PREFACE 12th International Workshop on Slow Positron Beam Techniques
NASA Astrophysics Data System (ADS)
Buckman, Stephen; Sullivan, James; White, Ronald
2011-01-01
Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at SLOPOS-12 included: Positron Interactions with Surfaces Positron Beam and Detector Technology Positron Interactions with Atoms and Molecules Positronium Science Defects and Vacancies in Materials Porosity and Open Volume in Materials Antimatter in Biomedical Science Anti-hydrogen Studies Positron Transport Annihilation On a sad note, delegates paid tribute to the contributions of one of our colleagues, Chris Beling, who tragically passed away shortly before the meeting. Chris' contributions to positron science and to the education of young scientists were noted in a number of the invited presentations. It is an honour for our community to begin these proceedings with a short tribute to Chris' life by Professor Paul Coleman. The Workshop could not have occurred without the generous support of our sponsors: The ARC Centre for Antimatter-Matter Studies, The Australian National University, Flinders University, James Cook University, The Institute of Physics (UK) and the Australian Government's Department of Innovation, Industry, Science and Research. It would also not have been possible without the hard work of the Local and International Organising Committees and the friendly and efficient staff at the All Seasons Resort, Magnetic Island. We are most grateful for the on-site assistance of Gillian Drew, the CAMS student and postdoc team, the financial wizardry of Chris Kalos, and the post-Workshop editorial assistance of Julia Wee and Adam Edwards. Finally we would like to thank all of the attendees at SLOPOS12 for their scientific contributions to the Workshop, and for the warm spirit of engagement which characterised the scientific discussions and social occasions. SLOPOS13 will be held in Germany in 2013 and we all look forward to the occasion. Stephen Buckman, James Sullivan and Ronald White(Guest Editors) Local Organising CommitteeInternational Committee Stephen Buckman (Chair, ANU, Canberra)G Amarendra (India) James Sullivan (Secretary, ANU, Canberra)M-F Barthe (France) Ronald White (JCU, Townsville)C Beling (Hong Kong) Jim Williams (UWA, Perth)R Brusa (Italy) Suzanne Smith (ANSTO, Sydney)P Coleman (UK) Igor Bray (Curtin U., Perth)C Corbel (France) Casten Makochekanwa (ANU, Canberra)M Fujinami (Japan) Michael Went (ANU, Canberra)R Krause-Rehberg (Germany) Adric Jones (ANU, Canberra)K Lynn (USA) Peter Caradonna (ANU, Canberra)H Schut (Netherlands) Ryan Weed (ANU, Canberra)P Simpson (Canada) Jason Roberts (ANU, Canberra)R Suzuki (Japan) Josh Machacek (ANU, Canberra)F Tuomisto (Finland) A Weiss (USA) SLOPOS photo SLOPOS-12 Delegates, 1-6 August 2010, Magnetic Island, Australia SPONSORS SLOPOS sponsors
Kim, Sarang; Cherbuin, Nicolas; Anstey, Kaarin J
2016-06-01
To assess the reliability of short versions of the Australian National University Alzheimer's Disease Risk Index (ANU-ADRI). A short form of the ANU-ADRI (ANU-ADRI-SF) was developed by assessing risk and protective factors with single questions where possible and with short forms of sub-questionnaires where available. The tick box form of the ANU-ADRI (ANU-ADRI-TB) was developed with unique questions for each risk and protective factor for Alzheimer's disease. The short versions were evaluated in an independent community sample of 504 participants with a mean age of 45.01 (SD = 14.85, range = 18-81). The short versions demonstrated high reliabilities when compared with the ANU-ADRI. However, the proportion of misclassification was high for some risk factors and particularly for the ANU-ADRI-TB. The ANU-ADRI-SF may be considered if less reliable questions from the ANU-ADRI-SF can be replaced with more reliable questions from the ANU-ADRI for risk/protective factors with high misclassification.
Smith, Julie; Javanparast, Sara; Craig, Lyn
2017-03-01
In 1999, two leading Australian academics challenged Australian universities to lead moves to better manage employees' maternity and breastfeeding needs, and 'bring babies and breasts into workplaces'. This paper addresses the question of how universities cope with the need for women to breastfeed, by exploring barriers facing women who combine breastfeeding and paid work at the Australian National University (ANU). Data were collected through online surveys in 2013 using mixed method, case study design, nested within a larger national study. Participants were 64 working mothers of children aged 0-2 years from the ANU community of employees and users of on-campus child care. Responses highlighted the ad hoc nature of support for breastfeeding at ANU. Lack of organisational support for breastfeeding resulted in adverse consequences for some ANU staff. These included high work-related stresses and premature cessation of breastfeeding among women who had intended to breastfeed their infants in line with health recommendations.
Goldman, M E; Pearce, L A; Hart, R G; Zabalgoitia, M; Asinger, R W; Safford, R; Halperin, J L
1999-12-01
Stroke associated with atrial fibrillation (AF) is mainly due to embolism of thrombus formed during stasis of blood in the left atrial appendage (LAA). Pathophysiologic correlates of appendage flow velocity as assessed by transesophageal echocardiography (TEE) in patients with AF have not been defined. To evaluate the hypothesis that reduced velocity is associated with spontaneous echocardiographic contrast and thrombus in the LAA and with clinical embolic events, we measured LAA flow velocity by TEE in 721 patients with nonvalvular AF entering the Stroke Prevention in Atrial Fibrillation (SPAF-III) study. Patient features, TEE findings, and subsequent cardioembolic events were correlated with velocity by multivariate analysis. Patients in AF during TEE displayed lower peak antegrade (emptying) flow velocity (Anu(p)) than those with intermittent AF in sinus rhythm during TEE (33 cm/s vs 61 cm/s, respectively, P <.0001). Anu(p) < 20 cm/s was associated with dense spontaneous echocardiographic contrast (P <.001), appendage thrombus (P <.01), and subsequent cardioembolic events (P <.01). Independent predictors of Anu(p) < 20 cm/s included age (P =.009), systolic blood pressure (P <.001), sustained AF (P =.01), ischemic heart disease (P =.01), and left atrial area (P =.04). Multivariate analysis found both Anu(p) <20 cm/s (relative risk 2.6, P =.02) and clinical risk factors (relative risk 3.3, P =.002) independently associated with LAA thrombus. LAA Anu(p) is reduced in AF and associated with spontaneous echocardiographic contrast, appendage thrombus, and cardioembolic stroke. Systolic hypertension and aortic atherosclerosis, independent clinical predictors of stroke in patients with AF, also correlated with LAA Anu(p). Our results support the role of reduced LAA Anu(p) in the generation of stasis, thrombus formation, and embolism in patients with AF, although other mechanisms also contribute to stroke.
Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development
Micol, José Luis
2014-01-01
The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development. PMID:24663344
NASA Astrophysics Data System (ADS)
Schmidt, P.; Lund, B.; Näslund, J.-O.
2013-12-01
In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.
Australian National University Science Extension Day
ERIC Educational Resources Information Center
Fletcher, Sarah
2016-01-01
The first Australian National University (ANU) Science Extension Day was held on September 8, 2015. The ANU Science Extension Day is a project that was initiated by Theodore Primary School (ACT) and developed by Theodore Primary, Calwell High School, Science Educators Association of the ACT (SEA*ACT), and the ANU. The project was developed with a…
Bizzaro, Nicola; Villalta, Danilo; Giavarina, Davide; Tozzoli, Renato
2012-12-01
Methods to detect anti-nucleosome antibodies (ANuA) have been available for more than 10 years and the test has demonstrated its good sensitivity and high specificity in diagnosing systemic lupus erythematosus (SLE). Despite these data produced through clinical and laboratory research, the test is little used. To verify the diagnostic performance of methods for measuring ANuA and to compare them with those for anti-dsDNA antibodies. A systematic review of English and non-English articles using MEDLINE and EMBASE with the search terms "nucleosome", "chromatin", "anti-nucleosome antibodies" and "anti-chromatin antibodies". Additional studies were identified checking reference lists in the selected articles. We selected studies reporting on anti-nucleosome tests performed by quantitative immunoassays, on patients with SLE as the index disease (sensitivity) and a control group (specificity). A total of 610 titles were initially identified with the search strategy described. 548 publications were subsequently excluded based on abstract and title. Full-text review was undertaken as the next step on 62 publications providing data on anti-nucleosome testing; 25 articles were then excluded because they did not include either SLE patients or a control group, and 37 articles were selected for the metanalysis. Finally, a sub-metanalysis study was conducted on the 26 articles providing data on both ANuA and anti-dsDNA antibody assays in the same series of patients. Extraction of data from selected articles was performed by two authors independently, using predefined criteria: the number of patients with SLE as the index case, and the number of healthy or diseased controls; specification of the analytical method used to detect anti-nucleosome and anti-dsDNA antibodies; the cut-off used in the study; and the sensitivity and specificity of the assay. Demographic and clinical data on the population investigated (adults or children; lupus patients with or without nephritis; patients with active or inactive disease) were also recorded and analyzed in a separate evaluation. The systematic review and metanalysis showed that the overall sensitivity of the ANuA assay is 61% (confidence interval-CI, 60-62) and the specificity 94% (CI, 94-95). The overall positive likelihood ratio is 13.81 (CI, 9.05-21.09) and the negative likelihood ratio 0.38 (CI, 0.33-0.44). The odds ratio for having SLE in ANuA-positive patients is 40.7. The comparative analysis on anti-dsDNA antibodies conducted on the 26 studies which provided data for both antibodies showed that ANuA have greater diagnostic sensitivity (59.9% vs 52.4%) and a specificity rating only slightly higher (94.9% vs 94.2%). The probability that a subject with positive ANuA have SLE is 41 times greater than a subject with negative ANuA, while for anti-dsDNA the probability is 28 times greater. These figures are even more impressive in children, in whom ANuA have an odds ratio for the diagnosis of SLE of 146, compared to 51 for anti-dsDNA antibodies. In selected studies, ANuA (p<0.0001) but not anti-dsDNA antibodies (p=0.256) were significantly associated with disease activity measured by the international score systems. However, neither antibody appears to correlate with kidney involvement. Data from the metanalysis have shown that ANuA have equal specificity but higher sensitivity and prognostic value than anti-dsDNA antibodies in the diagnosis of SLE. Despite a certain heterogeneity among the various studies, the use of ANuA appears more efficacious than anti-dsDNA. Copyright © 2012 Elsevier B.V. All rights reserved.
Cherbuin, Nicolas; Shaw, Marnie E; Walsh, Erin; Sachdev, Perminder; Anstey, Kaarin J
2017-12-14
Strong evidence is available suggesting that effective reduction of exposure to demonstrated modifiable risk factors in mid-life or before could significantly decrease the incidence of Alzheimer's disease (AD) and delay its onset. A key ingredient to achieving this goal is the reliable identification of individuals at risk well before they develop clinical symptoms. The aim of this study was to provide further neuroimaging evidence of the effectiveness of a validated tool, the ANU Alzheimer's Disease Risk Index, for the assessment of future risk of cognitive decline. Participants were 461 (60-64 years, 48% female) community-living individuals free of dementia at baseline. Associations between risk estimates obtained with the ANU-ADRI, total and regional brain volumes including in the default mode network (DMN) measured at the same assessment and diagnosis of MCI/dementia over a 12-year follow-up were tested in a large sample of community-living individuals free of dementia at baseline. Higher risk estimates on the ANU-ADRI were associated with lower cortical gray matter and particularly in the DMN. Importantly, difference in participants with high and low risk scores explained 7-9% of the observed difference in gray matter volume. In this sample, every one additional risk point on the ANU-ADRI was associated with an 8% increased risk of developing MCI/dementia over a 12-year follow-up and this association was partly mediated by a sub-region of the DMN. Risk of cognitive decline assessed with a validated instrument is associated with gray matter volume, particularly in the DMN, a region known to be implicated in the pathological process of the disease.
NASA Astrophysics Data System (ADS)
Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.
2014-05-01
In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice sheet reconstructions.
Operation of the “Small” BioAMS spectrometers at CAMS: Past and future prospects
Ognibene, T. J.; Haack, K. W.; Bench, G.; ...
2015-05-26
A summary of results from the solid samples run on our compact 1 MV AMS system over its 13.5 years of operation is presented. On average 7065 samples per year were measured with that average dropping to 3278 samples per year following the deployment of our liquid sample capability. Although the dynamic range of our spectrometer is 4.5 orders in magnitude, most of the measured graphitic samples had 14C/C concentrations between 0.1 and 1 modern. Furthermore, the measurements of our ANU sucrose standard followed a Gaussian distribution with an average of 1.5082 ± 0.0134 modern. The LLNL biomedical AMS programmore » supported many different types of experiments, however, the large majority of samples measured were derived from animal model systems. We have transitioned all of our biomedical AMS measurements to the recently installed 250 kV SSAMS instrument with good agreement compared in measured 14C/C isotopic ratios between sample splits. We then present results from replacement of argon stripping gas with helium in the SSAMS with a 22% improvement in ion transmission through the accelerator and high-energy analyzing magnet.« less
Operation of the “Small” BioAMS Spectrometers at CAMS: Past and Future Prospects
Ognibene, T.J.; Haack, K.W.; Bench, G.; Brown, T.A.; Turteltaub, K.W.
