data on model organisms concerning the effects of exogenous antioxidants (antioxidant vitamins, lipoic acid, coenzyme Q, melatonin, resveratrol, curcumin, other polyphenols, and synthetic antioxidants including antioxidant nanoparticles) on the lifespan of model organisms. Mechanisms of effects of antioxidants, often due to indirect antioxidant action or to action not related to the antioxidant properties of the compounds administered, are discussed. The legitimacy of antioxidant supplementation in human is considered. PMID:24783202
Fratantonio, Deborah; Cimino, Francesco; Molonia, Maria Sofia; Ferrari, Daniela; Saija, Antonella; Virgili, Fabio; Speciale, Antonio
2017-03-01
Increased plasma levels of free fatty acids, including palmitic acid (PA), cause insulin resistance in endothelium characterized by a decreased synthesis of insulin-mediated vasodilator nitric oxide (NO), and by an increased production of the vasoconstrictor protein, endothelin-1. Several in vitro and in vivo studies suggest that anthocyanins, natural phenols commonly present in food and vegetables from Mediterranean Diet, exert significant cardiovascular health-promoting activities. These effects are possibly mediated by a positive regulation of the transcription factor Nrf2 and activation of cellular antioxidant and cytoprotective genes. The present study examined, at a molecular level, the effects of cyanidin-3-O-glucoside (C3G), a widely distributed anthocyanin, on PA-induced endothelial dysfunction and insulin resistance in human umbilical vein endothelial cells (HUVECs). Our results indicate that C3G pretreatment effectively reverses the effects of PA on PI3K/Akt axis, and restores eNOS expression and NO release, altered by PA. We observed that these effects were exerted by changes on the phosphorylation of IRS-1 on specific serine and tyrosine residues modulated by PA through the modulation of JNK and IKK activity. Furthermore, silencing Nrf2 transcripts demonstrated that the protective effects of C3G are directly related to the activation of Nrf2. Copyright © 2016 Elsevier B.V. All rights reserved.
Koppula, Sushruta; Kumar, Hemant; More, Sandeep Vasant; Kim, Byung Wook; Kim, In Su; Choi, Dong Kug
2012-01-01
Parkinson's disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD.
Koppula, Sushruta; Kumar, Hemant; More, Sandeep Vasant; Kim, Byung Wook; Kim, In Su; Choi, Dong Kug
2012-01-01
Parkinson’s disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD. PMID:22949883
Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella
2016-01-01
Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp.
Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella
2016-01-01
Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp. PMID:27023062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekar, Naveenkumar; Selvamani, Asokkumar; Subramanian, Raghunandhakumar
2012-05-15
The objective of the present study is to investigate the therapeutic efficacy of baicalein (BE) on inflammatory cytokines, which is in line with tumor invasion factors and antioxidant defensive system during benzo(a)pyrene [B(a)P] (50 mg/kg body weight) induced pulmonary carcinogenesis in Swiss albino mice. After experimental period, increased levels of total and differential cell count in bronchoalveolar lavage fluid were observed. Accompanied by marked increase in immature mast cell by toluidine blue staining and mature mast cell by safranin–alcian blue staining in B(a)P-induced lung cancer bearing animals. Protein expression levels studied by immunohistochemistry and immunoblot analysis of cytokines such asmore » tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were also found to be significantly increased in lung cancer bearing animals. B(a)P-exposed mice lung exhibits activated expression of nuclear transcription factor kappa-B as confirmed by immunofluorescence and immunoblot analysis. Administration of BE (12 mg/kg body weight) significantly counteracted all the above deleterious changes. Moreover, assessment of tumor invasion factors on protein levels by immunoblot and mRNA expression levels by RT-PCR revealed that BE treatment effectively negates B(a)P-induced upregulated expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and cyclo-oxygenase-2. Further analysis of lipid peroxidation markers such as thiobarbituric acid reactive substances, hydro-peroxides and antioxidants such as glutathione-S-transferase and reduced glutathione in lung tissue was carried out to substantiate the antioxidant effect of BE. The chemotherapeutic effect observed in the present study is attributed to the potent anti-inflammatory and antioxidant potential by BE against pulmonary carcinogenesis. -- Highlights: ► BE treatment protects from inflammatory cells and mast-cells accumulation in lungs. ► BE altered the expressions of TNF-α, IL-1β, i-NOS and NF-κBp65 at protein levels. ► BE modulates the expressions of MMP-2, MMP-9 and COX-2 at protein and mRNA levels. ► BE decreases LPO levels and enhances antioxidant status.« less
Hirai, Daniel M; Copp, Steven W; Schwagerl, Peter J; Haub, Mark D; Poole, David C; Musch, Timothy I
2011-04-01
Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.
Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain.
Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva
2015-01-01
Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues.
Tocotrienols: constitutional effects in aging and disease.
Schaffer, Sebastian; Müller, Walter E; Eckert, Gunter P
2005-02-01
Tocotrienols, a class of vitamin E analogs, modulate several mechanisms associated with the aging process and aging-related diseases. Most studies compare the activities of tocotrienols with those of tocopherols ("classical vitamin E"). However, some biological effects were found to be unique for tocotrienols. Although the absorption mechanisms are essentially the same for all vitamin E analogs, tocotrienols are degraded to a greater extent than tocopherols. The levels of tocotrienols in the plasma of animals and humans were estimated to reach low micromolar concentrations. One hallmark in the origin of disease and aging is the overproduction of reactive oxygen species (ROS). Tocotrienols possess excellent antioxidant activity in vitro and have been suggested to suppress ROS production more efficiently than tocopherols. In addition, tocotrienols show promising nonantioxidant activities in various in vitro and in vivo models. Most notable are the interactions of tocotrienols with the mevalonate pathway leading to the lowering of cholesterol levels, the prevention of cell adhesion to endothelial cells, and the suppression of tumor cell growth. Furthermore, glutamate-induced neurotoxicity is suppressed in the presence of tocotrienols. This review summarizes the main antioxidant and nonantioxidant effects of tocotrienols and assesses their potential as health-maintaining compounds.
Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain
Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva
2015-01-01
Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues. PMID:26779027
Protective effects of aerobic exercise on acute lung injury induced by LPS in mice
2012-01-01
Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI. PMID:23078757
Pragya, Prakash; Shukla, Arvind Kumar; Murthy, Ramesh Chandra; Abdin, Malik Zainul; Kar Chowdhuri, Debapratim
2014-01-01
The evolutionarily conserved innate immune system plays critical role for maintaining the health of an organism. However, a number of environmental chemicals including metals are known to exert adverse effects on immune system. The present study assessed the in vivo effect of a major environmental chemical, Cr(VI), on cellular immune response using Drosophila melanogaster and subsequently the protective role of superoxide dismutase (SOD) based on the comparable performance of the tested anti-oxidant enzymes. The immuno-modulatory potential of Cr(VI) was demonstrated by observing a significant reduction in the total hemocyte count along with impaired phagocytic activity in exposed organism. Concurrently, a significant increase in the percentage of Annexin V-FITC positive cells, activation of DEVDase activity, generation of free radical species along with inhibition of anti-oxidant enzyme activities was observed in the hemocytes of exposed organism. In addition, we have shown that ONOO− is primarily responsible for Cr(VI) induced adverse effects on Drosophila hemocytes along with O2 −. While generation of O2 −/ONOO− in Cr(VI) exposed Drosophila hemocytes was found to be responsible for the suppression of Drosophila cellular immune response, Cr(VI) induced alteration was significantly reduced by the over-expression of sod in Drosophila hemocytes. Overall, our results suggest that manipulation of one of the anti-oxidant genes, sod, benefits the organism from Cr(VI) induced alteration in cellular immunity. Further, this study demonstrates the applicability of D. melanogaster to examine the possible effects of environmental chemicals on innate immunity which can be extrapolated to higher organisms due to evolutionary conservation of innate immune system between Drosophila and mammals. PMID:24505420
Topalović, Dijana Žukovec; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana
2015-01-01
The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.
