Science.gov

Sample records for antisense oligonucleotides unassisted

  1. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.

    PubMed

    Stein, C A; Hansen, J Bo; Lai, Johnathan; Wu, SiJian; Voskresenskiy, Anatoliy; Høg, Anja; Worm, Jesper; Hedtjärn, Maj; Souleimanian, Naira; Miller, Paul; Soifer, Harris S; Castanotto, Daniella; Benimetskaya, Luba; Ørum, Henrik; Koch, Troels

    2010-01-01

    For the past 15-20 years, the intracellular delivery and silencing activity of oligodeoxynucleotides have been essentially completely dependent on the use of a delivery technology (e.g. lipofection). We have developed a method (called 'gymnosis') that does not require the use of any transfection reagent or any additives to serum whatsoever, but rather takes advantage of the normal growth properties of cells in tissue culture in order to promote productive oligonucleotide uptake. This robust method permits the sequence-specific silencing of multiple targets in a large number of cell types in tissue culture, both at the protein and mRNA level, at concentrations in the low micromolar range. Optimum results were obtained with locked nucleic acid (LNA) phosphorothioate gap-mers. By appropriate manipulation of oligonucleotide dosing, this silencing can be continuously maintained with little or no toxicity for >240 days. High levels of oligonucleotide in the cell nucleus are not a requirement for gene silencing, contrary to long accepted dogma. In addition, gymnotic delivery can efficiently deliver oligonucleotides to suspension cells that are known to be very difficult to transfect. Finally, the pattern of gene silencing of in vitro gymnotically delivered oligonucleotides correlates particularly well with in vivo silencing. The establishment of this link is of particular significance to those in the academic research and drug discovery and development communities.

  2. Chemosensitization by antisense oligonucleotides targeting MDM2.

    PubMed

    Bianco, Roberto; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-02-01

    The MDM2 oncogene is overexpressed in many human cancers, including sarcomas, certain hematologic malignancies, and breast, colon and prostate cancers. The p53-MDM2 interaction pathway has been suggested as a novel target for cancer therapy. To that end, several strategies have been explored, including the use of small polypeptides targeted to the MDM2-p53 binding domain, anti-MDM2 antisense oligonucleotides, and natural agents. Different generations of anti-human-MDM2 oligonucleotides have been tested in in vitro and in vivo human cancer models, revealing specific inhibition of MDM2 expression and significant antitumor activity. Use of antisense oligos potentiated the effects of growth inhibition, p53 activation and p21 induction by several chemotherapeutic agents. Increased therapeutic effectiveness of chemotherapeutic drugs in human cancer cell lines carrying p53 mutations or deletions have shown the ability of MDM2 inhibitors to act as chemosensitizers in various types of tumors through both p53-dependent and p53-independent mechanisms. Inhibiting MDM2 appears to also have a role in radiation therapy for human cancer, regardless of p53 status, providing a rationale for the development of a new class of radiosensitizers. Moreover, MDM2 antisense oligonucleotides potentiate the effect of epidermal growth factor receptor (EGFR) inhibitors by affecting in vitro and in vivo proliferation, apoptosis and protein expression in hormone-refractory and hormone-dependent human prostate cancer cells. These data support the development, among other MDM2 inhibitors, of anti-MDM2 antisense oligonucleotides as a novel class of anticancer agents, and suggest a potentially relevant role for the oligonucleotides when integrated with conventional treatments and/or other signaling inhibitors in novel therapeutic strategies.

  3. Antisense oligonucleotides, microRNAs, and antibodies.

    PubMed

    Dávalos, Alberto; Chroni, Angeliki

    2015-01-01

    The specificity of Watson-Crick base pairing and the development of several chemical modifications to oligonucleotides have enabled the development of novel drug classes for the treatment of different human diseases. This review focuses on promising results of recent preclinical or clinical studies on targeting HDL metabolism and function by antisense oligonucleotides and miRNA-based therapies. Although many hurdles regarding basic mechanism of action, delivery, specificity, and toxicity need to be overcome, promising results from recent clinical trials and recent approval of these types of therapy to treat dyslipidemia suggest that the treatment of HDL dysfunction will benefit from these unique clinical opportunities. Moreover, an overview of monoclonal antibodies (mAbs) developed for the treatment of dyslipidemia and cardiovascular disease and currently being tested in clinical studies is provided. Initial studies have shown that these compounds are generally safe and well tolerated, but ongoing large clinical studies will assess their long-term safety and efficacy.

  4. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  5. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.

  6. Antisense oligonucleotides: is the glass half full or half empty?

    PubMed

    Bennett, C F

    1998-01-01

    Antisense oligonucleotides are widely used as tools to explore the pharmacological effects of inhibiting expression of a selected gene product. In addition, they are being investigated as therapeutic agents for the treatment of viral infections, cancers, and inflammatory disorders. Proof that the pharmacological effects produced by the oligonucleotides are attributable to an antisense mechanism of action requires careful experimentation. Central to this problem is the finding that oligonucleotides are capable of interacting with and modulating function of specific proteins in both a sequence-independent and -dependent manner. Despite these undesired interactions, it has been possible to demonstrate that oligonucleotides are capable of binding to a specific RNA in cultured cells, or within tissues, resulting in selective reduction of the targeted gene product and pharmacological activity. In general, these oligonucleotides were identified after a selection process in which multiple oligonucleotides targeting different regions on the RNA were evaluated for direct inhibition of targeted gene product, resulting in the identification of a potent and selective oligonucleotide. Similar to other drug-receptor interactions, selection of the most potent inhibitor results in an increase in the signal-to-noise ratio, yielding increased confidence that activity observed is the result of a desired effect of the inhibitor. With careful selection, proper controls, and careful dose-response curves it is possible to utilize antisense oligonucleotides as effective research tools and potentially as therapeutic agents. PMID:9413924

  7. Elucidation of gene function using C-5 propyne antisense oligonucleotides.

    PubMed

    Flanagan, W M; Su, L L; Wagner, R W

    1996-09-01

    Identification of human disease-causing genes continues to be an intense area of research. While cloning of genes may lead to diagnostic tests, development of a cure requires an understanding of the gene's function in both normal and diseased cells. Thus, there exists a need for a reproducible and simple method to elucidate gene function. We evaluate C-5 propyne pyrimidine modified phosphorothioate antisense oligonucleotides (ONs) targeted against two human cell cycle proteins that are aberrantly expressed in breast cancer: p34cdc2 kinase and cyclin B1. Dose-dependent, sequence-specific, and gene-specific inhibition of both proteins was achieved at nanomolar concentrations of ONs in normal and breast cancer cells. Precise binding of the antisense ONs to their target RNA was absolutely required for antisense activity. Four or six base-mismatched ONs eliminated antisense activity confirming the sequence specificity of the antisense ONs. Antisense inhibition of p34cdc2 kinase resulted in a significant accumulation of cells in the Gap2/mitosis phase of the cell cycle in normal cells, but caused little effect on cell cycle progression in breast cancer cells. These data demonstrate the potency, specificity, and utility of C-5 propyne modified antisense ONs as biological tools and illustrate the redundancy of cell cycle protein function that can occur in cancer cells. PMID:9631067

  8. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers.

    PubMed Central

    Bielinska, A; Kukowska-Latallo, J F; Johnson, J; Tomalia, D A; Baker, J R

    1996-01-01

    Starburst polyamidoamine (PAMAM) dendrimers are a new type of synthetic polymer characterized by a branched spherical shape and a high density surface charge. We have investigated the ability of these dendrimers to function as an effective delivery system for antisense oligonucleotides and 'antisense expression plasmids' for the targeted modulation of gene expression. Dendrimers bind to various forms of nucleic acids on the basis of electrostatic interactions, and the ability of DNA-dendrimer complexes to transfer oligonucleotides and plasmid DNA to mediate antisense inhibition was assessed in an in vitro cell culture system. Cell lines that permanently express luciferase gene were developed using dendrimer mediated transfection. Transfections of antisense oligonucleotides or antisense cDNA plasmids into these cell lines using dendrimers resulted in a specific and dose dependent inhibition of luciferase expression. This inhibition caused approximately 25-50% reduction of baseline luciferase activity. Binding of the phosphodiester oligonucleotides to dendrimers also extended their intracellular survival. While dendrimers were not cytotoxic at the concentrations effective for DNA transfer, some non-specific suppression of luciferase expression was observed. Our results indicate that Starburst dendrimers can be effective carriers for the introduction of regulatory nucleic acids and facilitate the suppression of the specific gene expression. PMID:8668551

  9. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Sun, Hong; Tanowitz, Michael; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    Chemically modified antisense oligonucleotides (ASOs) designed to mediate site-specific cleavage of RNA by RNase H1 are used as research tools and as therapeutics. ASOs modified with phosphorothioate (PS) linkages enter cells via endocytotic pathways. The mechanisms by which PS-ASOs are released from membrane-enclosed endocytotic organelles to reach target RNAs remain largely unknown. We recently found that annexin A2 (ANXA2) co-localizes with PS-ASOs in late endosomes (LEs) and enhances ASO activity. Here, we show that co-localization of ANXA2 with PS-ASO is not dependent on their direct interactions or mediated by ANXA2 partner protein S100A10. Instead, ANXA2 accompanies the transport of PS-ASOs to LEs, as ANXA2/PS-ASO co-localization was observed inside LEs. Although ANXA2 appears not to affect levels of PS-ASO internalization, ANXA2 reduction caused significant accumulation of ASOs in early endosomes (EEs) and reduced localization in LEs and decreased PS-ASO activity. Importantly, the kinetics of PS-ASO activity upon free uptake show that target mRNA reduction occurs at least 4 hrs after PS-ASOs exit from EEs and is coincident with release from LEs. Taken together, our results indicate that ANXA2 facilitates PS-ASO trafficking from early to late endosomes where it may also contribute to PS-ASO release. PMID:27378781

  10. Intracerebroventricular Administration of Mineralocorticoid Receptor Antisense Oligonucleotides Attenuates Salt Appetite in the Rat.

    PubMed

    Ma; Itharat; Fluharty; Sakai

    1997-10-01

    The anterior ventral third ventricle (AV3V) region of the brain contains high concentrations of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that are important in the maintenance of body fluid and electrolyte balance as well as other physiological processes. Daily intracerebroventricular pulse injections of MR antisense oligonucleotides significantly suppressed deoxycorticosterone acetate (DOCA) induced salt appetite in a dose-related manner. Similar administration of GR antisense or scrambled/sense oligonucleotide into the third ventricle failed to inhibit salt appetite. Salt appetite aroused after adrenalectomy was not suppressed by MR antisense oligonucleotide treatments but was suppressed by an antisense oligonucleotide directed against the angiotensin II AT1 receptor subtype. Receptor binding analysis demonstrated that MR and GR oligonucleotide treatments each reduced their respective receptor subtypes. Finally, although GR antisense oligonucleotide treatment was ineffective in suppressing DOCA-induced salt appetite, this treatment did increase stress induced corticosterone release as well as delayed the recovery of corticosterone to basal levels after stress. PMID:9787254

  11. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    PubMed Central

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  12. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.

    PubMed

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride ("DQAsomes") have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2'-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription-translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We describe

  13. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    PubMed

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing. PMID:26553470

  14. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    PubMed

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.

  15. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes.

    PubMed Central

    Hanecak, R; Brown-Driver, V; Fox, M C; Azad, R F; Furusako, S; Nozaki, C; Ford, C; Sasmor, H; Anderson, K P

    1996-01-01

    Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and

  16. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  17. Delivery of antisense oligonucleotide to the cornea by iontophoresis.

    PubMed

    Berdugo, M; Valamanesh, F; Andrieu, C; Klein, C; Benezra, D; Courtois, Y; Behar-Cohen, F

    2003-04-01

    We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the

  18. Drug evaluation: ISIS-301012, an antisense oligonucleotide for the treatment of hypercholesterolemia.

    PubMed

    Burnett, John R

    2006-10-01

    ISIS-301012 is an antisense oligonucleotide inhibitor of apolipoprotein B-100, which is being developed by Isis Pharmaceuticals Inc for the potential treatment of hypercholesterolemia. A subcutaneous injectable formulation is currently undergoing phase 11 clinical trials, while phase I trials are underway with an oral formulation of the drug.

  19. Targeted Intracellular Delivery of Antisense Oligonucleotides Via Conjugation With Small Molecule Ligands

    PubMed Central

    Nakagawa, Osamu; Ming, Xin; Huang, Leaf; Juliano, Rudolph L.

    2010-01-01

    Selective delivery of antisense or siRNA oligonucleotides to cells and tissues via receptor-mediated endocytosis is becoming an important approach for oligonucleotide-based pharmacology. In most cases receptor targeting has been attained using antibodies or peptide-type ligands. Thus there are few examples of delivering oligonucleotides using the plethora of small-molecule receptor-specific ligands that currently exist. In this report we describe a facile approach to the generation of mono- and multi-valent conjugates of oligonucleotides with small molecule ligands. Using the sigma receptor ligand anisamide as an example, we describe conversion of the ligand to a phosphoramidite and direct incorporation of this moiety into the oligonucleotide by solid phase DNA synthesis. We generated mono- and tri-valent conjugates of anisamide with a splice switching antisense oligonucleotide (SSO) and tested their ability to modify splicing of a reporter gene (luciferase) in tumor cells in culture. The tri-valent anisamide-SSO conjugate displayed enhanced cellular uptake and was markedly more effective than an unconjugated SSO or the mono-valent conjugate in modifying splicing of the reporter. Significant biological effects were attained in the sub-100 nM concentration range. PMID:20550198

  20. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas.

    PubMed

    Caruso, Gerardo; Caffo, Mariella; Raudino, Giuseppe; Alafaci, Concetta; Salpietro, Francesco M; Tomasello, Francesco

    2010-01-01

    Despite the intensive recent research in cancer therapy, the prognosis in patients affected by high-grade gliomas is still very unfavorable. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells. The extracellular matrix plays a pivotal role in processes such as differentiation, apoptosis, and migration in both the normal and the pathologic nervous system. Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Glioma cells synthesize matrix proteins, such as tenascin, laminin, fibronectin that facilitate the tumor cell's motility. New treatments have shown to hit the acting molecules in the tumor growth and to increase the efficacy and minimize the toxicity. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of action of antisense oligonucleotides and report clinical and experimental studies on the treatment of high-grade gliomas. We will also report the patents of preclinical and/or clinical studies that adopt the antisense oligonucleotide therapy list in cerebral gliomas.

  1. Antisense phosphorothioate oligonucleotides: selective killing of the intracellular parasite Leishmania amazonensis.

    PubMed Central

    Ramazeilles, C; Mishra, R K; Moreau, S; Pascolo, E; Toulmé, J J

    1994-01-01

    We targeted the mini-exon sequence, present at the 5' end of every mRNA of the protozoan parasite Leishmania amazonensis, by phosphorothioate oligonucleotides. A complementary 16-mer (16PS) was able to kill amastigotes--the intracellular stage of the parasite--in murine macrophages in culture. After 24 hr of incubation with 10 microM 16PS, about 30% infected macrophages were cured. The oligomer 16PS acted through antisense hybridization in a sequence-dependent way; no effect on parasites was observed with noncomplementary phosphorothioate oligonucleotides. The antisense oligonucleotide 16PS was a selective killer of the protozoans without any detrimental effect to the host macrophage. Using 16PS linked to a palmitate chain, which enabled it to complex with low density lipoproteins, improved the leishmanicidal efficiency on intracellular amastigotes, probably due to increased endocytosis. Phosphorothioate oligonucleotides complementary to the intron part of the mini-exon pre-RNA were also effective, suggesting that antisense oligomers could prevent trans-splicing in these parasites. Images PMID:8058724

  2. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    PubMed

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  3. Poly(propylacrylic acid) enhances cationic lipid mediated delivery of antisense oligonucleotides

    PubMed Central

    Lee, Li Kim; Williams, Charity L.; Devore, David; Roth, Charles M.

    2008-01-01

    The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved two- to threefold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides. PMID:16677032

  4. Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic

    PubMed Central

    Moreno, Pedro M. D.; Pêgo, Ana P.

    2014-01-01

    Under clinical development since the early 90's and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics has not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given toward a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field. PMID:25353019

  5. Therapeutic Antisense Oligonucleotides against Cancer: Hurdling to the Clinic

    NASA Astrophysics Data System (ADS)

    Moreno, Pedro; Pêgo, Ana

    2014-10-01

    Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  6. The role of antisense oligonucleotide therapy in patients with familial hypercholesterolemia: risks, benefits, and management recommendations.

    PubMed

    Agarwala, Anandita; Jones, Peter; Nambi, Vijay

    2015-01-01

    Antisense oligonucleotide therapy is a promising approach for the treatment of a broad variety of medical conditions. It functions at the cellular level by interfering with RNA function, often leading to degradation of specifically targeted abnormal gene products implicated in the disease process. Mipomersen is a novel antisense oligonucleotide directed at apolipoprotein (apoB)-100, the primary apolipoprotein associated with low-density lipoprotein cholesterol (LDL-C), which has recently been approved for the treatment of familial hypercholesterolemia. A number of clinical studies have demonstrated its efficacy in lowering LDL-C and apoB levels in patients with elevated LDL-C despite maximal medical therapy using conventional lipid-lowering agents. This review outlines the risks and benefits of therapy and provides recommendations on the use of mipomersen.

  7. Purification of noncoding RNA and bound proteins using FLAG peptide-conjugated antisense-oligonucleotides.

    PubMed

    Adachi, Shungo; Natsume, Tohru

    2015-01-01

    To understand the function of certain RNAs, including noncoding RNAs, it is important to identify the proteins that interact with the RNAs. Here we describe the method for purification of ribonucleoprotein (RNP) complexes composed of specific cellular RNAs by pull-down with FLAG peptide-conjugated antisense oligonucleotide (ASO). Using this method, we identified a novel protein component of U7 snRNP complex.

  8. Delivering Antisense Morpholino Oligonucleotides to Target Telomerase Splice Variants in Human Embryonic Stem Cells.

    PubMed

    Radan, Lida; Hughes, Chris S; Teichroeb, Jonathan H; Postovit, Lynne-Marie; Betts, Dean H

    2016-01-01

    Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) Δα and Δβ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.

  9. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    PubMed

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver. PMID:12270110

  10. Inhibition of translation initiation by antisense oligonucleotides via an RNase-H independent mechanism.

    PubMed Central

    Boiziau, C; Kurfurst, R; Cazenave, C; Roig, V; Thuong, N T; Toulmé, J J

    1991-01-01

    We have used alpha-oligomers as antisense oligonucleotides complementary to three different sequences of the rabbit beta-globin mRNA: a region adjacent to the cap site, a region spanning the AUG initiation codon or a sequence in the coding region. These alpha-oligonucleotides were synthesized either with a free 5' OH group or linked to an acridine derivative. The effect of these oligonucleotides on mRNA translation was investigated in cell-free extracts and in Xenopus oocytes. In rabbit reticulocyte lysate and in wheat germ extracts oligomers targeted to the cap site and the initiation codon reduced beta-globin synthesis in a dose-dependent manner, whereas the target mRNA remained intact. The anti-cap alpha-oligomer was even more efficient that its beta-counterpart in rabbit reticulocyte lysate. In contrast, only the alpha-oligomer, linked to the acridine derivative, complementary to the cap region displayed significant antisense properties in Xenopus oocytes. Therefore initiation of translation can be arrested by oligonucleotide/RNA hybrids which are not substrates for RNase-H. Images PMID:1850511

  11. Dynamics of human telomerase RNA structure revealed by antisense oligonucleotide technique.

    PubMed

    Vasilkova, Daria V; Azhibek, Dulat M; Zatsepin, Timofei S; Naraikina, Yulia V; Prassolov, Vladimir S; Prokofjeva, Maria M; Zvereva, Maria I; Rubtsova, Maria P

    2013-12-01

    Telomeres are the nucleoprotein complexes that cap the linear chromosome ends. Telomerase is a ribonucleoprotein that maintains telomere length in stem, embryonic and cancer cells. Somatic cells don't contain active telomerase and telomere function as mitotic clock and telomere length determines the number of cell divisions. Telomerase RNA (TER) contains the template for telomere synthesis and serves as a structural scaffold for holoenzyme assembly. We compared different oligonucleotide based methods for telomerase RNA inhibition, such as antisense oligonucleotides, knockdown by transient siRNA transfection and silencing by miRNA derived from short expressed RNA hairpin in HEK293 cells. All of these methods were applied to different TER regions. Our results revealed that CR2/CR3 domain of TER is accessible in vitro and in vivo and could serve as an optimal site for oligonucleotide-based telomerase silencing.

  12. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice.

    PubMed

    Grossman, Tamar R; Hettrick, Lisa A; Johnson, Robert B; Hung, Gene; Peralta, Raechel; Watt, Andrew; Henry, Scott P; Adamson, Peter; Monia, Brett P; McCaleb, Michael L

    2016-06-01

    Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans.

  13. Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice.

    PubMed Central

    Burch, R M; Mahan, L C

    1991-01-01

    Phosphodiester and phosphorothioate oligodeoxynucleotides (18 mers) were constructed antisense to sequences of the recently cloned murine and human IL-1 receptors. Murine antisense oligonucleotides inhibited IL-1-stimulated PGE2 synthesis by murine fibroblasts in culture in a time (days) and concentration-dependent (3 microM-30 microM) fashion. Murine sense oligonucleotide and an oligonucleotide antisense to human IL-1 receptor were without effect. Moreover, murine antisense oligonucleotides did not affect tumor necrosis factor- or bradykinin-stimulated PGE2 synthesis by murine fibroblasts. Similarly, antisense oligonucleotides to the human, but not the murine, IL-1 receptor inhibited IL-1-stimulated PGE2 synthesis by cultured human fibroblasts. The attenuation of the cellular response to IL-1 caused by the antisense oligonucleotides correlated with a loss in cell surface receptors for IL-1, without any change in the number of bradykinin receptors on these cells. When antisense oligonucleotides were encapsulated in liposomes, they blocked completely the appearance of newly synthesized IL-1 receptors and IL-1-stimulated PGE2 synthesis. In mice, subcutaneous injection with an oligonucleotide antisense to the murine IL-1 receptor markedly inhibited the infiltration of neutrophils in response to subsequent injection of IL-1. These data suggest that antisense oligodeoxynucleotides may share a role in the design of antiinflammatory therapeutics. Images PMID:1833422

  14. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

    PubMed

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y

    2015-12-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult

  15. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice.

    PubMed

    The, Frans O; de Jonge, Wouter J; Bennink, Roel J; van den Wijngaard, Rene M; Boeckxstaens, Guy E

    2005-09-01

    Intestinal manipulation (IM) during abdominal surgery triggers the influx of inflammatory cells, leading to postoperative ileus. Prevention of this local muscle inflammation, using intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1-specific antibodies, has been shown to shorten postoperative ileus. However, the therapeutic use of antibodies has considerable disadvantages. The aim of the current study was to evaluate the effect of ISIS-3082, a mouse-specific ICAM-1 antisense oligonucleotide, on postoperative ileus in mice. Mice underwent a laparotomy or a laparotomy combined with IM after treatment with ICAM-1 antibodies, 0.1-10 mg kg(-1) ISIS-3082, saline or ISIS-8997 (scrambled control antisense oligonucleotides, 1 and 3 mg kg(-1)). At 24 h after surgery, gastric emptying of a 99mTC labelled semi-liquid meal was determined using scintigraphy. Intestinal inflammation was assessed by myeloperoxidase (MPO) activity in ileal muscle whole mounts. IM significantly reduced gastric emptying compared to laparotomy. Pretreatment with ISIS-3082 (0.1-1 mg kg(-1)) as well as ICAM-1 antibodies (10 mg kg(-1)), but not ISIS-8997 or saline, improved gastric emptying in a dose-dependent manner. This effect diminished with higher doses of ISIS-3082 (3-10 mg kg(-1)). Similarly, ISIS-3082 (0.1-1 mg kg(-1)) and ICAM-1 antibodies, but not ISIS-8997 or higher doses of ISIS-3082 (3-10 mg kg(-1)), reduced manipulation-induced inflammation. Immunohistochemistry showed reduction of ICAM-1 expression with ISIS-3082 only. ISIS-3082 pretreatment prevents postoperative ileus in mice by reduction of manipulation-induced local intestinal muscle inflammation. Our data suggest that targeting ICAM-1 using antisense oligonucleotides may represent a new therapeutic approach to the prevention of postoperative ileus.

  16. Efficient Synthesis and Biological Evaluation of 5'-GalNAc Conjugated Antisense Oligonucleotides.

    PubMed

    Østergaard, Michael E; Yu, Jinghua; Kinberger, Garth A; Wan, W Brad; Migawa, Michael T; Vasquez, Guillermo; Schmidt, Karsten; Gaus, Hans J; Murray, Heather M; Low, Audrey; Swayze, Eric E; Prakash, Thazha P; Seth, Punit P

    2015-08-19

    Conjugation of triantennary N-acetyl galactosamine (GalNAc) to oligonucleotide therapeutics results in marked improvement in potency for reducing gene targets expressed in hepatocytes. In this report we describe a robust and efficient solution-phase conjugation strategy to attach triantennary GalNAc clusters (mol. wt. ∼2000) activated as PFP (pentafluorophenyl) esters onto 5'-hexylamino modified antisense oligonucleotides (5'-HA ASOs, mol. wt. ∼8000 Da). The conjugation reaction is efficient and was used to prepare GalNAc conjugated ASOs from milligram to multigram scale. The solution phase method avoids loading of GalNAc clusters onto solid-support for automated synthesis and will facilitate evaluation of GalNAc clusters for structure activity relationship (SAR) studies. Furthermore, we show that transfer of the GalNAc cluster from the 3'-end of an ASO to the 5'-end results in improved potency in cells and animals.

  17. Lipid-Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α.

    PubMed

    Li, Hong; Quan, Jishan; Zhang, Mengzi; Yung, Bryant C; Cheng, Xinwei; Liu, Yang; Lee, Young B; Ahn, Chang-Ho; Kim, Deog Joong; Lee, Robert J

    2016-07-01

    Lipid-albumin nanoparticles (LAN) were synthesized for delivery of RX-0047, an antisense oligonucleotide (ASO) against the hypoxia inducible factor-1 alpha (HIF-1α) to solid tumor. These lipid nanoparticles (LNs) incorporated a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate, which is cationic and can form electrostatic complexes with negatively charged oligonucleotides. The delivery efficiency of LAN-RX-0047 was investigated in KB cells and a KB murine xenograft model. When KB cells were treated with LAN-RX-0047, significant HIF-1α downregulation and enhanced cellular uptake were observed compared to LN-RX-0047. LN-RX-0047 and LAN-RX-0047 showed similar cytotoxicity against KB cells with IC50 values of 19.3 ± 3.8 and 20.1 ± 4.2 μM, respectively. LAN-RX-0047 was shown to be taken up by the cells via the macropinocytosis and caveolae-mediated endocytosis pathways while LN-RX-0047 was taken up by cells via caveolae-mediated endocytosis. In the KB xenograft tumor model, LAN-RX-0047 exhibited tumor suppressive activity and significantly reduced intratumoral HIF-1α expression compared to LN-RX-0047. Furthermore, LAN-RX-0047 greatly increased survival time of mice bearing KB-1 xenograft tumors at doses of either 3 mg/kg or 16 mg/kg. These results indicated that LAN-RX-0047 is a highly effective vehicle for therapeutic delivery of antisense agents to tumor.

  18. Specific inhibition of transforming growth factor-beta2 expression in human osteoblast cells by antisense phosphorothioate oligonucleotides.

    PubMed

    Shen, Z J; Kim, S K; Kwon, O S; Lee, Y S; Moon, B J

    2001-04-01

    To elucidate the role of endogenous transforming growth factor (TGF)-beta2 on human osteoblast cell, antisense phosphorothioate oligonucleotides (S-ODNs) complementary to regions in mRNA of TGF-beta2 were synthesized and examined their effects on TGF-beta2 production and cell proliferation in a human osteoblast cell line ROS 17/2. Antisense S-ODNs were designated for three different target regions in the mRNA of TGF-beta2. Among several antisense S-ODN analyzed, an oligonucleotide (AS-11) complementary to the translation initiation site of mRNA of TGF-beta2 demonstrated a selective and strong inhibitory effect on TGF-beta2 production in osteoblast cells. Other antisense S-ODNs which were designated for other regions in mRNA of TGF-beta2 and one- or three-base mismatched analogs of AS-11 showed little or much less antisense activities than AS-11. Therefore, the most effective target site in mRNA of TGF-beta2 is at the initiation codon region. The antisense effects of AS-11 were observed without reduction of levels of mRNA of TGF-beta2. Furthermore, the inhibition of TGF-beta2 expression by antisense S-ODN appeared to enhance cell proliferation, demonstrating the growth inhibitory effect of autocrine TGF-beta2 in osteoblast cells.

  19. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake

    NASA Astrophysics Data System (ADS)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, Carolina

    2016-02-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  20. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes. PMID:26847692

  1. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  2. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes.

    PubMed Central

    Crooke, S T; Lemonidis, K M; Neilson, L; Griffey, R; Lesnik, E A; Monia, B P

    1995-01-01

    1. The effects of variations in substrates on the kinetic properties of Escherichia coli RNase H were studied using antisense oligonucleotides of various types hybridized to complementary oligoribonucleotides. The enzyme displayed minimal sequence preference, initiated cleavage through an endonucleolytic mechanism near the 3' terminus of the RNA in a DNA-RNA chimera and then was processively exonucleolytic. Phosphorothioate oligodeoxynucleotides hybridized to RNA supported cleavage more effectively than phosphodiester oligodeoxynucleotides. Oligonucleotides comprised of 2'-methoxy-, 2'-fluoro- or 2'-propoxy-nucleosides did not support RNase H1 activity. 2. The Km and Vmax. of cleavage of RNA duplexes with full phosphorothioate oligodeoxynucleotides were compared with methoxy-deoxy 'gapmers', i.e.; oligonucleotides with 2'-methoxy wings surrounding a deoxynucleotide centre. Such structural modifications resulted in substantial increases in affinity, but significant reductions in cleavage efficiency. The initial rates of cleavage increased as the deoxynucleotide gap size was increased. Multiple deoxynucleotide gaps increased the Vmax. but had little effect on Km. 3. The effects of several base modifications on the site of initial cleavage, processivity and initial rate of cleavage were also studied. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8526876

  3. Targeting Long Noncoding RNA with Antisense Oligonucleotide Technology as Cancer Therapeutics.

    PubMed

    Zhou, Tianyuan; Kim, Youngsoo; MacLeod, A Robert

    2016-01-01

    Recent annotation of the human transcriptome revealed that only 2 % of the genome encodes proteins while the majority of human genome is transcribed into noncoding RNAs. Although we are just beginning to understand the diverse roles long noncoding RNAs (lncRNAs) play in molecular and cellular processes, they have potentially important roles in human development and pathophysiology. However, targeting of RNA by traditional structure-based design of small molecule inhibitors has been difficult, due to a lack of understanding of the dynamic tertiary structures most RNA molecules adopt. Antisense oligonucleotides (ASOs) are capable of targeting specific genes or transcripts directly through Watson-Crick base pairing and thus can be designed based on sequence information alone. These agents have made possible specific targeting of "non-druggable targets" including RNA molecules. Here we describe how ASOs can be applied in preclinical studies to reduce levels of lncRNAs of interest.

  4. Surface Plasmon Resonance Assay of Binding Properties of Antisense Oligonucleotides to Serum Albumins and Lipoproteins.

    PubMed

    Onishi, Reina; Watanabe, Ayahisa; Nakajima, Mado; Sekiguchi, Mitsuaki; Kugimiya, Akira; Kinouchi, Hiroki; Nihashi, Yoichiro; Kamimori, Hiroshi

    2015-01-01

    In the present study, we developed an assay to evaluate the kinetic binding properties of the unconjugated antisense oligonucleotide (ASO) and lipophilic and hydrophilic ligands conjugated ASOs to mouse and human serum albumin, and lipoproteins using surface plasmon resonance (SPR). The lipophilic ligands conjugated ASOs showed clear affinity to the albumins and lipoproteins, while the unconjugated and hydrophilic ligand conjugated ASOs showed no interaction. The SPR method showed reproducible immobilization of albumins and lipoproteins as ligands on the sensor chip, and reproducible affinity kinetic parameters of interaction of ASOs conjugated with the ligands could be obtained. The kinetic binding data of these ASOs to albumin and lipoproteins by SPR were related with the distributions in the whole liver in mice after administration of these conjugated ASOs. The results demonstrated that our SPR method could be a valuable tool for predicting the mechanism of the properties of delivery of conjugated ASOs to the organs.

  5. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

    PubMed Central

    Castanotto, Daniela; Lin, Min; Kowolik, Claudia; Wang, LiAnn; Ren, Xiao-Qin; Soifer, Harris S.; Koch, Troels; Hansen, Bo Rode; Oerum, Henrik; Armstrong, Brian; Wang, Zhigang; Bauer, Paul; Rossi, John; Stein, C.A.

    2015-01-01

    Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing. PMID:26433227

  6. Antisense Morpholino Oligonucleotides Reduce Neurofilament Synthesis and Inhibit Axon Regeneration in Lamprey Reticulospinal Neurons

    PubMed Central

    Zhang, Guixin; Jin, Li-qing; Hu, Jianli; Rodemer, William; Selzer, Michael E.

    2015-01-01

    The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration. PMID:26366578

  7. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Migawa, Michael T; Vickers, Timothy A; Crooke, Stanley T

    2016-08-01

    Increasing the levels of therapeutic proteins in vivo remains challenging. Antisense oligonucleotides (ASOs) are often used to downregulate gene expression or to modify RNA splicing, but antisense technology has not previously been used to directly increase the production of selected proteins. Here we used a class of modified ASOs that bind to mRNA sequences in upstream open reading frames (uORFs) to specifically increase the amounts of protein translated from a downstream primary ORF (pORF). Using ASO treatment, we increased the amount of proteins expressed from four genes by 30-150% in a dose-dependent manner in both human and mouse cells. Notably, systemic treatment of mice with ASO resulted in an ∼80% protein increase of LRPPRC. The ASO-mediated increase in protein expression was sequence-specific, occurred at the level of translation and was dependent on helicase activity. We also found that the type of RNA modification and the position of modified nucleotides in ASOs affected translation of a pORF. ASOs are a useful class of therapeutic agents with broad utility. PMID:27398791

  8. Antisense Morpholino Oligonucleotides Reduce Neurofilament Synthesis and Inhibit Axon Regeneration in Lamprey Reticulospinal Neurons.

    PubMed

    Zhang, Guixin; Jin, Li-qing; Hu, Jianli; Rodemer, William; Selzer, Michael E

    2015-01-01

    The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.

  9. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy

    PubMed Central

    Kuraoka, Mutsuki; Lee, Joshua J.A.; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  10. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    PubMed

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  11. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches

    PubMed Central

    Rouleau, Samuel G.; Beaudoin, Jean-Denis; Bisaillon, Martin; Perreault, Jean-Pierre

    2015-01-01

    G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5′UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding. PMID:25510493

  12. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    PubMed

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  13. Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA

    PubMed Central

    Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A.; Ji, Lin; Halas, Naomi J.

    2013-01-01

    The approach of RNA interference (RNAi)- using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein- is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ∼ 47% and ∼49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291

  14. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals.

    PubMed

    Seth, Punit P; Jazayeri, Ali; Yu, Jeff; Allerson, Charles R; Bhat, Balkrishen; Swayze, Eric E

    2012-01-01

    We report the structure activity relationships of short 14-mer phosphorothioate gapmer antisense oligonucleotides (ASOs) modified with α-L-locked nucleic acid (LNA) and related modifications targeting phosphatase and tensin homologue (PTEN) messenger RNA in mice. α-L-LNA represents the α-anomer of enantio-LNA and modified oligonucleotides show LNA like binding affinity for complementary RNA. In contrast to sequence matched LNA gapmer ASOs which showed elevations in plasma alanine aminotransferase (ALT) levels indicative of hepatotoxicity, gapmer ASOs modified with α-L-LNA and related analogs in the flanks showed potent downregulation of PTEN messenger RNA in liver tissue without producing elevations in plasma ALT levels. However, the α-L-LNA ASO showed a moderate dose-dependent increase in liver and spleen weights suggesting a higher propensity for immune stimulation. Interestingly, replacing α-L-LNA nucleotides in the 3'- and 5'-flanks with R-5'-Me-α-L-LNA but not R-6'-Me- or 3'-Me-α-L-LNA nucleotides, reversed the drug induced increase in organ weights. Examination of structural models of dinucleotide units suggested that the 5'-Me group increases steric bulk in close proximity to the phosphorothioate backbone or produces subtle changes in the backbone conformation which could interfere with recognition of the ASO by putative immune receptors. Our data suggests that introducing steric bulk at the 5'-position of the sugar-phosphate backbone could be a general strategy to mitigate the immunostimulatory profile of oligonucleotide drugs. In a clinical setting, proinflammatory effects manifest themselves as injection site reactions and flu-like symptoms. Thus, a mitigation of these effects could increase patient comfort and compliance when treated with ASOs.Molecular Therapy - Nucleic Acids (2012) 1, e47; doi:10.1038/mtna.2012.34; published online 18 September 2012. PMID:23344239

  15. Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity.

    PubMed

    Lima, W F; Brown-Driver, V; Fox, M; Hanecak, R; Bruice, T W

    1997-01-01

    We describe our initial application of a biochemical strategy, comprising combinatorial screening and rational optimization, which directly identifies oligonucleotides with maximum affinity (per unit length), specificity, and rates of hybridization to structurally preferred sites on folded RNA, to the problem of design of antisense oligonucleotides active against the hepatitis C virus (HCV). A fully randomized sequence DNA oligonucleotide (10-mer) library was equilibrated with each of two folded RNA fragments (200 and 370 nucleotides (nt)), together spanning the 5' 440 nt of an HCV transcript (by overlapping 130 nt), which were varied over a range of concentrations. The equilibrations were performed in solution under conditions determined to preserve RNA structure and to limit all RNA-DNA library oligonucleotide interactions to 1:1 stoichiometry. Subsequent Escherichia coli RNase H (endoribonuclease H: EC 3.1.26.4) cleavage analysis identified two preferred sites of highest affinity heteroduplex hybridization. The lengths and sequences of different substitute chemistry oligonucleotides complementary to these sites were rationally optimized using an iterative and quantitative analysis of binding affinity and specificity. Thus, DNA oligonucleotides that hybridized with the same affinity to the preferred sites in the folded RNA fragments found by screening as to short (< or = 25 nt) RNA complements were identified but were found to vary in length (10-18 nt) from site to site. Phosphorothioate (P=S) and 2'-fluoro (2'-F) uniformly substituted oligonucleotides also were found, which hybridized optimally to these sites, supporting the design of short (10-15-nt) and maximally specific oligonucleotides that are more nuclease-resistant (via P=S) and have higher affinity (via 2'-F) than DNA. Finally, the affinities of DNA and uniform 2'-F-, P=S-substituted 10-20-mer oligonucleotide complements for the best hybridization site, from HCV nt 355 to nt 364-374, closely

  16. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes.

    PubMed

    Mitsudome, Yuya; Takahama, Mamiko; Hirose, Jun; Yoshida, Naoto

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for

  17. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes.

    PubMed Central

    Hagenbuch, B; Scharschmidt, B F; Meier, P J

    1996-01-01

    A Na(+)-dependent bile acid (Na+/taurocholate co-transporting polypeptide; Ntcp) and a Na(+)-independent bromosulphophthalein (BSP)/bile acid uptake system (organic-anion-transporting polypeptide; oatp) have been cloned from rat liver by using functional expression cloning in Xenopus laevis oocytes. To evaluate the extent to which these cloned transporters could account for overall hepatic bile acid and BSP uptake, we used antisense oligonucleotides to inhibit the expression of Ntcp and oatp in Xenopus laevis oocytes injected with total rat liver mRNA. An Ntcp-specific antisense oligonucleotide co-injected with total rat liver mRNA blocked the expression of Na(+)-dependent taurocholate uptake by approx. 95%. In contrast, an oatp-specific antisense oligonucleotide when co-injected with total rat liver mRNA had no effect on the expression of Na(+)-dependent taurocholate uptake, but it blocked Na(+)-independent uptake of taurocholate by approx. 80% and of BSP by 50%. Assuming similar expression of hepatocellular bile acid and organic anion transporters in Xenopus laevis oocytes, these results indicate that Ntcp and oatp respectively represent the major, if not the only, Na(+)-dependent and Na(+)-independent taurocholate uptake systems in rat liver. By contrast, the cloned oatp accounts for only half of BSP transport, suggesting that there must be additional, non-bile acid transporting organic anion uptake systems in rat liver. PMID:8670169

  18. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models

    PubMed Central

    Osman, Erkan Y.; Miller, Madeline R.; Robbins, Kate L.; Lombardi, Abby M.; Atkinson, Arleigh K.; Brehm, Amanda J.; Lorson, Christian L.

    2014-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of Survival Motor Neuron-1 (SMN1). In all SMA patients, a nearly identical copy gene called SMN2 is present, which produces low levels of functional protein owing to an alternative splicing event. To prevent exon-skipping, we have targeted an intronic repressor, Element1 (E1), located upstream of SMN2 exon 7 using Morpholino-based antisense oligonucleotides (E1MO-ASOs). A single intracerebroventricular injection in the relatively severe mouse model of SMA (SMNΔ7 mouse model) elicited a robust induction of SMN protein, and mean life span was extended from an average survival of 13 to 54 days following a single dose, consistent with large weight gains and a correction of the neuronal pathology. Additionally, E1MO-ASO treatment in an intermediate SMA mouse (SMNRT mouse model) significantly extended life span by ∼700% and weight gain was comparable with the unaffected animals. While a number of experimental therapeutics have targeted the ISS-N1 element of SMN2 pre-mRNA, the development of E1 ASOs provides a new molecular target for SMA therapeutics that dramatically extends survival in two important pre-clinical models of disease. PMID:24781211

  19. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication

    PubMed Central

    Lenartowicz, Elzbieta; Nogales, Aitor; Kierzek, Elzbieta; Kierzek, Ryszard; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A virus (IAV) affects 5%–10% of the world's population every year. Through genome changes, many IAV strains develop resistance to currently available anti-influenza therapeutics. Therefore, there is an urgent need to find new targets for therapeutics against this important human respiratory pathogen. In this study, 2′-O-methyl and locked nucleic acid antisense oligonucleotides (ASOs) were designed to target internal regions of influenza A/California/04/2009 (H1N1) genomic viral RNA segment 8 (vRNA8) based on a base-pairing model of vRNA8. Ten of 14 tested ASOs showed inhibition of viral replication in Madin-Darby canine kidney cells. The best five ASOs were 11–15 nucleotides long and showed inhibition ranging from 5- to 25-fold. In a cell viability assay they showed no cytotoxicity. The same five ASOs also showed no inhibition of influenza B/Brisbane/60/2008 (Victoria lineage), indicating that they are sequence specific for IAV. Moreover, combinations of ASOs slightly improved anti-influenza activity. These studies establish the accessibility of IAV vRNA for ASOs in regions other than the panhandle formed between the 5′ and 3′ ends. Thus, these regions can provide targets for the development of novel IAV antiviral approaches. PMID:27463680

  20. In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides

    PubMed Central

    Southwell, Amber L; Skotte, Niels H; Kordasiewicz, Holly B; Østergaard, Michael E; Watt, Andrew T; Carroll, Jeffrey B; Doty, Crystal N; Villanueva, Erika B; Petoukhov, Eugenia; Vaid, Kuljeet; Xie, Yuanyun; Freier, Susan M; Swayze, Eric E; Seth, Punit P; Bennett, Clarence Frank; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD. PMID:25101598

  1. Thiolated polycarbophil as an adjuvant for permeation enhancement in nasal delivery of antisense oligonucleotides.

    PubMed

    Vetter, A; Martien, R; Bernkop-Schnürch, A

    2010-03-01

    The purpose of this study was to investigate the effect of thiolated polycarbophil as an adjuvant to enhance the permeation and improve the stability of a phosphorothioate antisense oligonucleotide (PTO-ODN) on the nasal mucosa. Polycarbophil-cysteine (PCP-Cys) was synthesized by the covalent attachment of L-cysteine to the polymeric backbone. Cytotoxicity tests were examined on human nasal epithelial cells from surgery of nasal polyps confirmed by histological studies. Deoxyribonuclease I activity in respiratory region of the porcine nasal cavity was analyzed by an enzymatic assay. The enzymatic degradation of PTO-ODNs on freshly excised porcine nasal mucosa was analyzed and protection of PCP-cysteine toward DNase I degradation was evaluated. Permeation studies were performed in Ussing-type diffusion chambers. PCP-Cys/GSH did not arise a remarkable mortal effect. Porcine respiratory mucosa was shown to possess nuclease activity corresponding to 0.69 Kunitz units/mL. PTO-ODNs were degraded by incubation with nasal mucosa. In the presence of 0.45% thiolated polycarbophil and 0.5% glutathione (GSH), this degradation process could be lowered. In the presence of thiolated polycarbophil and GSH the uptake of PTO-ODNs from the nasal mucosa was 1.7-fold improved. According to these results thiolated polycarbophil/GSH might be a promising excipient for nasal administration of PTO-ODNs.

  2. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.

    PubMed

    Yamamoto, Tsuyoshi; Sawamura, Motoki; Wada, Fumito; Harada-Shiba, Mariko; Obika, Satoshi

    2016-01-01

    The targeting of abundant hepatic asialoglycoprotein receptors (ASGPR) with trivalent N-acetylgalactosamine (GalNAc) is a reliable strategy for efficiently delivering antisense oligonucleotides (ASOs) to the liver. We here experimentally demonstrate the high systemic potential of the synthetically-accessible, phosphodiester-linked monovalent GalNAc unit when tethered to the 5'-terminus of well-characterised 2',4'-bridged nucleic acid (also known as locked nucleic acid)-modified apolipoprotein B-targeting ASO via a bio-labile linker. Quantitative analysis of the hepatic disposition of the ASOs revealed that phosphodiester is preferable to phosphorothioate as an interunit linkage in terms of ASGPR binding of the GalNAc moiety, as well as the subcellular behavior of the ASO. The flexibility of this monomeric unit was demonstrated by attaching up to 5 GalNAc units in a serial manner and showing that knockdown activity improves as the number of GalNAc units increases. Our study suggests the structural requirements for efficient hepatocellular targeting using monovalent GalNAc and could contribute to a new molecular design for suitably modifying ASO.

  3. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides

    PubMed Central

    Burdick, Andrew D.; Sciabola, Simone; Mantena, Srinivasa R.; Hollingshead, Brett D.; Stanton, Robert; Warneke, James A.; Zeng, Ming; Martsen, Elena; Medvedev, Alexander; Makarov, Sergei S.; Reed, Lori A.; Davis, John W.; Whiteley, Laurence O.

    2014-01-01

    Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure–toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure–toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing. PMID:24550163

  4. Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3

    PubMed Central

    Toonen, Lodewijk J. A.; Schmidt, Iris; Luijsterburg, Martijn S.; van Attikum, Haico; van Roon-Mom, Willeke M. C.

    2016-01-01

    Spinocerebellar ataxia type-3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in the ataxin-3 protein. Cleavage of mutant ataxin-3 by proteolytic enzymes yields ataxin-3 fragments containing the polyglutamine stretch. These shorter ataxin-3 fragments are thought to be involved in SCA3 pathogenesis due to their increased cellular toxicity and their involvement in formation of the characteristic neuronal aggregates. As a strategy to prevent formation of toxic cleavage fragments, we investigated an antisense oligonucleotide-mediated modification of the ataxin-3 pre-mRNA through exon skipping of exon 8 and 9, resulting in the removal of a central 88 amino acid region of the ataxin-3 protein. This removed protein region contains several predicted cleavage sites and two ubiquitin-interacting motifs. In contrast to unmodified mutant ataxin-3, the internally truncated ataxin-3 protein did not give rise to potentially toxic cleavage fragments when incubated with caspases. In vitro experiments did not show cellular toxicity of the modified ataxin-3 protein. However, the modified protein was incapable of binding poly-ubiquitin chains, which may interfere with its normal deubiquitinating function. Low exon skipping efficiencies combined with reduction in important ataxin-3 protein functions suggest that skipping of exon 8 and 9 is not a viable therapeutic option for SCA3. PMID:27731380

  5. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.

    PubMed

    Kasuya, Takeshi; Hori, Shin-Ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer's gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  6. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    PubMed Central

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  7. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  8. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy.

    PubMed

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  9. Biophysical and biological characterization of hairpin and molecular beacon RNase H active antisense oligonucleotides.

    PubMed

    Østergaard, Michael E; Thomas, George; Koller, Erich; Southwell, Amber L; Hayden, Michael R; Seth, Punit P

    2015-05-15

    Antisense oligonucleotides (ASOs) are single stranded, backbone modified nucleic acids, which mediate cleavage of complementary RNA by directing RNase H cleavage in cell culture and in animals. It has generally been accepted that the single stranded state in conjunction with the phosphorothioate modified backbone is necessary for cellular uptake and transport to the active compartment. Herein, we examine the effect of using hairpin structured ASOs to (1) determine if an ASO agent requires a single stranded conformation for efficient RNA knock down, (2) use a fluorophore-quencher labeled ASO to evaluate which moieties the ASO interacts with in cells and examine if cellular distribution can be determined with such probes, and (3) evaluate if self-structured ASOs can improve allele selective silencing between closely related huntingtin alleles. We show that hairpin shaped ASOs can efficiently down-regulate RNA in vitro, but potency correlates strongly negatively with increasing stability of the hairpin structure. Furthermore, self-structured ASOs can efficiently reduce huntingtin mRNA in the central nervous system of mice.

  10. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

    PubMed Central

    Kasuya, Takeshi; Hori, Shin-ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer’s gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  11. 2'-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl] Modified Antisense Oligonucleotides: Symbiosis of Charge Interaction Factors and Stereoelectronic Effects

    SciTech Connect

    Prhavc, M.; Prakash, T.P.; Minasov, G.; Egli, M.; Manoharan, M.

    2010-03-08

    Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.