2015-01-01
A summary of results from the solid samples run on our compact 1 MV AMS system over its 13.5 years of operation is presented. On average 7065 samples per year were measured with that average dropping to 3278 samples per year following the deployment of our liquid sample capability. Although the dynamic range of our spectrometer is 4.5 orders in magnitude, most of the measured graphitic samples had 14C/C concentrations between 0.1 and 1 modern. The measurements of our ANU sucrose standard followed a Gaussian distribution with an average of 1.5082 ± 0.0134 modern. The LLNL biomedical AMS program supported many different types of experiments, however, the large majority of samples measured were derived from animal model systems. We have transitioned all of our biomedical AMS measurements to the recently installed 250 kV SSAMS instrument with good agreement compared in measured 14C/C isotopic ratios between sample splits. Finally, we present results from replacement of argon stripping gas with helium in the SSAMS with a 22% improvement in ion transmission through the accelerator and high-energy analyzing magnet. PMID:26456990
Muñoz-Nortes, Tamara; Pérez-Pérez, José Manuel; Ponce, María Rosa; Candela, Héctor; Micol, José Luis
2017-03-01
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Oliveira, Rodrigo C.; Oliveira, Isabela S.; Santiago, Mittermayer B.; Sousa Atta, Maria L. B.; Atta, Ajax M.
2015-01-01
We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA) dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA). Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction. PMID:26583157
Oliveira, Rodrigo C; Oliveira, Isabela S; Santiago, Mittermayer B; Sousa Atta, Maria L B; Atta, Ajax M
2015-01-01
We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA) dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA). Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction.
Autoantibodies in SLE but not in scleroderma react with protein-stripped nucleosomes.
Suer, Waltraud; Dähnrich, Cornelia; Schlumberger, Wolfgang; Stöcker, Winfried
2004-06-01
Autoantibodies against nucleosomes (ANuA) are known to be sensitive markers for systemic lupus erythematosus (SLE), but their clinical relevance seemed to be limited because sera from patients with progressive systemic sclerosis (PSS) also showed positive reactions with conventional ANuA ELISA test systems (anti-Nu1 ELISA). It was generally assumed thatANuA were associated with both diseases. Using discontinuous sucrose gradient centrifugation to generate pure nucleosomes, we discovered by chance that at the 30-50% sucrose interface an antigen (Nu2) banded which was demonstrably free of non-histone components and histone H1. The two different nucleosome preparations, Nu1 and Nu2, were used in parallel as antigenic substrates in standardised ELISA tests to analyse sera from SLE (295 patients), PSS (119) and patients with other rheumatic diseases (101). With Nu1, 62% of the SLE and 52% of the PSS sera showed positive reactions. Two sera from patients suffering from Sjögren's syndrome (SS) and one from polymyositis were also positive. Using the Nu2 preparation, 58% of the SLE but none of the PSS sera showed a positive reaction. One serum from a patient with SS was also positive. It could be shown that it was the PSS-specific autoantigen Scl-70 in the nucleosome preparation (Nu1) which contributed to the positive reactions of the PSS sera in conventional ANuA test systems, whereas in the Nu2 preparation no remaining Scl-70 was detectable. The present study definitely proved that ANuA are highly and specifically associated with SLE but not with PSS.
A Personal Memoir of Policy Failure: The Failed Merger of ANU and the Canberra CAE
ERIC Educational Resources Information Center
Scott, Roger
2004-01-01
The more immediate context of the events the author describes in this article is needed in order to identify the policy framework within which the Australian National University (ANU)-Canberra CAE (CCAE) merger was placed as a component of a wider public policy initiative undertaken by John Dawkins. There were four major components in that wider…
2013-02-15
Matthew James, Andre Carvalho and Michael Hush completed some work analyzing cross-phase modulation using single photon quantum filtering techniques...ANU Michael Hush January – June, 2012, Postdoc, ANU Matthew R. James Professor, Australian National University Ian R. Petersen Professor...appear, IEEE Trans. Aut. Control., 2013. A. R. R. Carvalho, M. R. Hush , and M. R. James, “Cavity driven by a single photon: Conditional dynamics and
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Näslund, Jens-Ove; Fastook, James
2014-05-01
Observations of glacial isostatic adjustment (GIA) have been used both to study the mechanical properties of the Earth and to invert for Northern Hemisphere palaeo-ice-sheets. This is typically done by solving the sea-level equation using simplified scaling laws to control ice-sheet thickness. However, past ice-sheets can also be reconstructed based on thermo-mechanical modelling driven by palaeo-climate data, invoking simple analytical models to account for the Earth's response. Commonly, both approaches use dated geological markers to constrain the ice-sheet margin location. Irrespective of the approach, the resulting ice-sheet reconstruction depends on the earth response, although the interdependence between the ice model and the earth model differs and therefore the two types of reconstructions could provide complementary information on Earth properties. We compare a thermo-mechanical reconstruction of the Weichselian ice-sheet using the UMISM model (Näslund, 2010) to two GIA driven reconstructions, ANU (Lambeck et al., 2010) and ICE-5G (Peltier & Fairbanks, 2006), commonly used in GIA modelling. We evaluate the three reconstructions both in terms of ice-sheet configurations and predicted Fennoscandian surface deformation ICE-5G comprise the largest reconstructed ice-sheet whereas ANU and UMISM are more similar in volume and areal extent. Significant differences still exists between ANU and UMISM, especially during the final deglaciation phase. Prior to the final retreat of the ice-sheet, ICE-5G is displays a massive and more or less constant ice-sheet configuration, while both ANU and UMISM fluctuates with at times almost ice-free conditions, such as during MIS3. This results in ICE-5G being close to isostatic equilibrium at LGM, whereas ANU and UMISM are not. Hence, the pre-LGM evolution of the Weichselian ice-sheet needs to be considered in GIA studies. For example, perturbing the ANU or UMISM reconstructions we find that changes more recent than 36 kyr BP may change the predicted uplift velocities by more than 0.1 mm/yr, while changes more recent than 55 kyr BP may change the predicted uplift 10 kyr ago by more than 5 m. Despite their differences we find that all three reconstructions can equally well fit observations of the present day uplift in Fennoscandia, as well as the observed sea-level curve along the Ångerman river, Sweden, albeit with different optimal earth models. However, only for ANU can a single optimal earth model be determined as a bifurcation in the optimal viscosity arises from the generally faster present day rebound rates in ICE-5G and UMISM, resulting in a range of well-fitting earth models for the latter reconstructions. Studying models with a reasonable fit to observed present day uplift velocities we find general trends of over- and under-prediction, indicating that all three ice-sheet reconstructions need improvement. In general, all three reconstructions tend to over-predict the uplift rates in southwestern Fennoscandia, whereas over Finland ICE-5G generally over-predicts and ANU generally under-predicts the uplift rates. UMISM tend to under-predict the velocities over central to northern Sweden and similar trends can also be seen in ANU and ICE-5G.