Žukovec Topalović, Dijana; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Spremo-Potparević, Biljana
2015-01-01
The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081
Gomes, Marilia Brito; Negrato, Carlos Antonio
2014-01-01
Alpha-lipoic acid is a naturally occurring substance, essential for the function of different enzymes that take part in mitochondria's oxidative metabolism. It is believed that alpha-lipoic acid or its reduced form, dihydrolipoic acid have many biochemical functions acting as biological antioxidants, as metal chelators, reducers of the oxidized forms of other antioxidant agents such as vitamin C and E, and modulator of the signaling transduction of several pathways. These above-mentioned actions have been shown in experimental studies emphasizing the use of alpha-lipoic acid as a potential therapeutic agent for many chronic diseases with great epidemiological as well economic and social impact such as brain diseases and cognitive dysfunctions like Alzheimer disease, obesity, nonalcoholic fatty liver disease, burning mouth syndrome, cardiovascular disease, hypertension, some types of cancer, glaucoma and osteoporosis. Many conflicting data have been found concerning the clinical use of alpha-lipoic acid in the treatment of diabetes and of diabetes-related chronic complications such as retinopathy, nephropathy, neuropathy, wound healing and diabetic cardiovascular autonomic neuropathy. The most frequent clinical condition in which alpha-lipoic acid has been studied was in the management of diabetic peripheral neuropathy in patients with type 1 as well type 2 diabetes. Considering that oxidative stress, a imbalance between pro and antioxidants with excessive production of reactive oxygen species, is a factor in the development of many diseases and that alpha-lipoic acid, a natural thiol antioxidant, has been shown to have beneficial effects on oxidative stress parameters in various tissues we wrote this article in order to make an up-to-date review of current thinking regarding alpha-lipoic acid and its use as an antioxidant drug therapy for a myriad of diseases that could have potential benefits from its use.
Assumpção, Teresa C. F.; Ma, Dongying; Schwarz, Alexandra; Reiter, Karine; Santana, Jaime M.; Andersen, John F.; Ribeiro, José M. C.; Nardone, Glenn; Yu, Lee L.; Francischetti, Ivo M. B.
2013-01-01
The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2⨪ generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2⨪ generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2⨪. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ∼100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism. PMID:23564450
Sadek, Kadry M; Lebda, Mohamed A; Nasr, Sherif M; Shoukry, Moustafa
2017-08-01
Spirulina platensis (SP) is a microalga with antioxidant, antidiabetic and anti-inflammatory properties. The present study explored the ability and potential mechanism(s) by which SP induced glucose lowering impact in diabetic rat model. Forty rats were allocated into four groups: control; streptozotocin (STZ)-induced diabetes (STZ, 45mg/kg b.w., intraperitoneally); SP (500mg/kg b.w., orally twice weekly for 2 months) and STZ-induced diabetes+SP group. In the STZ-induced diabetic rats, SP significantly decreased (P>0.05) serum glucose, glycated hemoglobin (HbA1c), malondialdehyde (MDA) levels and significantly increased (P>0.05) serum insulin, the activity of antioxidant enzymes and normalized their mRNA gene expression. Furthermore, SP attenuates STZ-induced upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC), the pro-apoptotic Bax and caspase-3 (CASP-3), tumor necrosis factor alpha (TNF-α) gene expression. The Western blot results revealed that, SP induced downregulation of mitogen activated protein kinase pathway (MAPK) protein expression in hepatic tissues of diabetic rats. Additionally, SP reestablished the typical histological structure of the liver and pancreas of diabetic rats. Acute toxicity study further shows that SP is relatively safe. This study demonstrates that SP is rich in antioxidant compounds and has powerful glucose lowering effect through the normalization of increased hepatic PC gene expression. Interestingly, SP induced recovery of damaged hepatocytes and pancreatic β-cells via its anti-inflammatory, antioxidant and anti-apoptotic properties. The MAPK signaling cascade is a pivotal component of the proapoptotic signaling pathway induced by diabetes mellitus. MAPK activation may be dependent from ROS production, since SP which exhibited antioxidant activities did have a significant impact on MAPK activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity.