  12. Synergistic inhibition of human cancer cell growth by cytotoxic drugs and mixed backbone antisense oligonucleotide targeting protein kinase A

    PubMed Central

    Tortora, Giampaolo; Caputo, Rosa; Damiano, Vincenzo; Bianco, Roberto; Pepe, Stefano; Bianco, A. Raffaele; Jiang, Zhiwei; Agrawal, Sudhir; Ciardiello, Fortunato

    1997-01-01

    Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIα regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs. PMID:9356493

  13. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys

    PubMed Central

    Shemesh, Colby S; Yu, Rosie Z; Gaus, Hans J; Greenlee, Sarah; Post, Noah; Schmidt, Karsten; Migawa, Michael T; Seth, Punit P; Zanardi, Thomas A; Prakash, Thazha P; Swayze, Eric E; Henry, Scott P; Wang, Yanfeng

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3) is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA)-C6 cluster significantly enhances antisense oligonucleotide (ASO) potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of 3H-radiolabeled (3H placed in THA) or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5′-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the β-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining β-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-β-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs. PMID:27164023

  14. Immunomodulation with IL-4R alpha antisense oligonucleotide prevents respiratory syncytial virus-mediated pulmonary disease.

    PubMed

    Ripple, Michael J; You, Dahui; Honnegowda, Srinivasa; Giaimo, Joseph D; Sewell, Andrew B; Becnel, David M; Cormier, Stephania A

    2010-10-15

    Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants worldwide. Severe RSV infections in infants cause bronchiolitis, wheeze, and/or cough and significantly increase the risk for developing asthma. RSV pathogenesis is thought to be due to a Th2-type immune response initiated in response to RSV infection, specifically in the infant. Using a neonatal mouse system as an appropriate model for human infants, we sought to determine whether local inhibition of IL-4Rα expression during primary RSV infection in the neonate would prevent Th2-skewed responses to secondary RSV infection and improve long-term pulmonary function. To reduce IL-4Rα expression, antisense oligonucleotides (ASOs) specific for IL-4Rα were administered intranasally to neonatal mice at the time of primary infection. Mice were initially infected with RSV at 1 wk of age and were reinfected at 6 wk of age. Administration of IL-4Rα ASOs during primary RSV infection in neonatal mice abolished the pulmonary dysfunction normally observed following reinfection in the adult. This ablation of pulmonary dysfunction correlated with a persistent rebalancing of the Th cell compartment with decreased Th2 responses (i.e., reduced goblet cell hyperplasia, Th2 cells, and cytokine secretion) and increased Th1 responses (i.e., elevated Th1 cell numbers and type I Abs and cytokines). Our data support our hypothesis that a reduction in the Th2 immune response during primary infection in neonates prevents Th2-mediated pulmonary pathology initially and upon reinfection and further suggest that vaccine strategies incorporating IL-4Rα ASOs may be of significant benefit to infants.

  15. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  16. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys.

    PubMed

    Shemesh, Colby S; Yu, Rosie Z; Gaus, Hans J; Greenlee, Sarah; Post, Noah; Schmidt, Karsten; Migawa, Michael T; Seth, Punit P; Zanardi, Thomas A; Prakash, Thazha P; Swayze, Eric E; Henry, Scott P; Wang, Yanfeng

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3) is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA)-C6 cluster significantly enhances antisense oligonucleotide (ASO) potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of (3)H-radiolabeled ((3)H placed in THA) or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5'-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the β-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining β-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-β-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs. PMID:27164023

  17. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides

    PubMed Central

    Lin, Te-Lin; Chen, Tai-Heng; Hsu, Ya-Yun; Cheng, Yu-Hua; Juang, Bi-Tzen; Jong, Yuh-Jyh

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies. PMID:27124114

  18. Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift.

    PubMed

    Wakamatsu, H; Takahashi, S; Moriya, T; Inouye, S T; Okamura, H; Akiyama, M; Shibata, S

    2001-01-22

    It is well known that light induces both mPer1 and mPer2 mRNA in the suprachiasmatic nucleus. We have reported that mPer1 antisense oligonucleotides (ODNs) inhibited the light-induced phase delays of mouse locomotor rhythm. In this study, we asked whether both or either mPer1 or mPer2 expression is necessary to induce the phase shift. We examined the effects of inhibition of mRNA expression on light-induced phase delays of mouse circadian behavior rhythm. Light-induced phase delays were moderately attenuated by microinjection of mPer1 or mPer2 antisense ODN, but not by mPer3 antisense or mPer1, mPer2 scrambled ODNs, whereas following simultaneous injection of both mPer1 and mPer2 antisense ODNs they disappeared. The present results suggest that acute induction of mPer1 and mPer2 gene play an additive effect on photic entrainment. PMID:11201072

  19. Hybridization of different antisense oligonucleotides on the surface of gold nanoparticles to silence zinc metalloproteinase gene after uptake by Leishmania major.

    PubMed

    Jebali, Ali; Anvari-Tafti, Mohammad Hosssein

    2015-05-01

    The use of antisense oligonucleotides is a novel strategy to treat infectious diseases. In this approach, vital mRNAs are targeted by antisense oligonucleotides. The aim of this study was to evaluate the effects of gold nanoparticles hybridized with different antisense oligonucleotides on Leishmania (L) major. In this project, gold nanoparticles were first synthesized, and then conjugated with primary oligonucleotides, 3'-AAA-5'. Next, conjugated gold nanoparticles (NP1) were separately hybridized with three types of antisense oligonucleotide from coding reign of GP63 gene (NP2), non-coding reign of GP63 gene (NP3), and both coding and non-coding reigns of GP63 (NP4). Then, 1mL of L. major suspension was separately added to 1mL of different hybridized gold nanoparticles at serial concentrations (1-200μg/mL), and incubated for 24, 48, and 72h at 37°C. Next, the uptake of each nanoparticle was separately measured by atomic absorption spectroscopy. After incubation, the cell viability was separately evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Also, the expression of GP63 gene was read out by quantitative-real-time PCR. This study showed that NP2 and NP3 had higher (5-fold) uptake than NP1 and NP4. Moreover, NP2 and NP3 led to less cell viability and gene expression, compared with NP1 and NP4. It could be concluded that both sequence and size of antisense oligonucleotide were important for transfection of L. major. Importantly, these antisense oligonucleotides can be obtained from both coding and non-coding reign of GP63 gene. Moreover, hybridized gold nanoparticles not only could silence GP63 gene, but also could kill L. major.

  20. Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine: An efficient vehicle for antisense oligonucleotide delivery

    PubMed Central

    Yang, Shuang; Yang, Xuewei; Liu, Yan; Zheng, Bin; Meng, Lingjun; Lee, Robert J.; Xie, Jing; Teng, Lesheng

    2016-01-01

    Polyethylenimine (PEI) was conjugated to oleic acid (PEI-OA) and evaluated as a delivery agent for LOR-2501, an antisense oligonucleotide against ribonucleotide reductase R1 subunit. PEI-OA/LOR-2501 complexes were further coated with folic acid (FA/PEI-OA/LOR-2501) and evaluated in tumor cells. The level of cellular uptake of FA/PEI-OA/LOR-2501 was more than double that of PEI/LOR-2501 complexes, and was not affected by the expression level of folate receptor (FR) on the cell surface. Efficient delivery was seen in several cell lines. Furthermore, pathway specific cellular internalization inhibitors and markers were used to reveal the principal mechanism of cellular uptake. FA/PEI-OA/LOR-2501 significantly induced the downregulation of R1 mRNA and R1 protein. This novel formulation of FA/PEI-OA provides a reliable and highly efficient method for delivery of oligonucleotide and warrants further investigation. PMID:26263216

  1. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  2. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene.

    PubMed

    Linhartová, Zuzana; Saito, Taiju; Kašpar, Vojtěch; Rodina, Marek; Prášková, Eva; Hagihara, Seishi; Pšenička, Martin

    2015-10-15

    Sturgeons (chondrostean, acipenseridae) are ancient fish species, widely known for their caviar. Nowadays, most of them are critically endangered. The sterlet (Acipenser ruthenus) is a common Eurasian sturgeon species with a small body size and the fastest reproductive cycle among sturgeons. Such species can be used as a host for surrogate production; application is of value for recovery of critically endangered and huge sturgeon species with an extremely long reproductive cycle. One prerequisite for production of the donor's gametes only is to have a sterile host. Commonly used sterilization techniques in fishes such as triploidization or hybridization do not guarantee sterility in sturgeon. Alternatively, sterilization can be achieved by using a temporary germ cell exclusion-specific gene by a knockdown agent, the antisense morpholino oligonucleotide (MO). The targeted gene for the MO is the dead end gene (dnd) which is a vertebrate-specific gene encoding a RNA-binding protein which is crucial for migration and survival of primordial germ cells (PGCs). For this purpose, a dnd homologue of Russian sturgeon (Agdnd), resulting in the same sequence in the start codon region with isolated fragments of sterlet dnd (Ardnd), was used. Reverse transcription polymerase chain reaction confirmed tissue-specific expression of Ardnd only in the gonads of both sexes. Dnd-MO for depletion of PGCs together with fluorescein isothiocyanate (FITC)-biotin-dextran for PGCs labeling was injected into the vegetal region of one- to four-cell-stage sterlet embryos. In the control groups, only FITC was injected to validate the injection method and labeling of PGCs. After optimization of MO concentration together with volume injection, 250-μM MO was applied for sterilization of sturgeon embryos. Primordial germ cells were detected under a fluorescent stereomicroscope in the genital ridge of the FITC-labeled control group only, whereas no PGCs were present in the body cavities of morphants

  3. From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides.

    PubMed

    Bergsma, Atze J; In 't Groen, Stijn Lm; Verheijen, Frans W; van der Ploeg, Ans T; Pijnappel, Wwm Pim

    2016-01-01

    While 9% of human pathogenic variants have an established effect on pre-mRNA splicing, it is suspected that an additional 20% of otherwise classified variants also affect splicing. Aberrant splicing includes disruption of splice sites or regulatory elements, or creation or strengthening of cryptic splice sites. For the majority of variants, it is poorly understood to what extent and how these may affect splicing. We have identified cryptic splicing in an unbiased manner. Three types of cryptic splicing were analyzed in the context of pathogenic variants in the acid α-glucosidase gene causing Pompe disease. These involved newly formed deep intronic or exonic cryptic splice sites, and a natural cryptic splice that was utilized due to weakening of a canonical splice site. Antisense oligonucleotides that targeted the identified cryptic splice sites repressed cryptic splicing at the expense of canonical splicing in all three cases, as shown by reverse-transcriptase-quantitative polymerase chain reaction analysis and by enhancement of acid α-glucosidase enzymatic activity. This argues for a competition model for available splice sites, including intact or weakened canonical sites and natural or newly formed cryptic sites. The pipeline described here can detect cryptic splicing and correct canonical splicing using antisense oligonucleotides to restore the gene defect. PMID:27623443

  4. From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides

    PubMed Central

    Bergsma, Atze J; in ‘t Groen, Stijn LM; Verheijen, Frans W; van der Ploeg, Ans T; Pijnappel, WWM Pim

    2016-01-01

    While 9% of human pathogenic variants have an established effect on pre-mRNA splicing, it is suspected that an additional 20% of otherwise classified variants also affect splicing. Aberrant splicing includes disruption of splice sites or regulatory elements, or creation or strengthening of cryptic splice sites. For the majority of variants, it is poorly understood to what extent and how these may affect splicing. We have identified cryptic splicing in an unbiased manner. Three types of cryptic splicing were analyzed in the context of pathogenic variants in the acid α-glucosidase gene causing Pompe disease. These involved newly formed deep intronic or exonic cryptic splice sites, and a natural cryptic splice that was utilized due to weakening of a canonical splice site. Antisense oligonucleotides that targeted the identified cryptic splice sites repressed cryptic splicing at the expense of canonical splicing in all three cases, as shown by reverse-transcriptase-quantitative polymerase chain reaction analysis and by enhancement of acid α-glucosidase enzymatic activity. This argues for a competition model for available splice sites, including intact or weakened canonical sites and natural or newly formed cryptic sites. The pipeline described here can detect cryptic splicing and correct canonical splicing using antisense oligonucleotides to restore the gene defect. PMID:27623443

  5. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    PubMed Central

    Falzarano, Maria Sofia; Passarelli, Chiara

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy. PMID:24506782

  6. Mixed backbone antisense oligonucleotides: design, biochemical and biological properties of oligonucleotides containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments.

    PubMed Central

    Kandimalla, E R; Manning, A; Zhao, Q; Shaw, D R; Byrn, R A; Sasisekharan, V; Agrawal, S

    1997-01-01

    We have designed and synthesized mixed backbone oligonucleotides (MBOs) containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments. Thermal melting studies of the phosphodiester MBOs (three 2'-5'linkages at each end) with the complementary 3'-5'-DNA and -RNA target strands suggest that 2'-5'-ribonucleoside incorporation into 3'-5'-oligodeoxyribonucleotides reduces binding to the target strands compared with an all 3'-5'-oligodeoxyribonucleotide of the same sequence and length. Increasing the number of 2'-5'linkages (from six to nine) further reduces binding to the DNA target strand more than the RNA target strand [Kandimalla,E.R. and Agrawal,S. (1996)Nucleic Acids Symp. Ser., 35, 125-126]. Phosphorothioate (PS) analogs of MBOs destabilize the duplex with the DNA target strand more than the duplex with the RNA target strand. Circular dichroism studies indicate that the duplexes of MBOs with the DNA and RNA target strands have spectral characteristics of both A- and B-type conformations. Compared with the control oligonucleotide, MBOs exhibit moderately higher stability against snake venom phosphodiesterase, S1 nuclease and in fetal calf serum. Although 2'-5'modification does not evoke RNase H activity, this modification does not effect the RNase H activation property of the 3'-5'-deoxyribonucleotide segment adjacent to the modification. In vitro studies with MBOs suggest that they have lesser effects on cell proliferation, clotting prolongation and hemolytic complement lysis than do control PS oligodeoxyribonucleotides. PS analogs of MBOs show HIV-1 inhibition comparable with that of a control PS oligodeoxyribonucleotide with all 3'-5'linkages. The current results suggest that a limited number of 2'-5'linkages could be used in conjunction with PS oligonucleotides to further modulate the properties of antisense oligonucleotides as therapeutic agents. PMID:9016567

  7. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  8. Comparative inhibition of chloramphenicol acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkages.

    PubMed Central

    Marcus-Sekura, C J; Woerner, A M; Shinozuka, K; Zon, G; Quinnan, G V

    1987-01-01

    Several classes of oligonucleotide antisense compounds of sequence complementary to the start of the mRNA coding sequence for chloramphenicol acetyl transferase (CAT), including methylphosphonate, alkyltriester, and phosphorothioate analogues of DNA, have been compared to "normal" phosphodiester oligonucleotides for their ability to inhibit expression of plasmid-directed CAT gene activity in CV-1 cells. CAT gene expression was inhibited when transfection with plasmid DNA containing the gene for CAT coupled to simian virus 40 regulatory sequences (pSV2CAT) or the human immunodeficiency virus enhancer (pHIVCAT) was carried out in the presence of 30 microM concentrations of analogue. For the oligo-methylphosphonate analogue, inhibition was dependent on both oligomer concentration and chain length. Analogues with phosphodiester linkages that alternated with either methylphosphonate, ethyl phosphotriester, or isopropyl phosphotriester linkages were less effective inhibitors, in that order. The phosphorothioate analogue was about two-times more potent than the oligo-methylphosphonate, which was in turn approximately twice as potent as the normal oligonucleotide. Images PMID:3475677

  9. Cytokines and therapeutic oligonucleotides.

    PubMed

    Hartmann, G; Bidlingmaier, M; Eigler, A; Hacker, U; Endres, S

    1997-12-01

    Therapeutic oligonucleotides - short strands of synthetic nucleic acids - encompass antisense and aptamer oligonucleotides. Antisense oligonucleotides are designed to bind to target RNA by complementary base pairing and to inhibit translation of the target protein. Antisense oligonucleotides enable specific inhibition of cytokine synthesis. In contrast, aptamer oligonucleotides are able to bind directly to specific proteins. This binding depends on the sequence of the oligonucleotide. Aptamer oligonucleotides with CpG motifs can exert strong immunostimulatory effects. Both kinds of therapeutic oligonucleotides - antisense and aptamer oligonucleotides - provide promising tools to modulate immunological functions. Recently, therapeutic oligonucleotides have moved towards clinical application. An antisense oligonucleotide directed against the proinflammatory intercellular adhesion molecule 1 (ICAM-1) is currently being tested in clinical trials for therapy of inflammatory disease. Immunostimulatory aptamer oligonucleotides are in preclinical development for immunotherapy. In the present review we summarize the application of therapeutic oligonucleotides to modulate immunological functions. We include technological aspects as well as current therapeutic concepts and clinical studies.

  10. Antisense oligonucleotides against the alpha-subunit of ENaC decrease lung epithelial cation-channel activity.

    PubMed

    Jain, L; Chen, X J; Malik, B; Al-Khalili, O; Eaton, D C

    1999-06-01

    Amiloride-sensitive Na+ transport by lung epithelia plays a critical role in maintaining alveolar Na+ and water balance. It has been generally assumed that Na+ transport is mediated by the amiloride-sensitive epithelial Na+ channel (ENaC) because molecular biology studies have confirmed the presence of ENaC subunits alpha, beta, and gamma in lung epithelia. However, the predominant Na+-transporting channel reported from electrophysiological studies by most laboratories is a nonselective, high-conductance channel that is very different from the highly selective, low-conductance ENaC reported in other tissues. In our laboratory, single-channel recordings from apical membrane patches from rat alveolar type II (ATII) cells in primary culture reveal a nonselective cation channel with a conductance of 20.6 +/- 1.1 pS and an Na+-to-K+ selectivity of 0.97 +/- 0.07. This channel is inhibited by submicromolar concentrations of amiloride. Thus there is some question about the relationship between the gene product observed with single-channel methods and the cloned ENaC subunits. We have employed antisense oligonucleotide methods to block the synthesis of individual ENaC subunit proteins (alpha, beta, and gamma) and determined the effect of a reduction in the subunit expression on the density of the nonselective cation channel observed in apical membrane patches on ATII cells. Treatment of ATII cells with antisense oligonucleotides inhibited the production of each subunit protein; however, single-channel recordings showed that only the antisense oligonucleotide targeting the alpha-subunit resulted in a significant decrease in the density of nonselective cation channels. Inhibition of the beta- and gamma-subunit proteins alone or together did not cause any changes in the observed channel density. There were no changes in open probability or other channel characteristics. These results support the hypothesis that the alpha-subunit of ENaC alone or in combination with some

  11. Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinose and 2'-deoxyribose nucleotides.

    PubMed

    Lok, Chun-Nam; Viazovkina, Ekaterina; Min, Kyung-Lyum; Nagy, Eva; Wilds, Christopher J; Damha, Masad J; Parniak, Michael A

    2002-03-12

    Phosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications. We recently showed that phosphodiester-linked oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (FANA) exhibit both high binding affinity for target RNA and the ability to elicit RNase H degradation of target RNA [Damha et al. (1998) J. Am. Chem. Soc. 120, 12976]. In the present study, we evaluated the antisense activity of phosphorothioate-linked FANA oligonucleotides (PS-FANA). Oligonucleotides comprised entirely of PS-FANA were somewhat less efficient in directing RNase H cleavage of target RNA as compared to their phosphorothioate-linked DNA counterparts, and showed only weak antisense inhibition of cellular target expression. However, mixed-backbone oligomers comprised of PS-FANA flanking a central core of PS-DNA were found to possess potent antisense activity, inhibiting specific cellular gene expression with EC(50) values of less than 5 nM. This inhibition was a true antisense effect, as indicated by the dose-dependent decrease in both target protein and target mRNA. Furthermore, the appearance of mRNA fragments was consistent with RNase H mediated cleavage of the mRNA target. We also compared a series of PS-[FANA-DNA-FANA] mixed-backbone oligomers of varying PS-DNA core sizes with the corresponding 2'-O-methyl oligonucleotide chimeras, i.e., PS-[2'meRNA-DNA-2'meRNA]. Both types of oligomers showed very similar binding affinities toward target RNA. However, the antisense potency of the 2'-O-methyl chimeric compounds was dramatically attenuated with decreasing DNA core size, whereas that of the 2'-fluoroarabino compounds was essentially

  12. 2'-O-aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides.

    PubMed

    Griffey, R H; Monia, B P; Cummins, L L; Freier, S; Greig, M J; Guinosso, C J; Lesnik, E; Manalili, S M; Mohan, V; Owens, S; Ross, B R; Sasmor, H; Wancewicz, E; Weiler, K; Wheeler, P D; Cook, P D

    1996-12-20

    Oligonucleotides containing 2'-O-aminopropyl-substituted RNA have been synthesized. The 2'-O-(aminopropyl)adenosine (APA), 2'-O-(aminopropyl)cytidine (APC), 2'-O-(aminopropyl)-guanosine (APG), and 2'-O-(aminopropyl)uridine (APU) have been prepared in high yield from the ribonucleoside, protected, and incorporated into an oligonucleotide using conventional phosphoramidite chemistry. Molecular dynamics studies of a dinucleotide in water demonstrates that a short alkylamine located off the 2'-oxygen of ribonucleotides alters the sugar pucker of the nucleoside but does not form a tight ion pair with the proximate phosphate. A 5-mer with the sequence ACTUC has been characterized using NMR. As predicted from the modeling results, the sugar pucker of the APU moiety is shifted toward a C3'-endo geometry. In addition, the primary amine rotates freely and is not bound electrostatically to any phosphate group, as evidenced by the different sign of the NOE between sugar proton resonances and the signals from the propylamine chain. Incorporation of aminopropyl nucleoside residues into point-substituted and fully modified oligomers does not decrease the affinity for complementary RNA compared to 2'-O-alkyl substituents of the same length. However, two APU residues placed at the 3'-terminus of an oligomer gives a 100-fold increase in resistance to exonuclease degradation, which is greater than observed for phosphorothioate oligomers. These structural and biophysical characteristics make the 2'-O-aminopropyl group a leading choice for incorporation into antisense therapeutics. A 20-mer phosphorothioate oligonucleotide capped with two phosphodiester aminopropyl nucleotides targeted against C-raf mRNA has been transfected into cells via electroporation. This oligonucleotide has 5-10-fold greater activity than the control phosphorothioate for reducing the abundance of C-raf mRNA and protein.

  13. Quantitative Microinjection of Morpholino Antisense Oligonucleotides into Mouse Oocytes to Examine Gene Function in Meiosis-I.

    PubMed

    Nakagawa, Shoma; FitzHarris, Greg

    2016-01-01

    Specific protein depletion is a powerful approach for assessing individual gene function in cellular processes, and has been extensively employed in recent years in mammalian oocyte meiosis-I. Conditional knockout mice and RNA interference (RNAi) methods such as siRNA or dsRNA microinjection are among several approaches to have been applied in this system over the past decade. RNAi by microinjection of Morpholino antisense Oligonucleotides (MO), in particular, has proven highly popular and tractable in many studies, since MOs have high specificity of interaction, low cell toxicity, and are more stable than other microinjected RNAi molecules. Here, we describe a method of MO microinjection into the mouse germinal vesicle-stage (GV) oocyte followed by a simple immunofluorescence approach for examination of gene function in meiosis-I. PMID:27557584

  14. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    NASA Astrophysics Data System (ADS)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V.; Shah, Samit

    2013-09-01

    Antisense oligonucleotide to NF-κB sequence: 5‧-GGA AAC ACA TCC TCC ATG-3‧, was microencapsulated in an albumin matrix by the method of spray dryingTM. Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O-H bending vibration at 948 cm-1, unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC.

  15. Enhancement of ovalbumin-induced pulmonary eosinophilia by intranasal administration of alpha1-proteinase inhibitor type 2 antisense oligonucleotides.

    PubMed

    Sung, Ha-Na; Jeon, Chang-Hwan; Gill, Byoung-Chul; Kim, Hye-Rin; Cheong, Sun-Woo; Park, Joo-Hung

    2009-01-29

    To identify asthma-susceptibility genes, we did proteome analyses of the lung from control and ovalbumin-sensitized BALB/c mice. Among the 6 up-regulated proteins is alpha(1)-protease inhibitor (alpha(1)-PI) type 2, which is a member of the serine protease inhibitor superfamily of protease inhibitors that participate in a variety of physiological functions, including extracellular matrix remodeling and inflammation. The up-regulated expression of alpha(1)-PI type 2 was confirmed by real-time PCR. Then we examined mRNA expression of five members of the alpha(1)-PI family genes (alpha(1)-PI types 1-5) in several organs of BALB/c mice and found that in addition to the liver, all the organs tested also expressed different isoforms of alpha(1)-PI in a tissue-specific manner, albeit to a lesser extent compared with the liver. When a similar study was performed with C57BL/6 mice, which have been shown to be more susceptible to ovalbumin-induced asthma than BALB/c mice, a pair of remarkable differences between the mouse strains were revealed: (1) the magnitude of alpha(1)-PI type 2 mRNA in all the organs was much higher in BALB/c than in C57BL/6 mice and (2) alpha(1)-PI type 2 is the only isoform expressed in the lung of BALB/c, but not of C57BL/c mice. Using the antisense oligonucleotide technology to specifically down-regulate expression of alpha(1)-PI type 2, we demonstrated that pulmonary infiltration of eosinophils was significantly increased by intranasal administration of alpha(1)-PI type 2 antisense oligonucleotides in OVA-sensitized mice, suggesting that alpha(1)-PI type 2 may suppress the progress of asthma, probably by acting on neutrophil elastase, which can produce many of the pathological features of asthma.

  16. Antisense Oligonucleotides Targeting Parasite Inositol 1,4,5-Trisphosphate Receptor Inhibits Mammalian Host Cell Invasion by Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko

    2014-02-01

    Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.

  17. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides

    PubMed Central

    Lennox, Kim A.; Behlke, Mark A.

    2016-01-01

    Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments. PMID:26578588

  18. Application of ultrasonic gas-filled liposomes in enhancing transfer for breast cancer-related antisense oligonucleotides: an experimental study.

    PubMed

    Luo, Yu-Kun; Zhao, Ying-Zheng; Lu, Cui-Tao; Tang, Jie; Li, Xiao-Kun

    2008-01-01

    The aim of this study was to investigate the application of ultrasonic gas-filled liposomes in enhancing transfer for breast cancer-related antisense oligonucleotides in vitro. An antisense oligodeoxynucleotide (AS-ODN) sequence, HA2741, modified with luciferase reporter plasmid, was used in evaluating the enhancing effect of gas-filled liposomes for gene transfer in breast cancer cells. Some important factors on HA 2741 transfection efficiency, such as wave intensity, ultrasound duration, gas-filled liposome concentration, and HA2741 concentration, were tested, respectively. Transfection efficiency was detected by fluorescence microscopy. Cell viability was verified by propidium iodide assay. Reverse-transcriptase polymerase chain reaction and immunocytochemistry were used to detect the inhibitory effect of HA2741 on HER-2 expression. All the four factors (wave intensity, ultrasound duration, gas-filled liposome concentration, and HA2741 concentration) showed a positive effect on AS-ODN transfection efficiency. However, these factors had a negative effect on cell viability. Considering all the factors investigated, the maximum transfection efficiency with minimum cell viability achieved under 2% gas-filled liposome mixed with 80 nmol/L HA2741 for 30-second ultrasound exposure at -3.0 dB wave intensity, which gave an overall transfection efficiency exceeding 90% and a cell viability near 90%. Under controlled conditions, ultrasound-mediated AS-ODN transfer, enhanced by gas-filled liposomes, may represent an effective, safe avenue for cancer-related gene delivery.

  19. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.

    PubMed

    Lennox, Kim A; Behlke, Mark A

    2016-01-29

    Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments. PMID:26578588

  20. Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice

    PubMed Central

    Yamamoto, Tsuyoshi; Harada-Shiba, Mariko; Nakatani, Moeka; Wada, Shunsuke; Yasuhara, Hidenori; Narukawa, Keisuke; Sasaki, Kiyomi; Shibata, Masa-Aki; Torigoe, Hidetaka; Yamaoka, Tetsuji; Imanishi, Takeshi; Obika, Satoshi

    2012-01-01

    Recent findings in molecular biology implicate the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in low-density lipoprotein receptor (LDLR) protein regulation. The cholesterol-lowering potential of anti-PCSK9 antisense oligonucleotides (AONs) modified with bridged nucleic acids (BNA-AONs) including 2′,4′-BNA (also called as locked nucleic acid (LNA)) and 2′,4′-BNANC chemistries were demonstrated both in vitro and in vivo. An in vitro transfection study revealed that all of the BNA-AONs induce dose-dependent reductions in PCSK9 messenger RNA (mRNA) levels concomitantly with increases in LDLR protein levels. BNA-AONs were administered to atherogenic diet-fed C57BL/6J mice twice weekly for 6 weeks; 2′,4′-BNA-AON that targeted murine PCSK9 induced a dose-dependent reduction in hepatic PCSK9 mRNA and LDL cholesterol (LDL-C); the 43% reduction of serum LDL-C was achieved at a dose of 20 mg/kg/injection with only moderate increases in toxicological indicators. In addition, the serum high-density lipoprotein cholesterol (HDL-C) levels increased. These results support antisense inhibition of PCSK9 as a potential therapeutic approach. When compared with 2′,4′-BNA-AON, 2′,4′-BNANC-AON showed an earlier LDL-C–lowering effect and was more tolerable in mice. Our results validate the optimization of 2′,4′-BNANC-based anti-PCSK9 antisense molecules to produce a promising therapeutic agent for the treatment of hypercholesterolemia. PMID:23344002

  1. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    PubMed

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  2. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    PubMed

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  3. Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha.

    PubMed

    Sewell, K Lea; Geary, Richard S; Baker, Brenda F; Glover, Josephine M; Mant, Timothy G K; Yu, Rosie Z; Tami, Joseph A; Dorr, F Andrew

    2002-12-01

    ISIS 104838 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that binds tumor necrosis factor-alpha (TNF-alpha) mRNA. It carries a 2'-methoxyethyl modification on the five 3' and 5' nucleotide sugars, with 10 central unmodified deoxynucleotides. ISIS 104838 was identified from a 264 ASO screen in phorbol myristate acetate-activated keratinocytes, and the dose response was assessed in lipopolysaccharide (LPS)-activated monocytes. Healthy males received multiple intravenous (i.v.) ISIS 104838 infusions in a placebo-controlled dose escalation trial (0.1-6 mg/kg). Additional volunteers received single or multiple subcutaneous (s.c.) injections. ISIS 104838 suppressed TNF-alpha protein by 85% in stimulated keratinocytes. The IC50 for TNF-alpha mRNA inhibition in stimulated monocytes was <1 microM. For i.v., C(max) occurred at the end of infusion. The effective plasma half-life was 15 to 45 min at 0.1 to 0.5 mg/kg and 1 to 1.8 h for higher doses. The apparent terminal plasma elimination half-life approximated 25 days. Obese subjects had higher plasma levels following equivalent mg/kg doses. For s.c. injections, C(max) occurred at 2 to 4 h and was lower than with equivalent i.v. dosing. Plasma bioavailability compared with i.v. was 82% following a 200 mg/ml s.c. injection. Transient activated partial thromboplastin time prolongation occurred after i.v. infusions and minimally after s.c. injections. Two subjects experienced rash, one a reversible platelet decrease, and mild injection site tenderness was noted. TNF-alpha production by peripheral blood leukocytes, induced ex vivo by LPS, was decreased by ISIS 104838 (p < 0.01). ISIS 104838, a second-generation antisense oligonucleotide, was generally well tolerated intravenously and subcutaneously. The pharmacokinetics support an infrequent dosing interval. Inhibition of TNF-alpha production ex vivo was demonstrated.

  4. Chemical modification study of antisense gapmers.

    PubMed

    Stanton, Robert; Sciabola, Simone; Salatto, Christopher; Weng, Yan; Moshinsky, Debra; Little, Jeremy; Walters, Evan; Kreeger, John; DiMattia, Debra; Chen, Tracy; Clark, Tracey; Liu, Mei; Qian, Jessie; Roy, Marc; Dullea, Robert

    2012-10-01

    A series of insertion patterns for chemically modified nucleotides [2'-O-methyl (2'-OMe), 2'-fluoro (2'-F), methoxyethyl (MOE), locked nucleic acid (LNA), and G-Clamp] within antisense gapmers is studied in vitro and in vivo in the context of the glucocorticoid receptor. Correlation between lipid transfection and unassisted (gymnotic--using no transfection agent) in vitro assays is seen to be dependent on the chemical modification, with the in vivo results corresponding to the unassisted assay in vitro. While in vitro mRNA knockdown assays are typically reasonable predictors of in vivo results, G-Clamp modified antisense oligonucleotides have poor in vivo mRNA knockdown as compared to transfected cell based assays. For LNA gapmers, knockdown is seen to be highly sensitive to the length of the antisense and number of LNA insertions, with longer 5LNA-10DNA-5LNA compounds giving less activity than 3LNA-10DNA-3LNA derivatives. Additionally, the degree of hepatoxicity for antisense gapmers with identical sequences was seen to vary widely with only subtle changes in the chemical modification pattern. While the optimization of knockdown and hepatic effects remains a sequence specific exercise, general trends emerge around preferred physical properties and modification patterns.

  5. Effects of intrathecally administerd NaV1. 8 antisense oligonucleotide on the expression of sodium channel mRNA in dorsal root ganglion.

    PubMed

    Liu, Yongmin; Yao, Shanglong; Song, Wenge; Wang, Yuelan; Liu, Dong; Zen, Lian

    2005-01-01

    Neuropathic pain has been hypothesized to be the result of aberrant expression and function of sodium channels at the site of injury. To investigate the effects of NaV1. 8 antisense oligonucleotide on the expression of sodium channel mRNA in dorsal root ganglion (DRG) neurons in chronic neuropathic pain. 24 Sprague-Dawley rats weighing 200-260 g were anesthetized with the intraperitoneal injection of 300 mg x kg(-1) choral hydrate. The CCI model was made by loose ligation of sciatic nerve trunk by 4-0 chromic gut. The mechanical and thermal pain threshold were measured before operation and 1, 3, 5, 7, 9, 11, 13 days after operation. A PE-10 catheter was implanted in subarachnoid space at lumbar region. On the 7th postoperative day the animals were randomly divided into 4 groups. The drugs were injected intrathecally twice a day for 5 consecutive days in group 2-4. The animals were decapitated 14 days after the surgery. The L4-L6 DRG of the operated side was removed and crushed, and total RNA was extracted with Trizol reagent. The contralateral side was used as control. The change of NaV1. 8 sodium channel transcripts was determined by RT-PCR. Pain threshold was significantly lowered after CCI as compared with that in control group and was elevated 3 days after antisense oligonucleotide injection. Sensory neuron specific TTX-R sodium channel NaV1. 8 transcript was down-regulated after antisense oligonucleotide injection at the dosage of 45 microg as compared with that in CCI group (P < 0.01), and it was even greater at the dosage of 90 microg. The intrathecally injected NaV1. 8 antisense oligonucleotide can reduce the mechanical allodynia and thermal hyperalgesia partially by downregulating the SNS transcript expression. PMID:16696329

  6. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  7. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  8. Lack of clinical pharmacodynamic and pharmacokinetic drug-drug interactions between warfarin and the antisense oligonucleotide mipomersen.

    PubMed

    Li, Zhaoyang; Hard, Marjie L; Grundy, John S; Singh, Tejdip; von Moltke, Lisa L; Boltje, Ingrid

    2014-08-01

    Mipomersen is a second-generation antisense oligonucleotide indicated as an adjunct therapy for homozygous familial hypercholesterolemia (HoFH). Warfarin is commonly prescribed for a variety of cardiac disorders in homozygous familial hypercholesterolemia population, and concurrent use of warfarin and mipomersen is likely. This open-label, single-sequence 2-period phase 1 study in healthy subjects evaluated the potential drug-drug interactions between mipomersen and warfarin. The subjects received a single oral 25 mg dose of warfarin alone on day 1, and after a 7-day washout period, received 200 mg mipomersen alone subcutaneously every other day on days 8-12, and received both concurrently on day 14. Coadministration of mipomersen did not change the pharmacodynamics (international normalized ratio, prothrombin time, and activated partial thromboplastin time) and pharmacokinetics (PK) of warfarin. There were no clinically significant changes in the PK of mipomersen with concurrent administration of warfarin. There were no events indicative of an increase in bleeding tendency when warfarin was coadministered with mipomersen, and the adverse event profile of mipomersen did not appear to be altered in combination with warfarin, as compared with that of the respective reference treatment. The combination of these 2 medications appeared to be safe and well tolerated. These results suggest that the dosage adjustment of warfarin or mipomersen is not expected to be necessary with coadministration. PMID:24691275

  9. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

    PubMed Central

    Skotte, Niels H.; Southwell, Amber L.; Østergaard, Michael E.; Carroll, Jeffrey B.; Warby, Simon C.; Doty, Crystal N.; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T.; Freier, Susan M.; Hung, Gene; Seth, Punit P.; Bennett, C. Frank; Swayze, Eric E.; Hayden, Michael R.

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  10. Activating the synthesis of progerin, the mutant prelamin A in Hutchinson-Gilford progeria syndrome, with antisense oligonucleotides.

    PubMed

    Fong, Loren G; Vickers, Timothy A; Farber, Emily A; Choi, Christine; Yun, Ui Jeong; Hu, Yan; Yang, Shao H; Coffinier, Catherine; Lee, Roger; Yin, Liya; Davies, Brandon S J; Andres, Douglas A; Spielmann, H Peter; Bennett, C Frank; Young, Stephen G

    2009-07-01

    Hutchinson-Gilford progeria syndrome (HGPS) is caused by point mutations that increase utilization of an alternate splice donor site in exon 11 of LMNA (the gene encoding lamin C and prelamin A). The alternate splicing reduces transcripts for wild-type prelamin A and increases transcripts for a truncated prelamin A (progerin). Here, we show that antisense oligonucleotides (ASOs) against exon 11 sequences downstream from the exon 11 splice donor site promote alternate splicing in both wild-type and HGPS fibroblasts, increasing the synthesis of progerin. Indeed, wild-type fibroblasts transfected with these ASOs exhibit progerin levels similar to (or greater than) those in fibroblasts from HGPS patients. This progerin was farnesylated, as judged by metabolic labeling studies. The synthesis of progerin in wild-type fibroblasts was accompanied by the same nuclear shape and gene-expression perturbations observed in HGPS fibroblasts. An ASO corresponding to the 5' portion of intron 11 also promoted alternate splicing. In contrast, an ASO against exon 11 sequences 5' to the alternate splice site reduced alternate splicing in HGPS cells and modestly lowered progerin levels. Thus, different ASOs can be used to increase or decrease 'HGPS splicing'. ASOs represent a new and powerful tool for recreating HGPS pathophysiology in wild-type cells.

  11. A Polyethylenimine-Containing and Transferrin-Conjugated Lipid Nanoparticle System for Antisense Oligonucleotide Delivery to AML

    PubMed Central

    Yuan, Yiming; Zhang, Lijing; Cao, Hua; Yang, Yi; Zheng, Yu; Yang, Xiao-juan

    2016-01-01

    Limited success of antisense oligonucleotides (ASO) in clinical anticancer therapy calls for more effective delivery carriers. The goal of this study was to develop a nanoparticle system for delivery of ASO G3139, which targets mRNA of antiapoptotic protein Bcl-2, to acute myeloid leukemia (AML) cells. The synthesized nanoparticle Tf-LPN-G3139 contained a small molecular weight polyethylenimine and two cationic lipids as condensing agents, with transferrin on its surface for selective binding and enhanced cellular uptake. The optimized nitrogen to phosphate (N/P) ratio was 4 to achieve small particle size and high G3139 entrapment efficiency. The Tf-LPN-G3139 exhibited excellent colloidal stability during storage for at least 12 weeks and remained intact for 4 hours in nuclease-containing serum. The cellular uptake results showed extensive internalization of fluorescence-labelled G3139 in MV4-11 cells through Tf-LPN. Following transfection, Tf-LPN-G3139 at 1 µM ASO level induced 54% Bcl-2 downregulation and >20-fold apoptosis compared to no treatment. When evaluated in mice bearing human xenograft AML tumors, Tf-LPN-G3139 suppressed tumor growth by ~60% at the end of treatment period, accompanied by remarkable pharmacological effect of Bcl-2 inhibition in tumor. In conclusion, Tf-LPN-G3139 is a promising nanoparticle system for ASO G3139 delivery to AML and warrants further investigations. PMID:27034925

  12. Development of Antisense Oligonucleotide (ASO) Technology Against Tgf-β Signaling to Prevent Scarring During Flexor Tendon Repair

    PubMed Central

    Loiselle, Alayna E.; Yukata, Kiminori; Geary, Michael B.; Kondabolu, Sirish; Shi, Shanshan; Jonason, Jennifer H.; Awad, Hani A.; O’Keefe, Regis J.

    2015-01-01

    Flexor tendons (FT) in the hand provide near frictionless gliding to facilitate hand function. Upon injury and surgical repair, satisfactory healing is hampered by fibrous adhesions between the tendon and synovial sheath. In the present study we used antisense oligonucleotides (ASOs), specifically targeted to components of Tgf-β signaling, including Tgf-β1, Smad3 and Ctgf, to test the hypothesis that local delivery of ASOs and suppression of Tgf-β1 signaling would enhance murine FT healing by suppressing adhesion formation while maintaining strength. ASOs were injected in to the FT repair site at 2, 6 and 12 days post-surgery. ASO treatment suppressed target gene expression through 21 days. Treatment with Tgf-β1, Smad3 or Ctgf ASOs resulted in significant improvement in tendon gliding function at 14 and 21 days, relative to control. Consistent with a decrease in adhesions, Col3a1 expression was significantly decreased in Tgf-β1, Smad3 and Ctgf ASO treated tendons relative to control. Smad3 ASO treatment enhanced the max load at failure of healing tendons at 14 days, relative to control. Taken together, these data support the use of ASO treatment to improve FT repair, and suggest that modulation of the Tgf-β1 signaling pathway can reduce adhesions while maintaining the strength of the repair. PMID:25761254

  13. CD40 Generation 2.5 Antisense Oligonucleotide Treatment Attenuates Doxorubicin-induced Nephropathy and Kidney Inflammation

    PubMed Central

    Donner, Aaron J; Yeh, Steve T; Hung, Gene; Graham, Mark J; Crooke, Rosanne M; Mullick, Adam E

    2015-01-01

    Preclinical and clinical data suggest CD40 activation contributes to renal inflammation and injury. We sought to test whether upregulation of CD40 in the kidney is a causative factor of renal pathology and if reduction of renal CD40 expression, using antisense oligonucleotides (ASOs) targeting CD40, would be beneficial in mouse models of glomerular injury and unilateral ureter obstruction. Administration of a Generation 2.5 CD40 ASO reduced CD40 mRNA and protein levels 75–90% in the kidney. CD40 ASO treatment mitigated functional, transcriptional, and pathological endpoints of doxorubicin-induced nephropathy. Experiments using an activating CD40 antibody revealed CD40 is primed in kidneys following doxorubicin injury or unilateral ureter obstruction and CD40 ASO treatment blunted CD40-dependent renal inflammation. Suborgan fractionation and imaging studies demonstrated CD40 in glomeruli before and after doxorubicin administration that becomes highly enriched within interstitial and glomerular foci following CD40 activation. Such foci were also sites of ASO distribution and activity and may be predominately comprised from myeloid cells as bone marrow CD40 deficiency sharply attenuated CD40 antibody responses. These studies suggest an important role of interstitial renal and/or glomerular CD40 to augment kidney injury and inflammation and demonstrate that ASO treatment could be an effective therapy in such disorders. PMID:26623936

  14. Development of antisense oligonucleotide (ASO) technology against Tgf-β signaling to prevent scarring during flexor tendon repair.

    PubMed

    Loiselle, Alayna E; Yukata, Kiminori; Geary, Michael B; Kondabolu, Sirish; Shi, Shanshan; Jonason, Jennifer H; Awad, Hani A; O'Keefe, Regis J

    2015-06-01

    Flexor tendons (FT) in the hand provide near frictionless gliding to facilitate hand function. Upon injury and surgical repair, satisfactory healing is hampered by fibrous adhesions between the tendon and synovial sheath. In the present study we used antisense oligonucleotides (ASOs), specifically targeted to components of Tgf-β signaling, including Tgf-β1, Smad3 and Ctgf, to test the hypothesis that local delivery of ASOs and suppression of Tgf-β1 signaling would enhance murine FT healing by suppressing adhesion formation while maintaining strength. ASOs were injected in to the FT repair site at 2, 6 and 12 days post-surgery. ASO treatment suppressed target gene expression through 21 days. Treatment with Tgf-β1, Smad3 or Ctgf ASOs resulted in significant improvement in tendon gliding function at 14 and 21 days, relative to control. Consistent with a decrease in adhesions, Col3a1 expression was significantly decreased in Tgf-β1, Smad3 and Ctgf ASO treated tendons relative to control. Smad3 ASO treatment enhanced the maximum load at failure of healing tendons at 14 days, relative to control. Taken together, these data support the use of ASO treatment to improve FT repair, and suggest that modulation of the Tgf-β1 signaling pathway can reduce adhesions while maintaining the strength of the repair. PMID:25761254

  15. Development of a Method for Profiling Protein Interactions with LNA-Modified Antisense Oligonucleotides Using Protein Microarrays.

    PubMed

    Kakiuchi-Kiyota, Satoko; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2016-04-01

    Development of locked nucleic acid (LNA) gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by nontarget-mediated hepatotoxicity. Increased binding of hepatocellular proteins to toxic LNA gapmers may be one of the mechanisms contributing to LNA gapmer-induced hepatotoxicity in vivo. In the present study, we investigated the protein binding propensity of nontoxic sequence-1 (NTS-1), toxic sequence-2 (TS-2), and severely highly toxic sequence-3 (HTS-3) LNA gapmers using human protein microarrays. We previously demonstrated by the transcription profiling analysis of liver RNA isolated from mice that TS-2 and HTS-3 gapmers modulate different transcriptional pathways in mice leading to hepatotoxicity. Our protein array profiling demonstrated that a greater number of proteins, including ones associated with hepatotoxicity, hepatic system disorder, and cell functions, were bound by TS-2 and HTS-3 compared with NTS-1. However, the profiles of proteins bound by TS-2 and HTS-3 were similar and did not distinguish proteins contributing to severe in vivo toxicity. These results, together with the previous transcription profiling analysis, indicate that the combination of sequence-dependent transcription modulation and increased protein binding of toxic LNA gapmers contributes to hepatotoxicity. PMID:26643897

  16. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery

    PubMed Central

    Lima, Walt F.; De Hoyos, Cheryl L.; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5′ to 3′ exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3′ to 5′ direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3′ to 5′ direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5′-cap binding complex and, consequently, were susceptible to degradation in the 5′ to 3′ direction by the XRN exoribonucleases. PMID:26843429

  17. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment

    PubMed Central

    Sintusek, Palittiya; Catapano, Francesco; Angkathunkayul, Napat; Marrosu, Elena; Parson, Simon H.; Morgan, Jennifer E.; Muntoni, Francesco; Zhou, Haiyan

    2016-01-01

    Gastrointestinal (GI) defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA). Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN) protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON) designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome. PMID:27163330

  18. Comparison of the pharmacological profiles of murine antisense oligonucleotides targeting apolipoprotein B and microsomal triglyceride transfer protein.

    PubMed

    Lee, Richard G; Fu, Wuxia; Graham, Mark J; Mullick, Adam E; Sipe, Donna; Gattis, Danielle; Bell, Thomas A; Booten, Sheri; Crooke, Rosanne M

    2013-03-01

    Therapeutic agents that suppress apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) levels/activity are being developed in the clinic to benefit patients who are unable to reach target LDL-C levels with maximally tolerated lipid-lowering drugs. To compare and contrast the metabolic consequences of reducing these targets, murine-specific apoB or MTP antisense oligonucleotides (ASOs) were administered to chow-fed and high fat-fed C57BL/6 or to chow-fed and Western diet-fed LDLr⁻/⁻ mice for periods ranging from 2 to 12 weeks, and detailed analyses of various factors affecting fatty acid metabolism were performed. Administration of these drugs significantly reduced target hepatic mRNA and protein, leading to similar reductions in hepatic VLDL/triglyceride secretion. MTP ASO treatment consistently led to increases in hepatic triglyceride accumulation and biomarkers of hepatotoxicity relative to apoB ASO due in part to enhanced expression of peroxisome proliferator activated receptor γ target genes and the inability to reduce hepatic fatty acid synthesis. Thus, although both drugs effectively lowered LDL-C levels in mice, the apoB ASO produced a more positive liver safety profile. PMID:23220583

  19. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  20. Anxiogenic-like effects and reduced stereological counting of immunolabelled 5-hydroxytryptamine6 receptors in rat nucleus accumbens by antisense oligonucleotides.

    PubMed

    Otano, A; Frechilla, D; Cobreros, A; Cruz-Orive, L M; Insausti, A; Insausti, R; Hamon, M; Del Rio, J

    1999-01-01

    The physiological role of 5-hydroxytryptamine6 receptors in the central nervous system has not yet been elucidated. The high affinity of various psychotropic drugs for 5-hydroxytryptamine6 receptors has led to the suggestion that this receptor type may be a novel target in neuropsychiatry. We have found that continuous intracerebroventricular administration of a 5-hydroxytryptamine6 receptor antisense oligonucleotide, but not of a missense oligonucleotide, produced an anxiogenic-like response in rats using two different models of anxiety, the social interaction test and the elevated plus-maze. Neither oligonucleotide treatment modified locomotor activity, rectal temperature or food intake, suggesting a low or null neurotoxicity. The effectiveness of the treatment with the designed antisense oligonucleotide to block the synthesis of the protein encoded by the target mRNA was assessed by immunolabelling 5-hydroxytryptamine6 receptors in the nucleus accumbens, where this receptor is highly expressed, using previously characterized specific antibodies. The density of the immunostaining was quantified by means of an unbiased three-dimensional stereologic procedure, which revealed a significant reduction (-25%) in the number of immunolabelled neuronal elements. These results suggest that, in addition to other 5-hydroxytryptamine receptor subtypes, 5-hydroxytryptamine6 receptors in the nucleus accumbens may participate in anxiety-related neurobiological mechanisms.