Lee, Yin Huey; Barnard, Amanda; Owen, Cathy
2011-01-01
Rural health workforce issues are a priority area for the Australian Government and substantial funding has been provided for rural education programs to address health workforce disparities across Australia's rural and remote communities. The Australian Government established a Rural Health Strategy in 2001 and as a result there are now 14 rural clinical schools in Australia. The 2008 Urbis Report highlighted the lack of research on rural programs and workforce outcomes, essential to ensuring that educational efforts, resources and funding are being concentrated appropriately. This study examined the Australian National University (ANU) Medical School's 4 year rural program to identify the impact of elective and compulsory program components on student intentions to practice in a rural and remote location post-graduation. The study also explores factors that affect student decisions to apply for year-long rural placements. METHODS; ANU Medical School's graduating cohort of 2008 fourth year medical students completed an anonymous and voluntary online survey questionnaire. Survey sections included student demographics, compulsory and elective components of the ANU rural program, and an overall evaluation of the ANU rural curriculum. The survey contained a mixture of forced-answer questions and open-ended commentary. Quantitative data were analyzed for descriptive and frequency statistics using EpiInfo V3.5.1 (http://wwwn.cdc.gov/epiinfo/). Qualitative data were reviewed and consistent themes among responses extracted. In total, 40 students from a cohort of 88 (45%) responded, with 26 respondents (65%) indicating that at medical school commencement they considered working in a rural or remote area. At the end of their medical education, 33 respondents (82%) indicated their intention to spend some time in their careers working in a rural or remote area. Students from non-rural backgrounds had greater positive change in their intentions to practice rurally as a direct effect of ANU rural programs when compared with students from rural backgrounds. More than 70% of students believed the amount of rural focus in the curriculum was correct, 75% believed that they will be better medical practitioners because of the program, and 85% found the curriculum was delivered effectively. Students who undertook elective rural programs such as a year-long rural placement were more likely to have future rural career intentions when compared with students undertaking compulsory rural components. Compulsory components, however, had a strong influence on students applying for elective programs. Regarding application for the year-long rural placement, students reported clinical exposure was the most encouraging factor, and time away from family and friends, and lack of spousal and family support were the most discouraging factors. Rural programs at the ANU, and medical school exposure to rural health experiences is important in influencing students' perceptions of a career in rural and remote health. This study provides evidence that both compulsory and elective components contribute to a successful holistic rural program which nurtures the rural interest of all students. Overall, students at the ANU medical school were satisfied with the rural curriculum. The results confirm that there is difficulty in recruiting students with family commitments into year-long rural placement programs, despite incentives. Those students who select long-term rural study for reasons other than an interest in a career in rural health end the program with positive rural intentions.
Peakall, Rod; Smouse, Peter E
2012-10-01
GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G'(ST), G''(ST), Jost's D(est) and F'(ST) through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. rod.peakall@anu.edu.au.
Robledo, M; Rivera, L; Jiménez-Zurdo, Jose I; Rivas, R; Dazzo, F; Velázquez, E; Martínez-Molina, E; Hirsch, Ann M; Mateos, Pedro F
2012-09-12
The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this "building material" seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates.
2012-01-01
Background The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. Results ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. Conclusions Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this “building material” seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates. PMID:22970813
Peakall, Rod; Smouse, Peter E.
2012-01-01
Summary: GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G′ST, G′′ST, Jost’s Dest and F′ST through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. Availability and implementation: GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. Contact: rod.peakall@anu.edu.au PMID:22820204
Orgambide, G G; Huang, Z H; Gage, D A; Dazzo, F B
1993-11-01
The phospholipid and associated fatty acid compositions of the bacterial symbiont of clover, Rhizobium leguminosarum biovar trifolii wild-type ANU843, was analyzed by two-dimensional silica thin-layer chromatography, fast atom bombardment-mass spectrometry, flame-ionization detection gas-liquid chromatography and combined gas-liquid chromatography/mass spectrometry. The phospholipid composition included phosphatidylethanolamine (15%), N-methylphosphatidylethanolamine (47%), N,N-dimethylphosphatidylethanolamine (9%), phosphatidylglycerol (19%), cardiolipin (5%) and phosphatidylcholine (2%). Fatty acid composition included predominantly cis-11-octadecenoic acid, lower levels of cis-9-hexadecenoic acid, hexadecanoic acid, 11-methyl-11-octadecenoic acid, octadecanoic acid, 11,12-methyleneoctadecanoic acid, eicosanoic acid and traces of branched, and di- and triunsaturated fatty acids. The influence of expression of the "nodulation" genes encoding symbiotic functions on the composition of these membrane lipids was examined in wild-type cells grown with or without the flavone inducer, 4',7-dihydroxyflavone and in mutated cells lacking the entire symbiotic plasmid where these genes reside, or containing single transposon insertions in selected nodulation genes. No significant changes in phospholipid or associated fatty acid compositions were detected by the above methods of analysis.
Laplace approximation for Bessel functions of matrix argument
NASA Astrophysics Data System (ADS)
Butler, Ronald W.; Wood, Andrew T. A.
2003-06-01
We derive Laplace approximations to three functions of matrix argument which arise in statistics and elsewhere: matrix Bessel A[nu]; matrix Bessel B[nu]; and the type II confluent hypergeometric function of matrix argument, [Psi]. We examine the theoretical and numerical properties of the approximations. On the theoretical side, it is shown that the Laplace approximations to A[nu], B[nu] and [Psi] given here, together with the Laplace approximations to the matrix argument functions 1F1 and 2F1 presented in Butler and Wood (Laplace approximations to hyper-geometric functions with matrix argument, Ann. Statist. (2002)), satisfy all the important confluence relations and symmetry relations enjoyed by the original functions.