Murakami, Shigeru
2017-10-01
Obesity is caused by an imbalance between energy intake and energy expenditure. It is established that obesity is a state of low-grade chronic inflammation, which is characterized by enlarged hypertrophied adipocytes, increased infiltration by macrophages and marked changes in the secretion of adipokines and free fatty acids. The effects of taurine on the pathogenesis of obesity have been reported in animals and humans. Although the mechanisms underlying the anti-obesity action of taurine remain to be defined, taurine seems to ameliorate obesity through stimulation of energy expenditure, modulation of lipid metabolism, anorexic effect, anti-inflammatory and anti-oxidative effects. Recent studies revealed that taurine supplementation reduces the infiltration of macrophages and modulates the polarization of adipose tissue macrophages in high-fat diet-induced obese mice. In addition, taurine downregulates the production of pro-inflammatory cytokines by adipocytes, suggesting that taurine plays an anti-inflammatory role in adipose tissue. This article reviews the effects and mechanisms of taurine on the development of obesity, focusing on the role of taurine in white adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.
Giriş, Murat; Erbil, Yeşim; Depboylu, Bilge; Mete, Ozgür; Türkoğlu, Umit; Abbasoğlu, Semra Doğru; Uysal, Müjdat
2010-12-01
The exact pathogenesis of hepatic dysfunction in hyperthyroidism is still unknown. We aimed to investigate the pathogenesis of liver dysfunction caused by hyperthyroidism through inducing heme oxygenase-1 (HO-1) expression, which has antioxidant and anti-apoptotic properties. Rats were divided into six groups: untreated (group 1), treated with zinc protoporphyrin (ZnPP) (group 2), treated with hemin (group 3), treated with tri-iodothyronine (T3) (group 4), treated with T3 and ZnPP (group 5), and treated with T3 and hemin (group 6). After 22 d, oxidative stress and antioxidant enzymes and the expression of HO-1, mitochondrial permeability transition, cytochrome c, Bax, Bcl-2, caspase-3, caspase-8, and caspase-3 activity, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were examined. Hyperthyroidism induced oxidative stress of liver tissue was ameliorated by HO-1 induction. Administration of hemin (HO-1 inducer) increased Bcl-2 expression. Decreased expression of cytochrome c was accompanied by a decrease in caspase-3, caspase-8, Bax expression, and caspase-3 activity. The apoptotic activity and oxidative damage were found to be increased by the administration of ZnPP (HO-1 inhibitor). Immunohistochemistry findings supported these results. HO-1 induction plays a protective role in the pathogenesis of the liver dysfunction in hyperthyroidism. This effect is dependent on modulation of the antiapoptotic and antioxidative pathways by HO-1 expression. Copyright © 2010 Elsevier Inc. All rights reserved.
Selenium in bone health: roles in antioxidant protection and cell proliferation.
Zeng, Huawei; Cao, Jay J; Combs, Gerald F
2013-01-10
Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.
Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation
Zeng, Huawei; Cao, Jay J.; Combs, Gerald F.
2013-01-01
Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health. PMID:23306191
Glutathione: new roles in redox signaling for an old antioxidant
Aquilano, Katia; Baldelli, Sara; Ciriolo, Maria R.
2014-01-01
The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection. PMID:25206336
Glutathione: new roles in redox signaling for an old antioxidant.
Aquilano, Katia; Baldelli, Sara; Ciriolo, Maria R
2014-01-01
The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection.
Chloride channels mediate sodium sulphide-induced relaxation in rat uteri.
Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško
2015-07-01
Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2 S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Organ bath studies were employed to assess the pharmacological effects of Na2 S in uterine strips by exposing them to Na2 S with or without Cl(-) channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K(+) channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca(2+) channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Na2 S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2 S compared with uteri in 15 mM KCl. Na2 S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3 (-) , suggesting the involvement of chloride ion channels. Na2 S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. The relaxant effects of Na2 S in rat uteri are mediated mainly via a DIDS-sensitive Cl(-) -pathway. Components of the relaxation are redox- and Ca(2+) -dependent. © 2015 The British Pharmacological Society.
Jiang, Wei-Dan; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu
2014-10-01
The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of the expression of the Nrf2, Maf G1 (rather than Maf G2 gene) and PKCd genes, suggesting that de novo synthesis of those factors is required for the protracted induction of such antioxidant genes. However, the modulation of Keap1a (rather than Keap1b) of fish brain under Cu exposure might be used to turn off of the signaling cascade and avoid harmful effects. Interestingly, pre-treatment of fish with MI prevented the fish brain from Cu-induced oxidative damages mainly by increasing the GSH content and CuZnSOD and GST activities. Summarily, this study indicates that although Cu stimulates adaptive increases in the expression of some antioxidant enzyme genes through Nrf2/ARE signaling, it also induces oxidation and the depletion of most of antioxidant enzyme activities and GSH content due to the increase of ROS production, and MI protects the fish brain against Cu toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.
Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J
2016-01-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. Copyright © 2016 the American Physiological Society.
Role of oxidative stress in female reproduction
Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh K
2005-01-01
In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause). OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants). ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm labour and preeclampsia and gestational diabetes. The review also addresses the growing literature on the role of nitric oxide species in female reproduction. The involvement of nitric oxide species in regulation of endometrial and ovarian function, etiopathogenesis of endometriosis, and maintenance of uterine quiescence, initiation of labour and ripening of cervix at parturition is discussed. Complex interplay between cytokines and oxidative stress in the etiology of female reproductive disorders is discussed. Oxidant status of the cell modulates angiogenesis, which is critical for follicular growth, corpus luteum formation endometrial differentiation and embryonic growth is also highlighted in the review. Strategies to overcome oxidative stress and enhance fertility, both natural and assisted are delineated. Early interventions being investigated for prevention of preeclampsia are enumerated. Trials investigating combination intervention strategy of vitamin E and vitamin C supplementation in preventing preeclampsia are highlighted. Antioxidants are powerful and there are few trials investigating antioxidant supplementation in female reproduction. However, before clinicians recommend antioxidants, randomized controlled trials with sufficient power are necessary to prove the efficacy of antioxidant supplementation in disorders of female reproduction. Serial measurement of oxidative stress biomarkers in longitudinal studies may help delineate the etiology of some of the diosorders in female reproduction such as preeclampsia. PMID:16018814
Saddiq, Amna Ali; Mohamed, Azza Mostafa
2016-07-01
The aim of this study was to explore the protective impact of aqueous extract of Saudi red propolis against rat lung damage induced by the pathogenic bacteria namely methicillin resistant Staphylococcus aureus (MRSA) ATCC 6538 strain. Infected rats were received a single intraperitoneal (i.p.) injection of bacterial suspension at a dose of 1 X 10(6) CFU / 100g body weight. Results showed that oral administration of an aqueous extract of propolis (50mg/100g body weight) daily for two weeks to infected rats simultaneously with bacterial infection, effectively ameliorated the alteration of oxidative stress biomarker, malondialdehyde (MDA), as well as the antioxidant markers, glutathione peroxidase (GPx) and superoxide dismutase (SOD), in lungs of infected rats compared with infected untreated ones. Also, the used propolis extract successfully modulated the alterations in proinflammatory mediators, tumor necrosis factor-α (TNF- α) and vascular endothelial growth factor (VEGF) in serum. In addition, the propolis extract successfully modulated the oxidative DNA damage and the apoptosis biomarker, caspase 3, in lungs of S aureus infected rats compared with infected untreated animals. The biochemical results were supported by histo-pathological observation of lung tissues. In conclusion, the beneficial prophylactic role of the aqueous extract of Saudi red propolis against lung damage induced by methicillin resistant S aureus may be related to the antioxidant, anti-inflammatory, immunomodulatory and antiapoptosis of its active constituents.