  1. Growth inhibition of DU-145 prostate cancer cells by a Bcl-2 antisense oligonucleotide is enhanced by N-(2-hydroxyphenyl)all-trans retinamide.

    PubMed

    Campbell, M J; Dawson, M; Koeffler, H P

    1998-03-01

    Hormonally insensitive prostate cancer is a relatively slow-growing, but usually fatal, disease with no long-term treatment options. Transformation of normal prostate cells to a malignant phenotype often involves corruption of the apoptotic machineries. Bcl-2 protein is one of the key inhibitors of apoptosis and is often unregulated in advanced prostate cancer. The prostate cancer cell line DU-145 was used as a model of a hormonally insensitive, advanced prostate cancer. Cell growth in liquid culture was significantly inhibited by antisense Bcl-2 oligonucleotides compared with control sense oligonucleotides; inhibition by these oligonucleotides was significantly enhanced on combination with the synthetic retinoid N-(2-hydroxyphenyl)all-trans-retinamide (2-HPR). Interestingly, growth inhibition occurred in the absence of apoptosis as measured using two assay techniques. We hypothesize that in these recalcitrant cells the apoptotic pathway is compromised at several levels, and Bcl-2 may play another role in promoting cell growth. The use of Bcl-2 antisense oligonucleotides plus 2-HPR may provide a novel approach to therapy of hormone-resistant prostate cancer.

  2. In Vitro Inhibition of Hepatitis C Virus by Antisense Oligonucleotides in PBMC Compared to Hepatoma Cells

    PubMed Central

    Youssef, Samar Samir; Fahmy, Ahmed Mohamed; Omran, Moataza Hassan; Mohamed, Amr Saad; El Desouki, Mohamed Ali; El-Awady, Mostafa K.

    2014-01-01

    Aim. To assess the efficiency of phosphorothioate antisense oligodeoxynucleotide 1 (S-ODN1) on HCV translation inhibition in PBMC compared to hepatoma cells in vitro for the first time. Materials and Methods. The study included 34 treatment naive HCV patients. IRES domain III and IV sequence variations were tested in 45 clones from 9 HCV patients. PBMC of HCV positive patients were subjected to S-ODN in vitro. Concomitantly HepG2 cells infected by the same patient's serum were also treated with S-ODN1 for 24 and 48 hours. Cellular RNA was tested for HCV plus and minus strands by reverse transcription polymerase chain reaction (RT-PCR). Results. Sequence variations were seen in HCV IRES domain III only while domain IV was conserved among all the tested patient's clones. S-ODN1 successfully inhibited HCV translation in HepG2 cells, while in PBMC inhibition was partial. Conclusion. HCV IRES domain IV is more conserved than domain IIId in genotype 4 HCV patients. S-ODN against HCV IRES domain IV was not efficient to inhibit HCV translation in PBMC under the study conditions. Further studies testing other S-ODN targeting other HCV IRES domains in PBMC should be done. PMID:24991538

  3. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302).

    PubMed

    Watanabe, Tanya A; Geary, Richard S; Levin, Arthur A

    2006-01-01

    In vitro ultrafiltration was used to determine the plasma protein-binding characteristics of phosphorothioate oligonucleotides (PS ODNs). Although there are binding data on multiple PS ODNs presented here, the focus of this research is on the protein-binding characteristics of ISIS 2302, a PS ODN targeting human intercellular adhesion molecule-1 (ICAM-1) mRNA, which is currently in clinical trials for the treatment of ulcerative colitis. ISIS 2302 was shown to be highly bound (> 97%) across species (mouse, rat, monkey, human), with the mouse having the least degree of binding. ISIS 2302 was highly bound to albumin and, to a lesser, extent alpha2-macroglobulin and had negligible binding to alpha1-acid glycoprotein. Ten shortened ODN metabolites (8, 10, and 12-19 nucleotides [nt] in length, truncated from the 3' end) were evaluated in human plasma. The degree of binding was reduced as the ODN metabolite length decreased. Three additional 20-nt (20-mer) PS ODNs (ISIS 3521, ISIS 2503, and ISIS 5132) of varying sequence but similar chemistry were evaluated. Although the tested PS ODNs were highly bound to plasma proteins, suggesting a commonality within the chemical class, these results suggested that the protein-binding characteristics in human plasma may be sequence dependent. Lastly, drug displacement studies with ISIS 2302 and other concomitant drugs with known protein-binding properties were conducted to provide information on potential drug interactions. Coadministered ISIS 2302 and other high-binding drugs evaluated in this study did not displace one another at supraclinical plasma concentrations and, thus, are not anticipated to cause any pharmacokinetic interaction in the clinic as a result of the displacement of binding to plasma proteins.

  4. Targeting Eukaryotic Translation in Mesothelioma Cells with an eIF4E-Specific Antisense Oligonucleotide

    PubMed Central

    Jacobson, Blake A.; Thumma, Saritha C.; Jay-Dixon, Joseph; Patel, Manish R.; Dubear Kroening, K.; Kratzke, Marian G.; Etchison, Ryan G.; Konicek, Bruce W.; Graff, Jeremy R.; Kratzke, Robert A.

    2013-01-01

    Background Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. Methods Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. Results eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. Conclusion 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity. PMID:24260583

  5. XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides

    SciTech Connect

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Obika, Satoshi

    2015-08-21

    Antisense oligonucleotides (ASOs) can suppress the expression of a target gene by cleaving pre-mRNA and/or mature mRNA via RNase H1. Following the initial endonucleolytic cleavage by RNase H1, the target RNAs are degraded by a mechanism that is poorly understood. To better understand this degradation pathway, we depleted the expression of two major 5′ to 3′ exoribonucleases (XRNs), named XRN1 and XRN2, and analyzed the levels of 3′ fragments of the target RNAs in vitro. We found that the 3′ fragments of target pre-mRNA generated by ASO were almost completely degraded from their 5′ ends by nuclear XRN2 after RNase H1-mediated cleavage, whereas the 3′ fragments of mature mRNA were partially degraded by XRN2. In contrast to ASO, small interference RNA (siRNA) could reduce the expression level of only mature mRNA, and the 3′ fragment was degraded by cytoplasmic XRN1. Our findings indicate that the RNAs targeted by RNase H1-dependent ASO are rapidly degraded in the nucleus, contrary to the cytoplasmic degradation pathway mediated by siRNA. - Highlights: • We compared the degradation mechanism of the transcript targeted by ASO and siRNA. • We focused on two 5′ to 3′ exoribonucleases, cytoplasmic XRN1, and nuclear XRN2. • The 3′ fragment of target pre-mRNA generated by ASO was degraded by XRN2. • The 3′ fragment of target mRNA generated by ASO was partially degraded by XRN2. • XRN1 depletion promoted accumulation of the 3′ fragment of mRNA generated by siRNA.

  6. Specific inhibition of lymphokine biosynthesis and autocrine growth using antisense oligonucleotides in Th1 and Th2 helper T cell clones

    PubMed Central

    1988-01-01

    T helper cells have recently been divided into two subsets. The Th1 subset secretes and responds to IL-2 in an autocrine manner. The Th2 subset upon mitogen or antigen stimulation releases IL-4. Here we describe a novel technology that allowed us to confirm this distinction. We have used synthetic oligonucleotides complementary to the 5' end of mouse IL-2 and IL-4 to specifically block the biosynthesis of IL-2 or IL-4 in two murine helper T cell clones from the Th1 or Th2 subset. We show that the antisense IL-2 oligonucleotide inhibited the proliferation of the Th1 clone and had no effect on the Th2 clone. In parallel experiments, the antisense IL-4 oligonucleotide blocked the proliferation of the Th2 clone and not the proliferation of the Th1 clone. The inhibition was significantly reversed in both cases by the addition of the relevant lymphokine (IL-2 in the case of the Th1 clone, IL-4 in the case of the Th2 clone). Northern analysis, using cDNA probes specific for the two lymphokines, showed a decrease in the steady-state level of the relevant lymphokine mRNA, suggesting the specific degradation of the mRNA by an RNase H-like enzymatic activity. This strategy, which allows the specific blockade of the biosynthesis of a lymphokine, could be useful for future studies on the role of each T helper subset in physiological immune responses. PMID:2974066

  7. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry

    PubMed Central

    Gabler, Angelika; Krebs, Stefan; Seichter, Doris; Förster, Martin

    2003-01-01

    Alteration of gene expression by use of antisense oligonucleotides has considerable potential for therapeutic purposes and scientific studies. Although applied for almost 25 years, this technique is still associated with difficulties in finding antisense-effective regions along the target mRNA. This is mainly due to strong secondary structures preventing binding of antisense oligonucleotides and RNase H, playing a major role in antisense-mediated degradation of the mRNA. These difficulties make empirical testing of a large number of sequences complementary to various sites in the target mRNA a very lengthy and troublesome procedure. To overcome this problem, more recent strategies to find efficient antisense sites are based on secondary structure prediction and RNase H-dependent mechanisms. We were the first who directly combined these two strategies; antisense oligonucleotides complementary to predicted unpaired target mRNA regions were designed and hybridized to the corresponding RNAs. Incubation with RNase H led to cleavage of the RNA at the respective hybridization sites. Analysis of the RNA fragments by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, which has not been used in this context before, allowed exact determination of the cleavage site. Thus the technique described here is very promising when searching for effective antisense sites. PMID:12888531

  8. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    PubMed

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation.

  9. beta-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence.

    PubMed

    Abdou, S; Collomb, J; Sallas, F; Marsura, A; Finance, C

    1997-01-01

    The ability of cyclodextrins to enhance the antiviral activity of a phosphodiester oligodeoxynucleotide has been investigated. A 18-mer oligodeoxynucleotide complementary to the initiation region of the mRNA coding for the spike protein and containing the intergenic consensus sequence of an enteric coronavirus has been tested for antiviral action against virus growth in human adenocarcinoma cells. The phosphodiester oligodeoxynucleotide only showed a limited effect on virus growth rate (from 12 to 34% viral inhibition in cells treated with 7.5 to 25 microM oligodeoxynucleotide, respectively, at a multiplicity of infection of 0.1 infectious particle per cell). In the same conditions, the phosphorothioate analogue exhibited stronger antiviral activity, the inhibition increased from 56 to 90%. The inhibitory effect of this analogue was antisense and sequence-specific. Northern blot analysis showed that the sequence-dependent mechanism of action appears to be the inhibition of mRNA transcription. We conclude that the coronavirus intergenic consensus sequence is a good target for an antisense oligonucleotide antiviral action. The properties of the phosphodiester oligonucleotide was improved after its complexation with cyclodextrins. The most important increase of the antiviral activity (90% inhibition) was obtained with only 7.5 microM oligonucleotide complexed to a cyclodextrin derivative, 6-deoxy-6-S-beta-D-galactopyranosyl-6-thio-cyclomalto-heptaose+ ++ in a molar ratio of 1:100. These studies suggest that the use of cyclodextrin derivatives as carrier for phosphodiester oligonucleotides delivery may be an effective method for increasing the therapeutic potential of these compounds in viral infections. PMID:9672621

  10. Transferrin Receptor Targeted Lipopolyplexes for Delivery of Antisense Oligonucleotide G3139 in a Murine K562 Xenograft Model

    PubMed Central

    Zhang, Xulang; Koh, Chee Guan; Yu, Bo; Liu, Shujun; Piao, Longzhu; Marcucci, Guido; Lee, Robert J.; Lee, L. James

    2013-01-01

    Purpose Transferrin (Tf) conjugated lipopolyplexes (LPs) carrying G3139, an antisense oligonucleotide for Bcl-2, were synthesized and evaluated in Tf receptor positive K562 erythroleukemia cells and then in a murine K562 xenograft model. Materials and Methods Particle size and Zeta potentials of transferrin conjugated lipopolyplexs containing G3139 (Tf-LP-G3139) were measured by Dynamic Light Scattering and ZetaPALS. In vitro and in vivo sample’s Bcl-2 downregulation was analyzed using Western blot and tumor tissue samples also exhibited by immunohistochemistry method. For athymic mice bearing with K562 xenograft tumors, tumor growth inhibition and survival rate were investigated. Nanoparticle distribution in 3-D cell cluster was observed by Laser scan confocal microscopy. IL-12 production in the plasma was measured by ELISA kit. Results In vitro, Tf-LP-G3139 was more effective in inducing down regulation of Bcl-2 in K562 cells than non-targeted LP-G3139, free G3139 and mismatched control ODN-G4126 in the same formulation. In vivo Tf-LP-G3139 was less effective than free G3139 in Bcl-2 down regulation. 3-D cell cluster model diffusion results indeed indicated limited penetration of the LPs into the cell cluster. Finally, the therapeutic efficacies of Tf-LP-G3139 and free G3139 were determined in the K562 xenograft model. Tf-LP-G3139 showed slower plasma clearance, higher AUC, and greater accumulation in the tumor compared to free G3139. In addition, Tf-LP-G3139 was found to be more effective in tumor growth inhibition and prolonging mouse survival than free G3139. This was associated with increased spleen weight and IL-12 production in the plasma. Conclusion The role of the immune system in the therapeutic response obtained with the Tf-LPs is necessary and in vitro 3-D cell cluster model can be a potential tool to evaluate the nanoparticle distribution. PMID:19291371

  11. Lack of Interactions Between an Antisense Oligonucleotide with 2'-O-(2-Methoxyethyl) Modifications and Major Drug Transporters.

    PubMed

    Yu, Rosie Z; Warren, Mark S; Watanabe, Tanya; Nichols, Brandon; Jahic, Mirza; Huang, Jane; Burkey, Jennifer; Geary, Richard S; Henry, Scott P; Wang, Yanfeng

    2016-04-01

    ISIS 141923 is a model compound of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs). The purpose of this study is to determine whether ISIS 141923 is a substrate or an inhibitor against a panel of nine major uptake or efflux drug transporters, namely breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)1, OCT2, organic anion transporting polypeptide 1B (OATP1B)1, OATP1B3, and bile salt export pump (BSEP), in vitro. The uptake test system for transporters in the solute carrier (SLC) family (OAT1, OAT3, OCT1, OCT2, OATP1B1, and OATP1B3) was studied in Madin-Darby canine kidney (MDCK)-II cells transfected to express the transporters of interest. BCRP was studied using carcinoma colon-2 (Caco-2) cells with endogenously expressed BCRP. P-gp transporter was studied in MDCK-multi-drug resistance 1 (MDR1) cells, while BSEP was studied using Spodoptera frugiperda 9 (Sf9) membrane vesicles containing human BSEP. The ISIS 141293 concentrations evaluated were 10 and 100 μM for the substrate and inhibition study, respectively. Cellular uptake of ISIS 141923 was analyzed using a high performance liquid chromatography-mass spectrometry method, while concentrations of known substrates (used as positive controls) of each transporters evaluated were determined by radiometric detection. At 10 μM ISIS 141923, there was no significant transporter-mediated uptake of ISIS 141923 (P > 0.05) in the SLC family, and the efflux ratios were not above 2.0 for either BCRP or P-gp. Therefore, no transporter-mediated uptake of ISIS 141923 was observed by any of the nine transporters studied. At 100 μM ISIS 141923, the % inhibition was in the range of -16.0% to 19.0% for the nine transporters evaluated. Therefore, ISIS 141923 is not considered as an inhibitor of the nine transporters studied. Overall, the results from this study suggest that it is unlikely that ISIS 141923 or similar 2

  12. Lack of Interactions Between an Antisense Oligonucleotide with 2'-O-(2-Methoxyethyl) Modifications and Major Drug Transporters.

    PubMed

    Yu, Rosie Z; Warren, Mark S; Watanabe, Tanya; Nichols, Brandon; Jahic, Mirza; Huang, Jane; Burkey, Jennifer; Geary, Richard S; Henry, Scott P; Wang, Yanfeng

    2016-04-01

    ISIS 141923 is a model compound of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs). The purpose of this study is to determine whether ISIS 141923 is a substrate or an inhibitor against a panel of nine major uptake or efflux drug transporters, namely breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)1, OCT2, organic anion transporting polypeptide 1B (OATP1B)1, OATP1B3, and bile salt export pump (BSEP), in vitro. The uptake test system for transporters in the solute carrier (SLC) family (OAT1, OAT3, OCT1, OCT2, OATP1B1, and OATP1B3) was studied in Madin-Darby canine kidney (MDCK)-II cells transfected to express the transporters of interest. BCRP was studied using carcinoma colon-2 (Caco-2) cells with endogenously expressed BCRP. P-gp transporter was studied in MDCK-multi-drug resistance 1 (MDR1) cells, while BSEP was studied using Spodoptera frugiperda 9 (Sf9) membrane vesicles containing human BSEP. The ISIS 141293 concentrations evaluated were 10 and 100 μM for the substrate and inhibition study, respectively. Cellular uptake of ISIS 141923 was analyzed using a high performance liquid chromatography-mass spectrometry method, while concentrations of known substrates (used as positive controls) of each transporters evaluated were determined by radiometric detection. At 10 μM ISIS 141923, there was no significant transporter-mediated uptake of ISIS 141923 (P > 0.05) in the SLC family, and the efflux ratios were not above 2.0 for either BCRP or P-gp. Therefore, no transporter-mediated uptake of ISIS 141923 was observed by any of the nine transporters studied. At 100 μM ISIS 141923, the % inhibition was in the range of -16.0% to 19.0% for the nine transporters evaluated. Therefore, ISIS 141923 is not considered as an inhibitor of the nine transporters studied. Overall, the results from this study suggest that it is unlikely that ISIS 141923 or similar 2

  13. Direct measurement of the association constant of HER2/neu antisense oligonucleotide to its target RNA sequence using a molecular beacon.

    PubMed

    Vijayanathan, Veena; Thomas, Thresia; Sigal, Leonard H; Thomas, T J

    2002-08-01

    A molecular beacon approach was developed to directly determine the association constant of RNA-DNA hybrid formation. The molecular beacon was composed of a 15-nt loop structure containing the antisense sequence that can hybridize with the AUG translational start site of the HER2/neu gene, which is overexpressed in a significant proportion of breast, ovarian, and lung tumors. The equilibrium association constant (Ka) of DNA binding to the RNA oligonucleotide was 6.4 +/- 0.14 x 10(7) M(-1) in the presence of 150 mM NaCl at 22 degrees C. The free energy change (AG) associated with RNA-DNA hybrid formation was -10.7 kcal/mole. The melting temperature (Tm) of RNA-DNA hybrid was 64.4 degrees C +/- 1 degree C in the presence of 150 mM NaCl. The RNA-DNA hybrid was more stable than the corresponding DNA-DNA duplex in 150 mM NaCl, as judged by both Ka and Tm data. We also determined the Ka, deltaG, and Tm values of RNA-DNA and DNA-DNA duplex formation in the presence of three monovalent cations, Li+, K+, and Cs+. The feasibility of this method was also investigated using a phosphorothioate molecular beacon. The information generated through this new approach for thermodynamic measurements might be useful for the design of oligonucleotides for antisense therapeutics.

  14. Solution structure of a purine rich hexaloop hairpin belonging to PGY/MDR1 mRNA and targeted by antisense oligonucleotides

    PubMed Central

    Joli, Flore; Bouchemal, Nadia; Laigle, Alain; Hartmann, Brigitte; Hantz, Edith

    2006-01-01

    A preferential target of antisense oligonucleotides directed against human PGY/MDR1 mRNA is a hairpin containing a stem with a G•U wobble pair, capped by the purine-rich 5′r(GGGAUG)3′ hexaloop. This hairpin is studied by multidimensional NMR and restrained molecular dynamics, with special emphasis on the conformation of south sugars and non-standard phosphate linkages evidenced in both the stem and the loop. The hairpin is found to be highly structured. The G•U wobble pair, a strong counterion binding site, displays structural particularities that are characteristic of this type of mismatch. The upper part of the stem undergoes distortions that optimize its interactions with the beginning of the loop. The loop adopts a new fold in which the single-stranded GGGA purine tract is structured in A-like conformation stacked in continuity of the stem and displays an extensive hydrogen bonding surface for recognition. The remarkable hairpin stability results from classical inter- and intra-strand interactions reinforced by numerous hydrogen bonds involving unusual backbone conformations and ribose 2′-hydroxyl groups. Overall, this work emphasizes numerous features that account for the well-ordered structure of the whole hairpin and highlights the loop properties that facilitate interaction with antisense oligonucleotides. PMID:17041234

  15. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  16. Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime

    PubMed Central

    Readman, John B.; Dickson, George; Coldham, Nick G.

    2016-01-01

    Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson-Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25-mer phosphorodiamidate morpholino oligomer (PMO) and a 13-mer polyamide (peptide) nucleic acid (PNA) were designed to target mRNA (positions -4 to +21, and –17 to –5, respectively) close to the translational initiation site of the extended-spectrum β-lactamase resistance genes of CTX-M group 1. These antisense oligonucleotides were found to inhibit β-lactamase activity by up to 96% in a cell-free translation-transcription coupled system using an expression vector carrying a blaCTX-M-15 gene cloned from a clinical isolate. Despite evidence for up-regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime (CTX) in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0-40 nM). The PMO and PNA were covalently bound to the cell penetrating peptide (CPP; (KFF)3K) and both significantly (P < 0.05) increased sensitivity to CTX in a dose dependent manner (0-40 nM) in field and clinical isolates harboring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine-Dalgarno region of blaCTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates. PMID:27047482

  17. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms.

    PubMed

    Wang, H; Nan, L; Yu, D; Agrawal, S; Zhang, R

    2001-11-01

    The mouse double minute 2 (MDM2) oncogene has been suggested as a target for cancer therapy. It is amplified or overexpressed in many human cancers, including breast cancer, and MDM2 levels are associated with poor prognosis of several human cancers, including breast cancer, ovarian cancer, osteosarcoma, and lymphoma. In the present study, we investigated the functions of MDM2 oncogene in the growth of breast cancer and the potential value of MDM2 as a drug target for cancer therapy by inhibiting MDM2 expression with a specific antisense antihuman-MDM2 oligonucleotide (oligo). The selected antisense mixed-backbone oligo was evaluated for its in vitro and in vivo antitumor activity in human breast cancer models: MCF-7 cell line containing wild-type p53 and MDA-MB-468 cell line containing mutant p53. In MCF-7 cells, p53 and p21 levels were elevated, resulting from specific inhibition of MDM2 expression by the antisense oligo (AS). In MDA-MB-468 cells, after inhibition of MDM2 expression, p21 levels were elevated, although p53 levels remained unchanged. After i.p. administration of the antisense anti-MDM2 oligo, in vivo antitumor activity occurred in a dose-dependent manner in nude mice bearing MCF-7 or MDA-MB-468 xenografts. In both models, in vivo synergistically or additive therapeutic effects of MDM2 inhibition and the clinically used cancer chemotherapeutic agents irinotecan, 5-fluorouracil, and paclitaxel (Taxol) were observed. These results suggest that MDM2 have a role in tumor growth through both p53-dependent and p53-independent mechanisms. We speculate that MDM2 inhibitors, such as ASs, have a broad spectrum of antitumor activities in human breast cancers, regardless of p53 status. This study should provide a basis for future development of anti-MDM2 ASs as cancer therapeutic agents used alone or in combination with conventional chemotherapeutics.

  18. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS

    PubMed Central

    Østergaard, Michael E.; Southwell, Amber L.; Kordasiewicz, Holly; Watt, Andrew T.; Skotte, Niels H.; Doty, Crystal N.; Vaid, Kuljeet; Villanueva, Erika B.; Swayze, Eric E.; Frank Bennett, C.; Hayden, Michael R.; Seth, Punit P.

    2013-01-01

    Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders. PMID:23963702

  19. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    PubMed

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    This data article contains insights into the methodology used for the analysis of three exonic mutations altering the splicing of the IDS gene: c.241C>T, c.257C>T and c.1122C>T. We have performed splicing assays for the wild-type and mutant minigenes corresponding to these substitutions. In addition, bioinformatic predictions of splicing regulatory sequence elements as well as RNA interference and overexpression experiments were conducted. The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in "Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II" Matos et al. (2015) [1].

  20. Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes.

    PubMed

    Kinberger, Garth A; Prakash, Thazha P; Yu, Jinghua; Vasquez, Guillermo; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Murray, Heather M; Gaus, Hans; Swayze, Eric E; Seth, Punit P

    2016-08-01

    Antisense oligonucleotides (ASOs) conjugated to trivalent GalNAc ligands show 10-fold enhanced potency for suppressing gene targets expressed in hepatocytes. Trivalent GalNAc is a high affinity ligand for the asialoglycoprotein receptor (ASGR)-a C-type lectin expressed almost exclusively on hepatocytes in the liver. In this communication, we show that conjugation of two and even one GalNAc sugar to single stranded chemically modified ASOs can enhance potency 5-10 fold in mice. Evaluation of the mono- and di-GalNAc ASO conjugates in an ASGR binding assay suggested that chemical features of the ASO enhance binding to the receptor and provide a rationale for the enhanced potency.

  1. Antisense-oligonucleotide mediated exon skipping in activin-receptor-like kinase 2: inhibiting the receptor that is overactive in fibrodysplasia ossificans progressiva.

    PubMed

    Shi, Songting; Cai, Jie; de Gorter, David J J; Sanchez-Duffhues, Gonzalo; Kemaladewi, Dwi U; Hoogaars, Willem M H; Aartsma-Rus, Annemieke; 't Hoen, Peter A C; ten Dijke, Peter

    2013-01-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare heritable disease characterized by progressive heterotopic ossification of connective tissues, for which there is presently no definite treatment. A recurrent activating mutation (c.617G→A; R206H) of activin receptor-like kinase 2 (ACVR1/ALK2), a BMP type I receptor, has been shown as the main cause of FOP. This mutation constitutively activates the BMP signaling pathway and initiates the formation of heterotopic bone. In this study, we have designed antisense oligonucleotides (AONs) to knockdown mouse ALK2 expression by means of exon skipping. The ALK2 AON could induce exon skipping in cells, which was accompanied by decreased ALK2 mRNA levels and impaired BMP signaling. In addition, the ALK2 AON potentiated muscle differentiation and repressed BMP6-induced osteoblast differentiation. Our results therefore provide a potential therapeutic approach for the treatment of FOP disease by reducing the excessive ALK2 activity in FOP patients.

  2. Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3;#8242;-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides

    SciTech Connect

    Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.; Prakash, Thazha P.; Berdeja, Andres; Yu, Jinghua; Lee, Sam; Watt, Andrew; Gaus, Hans; Bhat, Balkrishen; Swayze, Eric E.; Seth, Punit P.

    2012-03-16

    The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structures of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.

  3. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

    PubMed Central

    Miller, Colton M.; Donner, Aaron J.; Blank, Emma E.; Egger, Andrew W.; Kellar, Brianna M.; Østergaard, Michael E.; Seth, Punit P.; Harris, Edward N.

    2016-01-01

    Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties. PMID:26908652

  4. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy

    PubMed Central

    Catapano, Francesco; Zaharieva, Irina; Scoto, Mariacristina; Marrosu, Elena; Morgan, Jennifer; Muntoni, Francesco; Zhou, Haiyan

    2016-01-01

    The identification of noninvasive biomarkers to monitor the disease progression in spinal muscular atrophy (SMA) is becoming increasingly important. MicroRNAs (miRNAs) regulate gene expression and are implicated in the pathogenesis of neuromuscular diseases, including motor neuron degeneration. In this study, we selectively characterized the expression of miR-9, miR-206, and miR-132 in spinal cord, skeletal muscle, and serum from SMA transgenic mice, and in serum from SMA patients. A systematic analysis of miRNA expression was conducted in SMA mice with different disease severities (severe type I-like and mild type III-like) at different disease stages (pre-, mid-, and late-symptomatic stages), and in morpholino antisense oligonucleotide-treated mice. There was differential expression of all three miRNAs in spinal cord, skeletal muscle and serum samples in SMA mice. Serum miRNAs were altered prior to the changes in spinal cord and skeletal muscle at the presymptomatic stage. The altered miR-132 levels in spinal cord, muscle, and serum transiently reversed to normal level after a single-dose morpholino antisense oligomer PMO25 treatment in SMA mice. We also confirmed a significant alteration of miR-9 and miR-132 level in serum samples from SMA patients. Our study indicates the potential of developing miRNAs as noninvasive biomarkers in SMA. PMID:27377135

  5. Inhibition of ataxia-telangiectasia mutated by antisense oligonucleotide nanoparticles induces radiosensitization of head and neck squamous-cell carcinoma in mice.

    PubMed

    Zou, Jian; Qiao, Xiaoming; Ye, Huiping; Zhang, Yi; Xian, Junming; Zhao, Houyu; Liu, Shixi

    2009-06-01

    Ataxia-telangiectasia-mutated (ATM) is a radiosensitization gene. In the present study, we investigated the efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing ATM antisense oligonucleotides (ASOs) for the radiosensitization of head and neck squamous-cell carcinoma in mice, using the SCCVII cell line. Nanoparticles containing ATM ASOs were prepared with PLGA by using a double-emulsion solvent evaporation method. The results showed that the nanoparticles were suitable for intracellular uptake, and ATM ASOs inhibited ATM expression when delivered by using nanoparticles or lipofectin, but not in their free form. Meanwhile, we found that ATM reduction sensitized SCCVII cells in vitro and tumors in vivo to irradiation. In conclusion, biodegradable PLGA nanoparticles, used as a delivery carrier, enhanced intracellular uptake of ATM ASOs into SCCVII cells and the inhibitory effect of ATM ASOs. These results demonstrated that antisense ATM therapy, using PLGA nanoparticles, might provide a therapeutic benefit to patients undergoing radiation therapy for head and neck squamous-cell carcinoma. PMID:19435407

  6. Efficient cationic lipid-mediated delivery of antisense oligonucleotides into eukaryotic cells: down-regulation of the corticotropin-releasing factor receptor

    PubMed Central

    Shi, Fuxin; Nomden, Anita; Oberle, Volker; Engberts, Jan. B. F. N.; Hoekstra, Dick

    2001-01-01

    Oligonucleotides (ODNs) can be employed as effective gene-specific regulators. However, before ODNs can reach their targets, several physical barriers have to be overcome, as although ODNs may pass cell membranes, most become sequestered in endocytic compartments. Accordingly, sophisticated strategies are required for efficient delivery. Here we have employed a pyridinium-based synthetic amphiphile, called SAINT-2, which carries ODNs into cells in a highly efficient, essentially non-toxic and serum-insensitive manner. Intracellular delivery was examined by monitoring the trafficking of fluorescent ODNs and lipid, and by measuring the effect of specific antisense ODNs on target mRNA and protein levels of the receptor for the neuropeptide corticotropin-releasing factor (CRF-R), expressed in Chinese hamster ovary cells. ODN delivery is independent of lipoplex size, and fluorescently tagged ODNs readily acquire access to the nucleus, whereas the carrier itself remains sequestered in the endosomal–lysosomal pathway. While the release is independent of the presence of serum, it is not observed when serum proteins gain access within the lipoplex, and which likely stabilizes the lipoplex membrane. We propose that the amphiphile-dependent aggregate structure governs complex dissociation, and hence, the biological efficiency of ODNs. We demonstrate an essentially non-toxic and effective antisense-specific down-regulation of the CRF-R, both at the mRNA and protein level. PMID:11353077

  7. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2.

    PubMed

    Zanardi, Thomas A; Han, Su-Cheol; Jeong, Eun Ju; Rime, Soyub; Yu, Rosie Z; Chakravarty, Kaushik; Henry, Scott P

    2012-11-01

    ISIS 388626, a 2'-methoxyethyl (MOE)-modified antisense oligonucleotide (ASO) that targets human sodium glucose cotransporter 2 (SGLT2) mRNA, is in clinical trials for the management of diabetes. SGLT2 plays a pivotal role in renal glucose reabsorption, and inhibition of SGLT2 is anticipated to reduce hyperglycemia in diabetic subjects by increasing urinary glucose elimination. To selectively inhibit SGLT2 in the kidney, ISIS 388626 was designed as a "shortmer" ASO, consisting of only 12 nucleotides with two 2'-MOE-modified nucleotides at the termini. Mice and monkeys received up to 30 mg/kg/week ISIS 388626 via subcutaneous injection for 6 or 13 weeks. Dose-dependent decreases in renal SGLT2 mRNA expression were observed, which correlated with dose-related increases in glucosuria without concomitant hypoglycemia. There were no histologic changes in the kidney attributed to SGLT2 inhibition after 6 or 13 weeks of treatment. The remaining changes observed in these studies were typical of those produced in these species by the administration of oligonucleotides, correlated with high doses of ISIS 388626, and were unrelated to the inhibition of SGLT2 expression. The kidney contained the highest concentration of ISIS 388626, and dose-dependent basophilic granule accumulation in tubular epithelial cells of the kidney, which is evidence of oligonucleotide accumulation in these cells, was the only histologic change identified. No changes in kidney function were observed. These results revealed only readily reversible changes after the administration of ISIS 388626 and support the continued investigation of the safety and efficacy of ISIS 388626 in human trials.

  8. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides

    PubMed Central

    Hori, Shin-ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-01-01

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca2+ enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ∼100 nm in size are found in Ca2+-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory. PMID:26101258

  9. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides.

    PubMed

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-10-30

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca(2+) enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ~100 nm in size are found in Ca(2+)-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory.

  10. A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer.

    PubMed

    Cunningham, C C; Holmlund, J T; Schiller, J H; Geary, R S; Kwoh, T J; Dorr, A; Nemunaitis, J

    2000-05-01

    Raf proteins play a central role in the mitogen-activated protein kinase signaling pathway and hence are involved in oncogenic transformation and tumor cell proliferation. ISIS 5132 is a 20-base antisense phosphorothioate oligodeoxyribonucleotide that specifically down-regulates c-raf expression. We report here an initial study of the safety and tolerability of an i.v. infusion of ISIS 5132 in patients with advanced cancer. A continuous i.v. infusion of ISIS 5132 was administered for 21 days every 4 weeks to 34 patients with a variety of solid tumors refractory to standard therapy. The dose of ISIS 5132 was increased in sequential cohorts of patients, as toxicity allowed, until a final dose of 5.0 mg/kg body weight was reached. Toxicity was scored by common toxicity criteria, and tumor response was monitored. Pharmacokinetic studies were performed for 30 patients treated at doses of < or =4.0 mg/kg/day. The initial dose of ISIS 5132 was 0.5 mg/kg body weight and was successfully increased incrementally to 5.0 mg/kg body weight. Toxicities through the 4.0 mg/kg dose level were not dose limiting. Side effects were minimal and could not be specifically related to ISIS 5132. Two patients had prolonged stabilization of their disease, and one patient with ovarian carcinoma had a significant response with a 97% reduction in CA-125 levels. ISIS 5132, an antisense oligonucleotide against c-raf, was well tolerated at doses up to and including 4.0 mg/kg/day by 21-day continuous i.v. infusion and demonstrated antitumor activity at the doses tested.

  11. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model

    NASA Astrophysics Data System (ADS)

    Venuganti, , Venkata Vamsi K.; Saraswathy, Manju; Dwivedi, Chandradhar; Kaushik, Radhey S.; Perumal, Omathanu P.

    2015-02-01

    The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex reduced the tumor volume by 45% and was consistent with the reduction in Bcl-2 protein levels. The iontophoretically delivered ASO-dendrimer complex caused significant apoptosis in skin tumor. Overall, the findings from this study demonstrate that dendrimers are promising nanocarriers for developing topical gene silencing approaches for skin diseases.The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex

  12. Renal uptake and tolerability of a 2'-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey.

    PubMed

    Henry, Scott P; Johnson, Mark; Zanardi, Thomas A; Fey, Robert; Auyeung, Diana; Lappin, Patrick B; Levin, Arthur A

    2012-11-15

    The primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g. These concentrations were associated with histologic changes in proximal tubular epithelial cells that ranged from the appearance of cytoplasmic basophilic granules to atrophic and degenerative changes at higher concentrations. However, there were no renal functional abnormalities as determined by the typical measurements of blood urea nitrogen, serum creatinine, creatinine clearance, or urine specific gravity. Nor were there changes in glomerular filtration rate, or renal blood flow. Specific urinary markers of tubular epithelial cell damage, such as N-acetyl-glucosaminidase, and α-glutathione-s-transferase were not affected. Tubular function was further evaluated by monitoring the urinary excretion of amino acids, β(2)-microglobulin, or glucose. Renal function was challenged by administering a glucose load and by examining concentrating ability after a 4-h water deprivation. Neither challenge produced any evidence of change in renal function. The only change observed was a low incidence of increased urine protein/creatinine ratio in monkeys treated with ≥40 mg/kg/week which was rapidly reversible. Collectively, these data indicate that ISIS 113715-uptake by the proximal tubular epithelium has little or no effect on renal function at concentrations of 2600 μg/g.

  13. Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33(+)/CD34(+) aptamer.

    PubMed

    Zaimy, M A; Jebali, A; Bazrafshan, B; Mehrtashfar, S; Shabani, S; Tavakoli, A; Hekmatimoghaddam, S H; Sarli, A; Azizi, H; Izadi, P; Kazemi, B; Shojaei, A; Abdalaian, A; Tavakkoly-Bazzaz, J

    2016-09-01

    The aim of this study was to evaluate an engineered nanostructure to silence five important oncogenes, including BAG1, MDM2, Bcl-2, BIRC5 (survivin) and XIAP, in acute myeloid leukemia subtype 2 (AML-M2). The smart nanostructures were functionalized gold nanoparticles (FGNs) containing five antisense oligonucleotides (AOs) and one anti-CD33(+)/CD34(+) aptamer. First, the best AO for each gene was selected with the OligoWalk online software, and then different arrangements of AOs were evaluated with the RNAstructure software. Thereafter, naked gold nanoparticles (NGNs) were synthesized by the reaction of 1000 mm HAuCl4 with 10 μg ml(-1) ascorbic acid. Next, five AOs and one anti-CD33(+)/CD34(+) aptamer were attached to NGNs through serial reactions. Later, 5 ml of heparinized blood samples from five AML-M2 patients were prepared, cancerous cells were isolated and then incubated with three concentrations (75, 150 and 300 μg ml(-1)) each of FGNs, NGNs, gold nanoparticles functionalized with scrambled oligonucleotides (GNFSONs) and doxorubicin. Finally, cell death percentage and gene expressions were measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and real-time PCR, respectively. This study showed that FGNs and doxorubicin led to more cell death compared with NGNs and GNFSONs (P<0.05). Interestingly, all concentrations of FGNs led to a decrease in gene expression. As an important finding, although all concentrations of doxorubicin could also inhibit the expression of genes, FGNs had more effect (P<0.05). Moreover, both NGNs and GNFSONs could silence all genes only at a concentration of 300 μg ml(-1). For BCL2 and XIAP, a dose-dependent pattern was observed, but there was no similar pattern for others. PMID:27514505

  14. Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer.

    PubMed

    Rudin, C M; Holmlund, J; Fleming, G F; Mani, S; Stadler, W M; Schumm, P; Monia, B P; Johnston, J F; Geary, R; Yu, R Z; Kwoh, T J; Dorr, F A; Ratain, M J

    2001-05-01

    Raf-1 is a serine/threonine kinase that functions as a critical effector of Ras-mediated signal transduction via the mitogen-activated protein kinase pathway. Constitutive activation of this pathway directly contributes to malignant transformation in many human tumors. A 20-base phosphorothioate oligonucleotide complementary to c-raf-1 mRNA (ISIS 5132; CGP 69846A) has been shown to specifically suppress Raf-1 expression both in vitro and in vivo. This Phase I trial, involving 22 patients with advanced cancer, was designed to evaluate the safety, feasibility, and maximum tolerated dose of ISIS 5132 administration as a weekly 24-h i.v. infusion. Pharmacokinetic analysis was performed, and c-raf-1 mRNA levels in peripheral blood mononuclear cells were assessed using quantitative reverse transcription-PCR. This trial defined a maximum tolerated dose of 24 mg/kg/week on this schedule. Two of four patients treated at 30 mg/kg/week had serious adverse events after the first dose of ISIS 5132, including acute hemolytic anemia and acute renal failure and anasarca. There were no major responses documented. Dose-dependent complement activation was demonstrated on this schedule, but not on previously evaluated schedules, of ISIS 5132 administration. In contrast to other trials of ISIS 5132, there appeared to be no consistent suppression of peripheral blood mononuclear cell c-raf-1 mRNA level on this schedule at any of the dose levels analyzed. These data suggest that the efficacy and toxicity profiles of antisense oligonucleotides may be highly dependent on the schedule of administration and support the analysis of the putative molecular target in the evaluation of novel therapeutics.

  15. A Phase 1 Dose-Escalation, Pharmacokinetic, and Pharmacodynamic Evaluation of eIF-4E Antisense Oligonucleotide LY2275796 in Patients with Advanced Cancer

    PubMed Central

    Hong, David S.; Kurzrock, Razelle; Oh, Yun; Wheler, Jennifer; Naing, Aung; Brail, Les; Callies, Sophie; André, Valérie; Kadam, Sunil K; Nasir, Aejaz; Holzer, Timothy R.; Meric-Bernstam, Funda; Fishman, Mayer; Simon, George

    2016-01-01

    Purpose The antisense oligonucleotide, LY2275796, blocks expression of eIF-4E, an mRNA translation regulator upregulated in tumors. This Phase I study sought an appropriate LY2275796 dose in patients with advanced tumors. Experimental Design A 3-day loading dose, then weekly maintenance doses, were given to 1–3 patient cohorts, beginning with 100 mg and escalating. Plasma samples were collected to determine LY2275796 concentrations; tumor biopsies, to quantify eIF-4E mRNA/protein. Results Thirty patients with Stage 4 disease received ≥1 LY2275796 dose. A dose-limiting toxicity was observed at 1200 mg, with 1000 mg the maximum-tolerated dose. Across all dose levels, most patients (87%) had only grade 1–2 toxicities. LY2275796 pharmacokinetics supported the dosing regimen. Comparison of pre- and post-dose biopsies showed eIF-4E decreased in most patients. Fifteen patients had progressive disease, and seven patients achieved stable disease (minimum of 6 weeks) as best response, with two patients on therapy >3 months (one with melanoma, one with cystadenocarcinoma of the head/neck). Conclusions LY2275796 was well tolerated up to 1000 mg. Since tumor eIF-4E expression was decreased, but no tumor response observed, LY2275796 should be studied combined with other treatment modalities. PMID:21831956

  16. Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5).

    PubMed

    Pesta, Dominik H; Perry, Rachel J; Guebre-Egziabher, Fitsum; Zhang, Dongyan; Jurczak, Michael; Fischer-Rosinsky, Antje; Daniels, Martin A; Willmes, Diana M; Bhanot, Sanjay; Bornstein, Stefan R; Knauf, Felix; Samuel, Varman T; Shulman, Gerald I; Birkenfeld, Andreas L

    2015-12-01

    Reducing the expression of the Indy (I'm Not Dead Yet) gene in lower organisms extends life span by mechanisms resembling caloric restriction. Similarly, deletion of the mammalian homolog, mIndy (Slc13a5), encoding for a plasma membrane tricarboxylate transporter, protects from aging- and diet-induced adiposity and insulin resistance in mice. The organ specific contribution to this phenotype is unknown. We examined the impact of selective inducible hepatic knockdown of mIndy on whole body lipid and glucose metabolism using 2'-O-methoxyethyl chimeric anti-sense oligonucleotides (ASOs) in high-fat fed rats. 4-week treatment with 2'-O-methoxyethyl chimeric ASO reduced mIndy mRNA expression by 91% (P=0.001) compared to control ASO. Besides similar body weights between both groups, mIndy-ASO treatment lead to a 74% reduction in fasting plasma insulin concentrations as well as a 35% reduction in plasma triglycerides. Moreover, hepatic triglyceride content was significantly reduced by the knockdown of mIndy, likely mediating a trend to decreased basal rates of endogenous glucose production as well as an increased suppression of hepatic glucose production by 25% during a hyperinsulinemic-euglycemic clamp. Together, these data suggest that inducible liver-selective reduction of mIndy in rats is able to ameliorate hepatic steatosis and insulin resistance, conditions occurring with high calorie diets and during aging. PMID:26647160

  17. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro(®)): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B.

    PubMed

    Geary, Richard S; Baker, Brenda F; Crooke, Stanley T

    2015-02-01

    Mipomersen (Kynamro(®)), a second-generation 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO), inhibits the synthesis of apolipoprotein B (apoB) and is indicated in the US as an adjunct therapy for homozygous familial hypercholesterolemia (HoFH) at a dose of 200 mg subcutaneously (SC) once weekly. The pharmacokinetic (PK) properties of mipomersen are generally consistent across all species studied, including mouse, rat, monkey, and humans. After SC administration, mipomersen is rapidly and extensively absorbed. It has an apparent plasma and tissue terminal elimination half-life of approximately 30 days. Mipomersen achieves steady-state tissue concentrations within approximately 4-6 months of once-weekly dosing. It does not exhibit PK-based drug-drug interactions with other concomitant medications, either involving competition for plasma protein binding or alterations in disposition of any evaluated drugs. Furthermore, mipomersen does not prolong the corrected QT (QTc) interval. There have been no ethnic- or gender-related differences in PK observed. In clinical trials, both as a single agent and in the presence of maximal lipid-lowering therapy, mipomersen has demonstrated significant dose-dependent reductions in all measured apoB-containing atherogenic lipoproteins. Overall, mipomersen has well-characterized PK and pharmacodynamic properties in both animals and humans, and is an efficacious adjunct treatment for patients with HoFH. PMID:25559341

  18. Predictive Dose-Based Estimation of Systemic Exposure Multiples in Mouse and Monkey Relative to Human for Antisense Oligonucleotides With 2′-O-(2-Methoxyethyl) Modifications

    PubMed Central

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-01

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2′-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state. PMID:25602582

  19. Antisense oligonucleotide targeting eukaryotic translation initiation factor 4E reduces growth and enhances chemosensitivity of non-small-cell lung cancer cells.

    PubMed

    Thumma, S C; Jacobson, B A; Patel, M R; Konicek, B W; Franklin, M J; Jay-Dixon, J; Sadiq, A; De, A; Graff, J R; Kratzke, R A

    2015-08-01

    Elevated levels of eukaryotic translation initiation factor 4E (eIF4E) enhance translation of many malignancy-related proteins, such as vascular endothelial growth factor (VEGF), c-Myc and osteopontin. In non-small-cell lung cancer (NSCLC), levels of eIF4E are significantly increased compared with normal lung tissue. Here, we used an antisense oligonucleotide (ASO) to inhibit the expression of eIF4E in NSCLC cell lines. eIF4E levels were significantly reduced in a dose-dependent manner in NSCLC cells treated with eIF4E-specific ASO (4EASO) compared with control ASO. Treatment of NSCLC cells with the 4EASO resulted in decreased cap-dependent complex formation, decreased cell proliferation and increased sensitivity to gemcitabine. At the molecular level, repression of eIF4E with ASO resulted in decreased expression of the oncogenic proteins VEGF, c-Myc and osteopontin, whereas expression of β-actin was unaffected. Based on these findings, we conclude that eIF4E-silencing therapy alone or in conjunction with chemotherapy represents a promising approach deserving of further investigation in future NSCLC clinical trials.

  20. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.

    PubMed

    Jiang, Jie; Zhu, Qiang; Gendron, Tania F; Saberi, Shahram; McAlonis-Downes, Melissa; Seelman, Amanda; Stauffer, Jennifer E; Jafar-Nejad, Paymaan; Drenner, Kevin; Schulte, Derek; Chun, Seung; Sun, Shuying; Ling, Shuo-Chien; Myers, Brian; Engelhardt, Jeffery; Katz, Melanie; Baughn, Michael; Platoshyn, Oleksandr; Marsala, Martin; Watt, Andy; Heyser, Charles J; Ard, M Colin; De Muynck, Louis; Daughrity, Lillian M; Swing, Deborah A; Tessarollo, Lino; Jung, Chris J; Delpoux, Arnaud; Utzschneider, Daniel T; Hedrick, Stephen M; de Jong, Pieter J; Edbauer, Dieter; Van Damme, Philip; Petrucelli, Leonard; Shaw, Christopher E; Bennett, C Frank; Da Cruz, Sandrine; Ravits, John; Rigo, Frank; Cleveland, Don W; Lagier-Tourenne, Clotilde

    2016-05-01

    Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy. PMID:27112497

  1. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.

    PubMed

    Jiang, Jie; Zhu, Qiang; Gendron, Tania F; Saberi, Shahram; McAlonis-Downes, Melissa; Seelman, Amanda; Stauffer, Jennifer E; Jafar-Nejad, Paymaan; Drenner, Kevin; Schulte, Derek; Chun, Seung; Sun, Shuying; Ling, Shuo-Chien; Myers, Brian; Engelhardt, Jeffery; Katz, Melanie; Baughn, Michael; Platoshyn, Oleksandr; Marsala, Martin; Watt, Andy; Heyser, Charles J; Ard, M Colin; De Muynck, Louis; Daughrity, Lillian M; Swing, Deborah A; Tessarollo, Lino; Jung, Chris J; Delpoux, Arnaud; Utzschneider, Daniel T; Hedrick, Stephen M; de Jong, Pieter J; Edbauer, Dieter; Van Damme, Philip; Petrucelli, Leonard; Shaw, Christopher E; Bennett, C Frank; Da Cruz, Sandrine; Ravits, John; Rigo, Frank; Cleveland, Don W; Lagier-Tourenne, Clotilde

    2016-05-01

    Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.

  2. Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2'-o-(2-methoxyethyl) modifications.

    PubMed

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-20

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state.

  3. Second-generation antisense oligonucleotides against β-catenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral insulin resistance.