Optical and Infrared Photometry of SN 2005df
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin; Suntzeff, Nicholas B.; Espinoza, Juan; Gonzalez, David; Miranda, Alberto; Sanhueza, Pedro
2017-12-01
We present optical BVRI and near-infrared YJHK_s photometry of the normal Type Ia supernova 2005df, obtained with the CTIO 1.3-m and 0.9-m telescopes. The B- and V-band photometry, S-corrected to the filter prescriptions of Bessell(1990), matches the corresponding photometry from the ANU published by Milne et al. (2010). The R-band photometry from CTIO and ANU matches well without any corrections. A combination of V-band and near-IR photometry shows that SN 2005df is unreddened in its host galaxy. Spectropolarimetry of this supernova was obtained with the VLT, and the distance to the host galaxy is being determined from observations of Cepheids using the Hubble Space Telescope.
Two-Photon Porphyrin Core Dendrimers for Optical Power Limiting
2006-09-30
macrocycle as compared to centro- symmetric porphyrins. Lowering of the symmetry relaxes the parity selection rules for 2PA, thus making the Soret band...collection of information is estimated to average 1 hour per response, including the time for reviewing instr* - - a 9 www, yen. .c. my anu maintaining...and polymers [2]. 3. We have completed a detailed study of 2PA in symmetrical and asymmetrical (push-pull) phthalocyanines [3,4,5]. 4. We have
Borges, Marcus Kiiti; Jacinto, Alessandro Ferrari; Citero, Vanessa de Albuquerque
2017-01-01
Alzheimer's disease (AD) represents a major public health problem and it is therefore crucial that modifiable risk factors be known prior to onset of dementia in late-life. The "Australian National University - Alzheimer's Disease Risk Index" (ANU-ADRI) is one of the potential tools for primary prevention of the disease. Objective The aim of this study was to devise an adapted version of the ANU-ADRI for use in Brazil. Methods The instrument was translated from its original language of English into Portuguese and then back-translated into English by bilingual translators. It was subsequently reviewed and evaluated as to the degree of translation issues and equivalence. In this study, the ANU-ADRI was applied using individual (face-to-face) interviews in a public hospital, unlike the original version which is applied online by self-report. The final version (pretest) was evaluated in a sample of 10 participants with a mean age of 60 years (±11.46) and mean education of 11 years (±6.32). Results The intraclass correlation coefficient (ICC) (inter-rater) was 0.954 (P<0.001 for a confidence interval (CI) of 95%=[0.932; 0.969]). Cultural equivalence was performed without the need for a second instrument application step. Conclusion After cross-cultural adaptation, the language of the resultant questionnaire was deemed easily understandable by the Brazilian population. PMID:29213508
Borges, Marcus Kiiti; Jacinto, Alessandro Ferrari; Citero, Vanessa de Albuquerque
2017-01-01
Alzheimer's disease (AD) represents a major public health problem and it is therefore crucial that modifiable risk factors be known prior to onset of dementia in late-life. The "Australian National University - Alzheimer's Disease Risk Index" (ANU-ADRI) is one of the potential tools for primary prevention of the disease. The aim of this study was to devise an adapted version of the ANU-ADRI for use in Brazil. The instrument was translated from its original language of English into Portuguese and then back-translated into English by bilingual translators. It was subsequently reviewed and evaluated as to the degree of translation issues and equivalence. In this study, the ANU-ADRI was applied using individual (face-to-face) interviews in a public hospital, unlike the original version which is applied online by self-report. The final version (pretest) was evaluated in a sample of 10 participants with a mean age of 60 years (±11.46) and mean education of 11 years (±6.32). The intraclass correlation coefficient (ICC) (inter-rater) was 0.954 (P<0.001 for a confidence interval (CI) of 95%=[0.932; 0.969]). Cultural equivalence was performed without the need for a second instrument application step. After cross-cultural adaptation, the language of the resultant questionnaire was deemed easily understandable by the Brazilian population.
Identification of significant E0 strength in the 22+ → 21+ transitions of 58,60,62Ni
NASA Astrophysics Data System (ADS)
Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Smallcombe, J.; Reed, M. W.; Brown, B. A.; Stuchbery, A. E.; Lane, G. J.; Eriksen, T. K.; Akber, A.; Alshahrani, B.; de Vries, M.; Gerathy, M. S. M.; Holt, J. D.; Lee, B. Q.; McCormick, B. P.; Mitchell, A. J.; Moukaddam, M.; Mukhopadhyay, S.; Palalani, N.; Palazzo, T.; Peters, E. E.; Ramirez, A. P. D.; Stroberg, S. R.; Tornyi, T.; Yates, S. W.
2018-04-01
The E0 transition strength in the 22+ →21 + transitions of 58,60,62Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ (E 2 / M 1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ (E 2 / M 1) mixing ratios and γ-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0 strengths. These are the first 2+ →2+E0 transition strengths measured in nuclei with spherical ground states and the E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0 transition strengths in medium and heavy nuclei reported to date.
KEGS Transients Discovered by a Pan-STARRS1 Search of the Kepler Campaign 16 Field
NASA Astrophysics Data System (ADS)
Smith, K. W.; Rest, A.; Tucker, B. E.; Garnavich, P. M.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Narayan, G.; Villar, A.; Forster, F.; Mushotzky, R.; Zenteno, A.; James, D.; Smith, R. Chris; Dotson, J. L.; Barentsen, G.; Gully-Santiago, M.; Smartt, S. J.; Wright, D. E.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Schultz, A.; Magnier, E.; Waters, C.; Bulger, J.; Wainscoat, R. J.
2018-01-01
We report the following transients discovered by Pan-STARRS1 during a targeted search of the Kepler Campaign 16 field as part of the K2 Extragalactic Survey (KEGS) for Transients (see http://www.mso.anu.edu.au/kegs/).
KEGS Discovery of 28 Supernova Candidates in the K2 Campaign 17 Field with DECam
NASA Astrophysics Data System (ADS)
Narayan, G.; Rest, A.; Strampelli, G. M.; Zenteno, A.; James, D. J.; Smith, R. C.; Tucker, B. E.; Garnavich, P.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Buron, F. Forster; Villar, V. A.
2018-05-01
The Kepler Extra-Galactic Survey (KEGS, see http://www.mso.anu.edu.au/kegs/ ) reports the discovery of 28 supernova candidates with the Dark Energy Camera (DECam, NOAO 2017B-0285) on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO).