He, Ping; Wu, Yafeng; Shun, Jianchao; Liang, Yaodong; Cheng, Mingliang
2017-01-01
Alcoholic liver injury leads to serious complication including death. The potential role of baicalin at the transcription level in mice model of alcohol injury is not known yet. In this study, we examined the effect of baicalin against chronic plus binge ethanol model in mice and understanding the mechanism of protection. Liver function, histology, steatosis, inflammation, NF-κB activity, oxidative stress sources, nuclear translocation of NRF2 transcription factor, and cell death were assessed. Treatment with baicalin ameliorated ethanol-induced oxidative stress, inflammation, and cell death. Baicalin attenuated ethanol-induced proinflammatory molecules such as TNF-α, IL-1β, MIP-2, and MCP-1 and reversed redox-sensitive transcription factor NF-κB activation. Baicalin also modulated Kupffer cell activation in vitro. Baicalin inhibited ethanol-induced expression of reactive oxygen species (ROS) generating enzymes NOX2, p67phox, xanthine oxidase, and iNOS in addition to CYP2E1 activities. Baicalin also enhanced ethanol-induced NRF2 nuclear translocation and increased downstream target gene HO-1 as antioxidant defense. Finally, baicalin reduced significant apoptotic and necrotic cell death. Our study suggests that baicalin ameliorates chronic plus binge ethanol-induced liver injury involving molecular crosstalk of multiple pathways at the transcriptional level and through upregulation of antioxidant defense mechanism. PMID:28951767
Rana, Mashidur; Roy, Sudhir C; Divyashree, Bannur C
2017-09-01
The status of antioxidant defences of both spermatozoa and their associated fluids during epididymal transit from the caput to cauda have not been studied so far in any species. Herein we report for the first time that sperm antioxidant defences, namely Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and catalase activity, decrease significantly (P<0.05) from the caput to cauda during epididymal transit in parallel with increases in Cu,Zn-SOD, total SOD and total glutathione peroxidase (GPx) activity in the luminal fluid of the respective segments. However, levels of GPX1 and GPX3 in epididymal fluid did not change significantly from the caput to cauda. Catalase was detected for the first time in goat spermatozoa. A significantly higher total antioxidant capacity of caudal fluid than of the caput suggests a requirement for a rich antioxidant environment for the storage of spermatozoa. The retention of cytoplasmic droplets in most of the caudal spermatozoa confirmed that these droplets do not contribute to the increased antioxidant defences of cauda epididymidal fluid. Thus, the antioxidant defences of the spermatozoa and their associated epididymal fluid are modulated from the caput to cauda in a region-specific manner. This may be one of the compensatory mechanisms of epididymal fluid to scavenge any excess reactive oxygen species produced in the microenvironment of spermatozoa.
Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar
2010-01-01
The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures. PMID:20716927
Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S
2010-01-01
The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097
Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis.
Yang, Kaiyuan; Chan, Catherine B
2017-08-01
Proanthocyanidins are a major group of flavonoids in the human diet, known for their strong antioxidant properties. Emerging evidence from clinical studies indicates a role of proanthocyanidins in modulating glucose homeostasis, and higher proanthocyanidin intake has been associated with reduced risk of diabetes. On the other hand, recent studies report limited bioavailability of proanthocyanidins. At relatively low concentrations in the systemic circulation, proanthocyanidins may act as cell-signaling molecules to modulate glucose homeostasis. For example, they affect hepatic glucose production via adenosine monophosphate-activated protein kinase and/or insulin-signaling pathways. There is also evidence for a direct role of proanthocyanidins in modulating several pancreatic β-cell functions: prevention of oxidative stress, enhancement of insulin secretion, and promotion of β-cell survival. Therefore, greater understanding of the potentially beneficial effects of proanthocyanidins on cell-signaling pathways implicated in glucose homeostasis is needed. In addition, further investigation to address the in vivo metabolism of proanthocyanidins and the comparative effectiveness of proanthocyanidin-derived metabolites is warranted. The dosage and the experimental model should be given special attention when results from mechanistic studies using proanthocyanidins are interpreted. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells
Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca
2007-01-01
Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028
Can fish oil supplementation and physical training improve oxidative metabolism in aged rat hearts?