    PubMed

    Popov, Violeta B; Jornayvaz, Francois R; Akgul, Emin O; Kanda, Shoichi; Jurczak, Michael J; Zhang, Dongyan; Abudukadier, Abulizi; Majumdar, Sachin K; Guigni, Blas; Petersen, Kitt Falk; Manchem, Vara Prasad; Bhanot, Sanjay; Shulman, Gerald I; Samuel, Varman T

    2016-03-01

    Although mutations in the Wnt/β-catenin signaling pathway are linked with the metabolic syndrome and type 2 diabetes in humans, the mechanism is unclear. High-fat-fed male C57BL/6 mice were treated for 4 wk with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) to decrease hepatic and adipose expression of β-catenin. β-Catenin mRNA decreased by ≈80% in the liver and by 70% in white adipose tissue relative to control ASO-treated mice. β-Catenin ASO improved hepatic insulin sensitivity and increased insulin-stimulated whole body glucose metabolism, as assessed during hyperinsulinemic-euglycemic clamp in awake mice. β-Catenin ASO altered hepatic lipid composition in high-fat-fed mice. There were reductions in hepatic triglyceride (44%, P < 0.05) and diacylglycerol content (60%, P < 0.01) but a 30% increase in ceramide content (P < 0.001). The altered lipid content was attributed to decreased expression of sn-1,2 diacylglycerol acyltransferase and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase and an increase in serine palmitoyl transferase. The decrease in cellular diacyglycerol was associated with a 33% decrease in PKCε activation (P < 0.05) and 64% increase in Akt2 phosphorylation (P < 0.05). In summary, Reducing β-catenin expression decreases expression of enzymes involved in hepatic fatty acid esterification, ameliorates hepatic steatosis and lipid-induced insulin resistance.

  4. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts

    PubMed Central

    Burel, Sebastien A.; Hart, Christopher E.; Cauntay, Patrick; Hsiao, Jill; Machemer, Todd; Katz, Melanie; Watt, Andy; Bui, Huynh-hoa; Younis, Husam; Sabripour, Mahyar; Freier, Susan M.; Hung, Gene; Dan, Amy; Prakash, T.P.; Seth, Punit P.; Swayze, Eric E.; Bennett, C. Frank; Crooke, Stanley T.; Henry, Scott P.

    2016-01-01

    High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation. PMID:26553810

  5. Prevention of autoimmune lysis by T cells with specificity for a heat shock protein by antisense oligonucleotide treatment.

    PubMed Central

    Steinhoff, U; Zügel, U; Wand-Württenberger, A; Hengel, H; Rösch, R; Munk, M E; Kaufmann, S H

    1994-01-01

    T lymphocytes with specificity for the bacterial heat shock protein (hsp) 60 recognize stressed host cells, thus possibly promoting pathogenesis of certain infectious and autoimmune diseases. Here, we show that autoimmune destruction of stressed Schwann cells and macrophages by cytotoxic T lymphocytes raised against mycobacterial hsp60 can be inhibited by the use of hsp60-specific antisense oligodeoxynucleotides (A-ODNs). The inhibitory effect of hsp60 A-ODNs was specific because lysis of murine cytomegalovirus-infected host cells by virus-specific cytotoxic lymphocytes was not affected. Immunoblot analysis and immunoprecipitation studies suggest that different forms of stress increase hsp60 synthesis in Schwann cells and that this neosynthesis is reduced by hsp60 A-ODNs. These findings (i) provide evidence for participation of endogenous hsp60 in the recognition of stressed host cells by mycobacterial hsp60-crossreactive T cells and (ii) suggest the feasibility of inhibiting autoimmune reactions by target-cell treatment with specific A-ODNs. Images PMID:7910966

  6. Phosphorothioate anti-sense oligonucleotides: the kinetics and mechanism of the generation of the sulfurising agent from phenylacetyl disulfide (PADS).

    PubMed

    Scotson, James L; Andrews, Benjamin I; Laws, Andrew P; Page, Michael I

    2016-09-21

    The synthesis of phosphorothioate oligonucleotides is often accomplished in the pharmaceutical industry by the sulfurisation of the nucleotide-phosphite using phenylacetyl disulfide (PADS) which has an optimal combination of properties. This is best achieved by an initial 'ageing' of PADS for 48 h in acetonitrile with 3-picoline to generate polysulfides. The initial base-catalysed degradation of PADS occurs by an E1cB-type elimination to generate a ketene and acyldisulfide anion. Proton abstraction to reversibly generate a carbanion is demonstrated by H/D exchange, the rate of which is greatly increased by electron-withdrawing substituents in the aromatic ring of PADS. The ketene can be trapped intramolecularly by an o-allyl group. The disulfide anion generated subsequently attacks unreacted PADS on sulfur to give polysulfides, the active sulfurising agent. The rate of degradation of PADS is decreased by less basic substituted pyridines and is only first order in PADS indicating that the rate-limiting step is formation of the disulfide anion from the carbanion. PMID:27531007

  7. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.

    PubMed

    Kakiuchi-Kiyota, Satoko; Koza-Taylor, Petra H; Mantena, Srinivasa R; Nelms, Linda F; Enayetallah, Ahmed E; Hollingshead, Brett D; Burdick, Andrew D; Reed, Lori A; Warneke, James A; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2014-03-01

    Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice. PMID:24336348

  8. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy.

    PubMed

    Verheul, Ruurd C; van Deutekom, Judith C T; Datson, Nicole A

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0-100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  9. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy

    PubMed Central

    Verheul, Ruurd C.; van Deutekom, Judith C. T.; Datson, Nicole A.

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0–100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  10. Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice.

    PubMed

    Vitto, M F; Luz, G; Luciano, T F; Marques, S O; Souza, D R; Pinho, R A; Lira, F S; Cintra, D E; De Souza, C T

    2012-11-01

    The literature has associated hepatic insulin action with NAFLD. In this sense, treatments to revert steatosis and improve hepatic insulin action become important. Our group has demonstrated that inhibition of Sterol Regulatory Element Binding Proteins-1c (SREBP-1c) reverses hepatic steatosis. However, insulin signals after NAFLD reversion require better investigation. Thus, in this study, we investigated if the reversal of NAFLD by SREBP-1c inhibitor results in improvement in the hepatic insulin signal in obesity mice. After installation/achievement of diet-induced obesity and insulin resistance, Swiss mice were divided into 3 groups: i) Lean, ii) D-IHS, diet-induced hepatic steatosis [no treatment with antisense oligonucleotide (ASO)], and iii) RD-IHS, reversion of diet-induced hepatic steatosis (treated with ASO). The mice were treated with ASO SREBP-1c as previously described by our group. After ASO treatment, one set of animals was anesthetized and used for in vivo test, and another mice set was anesthetized and used for histology and Western blot analysis. Reversion of diet-induced hepatic steatosis did not change blood glucose, glucose decay constant (k(ITT)), body weight, or serum insulin levels. In addition, results showed that the protocol did not improve insulin pathway signaling, as confirmed by the absence of changes in IR, IRS1, Akt and Foxo1 phosphorylation in hepatic tissue. In parallel, no alterations were observed in proinflammatory molecules. Thus, our results suggest that the inhibition of SREBP-1c reverts steatosis, but without improving insulin hepatic resistance.

  11. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.

    PubMed

    Kakiuchi-Kiyota, Satoko; Koza-Taylor, Petra H; Mantena, Srinivasa R; Nelms, Linda F; Enayetallah, Ahmed E; Hollingshead, Brett D; Burdick, Andrew D; Reed, Lori A; Warneke, James A; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2014-03-01

    Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice.

  12. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  13. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  14. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2.

    PubMed

    Ravichandran, Kameswaran; Zafar, Iram; He, Zhibin; Doctor, R Brian; Moldovan, Radu; Mullick, Adam E; Edelstein, Charles L

    2014-09-15

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA. In human ADPKD studies, sirolimus, a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, had little therapeutic effect. While sirolimus robustly inhibits mTORC1, it has a minimal effect on mTOR complex 2 (mTORC2). Polycystic kidneys of Pkd2WS25/- mice, an orthologous model of human ADPKD caused by a mutation in the Pkd2 gene, had an early increase in pS6 (marker of mTORC1) and pAktSer(473) (marker of mTORC2). To investigate the effect of combined mTORC1 and 2 inhibition, Pkd2WS25/- mice were treated with an mTOR anti-sense oligonucleotide (ASO) that blocks mTOR expression thus inhibiting both mTORC1 and 2. The mTOR ASO resulted in a significant decrease in mTOR protein, pS6 and pAktSer(473). Pkd2WS25/- mice treated with the ASO had a normalization of kidney weights and kidney function and a marked decrease in cyst volume. The mTOR ASO resulted in a significant decrease in proliferation and apoptosis of tubular epithelial cells. To demonstrate the role of mTORC2 on cyst growth, Rictor, the functional component of mTORC2, was silenced in Madin-Darby canine kidney cell cysts grown in 3D cultures. Silencing Rictor significantly decreased cyst volume and expression of pAktSer(473). The decreased cyst size in the Rictor silenced cells was reversed by introduction of a constitutively active Akt1. In vitro, combined mTORC1 and 2 inhibition reduced cyst growth more than inhibition of mTORC1 or 2 alone. In conclusion, combined mTORC1 and 2 inhibition has therapeutic potential in ADPKD. PMID:24847003

  15. Enhancement of Blood–Brain Barrier Permeability and Delivery of Antisense Oligonucleotides or Plasmid DNA to the Brain by the Combination of Bubble Liposomes and High-Intensity Focused Ultrasound

    PubMed Central

    Negishi, Yoichi; Yamane, Masaya; Kurihara, Naho; Endo-Takahashi, Yoko; Sashida, Sanae; Takagi, Norio; Suzuki, Ryo; Maruyama, Kazuo

    2015-01-01

    The blood–brain barrier (BBB) is a major obstacle that prevents therapeutic drugs or genes from being delivered to the central nervous system. Therefore, it is important to develop methods to enhance the permeability of the BBB. We have developed echo-contrast gas (C3F8) entrapping liposomes (Bubble liposomes, BLs) that can work as a gene delivery tool in combination with ultrasound (US) exposure. Here, we studied whether the permeability of the BBB can be enhanced by the combination of BLs and high-intensity focused ultrasound (HIFU). Mice were intravenously injected with Evans blue (EB). BLs were subsequently injected, and the right hemispheres were exposed to HIFU. As a result, the accumulation of EB in the HIFU-exposed brain hemispheres was increased over that observed in the non-HIFU-exposed hemispheres, depending on the intensity and the duration of the HIFU. Similarly, the combination of BLs and HIFU allowed fluorescent-labeled antisense oligonucleotides to be delivered into the HIFU-exposed left hemispheres of the treated mice. Furthermore, a firefly luciferase-expressing plasmid DNA was delivered to the brain by the combination method of BLs and HIFU, which resulted in the increased gene expression in the brain at the focused-US exposure site. These results suggest that the method of combining BLs and HIFU together serves as a useful means for accelerating the permeability of BBB and thereby enabling antisense oligonucleotides or genes to be delivered to the focused brain site. PMID:26402694

  16. Antisense oligonucleotide against collagen-specific molecular chaperone 47-kDa heat shock protein suppresses scar formation in rat wounds.

    PubMed

    Wang, Zuolin; Inokuchi, Tsugio; Nemoto, Takayuki K; Uehara, Masataka; Baba, Tomomi T

    2003-05-01

    The 47-kDa heat shock protein (HSP47) is a molecular chaperone specifically targeting the processing and quality control of collagen molecules. This study was performed to investigate whether antisense therapy preventing HSP47 expression might affect the scar formation occurring during wound healing of skin. In wound healing of neonatal rat skin, the number of HSP47-positive cells and the amount of HSP47 protein consistently increased up to 7 days after surgical wounding. The increase in HSP47-positive cell number and protein content was efficiently suppressed by daily injections of HSP47-antisense deoxynucleotide (30 nmol) for 7 days. This treatment also suppressed the accumulation of collagen type I in the wound. Moreover, the disorder of collagenous fibers was relieved in the healed portion of the wounds subjected to the antisense treatment. Taken together, the authors propose that HSP47 is an important determinant in scar formation and that the antisense treatment against HSP47 gene may have a therapeutic potential to suppress the scar formation of skin.

  17. Development of antisense oligodeoxynucleotides for transplantation.

    PubMed

    Stepkowski, S M

    2000-06-01

    Over last ten years antisense technology has been improved to provide powerful tools to selectively inhibit production of different mRNAs. This technology has been applied in transplantation to prolong the survival of organ allografts and to prevent development of ischemic/reperfusion injury in grafts. The present review describes technological progress in chemical modifications from antisense phosphodiester oligonucleotides to phosphorothioate oligonucleotides and the most advanced chimeric oligonucleotides with methoxyethyl groups attached at both ends or at one end of the oligonucleotide. Results indicate that phosphorothioate oligonucleotides, designed to block intercellular adhesion molecule-1 (ICAM-1), extended the survival of heart and kidney allografts when administered to donors or recipients. Combination of ICAM-1 antisense phosphorothioate oligonucleotide and cyclosporine (CsA) produced a potent synergistic interaction on allograft survival in comparison with each drug alone. The same ICAM-1 phosphorothioate oligonucleotide used for perfusion of kidney grafts prevented development of ischemic/reperfusion injury. We also compared the effect of c-raf mRNA inhibition on heart allograft survival by phosphorothioate oligonucleotide or phosphorothioate/methoxyethyl oligonucleotide used alone or in combination with CsA or sirolimus (SRL). The results documented that addition of methoxyethyl modifications at both ends or at one end of oligonucleotides significantly improved the in vivo antisense activity. Combined therapy with c-raf antisense phosphorothioate/methoxyethyl oligonucleotide and SRL synergistically extended the survival of heart allografts. Thus, antisense technology may provide not only tools to examine the effects of selective inhibition of different molecules involved in allograft rejection but also act as potential therapeutic agents.

  18. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  19. Design and Selection of Antisense Oligonucleotides Targeting Transforming Growth Factor Beta (TGF-β) Isoform mRNAs for the Treatment of Solid Tumors.

    PubMed

    Jaschinski, Frank; Korhonen, Hanna; Janicot, Michel

    2015-01-01

    Transforming growth factor beta isoforms (TGF-β1, -β2, and -β3) are cytokines associated with a wide range of biological processes in oncology including tumor cell invasion and migration, angiogenesis, immunosuppression, as well as regulation of tumor stem cell properties. Hence, blocking the TGF-β signaling pathways may have a multifold therapeutic benefit for the treatment of solid tumors. Here, we describe the identification and selection processes for the development of highly potent and selective chemically modified antisense oligodeoxynucleotides (fully phosphorothioate locked nucleic acid gapmers) allowing effective and selective suppression of TGF-β isoform expression in cell-based assays and in vivo preclinical models.

  20. The Role of Structural Elements of the 5'-Terminal Region of p53 mRNA in Translation under Stress Conditions Assayed by the Antisense Oligonucleotide Approach

    PubMed Central

    Swiatkowska, Agata; Zydowicz, Paulina; Gorska, Agnieszka; Suchacka, Julia; Dutkiewicz, Mariola; Ciesiołka, Jerzy

    2015-01-01

    The p53 protein is one of the major factors responsible for cell cycle regulation and stress response. In the 5’-terminal region of p53 mRNA, an IRES element has been found which takes part in the translational regulation of p53 expression. Two characteristic hairpin motifs are present in this mRNA region: G56-C169, with the first AUG codon, and U180-A218, which interacts with the Hdm2 protein (human homolog of mouse double minute 2 protein). 2′-OMe modified antisense oligomers hybridizing to the 5'-terminal region of p53 mRNA were applied to assess the role of these structural elements in translation initiation under conditions of cellular stress. Structural changes in the RNA target occurring upon oligomers’ binding were monitored by the Pb2+-induced cleavage method. The impact of antisense oligomers on the synthesis of two proteins, the full-length p53 and its isoform Δ40p53, was analysed in HT-29, MCF-7 and HepG2 cells, under normal conditions and under stress, as well as in vitro conditions. The results revealed that the hairpin U180-A218 and adjacent single-stranded region A219-A228 were predominantly responsible for high efficacy of IRES-mediated translation in the presence of stress factors. These motifs play a role of cis-acting elements which are able to modulate IRES activity, likely via interactions with protein factors. PMID:26513723

  1. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    PubMed Central

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong

    2016-01-01

    A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2′-O-methyl phosphorothioate RNA (2′-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2′-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2′-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2′-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy. PMID:27483024

  2. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice.

    PubMed

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong

    2016-01-01

    A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2'-O-methyl phosphorothioate RNA (2'-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2'-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2'-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2'-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2'-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy. PMID:27483024

  3. Phase I/II Trial of AEG35156 X-Linked Inhibitor of Apoptosis Protein Antisense Oligonucleotide Combined With Idarubicin and Cytarabine in Patients With Relapsed or Primary Refractory Acute Myeloid Leukemia

    PubMed Central

    Schimmer, Aaron D.; Estey, Elihu H.; Borthakur, Gautam; Carter, Bing Z.; Schiller, Gary J.; Tallman, Martin S.; Altman, Jessica K.; Karp, Judith E.; Kassis, Jeannine; Hedley, David W.; Brandwein, Joseph; Xu, Wei; Mak, Duncan H.; LaCasse, Eric; Jacob, Christine; Morris, Stephen J.; Jolivet, Jacques; Andreeff, Michael

    2009-01-01

    Purpose X-linked inhibitor of apoptosis protein (XIAP) is an inhibitor of caspases 3 and 9 which are overexpressed in acute myeloid leukemia (AML) and may contribute to chemoresistance. We report on a phase I/II trial of the XIAP antisense oligonucleotide AEG35156 in combination with reinduction chemotherapy. Patients and Methods Twenty-four patients with rapidly relapsed or refractory AML were treated with escalating doses of AEG35156 (12 to 250 mg/m2) as an intravenous solution over 2 hours and 32 patients were treated with the highest planned dose of 350 mg/m2 in combination with idarubicin and high-dose cytarabine reinduction chemotherapy. Correlative studies were conducted to determine the effects of AEG35156 on levels of XIAP mRNA. Results Knockdown of XIAP mRNA during treatment increased with the dose of the antisense. All patients who received 350 mg/m2 of AEG35156 had higher than 30% target knockdown with a median maximal knockdown of 90% (range, 48% to 100%). The overall response rate was higher among the patients receiving the highest dose of AEG35156. In this group, 15 (47%) of 32 patients achieved complete response (CR)/CR with incomplete platelet count recovery (CRp) compared with only one (4%) of 24 receiving 12 to 250 mg/m2 AEG35156. Among the patients receiving 350 mg/m2 of AEG35156 in combination with chemotherapy, 10 (91%) of 11 who were refractory to a single induction chemotherapy regimen achieved CR/CRp after reinduction with AEG35156 and chemotherapy. AEG35156 was well tolerated save for two cases of peripheral neuropathy in patients receiving multiple doses of AEG35156. Conclusion At the highest dose tested, AEG35156 knocks down its target and appears very effective when combined with chemotherapy in patients with AML refractory to a single induction regimen. PMID:19652057

  4. Overexpression of members of the AP-1 transcriptional factor family from an early stage of renal carcinogenesis and inhibition of cell growth by AP-1 gene antisense oligonucleotides in the Tsc2 gene mutant (Eker) rat model.

    PubMed

    Urakami, S; Tsuchiya, H; Orimoto, K; Kobayashi, T; Igawa, M; Hino, O

    1997-12-01

    We previously isolated subtracted cDNA clones for genes having increased expression in Tsc2 gene mutant (Eker) rat renal carcinomas (RCs). Among them, fra-1 encoding a transcriptional factor activator protein 1 (AP-1) was identified. We have therefore investigated whether other members of the AP-1 transcription factor family might also be involved in renal carcinogenesis in the Eker rat model. In the present study, overexpression of fra-1, fra-2, c-jun, junB, and junD mRNAs was demonstrated in RCs by Northern blot analysis. Interestingly, AP-1 proteins were highly expressed even in the earliest preneoplastic lesions (e.g., phenotypically altered tubules) as suggested by immunohistochemistry. Moreover, 12-O-tetradecanoylphorbol-13-acetate-responsive element (TRE)-binding activity of AP-1 proteins was observed in RC cell extracts by electrophoretic mobility shift assay. As a next step, we transfected antisense oligonucleotides targeting AP-1 genes into RC cells and demonstrated that their growth was strongly inhibited. Thus, the data suggest that overexpression of AP-1 genes might play a crucial role in renal carcinogenesis in the Eker rat model. PMID:9405228

  5. [Study toward practical use of oligonucleotide therapeutics].

    PubMed

    Inoue, Takao; Yoshida, Tokuyuki

    2014-01-01

    Over the past decade, oligonucleotide-based therapeutics such as antisense oligonucleotides and small interfering RNAs (siRNAs) have been developed extensively. For example, mipomersen (Kynamro; ISIS Pharmaceuticals), which is a second-generation antisense oligonucleotide administered by subcutaneous injection, has recently been approved by the FDA for the treatment of homozygous familial hypercholesterolemia. On the other hands, methods for the evaluation of quality, efficacy and safety of oligonucleotide therapeutics have not been fully discussed. Furthermore, the regulatory guidance specific for oligonucleotide therapeutics has not been established yet. Under these circumstances, we started to collaborate with Osaka University and PMDA to discuss regulatory science focused on oligonucleotide therapeutics. Through the collaboration, we would like to propose the possible design of quality evaluation and preclinical safety-evaluation of oligonucleotide therapeutics. PMID:25707197

  6. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100.

    PubMed

    Yu, Rosie Z; Kim, Tae-Won; Hong, An; Watanabe, Tanya A; Gaus, Hans J; Geary, Richard S

    2007-03-01

    The pharmacokinetics of a 2'-O-(2-methoxyethyl)-modified oligonucleotide, ISIS 301012 [targeting human apolipoprotein B-100 (apoB-100)], was characterized in mouse, rat, monkey, and human. Plasma pharmacokinetics following parental administration was similar across species, exhibiting a rapid distribution phase with t(1/2alpha) of several hours and a prolonged elimination phase with t(1/2beta) of days. The prolonged elimination phase represents equilibrium between tissues and circulating drug due to slow elimination from tissues. Absorption was nearly complete following s.c. injection, with bioavailability ranging from 80 to 100% in monkeys. Plasma clearance scaled well across species as a function of body weight alone, and this correlation was improved when corrected for plasma protein binding. In all of the animal models studied, the highest tissue concentrations of ISIS 301012 were observed in kidney and liver. Urinary excretion was less than 3% in monkeys and human in the first 24 h. ISIS 301012 is highly bound to plasma proteins, probably preventing rapid removal by renal filtration. However, following 25 mg/kg s.c. administration in mouse and 5-mg/kg i.v. bolus administration in rat, plasma concentrations of ISIS 301012 exceeded their respective protein binding capacity. Thus, urinary excretion increased to 16% or greater within the first 24 h. Albeit slow, urinary excretion of ISIS 301012 and its shortened metabolites is the ultimate elimination pathway of this compound, as demonstrated by 32% of dose recovered in total excreta by 14 days in a rat mass balance study. The pharmacokinetics of ISIS 301012 in human is predictable from the pharmacokinetics measured in animals. The pharmacokinetic properties of ISIS 301012 provide guidance for clinical development and support infrequent dose administration.

  7. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    SciTech Connect

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory . E-mail: vchinchar@microbio.umsmed.edu

    2007-02-20

    Frog virus 3 (FV3) is a large DNA virus that encodes {approx} 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-II{alpha}). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-II{alpha} triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins.

  8. [Control of gene expression by antisense nucleic acids].

    PubMed

    Lebleu, B; Clarenc, J P; Degols, G; Leonetti, J P; Milhaud, P

    1992-01-01

    The use of antisense RNA or of antisense oligonucleotides for the specific control of viral or cellular genes expression has undergone rapid developments recently; their respective advantages and drawbacks will be discussed. Progresses in oligonucleotides chemistry have lead to the synthesis of analogs with improved pharmacological properties. Besides the antisense approach, which usually targets translation initiation or splicing sites, it is possible to interfere specifically with gene expression through triple helix formation (anti-gene strategy) or through the titration of regulatory proteins (sense approach). A major problem encountered in the use of synthetic oligonucleotides is their delivery to their nuclear or cytoplasmic targets after cell uptake by an endocytic pathway; our own work in this field will be discussed. Finally, we will describe the strategies followed by our group to improve the bioavailability of antisense oligonucleotides, as for instance conjugation to poly (L-lysine) or encapsidation in antibody-targeted liposomes.

  9. Modulation of tumor eIF4E by antisense inhibition: A phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer.

    PubMed

    Duffy, A G; Makarova-Rusher, O V; Ulahannan, S V; Rahma, O E; Fioravanti, S; Walker, M; Abdullah, S; Raffeld, M; Anderson, V; Abi-Jaoudeh, N; Levy, E; Wood, B J; Lee, S; Tomita, Y; Trepel, J B; Steinberg, S M; Revenko, A S; MacLeod, A R; Peer, C J; Figg, W D; Greten, T F

    2016-10-01

    The eukaryotic translation initiation factor 4E (eIF4E) is a potent oncogene that is found to be dysregulated in 30% of human cancer, including colorectal carcinogenesis (CRC). ISIS 183750 is a second-generation antisense oligonucleotide (ASO) designed to inhibit the production of the eIF4E protein. In preclinical studies we found that EIF4e ASOs reduced expression of EIF4e mRNA and inhibited proliferation of colorectal carcinoma cells. An additive antiproliferative effect was observed in combination with irinotecan. We then performed a clinical trial evaluating this combination in patients with refractory cancer. No dose-limiting toxicities were seen but based on pharmacokinetic data and tolerability the dose of irinotecan was reduced to 160 mg/m(2) biweekly. Efficacy was evaluated in 15 patients with irinotecan-refractory colorectal cancer. The median time of disease control was 22.1 weeks. After ISIS 183750 treatment, peripheral blood levels of eIF4E mRNA were decreased in 13 of 19 patients. Matched pre- and posttreatment tumor biopsies showed decreased eIF4E mRNA levels in five of nine patients. In tumor tissue, the intracellular and stromal presence of ISIS 183750 was detected by IHC in all biopsied patients. Although there were no objective responses stable disease was seen in seven of 15 (47%) patients who were progressing before study entry, six of whom were stable at the time of the week 16 CT scan. We were also able to confirm through mandatory pre- and posttherapy tumor biopsies penetration of the ASO into the site of metastasis. PMID:27194579

  10. Modulation of tumor eIF4E by antisense inhibition: A phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer.

    PubMed

    Duffy, A G; Makarova-Rusher, O V; Ulahannan, S V; Rahma, O E; Fioravanti, S; Walker, M; Abdullah, S; Raffeld, M; Anderson, V; Abi-Jaoudeh, N; Levy, E; Wood, B J; Lee, S; Tomita, Y; Trepel, J B; Steinberg, S M; Revenko, A S; MacLeod, A R; Peer, C J; Figg, W D; Greten, T F

    2016-10-01

    The eukaryotic translation initiation factor 4E (eIF4E) is a potent oncogene that is found to be dysregulated in 30% of human cancer, including colorectal carcinogenesis (CRC). ISIS 183750 is a second-generation antisense oligonucleotide (ASO) designed to inhibit the production of the eIF4E protein. In preclinical studies we found that EIF4e ASOs reduced expression of EIF4e mRNA and inhibited proliferation of colorectal carcinoma cells. An additive antiproliferative effect was observed in combination with irinotecan. We then performed a clinical trial evaluating this combination in patients with refractory cancer. No dose-limiting toxicities were seen but based on pharmacokinetic data and tolerability the dose of irinotecan was reduced to 160 mg/m(2) biweekly. Efficacy was evaluated in 15 patients with irinotecan-refractory colorectal cancer. The median time of disease control was 22.1 weeks. After ISIS 183750 treatment, peripheral blood levels of eIF4E mRNA were decreased in 13 of 19 patients. Matched pre- and posttreatment tumor biopsies showed decreased eIF4E mRNA levels in five of nine patients. In tumor tissue, the intracellular and stromal presence of ISIS 183750 was detected by IHC in all biopsied patients. Although there were no objective responses stable disease was seen in seven of 15 (47%) patients who were progressing before study entry, six of whom were stable at the time of the week 16 CT scan. We were also able to confirm through mandatory pre- and posttherapy tumor biopsies penetration of the ASO into the site of metastasis.

  11. Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer.

    PubMed

    Mani, Sridhar; Rudin, Charles M; Kunkel, Katie; Holmlund, Jon T; Geary, Richard S; Kindler, Hedy L; Dorr, F Andrew; Ratain, Mark J

    2002-04-01

    The present study was designed to determine the maximum tolerated dose (MTD), toxicity profile, pharmacokinetics (PKs), and antitumor activity of the protein kinase C-alpha antisense oligonucleotide ISIS 3521 (ISIS Pharmaceuticals, Inc., Carlsbad, CA) when administered in combination with 5-fluorouracil (5-FU) and leucovorin (LV). Patients with refractory solid tumors received ISIS 3521 as a 21-day continuous infusion administered simultaneously with 5-FU and LV given daily for 5 days repeated every 4-5 weeks (one cycle). 5-FU and ISIS 3521 PK analysis were performed on samples taken during the first cycle in all patients. Fifteen patients received ISIS 3521 at one of three dose levels: (a) 1.0 (n = 3 patients); (b) 1.5 (n = 3 patients); and (c) 2.0 (n = 9 patients) mg/kg/day. All patients simultaneously received 5-FU (425 mg/m(2)/day) and LV (20 mg/m(2)/day) for 5 consecutive days. Grade 1-2 toxicities included alopecia, fatigue, mucositis, diarrhea, anorexia, nausea/vomiting, and tumor pain. One patient had grade 3 chest pain considered to be related to 5-FU therapy, another patient had dose-limiting grade 3 mucositis resolving in <7 days, and one patient with a history of gastritis had an acute upper gastrointestinal bleed thought to be 5-FU-induced toxicity. Five patients developed cycle 1 grade 4 neutropenia, which resolved without colony-stimulating factors before the next treatment cycle. There were no effects on prothrombin time and activated partial thromboplastin time. A clinically defined MTD was not reached. The character and severity of these toxicities do not seem to be dose related, and, as such, there was no classical dose-limiting toxicity defining the MTD. ISIS 3521 PKs in the presence of 5-FU was consistent with those reported previously. 5-FU PK parameters were also similar in the presence or absence of ISIS 3521. Six of 14 patients ( approximately 43%) across all dose cohorts had an improvement in measurable tumor response ranging from minor

  12. Development of Antisense Drugs for Dyslipidemia.

    PubMed

    Yamamoto, Tsuyoshi; Wada, Fumito; Harada-Shiba, Mariko

    2016-09-01

    Abnormal elevation of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins in plasma as well as dysfunction of anti-atherogenic high-density lipoprotein (HDL) have both been recognized as essential components of the pathogenesis of atherosclerosis and are classified as dyslipidemia. This review describes the arc of development of antisense oligonucleotides for the treatment of dyslipidemia. Chemically-armed antisense candidates can act on various kinds of transcripts, including mRNA and miRNA, via several different endogenous antisense mechanisms, and have exhibited potent systemic anti-dyslipidemic effects. Here, we present specific cutting-edge technologies have recently been brought into antisense strategies, and describe how they have improved the potency of antisense drugs in regard to pharmacokinetics and pharmacodynamics. In addition, we discuss perspectives for the use of armed antisense oligonucleotides as new clinical options for dyslipidemia, in the light of outcomes of recent clinical trials and safety concerns indicated by several clinical and preclinical studies. PMID:27466159

  13. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours

    NASA Astrophysics Data System (ADS)

    Martirosyan, A.; Olesen, M. J.; Fenton, R. A.; Kjems, J.; Howard, K. A.

    2016-06-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites.This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal

  14. Virological effects of ISIS 14803, an antisense oligonucleotide inhibitor of hepatitis C virus (HCV) internal ribosome entry site (IRES), on HCV IRES in chronic hepatitis C patients and examination of the potential role of primary and secondary HCV resistance in the outcome of treatment.

    PubMed

    Soler, Muriel; McHutchison, John G; Kwoh, T Jesse; Dorr, F Andrew; Pawlotsky, Jean-Michel

    2004-12-01

    Antisense oligonucleotides represent a promising class of antiviral agents. ISIS 14803 is a 20-unit phosphorothioate oligodeoxynucleotide that inhibited hepatitis C virus (HCV) replication and protein expression in cell culture and mouse models. A Phase I dose-escalation clinical study of ISIS 14803 was performed in 24 patients with HCV genotype 1 chronic hepatitis C. The patients received 0.5, 1.0, 2.0 or 3.0 mg/kg of ISIS 14803 for 4 weeks. Two of them receiving 2.0 mg/kg, experienced a significant (>1.0 log10) viral load reduction and nine other patients experienced minor (<1.0 log10) viral load reductions that were difficult to definitively distinguish from assay or patient variations. The aims of this study were to examine the effect of ISIS 14803 on its target site and neighbouring region quasispecies evolution, and to determine whether primary and secondary HCV resistance contributed to the observed virological response rate. The HCV internal ribosome entry site (IRES), including the ISIS 14803 target site in virus specimens collected from patients at baseline and end-of-treatment, was sequenced. An extensive IRES quasispecies analysis was performed in 10 of the patients at various time points before, during and after ISIS 14803 treatment. A significant IRES genetic evolution was found in three out of 10 patients through quasispecies analysis suggesting that treatment with ISIS 14803, a drug designed to bind to HCV RNA, exerted a selective pressure on HCV IRES. However, no mutations in the ISIS 14803 target site, which would inhibit binding of the oligonucleotide to HCV RNA, were detected before (primary resistance) or after treatment (secondary resistance) with the oligonucleotide. Furthermore, no obvious nucleotide changes in the surrounding IRES region that might possibly affect oligonucleotide binding were detected.

  15. Diversification of antisense research and development: review of the Ringberg meeting, April 1994. Mechanisms of antisense-mediated gene silencing.

    PubMed

    Hawkins, J W; Nellen, W

    1994-01-01

    Antisense technology has established itself as a new and vibrant entrant into the discipline of molecular biology. As such, it has contributed to basic research by providing tools for the molecular dissection of diverse experimental systems. In applied research, antisense approaches have contributed to development of agricultural products (D. Grierson) now coming to market and to the design of a number of oligonucleotide drugs, now in clinical trials. However, few activities to date have focused on the study of antisense per se. Further, few conceptual perspectives have regarded antisense as an integral part of cellular function and genetic regulation. The Ringberg conference showcased a number of systems that would seem unrelated if we regard antisense as a superficial tool to be imposed on nature. On the other hand, if we want to begin to regard antisense as a field of its own with deeper biological and genetic rationales, the Ringberg meeting provided much tantalizing evidence to do so.

  16. Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl moiety increases cellular association and improves efficacy.

    PubMed Central

    Krieg, A M; Tonkinson, J; Matson, S; Zhao, Q; Saxon, M; Zhang, L M; Bhanja, U; Yakubov, L; Stein, C A

    1993-01-01

    Phosphodiester oligodeoxynucleotides bearing a 5' cholesteryl (chol) modification bind to low density lipoprotein (LDL), apparently by partitioning the chol-modified oligonucleotides into the lipid layer. Both HL60 cells and primary mouse spleen T and B cells incubated with fluorescently labeled chol-modified oligonucleotide showed substantially increased cellular association by flow cytometry and increased internalization by confocal microscopy compared to an identical molecule not bearing the chol group. Cellular internalization of chol-modified oligonucleotide occurred at least partially through the LDL receptor; it was increased in mouse spleen cells by cell culture in lipoprotein-deficient medium and/or lovastatin, and it was decreased by culture in high serum medium. To determine whether chol-modified oligonucleotides are more potent antisense agents, we titered antisense unmodified phosphodiester and chol-modified oligonucleotides targeted against a mouse immunosuppressive protein. Murine spleen cells cultured with 20 microM phosphodiester antisense oligonucleotides had a 2-fold increase in RNA synthesis, indicating the expected lymphocyte activation. Antisense chol-modified oligonucleotides showed an 8-fold increase in relative potency: they caused a 2-fold increase in RNA synthesis at just 2.5 microM. The increased efficacy was blocked by heparin and was further increased by cell culture in 1% (vs. 10%) fetal bovine serum, suggesting that the effect may, at least in part, be mediated via the LDL receptor. Antisense chol-modified oligonucleotides are sequence specific and have increased potency as compared to unmodified oligonucleotides. Images PMID:8430072

  17. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours.

    PubMed

    Martirosyan, A; Olesen, M J; Fenton, R A; Kjems, J; Howard, K A

    2016-07-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites. PMID:26694897

  18. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours.

    PubMed

    Martirosyan, A; Olesen, M J; Fenton, R A; Kjems, J; Howard, K A

    2016-07-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites.

  19. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  20. Antisense therapy for cancer--the time of truth.

    PubMed

    Jansen, Burkhard; Zangemeister-Wittke, Uwe

    2002-11-01

    The recent acceleration in the identification and characterisation of new molecular targets for cancer and the limited effectiveness of conventional treatment strategies has focused considerable interest on the development of new types of anticancer agents. These new drugs are hoped to be highly specific for malignant cells with a favorable side-effect profile due to well-defined mechanisms of action. Antisense oligonucleotides are one such class of new agent--they are short, synthetic stretches of DNA which hybridise with specific mRNA strands that correspond to target genes. By binding to the mRNA, the antisense oligonucleotides prevent the sequence of the target gene being converted into a protein, thereby blocking the action of the gene. Several genes known to be important in the regulation of apoptosis, cell growth, metastasis, and angiogenesis, have been validated as molecular targets for antisense therapy. Furthermore, new targets are rapidly being uncovered through coordinated functional genomics and proteomics initiatives. Phosphorothioate oligonucleotides are the current gold standard for antisense therapy; they have acceptable physical and chemical properties and show reasonable resistance to nucleases. Recently, new generations of these phosphorothioate oligonucleotides that contain 2'-modified nucleoside building blocks to enhance RNA binding affinity and decrease indirect toxic effects have been developed. Antisense therapeutics are, after decades of difficulties, finally close to fulfilling their promise in the clinic.

  1. Oligonucleotide therapeutics: chemistry, delivery and clinical progress.

    PubMed

    Sharma, Vivek K; Watts, Jonathan K

    2015-01-01

    Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.

  2. Antisense therapeutics in oncology: current status

    PubMed Central

    Farooqi, Ammad Ahmad; Rehman, Zia ur; Muntane, Jordi

    2014-01-01

    There is increasing progress in translational oncology and tremendous breakthroughs have been made as evidenced by preclinical and clinical trials. Data obtained from high-throughput technologies are deepening our understanding about the molecular and gene network in cancer cells and rapidly emerging in vitro and in vivo evidence is highlighting the role of antisense agents as specific inhibitors of the expression of target genes, thus modulating the response of cancer cells to different therapeutic strategies. Much information is continuously being added into various facets of molecular oncology and it is now understood that overexpression of antiapoptotic proteins, oncogenes, oncogenic microRNAs (miRNA), and fusion proteins make cancer cells difficult to target. Delivery of antisense oligonucleotides has remained a challenge and technological developments have helped in overcoming hurdles by improving the ability to penetrate cells, effective and targeted binding to gene sequences, and downregulation of target gene function. Different delivery systems, including stable nucleic acid lipid particles, have shown potential in enhancing the delivery of cargo to the target site. In this review, we attempt to summarize the current progress in the development of antisense therapeutics and their potential in medical research. We partition this multicomponent review into introductory aspects about recent breakthroughs in antisense therapeutics. We also discuss how antisense therapeutics have shown potential in resensitizing resistant cancer cells to apoptosis by targeted inhibition of antiapoptotic proteins, oncogenic miRNAs, and BCR-ABL. PMID:25395862

  3. Antisense-mediated exon skipping: taking advantage of a trick from Mother Nature to treat rare genetic diseases.

    PubMed

    Veltrop, Marcel; Aartsma-Rus, Annemieke

    2014-07-01

    Rare diseases can be caused by genetic mutations that disrupt normal pre-mRNA splicing. Antisense oligonucleotide treatment to the splicing thus has therapeutic potential for many rare diseases. In this review we will focus on the state of the art on exon skipping using antisense oligonucleotides as a potential therapy for rare genetic diseases, outlining how this versatile approach can be exploited to correct for different mutations.

  4. Template-Directed Ligation of Peptides to Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  5. Design and applications of modified oligonucleotides.

    PubMed

    Gallo, M; Montserrat, J M; Iribarren, A M

    2003-02-01

    Oligonucleotides have a wide range of applications in fields such as biotechnology, molecular biology, diagnosis and therapy. However, the spectrum of uses can be broadened by introducing chemical modifications into their structures. The most prolific field in the search for new oligonucleotide analogs is the antisense strategy, where chemical modifications confer appropriate characteristics such as hybridization, resistance to nucleases, cellular uptake, selectivity and, basically, good pharmacokinetic and pharmacodynamic properties. Combinatorial technology is another research area where oligonucleotides and their analogs are extensively employed. Aptamers, new catalytic ribozymes and deoxyribozymes are RNA or DNA molecules individualized from a randomly synthesized library on the basis of a particular property. They are identified by repeated cycles of selection and amplification, using PCR technologies. Modified nucleotides can be introduced either during the amplification procedure or after selection.

  6. Upping the Antisense Ante.

    ERIC Educational Resources Information Center

    Weiss, Rick

    1991-01-01

    Discussed is a designer-drug technology called antisense which blocks messenger RNA's ability to carry information to protein producing sites in the cell. The applications of this drug to AIDS research, cancer therapy, and other diseases are discussed. (KR)

  7. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  8. Antisense treatment directed against mutated Ki-ras in human colorectal adenocarcinoma

    PubMed Central

    Andreyev, H; Ross, P; Cunningham, D; Clarke, P

    2001-01-01

    BACKGROUND—Kirsten ras (Ki-ras) mutations are common in gastrointestinal cancer and one codon 12 mutation, glycine to valine, is particularly aggressive in colorectal cancer.
AIMS—To investigate if this valine point mutation could be targeted with antisense oligonucleotides and to determine the efficacy of any antisense/mRNA interaction.
METHODS—Twenty nine antisense oligonucleotides were screened against target and control Ki-ras RNA in a cell free system and against target and control cell lines in culture.
RESULTS—The activity and specificity of the oligonucleotides varied. Results for the individual oligonucleotides were consistent in a cell free model and in cell culture using two different uptake promoters. Only one oligonucleotide was specific in its cleavage of target Ki-ras mRNA in the cell free system and appeared specific in cell culture, although changes in Ki-ras mRNA and protein expression following a single treatment could not be detected. Experiments in the cell free system showed that the point mutation is relatively inaccessible to oligonucleotides. Other sites on the Ki-ras RNA molecule, away from the point mutation, can be targeted more effectively.
CONCLUSIONS—Successful targeting of the clinically relevant Ki-ras point mutation with antisense oligonucleotides is difficult because of RNA structure at the mutated site and is inefficient compared with other sites on the Ki-ras mRNA.


Keywords: Ki-ras mutation; antisense treatment; colorectal carcinoma PMID:11156646

  9. Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.

    1988-08-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.

  10. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.

    PubMed Central

    't Hoen, Peter A C; Out, Ruud; Commandeur, Jan N M; Vermeulen, Nico P E; van Batenburg, F H D; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Erik A L; Bijsterbosch, Martin K

    2002-01-01

    The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been suggested that the effectiveness of antisense ODNs is dependent on the secondary mRNA structures of their target sites, we made mRNA secondary structure predictions with two software packages, Mfold and STAR. The two programs produced only marginally similar structures, which can probably be attributed to differences in the algorithms used. The effectiveness of a set of 18 antisense ODNs was evaluated with a cell-free transcription/translation assay, and their activity was correlated with the predicted secondary RNA structures. Four phosphodiester ODNs specific for GSTM1, two ODNs specific for GSTM2, and four ODNs targeted at both GSTM isoforms were found to be potent, sequence-specific, and RNase H-dependent inhibitors of protein expression. The IC50 value of the most potent ODN was approximately 100 nM. Antisense ODNs targeted against regions that were predicted by STAR to be predominantly single stranded were more potent than antisense ODNs against double-stranded regions. Such a correlation was not found for the Mfold prediction. Our data suggest that simulation of the local folding of RNA facilitates the discovery of potent antisense sequences. In conclusion, we selected several promising antisense sequences, which, when synthesized as biologically stable oligonucleotides, can be applied for study of the physiological impact of reduced GSTM expression. PMID:12515389

  11. Vocabulary Learning through Assisted and Unassisted Repeated Reading

    ERIC Educational Resources Information Center

    Webb, Stuart; Chang, Anna C-S.

    2012-01-01

    Previous research investigating the effects of unassisted and assisted repeated reading has primarily focused on how each approach may contribute to improvement in reading comprehension and fluency. Incidental learning of the form and meaning of unknown or partially known words encountered through assisted and unassisted repeated reading has yet…

  12. Caged oligonucleotides for studying biological systems

    PubMed Central

    Ruble, Brittani K.; Yeldell, Sean B.; Dmochowski, Ivan J.

    2015-01-01

    Light-activated (“caged”) compounds have been widely employed for studying biological processes with high spatial and temporal control. In the past decade, several new approaches for caging the structure and function of DNA and RNA oligonucleotides have been developed. This review focuses on caged oligonucleotides that incorporate site-specifically one or two photocleavable linkers, whose photolysis yields oligonucleotides with dramatic structural and functional changes. This technique has been employed by our laboratory and others to photoregulate gene expression in cells and living organisms, typically using near UV-activated organic chromophores. To improve capabilities for in vivo studies, we harnessed the rich inorganic photochemistry of ruthenium bipyridyl complexes to synthesize Ru-caged morpholino antisense oligonucleotides that remain inactive in zebrafish embryos until uncaged with visible light. Expanding into new caged oligonucleotide applications, our lab has developed Transcriptome In Vivo Analysis (TIVA) technology, which provides the first noninvasive, unbiased method for isolating mRNA from single neurons in brain tissues. TIVA-isolated mRNA can be amplified and then analyzed using next-generation sequencing (RNA-seq). PMID:25865001

  13. Making sense of antisense

    SciTech Connect

    Moffat, A.S.

    1991-08-02

    Out in the San Joaquin Valley of California grows a field of tomato plants that look like ordinary tomato plants. But these tomatoes are special - one of the first fruits of a new technology that may revolutionize not just commercial plant development but human medicine as well. The new technology uses novel RNAs, called antisense RNAs, to block the activity of specific genes. At first, researchers were mainly interested in antisense RNA as a tool for probing gene function. In the late 1970s, when the technology was first developed, molecular biologists didn't have a good way of mutating genes in the cells of higher organisms so that they could see what happens when the gene activity is lost. Antisense technology, in effect, provided a way of doing that. But the biotechnology industry soon recognized the immense practical potential of a technique that could be used to knock out the activity of bad genes. To make the tomato plants, for example, plant scientists used antisense RNAs to shut off the expression of the gene encoding an enzyme that makes tomatoes mushy, thereby yielding a product that may travel better and last longer on grocery shelves. Recent work by various labs suggests that it may be possible to design antisense compounds that inhibit the activity of viral genes or of the oncogenes thought to contribute to cancer development, without affecting normal cellular genes. That raises the possibility that the technology might aid in producing better, more selective drugs to treat viral diseases, including AIDS, and cancer.

  14. Unassisted refolding of urea unfolded rhodanese.

    PubMed

    Mendoza, J A; Rogers, E; Lorimer, G H; Horowitz, P M

    1991-07-25

    In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.

  15. Unassisted childbirth: why mothers are leaving the system.

    PubMed

    Dannaway, Jasan; Dietz, Hans Peter

    2014-12-01

    Unassisted childbirth is a topical subject that has sparked ethical and legal debate. Although there are little data surrounding unassisted birthing practice, concerns over consent, procedural intervention and loss of the birthing experience may be driving women away from formal healthcare. The healthcare system needs to work toward understanding this practice and, perhaps with the support of legislation, address the concerns of mothers in order to ensure optimal childbirth outcomes.

  16. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex.

    PubMed

    Sheehan, J P; Lan, H C

    1998-09-01

    Systemic administration of ISIS 2302, a 20-mer antisense phosphorothioate oligonucleotide targeting human intercellular adhesion molecule-1 mRNA, causes prolongation of plasma clotting times in both monkey and human studies. The anticoagulant effects of ISIS 2302 were investigated with both in vitro coagulation assays in human plasma and purified enzyme systems. At high oligonucleotide plasma concentrations (>100 microgram/mL), prolongation of the prothrombin and thrombin times was observed. In a thrombin time assay using purified components, high concentrations of ISIS 2302 inhibited thrombin clotting activity both by stimulating inhibition by heparin cofactor II and directly competing with fibrinogen for binding to anion binding exosite I. In contrast, low concentrations of ISIS 2302 (<100 microgram/mL) showed a selective, linear prolongation of the activated partial thromboplastin time (PTT). The rate limiting effect of 50 microgram/mL ISIS 2302, which prolonged the PTT to 1.5 times control, was identified by sequential modification of the clotting assay. Delaying addition of oligonucleotide until after contact activation failed to correct prolongation of the PTT. The calcium-dependent steps of the intrinsic pathway were individually assessed by adding sufficient activated coagulation factor to correct the PTT in plasma deficient in that specific factor. Addition of factor XIa, IXa, VIIIa, or Va failed to correct the PTT in the presence of ISIS 2302. In contrast, 0.2 nmol/L factor Xa corrected prolongation of the PTT in factor X-deficient plasma with or without oligonucleotide present. ISIS 2302 (50 microgram/mL) did not prolong a modified Russel viper venom time, suggesting no significant inhibition of prothrombinase. Thus, 50 microgram/mL ISIS 2302 prolonged the PTT by selectively inhibiting intrinsic tenase activity. ISIS 2302 showed partial inhibition of intrinsic tenase activity (to approximately 35% of control) at clinically relevant oligonucleotide

  17. Stereospecificity of Oligonucleotide Interactions Revisited: No Evidence for Heterochiral Hybridization and Ribozyme/DNAzyme Activity

    PubMed Central

    Hoehlig, Kai; Bethge, Lucas; Klussmann, Sven

    2015-01-01

    A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications. PMID:25679211

  18. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  19. Retrieval Results of Unassisted Searches of Two General Periodical Indexes.

    ERIC Educational Resources Information Center

    Blackburn, Jennifer O.