Hall devices improve electric motor efficiency
NASA Technical Reports Server (NTRS)
Haeussermann, W.
1979-01-01
Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.
Flight Test Experiments Foreseen for USV
2005-10-01
USA W.T. - Japan W .T. - Australia: ANU ( National University) W .T. - USA: NASA , AEDC, CALTEC, CUBRC W .T. - Japan: NAL 1.0E-05 1.0E-04... reflectometry ”. • Active (TX / RX) / passive (RX only) mode experiments • Main on-board elements: • RX • TX (possibly shared with system TX) • antennas
Leading Change: Applying Change Management Approaches to Engage Students in Blended Learning
ERIC Educational Resources Information Center
Quinn, Diana; Amer, Yousef; Lonie, Anne; Blackmore, Kim; Thompson, Lauren; Pettigrove, Malcolm
2012-01-01
The Australian National University (ANU) and the University of South Australia (UniSA) have embarked on Federally-funded project to collaborate in the design, development and delivery of a range of undergraduate and postgraduate courses in engineering. The collaboration investigates new ways to bring together the strengths and discipline expertise…
Basic data for some recent Australian heat-flow measurements
Munroe, Robert J.; Sass, J.H.; Milburn, G.T.; Jaeger, J.C.; Tammemagi, H.Y.
1975-01-01
This report has been compiled to provide background information and detailed temperature and thermal conductivity data for the heat-flow values reported in Sass, Jaeger, and Munroe (in press). The data were collected as part of a joint heat-flow study by the Australian National University (ANU) and the U.S. Geological Survey (USGS) under the direction of J. C. Jaeger (ANU) and J. H. Sass (USGS). The format is similar to that used for basic data from United States heat-flow determinations (Sass and Munroe, 1974). Each section contains a state map showing the geographic distribution of heat-flow data followed by tables which list individual temperatures, thermal conductivities, and radiogenic heat production values. A companion volume (Bunker and others, 1975) gives details of the heat-production measurements together with individual radioelement concentrations. Localities are arranged in alphabetical order within each state. The methods and techniques of measurements have been described by Sass and others (1971a, b). Unusual methods or procedures which differ markedly from these techniques are noted and described in the comments sections of the tables.
NASA Astrophysics Data System (ADS)
Brahm, R.; Hartman, J. D.; Jordán, A.; Bakos, G. Á.; Espinoza, N.; Rabus, M.; Bhatti, W.; Penev, K.; Sarkis, P.; Suc, V.; Csubry, Z.; Bayliss, D.; Bento, J.; Zhou, G.; Mancini, L.; Henning, T.; Ciceri, S.; de Val-Borro, M.; Shectman, S.; Crane, J. D.; Arriagada, P.; Butler, P.; Teske, J.; Thompson, I.; Osip, D.; Díaz, M.; Schmidt, B.; Lázár, J.; Papp, I.; Sári, P.
2018-03-01
We report the discovery of four short-period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet masses range from 0.26 to 0.90 {M}{{J}}, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets ranges from 2.7 days to 4.7 days, with HATS-43b having an orbit that appears to be marginally non-circular (e = 0.173 ± 0.089). HATS-44 is notable for having a high metallicity ([{Fe}/{{H}}] = 0.320 ± 0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3 < V < 14.4), allowing the execution of future detailed follow-up observations. HATS-43b and HATS-46b, with expected transmission signals of 2350 ppm and 1500 ppm, respectively, are particularly well suited targets for atmospheric characterization via transmission spectroscopy. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Pappas, P W; Leiby, D A
1986-06-01
Four "strains" of Hymenolepis diminuta were examined for morphological variation. These included the ARME "strain" (currently maintained at the University of Keele, U.K.), the OSU "strain" (currently maintained at The Ohio State University) and the TOR (or UT) "strain" (currently maintained at the University of Toronto), all of which were derived from the parental RICE "strain," and the ANU "strain" (currently maintained at the Australian National University). Additionally, 2 separate "clonal" populations (populations derived from single cysticercoids) from both the OSU and ANU "strains" were examined. All "strains" and "clones" were maintained under identical conditions using Tenebrio molitor and male Sprague-Dawley rats as the intermediate and definitive hosts, respectively. The lengths and widths of eggs and larvae (oncospheres) passed in the hosts' feces, and the numbers and distributions of testes in proglottids were quantified and the data analyzed. Although analyses of the lengths and widths of eggs and larvae demonstrated significant differences among some "strains" and "clones," a discriminate analysis of the data indicated these parameters to be of questionable taxonomic significance. The eggs of all "strains" and "clones" consisted of 2 distinct populations differing in density and size but not infectivity; the relative proportions of eggs in the 2 populations were not determined. Considering all possible numbers and distributions of testes, 17 variations were seen in the strobilae of tapeworms. Analyses of the data demonstrated that the "strains" and "clones" could be differentiated clearly using only the frequencies of the 1p2a (1 poral and 2 aporal testes) or 1p3a distribution, or the frequencies of proglottids containing 3 or 4 testes; all other variations failed to clearly differentiate or group the various "strains" and "clones."(ABSTRACT TRUNCATED AT 250 WORDS)
An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model
NASA Astrophysics Data System (ADS)
Purcell, A.; Tregoning, P.; Dehecq, A.
2016-05-01
The recent release of the next-generation global ice history model, ICE6G_C(VM5a), is likely to be of interest to a wide range of disciplines including oceanography (sea level studies), space gravity (mass balance studies), glaciology, and, of course, geodynamics (Earth rheology studies). In this paper we make an assessment of some aspects of the ICE6G_C(VM5a) model and show that the published present-day radial uplift rates are too high along the eastern side of the Antarctic Peninsula (by ˜8.6 mm/yr) and beneath the Ross Ice Shelf (by ˜5 mm/yr). Furthermore, the published spherical harmonic coefficients—which are meant to represent the dimensionless present-day changes due to glacial isostatic adjustment (GIA)—contain excessive power for degree ≥90, do not agree with physical expectations and do not represent accurately the ICE6G_C(VM5a) model. We show that the excessive power in the high-degree terms produces erroneous uplift rates when the empirical relationship of Purcell et al. (2011) is applied, but when correct Stokes coefficients are used, the empirical relationship produces excellent agreement with the fully rigorous computation of the radial velocity field, subject to the caveats first noted by Purcell et al. (2011). Using the Australian National University (ANU) groups CALSEA software package, we recompute the present-day GIA signal for the ice thickness history and Earth rheology used by Peltier et al. (2015) and provide dimensionless Stokes coefficients that can be used to correct satellite altimetry observations for GIA over oceans and by the space gravity community to separate GIA and present-day mass balance change signals. We denote the new data sets as ICE6G_ANU.