da Silva Pedroza, Anderson Apolonio; Lopes, Andréia; Mendes da Silva, Rosângela F; Braz, Glauber Ruda; Nascimento, Luciana P; Ferreira, Diorginis Soares; dos Santos, Ângela Amâncio; Batista-de-Oliveira-Hornsby, Manuella; Lagranha, Claudia J
2015-09-15
It is well known that in the aging process a variety of physiological functions such as cardiac physiology and energy metabolism decline. Imbalance in production and elimination of reactive oxygen species (ROS) may induce oxidative stress. Research shows that oxidative stress is an important factor in the aging process. Studies suggest that ɷ-3 polyunsaturated fatty acids (PUFAs) and moderate physical exercise modulate the ROS system. Therefore, the present study aimed to investigate whether ɷ-3 present in fish oil supplementation coupled with moderate physical training could improve antioxidant and metabolic enzymes in the hearts of adult and aged rats and, if these effects could be associated to glycemia, plasma lipid profile or murinometric parameters. Adult (weighing 315.1±9.3g) and aged rats (weighing 444.5±11.8g) exercised and receive fish oil supplementation for 4weeks. Then they were used to evaluate murinometric parameters, fasting glucose and lipid profile. After this, their hearts were collected to measure the levels of malondialdehyde (MDA), antioxidant enzyme activity (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPx) and oxidative metabolism marker (citrate synthase-CS activity). Fish oil supplementation increases HDL concentration and activity of CAT and CS. Moreover, physical training coupled with fish oil supplementation induces additional effects on SOD, GPx and CS activity mainly in aged rats. Our data suggest that combined treatment in aged rat hearts improves the antioxidant capacities and metabolic enzyme that can prevent the deleterious effects of aging. Copyright © 2015. Published by Elsevier Inc.
Apium graveolens extract influences mood and cognition in healthy mice.
Boonruamkaew, Phetcharat; Sukketsiri, Wanida; Panichayupakaranant, Pharkphoom; Kaewnam, Wijittra; Tanasawet, Supita; Tipmanee, Varomyalin; Hutamekalin, Pilaiwanwadee; Chonpathompikunlert, Pennapa
2017-07-01
Apium graveolens is a food flavoring which possesses various health promoting effects. This study investigates the effect of a sub-acute administration of A. graveolens on cognition and anti-depression behaviors via antioxidant and related neurotransmitter systems in mice brains. Cognition and depression was assessed by various models of behavior. The antioxidant system of glutathione peroxidase (GPx), % inhibition of superoxide anion (O 2 - ), and lipid peroxidation were studied. In addition, neurochemical parameters including acetylcholinesterase (AChE) and monoamine oxidase-type A (MAO-A) were also evaluated. Nine groups of male mice were fed for 30 days with different substances-a control, vehicle, A. graveolens extract (65-500 mg/kg), and reference drugs (donepezil and fluoxetine). The results indicated that the effect of the intake of A. graveolens extract (125-500 mg/kg) was similar to the reference drugs, as it improved both spatial and non-spatial memories. Moreover, there was a decrease in immobility time in both the forced swimming and tail suspension tests. In addition, the A. graveolens extract reduced lipid peroxidation of the brain and increased GPx activity and the % inhibition of O 2 - , whereas the activities of AChE and MAO-A were decreased. Thus, our data have shown that the consumption of A. graveolens extract improved cognitive function and anti-depression activities as well as modulating the endogenous antioxidant and neurotransmitter systems in the brain, resulting in increased neuronal density. This result indicated an important role for A. graveolens extract in preventing age-associated decline in cognitive function associated with depression.
Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna
2014-01-01
Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746
Mahapatra, Santanu Kar; Chakraborty, Subhankari Prasad; Das, Subhasis
2009-01-01
In the present study, methanol extract of Ocimum gratissimum Linn (ME-Og) was tested against nicotine-induced murine peritoneal macrophage in vitro. Phytochemical analysis of ME-Og shown high amount of flavonoid and phenolic compound present in it. The cytotoxic effect of ME-Og was studied in murine peritoneal macrophages at different concentrations (0.1 to 100 µg/ml) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) method. To establish the protective role of ME-Og against nicotine toxicity, peritoneal macrophages from mice were treated with nicotine (10 mM), nicotine + ME-Og (1 to 25 µg/ml) for 12 h in culture media. The significantly (p < 0.05) increased super oxide anion generation, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, myeloperoxidase (MPO) activity, lipid peroxidation, protein carbonyls, oxidized glutathione levels were observed in nicotine-treated group as compared to control group; those were significantly (p < 0.05) reduced in ME-Og supplemented groups in concentration dependent manner. More over, significantly (p < 0.05) reduced antioxidant status due to nicotine exposure was effectively ameliorated by ME-Og supplementation in murine peritoneal macrophages. Among the different concentration of ME-Og, maximum protective effect was observed by 25 µg/ml, which does not produce significant cell cytotoxicity in murine peritoneal macrophages. These findings suggest the potential use and beneficial role of O. gratissimum as a modulator of nicotine-induced free radical generation, lipid-protein damage and antioxidant status in important immune cell, peritoneal macrophages. PMID:20716908
Carotenoids: biochemistry, pharmacology and treatment.
Milani, Alireza; Basirnejad, Marzieh; Shahbazi, Sepideh; Bolhassani, Azam
2017-06-01
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.
Dolatabadi, Fatemeh; Abdolghaffari, Amir H; Farzaei, Mohammad H; Baeeri, Maryam; Ziarani, Fatemeh S; Eslami, Majid; Abdollahi, Mohammad; Rahimi, Roja
2018-06-04
The aim of present study is to estimate the effects of Melissa officinalis L. (MO) on visceral hypersensitivity (VH), defecation pattern and biochemical factors in 2 experimental models of irritable bowel syndrome (IBS) and the possible role of nitric oxide. Two individual models of IBS were induced in male Wistar-albino rats. In the acetic acid model, the animals were exposed to rectal distension and abdominal withdrawal reflex, and the defecation patterns were determined. In the restraint stress model, the colons of rats were removed and the levels of TNF-α, myeloperoxidase, lipid peroxidation, and antioxidant powers were determined. Rats had been treated with MO, L-NG-nitroarginine methyl ester (L-NAME), aminoguanidine (AG), MO + AG, or MO + L-NAME in the mentioned experimental models. Hypersensitive response to rectal distension and more stool defecation in control rats have been observed in comparison to shams. MO-300 significantly reduced VH and defecation frequency in comparison to controls. VH and defecation pattern did not show significant change in AG + MO and L-NAME + MO groups compared to controls. Also, significant reduction in TNF-α, myeloperoxidase, TBARS, and an increase in antioxidant power in MO-300 was recorded compared to controls. AG + MO and L-NAME + MO groups showed a reverse pattern compared to MO-300. MO can ameliorate IBS by modulating VH and defecation patterns. Antioxidant and anti-inflammatory properties along with its effect on the nitrergic pathway seems to play important roles in its pharmacological activity.
Carotenoids: biochemistry, pharmacology and treatment
Milani, Alireza; Basirnejad, Marzieh; Shahbazi, Sepideh
2016-01-01
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation‐related proteins, retinoid‐like receptors, antioxidant response element, nuclear receptors, AP‐1 transcriptional complex, the Wnt/β‐catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B‐ and T‐lymphocytes, the activity of macrophages and cytotoxic T‐cells, effector T‐cell function and the production of cytokines. Recently, the beneficial effects of carotenoid‐rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β‐carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time‐ and dose‐dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. Linked Articles This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc PMID:27638711