    A survey of public library users was conducted regarding retrieval results of unassisted user searches in general periodical indexes. The data were analyzed to evaluate the impact or lack of impact of searching a CD-ROM index with loosely-controlled vocabulary and expanded-search capabilities (i.e., InfoTrac-General Periodicals Index) versus a…

  20. Antisense Reduction of Tau in Adult Mice Protects against Seizures

    PubMed Central

    DeVos, Sarah L.; Goncharoff, Dustin K.; Chen, Guo; Kebodeaux, Carey S.; Yamada, Kaoru; Stewart, Floy R.; Schuler, Dorothy R.; Maloney, Susan E.; Wozniak, David F.; Rigo, Frank; Bennett, C. Frank; Cirrito, John R.; Holtzman, David M.

    2013-01-01

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS—brain and spinal cord tissue, interstitial fluid, and CSF—while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability. PMID:23904623

  1. 2-O-[2-(Methylthio)ethyl]-Modified Oligonucleotide: An Analog of 2-O-[2-(Methoxy)ethyl]-Modified Oligonucleotide with Improved Protein Binding Properties and High Binding Affinity to Target RNA

    SciTech Connect

    Prakash, T.P.; Manoharan, M.; Fraser, A.S.; Kawasaki, A.M.; Lesnik, E.; Sioufi, N.; Leeds, J.M.; Teplova, M.; Egli, M.

    2010-03-08

    A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides. The 2'-O-MTE oligonucleotides maintained high binding affinity to target RNA. Nuclease digestion of 2'-O-MTE oligonucleotides showed that they have limited resistance to exonuclease degradation. We analyzed the crystal structure of a decamer DNA duplex containing the 2'-O-MTE modifcation. Analysis of the crystal structure provides insight into the improved RNA binding affinity, protein binding affinity and limited resistance of 2'-O-MTE modified oligonucleotides to exonuclease degradation.

  2. Thermodynamic and kinetic characterization of antisense oligodeoxynucleotide binding to a structured mRNA.

    PubMed Central

    Walton, S Patrick; Stephanopoulos, Gregory N; Yarmush, Martin L; Roth, Charles M

    2002-01-01

    Antisense oligonucleotides act as exogenous inhibitors of gene expression by binding to a complementary sequence on the target mRNA, preventing translation into protein. Antisense technology is being applied successfully as a research tool and as a molecular therapeutic. However, a quantitative understanding of binding energetics between short oligonucleotides and longer mRNA targets is lacking, and selecting a high-affinity antisense oligonucleotide sequence from the many possibilities complementary to a particular RNA is a critical step in designing an effective antisense inhibitor. Here, we report measurements of the thermodynamics and kinetics of hybridization for a number of oligodeoxynucleotides (ODNs) complementary to the rabbit beta-globin (RBG) mRNA using a binding assay that facilitates rapid separation of bound from free species in solution. A wide range of equilibrium dissociation constants were observed, and association rate constants within the measurable range correlated strongly with binding affinity. In addition, a significant correlation was observed of measured binding affinities with binding affinity values predicted using a thermodynamic model involving DNA and RNA unfolding, ODN hybridization, and RNA restructuring to a final free energy minimum. In contrast to the behavior observed for hybridization of short strands, the association rate constant increased with temperature, suggesting that the kinetics of association are related to disrupting the native structure of the target RNA. The rate of cleavage of the RBG mRNA in the presence of ribonuclease H and ODNs of varying association kinetics displayed apparent first-order kinetics, with the rate constant exhibiting binding-limited behavior at low association rates and reaction-limited behavior at higher rates. Implications for the rational design of effective antisense reagents are discussed. PMID:11751323

  3. Structure and stability of the complex formed by oligonucleotides.

    PubMed

    Zheng, Cui; Niu, Lin; Yan, Jingjing; Liu, Jie; Luo, Ying; Liang, Dehai

    2012-05-28

    Polycations and cationic lipids have been widely used as non-viral vectors for the delivery of plasmid DNA, siRNA and anti-sense oligonucleotides. To demonstrate that one polycation can form a complex with several types of DNA, we conducted a comparative study on the complexation of poly(L-lysine) (PLL) with 2000 bp salmon testes DNA (dsDNA), 21 bp double-stranded oligonucleotides (ds-oligo), and 21 nt single-stranded oligonucleotides (ss-oligo) in PBS buffer. The complexes are prepared by a titration method and the process is monitored by laser light scattering. It was found that in most cases, ss-oligo and ds-oligo form complexes with higher molecular weights than the complex formed by dsDNA at the same +/- ratio immediately after mixing. More importantly, the complexes formed by oligonucleotides are not stable, the scattered intensity gradually decreases to the level of the solvent in weeks. Atomic force microscopy measurements also indicate that the freshly prepared complex is subject to environmental changes and could dissociate very quickly. The behaviour of oligonucleotides cannot be predicted by the classical polyelectrolyte theories.

  4. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    PubMed

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-01

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. PMID:27236069

  5. Analysis of unassisted translesion replication by the DNA polymerase III holoenzyme.

    PubMed

    Tomer, G; Livneh, Z

    1999-05-01

    DNA damage-induced mutations are formed when damaged nucleotides present in single-stranded DNA are replicated. We have developed a new method for the preparation of gapped plasmids containing site-specific damaged nucleotides, as model DNA substrates for translesion replication. Using these substrates, we show that the DNA polymerase III holoenzyme from Escherichia coli can bypass a synthetic abasic site analogue with high efficiency (30% bypass in 16 min), unassisted by other proteins. The theta and tau subunits of the polymerase were not essential for bypass. No bypass was observed when the enzyme was assayed on a synthetic 60-mer oligonucleotide carrying the same lesion, and bypass on a linear gapped plasmid was 3-4-fold slower than on a circular gapped plasmid. There was no difference in the bypass when standing-start and running-start replication were compared. A comparison of translesion replication by DNA polymerase I, DNA polymerase II, the DNA polymerase III core, and the DNA polymerase III holoenzyme clearly showed that the DNA polymerase III holoenzyme was by far the most effective in performing translesion replication. This was not only due to the high processivity of the pol III holoenzyme, because increasing the processivity of pol II by adding the gamma complex and beta subunit, did not increase bypass. These results support the model that SOS regulation was imposed on a fundamentally constitutive translesion replication reaction to achieve tight control of mutagenesis.

  6. Viral escape from antisense RNA.

    PubMed

    Bull, J J; Jacobson, A; Badgett, M R; Molineux, I J

    1998-05-01

    RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31-270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3-4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson-Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition. PMID:9643550

  7. Unassisted translocation of large polypeptide domains across phospholipid bilayers.

    PubMed

    Brambillasca, Silvia; Yabal, Monica; Makarow, Marja; Borgese, Nica

    2006-12-01

    Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533-2542). In the present study, we investigated the limits of this unassisted translocation and report that surprisingly long (85 residues) domains of different sequence and charge placed downstream of b5's TMD can posttranslationally translocate into mammalian microsomes and liposomes at nanomolar nucleotide concentrations. Furthermore, integration of these constructs occurred in vivo in translocon-defective yeast strains. Unassisted translocation was not unique to b5 but was also observed for another TA protein (protein tyrosine phosphatase 1B) whose TMD, like the one of b5, is only moderately hydrophobic. In contrast, more hydrophobic TMDs, like synaptobrevin's, were incapable of supporting unassisted integration, possibly because of their tendency to aggregate in aqueous solution. Our data resolve long-standing discrepancies on TA protein insertion and are relevant to membrane evolution, biogenesis, and physiology.

  8. Targeting Cancer with Antisense Oligomers

    SciTech Connect

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  9. Pentopyranosyl Oligonucleotide Systems

    NASA Technical Reports Server (NTRS)

    Reck, Folkert; Kudick, Rene; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert; Wippo, Harald

    2001-01-01

    To determine whether the remarkable chemical properties of the pyranosyl isomer of RNA as an informational Watson-Crick base-pairing system are unique to the pentopyranosyl-(4 + 2)-oligonucleotide isomer derived from the RNA-building block D-ribose, studies on the entire family of diastereoisomeric pyranosyL(4 - Z)-oligonucleotide systems deriving from D-ribose. L-lyxose. D-xylose, and L-arabinose were carried out. The result of these extended studies is unambiguous: not only pyranosyl-RNA, but all members of the pentopyranosyl(4 + 2)-oligonucleotide family are highly efficient Watson-Crick base-pairing systems. Their synthesis and pairing properties will be described in a series of publications in this journal.

  10. Unassisted childbirth or homicide--different appraisals of severe injuries in a newborn.

    PubMed

    Gehb, Iris; Rittner, Christian; Püschel, Klaus

    2009-04-01

    A case of a 24-year-old woman who gave birth to a mature newborn is reported. Many injuries at the head, neck and shoulders, back, mouth and throat which at least partly indicated unassisted childbirth were observed during autopsy. Some injuries, especially the different scull fractures were discussed controversially on trial. One expert postulated a coaction of unassisted childbirth and blunt head trauma to be responsible for the exitus. The other expert considered it possible that all injuries could originate from unassisted childbirth. The court consented to the opinion that all injuries could be the consequence of unassisted childbirth and the woman was exculpated from the accusation of manslaughter.

  11. Unassisted HI photoelectrolysis using n-WSe2 solar absorbers.

    PubMed

    McKone, James R; Potash, Rebecca A; DiSalvo, Francis J; Abruña, Héctor D

    2015-06-01

    Molybdenum and tungsten diselenide are among the most robust and efficient semiconductor materials for photoelectrochemistry, but they have seen limited use for integrated solar energy storage systems. Herein, we report that n-type WSe2 photoelectrodes can facilitate unassisted aqueous HI electrolysis to H2(g) and HI3(aq) when placed in contact with a platinum counter electrode and illuminated by simulated sunlight. Even in strongly acidic electrolyte, the photoelectrodes are robust and operate very near their maximum power point. We have rationalized this behavior by characterizing the n-WSe2|HI/HI3 half cell, the Pt|HI/H2||HI3/HI|Pt full cell, and the n-WSe2 band-edge positions. Importantly, specific interactions between the n-WSe2 surface and aqueous iodide significantly shift the semiconductor's flatband potential and allow for unassisted HI electrolysis. These findings exemplify the important role of interfacial chemical reactivity in influencing the energetics of semiconductor-liquid junctions and the resulting device performance.

  12. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases.

    PubMed

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-02-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity. PMID:25517220

  13. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides.

    PubMed

    Wu, Li; He, Yujian; Tang, Xinjing

    2015-06-17

    Introduction of 4,4'-bis(hydroxymethyl)-azobenzene (azo) to dumbbell hairpin oligonucleotides at the loop position was able to reversibly control the stability of the whole hairpin structure via UV or visible light irradiation. Here, we designed and synthesized a series of azobenzene linked dumbbell antisense oligodeoxynucleotides (asODNs) containing two terminal hairpins that are composed of an asODN and a short inhibitory sense strand. Thermal melting studies of these azobenzene linked dumbbell asODNs indicated that efficient trans to cis photoisomerization of azobenzene moieties induced large difference in thermal stability (ΔTm = 12.1-21.3 °C). In addition, photomodulation of their RNA binding abilities and RNA digestion by RNase H was investigated. The trans-azobenzene linked asODNs with the optimized base pairs between asODN strands and inhibitory sense strands could only bind few percentage of the target RNA, while it was able to recover their binding to the target RNA and degrade it by RNase H after light irradiation. Upon optimization, it is promising to use these azobenzene linked asODNs for reversible spatial and temporal regulation of antisense activities based on both steric binding and RNA digestion by RNase H.

  14. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.

    PubMed

    Roh, Young Hoon; Lee, Jong Bum; Shopsowitz, Kevin E; Dreaden, Erik C; Morton, Stephen W; Poon, Zhiyong; Hong, Jinkee; Yamin, Inbar; Bonner, Daniel K; Hammond, Paula T

    2014-10-28

    Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation.

  15. Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide)

    PubMed Central

    Skalickova, Sylvie; Nejdl, Lukas; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Jimenez Jimenez, Ana Maria; Kopel, Pavel; Kremplova, Monika; Masarik, Michal; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL−1, respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene. PMID:26927112

  16. Enabling unassisted solar water splitting by iron oxide and silicon

    NASA Astrophysics Data System (ADS)

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; Lin, Yongjing; Yao, Xiahui; Thorne, James; Liu, Erik; McMahon, Gregory; Zhu, Junfa; Javey, Ali; Guo, Jinghua; Wang, Dunwei

    2015-06-01

    Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. Here we show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversible hydrogen electrode) is achieved. This result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.

  17. Enabling unassisted solar water splitting by iron oxide and silicon.

    PubMed

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; Lin, Yongjing; Yao, Xiahui; Thorne, James; Liu, Erik; McMahon, Gregory; Zhu, Junfa; Javey, Ali; Guo, Jinghua; Wang, Dunwei

    2015-06-16

    Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. Here we show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversible hydrogen electrode) is achieved. This result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.

  18. Enabling unassisted solar water splitting by iron oxide and silicon

    SciTech Connect

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; Lin, Yongjing; Yao, Xiahui; Thorne, James; Liu, Erik; McMahon, Gregory; Zhu, Junfa; Javey, Ali; Guo, Jinghua; Wang, Dunwei

    2015-06-16

    A solution for large-scale solar energy storage is photoelectrochemical (PEC) water splitting. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. We show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversible hydrogen electrode) is achieved. In conclusion, this result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.

  19. Enabling unassisted solar water splitting by iron oxide and silicon

    DOE PAGES

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; Lin, Yongjing; Yao, Xiahui; Thorne, James; Liu, Erik; McMahon, Gregory; Zhu, Junfa; Javey, Ali; et al

    2015-06-16

    A solution for large-scale solar energy storage is photoelectrochemical (PEC) water splitting. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. We show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversiblemore » hydrogen electrode) is achieved. In conclusion, this result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.« less

  20. Enabling unassisted solar water splitting by iron oxide and silicon

    PubMed Central

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; Lin, Yongjing; Yao, Xiahui; Thorne, James; Liu, Erik; McMahon, Gregory; Zhu, Junfa; Javey, Ali; Guo, Jinghua; Wang, Dunwei

    2015-01-01

    Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. Here we show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversible hydrogen electrode) is achieved. This result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively. PMID:26078190

  1. RNA therapeutics: RNAi and antisense mechanisms and clinical applications

    PubMed Central

    Chery, Jessica

    2016-01-01

    RNA therapeutics refers to the use of oligonucleotides to target primarily ribonucleic acids (RNA) for therapeutic efforts or in research studies to elucidate functions of genes. Oligonucleotides are distinct from other pharmacological modalities, such as small molecules and antibodies that target mainly proteins, due to their mechanisms of action and chemical properties. Nucleic acids come in two forms: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). Although DNA is more stable, RNA offers more structural variety ranging from messenger RNA (mRNA) that codes for protein to non-coding RNAs, microRNA (miRNA), transfer RNA (tRNA), short interfering RNAs (siRNAs), ribosomal RNA (rRNA), and long-noncoding RNAs (lncRNAs). As our understanding of the wide variety of RNAs deepens, researchers have sought to target RNA since >80% of the genome is estimated to be transcribed. These transcripts include non-coding RNAs such as miRNAs and siRNAs that function in gene regulation by playing key roles in the transfer of genetic information from DNA to protein, the final product of the central dogma in biology1. Currently there are two main approaches used to target RNA: double stranded RNA-mediated interference (RNAi) and antisense oligonucleotides (ASO). Both approaches are currently in clinical trials for targeting of RNAs involved in various diseases, such as cancer and neurodegeneration. In fact, ASOs targeting spinal muscular atrophy and amyotrophic lateral sclerosis have shown positive results in clinical trials2. Advantages of ASOs include higher affinity due to the development of chemical modifications that increase affinity, selectivity while decreasing toxicity due to off-target effects. This review will highlight the major therapeutic approaches of RNA medicine currently being applied with a focus on RNAi and ASOs. PMID:27570789

  2. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B

    PubMed Central

    Crooke, Stanley T; Geary, Richard S

    2013-01-01

    Mipomersen is a second generation antisense oligonucleotide that targets apolipoprotein B. It has been studied thoroughly in clinical trials (more than 800 subjects), including four randomized double-blind placebo controlled phase 3 studies involving 391 patients, and is in registration for the treatment of severe hypercholesterolaemia. The pharmacokinetic and pharmacodynamic properties of mipomersen are well characterized. Mipomersen is rapidly and extensively absorbed after subcutaneous administration and has an elimination half-life of approximately 30 days across species. It is cleared by nuclease metabolism and renal excretion of the metabolites. Mipomersen reduces all apolipoprotein B containing atherogenic particles and displays dose dependent reductions between 50–400 mg week−1, both as a single agent and in the presence of maximal lipid lowering therapy. No drug–drug interactions have been identified. Mipomersen is a representative of second generation antisense drugs, all of which have similar properties, and is thus representative of the behaviour of the class of drugs. PMID:23013161

  3. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.

    PubMed

    Singh, Natalia N; Lee, Brian M; DiDonato, Christine J; Singh, Ravindra N

    2015-01-01

    Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.

  4. Mechanistic principles of antisense targets for the treatment of Spinal Muscular Atrophy

    PubMed Central

    Singh, Natalia N.; Lee, Brian M.; DiDonato, Christine J.; Singh, Ravindra N.

    2015-01-01

    Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the survival motor neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under phase 3 clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on the ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here we summarize the mechanistic principles behind various antisense targets currently available for SMA therapy. PMID:26381381

  5. Kv1.1 channel antisense attenuates learning and modulation of dentate polysialylated NCAM.

    PubMed

    Gratacós, E; Ghelardini, C; Gherardini, L M; Galeotti, N; Murphy, K J; Bartolini, A; Regan, C M

    1998-08-24

    The distribution and modulation of neural cell adhesion molecule polysialylation state (NCAM PSA) and the consequence of antisense inactivation of the Kv1.1 potassium channel was investigated following avoidance learning in mice. PSA immunoreactivity was most notable on cells at the inner denate border and in cortical layer II. Task acquisition resulted in a significant 30% transient increase in the frequency of dentate polysialylated neurons at the 12 h post-training time. In contrast, animals pretreated with the Kv1.1 antisense oligonucleotide exhibited both attenuated recall avoidance latencies and polysialylated cell frequency. As Kv1.1 is enriched on the dendrites of these granule-like cells, the attenuated polysialylation response is considered secondary to NCAM-mediated events during their transient synapse production in the 6-8 h post-training period.

  6. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system.

    PubMed Central

    Maher, L J; Dolnick, B J

    1988-01-01

    Antisense oligonucleotides containing either anionic diester or neutral methylphosphonate internucleoside linkages were prepared by automated synthesis, and were compared for their ability to arrest translation of human dihydrofolate reductase (DHFR) mRNA in a nuclease treated rabbit reticulocyte lysate. In the case of oligodeoxyribonucleotides, tandem targeting of three 14-mers resulted in synergistic and complete selective inhibition of DHFR synthesis at a total oligomer concentration of 25 microM. Hybrid arrest by three or six tandem oligodeoxyribonucleoside methylphosphonates was dramatically less effective. This difference does not result from preferential recognition of hybrids involving oligodeoxyribonucleotides by endogenous RNaseH activity. A ribonuclease protection assay demonstrated that antisense oligodeoxyribonucleoside methylphosphonates bind selectively to target RNA sequences, but with 275 fold lower affinity than the corresponding oligodeoxyribonucleotides. This low binding affinity results in poor arrest of translation, and may be related to the stereochemistry of the methylphosphonate linkage. Images PMID:2836793

  7. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing

    PubMed Central

    Nishina, Kazutaka; Piao, Wenying; Yoshida-Tanaka, Kie; Sujino, Yumiko; Nishina, Tomoko; Yamamoto, Tsuyoshi; Nitta, Keiko; Yoshioka, Kotaro; Kuwahara, Hiroya; Yasuhara, Hidenori; Baba, Takeshi; Ono, Fumiko; Miyata, Kanjiro; Miyake, Koichi; Seth, Punit P.; Low, Audrey; Yoshida, Masayuki; Bennett, C. Frank; Kataoka, Kazunori; Mizusawa, Hidehiro; Obika, Satoshi; Yokota, Takanori

    2015-01-01

    Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field. PMID:26258894

  8. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    PubMed

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications. PMID:27521696

  9. Oligonucleotide Therapies: The Past and the Present

    PubMed Central

    Lundin, Karin E.; Gissberg, Olof; Smith, C.I. Edvard

    2015-01-01

    In this review we address the development of oligonucleotide (ON) medicines from a historical perspective by listing the landmark discoveries in this field. The various biological processes that have been targeted and the corresponding ON interventions found in the literature are discussed together with brief updates on some of the more recent developments. Most ON therapies act through antisense mechanisms and are directed against various RNA species, as exemplified by gapmers, steric block ONs, antagomirs, small interfering RNAs (siRNAs), micro-RNA mimics, and splice switching ONs. However, ONs binding to Toll-like receptors and those forming aptamers have completely different modes of action. Similar to other novel medicines, the path to success has been lined with numerous failures, where different therapeutic ONs did not stand the test of time. Since the first ON drug was approved for clinical use in 1998, the therapeutic landscape has changed considerably, but many challenges remain until the expectations for this new form of medicine are met. However, there is room for cautious optimism. PMID:26160334

  10. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    PubMed

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.

  11. Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase.

    PubMed Central

    Allawi, H T; Dong, F; Ip, H S; Neri, B P; Lyamichev, V I

    2001-01-01

    A rapid and simple method for determining accessible sites in RNA that is independent of the length of target RNA and does not require RNA labeling is described. In this method, target RNA is allowed to hybridize with sequence-randomized libraries of DNA oligonucleotides linked to a common tag sequence at their 5'-end. Annealed oligonucleotides are extended with reverse transcriptase and the extended products are then amplified by using PCR with a primer corresponding to the tag sequence and a second primer specific to the target RNA sequence. We used the combination of both the lengths of the RT-PCR products and the location of the binding site of the RNA-specific primer to determine which regions of the RNA molecules were RNA extendible sites, that is, sites available for oligonucleotide binding and extension. We then employed this reverse transcription with the random oligonucleotide libraries (RT-ROL) method to determine the accessible sites on four mRNA targets, human activated ras (ha-ras), human intercellular adhesion molecule-1 (ICAM-1), rabbit beta-globin, and human interferon-gamma (IFN-gamma). Our results were concordant with those of other researchers who had used RNase H cleavage or hybridization with arrays of oligonucleotides to identify accessible sites on some of these targets. Further, we found good correlation between sites when we compared the location of extendible sites identified by RT-ROL with hybridization sites of effective antisense oligonucleotides on ICAM-1 mRNA in antisense inhibition studies. Finally, we discuss the relationship between RNA extendible sites and RNA accessibility. PMID:11233988

  12. Biofeedback to facilitate unassisted ventilation in individuals with high-level quadriplegia. A case report.

    PubMed

    Morrison, S A

    1988-09-01

    The purpose of this case report is to discuss the effectiveness of electromyographic biofeedback in reeducating and strengthening the accessory breathing muscles in an individual with high-level (C1) complete quadriplegia. Six unassisted breathing sessions were performed with EMG biofeedback intervention. Six unassisted breathing sessions without EMG biofeedback intervention were also performed. In both conditions, the subject's vital capacity and the amount of time of unassisted ventilation were recorded. The study results indicated that EMG biofeedback may be a helpful modality in training accessory breathing muscles to enable an individual with high-level quadriplegia to become independent of mechanical ventilation for varying amounts of time.

  13. Multielectrode photoelectrochemical cell for unassisted photocatalysis and photosynthesis

    SciTech Connect

    Smotkin, E.; Bard, A.J.; Fox, M.A.

    1988-12-27

    A multielectrode photoelectrochemical unit for unassisted photoelectrical-induction of a chemical reaction is described comprising: a housing having at least one light-passing side, a first end, a second end and a housing wall defining an internal section; a first photoactive bipolar electrode panel in the internal section having a semiconductor side, an ohmic contact layer and a underside; a second photoactive bipolar electrode panel in the internal section, the second photoactive bipolar electrode panel having a semiconductor side, an ohmic contact layer and a catalytic side and being attached to the housing wall near the second end of the internal section with the catalytic side oriented toward the second end and partially forming a second terminal compartment, an internal compartment in the internal section being partially formed by the underside of the first photoactive bipolar electrode panel and the semiconductor side of the second photoactive bipolar electrode panel, the first and second photoactive bipolar electrode panels being attached to the housing walls to prevent liquid flow between the internal compartment and the terminal compartments and being positioned so that light from an external source entering the internal section is substantially incident upon the semi-conductor sides.

  14. The Antisense Transcriptome and the Human Brain.

    PubMed

    Mills, James D; Chen, Bei Jun; Ueberham, Uwe; Arendt, Thomas; Janitz, Michael

    2016-01-01

    The transcriptome of a cell is made up of a varied array of RNA species, including protein-coding RNAs, long non-coding RNAs, short non-coding RNAs, and circular RNAs. The cellular transcriptome is dynamic and can change depending on environmental factors, disease state and cellular context. The human brain has perhaps the most diverse transcriptome profile that is enriched for many species of RNA, including antisense transcripts. Antisense transcripts are produced when both the plus and minus strand of the DNA helix are transcribed at a particular locus. This results in an RNA transcript that has a partial or complete overlap with an intronic or exonic region of the sense transcript. While antisense transcription is known to occur at some level in most organisms, this review focuses specifically on antisense transcription in the brain and how regulation of genes by antisense transcripts can contribute to functional aspects of the healthy and diseased brain. First, we discuss different techniques that can be used in the identification and quantification of antisense transcripts. This is followed by examples of antisense transcription and modes of regulatory function that have been identified in the brain.

  15. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol.

    PubMed Central

    Wang, S; Lee, R J; Cauchon, G; Gorenstein, D G; Low, P S

    1995-01-01

    Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route

  16. Antisense Mediated Splicing Modulation For Inherited Metabolic Diseases: Challenges for Delivery

    PubMed Central

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel

    2014-01-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns—multisystemic, hepatic, or in central nervous system (CNS)—and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  17. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy.

    PubMed

    Hammond, Suzan M; Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F; Bowerman, Melissa; Sleigh, James N; Meijboom, Katharina E; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J; Wood, Matthew J A

    2016-09-27

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  18. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

    PubMed Central

    Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.

    2016-01-01

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  19. Pressure-Mediated Oligonucleotide Transfection of Rat and Human Cardiovascular Tissues

    NASA Astrophysics Data System (ADS)

    Mann, Michael J.; Gibbons, Gary H.; Hutchinson, Howard; Poston, Robert S.; Hoyt, E. Grant; Robbins, Robert C.; Dzau, Victor J.

    1999-05-01

    The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibited target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipulation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

  20. Chemistry and biochemistry of 2',5'-oligoadenylate-based antisense strategy.

    PubMed

    Adah, S A; Bayly, S F; Cramer, H; Silverman, R H; Torrence, P F

    2001-08-01

    This review describes the application of a natural defense mechanism to develop effective agents for the post-transcriptional control of gene expression. 2-5A is a unique 2',5'-phosphodiester bond linked oligoadenylate, (pp)p5'A2'(p5'A)(n), that is elaborated in virus-infected interferon-treated cells. The 2-5A system is an RNA degradation pathway that is an important mechanistic component of interferon's action against certain viruses. It may also play a role in the anticellular effects of interferon and in general RNA decay. A major player in the 2-5A-system is the latent and constitutive 2-5A-dependent ribonuclease (RNase L) which upon activation by 2-5A, degrades RNA. This RNase L enzyme can be recruited for antisense therapeutics by linking it to an appropriate oligonucleotide targeted to a chosen RNA. Syntheses of 2-5A, its analogues, 2-5A-antisense, and its modifications are detailed herein. Applications of 2-5A-antisense to particular targets such as HIV, PKR, chronic myelogenous leukemia, telomerase, and respiratory syncytical virus are described. PMID:11472236

  1. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex

    PubMed Central

    Kralovicova, Jana; Lages, Ana; Patel, Alpa; Dhir, Ashish; Buratti, Emanuele; Searle, Mark; Vorechovsky, Igor

    2014-01-01

    Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression. PMID:24944197

  2. Synthesis and in vitro inhibition properties of oligonucleotide conjugates carrying amphipathic proline-rich peptide derivatives of the sweet arrow peptide (SAP).

    PubMed

    Grijalvo, Santiago; Eritja, Ramon

    2012-05-01

    In this study, a series of derivatives of the amphipathic proline-rich sweet arrow peptide (SAP) were covalently linked to antisense oligonucleotides designed to inhibit Renilla luciferase gene. Oligonucleotide-peptide conjugates carrying lysine (Lys) and ornithine (Orn) residues were prepared using the stepwise approach by assembling first the peptide sequence followed by the assembly of the DNA molecule. The resulting Lys, Orn-conjugates were transformed to the corresponding arginine and homoarginine oligonucleotide-peptide conjugates by reaction with O-methylisourea. The introduction of the SAP at 3'-termini of a phosphorothioate oligonucleotide did not affect the ability to inhibit gene expression when transfected with lipofectamine. However, these conjugates were not able to enter cells without transfecting agent. Further studies using SAP as a transfection agent showed promising results for the conjugates carrying the Orn-SAP. All conjugates showed high duplex stabilities.

  3. Functionalization of an Antisense Small RNA

    PubMed Central

    Rodrigo, Guillermo; Prakash, Satya; Cordero, Teresa; Kushwaha, Manish; Jaramillo, Alfonso

    2016-01-01

    In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator. Using computational design, we engineered a cis-repressing 5′ untranslated region that can be activated by this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate, independent targets. The two riboregulators can also repress each other by antisense interaction, although not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology. PMID:26756967

  4. Antisense against Amyloid-β Protein Precursor Reverses Memory Deficits and Alters Gene Expression in Neurotropic and Insulin-Signaling Pathways in SAMP8 Mice.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2015-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits an age-related decrease in memory accompanied by an increase in hippocampal amyloid-β protein precursor (AβPP) and amyloid-β peptide (Aβ). We have shown that administration of an antisense oligonucleotide against the Aβ region of AβPP (AβPP antisense) reverses the memory deficits. The purpose of this study was to determine the effect of peripheral (IV) administration of AβPP antisense on hippocampal gene expression. The AβPP antisense reversed the memory deficits and altered expression of 944 hippocampal genes. Pathway analysis showed significant gene expression changes in nine pathways. These include the MAPK signaling pathway (p = 0.0078) and the phosphatidylinositol signaling pathway (p = 0.043), which we have previously shown to be altered in SAMP8 mice. The changes in these pathways contributed to significant changes in the neurotropin (p = 0.0083) and insulin signaling (p = 0.015) pathways, which are known to be important in learning and memory. Changes in these pathways were accompanied by phosphorylation changes in the downstream target proteins p70S6K, GSK3β, ERK, and CREB. These changes in hippocampal gene expression and protein phosphorylation may suggest specific new targets for antisense therapy aimed at improving memory.

  5. Potent inhibition of respiratory syncytial virus replication using a 2-5A-antisense chimera targeted to signals within the virus genomic RNA

    PubMed Central

    Player, Mark R.; Barnard, Dale L.; Torrence, Paul F.

    1998-01-01

    The 2-5A system is a recognized mechanistic component of the antiviral action of interferon. Interferon-induced 2-5A synthetase generates 2-5A, which, in turn, activates the latent constitutive RNase L that degrades viral RNA. Chemical conjugation of 2-5A to an antisense oligonucleotide can target the 2-5A-dependent RNase L to the antisense-specified RNA and effect its selective destruction. Such a 2-5A-antisense chimera (NIH351) has been developed that targets a consensus sequence within the respiratory syncytial virus (RSV) genomic RNA. NIH351 was 50- to 90-fold more potent against RSV strain A2 than was ribavirin, the presently approved drug for clinical management of RSV infection. It was similarly active against a variety of RSV strains of both A and B subgroups and possessed a cell culture selectivity index comparable to ribavirin. In addition, the anti-RSV activity of NIH351 was shown to be virus-specific and a result of a true antisense effect, because a scrambled nucleotide sequence in the antisense domain of NIH351 caused a significant decrease in antiviral activity. The 2-5A system’s RNase L was implicated in the mechanism of action of NIH351 because a congener with a disabled 2-5A moiety was of greatly reduced anti-RSV effectiveness. These findings represent an innovative approach to the control of RSV replication. PMID:9671772

  6. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy

    PubMed Central

    Hildyard, John CW; Wells, Dominic J

    2016-01-01

    Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3’UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations. PMID:27525173

  7. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy.

    PubMed

    Hildyard, John Cw; Wells, Dominic J

    2016-01-01

    Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3'UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations. PMID:27525173

  8. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  9. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  10. Internalization of oligodeoxynucleotide antisense to type-1 plasminogen activator inhibitor mRNA in endothelial cells: a three-dimensional reconstruction by confocal microscopy.

    PubMed

    Wyroba, E; Pawlowska, Z; Kobylanska, A; Pluskota, E; Maszewska, M; Stec, W J; Cierniewski, C S

    1996-01-01

    A three-dimensional reconstruction analysis of localization of phosphodiester and phosphorothioate oligonucleotide antisense to type-1 plasminogen activator inhibitor (PAI-1) mRNA within endothelial cells is described. When EA.hy 926 cells were incubated with fluorescently labelled phosphodiester (PO-16) or phosphorothioate (PS-16) oligonucleotides at low, not cytotoxical concentrations, the relative brightness composition of the images of the particular samples was much higher for PS-16 than PO-16 and dependent upon the extracellular concentration and the incubation time. The 3-D reconstructions based on the series of optical sections of the samples, spaced every 1.5 microns, showed the punctuate accumulation of the oligonucleotides and a striking difference in a spatial distribution between PO-16 and PS-16 within the cytoplasm. Even after 24 h incubation of endothelial cells with 2.5 microM of PO-16 and PS-16 oligonucleotides, there was a predominant oligonucleotide localization within the cytoplasm and only traces of oligonucleotides could be seen in the cell nucleus and/or perinuclear organelles.

  11. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  12. In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos.

    PubMed

    Caprodossi, Sara; Galluzzi, Luca; Biagetti, Simona; Della Chiara, Giulia; Pelicci, Pier Giuseppe; Magnani, Mauro; Fanelli, Mirco

    2005-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL.

  13. Antisense DNAs as multisite genomic modulators identified by DNA microarray

    PubMed Central

    Cho, Yee Sook; Kim, Meyoung-Kon; Cheadle, Chris; Neary, Catherine; Becker, Kevin G.; Cho-Chung, Yoon S.

    2001-01-01

    Antisense oligodeoxynucleotides can selectively block disease-causing genes, and cancer genes have been chosen as potential targets for antisense drugs to treat cancer. However, nonspecific side effects have clouded the true antisense mechanism of action and hampered clinical development of antisense therapeutics. Using DNA microarrays, we have conducted a systematic characterization of gene expression in cells exposed to antisense, either exogenously or endogenously. Here, we show that in a sequence-specific manner, antisense targeted to protein kinase A RIα alters expression of the clusters of coordinately expressed genes at a specific stage of cell growth, differentiation, and activation. The genes that define the proliferation-transformation signature are down-regulated, whereas those that define the differentiation-reverse transformation signature are up-regulated in antisense-treated cancer cells and tumors, but not in host livers. In this differentiation signature, the genes showing the highest induction include genes for the G proteins Rap1 and Cdc42. The expression signature induced by the exogenously supplied antisense oligodeoxynucleotide overlaps strikingly with that induced by endogenous antisense gene overexpression. Defining antisense DNAs on the basis of their effects on global gene expression can lead to identification of clinically relevant antisense therapeutics and can identify which molecular and cellular events might be important in complex biological processes, such as cell growth and differentiation. PMID:11481453

  14. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA.

    PubMed

    Toub, N; Malvy, C; Fattal, E; Couvreur, P

    2006-11-01

    One way to reach intracellular therapeutic targets in cells consists in the use of short nucleic acids which will bind specifically to on targets thanks to either Watson-Crick base pairing or protein nucleic acids recognition rules. Among these short nucleic acids an important class of therapeutic agents is antisense oligonucleotides and siRNAs. However, the major problem of nucleic acids is their poor stability in biological media. One method, among others, to solve the stability problem is the use of colloïdal carriers such as nanoparticles. Nanoparticles have already been applied with success to in vitro drug delivery to particular types of cells and in vivo in several experimental models. Many membrane and intracellular processes deal with nanosized structure (typically 100 nm) which are processed further through the recognition sites of receptors and enzymes. Thus non-viral nanoparticles are interesting candidates to present biochemical molecules such as nucleic acids and proteins to cells as well as to protect them in vivo during delivery. This review focuses on the recent developments in the design of nanotechnologies to improve the delivery of antisense oligonucleotides and siRNAs.

  15. Evidence for higher-order structure formation by the c-myb 18-mer phosphorothioate antisense (codons 2-7) oligodeoxynucleotide: potential relationship to antisense c-myb inhibition.

    PubMed

    Vilenchik, M; Benimetsky, L; Kolbanovsky, A; Miller, P; Stein, C A

    2001-04-01

    We have demonstrated the formation of higher-order structures (presumably tetraplexes) by an 18-mer phosphorothioate antisense c-myb oligodeoxyribonucleotide that has been shown to have activity in the treatment of leukemia xenograft models. Although not observable by conventionally employed techniques, such as PAGE and dimethyl sulfate (DMS) protection, the formation of such higher-order structures by this oligonucleotide was revealed by several techniques. These included capillary gel electrophoresis (CGE), which demonstrated the presence of molecules with greatly increased retention time compared with the monomer; magnetic circular dichroism spectroscopy, which demonstrated a band at 290 nm, a characteristic of antiparallel tetraplexes; and fluorescence energy transfer measurements. For the last, the 18-mer phosphorothioate oligonucleotide was synthesized with a 5'-fluorescein group. Similar to the molecular beacon model, its fluorescence was quenched when combined in solution with tetraplex-forming oligomers that contained a 3'-Dabcyl moiety. 7-Deazaguanosine inhibits the formation of tetraplexes by eliminated Hoogsteen base pair interactions. The wild-type and 7-deazaguanosine-substituted antisense c-myb oligomers differentially downregulated the expression of the c-myb proto-oncogene in K562 and HL60 cells, with the wild-type oligomer being the least active. The 18-mer c-myb molecule can, therefore, form highly complex structures, whose analysis in solution cannot be limited to examination of slab gel electrophoresis results alone.

  16. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    NASA Astrophysics Data System (ADS)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  17. Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense.

    PubMed

    Moschos, Sterghios A; Frick, Manfred; Taylor, Bruce; Turnpenny, Paul; Graves, Helen; Spink, Karen G; Brady, Kevin; Lamb, David; Collins, David; Rockel, Thomas D; Weber, Markus; Lazari, Ovadia; Perez-Tosar, Luis; Fancy, Sally A; Lapthorn, Chris; Green, Martin X; Evans, Steve; Selby, Matthew; Jones, Gareth; Jones, Lyn; Kearney, Sarah; Mechiche, Houria; Gikunju, Diana; Subramanian, Romesh; Uhlmann, Eugen; Jurk, Marion; Vollmer, Jörg; Ciaramella, Giuseppe; Yeadon, Michael

    2011-12-01

    Antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) promise specific correction of disease-causing gene expression. Therapeutic implementation, however, has been forestalled by poor delivery to the appropriate tissue, cell type, and subcellular compartment. Topical administration is considered to circumvent these issues. The availability of inhalation devices and unmet medical need in lung disease has focused efforts in this tissue. We report the development of a novel cell sorting method for quantitative, cell type-specific analysis of siRNA, and locked nucleic acid (LNA) ASO uptake and efficacy after intratracheal (i.t.) administration in mice. Through fluorescent dye labeling, we compare the utility of this approach to whole animal and whole tissue analysis, and examine the extent of tissue distribution. We detail rapid systemic access and renal clearance for both therapeutic classes and lack of efficacy at the protein level in lung macrophages, epithelia, or other cell types. We nevertheless observe efficient redirection of i.t. administered phosphorothioate (PS) LNA ASO to the liver and kidney leading to targeted gene knockdown. These data suggest delivery remains a key obstacle to topically administered, naked oligonucleotide efficacy in the lung and introduce inhalation as a potentially viable alternative to injection for antisense administration to the liver and kidneys.

  18. Identification of REST-regulated genes and pathways using a REST-targeted antisense approach.

    PubMed

    Sedaghat, Yalda; Bui, Huynh-Hoa; Mazur, Curt; Monia, Brett P

    2013-12-01

    The repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is one of the first negative-acting transcriptional regulators implicated in vertebrate development thought to regulate hundreds of neuron-specific genes. However, its function in the adult system remains elusive. Here we employ second-generation antisense oligonucleotides (ASOs) to study the impact of rest-mediated suppression on gene expression. We demonstrate specific reductions in REST levels in vitro, and in vivo in mouse liver following treatment with ASOs, and we show that ASO mediated-REST suppression results in the elevation in expression of many neuronal genes including brain-derived neurotrophic factor, Synapsin1 (syn1) and β3-tubulin in BALB/c liver. Furthermore, we show the elevation of the affected proteins in plasma following ASO treatment. Finally, microarray analysis was applied to identify a broad range of genes modulated by REST suppression in mouse liver. Our findings suggest that REST may be an important target for neurodegenerative diseases like Huntington's disease, is also involved in the regulation of a broad range of additional cellular pathways, and that the antisense approach is a viable strategy for selectively modulating REST activity in vivo. PMID:24329414

  19. Antisense approaches for elucidating ranavirus gene function in an infected fish cell line.

    PubMed

    Whitley, D S; Sample, R C; Sinning, A R; Henegar, J; Chinchar, V G

    2011-09-01

    Viral virulence/immune evasion strategies and host anti-viral responses represent different sides of the continuing struggle between virus and host survival. To identify virus-encoding molecules whose function is to subvert or blunt host immune responses, we have adapted anti-sense approaches to knock down the expression of specific viral gene products. Our intention is to correlate knock down with loss of function and thus infer the role of a given viral gene. As a starting point in this process we have targeted several structural and catalytic genes using antisense morpholino oligonucleotides (asMO) and small, interfering RNAs (siRNA). In proof of concept experiments we show the feasibility of this approach and describe recent work targeting five frog virus 3 genes. Our results indicate that both 46K and 32R, two immediate-early viral proteins, are essential for replication in vitro, and confirm earlier findings that the major capsid protein, the largest subunit of the viral homolog of RNA polymerase II, and the viral DNA methyltransferase are also essential for replication in cell culture.

  20. Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes.

    PubMed Central

    Zwicky, Roman; Müntener, Kathrin; Goldring, Mary B; Baici, Antonio

    2002-01-01

    Cathepsin B, a marker of the dedifferentiated chondrocyte phenotype, contributes to cartilage destruction in osteoarthritis and pathological proteolysis in rheumatoid arthritis and cancer. In search of possible means for neutralizing the action of this enzyme, we compared its expression, biosynthesis and distribution in articular chondrocytes and two lines of immortalized human chondrocytes. Native articular chondrocytes in primary culture and the polyclonal T/C-28a2 chondrocyte cell line were similar with respect to the number of endosomes and lysosomes, the distribution of three alternatively spliced cathepsin B mRNA forms, and the cathepsin B activity. In contrast, the clonal C-28/I2 cell line contained four times higher levels of intracellular cathepsin B activity, slightly higher numbers of endosomes and lysosomes, and uniform distribution of all three cathepsin B transcripts and thus resembled subcultured chondrocytes at an early stage of dedifferentiation. Transfection of T/C-28a2 chondrocytes with double-stranded cathepsin B mRNA resulted in inhibition of cathepsin B biosynthesis by up to 70% due to RNA interference, and single-stranded antisense DNAs of various sizes decreased cathepsin B biosynthesis by up to 78%. An antisense oligonucleotide designed to hybridize to the end of cathepsin B's exons 1 and the beginning of exon 3 was successful in specifically inhibiting the mRNA splice variant lacking exon 2. These results indicate that cathepsin B expression and activity may be targeted for gene silencing by RNA interference and antisense DNA in chondrocytes. Furthermore, the differential expression and distribution of cathepsin B and presence of the necessary molecular apparatus for gene silencing in the immortalized human chondrocyte cell lines indicate that they may serve as a useful model for studying the function of relevant enzymes in cartilage pathologies. PMID:12086583

  1. Antisense mRNA for NPY-Y1 receptor in the medial preoptic area increases prolactin secretion.

    PubMed

    Silveira, N A; Franci, C R

    1999-09-01

    We investigated the participation of neuropeptide Y-Y1 receptors within the medial preoptic area in luteinizing hormone, follicle-stimulating hormone and prolactin release. Four bilateral microinjections of sense (control) or antisense 18-base oligonucleotides of messenger ribonucleic acid (mRNA) (250 ng) corresponding to the NH2-terminus of the neuropeptide Y1 receptor were performed at 12-h intervals for two days into the medial preoptic area of ovariectomized Wistar rats (N = 16), weighing 180 to 200 g, treated with estrogen (50 microg) and progesterone (25 mg) two days before the experiments between 8.00 and 10:00 a.m. Blockade of Y1 receptor synthesis in the medial preoptic area by the antisense mRNA did not change plasma luteinizing hormone or follicle-stimulating hormone but did increase prolactin from 19.6 +/- 5.9 ng/ml in the sense group to 52.9 +/- 9.6 ng/ml in the antisense group. The plasma hormones were measured by radioimmunoassay and the values are reported as mean +/- SEM. These data suggest that endogenous neuropeptide Y in the medial preoptic area has an inhibitory action on prolactin secretion through Y1 receptors.

  2. Construction of a directed hammerhead ribozyme library: towards the identification of optimal target sites for antisense-mediated gene inhibition.

    PubMed Central

    Pierce, M L; Ruffner, D E

    1998-01-01

    Antisense-mediated gene inhibition uses short complementary DNA or RNA oligonucleotides to block expression of any mRNA of interest. A key parameter in the success or failure of an antisense therapy is the identification of a suitable target site on the chosen mRNA. Ultimately, the accessibility of the target to the antisense agent determines target suitability. Since accessibility is a function of many complex factors, it is currently beyond our ability to predict. Consequently, identification of the most effective target(s) requires examination of every site. Towards this goal, we describe a method to construct directed ribozyme libraries against any chosen mRNA. The library contains nearly equal amounts of ribozymes targeting every site on the chosen transcript and the library only contains ribozymes capable of binding to that transcript. Expression of the ribozyme library in cultured cells should allow identification of optimal target sites under natural conditions, subject to the complexities of a fully functional cell. Optimal target sites identified in this manner should be the most effective sites for therapeutic intervention. PMID:9801305

  3. Effects of surface chemistry and size on iron oxide nanoparticle delivery of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Shen, Christopher

    The discovery of RNA interference and the increasing understanding of disease genetics have created a new class of potential therapeutics based on oligonucleotides. This therapeutic class includes antisense molecules, small interfering RNA (siRNA), and microRNA modulators such as antagomirs (antisense directed against microRNA) and microRNA mimics, all of which function by altering gene expression at the translational level. While these molecules have the promise of treating a host of diseases from neurological disorders to cancer, a major hurdle is their inability to enter cells on their own, where they may render therapeutic effect. Nanotechnology is the engineering of materials at the nanometer scale and has gained significant interest for nucleic acid delivery due to its biologically relevant length-scale and amenability to multifunctionality. While a number of nanoparticle vehicles have shown promise for oligonucleotide delivery, there remains a lack of understanding of how nanoparticle coating and size affect these delivery processes. This dissertation seeks to elucidate some of these factors by evaluating oligonucleotide delivery efficiencies of a panel of iron oxide nanoparticles with varying cationic coatings and sizes. A panel of uniformly-sized nanoparticles was prepared with surface coatings comprised of various amine groups representing high and low pKas. A separate panel of nanoparticles with sizes of 40, 80, 150, and 200 nm but with the same cationic coating was also prepared. Results indicated that both nanoparticle surface coating and nanoparticle hydrodynamic size affect transfection efficiency. Specific particle coatings and sizes were identified that gave superior performance. The intracellular fate of iron oxide nanoparticles was also tracked by electron microscopy and suggests that they function via the proton sponge effect. The research presented in this dissertation may aid in the rational design of improved nanoparticle delivery vectors for

  4. Using both strands: The fundamental nature of antisense transcription.

    PubMed

    Murray, Struan C; Mellor, Jane

    2016-01-01

    Non-coding transcription across the antisense strands of genes is an abundant, pervasive process in eukaryotes from yeast to humans, however its biological function remains elusive. Here, we provide commentary on a recent study of ours, which demonstrates a genome-wide role for antisense transcription: establishing a unique, dynamic chromatin architecture over genes. Antisense transcription increases the level of nucleosome occupancy and histone acetylation at the promoter and body of genes, without necessarily modulating the level of protein-coding sense transcription. It is also associated with high levels of histone turnover. By allowing genes to sample a wider range of chromatin configurations, antisense transcription could serve to make genes more sensitive to changing signals, priming them for responses to developmental programs or stressful cellular environments. Given the abundance of antisense transcription and the breadth of these chromatin changes, we propose that antisense transcription represents a fundamental, canonical feature of eukaryotic genes.

  5. Biopolymer synthesis on polypropylene supports. I. Oligonucleotides.

    PubMed

    Matson, R S; Rampal, J B; Coassin, P J

    1994-03-01

    We have modified polypropylene to serve as a new solid-phase support for oligonucleotide synthesis. The plastic is first surface aminated by exposure to an ammonia plasma generated by radiofrequency plasma discharge. The aminated polypropylene has been found to be useful as a support for the in situ synthesis of oligonucleotides from monomers. Furthermore, oligonucleotides synthesized on the surface of the plastic remain attached following deprotection and can be used directly for hybridization. PMID:8203760

  6. Understanding unassisted falls: effects of nurse staffing level and nursing staff characteristics.

    PubMed

    Staggs, Vincent S; Knight, Jeff E; Dunton, Nancy

    2012-01-01

    Hierarchical Poisson modeling was used to explore hospital and nursing unit characteristics as predictors of the unassisted fall rate. Longitudinal data were collected from 1502 units in 248 US hospitals. The relation between the fall rate and total nurse staffing was positive at lower staffing levels and negative for levels around and above the median. The fall rate was negatively associated with registered nurse skill mix and average registered nurse tenure on the unit.

  7. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication.

    PubMed

    Glineburg, M Rebecca; Chavez, Alejandro; Agrawal, Vishesh; Brill, Steven J; Johnson, F Brad

    2013-11-15

    The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.