NASA Astrophysics Data System (ADS)
Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.
2015-08-01
In the recent years, there has been significant research focus on the safety and reliability of data harvesting and optimal energy consuming by wireless sensor network nodes. If external electrical power fails, the node needs to be able to send notifications to the utility demanding the use of backup energy strategies. The authors of the research offer an approach that can help to use PV panels as an alternative power source for WSN nodes in particular irradiation conditions. Survey and testing of the main types of PV panels offered on the market in conditions closed to real ones, in which WSN nodes are maintained, have been implemented. Based on the test results, maximum power control module parameters can be calculated in order to achieve the best effectiveness of the power control system for a selected type of PV panel or panel group. The novelty of the research is an approach that includes an original test bed design for PV testing, PV testing method and selection of design and MPP control module parameters, which ensure maximum effectiveness of WSN node power feeding. Pēdējos gados vairāki pētījumi ir veltīti problēmām, kas ir saistītas ar enerģijas patēriņa mazināšanu un efektīvu izmantošanu bezvadu sensoru tīklu mezglos. Kad sensors mezgls ir izsmēlis enerģijas krājumu, tas vairs nefunkcionē un atslēdzas no kopēja tīkla, kas var būtiski ietekmēt visa tīkla veiktspēju. Šī pētījuma mērķis ir izveidot barošanas vadības moduli, lai nodrošinātu stabilu elektroapgādes spriegumu autonomi strādājošiem radio signāla atkārtotājiem, sensoriem vai vārtejām, kas darbojas bezvadu sensoru tīklos. Pētījuma ietvaros izstrādāta metode saules paneļu kvalitatīvai salīdzināšanai starp tehnoloģijām vai savā starpā, izvērtējot to atbilstību mērķa pielietojumam. Izstrādātā metode sniedz iespēju veikt kontrolētus testus pie variējošiem, simulētiem gaismas apstākļiem, ļauj prognozēt enerģijas resursus kontekstā ar reģionālajiem apstākļiem un aprēķināt darba režīmus bezvadu tīkla komponentēm vai pieņemt lēmumus par to funkcionalitātes pielāgošanu. Izstrādātais vadības modulis sastāv no saules paneļa fotoelementu moduļa, uzglabāšanas risinājuma (litija vai līdzvērtīgas baterijas) un elektroapgādes pārvaldības moduļa. Pētījuma novitāte ir elektroapgādes pārvaldības modulis, kas nodrošina stabilu un nepārtrauktu elektronisko iekārto darbību dažādos barošanas režīmos, dažādās situācijās, vienlaikus nodrošinot enerģijas saglabāšanu un moduļa sastāvdaļu ilgtspēju. Izstrādātais risinājums nodrošina nepārtrauktu 5V barošanu elektronikas shēmām bez strāvas pārtraukuma, kad notiek komutācija starp barošanas avotiem un enerģijas plūsmām dažādos virzienos. Elektroapgādes pārvaldības modulis nodrošina stabilu spriegumu mainīgos saules radiācijas apstākļos.
ERIC Educational Resources Information Center
McNamara, Paul
2012-01-01
Two floors of the W. K. Hancock Library at the Australian National University (ANU) were refurbished in 2011 as part of a cooperative project between the library and the College of Science. The refurbishment, costing $5 million, was part of a much larger exercise involving the construction of four new science buildings around the Hancock Library.…
1994-07-01
Photo by Peter McGregor Comet Shoemaker-Levy 9 impacting Jupiter; impact of Fragment G of Comet Shoemaker-Levy on Jupiter. The fireball is seen 12 minutes after impact at 2.34 microns. The impact A site is seen on the oposite limb of the planet. Image at 2.34 microns with CASPIR by Peter McGregor ANU 2.3m telescope at Siding Spring. (JPL Ref; P-44419)
Quantum Consciousness - The Road to Reality
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell\\x9D? The question boils down to information created by quantum particles blinking ON and OFF analogous to 'Ying and Yang' or some more complex ways that may include dark matter. Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE (Theory of Everything) for any one thing.
Blockchain distributed ledger technologies for biomedical and health care applications.
Kuo, Tsung-Ting; Kim, Hyeon-Eui; Ohno-Machado, Lucila
2017-11-01
To introduce blockchain technologies, including their benefits, pitfalls, and the latest applications, to the biomedical and health care domains. Biomedical and health care informatics researchers who would like to learn about blockchain technologies and their applications in the biomedical/health care domains. The covered topics include: (1) introduction to the famous Bitcoin crypto-currency and the underlying blockchain technology; (2) features of blockchain; (3) review of alternative blockchain technologies; (4) emerging nonfinancial distributed ledger technologies and applications; (5) benefits of blockchain for biomedical/health care applications when compared to traditional distributed databases; (6) overview of the latest biomedical/health care applications of blockchain technologies; and (7) discussion of the potential challenges and proposed solutions of adopting blockchain technologies in biomedical/health care domains. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
WIS Implementation Study Report. Volume 2. Resumes.
1983-10-01
WIS modernization that major attention be paid to interface definition and design, system integra- tion and test , and configuration management of the...Estimates -- Computer Corporation of America -- 155 Test Processing Systems -- Newburyport Computer Associates, Inc. -- 183 Cluster II Papers-- Standards...enhancements of the SPL/I compiler system, development of test systems for the verification of SDEX/M and the timing and architecture of the AN/U YK-20 and
The Impact of Army and Family Factors on Individual Readiness
1993-08-01
families. While, in general , individual characteristics were more important in the determination of soldieL. readiness than famlily characteristics...affected indi- vidual readiness, in general , family-related variables had higher impact on soldier intention to remain in the Army after their cur- rent...installations. This survey was designed to provide information related to Army policy/program questions based on prior and current research anu to generate new
$200,000 Grants Awarded to CCR Researchers for HIV/AIDS Studies | Poster
By Nancy Parrish, Staff Writer Earlier this year, the Office of AIDS Research (OAR) awarded two, two-year grants of $200,000 each to Anu Puri, Ph.D., and Robert Blumenthal, Ph.D., both of the Center for Cancer Research (CCR) Nanobiology Program, and to Eric Freed, Ph.D., of the HIV Drug Resistance Program, for their research on potential new treatments for HIV.