  8. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  9. Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells

    PubMed Central

    Niemietz, Christoph J.; Sauer, Vanessa; Stella, Jacqueline; Fleischhauer, Lutz; Chandhok, Gursimran; Guttmann, Sarah; Avsar, Yesim; Guo, Shuling; Ackermann, Elizabeth J.; Gollob, Jared; Monia, Brett P.; Zibert, Andree; Schmidt, Hartmut H. -J.

    2016-01-01

    Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds. PMID:27584576

  10. Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells

    PubMed Central

    Niemietz, Christoph J.; Sauer, Vanessa; Stella, Jacqueline; Fleischhauer, Lutz; Chandhok, Gursimran; Guttmann, Sarah; Avsar, Yesim; Guo, Shuling; Ackermann, Elizabeth J.; Gollob, Jared; Monia, Brett P.; Zibert, Andree; Schmidt, Hartmut H. -J.

    2016-01-01

    Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds. PMID:27584576

  11. Delivery of Splice Switching Oligonucleotides by Amphiphilic Chitosan-Based Nanoparticles.

    PubMed

    Moreno, Pedro M D; Santos, Joyce C; Gomes, Carla P; Varela-Moreira, Aida; Costa, Artur; Leiro, Victoria; Mansur, Herman; Pêgo, Ana P

    2016-02-01

    Splice switching oligonucleotides (SSOs) are a class of single-stranded antisense oligonucleotides (ssONs) being used as gene therapeutics and demonstrating great therapeutic potential. The availability of biodegradable and biocompatible delivery vectors that could improve delivery efficiencies, reduce dosage, and, in parallel, reduce toxicity concerns could be advantageous for clinical translation. In this work we explored the use of quaternized amphiphilic chitosan-based vectors in nanocomplex formation and delivery of splice switching oligonucleotides (SSO) into cells, while providing insights regarding cellular uptake of such complexes. Results show that the chitosan amphiphilic character is important when dealing with SSOs, greatly improving colloidal stability under serum conditions, as analyzed by dynamic light scattering, and enhancing cellular association. Nanocomplexes were found to follow an endolysosomal route with a long lysosome residence time. Conjugation of a hydrophobic moiety, stearic acid, to quaternized chitosan was a necessary condition to achieve transfection, as an unmodified quaternary chitosan was completely ineffective. We thus demonstrate that amphiphilic quaternized chitosan is a biomaterial that holds promise and warrants further development as a platform for SSO delivery strategies.

  12. Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells.

    PubMed

    Niemietz, Christoph J; Sauer, Vanessa; Stella, Jacqueline; Fleischhauer, Lutz; Chandhok, Gursimran; Guttmann, Sarah; Avsar, Yesim; Guo, Shuling; Ackermann, Elizabeth J; Gollob, Jared; Monia, Brett P; Zibert, Andree; Schmidt, Hartmut H-J

    2016-01-01

    Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds. PMID:27584576

  13. Anti-tumor activity of splice-switching oligonucleotides

    PubMed Central

    Bauman, John A.; Li, Shyh-Dar; Yang, Angela; Huang, Leaf; Kole, Ryszard

    2010-01-01

    Alternative splicing has emerged as an important target for molecular therapies. Splice-switching oligonucleotides (SSOs) modulate alternative splicing by hybridizing to pre-mRNA sequences involved in splicing and blocking access to the transcript by splicing factors. Recently, the efficacy of SSOs has been established in various animal disease models; however, the application of SSOs against cancer targets has been hindered by poor in vivo delivery of antisense therapeutics to tumor cells. The apoptotic regulator Bcl-x is alternatively spliced to express anti-apoptotic Bcl-xL and pro-apoptotic Bcl-xS. Bcl-xL is upregulated in many cancers and is associated with chemoresistance, distinguishing it as an important target for cancer therapy. We previously showed that redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS induced apoptosis in breast and prostate cancer cells. In this study, the effect of SSO-induced Bcl-x splice-switching on metastatic melanoma was assessed in cell culture and B16F10 tumor xenografts. SSOs were delivered in vivo using lipid nanoparticles. Administration of nanoparticle with Bcl-x SSO resulted in modification of Bcl-x pre-mRNA splicing in lung metastases and reduced tumor load, while nanoparticle alone or formulated with a control SSO had no effect. Our findings demonstrate in vivo anti-tumor activity of SSOs that modulate Bcl-x pre-mRNA splicing. PMID:20719743

  14. Cellular Uptake and Intracellular Trafficking of Oligonucleotides: Implications for Oligonucleotide Pharmacology

    PubMed Central

    Ming, Xin; Carver, Kyle; Laing, Brian

    2014-01-01

    One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed. PMID:24383421

  15. Electron Transfer Dissociation of Oligonucleotide Cations.

    PubMed

    Smith, Suncerae I; Brodbelt, Jennifer S

    2009-06-01

    Electron transfer dissociation (ETD) of multi-protonated 6 - 20-mer oligonucleotides and 12- and 14-mer duplexes is compared to collision activated dissociation (CAD). ETD causes efficient charge reduction of the multi-protonated oligonucleotides in addition to limited backbone cleavages to yield sequence ions of low abundance. Subsequent CAD of the charge-reduced oligonucleotides formed upon electron transfer, in a net process termed electron transfer collision activated dissociation (ETcaD), results in rich fragmentation in terms of w, a, z, and d products, with a marked decrease in the abundance of base loss ions and internal fragments. Complete sequencing was possible for nearly all oligonucleotides studied. ETcaD of an oligonucleotide duplex resulted in specific backbone cleavages, with conservation of weaker non-covalent bonds. PMID:20161288

  16. Antisense transcription as a tool to tune gene expression.

    PubMed

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  17. Synthesis of 5'-Aldehyde Oligonucleotide.

    PubMed

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  18. A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching.

    PubMed

    Maddigan, Meaghan E; Peach, Ashley A; Behm, David G

    2012-05-01

    A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching. J Strength Cond Res 26(5): 1238-1244, 2012-Proprioceptive neuromuscular facilitation (PNF) stretching often requires a partner. Straps are available allowing an individual to perform PNF stretching alone. It is not known if a strap provides similar improvements in the range of motion (ROM) as partner-assisted PNF or static stretching. The purpose of this study was to compare assisted and unassisted (with a strap) PNF stretching and static stretching. Hip joint ROM, reaction time (RT), and movement time (MT) were measured prestretching and poststretching. Thirteen recreationally active adults participated in this study. The participants were subjected to 5 different stretch interventions in a random order on separate days. Stretch conditions included unassisted PNF stretching using (a) isometric, (b) concentric, and (c) eccentric contractions with a stretch strap, (d) partner-assisted isometric PNF, and (e) static stretching. The RT, MT, dynamic, active, passive hip flexion angle, and angular velocity with dynamic hip flexion were measured before and after the intervention. The ROM improved (p < 0.05) 2.6, 2.7, and 5.4%, respectively, with dynamic, active static, and passive static ROM, but there was no significant difference between the stretching protocols. There was a main effect for time (p < 0.05) with all stretching conditions negatively impacting dynamic angular velocity (9.2%). Although there was no significant effect on RT, MT showed a negative main effect for time (p < 0.05) slowing 3.4%. In conclusion, it was found that all 3 forms of active stretching provided similar improvements in the ROM and poststretching performance decrements in MT and angular velocity. Thus, individuals can implement PNF stretching techniques with a partner or alone with a strap to improve ROM, but athletes should not use these techniques before important

  19. Tandem oligonucleotide synthesis using linker phosphoramidites

    PubMed Central

    Pon, Richard T.; Yu, Shuyuan

    2005-01-01

    Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated. PMID:15814811

  20. Quantitation of phosphorothioate oligonucleotides in human plasma.

    PubMed

    Leeds, J M; Graham, M J; Truong, L; Cummins, L L

    1996-03-01

    Methods are presented for the extraction of phosphorothioate oligonucleotides from human plasma to permit quantitation by capillary gel electrophoresis. Extraction of the phosphorothioate oligonucleotides from plasma was accomplished using two solid-phase extraction columns, a strong anion-exchange column to remove plasma proteins and lipids, followed by a reverse-phase column to remove salts. A second desalting step, achieved by dialysis utilizing a membrane with a molecular weight cutoff of 2500 Da floating on distilled water, was required to remove residual ionic material from the extracted sample. This method should be generally applicable to the analysis and quantitation of phosphorothioate oligonucleotides. PMID:8850544

  1. Highly parallel microbial diagnostics using oligonucleotide microarrays.

    PubMed

    Loy, Alexander; Bodrossy, Levente

    2006-01-01

    Oligonucleotide microarrays are highly parallel hybridization platforms, allowing rapid and simultaneous identification of many different microorganisms and viruses in a single assay. In the past few years, researchers have been confronted with a dramatic increase in the number of studies reporting development and/or improvement of oligonucleotide microarrays for microbial diagnostics, but use of the technology in routine diagnostics is still constrained by a variety of factors. Careful development of microarray essentials (such as oligonucleotide probes, protocols for target preparation and hybridization, etc.) combined with extensive performance testing are thus mandatory requirements for the maturation of diagnostic microarrays from fancy technological gimmicks to robust and routinely applicable tools.

  2. Synthesis of full-length oligonucleotides: cleavage of apurinic molecules on a novel support.

    PubMed Central

    Kwiatkowski, M; Nilsson, M; Landegren, U

    1996-01-01

    The synthesis of oligodeoxynucleotides is marred by several problems that contribute to the formation of defective molecules. This in turn seriously limits the usefulness of such reagents in DNA diagnostics, molecular cloning, DNA structural analysis and in antisense therapy. In particular, depurination reactions during the cyclical steps of synthesis lead to strand scission during cleavage of the completed molecules from the support. Here we present a remedy to this problem: a novel disiloxyl linkage that connects oligonucleotides to the support withstands reaction conditions that allow the removal of the 5' parts of any depurinated molecules. This ensures that all molecules that preserve the 5' protecting group when cleaved from the support will have both correct 3'- and 5'-ends. We demonstrate the application of the support for synthesis of padlock probe molecules. PMID:8972847

  3. Comparison of student productivity in four-handed clinic and regular unassisted clinic.

    PubMed

    Holmes, David C; Squire, Larry J; Arneson, Scott K; Doering, John V

    2009-09-01

    Although four-handed dentistry is routine in most dental practices in the United States, solo unassisted clinical practice is the norm for students at many North American dental schools. The objective of this study was to compare the clinical productivity of fourth-year dental students practicing in a four-handed model to the clinical productivity of those same fourth-year dental students practicing in a solo, unassisted mode at the University of Iowa College of Dentistry for the three academic years 2005-08. Students averaged 2.62 patient visits per day in the four-handed Dental Auxiliary Utilization (DAU) Clinic and 1.74 visits per day in the regular Family Dentistry Clinic. Charging fees that are approximately 50 percent of prevailing local private practice fees, the mean daily charges for services provided by individual students averaged $329 in the DAU Clinic and $190 in the Family Dentistry Clinic. The mean daily productivity differentials were 0.88 patient visits and $139. While students averaged 51 percent more patient visits and 75 percent higher charges daily in the DAU Clinic as compared to the regular Family Dentistry Clinic, the increased revenues might not be sufficient to offset increased expenses incurred in the four-handed clinical operation.

  4. Unassisted transport of N-acetyl-L-tryptophanamide through membrane: experiment and simulation of kinetics.

    PubMed

    Cardenas, Alfredo E; Jas, Gouri S; DeLeon, Kristine Y; Hegefeld, Wendy A; Kuczera, Krzysztof; Elber, Ron

    2012-03-01

    Cellular transport machinery, such as channels and pumps, is working against the background of unassisted material transport through membranes. The permeation of a blocked tryptophan through a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane is investigated to probe unassisted or physical transport. The transport rate is measured experimentally and modeled computationally. The time scale measured by parallel artificial membrane permeation assay (PAMPA) experiments is ~8 h. Simulations with the milestoning algorithm suggest mean first passage time (MFPT) of ~4 h and the presence of a large barrier at the center of the bilayer. A similar calculation with the solubility-diffusion model yields a MFPT of ~15 min. This permeation rate is 9 orders of magnitude slower than the permeation rate of only a tryptophan side chain (computed by us and others). This difference suggests critical dependence of transport time on permeant size and hydrophilicity. Analysis of the simulation results suggests that the permeant partially preserves hydrogen bonding of the peptide backbone to water and lipid molecules even when it is moving closer to the bilayer center. As a consequence, defects of the membrane structure are developed to assist permeation.

  5. Accuracy of the unassisted pain drawings by patients with chronic pain.

    PubMed

    Cummings, G S; Routan, J L

    1987-01-01

    This investigation was conducted to test the accuracy of unassisted pain maps drawn by patients with chronic pain. Three aspects of accuracy were investigated, the accuracy of the area of pain reported, whether all existing pains were reported, and whether related symptoms were reported. Thirty-six successive new admissions to a chronic pain rehabilitation center were used as subjects. Each patient filled out the pain map prior to meeting any professional staff. During their examination the investigators completed a new pain map without seeing the patient's map. Thirty-one pairs of pain maps were compared and scored, with most maps showing several pain areas. Area of pain was accurately represented 43% of the time. Of 139 distinct pains found during examination, only 58% were reported in the pain maps. Thirtyfour percent of related symptoms were reported. It appears that unassisted pain maps are sufficiently flawed to discourage their use as an indicator of the patients symptom location J Orthop Sports Phys Ther 1987;8(8):391-396.

  6. Gene Assembly from Chip-Synthesized Oligonucleotides

    PubMed Central

    Eroshenko, Nikolai; Kosuri, Sriram; Marblestone, Adam H; Conway, Nicholas; Church, George M.

    2012-01-01

    De novo synthesis of long double-stranded DNA constructs has a myriad of applications in biology and biological engineering. However, its widespread adoption has been hindered by high costs. Cost can be significantly reduced by using oligonucleotides synthesized on high-density DNA chips. However, most methods for using off-chip DNA for gene synthesis have failed to scale due to the high error rates, low yields, and high chemical complexity of the chip-synthesized oligonucleotides. We have recently demonstrated that some commercial DNA chip manufacturers have improved error rates, and that the issues of chemical complexity and low yields can be solved by using barcoded primers to accurately and efficiently amplify subpools of oligonucleotides. This article includes protocols for computationally designing the DNA chip, amplifying the oligonucleotide subpools, and assembling 500-800 basepair (bp) constructs. PMID:25077042

  7. Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles.

    PubMed

    Kim, Dong-Wook; Kim, Jae-Hong; Park, Mira; Yeom, Ji-Hyun; Go, Hayoung; Kim, Sudeok; Han, Min Su; Lee, Kangseok; Bae, Jeehyeon

    2011-04-01

    The development of a method that can efficiently deliver nucleic acids into the nucleus of living systems remains one of the key challenges for experimental and therapeutic use of nonbiological gene delivery agents. In the current study, we demonstrate a functionalized gold nanoparticle (AuNP) that can serve as a universal carrier for the delivery of DNA oligonucleotides (oligos) into the nucleus. We designed various types of DNA oligos to redirect alternative splicing of pre-mRNAs, such as MCL-1 and BCL-6, and to sequester transcriptional factors, including estrogen receptor α and p53. We successfully delivered the oligos into the nucleus, resulting in the targeted effects. In addition, injection of the antisense DNAs into a xenograft tumor in a mouse model system resulted in inhibited development of the tumor by redirecting the alternative splicing of the pre-mRNA. Our findings show that these nanoconjugates efficiently load and deliver antisense DNAs to redirect gene splicing or double-stranded DNAs to decoy gene transcription by transcriptional factors into mammalian cells and in vivo animals. Therefore, our lego-like AuNP gene delivery system can be used universally to control different biological processes by modulating nuclear gene expression events in living systems.

  8. Undetected antisense tRNAs in mitochondrial genomes?

    PubMed Central

    2010-01-01

    Background The hypothesis that both mitochondrial (mt) complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding) is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5' and 3' end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential. Results Processed antisense tRNAs align better with standard tRNA sequences with the same cognate than unprocessed antisense tRNAs, suggesting less misacylations. Misacylation increases with cloverleaf fragility and processing inaccuracy. Cloverleaf fragility, misacylation and processing accuracy of antisense tRNAs decrease with genome-wide usage of their predicted cognate amino acid. Conclusions These properties correlate as if they adaptively coevolved for translational activity by some antisense tRNAs, and to avoid such activity by other antisense tRNAs. Analyses also suggest previously unsuspected particularities of aminoacylation specificity in mt tRNAs: combinations of competition between tRNAs on tRNA synthetases with competition between tRNA synthetases on tRNAs determine specificities of tRNA amino acylations. The latter analyses show that alignment methods used to detect tRNA cognates yield relatively robust results, even when they apparently fail to detect the tRNA's cognate amino acid and indicate high misacylation potential. Reviewers This article was reviewed by Dr Juergen Brosius, Dr Anthony M Poole and Dr Andrei S Rodin (nominated

  9. IGF-1 Antisense Strategies for Cancer Treatment.

    PubMed

    Pan, Y X; Anthony, D D

    2000-01-01

    The technical approaches to gene therapy for cancer utilize ex vivo and in vivo gene-transfer methodology. This chapter focuses on applicability and use of an ex vivo approach using an IGF-1 antisense RNA strategy of treatment. Insulin-like growth factor 1 (IGF-1) and IGF-2 have pivotal roles in cell proliferation and development (for review, see 1-6). The preponderance of peptide synthesis and activity occur during fetal development, and protein synthesis is downregulated in most mature tissues except for adult liver. Further modulating the activities of these proteins are the levels of their respective cell-surface receptors and ligand-receptor interactions (3,5,6).

  10. Antisense-Based Progerin Downregulation in HGPS-Like Patients’ Cells

    PubMed Central

    Harhouri, Karim; Navarro, Claire; Baquerre, Camille; Da Silva, Nathalie; Bartoli, Catherine; Casey, Frank; Mawuse, Guedenon Koffi; Doubaj, Yassamine; Lévy, Nicolas; De Sandre-Giovannoli, Annachiara

    2016-01-01

    Progeroid laminopathies, including Hutchinson-Gilford Progeria Syndrome (HGPS, OMIM #176670), are premature and accelerated aging diseases caused by defects in nuclear A-type Lamins. Most HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type Lamins. This mutation activates a cryptic splice site leading to the deletion of 50 amino acids at its carboxy-terminal domain, resulting in a truncated and permanently farnesylated Prelamin A called Prelamin A Δ50 or Progerin. Some patients carry other LMNA mutations affecting exon 11 splicing and are named “HGPS-like” patients. They also produce Progerin and/or other truncated Prelamin A isoforms (Δ35 and Δ90) at the transcriptional and/or protein level. The results we present show that morpholino antisense oligonucleotides (AON) prevent pathogenic LMNA splicing, markedly reducing the accumulation of Progerin and/or other truncated Prelamin A isoforms (Prelamin A Δ35, Prelamin A Δ90) in HGPS-like patients’ cells. Finally, a patient affected with Mandibuloacral Dysplasia type B (MAD-B, carrying a homozygous mutation in ZMPSTE24, encoding an enzyme involved in Prelamin A maturation, leading to accumulation of wild type farnesylated Prelamin A), was also included in this study. These results provide preclinical proof of principle for the use of a personalized antisense approach in HGPS-like and MAD-B patients, who may therefore be eligible for inclusion in a therapeutic trial based on this approach, together with classical HGPS patients. PMID:27409638

  11. The Views and Experiences of Smokers Who Quit Smoking Unassisted. A Systematic Review of the Qualitative Evidence

    PubMed Central

    Smith, Andrea L.; Carter, Stacy M.; Dunlop, Sally M.; Freeman, Becky; Chapman, Simon

    2015-01-01

    Background Unassisted cessation – quitting without pharmacological or professional support – is an enduring phenomenon. Unassisted cessation persists even in nations advanced in tobacco control where cessation assistance such as nicotine replacement therapy, the stop-smoking medications bupropion and varenicline, and behavioural assistance are readily available. We review the qualitative literature on the views and experiences of smokers who quit unassisted. Method We systematically searched for peer-reviewed qualitative studies reporting on smokers who quit unassisted. We identified 11 studies and used a technique based on Thomas and Harden’s method of thematic synthesis to discern key themes relating to unassisted cessation, and to then group related themes into overarching concepts. Findings The three concepts identified as important to smokers who quit unassisted were: motivation, willpower and commitment. Motivation, although widely reported, had only one clear meaning, that is ‘the reason for quitting’. Willpower was perceived to be a method of quitting, a strategy to counteract cravings or urges, or a personal quality or trait fundamental to quitting success. Commitment was equated to seriousness or resoluteness, was perceived as key to successful quitting, and was often used to distinguish earlier failed quit attempts from the final successful quit attempt. Commitment had different dimensions. It appeared that commitment could be tentative or provisional, and also cumulative, that is, commitment could be built upon as the quit attempt progressed. Conclusion A better understanding of what motivation, willpower and commitment mean from the smoker’s perspective may provide new insights and direction for smoking cessation research and practice. PMID:26010369

  12. 2',5'-linked oligo-3'-deoxyribonucleoside phosphorothioate chimeras: thermal stability and antisense inhibition of gene expression.

    PubMed Central

    Bhan, P; Bhan, A; Hong, M; Hartwell, J G; Saunders, J M; Hoke, G D

    1997-01-01

    2',5'-Linked oligo-3'-deoxyribonucleotides bind selectively to complementary RNA but not to DNA. These oligonucleotides (ODNs) do not recognize double-stranded DNA by Hoogsteen triplex formation and the complexes formed by these ODNs with RNA are not substrates for Escherichia coli RNase H. Substitution of the 2',5'-phosphodiester backbone by phosphorothioate linkages gives 2',5'-linked oligo-3'-deoxynucleoside phosphorothioate ODNs that exhibit significantly less non-specific binding to cellular proteins or thrombin. Incorporation of a stretch of seven contiguous 3',5'-linked oligo-2'-deoxynucleoside phosphorothioate linkages in the center of 2',5'-linked ODNs (as a putative RNase H recognition site) afford chimeric antisense ODNs that retain the ability to inhibit steroid 5alpha-reductase (5alphaR) expression in cell culture. PMID:9241246

  13. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

    PubMed

    Donnelly, Christopher J; Zhang, Ping-Wu; Pham, Jacqueline T; Haeusler, Aaron R; Heusler, Aaron R; Mistry, Nipun A; Vidensky, Svetlana; Daley, Elizabeth L; Poth, Erin M; Hoover, Benjamin; Fines, Daniel M; Maragakis, Nicholas; Tienari, Pentti J; Petrucelli, Leonard; Traynor, Bryan J; Wang, Jiou; Rigo, Frank; Bennett, C Frank; Blackshaw, Seth; Sattler, Rita; Rothstein, Jeffrey D

    2013-10-16

    A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.

  14. Antisense RNA Controls LRP1 Sense Transcript Expression Through Interaction With a Chromatin-Associated Protein, HMGB2

    PubMed Central

    Yamanaka, Yasunari; Faghihi, Mohammad Ali; Magistri, Marco; Alvarez-Garcia, Oscar; Lotz, Martin; Wahlestedt, Claes

    2015-01-01

    SUMMARY Long non-coding RNAs (lncRNAs) including natural antisense transcripts (NATs) are expressed more extensively than previously anticipated, and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here we identify a NAT of Low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to High mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein, and increase Lrp1 expression by enhancing Hmgb2 activity. qRT-PCR analysis of Alzheimer’s disease brain samples and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a new regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion. PMID:25937287

  15. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. PMID:26787513

  16. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Yao, Kui; Lim, Yee-Fun; Liang, Yung C.; Suwardi, Ady

    2013-08-01

    Considering energy band alignment and polarization effect, ferroelectric BiFeO3 thin films are proposed as the photoanode in a monolithic cell to achieve unassisted photocatalytic water splitting. Significant anodic photocurrent was observed in our epitaxial ferroelectric BiFeO3 films prepared from sputter deposition. Both negative polarization charges and thinner films were found to promote the anodic photocatalytic reaction. Ultraviolet photoelectron spectroscopy proved that the conduction and valence band edges of BiFeO3 straddle the water redox levels. Theoretical analyses show that the large switchable polarization can modify the surface properties to promote the hydrogen and oxygen evolutions on the surfaces with positive and negative polarization charges, respectively.

  17. Chemically unassisted phototherapy: dose effects via real-time optical monitoring of cancer cells

    NASA Astrophysics Data System (ADS)

    Landry, Sylvie; Keeler, Werden

    2010-03-01

    Ultraviolet (UV) light and short wavelength visible (VIS) light have been used to kill pathogens for many years. Although the adverse effects of UV radiation on living cells have been extensively studied using biochemical and biomolecular techniques, most of the light therapies used for medical treatment are chemically assisted (i.e., photodynamic therapy). However, the use of light alone could prove both cost and therapeutically effective as an alternative treatment modality for localized diseases. In this study, real-time oblique incidence reflection (OIR) microscopy and image analysis were used to visualize and quantify the effects of chemically unassisted light therapy on untagged live cancer cells in vitro. The incident radiation fluence (in mJ/cm^2) required to induce cell death was determined for selected quasi-monochromatic UV to VIS wavelengths ranging from 275nm to 460nm. A predictive mathematical equation quantifying the lethal fluence as a function of wavelength will be discussed.

  18. Epitaxial ferroelectric BiFeO{sub 3} thin films for unassisted photocatalytic water splitting

    SciTech Connect

    Ji, Wei; Yao, Kui; Lim, Yee-Fun; Suwardi, Ady; Liang, Yung C.

    2013-08-05

    Considering energy band alignment and polarization effect, ferroelectric BiFeO{sub 3} thin films are proposed as the photoanode in a monolithic cell to achieve unassisted photocatalytic water splitting. Significant anodic photocurrent was observed in our epitaxial ferroelectric BiFeO{sub 3} films prepared from sputter deposition. Both negative polarization charges and thinner films were found to promote the anodic photocatalytic reaction. Ultraviolet photoelectron spectroscopy proved that the conduction and valence band edges of BiFeO{sub 3} straddle the water redox levels. Theoretical analyses show that the large switchable polarization can modify the surface properties to promote the hydrogen and oxygen evolutions on the surfaces with positive and negative polarization charges, respectively.

  19. Mechanical insufflation-exsufflation. Comparison of peak expiratory flows with manually assisted and unassisted coughing techniques.

    PubMed

    Bach, J R

    1993-11-01

    Pulmonary complications are major causes of morbidity and mortality for patients with severe expiratory muscle weakness. The purpose of this study was to compare peak cough expiratory flows (PCEFs) during unassisted and assisted coughing and review the long-term use of mechanical insufflation-exsufflation (MI-E) for 46 neuromuscular ventilator users. These individuals used noninvasive methods of ventilatory support for a mean of 21.1 h/d for 17.3 +/- 15.5 years. They relied on manually assisted coughing and/or MI-E during periods of productive airway secretion. They reported a mean of 0.7 +/- 1.2 cases of pneumonia and other serious pulmonary complications and 2.8 +/- 5.6 hospitalizations during the 16.4-year period and no complications of MI-E. A sample of 21 of these patients with a mean forced vital capacity of 490 +/- 370 ml had a mean maximum insufflation capacity (MIC) achieved by a combination of air stacking of ventilator insufflations and glossopharyngeal breathing of 1,670 +/- 540 ml. The PCEFs for this sample were: following an unassisted inspiration, 1.81 +/- 1.03 L/s; following a MIC maneuver, 3.37 +/- 1.07 L/s; with manual assistance by abdominal compression following a MIC maneuver, 4.27 +/- 1.29 L/s; and with MI-E, 7.47 +/- 1.02 L/s. Each PCEF was significantly greater than the preceding, respectively (p < 0.01). We conclude that manually assisted coughing and MI-E are effective and safe methods for facilitating airway secretion clearance for neuromuscular ventilator users who would otherwise be managed by endotracheal suctioning. Severely decreased MIC, but not necessarily vital capacity, is an indication for tracheostomy.

  20. Why Don't Smokers Want Help to Quit? A Qualitative Study of Smokers' Attitudes towards Assisted vs. Unassisted Quitting.

    PubMed

    Morphett, Kylie; Partridge, Brad; Gartner, Coral; Carter, Adrian; Hall, Wayne

    2015-06-10

    The development of prescription medication for smoking cessation and the introduction of evidence-based guidelines for health professionals has increasingly medicalised smoking cessation. There are debates about whether medicalisation is a positive development, or whether it has devalued unassisted quitting. In this debate the views of smokers have been neglected. This study explored the attitudes of smokers towards a range of quitting methods, and their considerations when judging their value. We conducted semi-structured interviews with 29 smokers and analysed data using thematic analysis. The results show that the perceived nature of an individual smoker's addiction was central to judgments about the value of pharmacological cessation aids, as was personal experience with a method, and how well it was judged to align with an individual's situation and personality. Unassisted quitting was often described as the best method. Negative views of pharmacological cessation aids were frequently expressed, particularly concerns about side effects from prescription medications. Smokers' views about the value of different methods were not independent: attitudes about cessation aids were shaped by positive attitudes towards unassisted quitting. Examining smokers' attitudes towards either assisted or unassisted quitting in isolation provides incomplete information on quitting preferences.

  1. Why Don’t Smokers Want Help to Quit? A Qualitative Study of Smokers’ Attitudes towards Assisted vs. Unassisted Quitting

    PubMed Central

    Morphett, Kylie; Partridge, Brad; Gartner, Coral; Carter, Adrian; Hall, Wayne

    2015-01-01

    The development of prescription medication for smoking cessation and the introduction of evidence-based guidelines for health professionals has increasingly medicalised smoking cessation. There are debates about whether medicalisation is a positive development, or whether it has devalued unassisted quitting. In this debate the views of smokers have been neglected. This study explored the attitudes of smokers towards a range of quitting methods, and their considerations when judging their value. We conducted semi-structured interviews with 29 smokers and analysed data using thematic analysis. The results show that the perceived nature of an individual smoker’s addiction was central to judgments about the value of pharmacological cessation aids, as was personal experience with a method, and how well it was judged to align with an individual’s situation and personality. Unassisted quitting was often described as the best method. Negative views of pharmacological cessation aids were frequently expressed, particularly concerns about side effects from prescription medications. Smokers’ views about the value of different methods were not independent: attitudes about cessation aids were shaped by positive attitudes towards unassisted quitting. Examining smokers’ attitudes towards either assisted or unassisted quitting in isolation provides incomplete information on quitting preferences. PMID:26068089

  2. NTZIP antisense plants show reduced chlorophyll levels.

    PubMed

    Liu, Ning; Yang, Yu-Tao; Liu, Han-Hua; Yang, Guo-Dong; Zhang, Nai-Hua; Zheng, Cheng Chao

    2004-04-01

    We have isolated and characterized a new photosynthetic tissue-specific gene NTZIP (Nicotiana tabacum leucine zipper) from tobacco (N. tabacum). Its deduced amino acid sequence has two highly conserved regions, leucine zipper and [EX(n)DEXRH](2) motifs, which are related to the gene's biochemical functions. NTZIP was expressed in leaves and stems, but was not detected in roots or flowers, suggesting that its physiological functions might be associated with photosynthesis. Northern blot analysis showed that NTZIP mRNA accumulation was induced by light signals, increased greatly under low temperatures and was repressed by strong light illumination. Furthermore, a number of homologs of NTZIP were isolated from cucumber (Cucumis sativus), rape (Brassica napus), clover (Trifolium repens), willow (Salix babylonica), rosebush (Rusa dovurica), wheat (Triticum aestivum) and spinach (Spinacia oleracea), proving the ubiquitous existence of the NTZIP-like genes in higher plants. Transgenic tobaccos constitutively expressing antisense RNA to NTZIP displayed chlorosis and a lack of ability to turn green even under normal growth conditions. The chlorophyll deficiency was further confirmed by chlorophyll content determination and gas exchange analysis. Based on these observations, we propose that NTZIP may be involved in chlorophyll biosynthesis, and might define a novel family of evolutionarily conserved proteins with its homologs in other plant species.

  3. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy

    PubMed Central

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J.; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A.; Sobczak, Krzysztof

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3′-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUGexp) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUGexp/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUGexp foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUGexp-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. PMID:25753670

  4. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy

    PubMed Central

    Gramlich, Michael; Pane, Luna Simona; Zhou, Qifeng; Chen, Zhifen; Murgia, Marta; Schötterl, Sonja; Goedel, Alexander; Metzger, Katja; Brade, Thomas; Parrotta, Elvira; Schaller, Martin; Gerull, Brenda; Thierfelder, Ludwig; Aartsma-Rus, Annemieke; Labeit, Siegfried; Atherton, John J; McGaughran, Julie; Harvey, Richard P; Sinnecker, Daniel; Mann, Matthias; Laugwitz, Karl-Ludwig; Gawaz, Meinrad Paul; Moretti, Alessandra

    2015-01-01

    Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM. PMID:25759365

  5. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    SciTech Connect

    Nishida, Yoshihiro . E-mail: ynishida@med.nagoya-u.ac.jp; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-07-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.

  6. Intravesical Liposome and Antisense Treatment for Detrusor Overactivity and Interstitial Cystitis/Painful Bladder Syndrome

    PubMed Central

    Kashyap, Mahendra P.; Kawamorita, Naoki; Yoshizawa, Tsuyoshi; Chancellor, Michael

    2014-01-01

    Purpose. The following review focuses on the recent advancements in intravesical drug delivery, which brings added benefit to the therapy of detrusor overactivity and interstitial cystitis/painful bladder syndrome (IC/PBS). Results. Intravesical route is a preferred route of administration for restricting the action of extremely potent drugs like DMSO for patients of interstitial cystitis/painful bladder syndrome (IC/PBS) and botulinum toxin for detrusor overactivity. Patients who are either refractory to oral treatment or need to mitigate the adverse effects encountered with conventional routes of administration also chose this route. Its usefulness in some cases can be limited by vehicle (carrier) toxicity or short duration of action. Efforts have been underway to overcome these limitations by developing liposome platform for intravesical delivery of biotechnological products including antisense oligonucleotides. Conclusions. Adoption of forward-thinking approaches can achieve advancements in drug delivery systems targeted to future improvement in pharmacotherapy of bladder diseases. Latest developments in the field of nanotechnology can bring this mode of therapy from second line of treatment for refractory cases to the forefront of disease management. PMID:24527221

  7. Identification and characterization of high affinity antisense PNAs for the human unr (upstream of N-ras) mRNA which is uniquely overexpressed in MCF-7 breast cancer cells

    PubMed Central

    Fang, Huafeng; Yue, Xuan; Li, Xiaoxu; Taylor, John-Stephen

    2005-01-01

    We have recently shown that an MCF-7 tumor can be imaged in a mouse by PET with 64Cu-labeled Peptide nucleic acids (PNAs) tethered to the permeation peptide Lys4 that recognize the uniquely overexpressed and very abundant upstream of N-ras or N-ras related gene (unr mRNA) expressed in these cells. Herein we describe how the high affinity antisense PNAs to the unr mRNA were identified and characterized. First, antisense binding sites on the unr mRNA were mapped by an reverse transcriptase random oligonucleotide library (RT-ROL) method that we have improved, and by a serial analysis of antisense binding sites (SAABS) method that we have developed which is similar to another recently described method. The relative binding affinities of oligodeoxynucleotides (ODNs) complementary to the antisense binding sites were then qualitatively ranked by a new Dynabead-based dot blot assay. Dissociation constants for a subset of the ODNs were determined by a new Dynabead-based solution assay and were found to be 300 pM for the best binders in 1 M salt. PNAs corresponding to the ODNs with the highest affinities were synthesized with an N-terminal CysTyr and C-terminal Lys4 sequence. Dissociation constants of these hybrid PNAs were determined by the Dynabead-based solution assay to be about 10 pM for the highest affinity binders. PMID:16314303

  8. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.

  9. CD studies on ribonuclease A - oligonucleotides interactions.

    PubMed

    White, M D; Keren-Zur, M; Lapidot, Y

    1977-04-01

    The interaction of ApU, Aps4U, Aps4Up, ApAps4Up and Gps4U with RNase A was studied by CD difference spectroscopy. The use of 4-thiouridine (s4U) containing oligonucleotides enables to distinguish between the interaction of the different components of the ligand with the enzyme. The mode of binding of the oligonucleotides to the enzyme is described. From this mode of binding it is explained why Aps4U, for example, inhibits RNase A, while s4UpA serves as a substrate.

  10. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  11. Establishment of a Predictive In Vitro Assay for Assessment of the Hepatotoxic Potential of Oligonucleotide Drugs

    PubMed Central

    Sewing, Sabine; Boess, Franziska; Moisan, Annie; Bertinetti-Lapatki, Cristina; Minz, Tanja; Hedtjaern, Maj; Tessier, Yann; Schuler, Franz; Singer, Thomas; Roth, Adrian B.

    2016-01-01

    Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development. PMID:27442522

  12. Establishment of a Predictive In Vitro Assay for Assessment of the Hepatotoxic Potential of Oligonucleotide Drugs.

    PubMed

    Sewing, Sabine; Boess, Franziska; Moisan, Annie; Bertinetti-Lapatki, Cristina; Minz, Tanja; Hedtjaern, Maj; Tessier, Yann; Schuler, Franz; Singer, Thomas; Roth, Adrian B

    2016-01-01

    Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development. PMID:27442522

  13. Establishment of a Predictive In Vitro Assay for Assessment of the Hepatotoxic Potential of Oligonucleotide Drugs.

    PubMed

    Sewing, Sabine; Boess, Franziska; Moisan, Annie; Bertinetti-Lapatki, Cristina; Minz, Tanja; Hedtjaern, Maj; Tessier, Yann; Schuler, Franz; Singer, Thomas; Roth, Adrian B

    2016-01-01

    Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development.

  14. Oligonucleotide microarrays in constitutional genetic diagnosis.

    PubMed

    Keren, Boris; Le Caignec, Cedric

    2011-06-01

    Oligonucleotide microarrays such as comparative genomic hybridization arrays and SNP microarrays enable the identification of genomic imbalances - also termed copy-number variants - with increasing resolution. This article will focus on the most significant applications of high-throughput oligonucleotide microarrays, both in genetic diagnosis and research. In genetic diagnosis, the method is becoming a standard tool for investigating patients with unexplained developmental delay/intellectual disability, autism spectrum disorders and/or with multiple congenital anomalies. Oligonucleotide microarray have also been recently applied to the detection of genomic imbalances in prenatal diagnosis either to characterize a chromosomal rearrangement that has previously been identified by standard prenatal karyotyping or to detect a cryptic genomic imbalance in a fetus with ultrasound abnormalities and a normal standard prenatal karyotype. In research, oligonucleotide microarrays have been used for a wide range of applications, such as the identification of new genes responsible for monogenic disorders and the association of a copy-number variant as a predisposing factor to a common disease. Despite its widespread use, the interpretation of results is not always straightforward. We will discuss several unexpected results and ethical issues raised by these new methods.

  15. Oligonucleotides direct synthesis on porous silicon chip.

    PubMed

    De Stefano, Luca; De Tommasi, Edoardo; Rea, Ilaria; Rotiroti, Lucia; Giangrande, Luca; Oliviero, Giorgia; Borbone, Nicola; Galeone, Aldo; Piccialli, Gennaro

    2008-01-01

    A solid phase oligonucleotide (ON) synthesis on porous silicon (PSi) chip is presented. The prepared Si-OH surface were analyzed by FT-IR and the OH functions were quantified by reaction with 3'-phosphoramidite nucleotide building block. Short ONs were synthesized on the chip surface and the coupling yields evaluated. PMID:18776583

  16. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility.

    PubMed

    Thipyapong, Piyada; Hunt, Michelle D; Steffens, John C

    2004-11-01

    Polyphenol oxidases (PPOs; EC 1.14.18.1 or EC 1.10.3.2) catalyze the oxidation of phenolics to quinones, highly reactive intermediates whose secondary reactions are responsible for much of the oxidative browning that accompanies plant senescence, wounding, and responses to pathogens. To assess the impact of PPO expression on resistance to Pseudomonas syringae pv. tomato we introduced a chimeric antisense potato PPO cDNA into tomato (Lycopersicon esculentum L.). Oxidation of caffeic acid, the dominant o-diphenolic aglycone of tomato foliage, was decreased ca. 40-fold by antisense expression of PPO. All members of the PPO gene family were downregulated: neither immunoreactive PPO nor PPO-specific mRNA were detectable in the transgenic plants. In addition, the antisense PPO construct suppressed inducible increases in PPO activity. Downregulation of PPO in antisense plants did not affect growth, development, or reproduction of greenhouse-grown plants. However, antisense PPO expression dramatically increased susceptibility to P. syringae expressing the avirulence gene avrPto in both Pto and pto backgrounds. In a compatible (pto) interaction, plants constitutively expressing an antisense PPO construct exhibited a 55-fold increase in bacterial growth, three times larger lesion area, and ten times more lesions cm(-2) than nontransformed plants. In an incompatible (Pto) interaction, antisense PPO plants exhibited 100-fold increases in bacterial growth and ten times more lesions cm(-2) than nontransformed plants. Although it is not clear whether hypersusceptibility of antisense plants is due to low constitutive PPO levels or failure to induce PPO upon infection, these findings suggest a critical role for PPO-catalyzed phenolic oxidation in limiting disease development. As a preliminary effort to understand the role of induced PPO in limiting disease development, we also examined the response of PPO promoter::beta-glucuronidase constructs when plants are challenged with P

  17. RNA antisense purification (RAP) for mapping RNA interactions with chromatin.

    PubMed

    Engreitz, Jesse; Lander, Eric S; Guttman, Mitchell

    2015-01-01

    RNA-centric biochemical purification is a general approach for studying the functions and mechanisms of noncoding RNAs. Here, we describe the experimental procedures for RNA antisense purification (RAP), a method for selective purification of endogenous RNA complexes from cell extracts that enables mapping of RNA interactions with chromatin. In RAP, the user cross-links cells to fix endogenous RNA complexes and purifies these complexes through hybrid capture with biotinylated antisense oligos. DNA loci that interact with the target RNA are identified using high-throughput DNA sequencing.

  18. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    PubMed

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  19. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    PubMed Central

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  20. beta-catenin can be transported into the nucleus in a Ran-unassisted manner.

    PubMed

    Yokoya, F; Imamoto, N; Tachibana, T; Yoneda, Y

    1999-04-01

    The nuclear accumulation of beta-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of beta-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, beta-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin-sensitive manner. In the cell-free import assay, beta-catenin rapidly migrates into the nucleus without the exogenous addition of cytosol, Ran, or ATP/GTP. Cytoplasmic injection of mutant Ran defective in its GTP hydrolysis did not prevent beta-catenin import. Studies using tsBN2, a temperature-sensitive mutant cell line that possesses a point mutation in the RCC1 gene, showed that the import of beta-catenin is insensitive to nuclear Ran-GTP depletion. These results show that beta-catenin possesses the ability to constitutively translocate through the nuclear pores in a manner similar to importin beta in a Ran-unassisted manner. We further showed that beta-catenin also rapidly exits the nucleus in homokaryons, suggesting that the regulation of nuclear levels of beta-catenin involves both nuclear import and export of this molecule.

  1. Unassisted membrane insertion as the initial step in DeltapH/Tat-dependent protein transport.

    PubMed

    Hou, Bo; Frielingsdorf, Stefan; Klösgen, Ralf Bernd

    2006-02-01

    In the thylakoid membrane of chloroplasts as well as in the cytoplasmic membrane of bacteria, the DeltapH/Tat-dependent protein transport pathway is responsible for the translocation of folded proteins. Using the chimeric 16/23 protein as model substrate in thylakoid transport experiments, we dissected the transport process into several distinct steps that are characterized by specific integral translocation intermediates. Formation of the early translocation intermediate Ti-1, which still exposes the N and the C terminus to the stroma, is observed with thylakoids pretreated with (i) solutions of chaotropic salts or alkaline pH, (ii) protease, or (iii) antibodies raised against TatA, TatB, or TatC. Membrane insertion takes place even into liposomes, demonstrating that proteinaceous components are not required. This suggests that Tat-dependent transport may be initiated by the unassisted insertion of the substrate into the lipid bilayer, and that interaction with the Tat translocase takes place only in later stages of the process.

  2. Protein turnover rates of two human subjects during an unassisted crossing of Antarctica.

    PubMed

    Stroud, M A; Jackson, A A; Waterlow, J C

    1996-08-01

    During the Austral summer of 1992-3, two men, MS and RF, walked 2300 km across Antarctica in 96 d, unassisted by other men, animals or machines. During the journey they ate freeze-dried rations, towed on sledges, that contained an average of 21.3 MJ/d of which 56.7% was fat, 35.5% carbohydrate and 7.8% protein (98.8 g). Despite this high energy intake both men lost more than 20 kg in body weight due to their extremely high energy expenditures. Studies of protein turnover using [15N]glycine by the single-dose end-product method were made before, during and after the journey, and these demonstrated considerable differences in the metabolic responses of the two men to the combined stresses of exercise, cold and undernutrition. However, both men maintained high and relatively stable levels of protein synthesis during the expedition despite the great exertion and the onset of considerable debilitation. This stability indicates the vital physiological function of protein synthesis.

  3. The beta subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme.

    PubMed

    Tomer, G; Reuven, N B; Livneh, Z

    1998-11-24

    The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD' and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, we show that DNA polymerase III*, a subassembly of DNA polymerase III holoenzyme lacking the beta subunit, is blocked very effectively by the synthetic abasic site in the same DNA substrate. Addition of the beta subunit caused a dramatic increase of at least 28-fold in the ability of the polymerase to perform translesion replication, reaching 52% bypass in 5 min. When the ssDNA region in the gapped plasmid was extended from 22 nucleotides to 350 nucleotides, translesion replication still depended on the beta subunit, but it was reduced by 80%. DNA sequence analysis of translesion replication products revealed mostly -1 frameshifts. This mutation type is changed to base substitution by the addition of UmuD', UmuC, and RecA, as demonstrated in a reconstituted SOS translesion replication reaction. These results indicate that the beta subunit sliding DNA clamp is the major determinant in the ability of DNA polymerase III holoenzyme to perform unassisted translesion replication and that this unassisted bypass produces primarily frameshifts.

  4. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.

    PubMed

    Mendoza, J A; Horowitz, P M

    1994-01-01

    The in vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by the E. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1-23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11-23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.

  5. Neighboring Gene Regulation by Antisense Long Non-Coding RNAs

    PubMed Central

    Villegas, Victoria E.; Zaphiropoulos, Peter G.

    2015-01-01

    Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation—pretranscriptional, transcriptional and posttranscriptional—through DNA–RNA, RNA–RNA or protein–RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm. PMID:25654223

  6. Natural antisense transcripts associated with salinity response in alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are long non-coding RNAs (lncRNAs) complimentary to the messenger (sense) RNA (Wang et al. 2014). Many of them are involved in regulation of their own sense transcripts thus playing pivotal biological roles in all processes of organismal development and responses...

  7. The prebiotic synthesis of deoxythymidine oligonucleotides

    NASA Technical Reports Server (NTRS)

    Stephen-Sherwood, E.; Odom, D. G.; Oro, J.

    1974-01-01

    Deoxythymidine 5 prime-triphosphate in the presence of deoxythymidine 5 prime-phosphate, cyanamide and 4-amino-5-imidazole carboxamide polymerizes under drying conditions at moderate temperatures (60 to 90 C) to yield oligonucleotides of up to four units in length. Enzymatic analysis indicated that the majority of these oligomers contained natural 3 prime-5 prime phosphodiester bonds. This reaction offers a possible method for the formation of deoxyoligonucleotides under primitive earth conditions.

  8. One-step insertion of oligonucleotide linkers or adapters to DNA using unphosphorylated oligonucleotides.

    PubMed

    Kang, C; Inouye, M

    1993-10-01

    A simple and efficient method was developed for insertion of oligonucleotide sequences into plasmids. In this method, an unphosphorylated oligonucleotide was ligated to the restriction-digested phagemid DNA. Only the single strand of the oligonucleotide was ligated at the 5' end of the phagemid, and this resulted in the creation of a long self-complementary single-strand overhang. These single-strand overhang-possessing phagemids were used to transform XL-1 cells. This simple ligation and transformation reaction rendered approximately 7.5 x 10(4) to 5 x 10(5) of white colonies per microgram DNA from the isopropyl-beta-D-thiogalactopyranoside and 5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside plate. This number is almost the same or even higher than the number of blue colonies from the control reaction in which ligase was used without the oligonucleotide. By this method we could mutate one enzyme site to another or create ribozyme and substrate phagemid very easily. Fidelity of this method was checked by restriction digestion, DNA sequencing and ribozyme reaction. By DNA sequencing, we observed that 100% of the white colonies contained a single oligonucleotide sequence.

  9. Plasminogen activator inhibitor-1 antisense oligodeoxynucleotides abrogate mesangial fibronectin accumulation.

    PubMed

    Park, Jehyun; Seo, Ji Yeon; Ha, Hunjoo

    2010-12-01

    Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-β1, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with 1 µM phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-β1. PAI-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-β1 significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-β1-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.

  10. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration

    PubMed Central

    Lagier-Tourenne, Clotilde; Baughn, Michael; Rigo, Frank; Sun, Shuying; Liu, Patrick; Li, Hai-Ri; Jiang, Jie; Watt, Andrew T.; Chun, Seung; Katz, Melanie; Qiu, Jinsong; Sun, Ying; Ling, Shuo-Chien; Zhu, Qiang; Polymenidou, Magdalini; Drenner, Kevin; Artates, Jonathan W.; McAlonis-Downes, Melissa; Markmiller, Sebastian; Hutt, Kasey R.; Pizzo, Donald P.; Cady, Janet; Harms, Matthew B.; Baloh, Robert H.; Vandenberg, Scott R.; Yeo, Gene W.; Fu, Xiang-Dong; Bennett, C. Frank; Cleveland, Don W.; Ravits, John

    2013-01-01

    Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions. PMID:24170860

  11. Penetration of oligonucleotides into mouse organism through mucosa and skin.

    PubMed

    Vlassov, V V; Karamyshev, V N; Yakubov, L A

    1993-08-01

    Benzylamide 5'-32P-oligonucleotide derivatives were shown to penetrate into mice organism when administered by various routes; intranasally, per os, intravaginally and per rectum. In all cases, the compounds are rapidly accumulated in blood and guts. Analysis of the radioactive material from blood and pancreas revealed intact oligonucleotides. Although concentrations of oligonucleotides in tissues differ considerably by the various methods of administration, the efficiency of delivery is sufficient to consider all the routes as being of therapeutic value. Dose effect on the efficiency of oligonucleotide penetration into mice suggests the transport to be a saturable process. Application of an oligonucleotide lotion on mice ear helices results in reproducible accumulation of radioactivity in the animal tissues. Effectiveness of oligonucleotide delivery into mouse through skin can be improved by using electrophoretic procedure.

  12. DNA-binding and oxidative properties of cationic phthalocyanines and their dimeric complexes with anionic phthalocyanines covalently linked to oligonucleotides.

    PubMed

    Kuznetsova, A A; Lukyanets, E A; Solovyeva, L I; Knorre, D G; Fedorova, O S

    2008-12-01

    Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.

  13. Hyphenation of a Deoxyribonuclease I immobilized enzyme reactor with liquid chromatography for the online stability evaluation of oligonucleotides.

    PubMed

    Álvarez Porebski, Piotr Wiktor; Gyssels, Ellen; Madder, Annemieke; Lynen, Frederic

    2015-11-27

    The stability of antisense oligonucleotides (ONs) toward nucleases is a key aspect for their possible implementation as therapeutic agents. Typically, ON stability studies are performed off-line, where the ONs are incubated with nucleases in solution, followed by their analysis. The problematics of off-line processing render the detailed comparison of relative ON stability quite challenging. Therefore, the development of an online platform based on an immobilized enzyme reactor (IMER) coupled to liquid chromatography (LC) was developed as an alternative for improved ON stability testing. More in detail, Deoxyribonuclease I (DNase I) was immobilized on epoxy-silica particles of different pore sizes and packed into a column for the construction of an IMER. Subsequently, the hyphenation of the IMER with ion-pair chromatography (IPC) and ion-exchange chromatography (IEC) was evaluated, leading to the successful development of two online methodologies: IMER-IPC and IMER-IEC. More specifically, natural and modified DNA and RNA oligonucleotides were used for testing the performance of the methodologies. Both methodologies proved to be simple, automatable, fast and highly reproducible for the quantitative and qualitative evaluation of ON degradation. In addition, the extended IMER life time in combination with a more straightforward control of the reaction kinetics substantiate the applicability of the IMER-LC platform for ON stability tests and its implementation in routine and research laboratories. PMID:26515385

  14. Hyphenation of a Deoxyribonuclease I immobilized enzyme reactor with liquid chromatography for the online stability evaluation of oligonucleotides.

    PubMed

    Álvarez Porebski, Piotr Wiktor; Gyssels, Ellen; Madder, Annemieke; Lynen, Frederic

    2015-11-27

    The stability of antisense oligonucleotides (ONs) toward nucleases is a key aspect for their possible implementation as therapeutic agents. Typically, ON stability studies are performed off-line, where the ONs are incubated with nucleases in solution, followed by their analysis. The problematics of off-line processing render the detailed comparison of relative ON stability quite challenging. Therefore, the development of an online platform based on an immobilized enzyme reactor (IMER) coupled to liquid chromatography (LC) was developed as an alternative for improved ON stability testing. More in detail, Deoxyribonuclease I (DNase I) was immobilized on epoxy-silica particles of different pore sizes and packed into a column for the construction of an IMER. Subsequently, the hyphenation of the IMER with ion-pair chromatography (IPC) and ion-exchange chromatography (IEC) was evaluated, leading to the successful development of two online methodologies: IMER-IPC and IMER-IEC. More specifically, natural and modified DNA and RNA oligonucleotides were used for testing the performance of the methodologies. Both methodologies proved to be simple, automatable, fast and highly reproducible for the quantitative and qualitative evaluation of ON degradation. In addition, the extended IMER life time in combination with a more straightforward control of the reaction kinetics substantiate the applicability of the IMER-LC platform for ON stability tests and its implementation in routine and research laboratories.

  15. Oligonucleotide frequencies in DNA follow a Yule distribution.

    PubMed

    Martindale, C; Konopka, A K

    1996-03-01

    We show that ranked oligonucleotide frequencies in both protein-coding and non-coding regions from several genomes fit poorly to the Zipf distribution, but that the same frequency data give excellent fit to the Yule distribution. The parameters of the Yule distribution for oligonucleotide frequencies in exons are the same (within error limits) as the parameters for introns. This precludes application of Yule or Zipf distribution of ranked oligonucleotide frequencies to annotating new genomic sequences.

  16. Cationic liposomes loaded with pro-apoptotic peptide D-(KLAKLAK)2 and bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anti-cancer therapy

    PubMed Central

    Ko, Young Tag; Falcao, Claudio; Torchilin, Vladimir P.

    2009-01-01

    The treatment of cancer using macromolecular therapeutics such as oligonucleotides or peptides requires efficient delivery systems capable of intracellular penetration and may also benefit from use of a combination of therapeutics with different mechanisms of action. With this possibility in mind, we constructed cationic liposome loaded with the proapoptotic peptide, D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide, G3139, and determined whether the combination of the proapoptotic macromolecules in a single cationic liposome can enhance antitumor efficacy. Advantage was taken of alternating charge interaction to entrap macromolecules of opposite charge. The polycationic pepetide D-(KLAKLAK)2 was first condensed with the polyanionic oligodeoxynucleotide G3139 to obtain overall negatively charged peptide/oligodeoxynucleotide complexes. The complexes were then entrapped into DOTAP/DOPE cationic liposomes (CL). This sequential charge interaction ensured efficient entrapment of D-(KLAKLAK)2 and G3139 with a high loading efficiency (50 %) and capacity (7.5 wt%). In vitro treatment of mouse melanoma B16(F10) with CL loaded with D-(KLAKLAK)2/G3139 led to significantly enhanced antitumor efficacy, mediated by stimulated induction of apoptotic (Caspase 3/7) activity, when compared to CL loaded with G3139 alone. Intratumoral injection of CL loaded with D-(KLAKLAK)2/G3139 in B16(F10) mice xenograft also led to suppressed tumor growth associated with enhanced apoptotic activity. Thus, the combination of proapoptotic peptide D-(KLAKLAK)2 and antisense oligonucleotide G3139 in a cationic liposome led to enhanced apoptotic/antitumor efficacy and may provide a promising tool for cancer treatment. PMID:19317442

  17. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria.

    PubMed

    Furukawa, Ryo; Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2015-07-01

    Mitochondrial genome-targeting nucleic acids are promising therapeutic candidates for treating mitochondrial diseases. To date, a number of systems for delivering genetic information to the cytosol and the nucleus have been reported, and several successful gene therapies involving gene delivery targeted to the cytosol and the nucleus have been reported. However, much less progress has been made concerning mitochondrial gene delivery systems, and mitochondrial gene therapy has never been achieved. Here, we report on the mitochondrial delivery of an antisense RNA oligonucleotide (ASO) to perform mitochondrial RNA knockdown to regulate mitochondrial function. Mitochondrial delivery of the ASO was achieved using a combination of a MITO-Porter system, which contains mitochondrial fusogenic lipid envelopes for mitochondrial delivery via membrane fusion and D-arm, a mitochondrial import signal of tRNA to the matrix. Mitochondrial delivery of the ASO induces the knockdown of the targeted mitochondria-encoded mRNA and protein, namely cytochrome c oxidase subunit II, a component of the mitochondrial respiratory chain. Furthermore, the mitochondrial membrane potential was depolarized by the down regulation of the respiratory chain as the result of the mitochondrial delivery of ASO. This finding constitutes the first report to demonstrate that the nanocarrier-mediated mitochondrial genome targeting of antisense RNA effects mitochondrial function.

  18. Comparative oligonucleotide fingerprints of three plant viroids.

    PubMed Central

    Gross, H J; Domdey, H; Sänger, H L

    1977-01-01

    5' Phosphorylation in vitro with gamma-32P-ATP and T4 phage induced polynucleotide kinase was used to obtain RNAase A and RNAase T1 fingerprints of three plant viroids: Potato spindle tuber viroid from tomato (PSTV-tom), chrysanthemum stunt viroid from cineraria (ChSV-cin) and citrus exocortis viroid from Gynura aurantiaca (CEV-gyn). These three viroids differ significantly from each other as judged from their oligonucleotide patterns. This supports the concept of individual viroid species. Images PMID:896482

  19. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings.

    PubMed

    Kovács, L; Kézér, F L; Szenci, O

    2016-09-01

    Welfare aspects of obstetrical assistance were studied in multiparous Holstein-Friesian cows (n=176) with (1) unassisted calving in an individual pen (UCIP; n=42), (2) unassisted calving in a group pen (UCG; n=48), (3) assisted calving with appropriately timed obstetrical assistance (ACAP; n=50), and (4) assisted calving with inappropriately timed (premature) obstetrical assistance (ACIN; n=36). Duration of the stages of calving, the prevalence and the degree of dystocia, stillbirth ratio, newborn calf vitality, and the occurrence of postpartum health problems (i.e., retained placenta and vulvovaginal laceration) were recorded. The time from amniotic sac and hooves appearance to birth and the total duration of calving (from the onset of calving restlessness to delivery) were shorter for UCG cows than for any other groups. The overall incidence of dystocia was 31.3% in the calvings studied. The prevalence of dystocia was below 10% in cases of unassisted calvings. The proportion of severe dystocia was higher in ACIN cows than in ACAP cows (47.2 vs. 12.0%, respectively). The prevalence of stillbirths was the highest in ACIN calvings (22.2%), followed by ACAP, UCI, and UCG cows (8.0, 4.8, and 0.0%, respectively). The ACIN calves had lower vitality scores than calves born from ACAP, UCG, and UCIP dams immediately after delivery and 24h after birth. Although ACAP calves had lower vitality scores than UCG and UCIP calves at birth, a delayed recovery of vitality was mirrored by satisfactory vitality scores 24h after birth. Retained placenta and vulvovaginal laceration occurred more often with assisted dams (i.e., ACAP and ACIN animals) compared with UCIP cows with the highest prevalence in ACIN cows. In UCG cows, no injuries occurred in the vulva or vagina, and we noted only 4 cases of retained placenta (8.3%), proportions lower than in cows with unassisted calving in the maternity pen. Our results suggest that calving in a group might have benefits over calving in an

  20. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings.

    PubMed

    Kovács, L; Kézér, F L; Szenci, O

    2016-09-01

    Welfare aspects of obstetrical assistance were studied in multiparous Holstein-Friesian cows (n=176) with (1) unassisted calving in an individual pen (UCIP; n=42), (2) unassisted calving in a group pen (UCG; n=48), (3) assisted calving with appropriately timed obstetrical assistance (ACAP; n=50), and (4) assisted calving with inappropriately timed (premature) obstetrical assistance (ACIN; n=36). Duration of the stages of calving, the prevalence and the degree of dystocia, stillbirth ratio, newborn calf vitality, and the occurrence of postpartum health problems (i.e., retained placenta and vulvovaginal laceration) were recorded. The time from amniotic sac and hooves appearance to birth and the total duration of calving (from the onset of calving restlessness to delivery) were shorter for UCG cows than for any other groups. The overall incidence of dystocia was 31.3% in the calvings studied. The prevalence of dystocia was below 10% in cases of unassisted calvings. The proportion of severe dystocia was higher in ACIN cows than in ACAP cows (47.2 vs. 12.0%, respectively). The prevalence of stillbirths was the highest in ACIN calvings (22.2%), followed by ACAP, UCI, and UCG cows (8.0, 4.8, and 0.0%, respectively). The ACIN calves had lower vitality scores than calves born from ACAP, UCG, and UCIP dams immediately after delivery and 24h after birth. Although ACAP calves had lower vitality scores than UCG and UCIP calves at birth, a delayed recovery of vitality was mirrored by satisfactory vitality scores 24h after birth. Retained placenta and vulvovaginal laceration occurred more often with assisted dams (i.e., ACAP and ACIN animals) compared with UCIP cows with the highest prevalence in ACIN cows. In UCG cows, no injuries occurred in the vulva or vagina, and we noted only 4 cases of retained placenta (8.3%), proportions lower than in cows with unassisted calving in the maternity pen. Our results suggest that calving in a group might have benefits over calving in an

  1. Hybridization potential of oligonucleotides comprising 3'-O-methylated altritol nucleosides.

    PubMed

    Chatelain, G; Schepers, G; Rozenski, J; Van Aerschot, Arthur

    2012-11-01

    A series of 3'-O-methylated-d-altrohexitol nucleoside analogs (MANA) was synthesized comprising all four base moieties, adenine, cytosine, uracil, and guanine. These monomers were incorporated into oligonucleotides (ONs) by automated solid phase synthesis and the thermal and thermodynamic stability of all new modified constructs were evaluated. Data were compared with results obtained for both anhydrohexitol (HNAs) and 3'-O-altrohexitol-modified ONs (ANAs). We hereby demonstrate that ONs modified with MANA monomers have an improved thermal and thermodynamic stability compared to RNA, ANA, or HNA containing ONs of which the extent depends on the number of incorporated moieties and their position in the sequence. Thermodynamic analysis afforded comparable or even improved results in comparison with the incorporation of locked nucleic acids. While the specificity of these new synthons is slightly lower compared to mismatches within RNA double strands, it is similar to the discrimination potential of other hexitol modifications (HNA and ANA) which already proved their biologic interest, highlighting the potential of MANA constructs in antisense and in siRNA applications.

  2. Synthesis of 4'-Methoxy 2'-Deoxynucleoside Phosphoramidites for Incorporation into Oligonucleotides.

    PubMed

    Petrová, Magdalena; Rosenberg, Ivan

    2016-09-01

    This unit contains detailed synthetic protocols for the preparation of 4'-methoxy 2'-deoxynucleoside phosphoramidite monomers for A, G, C, T, and U. First, 3'-silyl-protected 2'-deoxynucleosides (dNs) are converted in two steps to 4',5'-enol acetates as the key starting compounds. Next, 4'-methoxy dNs are prepared by a one-pot procedure comprising N-iodosuccinimide-promoted methoxylation, hydrolysis, and reduction of the formed intermediates. Finally, 3'-phosphoramidites of 4'-methoxy dNs are obtained by a routine three-step procedure. Title phosphoramidite monomers are suitable for the synthesis of oligonucleotides on solid phase according to conventional amidite chemistry. 4'-Methoxy substitution represents a simple modification of the sugar part of dNs, where β-D-erythro epimers preferentially adopt N-type (C3'-endo, RNA-like) conformation. Moreover, it imparts superior chemical stability, nuclease resistance, and excellent hybridization properties to modified 4'-methoxyoligodeoxynucleotides. The strong tendency toward RNA-selective hybridization suggests its potential utilization in antisense and/or RNAi technologies. © 2016 by John Wiley & Sons, Inc.

  3. Erbium:YAG laser-mediated oligonucleotide and DNA delivery via the skin: an animal study.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Liu, Ching-Ru; Fang, Chia-Lang; Hu, Chung-Hong; Fang, Jia-You

    2006-10-27

    Topical delivery of antisense oligonucleotides (ASOs) and DNA is attractive for treatment of skin disorders. However, this delivery method is limited by the low permeability of the stratum corneum (SC). The objective of this study was to enhance and optimize the skin absorption of gene-based drugs by an erbium:yttrium-aluminum-garnet (Er:YAG) laser. The animal model utilized nude mice. In the in vitro permeation study, the Er:YAG laser treatment produced a 3-30-fold increase in ASO permeation which was dependent on the laser fluence and ASO molecular mass used. The fluorescence microscopic images showed a more-significant localization of a 15-mer ASO in the epidermis and hair follicles after laser application as compared with the control. The expressions of reporter genes coding for beta-galactosidase and green fluorescent protein (GFP) in skin were assessed by X-gal staining and confocal laser scanning microscopy. The SC ablation effect and photomechanical waves produced by the Er:YAG laser resulted in DNA expression being extensively distributed from the epidermis to the subcutis. The GFP expression in 1.4 J/cm2-treated skin was 160-fold higher than that in intact skin. This non-invasive, well-controlled technique of using an Er:YAG laser for gene therapy provides an efficient strategy to deliver ASOs and DNA via the skin.

  4. Rapid Screening of Gene Function by Systemic Delivery of Morpholino Oligonucleotides to Live Mouse Embryos

    PubMed Central

    McClelland, Kathryn S.; Wainwright, Elanor N.; Bowles, Josephine; Koopman, Peter

    2015-01-01

    Traditional gene targeting methods in mice are complex and time consuming, especially when conditional deletion methods are required. Here, we describe a novel technique for assessing gene function by injection of modified antisense morpholino oligonucleotides (MOs) into the heart of mid-gestation mouse embryos. After allowing MOs to circulate through the embryonic vasculature, target tissues were explanted, cultured and analysed for expression of key markers. We established proof-of-principle by partially phenocopying known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9). We also generated a novel double knockdown of Gli1 and Gli2, revealing defects in Leydig cell differentiation in the fetal testis. Finally, we gained insight into the roles of Adamts19 and Ctrb1, genes of unknown function in sex determination and gonadal development. These studies reveal the utility of this method as a means of first-pass analysis of gene function during organogenesis before committing to detailed genetic analysis. PMID:25629157

  5. Synthesis of 4'-Methoxy 2'-Deoxynucleoside Phosphoramidites for Incorporation into Oligonucleotides.

    PubMed

    Petrová, Magdalena; Rosenberg, Ivan

    2016-01-01

    This unit contains detailed synthetic protocols for the preparation of 4'-methoxy 2'-deoxynucleoside phosphoramidite monomers for A, G, C, T, and U. First, 3'-silyl-protected 2'-deoxynucleosides (dNs) are converted in two steps to 4',5'-enol acetates as the key starting compounds. Next, 4'-methoxy dNs are prepared by a one-pot procedure comprising N-iodosuccinimide-promoted methoxylation, hydrolysis, and reduction of the formed intermediates. Finally, 3'-phosphoramidites of 4'-methoxy dNs are obtained by a routine three-step procedure. Title phosphoramidite monomers are suitable for the synthesis of oligonucleotides on solid phase according to conventional amidite chemistry. 4'-Methoxy substitution represents a simple modification of the sugar part of dNs, where β-D-erythro epimers preferentially adopt N-type (C3'-endo, RNA-like) conformation. Moreover, it imparts superior chemical stability, nuclease resistance, and excellent hybridization properties to modified 4'-methoxyoligodeoxynucleotides. The strong tendency toward RNA-selective hybridization suggests its potential utilization in antisense and/or RNAi technologies. © 2016 by John Wiley & Sons, Inc. PMID:27584701

  6. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing

    PubMed Central

    Rigo, Frank; Hua, Yimin; Chun, Seung J; Prakash, Thazha P; Krainer, Adrian R; Bennett, C Frank

    2016-01-01

    We describe a new technology for recruiting specific proteins to RNA through selective recognition of heteroduplexes formed with chemically modified antisense oligonucleotides (ASOs). Typically, ASOs function by hybridizing to their RNA targets and blocking the binding of single-stranded RNA–binding proteins. Unexpectedly, we found that ASOs with 2′-deoxy-2′-fluoro (2′-F) nucleotides, but not with other 2′ chemical modifications, have an additional property: they form heteroduplexes with RNA that are specifically recognized by the interleukin enhancer-binding factor 2 and 3 complex (ILF2/3). 2′-F ASO–directed recruitment of ILF2/3 to RNA can be harnessed to control gene expression by modulating alternative splicing of target transcripts. ILF2/3 recruitment to precursor mRNA near an exon results in omission of the exon from the mature mRNA, both in cell culture and in mice. We discuss the possibility of using chemically engineered ASOs that recruit specific proteins to modulate gene expression for therapeutic intervention. PMID:22504300

  7. Bacterial antisense RNAs are mainly the product of transcriptional noise

    PubMed Central

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  8. Bacterial antisense RNAs are mainly the product of transcriptional noise.

    PubMed

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I; Serrano, Luis; Lluch-Senar, Maria

    2016-03-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  9. An imputation approach for oligonucleotide microarrays.

    PubMed

    Li, Ming; Wen, Yalu; Lu, Qing; Fu, Wenjiang J

    2013-01-01

    Oligonucleotide microarrays are commonly adopted for detecting and qualifying the abundance of molecules in biological samples. Analysis of microarray data starts with recording and interpreting hybridization signals from CEL images. However, many CEL images may be blemished by noises from various sources, observed as "bright spots", "dark clouds", and "shadowy circles", etc. It is crucial that these image defects are correctly identified and properly processed. Existing approaches mainly focus on detecting defect areas and removing affected intensities. In this article, we propose to use a mixed effect model for imputing the affected intensities. The proposed imputation procedure is a single-array-based approach which does not require any biological replicate or between-array normalization. We further examine its performance by using Affymetrix high-density SNP arrays. The results show that this imputation procedure significantly reduces genotyping error rates. We also discuss the necessary adjustments for its potential extension to other oligonucleotide microarrays, such as gene expression profiling. The R source code for the implementation of approach is freely available upon request.

  10. Template switching between PNA and RNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  11. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  12. Pre-existing Arterial Micro-Calcification Predicts Primary Unassisted Arteriovenous Fistula Failure in Incident Hemodialysis Patients.

    PubMed

    Choi, Su Jin; Yoon, Hye Eun; Kim, Young Soo; Yoon, Sun Ae; Yang, Chul Woo; Kim, Yong-Soo; Park, Sun Cheol; Kim, Young Ok

    2015-01-01

    Vascular access micro-calcification is a risk factor for cardiovascular morbidity and mortality in hemodialysis (HD) patients but its influence on vascular access patency is still undetermined. Our study aimed to determine the impact of arterial micro-calcification (AMiC) on the patency of vascular access in HD patients. One-hundred fourteen HD patients receiving arteriovenous fistula (AVF) operation were included in this study. During the operation, we obtained partial arterial specimen and performed pathological examination by von Kossa stain to identify AMiC. We compared primary unassisted AVF failure within 1 year between positive and negative AMiC groups, and performed Cox regression analysis for evaluating risk factor of AVF failure. The incidence of AMiC was 37.7% and AVF failure occurred in 45 patients (39.5%). The AVF failure rate within 1 year was greater in the positive AMiC group than those in the negative AMiC group (53.5% vs. 31.0%, p = 0.02). Kaplan-Meier analysis showed that the positive AMiC group had a lower AVF patency rate than the negative AMiC group (p = 0.02). The presence of AMiC was an independent risk factor for AVF failure. In conclusion, preexisting AMiC of the vascular access is associated with primary unassisted AVF failure in incident HD patients.

  13. A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination.

    PubMed

    AlOtaibi, B; Fan, S; Vanka, S; Kibria, M G; Mi, Z

    2015-10-14

    A dual-photoelectrode device, consisting of a photoanode and photocathode with complementary energy bandgaps, has long been perceived as an ideal scheme for achieving high efficiency, unassisted solar-driven water splitting. Previously reported 2-photon tandem devices, however, generally exhibit an extremely low efficiency (<0.1%), which has been largely limited by the incompatibility between the two photoelectrode materials. Here we show that the use of metal-nitride nanowire photoelectrodes, together with the scheme of parallel illumination by splitting the solar spectrum spatially and spectrally, can break the efficiency bottleneck of conventional 2-photon tandem devices. We have first investigated a dual-photoelectrode device consisting of a GaN nanowire photoanode and an InGaN nanowire photocathode, which exhibited an open circuit potential of 1.3 V and nearly 20-fold enhancement in the power conversion efficiency under visible light illumination (400-600 nm), compared to the individual photoelectrodes in 1 mol/L HBr. We have further demonstrated a dual-photoelectrode device consisting of parallel-connected metal-nitride nanowire photoanodes and a Si/InGaN nanowire photocathode, which can perform unassisted, direct solar-to-hydrogen conversion. A power conversion efficiency of 2% was measured under AM1.5G 1 sun illumination.

  14. Disulfide-linked oligonucleotide phosphorothioates - Novel analogues of nucleic acids

    NASA Technical Reports Server (NTRS)

    Wu, Taifeng; Orgel, Leslie E.

    1991-01-01

    The synthesis of phosphorothioate analogs of oligonucleotides by the oxidation of deoxyadenosine 3',5'-bisphosphorothioate (3) was attempted. Cyclization of 3 is much more efficient than oligomerization under all the conditions investigated. However, a preformed oligonucleotide carrying a 5'-terminal phosphorotioate group undergoes efficient chain-extension when oxidized in the presence of 3.

  15. Enzymatic Synthesis of Single-Stranded Clonal Pure Oligonucleotides.

    PubMed

    Ducani, Cosimo; Högberg, Björn

    2017-01-01

    Single-stranded oligonucleotides, or oligodeoxyribonucleotides (ODNs), are very important in several fields of science such as molecular biology, diagnostics, nanotechnology, and gene therapy. They are usually chemically synthesized. Here we describe an enzymatic method which enables us to synthesize pure oligonucleotides which can be up to several hundred long bases. PMID:27671934

  16. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    PubMed

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  17. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    PubMed

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  18. 2'-modified nucleosides for site-specific labeling of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Krider, Elizabeth S.; Miller, Jeremiah E.; Meade, Thomas J.

    2002-01-01

    We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.

  19. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang

    2015-07-01

    Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases.

  20. Template-directed synthesis of a small molecule-antisense conjugate targeting an mRNA structure

    PubMed Central

    Liu, Yang; Rodriguez, Lilia; Wolfe, Michael S.

    2014-01-01

    The targeting of structural features in mRNA with specificity remains a great chemical challenge. A hairpin structure near exon 10 in the pre-mRNA encoding the tau protein controls its splicing, and dementia-causing mutations that disrupt this structure increase exon 10 splicing. We previously reported the discovery of small molecules, mitoxantrone (MTX) and analogs, which bind to the tau RNA hairpin structure and the design of bipartite antisense oligonucleotides (ASOs) that simultaneously bind to the discontinuous sequences that flank this hairpin. Herein we report the synthesis of a bipartite ASO conjugated to MTX using the tau RNA hairpin and flanking sequences as a template. A set of six MTX analogs, each containing a linker-azide, and a set of ten bipartite ASOs, each containing a branched linker-alkyne, were synthesized and tested in combinatorial fashion for their ability to conjugate in the presence or absence of template RNA. A single template-dependent MTX–ASO conjugate was identified from among the 60 reaction mixtures, demonstrating that the MTX and ASO precursors could simultaneously bind the RNA template and allow proper positioning of azide and alkyne for 1,3-cycloaddition. While the MTX–ASO conjugate proved too cytotoxic for cell-based assays, the conjugate inhibited tau exon 10 splicing under cell-free conditions more effectively than MTX or bipartite ASO alone. PMID:24691171

  1. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis.

    PubMed

    Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang

    2015-01-01

    Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases. PMID:26189409

  2. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis

    PubMed Central

    Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang

    2015-01-01

    Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases. PMID:26189409

  3. Acute Molecular Perturbation of Inducible Nitric Oxide Synthase with an Antisense Approach Enhances Neuronal Preservation and Functional Recovery after Contusive Spinal Cord Injury

    PubMed Central

    Maggio, Dominic M.; Chatzipanteli, Katina; Masters, Neil; Patel, Samik P.; Dietrich, W. Dalton

    2012-01-01

    Abstract Inducible nitric oxide synthase (iNOS) is a key mediator of inflammation and oxidative stress produced during pathological conditions, including neurodegenerative diseases and central nervous system (CNS) injury. iNOS is responsible for the formation of high levels of nitric oxide (NO). The production of highly reactive and cytotoxic NO species, such as peroxynitrite, plays an important role in secondary tissue damage. We have previously demonstrated that acute administration of iNOS antisense oligonucleotides (ASOs) 3 h after moderate contusive spinal cord injury (SCI) potently inhibits iNOS-mediated increases in NO levels, leading to reduced blood–spinal cord barrier permeability, decreased neutrophil accumulation, and less neuronal cell death. In the current study we investigated if iNOS ASOs could also provide long-term (10-week) histological and behavioral improvements after moderate thoracic T8 contusive SCI. Adult rats were randomly assigned to three groups (n=10/group): SCI alone, SCI and mixed base control oligonucleotides (MBOs), or SCI and iNOS ASOs (200 nM). Oligonucleotides were administered by spinal superfusion 3 h after injury. Behavioral analysis (Basso-Beattie-Bresnahan [BBB] score and subscore) was employed weekly for 10 weeks post-SCI. Although animals treated with iNOS ASOs demonstrated no significant differences in BBB scores compared to controls, subscore analysis revealed a significant improvement in foot positioning, trunk stability, and tail clearance. Histologically, while no gross improvement in preserved white and gray matter was observed, greater numbers of surviving neurons were present adjacent to the lesion site in iNOS ASO-treated animals than controls. These results support the effectiveness of targeting iNOS acutely as a therapeutic approach after SCI. PMID:22708918

  4. Comparative gene expression profiling by oligonucleotide fingerprinting.

    PubMed Central

    Meier-Ewert, S; Lange, J; Gerst, H; Herwig, R; Schmitt, A; Freund, J; Elge, T; Mott, R; Herrmann, B; Lehrach, H

    1998-01-01

    The use of hybridisation of synthetic oligonucleotides to cDNAs under high stringency to characterise gene sequences has been demonstrated by a number of groups. We have used two cDNA libraries of 9 and 12 day mouse embryos (24 133 and 34 783 clones respectively) in a pilot study to characterise expressed genes by hybridisation with 110 hybridisation probes. We have identified 33 369 clusters of cDNA clones, that ranged in representation from 1 to 487 copies (0.7%). 737 were assigned to known rodent genes, and a further 13 845 showed significant homologies. A total of 404 clusters were identified as significantly differentially represented (P < 0.01) between the two cDNA libraries. This study demonstrates the utility of the fingerprinting approach for the generation of comparative gene expression profiles through the analysis of cDNAs derived from different biological materials. PMID:9547283

  5. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    SciTech Connect

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  6. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  7. Pseudogenes as an alternative source of natural antisense transcripts

    PubMed Central

    2010-01-01

    Background Naturally occurring antisense transcripts (NATs) are non-coding RNAs that may regulate the activity of sense transcripts to which they bind because of complementarity. NATs that are not located in the gene they regulate (trans-NATs) have better chances to evolve than cis-NATs, which is evident when the sense strand of the cis-NAT is part of a protein coding gene. However, the generation of a trans-NAT requires the formation of a relatively large region of complementarity to the gene it regulates. Results Pseudogene formation may be one evolutionary mechanism that generates trans-NATs to the parental gene. For example, this could occur if the parental gene is regulated by a cis-NAT that is copied as a trans-NAT in the pseudogene. To support this we identified human pseudogenes with a trans-NAT to the parental gene in their antisense strand by analysis of the database of expressed sequence tags (ESTs). We found that the mutations that appeared in these trans-NATs after the pseudogene formation do not show the flat distribution that would be expected in a non functional transcript. Instead, we found higher similarity to the parental gene in a region nearby the 3' end of the trans-NATs. Conclusions Our results do not imply a functional relation of the trans-NAT arising from pseudogenes over their respective parental genes but add evidence for it and stress the importance of duplication mechanisms of genetic material in the generation of non-coding RNAs. We also provide a plausible explanation for the large transcripts that can be found in the antisense strand of some pseudogenes. PMID:21047404

  8. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    ERIC Educational Resources Information Center

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  9. Intra-amygdala injections of CREB antisense impair inhibitory avoidance memory: Role of norepinephrine and acetylcholine

    PubMed Central

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed brain sites, through mechanisms that include the release of norepinephrine and acetylcholine within the amygdala. Thus, CREB antisense injections may affect memory by interfering with mechanisms of modulation, rather than storage, of memory. In the present experiment, rats received bilateral intra-amygdala infusions of CREB antisense (2 nmol/1 μL) 6 h prior to inhibitory avoidance training. In vivo microdialysis samples were collected from the right amygdala before, during, and following training. CREB antisense produced amnesia tested at 48 h after training. In addition, CREB antisense infusions dampened the training-related release of norepinephrine, and to a lesser extent of acetylcholine, in the amygdala. Furthermore, intra-amygdala infusions of the β-adrenergic receptor agonist clenbuterol administered immediately after training attenuated memory impairments induced by intra-amygdala injections of CREB antisense. These findings suggest that intra-amygdala treatment with CREB antisense may affect processes involved in modulation of memory in part through interference with norepinephrine and acetylcholine neurotransmission in the amygdala. PMID:18772255

  10. Method for the preparation of size marker for synthetic oligonucleotides

    SciTech Connect

    Jing, G.Z.; Liu, A.; Leung, W.C.

    1986-01-01

    Terminal deoxynucleotidyltransferase was used for the addition of (..cap alpha..-/sup 32/P)dCTP to the 3'-OH termini of oligo(dT)/sub 12-18/. A collection of oligonucleotides with chain lengths ranging continuously from 13-mer to over 100-mer was generated. The reaction mixture was then mixed with oligo(dT)/sub 12-18/ labeled with (..gamma..-/sup 32/P)ATP by T/sub 4/ polynucleotide kinase. A sequence ladder with the bottom base as 12-mer was then formed. These oligonucleotides served as size marker for the purification and identification of oligonucleotides on polyacrylamide gel.

  11. Bipolar TiO/sub 2//Pt semiconductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting

    SciTech Connect

    Smotkin, E.; Bard, A.J.; Campion, A.; Fox, M.A.; Mallouk, T.; Webber, S.E.; White, J.M.

    1986-09-11

    Bipolar TiO/sub 2//Pt photoelectrodes were fabricated by anodization of thin Ti foils onto which Pt had been previously sputter-deposited. These photoelectrodes are capable of a vectorial charge transfer. Current-potential curves were used to predict the behavior of multielectrode arrays. Several different multielectrode cells, utilizing KOH, O/sub 2/ electrolytes, were constructed. In series configuration, the open-circuit voltage V/sub oc/ is proportional to the number of panels used. With five panels in series, a V/sub oc/ in excess of 3.6 V is obtained, permitting unassisted photolytic (Xe lamp) water splitting to produce H/sub 2/ and O/sub 2/.

  12. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.

    PubMed

    Bordoy, Antoni E; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  13. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach

    PubMed Central

    Bordoy, Antoni E.; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  14. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat.

    PubMed

    Carrieri, Claudia; Cimatti, Laura; Biagioli, Marta; Beugnet, Anne; Zucchelli, Silvia; Fedele, Stefania; Pesce, Elisa; Ferrer, Isidre; Collavin, Licio; Santoro, Claudio; Forrest, Alistair R R; Carninci, Piero; Biffo, Stefano; Stupka, Elia; Gustincich, Stefano

    2012-11-15

    Most of the mammalian genome is transcribed. This generates a vast repertoire of transcripts that includes protein-coding messenger RNAs, long non-coding RNAs (lncRNAs) and repetitive sequences, such as SINEs (short interspersed nuclear elements). A large percentage of ncRNAs are nuclear-enriched with unknown function. Antisense lncRNAs may form sense-antisense pairs by pairing with a protein-coding gene on the opposite strand to regulate epigenetic silencing, transcription and mRNA stability. Here we identify a nuclear-enriched lncRNA antisense to mouse ubiquitin carboxy-terminal hydrolase L1 (Uchl1), a gene involved in brain function and neurodegenerative diseases. Antisense Uchl1 increases UCHL1 protein synthesis at a post-transcriptional level, hereby identifying a new functional class of lncRNAs. Antisense Uchl1 activity depends on the presence of a 5' overlapping sequence and an embedded inverted SINEB2 element. These features are shared by other natural antisense transcripts and can confer regulatory activity to an artificial antisense to green fluorescent protein. Antisense Uchl1 function is under the control of stress signalling pathways, as mTORC1 inhibition by rapamycin causes an increase in UCHL1 protein that is associated to the shuttling of antisense Uchl1 RNA from the nucleus to the cytoplasm. Antisense Uchl1 RNA is then required for the association of the overlapping sense protein-coding mRNA to active polysomes for translation. These data reveal another layer of gene expression control at the post-transcriptional level.

  15. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures.

    PubMed

    Hawkes, Emily J; Hennelly, Scott P; Novikova, Irina V; Irwin, Judith A; Dean, Caroline; Sanbonmatsu, Karissa Y

    2016-09-20

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. We investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probing and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription. PMID:27653675

  16. Does Active Learning through an Antisense Jigsaw Make Sense?

    NASA Astrophysics Data System (ADS)

    Seetharaman, Mahadevan; Musier-Forsyth, Karin

    2003-12-01

    Three journal articles on nucleic acid antisense modification strategies were assigned to 12 students as part of an active learning "jigsaw" exercise for a graduate-level chemistry course on nucleic acids. Each student was required to read one of the three articles. This assignment was preceded by an hour-long lecture on the basic concepts in antisense antigene technology. On the day of the jigsaw, the students with the same article (three groups of four students) discussed their article briefly, and then formed four new groups where no one had read the same article. Each student spent about five minutes teaching his or her article to the other group members, using specific questions provided to guide the discussion. This exercise laid the foundation for bringing the discussion to the entire class, where most of the students actively participated. To test the students' comprehension of the reading materials, a problem set was designed that required not only an understanding of the three articles, but also application of the concepts learned. The effectiveness of this active learning strategy and its applicability to other topics are discussed in this article.

  17. MYCNOS functions as an antisense RNA regulating MYCN

    PubMed Central

    Vadie, Nadia; Saayman, Sheena; Lenox, Alexandra; Ackley, Amanda; Clemson, Mathew; Burdach, Jon; Hart, Jonathan; Vogt, Peter K; Morris, Kevin V

    2015-01-01

    Amplification or overexpression of neuronal MYC (MYCN) is associated with poor prognosis of human neuroblastoma. Three isoforms of the MYCN protein have been described as well as a protein encoded by an antisense transcript (MYCNOS) that originates from the opposite strand at the MYCN locus. Recent findings suggest that some antisense long non-coding RNAs (lncRNAs) can play a role in epigenetically regulating gene expression. Here we report that MYCNOS transcripts function as a modulator of the MYCN locus, affecting MYCN promoter usage and recruiting various proteins, including the Ras GTPase-activating protein-binding protein G3BP1, to the upstream MYCN promoter. Overexpression of MYCNOS results in a reduction of upstream MYCN promoter usage and increased MYCN expression, suggesting that the protein-coding MYCNOS also functions as a regulator of MYCN ultimately controlling MYCN transcriptional variants. The observations presented here demonstrate that protein-coding transcripts can regulate gene transcription and can tether regulatory proteins to target loci. PMID:26156430

  18. Artificial neural network prediction of antisense oligodeoxynucleotide activity.

    PubMed

    Giddings, Michael C; Shah, Atul A; Freier, Sue; Atkins, John F; Gesteland, Raymond F; Matveeva, Olga V

    2002-10-01

    An mRNA transcript contains many potential antisense oligodeoxynucleotide target sites. Identification of the most efficacious targets remains an important and challenging problem. Building on separate work that revealed a strong correlation between the inclusion of short sequence motifs and the activity level of an oligo, we have developed a predictive artificial neural network system for mapping tetranucleotide motif content to antisense oligo activity. Trained for high-specificity prediction, the system has been cross-validated against a database of 348 oligos from the literature and a larger proprietary database of 908 oligos. In cross- validation tests the system identified effective oligos (i.e. oligos capable of reducing target mRNA expression to <25% that of the control) with 53% accuracy, in contrast to the <10% success rates commonly reported for trial-and-error oligo selection, suggesting a possible 5-fold reduction in the in vivo screening required to find an active oligo. We have implemented a web interface to a trained neural network. Given an RNA transcript as input, the system identifies the most likely oligo targets and provides estimates of the probabilities that oligos targeted against these sites will be effective. PMID:12364609

  19. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  20. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligos

    PubMed Central

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W.; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y.

    2015-01-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability, and autism spectrum disorders1. MECP2 duplication syndrome is one of the most common genomic rearrangements in males2 and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections, and early death3–5. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question, however, was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders6–8, including loss of MeCP2 in Rett syndrome9, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we hypothesized that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. Therefore, we first generated and characterized a conditional Mecp2-overexpressing mouse model and showed that correction of MeCP2 levels largely reversed the behavioral, molecular, and electrophysiological deficits. Next, we sought a translational strategy to reduce MeCP2 and turned to antisense oligonucleotides (ASOs). ASOs are small modified nucleic acids that can selectively hybridize with mRNA transcribed from a target gene and silence it10,11, and have been successfully used to correct deficits in different mouse models12–18. We found that ASO treatment induced a broad phenotypic rescue in adult symptomatic transgenic MECP2

  1. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  2. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  3. Sequence-dependent theory of oligonucleotide hybridization kinetics

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-05-07

    A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions.

  4. Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers

    PubMed Central

    Yu, Yuanyuan; Liang, Chao; Lv, Quanxia; Li, Defang; Xu, Xuegong; Liu, Baoqin; Lu, Aiping; Zhang, Ge

    2016-01-01

    Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the detailed advantages and disadvantages of antibodies and aptamers in therapeutic applications and summarize recent progress in aptamer selection and modification approaches. We will present therapeutic oligonucleotide aptamers in preclinical studies for skeletal diseases and further discuss oligonucleotide aptamers in different stages of clinical evaluation for various disease therapies including macular degeneration, cancer, inflammation and coagulation to highlight the bright commercial future and potential challenges of therapeutic oligonucleotide aptamers. PMID:26978355

  5. [Preliminary study on HLA-B genotyping by oligonucleotide chips].

    PubMed

    Lan, Ke; Hu, Shou-Wang; Zhang, Fan; Wang, Hui; Guan, Wei; Ding, Yu; Sun, Ou-Jun; Wang, Sheng-Qi

    2003-04-01

    HLA genes constitute a highly polymorphic multigene system. In the present study, HLA-B oligonucleotide chips were manufactured by using a set of sequence-specific oligonucleotide probes derived from polymorphic regions in exon 2 and exon 3 of HLA-B gene spotted by microarrayer onto the aldehyde modified glass slides. In addition, the sequenced HLA-B gene clones used as standard samples were amplified from exon 2 and exon 3 by PCR. Together with the correct hybridization and wash conditions, the PCR products were bound with the array probes on the chip, and the hybridization patterns were transformed to HLA-B genotypes. The results showed that the genotypes of standard samples by the HLA-B oligonucleotide chips were completely identical with the sequenced clones. In conclusion, the oligonucleotide chip method presented here for HLA-B genotyping is a rapid, accurate, sensitive and attractive high throughput biochemical way.

  6. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  7. Oligonucleotide and Long Polymeric DNA Encoding

    SciTech Connect

    Miller, E; Mariella Jr., R P; Christian, A T; Gardner, S N; Williams, J M

    2003-11-24

    This report summarizes the work done at Lawrence Livermore National Laboratory for the Oligonucleotide and Long Polymeric DNA Encoding project, part of the Microelectronic Bioprocesses Program at DARPA. The goal of the project was to develop a process by which long (circa 10,000 base-pair) synthetic DNA molecules could be synthesized in a timely and economic manner. During construction of the long molecule, errors in DNA sequence occur during hybridization and/or the subsequent enzymatic process. The work done on this project has resulted in a novel synthesis scheme that we call the parallel pyramid synthesis protocol, the development of a suit of computational tools to minimize and quantify errors in the synthesized DNA sequence, and experimental proof of this technique. The modeling consists of three interrelated modules: the bioinformatics code which determines the specifics of parallel pyramid synthesis for a given chain of long DNA, the thermodynamics code which tracks the products of DNA hybridization and polymerase extension during the later steps in the process, and the kinetics model which examines the temporal and spatial processes during one thermocycle. Most importantly, we conducted the first successful syntheses of a gene using small starting oligomers (tetramers). The synthesized sequence, 813 base pairs long, contained a 725 base pair gene, modified green fluorescent protein (mGFP), which has been shown to be a functional gene by cloning into cells and observing its green fluorescent product.

  8. Potent Antiscrapie Activities of Degenerate Phosphorothioate Oligonucleotides

    PubMed Central

    Kocisko, David A.; Vaillant, Andrew; Lee, Kil Sun; Arnold, Kevin M.; Bertholet, Nadine; Race, Richard E.; Olsen, Emily A.; Juteau, Jean-Marc; Caughey, Byron

    2006-01-01

    Although transmissible spongiform encephalopathies (TSEs) are incurable, a key therapeutic approach is prevention of conversion of the normal, protease-sensitive form of prion protein (PrP-sen) to the disease-specific protease-resistant form of prion protein (PrP-res). Here degenerate phosphorothioate oligonucleotides (PS-ONs) are introduced as low-nM PrP-res conversion inhibitors with strong antiscrapie activities in vivo. Comparisons of various PS-ON analogs indicated that hydrophobicity and size were important, while base composition was only minimally influential. PS-ONs bound avidly to PrP-sen but could be displaced by sulfated glycan PrP-res inhibitors, indicating the presence of overlapping binding sites. Labeled PS-ONs also bound to PrP-sen on live cells and were internalized. This binding likely accounts for the antiscrapie activity. Prophylactic PS-ON treatments more than tripled scrapie survival periods in mice. Survival times also increased when PS-ONs were mixed with scrapie brain inoculum. With these antiscrapie activities and their much lower anticoagulant activities than that of pentosan polysulfate, degenerate PS-ONs are attractive new compounds for the treatment of TSEs. PMID:16495266

  9. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  10. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel

    PubMed Central

    Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution. PMID:26650843

  11. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    PubMed

    Tang, Weizhong; Zhou, Huafu; Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  12. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex by an allosteric mechanism.

    PubMed

    Sheehan, J P; Phan, T M

    2001-04-24

    Phosphorothioate oligonucleotides (PS ODNs) prolong the activated partial thromboplastin time in human plasma by inhibition of intrinsic tenase (factor IXa-factor VIIIa) activity. This inhibition was characterized using ISIS 2302, a 20-mer antisense PS ODN. ISIS 2302 demonstrated hyperbolic, mixed-type inhibition of factor X activation by the intrinsic tenase complex. The decrease in V(max(app)) was analyzed by examining complex assembly, cofactor stability, and protease catalysis. ISIS 2302 did not inhibit factor X activation by the factor IXa-phospholipid complex, or significantly affect factor VIII-phospholipid affinity. Inhibitory concentrations of ISIS 2302 modestly decreased the affinity of factor IXa-factor VIIIa binding in the presence of phospholipid (K(D) = 11.5 vs 4.8 nM). This effect was insufficient to explain the reduction in V(max(app)). ISIS 2302 did not affect the in vitro half-life of factor VIIIa, suggesting it did not destabilize cofactor activity. In the presence of 30% ethylene glycol, the level of factor X activation by the factor IXa-phospholipid complex increased 3-fold, and the level of chromogenic substrate cleavage by factor IXa increased more than 50-fold. ISIS 2302 demonstrated partial inhibition of factor X activation by the factor IXa-phospholipid complex, and chromogenic substrate cleavage by factor IXa, only in the presence of ethylene glycol. Like the intact enzyme complex, ISIS 2302 demonstrated hyperbolic, mixed-type inhibition of chromogenic substrate cleavage by factor IXa (K(I) = 88 nM). Equilibrium binding studies with fluorescein-labeled ISIS 2302 demonstrated a similar affinity (K(D) = 92 nM) for the PS ODN-factor IX interaction. These results suggest that PS ODNs bind to an exosite on factor IXa, modulating catalytic activity of the intrinsic tenase complex.

  13. A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production.

    PubMed

    Chen, Juan; Lovell, Jonathan F; Lo, Pui-Chi; Stefflova, Klara; Niedre, Mark; Wilson, Brian C; Zheng, Gang

    2008-07-01

    We report a new class of photodynamic molecular beacon (PMB) with tumor specific mRNA-triggered control of singlet oxygen ((1)O(2)) production. The beacon contains a single-stranded oligonucleotide linker that forms a stem-loop structure (hairpin) in which the sequence is an antisense oligonucleotide (AS-ON) complementary to a target mRNA. The stem is formed by the annealing of two complementary arm sequences that are on either side of the loop sequence. A photosensitizer molecule (PS) is attached to the end of one arm and a quencher (Q) is similarly attached to the other end. The conformationally-restricted hairpin forces Q to efficiently silence the photoreactivity of PS. In the presence of target mRNA, the hairpin opens and the PS is no longer silenced. Upon irradiating with light, the PS then emits fluorescence and generates cytotoxic (1)O(2). To show proof of concept, we have synthesized a c-raf-1 mRNA-triggered PMB using pyropheophorbide (Pyro) as PS, carotenoid as Q and c-raf-1 mRNA-targeted AS-ON as the loop sequence. We show that the (1)O(2) production of Pyro is quenched in its native state by 15-fold and is restored 9-fold by the addition of the target RNA. Comparing this to our recently reported self-folding peptide linker-based PMB, the hairpin effect results in an enhanced (1)O(2) quenching efficiency that decreases the residual (1)O(2) production by over 3-fold, thus providing enhanced control of (1)O(2) production upon target-linker interactions. When incubated with c-raf-1 expressing MDA-MB-231 cancer cells, the PMB displayed efficient cellular uptake and subsequently effective PDT activation in targeted cells.

  14. rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus

    PubMed Central

    Shpiz, Sergey; Kwon, Dmitry; Rozovsky, Yakov; Kalmykova, Alla

    2009-01-01

    Telomeres in Drosophila are maintained by the specialized telomeric retrotransposons HeT-A, TART and TAHRE. Sense transcripts of telomeric retroelements were shown to be the targets of a specialized RNA-interference mechanism, a repeat-associated short interfering (rasi)RNA-mediated system. Antisense rasiRNAs play a key role in this mechanism, highlighting the importance of antisense expression in retrotransposon silencing. Previously, bidirectional transcription was reported for the telomeric element TART. Here, we show that HeT-A is also bidirectionally transcribed, and HeT-A antisense transcription in ovaries is regulated by a promoter localized within its 3′ untranslated region. A remarkable feature of noncoding HeT-A antisense transcripts is the presence of multiple introns. We demonstrate that sense and antisense HeT-A-specific rasiRNAs are present in the same tissue, indicating that transcripts of both directions may be considered as natural targets of the rasiRNA pathway. We found that the expression of antisense transcripts of telomeric elements is regulated by the RNA silencing machinery, suggesting rasiRNA-mediated interplay between sense and antisense transcripts in the cell. Finally, this regulation occurs in the nucleus since disruption of the rasiRNA pathway leads to an accumulation of TART and HeT-A transcripts in germ cell nuclei. PMID:19036789

  15. Functional analysis of polyphenol oxidases by antisense/sense technology.

    PubMed

    Thipyapong, Piyada; Stout, Michael J; Attajarusit, Jutharat

    2007-01-01

    Polyphenol oxidases (PPOs) catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum) plants with modified PPO expression levels (suppressed PPO and overexpressing PPO). These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F.)), cotton bollworm (Helicoverpa armigera (Hübner)) and beet army worm (Spodoptera exigua (Hübner)), whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say)) feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants overexpressing PPO, suggesting

  16. Mechanism of oligonucleotide release from cationic liposomes.

    PubMed Central

    Zelphati, O; Szoka, F C

    1996-01-01

    We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm. Images Fig. 1 Fig. 3 PMID:8876163

  17. Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes.

    PubMed

    Lu, Xueguang; Jia, Fei; Tan, Xuyu; Wang, Dali; Cao, Xueyan; Zheng, Jiamin; Zhang, Ke

    2016-07-27

    Negatively charged nucleic acids are often complexed with polycationic transfection agents before delivery. Herein, we demonstrate that a noncationic, biocompatible polymer, polyethylene glycol, can be used as a transfection vector by forming a brush polymer-DNA conjugate. The brush architecture provides embedded DNA strands with enhanced nuclease stability and improved cell uptake. Because of the biologically benign nature of the polymer component, no cytotoxicity was observed. This approach has the potential to address several long-lasting challenges in oligonucleotide therapeutics. PMID:27420413

  18. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  19. Effects of antisense-mediated inhibition of 11β-hydroxysteroid dehydrogenase type 1 on hepatic lipid metabolism[S

    PubMed Central

    Li, Guoping; Hernandez-Ono, Antonio; Crooke, Rosanne M.; Graham, Mark J.; Ginsberg, Henry N.

    2011-01-01

    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) converts inactive 11-keto derivatives to active glucocorticoids within tissues and may play a role in the metabolic syndrome (MS). We used an antisense oligonucleotide (ASO) to knock down 11β-HSD1 in livers of C57BL/6J mice consuming a Western-type diet (WTD). 11β-HSD1 ASO-treated mice consumed less food, so we compared them to ad libitum-fed mice and to food-matched mice receiving control ASO. Knockdown of 11β-HSD1 directly protected mice from WTD-induced steatosis and dyslipidemia by reducing synthesis and secretion of triglyceride (TG) and increasing hepatic fatty acid oxidation. These changes in hepatic and plasma lipids were not associated with reductions in genes involved in de novo lipogenesis. However, protein levels of both sterol regulatory element-binding protein (SREBP) 1 and fatty acid synthase were significantly reduced in mice treated with 11β-HSD1 ASO. There was no change in hepatic secretion of apolipoprotein (apo)B, indicating assembly and secretion of smaller apoB-containing lipoproteins by the liver in the 11β-HSD1-treated mice. Our results indicate that inhibition of 11β-HSD1 by ASO treatment of WTD-fed mice resulted in improved plasma and hepatic lipid levels, reduced lipogenesis by posttranslational regulation, and secretion of similar numbers of apoB-containing lipoproteins containing less TG per particle. PMID:21364201

  20. Combined antisense knockdown of type 1 and type 2 iodothyronine deiodinases disrupts embryonic development in zebrafish (Danio rerio).

    PubMed

    Walpita, Chaminda N; Crawford, Alexander D; Darras, Veerle M

    2010-03-01

    Thyroid hormones (THs) are important regulators of gene expression during vertebrate development. In teleosts, early embryos rely on the maternal TH deposit in the egg yolk, consisting predominantly of T(4). Activation of T(4) to T(3) by iodothyronine deiodinases (Ds) may therefore be an important factor in determining T(3)-dependent development. In zebrafish, both Ds capable of T(3) production, D1 and D2, are first expressed very early during embryonic development. We sought to determine their relative importance for zebrafish embryonic development by inhibiting their expression via antisense oligonucleotides against D1 and D2, and by a combined knockdown of both deiodinases. The impact of these treatments on the rate of embryonic development was estimated via three morphological indices: otic vesicle length, head-trunk angle and pigmentation index. Knockdown of D1 alone seemed not to affect developmental progression. In contrast, D2 knockdown resulted in a clear developmental delay in all parameters scored, suggesting that D2 is the major contributor to TH activation in developing zebrafish embryos. Importantly, combined knockdown of D1 and D2 caused not only a more pronounced developmental delay than D2 knockdown alone but also the appearance of dysmorphologies in a substantial minority of treated embryos. This shows that although D1 may not be essential in euthyroid conditions, it may be crucial under depleted thyroid status as is the case when T(3) production by D2 is inhibited. These results indicate that zebrafish embryos are dependent on T(4) uptake and its subsequent activation to T(3), and suggest that substantial inhibition of embryonic T(4) to T(3) conversion reduces intracellular T(3) availability below the threshold level necessary for normal development. PMID:19800339

  1. Surface characterization of oligonucleotides immobilized on polymer surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Duy K.; Ivanova, Elena P.; Wright, Jonathan P.; Grodzinski, Piotr A.; Lenigk, Ralf; Nicolau, Dan V.

    2002-11-01

    The immobilization and hybridization of amino-terminated oligonucleotide strands to cyclo-olefin-copolymer (COC) and polycarbonate (PC) surfaces have been investigated for potential application in micro-PCR devices. The oligonucleotides were covalently bound to the plasma-treated COC and PC surfaces via an N-hydroxy-sulfosuccinimide (NHSS) intermediate. Analysis by AFM showed that the oligonucleotides were present on the surfaces as lumps, and that the size, both vertically and laterally, of these lumps on the COC surface was larger compared to the PC surface. The immobilization efficiency of the former was also higher (15.8 x 1012 molecules / cm2) compared to the latter (3.3 x 1012 molecules / cm2). The higher efficiency of the COC surface is attributed to the more effective NHSS-functionalization and its higher surface roughness. Subsequent hybridization doubled the height of the lumps, while the lateral dimensions remained essentially unchanged. This is explained in terms of organization of the long probe strands used on the surface as flexible, coil-like polymer chains, which allow the complementary oligonucleotides to bind and increase the height of the lumps. The AFM frictional images showed that the hybridization had the effect of reversing hydrophilicity of the oligonucleotide lumps from being more hydrophilic to more hydrophobic, consistent with the hydrophilic bases of the probe strands being shielded as a result of hybridization.

  2. Characteristic archaebacterial 16S rRNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    McGill, T. J.; Jurka, J.; Sobieski, J. M.; Pickett, M. H.; Woese, C. R.; Fox, G. E.

    1986-01-01

    A method of analyzing 16S rRNA catalog data has been developed in which groupings at various taxonomic levels can be characterized in terms of specific "signature" oligonucleotides. This approach provides an alternative means for evaluating higher order branching possibilities and can be used to assess the phylogenetic position of isolates that are poorly placed by the usual clustering procedures. This signature approach has been applied to forty archaebacterial catalogs and every oligonucleotide with significant signature value has been identified. Sets of specific oligonucleotides were identified for every major group on a dendrogram produced by cluster analysis procedures. Signatures that would establish between group relationships were also sought and found. In the case of the Methanobacteriaceae the clustering methods suggest a specific relationship to the Methanococcaceae. This inclusion is in fact supported by six strong signature oligonucleotides. However there are also significant numbers of signature oligonucleotides supporting a specific relationship of the Methanobacteriaceae to either the Halobacteriaceae or the Methanomicrobiaceae. Thus the placement of the Methanobacteriaceae is less certain than the usual dendrograms imply. The signature approach also was used to assess the phylogenetic position of Thermoplasma acidophilum which is found to be more closely related to the methanogen/halophile Division than to the sulfur dependent Division of the archaebacteria. This does not imply however that Thermoplasma acidophilum is properly regarded as being in the methanogen/halophile Division.

  3. Molecular beacon probes of photodamage in thymine and uracil oligonucleotides.

    PubMed

    Yarasi, Soujanya; McConachie, Cheryl; Loppnow, Glen R

    2005-01-01

    Molecular beacons (MB) are becoming more common as sequence-selective detectors of nucleic acids. Although they can easily detect single-base mismatches, they have never been used to directly detect DNA or RNA damage. To measure the degree of ultraviolet (UV) light damage in oligonucleotides, we report a novel MB approach for general detection of photoproducts in UV-irradiated rU17 and dT17 oligonucleotides. With monochromatic UV light irradiation at ca 280 nm under anoxic conditions, the oligonucleotide absorption decays with a single-exponential time constant of 123+/-1 min for rU17 and with double-exponential time constants of 78+/-0.5 min (99%) and 180+/-5 min (0.05%) for dT17 oligonucleotides. Under the same conditions, the MB fluorescence decays more quickly, with single-exponential time constants of 19+/-2 and 26+/-3 min for rU17 and dT17, respectively. Similar kinetics were observed with broadband UV light irradiation of oligonucleotides. The differences in the UV damage kinetics of dT17 and rU17 and their detection by absorption and fluorescence techniques will be discussed in the context of differential instabilities introduced in the nucleic acid-MB duplex by the different photoproducts formed.

  4. Fructose Promotes Uptake and Activity of Oligonucleotides With Different Chemistries in a Context-dependent Manner in mdx Mice.

    PubMed

    Cao, Limin; Han, Gang; Lin, Caorui; Gu, Ben; Gao, Xianjun; Moulton, Hong M; Seow, Yiqi; Yin, HaiFang

    2016-01-01

    Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise in correcting frame-disrupting mutations in the DMD gene for Duchenne muscular dystrophy. However, insufficient systemic delivery limits clinical adoption. Previously, we showed that a glucose/fructose mixture augmented AO delivery to muscle in mdx mice. Here, we evaluated if fructose alone could enhance the activities of AOs with different chemistries in mdx mice. The results demonstrated that fructose improved the potency of AOs tested with the greatest effect on phosphorodiamidate morpholino oligomer (PMO), resulted in a 4.25-fold increase in the number of dystrophin-positive fibres, compared to PMO in saline in mdx mice. Systemic injection of lissamine-labeled PMO with fructose at 25 mg/kg led to increased uptake and elevated dystrophin expression in peripheral muscles, compared to PMO in saline, suggesting that fructose potentiates PMO by enhancing uptake. Repeated intravenous administration of PMO in fructose at 50 mg/kg/week for 3 weeks and 50 mg/kg/month for 5 months restored up to 20% of wild-type dystrophin levels in skeletal muscles with improved functions without detectable toxicity, compared to untreated mdx controls. Collectively, we show that fructose can potentiate AOs of different chemistries in vivo although the effect diminished over repeated administration. PMID:27351681

  5. Fructose Promotes Uptake and Activity of Oligonucleotides With Different Chemistries in a Context-dependent Manner in mdx Mice

    PubMed Central

    Cao, Limin; Han, Gang; Lin, Caorui; Gu, Ben; Gao, Xianjun; Moulton, Hong M; Seow, Yiqi; Yin, HaiFang

    2016-01-01

    Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise in correcting frame-disrupting mutations in the DMD gene for Duchenne muscular dystrophy. However, insufficient systemic delivery limits clinical adoption. Previously, we showed that a glucose/fructose mixture augmented AO delivery to muscle in mdx mice. Here, we evaluated if fructose alone could enhance the activities of AOs with different chemistries in mdx mice. The results demonstrated that fructose improved the potency of AOs tested with the greatest effect on phosphorodiamidate morpholino oligomer (PMO), resulted in a 4.25-fold increase in the number of dystrophin-positive fibres, compared to PMO in saline in mdx mice. Systemic injection of lissamine-labeled PMO with fructose at 25 mg/kg led to increased uptake and elevated dystrophin expression in peripheral muscles, compared to PMO in saline, suggesting that fructose potentiates PMO by enhancing uptake. Repeated intravenous administration of PMO in fructose at 50 mg/kg/week for 3 weeks and 50 mg/kg/month for 5 months restored up to 20% of wild-type dystrophin levels in skeletal muscles with improved functions without detectable toxicity, compared to untreated mdx controls. Collectively, we show that fructose can potentiate AOs of different chemistries in vivo although the effect diminished over repeated administration. PMID:27351681

  6. Large-scale unassisted smoking cessation over 50 years: lessons from history for endgame planning in tobacco control.

    PubMed

    Chapman, Simon; Wakefield, Melanie A

    2013-05-01

    In the 50 years since the twentieth century's smoking epidemic began to decline from the beginning of the 1960s, hundreds of millions of smokers around the world have stopped smoking permanently. Overwhelmingly, most stopped without any formal assistance in the form of medication or professional assistance, including many millions of former heavy smokers. Nascent discussion about national and global tobacco endgame scenarios is dominated by an assumption that transitioning from cigarettes to alternative forms of potent, consumer-acceptable forms of nicotine will be essential to the success of endgames. This appears to uncritically assume (1) the hardening hypothesis: that as smoking prevalence moves toward and below 10%, the remaining smokers will be mostly deeply addicted, and will be largely unable to stop smoking unless they are able to move to other forms of 'clean' nicotine addiction such as e-cigarettes and more potent forms of nicotine replacement; and (2) an overly medicalised view of smoking cessation that sees unassisted cessation as both inefficient and inhumane. In this paper, we question these assumptions. We also note that some vanguard nations which continue to experience declining smoking prevalence have long banned smokeless tobacco and non-therapeutic forms of nicotine delivery. We argue that there are potentially risky consequences of unravelling such bans when history suggests that large-scale cessation is demonstrably possible.

  7. Large-scale unassisted smoking cessation over 50 years: lessons from history for endgame planning in tobacco control

    PubMed Central

    Chapman, Simon; Wakefield, Melanie A

    2013-01-01

    In the 50 years since the twentieth century's smoking epidemic began to decline from the beginning of the 1960s, hundreds of millions of smokers around the world have stopped smoking permanently. Overwhelmingly, most stopped without any formal assistance in the form of medication or professional assistance, including many millions of former heavy smokers. Nascent discussion about national and global tobacco endgame scenarios is dominated by an assumption that transitioning from cigarettes to alternative forms of potent, consumer-acceptable forms of nicotine will be essential to the success of endgames. This appears to uncritically assume (1) the hardening hypothesis: that as smoking prevalence moves toward and below 10%, the remaining smokers will be mostly deeply addicted, and will be largely unable to stop smoking unless they are able to move to other forms of ‘clean’ nicotine addiction such as e-cigarettes and more potent forms of nicotine replacement; and (2) an overly medicalised view of smoking cessation that sees unassisted cessation as both inefficient and inhumane. In this paper, we question these assumptions. We also note that some vanguard nations which continue to experience declining smoking prevalence have long banned smokeless tobacco and non-therapeutic forms of nicotine delivery. We argue that there are potentially risky consequences of unravelling such bans when history suggests that large-scale cessation is demonstrably possible. PMID:23591504

  8. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts.

    PubMed

    Kramer, Nicholas J; Carlomagno, Yari; Zhang, Yong-Jie; Almeida, Sandra; Cook, Casey N; Gendron, Tania F; Prudencio, Mercedes; Van Blitterswijk, Marka; Belzil, Veronique; Couthouis, Julien; Paul, Joseph West; Goodman, Lindsey D; Daughrity, Lillian; Chew, Jeannie; Garrett, Aliesha; Pregent, Luc; Jansen-West, Karen; Tabassian, Lilia J; Rademakers, Rosa; Boylan, Kevin; Graff-Radford, Neill R; Josephs, Keith A; Parisi, Joseph E; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Deng, Ning; Feng, Yanan; Cheng, Tzu-Hao; Dickson, Dennis W; Cohen, Stanley N; Bonini, Nancy M; Link, Christopher D; Gao, Fen-Biao; Petrucelli, Leonard; Gitler, Aaron D

    2016-08-12

    An expanded hexanucleotide repeat in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). Therapeutics are being developed to target RNAs containing the expanded repeat sequence (GGGGCC); however, this approach is complicated by the presence of antisense strand transcription of expanded GGCCCC repeats. We found that targeting the transcription elongation factor Spt4 selectively decreased production of both sense and antisense expanded transcripts, as well as their translated dipeptide repeat (DPR) products, and also mitigated degeneration in animal models. Knockdown of SUPT4H1, the human Spt4 ortholog, similarly decreased production of sense and antisense RNA foci, as well as DPR proteins, in patient cells. Therapeutic targeting of a single factor to eliminate c9FTD/ALS pathological features offers advantages over approaches that require targeting sense and antisense repeats separately. PMID:27516603

  9. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression

    PubMed Central

    Rosa, Stefanie; Duncan, Susan; Dean, Caroline

    2016-01-01

    Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription. PMID:27713408

  10. Natural Antisense Transcripts and Long Non-Coding RNA in Neurospora crassa

    PubMed Central

    Arthanari, Yamini; Heintzen, Christian; Griffiths-Jones, Sam; Crosthwaite, Susan K.

    2014-01-01

    The prevalence of long non-coding RNAs (lncRNA) and natural antisense transcripts (NATs) has been reported in a variety of organisms. While a consensus has yet to be reached on their global importance, an increasing number of examples have been shown to be functional, regulating gene expression at the transcriptional and post-transcriptional level. Here, we use RNA sequencing data from the ABI SOLiD platform to identify lncRNA and NATs obtained from samples of the filamentous fungus Neurospora crassa grown under different light and temperature conditions. We identify 939 novel lncRNAs, of which 477 are antisense to annotated genes. Across the whole dataset, the extent of overlap between sense and antisense transcripts is large: 371 sense/antisense transcripts are complementary over 500 nts or more and 236 overlap by more than 1000 nts. Most prevalent are 3′ end overlaps between convergently transcribed sense/antisense pairs, but examples of divergently transcribed pairs and nested transcripts are also present. We confirm the expression of a subset of sense/antisense transcript pairs by qPCR. We examine the size, types of overlap and expression levels under the different environmental stimuli of light and temperature, and identify 11 lncRNAs that are up-regulated in response to light. We also find differences in transcript length and the position of introns between protein-coding transcripts that have antisense expression and transcripts with no antisense expression. These results demonstrate the ability of N. crassa lncRNAs and NATs to be regulated by different environmental stimuli and provide the scope for further investigation into the function of NATs. PMID:24621812

  11. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    PubMed

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  12. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells.

    PubMed

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari; Gustincich, Stefano; Carninci, Piero

    2016-01-01

    Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species. PMID:27646849

  13. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells

    PubMed Central

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari; Gustincich, Stefano; Carninci, Piero

    2016-01-01

    Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5′ UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3′ end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species. PMID:27646849

  14. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    SciTech Connect

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.; Jilling, T.; Blalock, J.E.; LeBoeuf, R.D. )

    1991-09-01

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.

  15. A novel catechol-based universal support for oligonucleotide synthesis.

    PubMed

    Anderson, Keith M; Jaquinod, Laurent; Jensen, Michael A; Ngo, Nam; Davis, Ronald W

    2007-12-21

    A novel universal support for deoxyribo- and ribonucleic acid synthesis has been developed. The support, constructed from 1,4-dimethoxycatechol, represents an improvement over existing universal supports because of its ability to cleave and deprotect under mild conditions in standard reagents. Because no nonvolatile additives are required for cleavage and deprotection, the synthesized oligonucleotides do not require purification prior to use in biochemical assays. Using reverse phase HPLC and electrospray mass spectroscopy, it was determined that oligonucleotides synthesized on the universal support (UL1) 3'-dephosphorylate quickly (9 h in 28-30% ammonium hydroxide (NH4OH) at 55 degrees C, 2 h in 28-30% NH4OH at 80 degrees C, or <1 h in ammonium hydroxide/methylamine (1:1) (AMA) at 80 degrees C). Oligonucleotides used as primers for the polymerase chain reaction (PCR) assay were found to perform identically to control primers, demonstrating full biological compatibility. In addition, a method was developed for sintering the universal support directly into a filter plug which can be pressure fit into the synthesis column of a commercial synthesizer. The universal support plugs allow the synthesis of high-quality oligonucleotides at least 120 nucleotides in length, with purity comparable to non-universal commercial supports and approximately 50% lower reagent consumption. The universal support plugs are routinely used to synthesize deoxyribo-, ribo-, 3'-modified, 5'-modified, and thioated oligonucleotides. The flexibility of the universal support and the efficiency of 3'-dephosphorylation are expected to increase the use of universal supports in oligonucleotide synthesis.

  16. Oligonucleotide Array for Identification and Detection of Pythium Species†

    PubMed Central

    Tambong, J. T.; de Cock, A. W. A. M.; Tinker, N. A.; Lévesque, C. A.

    2006-01-01

    A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples

  17. Genome Engineering Using Targeted Oligonucleotide Libraries and Functional Selection

    PubMed Central

    Diner, Elie J.; Garza-Sánchez, Fernando; Hayes, Christopher S.

    2011-01-01

    The λ phage Red proteins greatly enhance homologous recombination in Escherichia coli. Red-mediated recombination or “recombineering” can be used to construct targeted gene deletions as well as to introduce point mutations into the genome. Here, we describe our method for scanning mutagenesis using recombineered oligonucleotide libraries. This approach entails randomization of specific codons within a target gene, followed by functional selection to isolate mutants. Oligonucleotide library mutagenesis has generated hundreds of novel antibiotic resistance mutations in genes encoding ribosomal proteins, and should be applicable to other systems for which functional selections exist. PMID:21815087

  18. Ran-unassisted nuclear migration of a 97-kD component of nuclear pore-targeting complex.

    PubMed

    Kose, S; Imamoto, N; Tachibana, T; Shimamoto, T; Yoneda, Y

    1997-11-17

    A 97-kD component of nuclear pore-targeting complex (the beta-subunit of nuclear pore-targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the alpha-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the beta-subunit. The present study describes an examination of the behavior of the beta-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected beta-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the beta-subunit requires neither Ran- nor alpha-subunit-binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the beta-subunit. In the digitonin-permeabilized cell-free import assay, the beta-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the beta-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry alpha-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the beta-subunit undergoes a translocation reaction together with the alpha-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.

  19. Autoregulatory loop of Msx1 expression involving its antisense transcripts.

    PubMed

    Petit, Stéphane; Meary, Fleur; Pibouin, Laurence; Jeanny, Jean-Claude; Fernandes, Isabelle; Poliard, Anne; Hotton, Dominique; Berdal, Ariane; Babajko, Sylvie

    2009-08-01

    The Msx1 homeogene plays an important role in epithelial-mesenchymal interactions leading organogenesis. Msx1 gene is submitted to bidirectional transcription generating a long non-coding antisense (AS) RNA potentially involved in Msx1 expression regulation. RT-Q-PCR and RNA-FISH studies indicated that transient overexpression of the Msx1 AS transcript in 705IC5 mouse odontoblasts decreased the abundance of endogenous Msx1 S mRNA at the post-transcriptional level. Conversely, Msx1 overexpression increased the AS RNA level probably by activating AS transcription. In vivo mapping by RT-PCR evidenced both Msx1 RNAs in all adult mouse tissues tested raising the issue of Msx1 function during adulthood. The expression patterns of the two RNAs were similar, confirming the tight S/AS relationship. In particular, both Msx1 mRNAs and Msx1 protein were similarly distributed in eyes, and were found in regions with a common ectodermic origin and in cells potentially involved in regeneration. In conclusion, we report that Msx1 S RNA is negatively controlled by its AS RNA at a post-transcriptional level, and that the AS RNA is retrocontrolled positively by Msx1. The tight link between Msx1 S and AS RNAs constitutes a regulatory loop resulting in a fine-tuned expression of Msx1 which appears to be significant for adult homeostasis.

  20. Biodistribution of antisense nanoparticles in mammary carcinoma rat model.

    PubMed

    Elazar, Victoria; Adwan, Hassan; Rohekar, Keren; Zepp, Michael; Lifshitz-Shovali, Rinat; Berger, Martin R; Golomb, Gershon

    2010-08-01

    Efficient and specific delivery of antisenses (ASs) and protection of the sequences from degradation are critical factors for effective therapy. Sustained release nanoparticles (NP) offer increased resistance to nuclease degradation, increased amounts of AS uptake, and the possibility of control in dosing and sustained duration of AS administration. The biodegradable and biocompatible poly(D,L-lactic-co-glycolic acid) copolymer (PLGA) was utilized to encapsulate AS directed against osteopontin (OPN), which is a promising therapeutic target in mammary carcinoma. Whole body biodistribution of OPN AS NP was evaluated in comparison to naked AS, in intact and mammary carcinoma metastasis model bearing rats. Naked and NP encapsulated AS exhibited different biodistribution profiles. AS NP, in contrast to naked AS, tended to accumulate mostly in the spleen, liver, and at the tumor inoculation site. Drug levels in intact organs were negligible. The elimination of naked AS was faster, due to rapid degradation of the unprotected sequence. It is concluded that AS NP protect the AS from degradation, provide efficient AS delivery to the tumor tissue, and minimize AS accumulation in intact organs due to the AS sustained release profile as well as the favorable NP physicochemical properties.

  1. Antisense properties of duplex- and triplex-forming PNAs.

    PubMed Central

    Knudsen, H; Nielsen, P E

    1996-01-01

    The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA. PMID:8602363

  2. Gene expression profiling in peanut using oligonucleotide microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have a moderately significant number of ESTs been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate l...

  3. Oligonucleotide-directed mutagenesis for precision gene editing.

    PubMed

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  4. Chromosome-specific painting in Cucumis species using bulked oligonucleotides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a sing...

  5. Synthesis and Antisense Properties of Fluoro Cyclohexenyl Nucleic Acid (F-CeNA) – A Nuclease Stable Mimic of 2′-Fluoro RNA

    PubMed Central

    Seth, Punit P.; Yu, Jinghua; Jazayeri, Ali; Pallan, Pradeep S.; Allerson, Charles R; Østergaard, Michael E.; Liu, Fengwu; Herdewijn, Piet; Egli, Martin; Swayze, Eric E.

    2013-01-01

    We report the design and synthesis of 2′-fluoro cyclohexenyl nucleic acid (F-CeNA) pyrimidine phosphoramidites and the synthesis and biophysical, structural, and biological evaluation of modified oligonucleotides. The synthesis of the nucleoside phosphoramidites was accomplished in multigram quantities starting from commercially available methyl-D-mannose pyranoside. Installation of the fluorine atom was accomplished using nonafluorobutanesulfonyl fluoride, and the cyclohexenyl ring system was assembled by means of a palladium-catalyzed Ferrier rearrangement. Installation of the nucleobase was carried out under Mitsunobu conditions followed by standard protecting group manipulations to provide the desired pyrimidine phosphoramidites. Biophysical evaluation indicated that F-CeNA shows behavior similar to that of a 2′-modified nucleotide, and duplexes with RNA showed slightly lower duplex thermostability as compared to that of the more rigid 3′-fluoro hexitol nucleic acid (FHNA). However, F-CeNA modified oligonucleotides were significantly more stable against digestion by snake venom phosphodiesterases (SVPD) as compared to unmodified DNA, 2′-fluoro RNA (FRNA), 2′-methoxyethyl RNA (MOE), and FHNA modified oligonucleotides. Examination of crystal structures of a modified DNA heptamer duplex d(GCG)-T*-d(GCG):d(CGCACGC) by X-ray crystallography indicated that the cyclohexenyl ring system exhibits both the 3H2 and 2H3 conformations, similar to the C3′-endo/C2′-endo conformation equilibrium seen in natural furanose nucleosides. In the 2H3 conformation, the equatorial fluorine engages in a relatively close contact with C8 (2.94 Å) of the 3′-adjacent dG nucleotide that may represent a pseudo hydrogen bond. In contrast, the cyclohexenyl ring of F-CeNA was found to exist exclusively in the 3H2 (C3′-endo like) conformation in the crystal structure of the modified A-form DNA decamer duplex [d(GCGTA)-T*-d(ACGC)]2. In an animal experiment, a 16-mer F

  6. A randomised phase 2 study combining LY2181308 sodium (survivin antisense oligonucleotide) with first-line docetaxel/prednisone in patients with castration-resistant prostate cancer.

    PubMed

    Wiechno, Paweł; Somer, Bradley G; Mellado, Begoña; Chłosta, Piotr L; Cervera Grau, José Manuel; Castellano, Daniel; Reuter, Christoph; Stöckle, Michael; Kamradt, Jörn; Pikiel, Joanna; Durán, Ignacio; Wedel, Steffen; Callies, Sophie; André, Valérie; Hurt, Karla; Brown, Jacqueline; Lahn, Michael; Heinrich, Bernhard

    2014-03-01

    Castration-resistant prostate cancer (CRPC) is partially characterised by overexpression of antiapoptotic proteins, such as survivin. In this phase 2 study, patients with metastatic CRPC (n=154) were randomly assigned (1:2 ratio) to receive standard first-line docetaxel/prednisone (control arm) or the combination of LY2181308 with docetaxel/prednisone (experimental arm). The primary objective was to estimate progression-free survival (PFS) for LY2181308 plus docetaxel. Secondary efficacy measures included overall survival (OS), several predefined prostate-specific antigen (PSA)-derived end points, and Brief Pain Inventory (BPI) and Functional Assessment of Cancer Therapy-Prostate (FACT-P) scores. The median PFS of treated patients for the experimental arm (n=98) was 8.64 mo (90% confidence interval [CI], 7.39-10.45) versus 9.00 mo (90% CI, 7.00-10.09) in the control arm (n=51; p=0.755). The median OS for the experimental arm was 27.04 mo (90% CI, 19.94-33.41) compared with 29.04 mo (90% CI, 20.11-39.26; p=0.838). The PSA responses (≥ 50% PSA reduction), BPI, and FACT-P scores were similar in both arms. In the experimental arm, patients had a numerically higher incidence of grades 3-4 neutropenia, anaemia, thrombocytopenia, and sensory neuropathy. In conclusion, this study failed to detect a difference in efficacy between the two treatment groups. PMID:24246407

  7. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: Results of 4 Phase III Trials

    PubMed Central

    Santos, Raul D.; Raal, MD Frederick J.; Catapano, Alberico L.; Witztum, Joseph L; Steinhagen-Thiessen, Elisabeth; Tsimikas, Sotirios

    2015-01-01

    Objective Lp(a) is an independent, causal, genetic risk factor for cardiovascular disease and aortic stenosis. Current pharmacologic lipid-lowering therapies do not optimally lower Lp(a), particularly in patients with familial hypercholesterolemia (FH). Approach and Results In four Phase III trials, 382 patients on maximally tolerated lipid-lowering therapy were randomized 2:1 to weekly subcutaneous mipomersen 200 mg (n=256) or placebo (n=126) for 26 weeks. Populations included homozygous FH (HoFH), heterozygous FH (HeFH) with concomitant coronary artery disease (CAD), severe hypercholesterolemia (HC), and HC at high risk for CAD. Lp(a) was measured eight times between baseline and week 28 inclusive. Of the 382 patients, 57% and 44% had baseline Lp(a) levels >30 mg/dL and >50 mg/dL, respectively. In the pooled analysis, the mean percent decrease (median, interquartile range, IQR) in Lp(a) at 28 weeks was significantly greater in the mipomersen group compared with placebo (-26.4 (-42.8, 5.4) vs. -0.0 (10.7, 15.3), p<0.001). In the mipomersen group in patients with Lp(a) levels >30 mg/dL or >50 mg/dL, attainment of Lp(a) values ≤30 mg/dL or ≤50 mg/dL was most frequent in HoFH and severe HC patients. In the combined groups, modest correlations were present between percent change in apoB and Lp(a) (r=0.43, p<0.001) and LDL-C and Lp(a) (r=0.36, p<0.001) plasma levels. Conclusions Mipomersen consistently and effectively reduced Lp(a) levels in patients with a variety of lipid abnormalities and cardiovascular risk. Modest correlations were present between apoB and Lp(a) lowering but the mechanistic relevance mediating Lp(a) reduction is currently unknown. PMID:25614280

  8. Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma.

    PubMed

    Pro, Barbara; Leber, Brian; Smith, Mitchell; Fayad, Luis; Romaguera, Jorge; Hagemeister, Fredrick; Rodriguez, Alma; McLaughlin, Peter; Samaniego, Felipe; Zwiebel, James; Lopez, Adriana; Kwak, Larry; Younes, Anas

    2008-11-01

    Oblimersen sodium plus rituximab was evaluated in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) patients. Oblimersen was administered as a continuous intravenous infusion at a daily dose of 3 mg/kg/d for 7 d on alternate weeks for 3 weeks. Rituximab was given at a weekly dose of 375 mg/m(2) for six doses. Patients with stable disease or objective response were allowed to receive a second course of treatment. The overall response rate (ORR) was 42% with 10 complete responses (CR) and eight partial responses (PR). Twelve (28%) patients achieved a minimal response or stable disease. Among the 20 patients with follicular lymphoma the ORR was 60% (eight CR, four PR). Three of the responders were refractory to prior treatment with rituximab, and two of the responses occurred in patients who had failed an autologous stem cell transplant. Median duration of response was 12 months. Most toxicities were low grade and reversible. In conclusion, oblimersen sodium can be safely combined with rituximab. The combination appears to be most beneficial in patients with indolent NHL and warrants further investigation in a large randomized trial. PMID:18764869

  9. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro.

    PubMed

    Bilim, Vladimir; Kasahara, Takashi; Hara, Noboru; Takahashi, Kota; Tomita, Yoshihiko

    2003-01-01

    XIAP directly inhibits executor caspases, making it the most downstream antiapoptotic molecule. Here, we examined the expression and function of XIAP in normal urothelium and TCC. We also examined the therapeutic effect of xiap AS PODN on the cell cycle and apoptosis of multidrug-resistant T24 bladder cancer cells. XIAP was moderately expressed in normal transitional epithelium with prominent expression on the superficial layer cells. Seventy-nine of 108 (73.15%) tumor samples were positive for XIAP protein, but XIAP positivity was not correlated with tumor stage or grade. Moreover, 4 bladder cancer cell lines (SCaBER, HT1376, T24 and RT4) expressed similar levels of XIAP. xiap AS PODN dose-dependently reduced the XIAP protein level and induced apoptosis, leading to decreased cell viability by 87%. Combined administration with doxorubicin resulted in marked cytotoxicity due to escalation of apoptosis. Overexpression of XIAP in T24 cells resulted in a modest but statistically significant (p < 0.01) survival advantage compared to parental cells. Thus, XIAP expression may be critical for maintaining the viability and drug resistance of TCC, and endogenous XIAP levels are sufficient to protect cells from apoptosis. Our results suggest that XIAP may play an important role early in human TCC carcinogenesis. xiap AS may be a candidate for use as a cancer therapy for overcoming drug resistance in highly malignant TCC.

  10. An Unassisted Low-Voltage-Trigger ESD Protection Structure in a 0.18-µm CMOS Process without Extra Process Cost

    NASA Astrophysics Data System (ADS)

    Li, Bing; Shan, Yi

    In order to quickly discharge the electrostatic discharge (ESD) energy, an unassisted low-voltage-trigger ESD protection structure is proposed in this work. Under transmission line pulsing (TLP) stress, the trigger voltage, turn-on speed and second breakdown current can be obviously improved, as compared with the traditional protection structure. Moreover there is no need to add any extra mask or do any process modification for the new structure. The proposed structure has been verified in foundry's 0.18-µm CMOS process.

  11. Probing the Influence of Stereoelectronic Effects on the Biophysical Properties of Oligonucleotides: Comprehensive Analysis of the RNA Affinity, Nuclease Resistance, and Crystal Structure of Ten 2'-O-Ribonucleic Acid Modifications

    SciTech Connect

    Egli, Martin; Minasov, George; Tereshko, Valentina; Pallan, Pradeep S.; Teplova, Marianna; Inamati, Gopal B.; Lesnik, Elena A.; Owens, Steve R.; Ross, Bruce S.; Prakash, Thazha P.; Manoharan, Muthiah

    2010-03-05

    The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the

  12. Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA.

    PubMed

    Bendahmane, M; Gronenborn, B

    1997-01-01

    One of the most severe diseases of cultivated tomato worldwide is caused by tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci. Here we describe the application of antisense RNAs to interfere with the disease caused by TYLCV. The target of the antisense RNA is the rare messenger RNA of the Rep protein, encoded by the C1 gene. Transgenic Nicotiana benthamiana plants expressing C1 antisense RNA were obtained and shown to resist infection by TYLCV. Some of the resistant lines are symptomless, and the replication of challenge TYLCV almost completely suppressed. The transgenes mediating resistance were shown to be effective through at least two generations of progeny. PMID:9037152

  13. Antisense overlapping open reading frames in genes from bacteria to humans.

    PubMed Central

    Merino, E; Balbás, P; Puente, J L; Bolívar, F

    1994-01-01

    Long Open Reading Frames (ORFs) in antisense DNA strands have been reported in the literature as being rare events. However, an extensive analysis of the GenBank database revealed that a substantial number of genes from several species contain an in-phase ORF in the antisense strand, that overlaps entirely the coding sequence of the sense strand, or even extends beyond. The findings described in this paper show that this is a frequent, non-random phenomenon, which is primarily dependent on codon usage, and to a lesser extent on gene size and GC content. Examination of the sequence database for several prokaryotic and eukaryotic organisms, demonstrates that coding sequences with in-phase, 100% overlapping antisense ORFs are present in every genome studied so far. PMID:8208617

  14. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin.

    PubMed

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide-receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense-antisense (epitope-paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines. PMID:24865486

  15. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  16. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  17. Selective release of multiple DNA oligonucleotides from gold nanorods.

    PubMed

    Wijaya, Andy; Schaffer, Stefan B; Pallares, Ivan G; Hamad-Schifferli, Kimberly

    2009-01-27

    Combination therapy, or the use of multiple drugs, has been proven to be effective for complex diseases, but the differences in chemical properties and pharmacokinetics can be challenging in terms of the loading, delivering, and releasing multiple drugs. Here we demonstrate that we can load and selectively release two different DNA oligonucleotides from two different gold nanorods. DNA was loaded on the nanorods via thiol conjugation. Selective releases were induced by selective melting of gold nanorods via ultrafast laser irradiation at the nanorods' longitudinal surface plasmon resonance peaks. Excitation at one wavelength could selectively melt one type of gold nanorods and selectively release one type of DNA strand. Releases were efficient (50-80%) and externally tunable by laser fluence. Released oligonucleotides were still functional. This proof of concept is potentially a powerful method for multiple-drug delivery strategies.

  18. Mechanism of Oligonucleotide Uptake by Cells: Involvement of Specific receptors?

    NASA Astrophysics Data System (ADS)

    Yakubov, Leonid A.; Deeva, Elena A.; Zarytova, Valentina F.; Ivanova, Eugenia M.; Ryte, Antonina S.; Yurchenko, Lyudmila V.; Vlassov, Valentin V.

    1989-09-01

    We have investigated the interaction of oligonucleotides and their alkylating derivatives with mammalian cells. In experiments with L929 mouse fibroblast and Krebs 2 ascites carcinoma cells, it was found that cellular uptake of oligodeoxynucleotide derivatives is achieved by an endocytosis mechanism. Uptake is considerably more efficient at low oligomer concentration (< 1 μ M), because at this concentration a significant percentage of the total oligomer pool is absorbed on the cell surface and internalized by a more efficient absorptive endocytosis process. Two modified proteins were detected in mouse fibroblasts that were treated with the alkylating oligonucleotide derivatives. The binding of the oligomers to the proteins is inhibited by other oligodeoxynucleotides, single- and double-stranded DNA, and RNA. The polyanions heparin and chondroitin sulfates A and B do not inhibit binding. These observations suggest the involvement of specific receptor proteins in binding of oligomers to mammalian cells.

  19. Typing of enteroviruses by use of microwell oligonucleotide arrays.

    PubMed

    Susi, P; Hattara, L; Waris, M; Luoma-Aho, T; Siitari, H; Hyypiä, T; Saviranta, P

    2009-06-01

    We have developed a straightforward assay for the rapid typing of enteroviruses using oligonucleotide arrays in microtiter wells. The viral nucleic acids are concomitantly amplified and labeled during reverse transcription-PCR, and unpurified PCR products are used for hybridization. DNA strands are separated by alkaline denaturation, and hybridization is started by neutralization. The microarray hybridization reactions and the subsequent washes are performed in standard 96-well microtiter plates, which makes the method easily adaptable to high-throughput analysis. We describe here the assay principle and its potential in clinical laboratory use by correctly identifying 10 different enterovirus reference strains. Furthermore, we explore the detection of unknown sequence variants using serotype consensus oligonucleotide probes. With just two consensus probes for the coxsackievirus A9 (CVA9) serotype, we detected 23 out of 25 highly diverse CVA9 isolates. Overall, the assay involves several features aiming at ease of performance, robustness, and applicability to large-scale studies.

  20. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  1. Synthesis and properties of oligonucleotides containing aminodeoxythymidine units.

    PubMed Central

    Gryaznov, S M; Letsinger, R L

    1992-01-01

    Procedures are described for synthesis via solid support methodology of oligonucleotide analogues derived in part from 3'-amino-3'-deoxythymidine or 5'-amino-5'-deoxythymidine. Oligothymidylate decamers terminated with a 3'-amino group or containing a 3'-NHP(O)(O-)O-5' internucleoside link are found to form unusually stable complexes with poly(dA), poly(A), and oligo(dA). For related derivatives of 5'-amino-5'-deoxythymidine enhancement is less or absent, and in the case of multiple substitution destabilization of the heteroduplex may be observed. That the effect of the 3'-amino group is general for oligonucleotide derivatives is indicated by enhanced Tm values for heteroduplex complexes of the mixed-base oligomer, d(TATTCAGTCAT(NH2)), and the methyl phosphonate derivatives, TmTmTmTmTmTmTmTmTmT(NH2) and d(TmAmTmTmCmAmGmTmCmAmT(NH2)). PMID:1630911

  2. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates.

    PubMed

    Humenik, Martin; Scheibel, Thomas

    2014-02-25

    Self-assembling protein nanofibrils are promising structures for the "bottom-up" fabrication of bionanomaterials. Here, the recombinant protein eADF4(C16), a variant of Araneus diadematus dragline silk ADF4, which self-assembles into nanofibrils, and short oligonucleotides were modified for site-specific azide-alkyne coupling. Corresponding oligonuleotide-eADF4(C16) "click" conjugates were hybridized in linear or branched fashion according to the designed complementarities of the DNA moieties. Self-assembly properties of higher ordered structures of the spider silk-DNA conjugates were dominated by the silk component. Assembled β-sheet rich conjugate fibrils were similar in appearance to fibrils of unmodified eADF4(C16) but enabled the specific attachment of neutravidin-modified gold nanoparticles on their surface directed by complementary biotin-oligonucleotides, providing the basis for functionalization of such conjugates.

  3. Selective release of multiple DNA oligonucleotides from gold nanorods.

    PubMed

    Wijaya, Andy; Schaffer, Stefan B; Pallares, Ivan G; Hamad-Schifferli, Kimberly

    2009-01-27

    Combination therapy, or the use of multiple drugs, has been proven to be effective for complex diseases, but the differences in chemical properties and pharmacokinetics can be challenging in terms of the loading, delivering, and releasing multiple drugs. Here we demonstrate that we can load and selectively release two different DNA oligonucleotides from two different gold nanorods. DNA was loaded on the nanorods via thiol conjugation. Selective releases were induced by selective melting of gold nanorods via ultrafast laser irradiation at the nanorods' longitudinal surface plasmon resonance peaks. Excitation at one wavelength could selectively melt one type of gold nanorods and selectively release one type of DNA strand. Releases were efficient (50-80%) and externally tunable by laser fluence. Released oligonucleotides were still functional. This proof of concept is potentially a powerful method for multiple-drug delivery strategies. PMID:19206252

  4. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    NASA Astrophysics Data System (ADS)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  5. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Biella, Serena; Cesura, Federico; Levi, Marinella; Turri, Stefano

    2013-05-01

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  6. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea.

    PubMed

    Druzhinina, Irina S; Kopchinskiy, Alexei G; Komoń, Monika; Bissett, John; Szakacs, George; Kubicek, Christian P

    2005-10-01

    One of the biggest obstructions to studies on Trichoderma has been the incorrect and confused application of species names to isolates used in industry, biocontrol of plant pathogens and ecological surveys, thereby making the comparison of results questionable. Here we provide a convenient, on-line method for the quick molecular identification of Hypocrea/Trichoderma at the genus and species levels based on an oligonucleotide barcode: a diagnostic combination of several oligonucleotides (hallmarks) specifically allocated within the internal transcribed spacer 1 and 2 (ITS1 and 2) sequences of the rDNA repeat. The barcode was developed on the basis of 979 sequences of 88 vouchered species which displayed in total 135 ITS1 and 2 haplotypes. Oligonucleotide sequences which are constant in all known ITS1 and 2 of Hypocrea/Trichoderma but different in closely related fungal genera, were used to define genus-specific hallmarks. The library of species-, clade- and genus-specific hallmarks is stored in the MySQL database and integrated in the TrichOKey v. 1.0 - barcode sequence identification program with the web interface located on . TrichOKey v. 1.0 identifies 75 single species, 5 species pairs and 1 species triplet. Verification of the DNA-barcode was done by a blind test on 53 unknown isolates of Trichoderma, collected in Central and South America. The obtained results were in a total agreement with phylogenetic identification based on tef1 (large intron), NCBI BLAST of vouchered records and postum morphological analysis. We conclude that oligonucleotide barcode is a powerful tool for the routine identification of Hypocrea/Trichoderma species and should be useful as a complement to traditional methods.

  7. Use of an Antisense RNA Strategy To Investigate the Functional Significance of Mn-Catalase in the Extreme Thermophile Thermus thermophilus

    PubMed Central

    Moreno, Renata; Hidalgo, Aurelio; Cava, Felipe; Fernández-Lafuente, Roberto; Guisán, José Manuel; Berenguer, José

    2004-01-01

    The expression of an antisense RNA revealed that an Mn-catalase was required in Thermus thermophilus for aerobic but not for anaerobic growth. The antisense system is based on the constitutive expression of a “bicistronic” transcript consisting of the kanamycin resistance gene mRNA followed by the antisense RNA against the selected target. PMID:15516595

  8. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  9. Particle-Based Microarrays of Oligonucleotides and Oligopeptides

    PubMed Central

    Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K.; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F. Ralf; Breitling, Frank; Loeffler, Felix F.

    2014-01-01

    In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches. PMID:27600347

  10. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    PubMed

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  11. Microarray oligonucleotide probe designer (MOPeD): A web service

    PubMed Central

    Patel, Viren C; Mondal, Kajari; Shetty, Amol Carl; Horner, Vanessa L; Bedoyan, Jirair K; Martin, Donna; Caspary, Tamara; Cutler, David J; Zwick, Michael E

    2011-01-01

    Methods of genomic selection that combine high-density oligonucleotide microarrays with next-generation DNA sequencing allow investigators to characterize genomic variation in selected portions of complex eukaryotic genomes. Yet choosing which specific oligonucleotides to be use can pose a major technical challenge. To address this issue, we have developed a software package called MOPeD (Microarray Oligonucleotide Probe Designer), which automates the process of designing genomic selection microarrays. This web-based software allows individual investigators to design custom genomic selection microarrays optimized for synthesis with Roche NimbleGen’s maskless photolithography. Design parameters include uniqueness of the probe sequences, melting temperature, hairpin formation, and the presence of single nucleotide polymorphisms. We generated probe databases for the human, mouse, and rhesus macaque genomes and conducted experimental validation of MOPeD-designed microarrays in human samples by sequencing the human X chromosome exome, where relevant sequence metrics indicated superior performance relative to a microarray designed by the Roche NimbleGen proprietary algorithm. We also performed validation in the mouse to identify known mutations contained within a 487-kb region from mouse chromosome 16, the mouse chromosome 16 exome (1.7 Mb), and the mouse chromosome 12 exome (3.3 Mb). Our results suggest that the open source MOPeD software package and website (http://moped.genetics.emory.edu/) will make a valuable resource for investigators in their sequence-based studies of complex eukaryotic genomes. PMID:21379402

  12. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    NASA Astrophysics Data System (ADS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  13. The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls.

    PubMed

    Edwards, Mary E; Choo, Tze-Siang; Dickson, Cathryn A; Scott, Catherine; Gidley, Michael J; Reid, J S Grant

    2004-03-01

    Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1-->6)-alpha-galactose (Gal) substitution of the (1-->4)-beta-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense ("hairpin loop") constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T(1) generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T(1) generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T(2) generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase.

  14. A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice

    PubMed Central

    Fortin, Marylène; D'Anjou, Hélène; Higgins, Marie-Ève; Gougeon, Jasmine; Aubé, Paméla; Moktefi, Kamel; Mouissi, Sonia; Séguin, Serge; Séguin, Rosanne; Renzi, Paolo M; Paquet, Luc; Ferrari, Nicolay

    2009-01-01

    Background Recent development in the field of COPD has focused on strategies aimed at reducing the underlying inflammation through selective inhibition of the phosphodiesterase type IV (PDE4) isoform. Although the anti-inflammatory and bronchodilator activity of selective PDE4 inhibitors has been well documented, their low therapeutic ratio and dose-dependent systemic side effects have limited their clinical utility. This study examined the effect of 2'-deoxy-2'-Fluoro-β-D-Arabinonucleic Acid (FANA)-containing antisense oligonucleotides (AON) targeting the mRNA for the PDE4B/4D and 7A subtypes on lung inflammatory markers, both in vitro and in vivo. Methods Normal human bronchial epithelial (NHBE) cells were transfected with FANA AON against PDE4B/4D and 7A alone or in combination. mRNA levels for target PDE subtypes, as well as secretion of pro-inflammatory chemokines were then measured following cell stimulation. Mice were treated with combined PDE4B/4D and 7A AON via endo-tracheal delivery, or with roflumilast via oral delivery, and exposed to cigarette smoke for one week. Target mRNA inhibition, as well as influx of inflammatory cells and mediators were measured in lung lavages. A two-week smoke exposure protocol was also used to test the longer term potency of PDE4B/4D and 7A AONs. Results In NHBE cells, PDE4B/4D and 7A AONs dose-dependently and specifically inhibited expression of their respective target mRNA. When used in combination, PDE4B/4D and 7A AONs sig