A new fast-cycling system for AMS at ANU
NASA Astrophysics Data System (ADS)
De Cesare, M.; Fifield, L. K.; Weisser, D. C.; Tsifakis, D.; Cooper, A.; Lobanov, N. R.; Tunningley, T. B.; Tims, S. G.; Wallner, A.
2015-10-01
In order to perform higher precision measurements, an upgrade of the ANU accelerator is underway. Fast switching times on the low-energy side, with maximum settling times of 30 ms, are achieved by holding the injector magnet field constant while changing the energy of the different isotopes by changing the pre-acceleration voltage after the ion source. Because ions of the different isotopes then have different energies before injection, it is necessary to adjust the strength and steering of the electrostatic quadrupole lens that focusses the beam before entry into the accelerator. First tests of the low-energy system will be reported. At the high energy end, a larger vacuum box in the analyzing magnet has been designed, manufactured and installed to allow the transport of differences in mass as large as 10% at constant terminal voltage. For the cases where more than one isotope must be transported to the detector an additional refinement is necessary. If the accelerator voltage is to be kept constant, then the trajectories of the different isotopes around both the analyzing and switching magnets must be modified. This will be achieved using bounced electrostatic steerers before and after the magnets. Simulations have been performed with the ion optic code COSY Infinity to determine the optimal positions and sizes of these steerers.
Abundances of uranium, thorium, and potassium for some Australian crystalline rocks
Bunker, Carl Maurice; Bush, C.A.; Munroe, Robert J.; Sass, J.H.
1975-01-01
This report contains a tabulation of the basic radioelement and radiogenic heat data obtained during an Australian National University (ANU) - United States Geological Survey (USGS) heat-flow project, directed jointly by J. C. Jaeger (ANU) and J. H. Sass (USGS). Most samples were collected during the periods June through September, 1971 and 1972. The measurements were made subsequently by two of us (C. M. Bunker and C. A. Bush) using the gamma-ray spec trometric techniques described by Bunker and Bush (1966, 1967). Interpreting the spectra for quantitative analyses of the radioelements was accomplished with an iterative leastsquares computer program modified from one by Schonfeld (1966). Uranium content determined by gamma-ray spectrometry is based on a measurement of the daughter products of 226Ra. Equilibrium in the uranium-decay series was assumed for these analyses . Throughout the report, when U content is stated, radium-equivalent uranium is implied. The coefficient of variation for the accuracy of the radioelement data, when compared to ana lyses by isotope dilution and flame photometry is about 3 percent for radium-equivalent uranium and thorium and about 1 percent for potassium. These percentages are in addition to minimum standard deviations of about 0.05 ppm for U and Th, and about 0.03 percent for K.
Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob
2015-01-01
Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases’ criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ’s coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical databases. However, DOAJ only indexes articles for half of the biomedical journals listed, making it an incomplete source for biomedical research papers in general. PMID:26038727
Liljekvist, Mads Svane; Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob
2015-01-01
Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases' criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ's coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical databases. However, DOAJ only indexes articles for half of the biomedical journals listed, making it an incomplete source for biomedical research papers in general.
KEGS Discovery of 9 Supernova Candidates in the K2 Campaign 17 field with Pan-STARRS PS1
NASA Astrophysics Data System (ADS)
Smith, K. W.; Rest, A.; Tucker, B. E.; Garnavich, P. M.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Narayan, G.; Villar, A.; Forster, F.; Mushotzky, R.; Zenteno, A.; James, D.; Smith, R. Chris; Dotson, J. L.; Barentsen, G.; Gully-Santiago, M.; Smartt, S. J.; Wright, D. E.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Schultz, A.; Magnier, E.; Waters, C.; Bulger, J.; Wainscoat, R. J.
2018-05-01
We report the following transients discovered by Pan-STARRS1 during a targeted search of the Kepler Campaign 17 field as part of the K2 Extragalactic Survey (KEGS) for Transients (see http://www.mso.anu.edu.au/kegs/ ) Information on the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).
Deciphering the balkan Enigma: Using History to Inform Policy
1993-03-01
University Press, 1973. After long experience with German interference in Serbian/Yugoslav affairs (1878, 1908, 1914 - 1918 ) it should not be surprising that... 1914 - 1918 , ed. Djordjevicý, Santa Barbara: CLID Books, 1980. 151. James Gow, "Deconstructing Yugoslavia," Survival, Vol. 33, Nc. 4, July-August 1992, p...of political institutions witnin tine Balkans anu io0w these political dev, ’ýpments intluence current events. Historical perspective gained is used
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songhua; Krauthammer, Prof. Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less
Geomagnetic Workshop, Canberra
NASA Astrophysics Data System (ADS)
Barton, C. E.; Lilley, F. E. M.; Milligan, P. R.
On May 14-15, 1985, 63 discerning geomagnetists flocked to Canberra to attend the Geomagnetic Workshop coorganized by the Australian Bureau of Mineral Resources (BMR) and the Research School of Earth Sciences, Australian National University (ANU). With an aurorally glowing cast that included an International Association of Geomagnetism and Aeronomy (IAGA) president, former president, and division chairman, the Oriental Magneto-Banquet (which was the center of the meeting), was assured of success. As a cunning ploy to mask the true nature of this gastronomic extravagance from the probings of income tax departments, a presentation of scientific papers on Australian geomagnetism in its global setting was arranged.The Australian region, including New Zealand, Papua New Guinea, Indonesia, and a large sector of the Antarctic, covers one eighth of the Earth's surface and historically has played an important role in the study of geomagnetism. The region contains both the south magnetic and geomagnetic poles, and two Australian Antarctic stations (Casey and Davis) are situated in the region of the south polar cusp (see Figure 1).
Publishing priorities of biomedical research funders
Collins, Ellen
2013-01-01
Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520
Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Gomes, Douglas Fabiano; Souza, Renata Carolina; Chueire, Ligia Maria Oliveira
2015-01-01
Bradyrhizobium pachyrhizi PAC48T has been isolated from a jicama nodule in Costa Rica. The draft genome indicates high similarity with that of Bradyrhizobium elkanii. Several coding sequences (CDSs) of the stress response might help in survival in the tropics. PAC48T carries nodD1 and nodK, similar to Bradyrhizobium (Parasponia) ANU 289 and a particular nodD2 gene. PMID:26383651
1974-07-01
elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS
1988-09-01
FishesS and Invertebrates (Pacific Southwest) CALIFORNIA SEA MUSSEL AND BAY MUSSEL Cn Coastal Ecology Group *Fish and Wildlife Service Waterways...September 1988 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest) CALIFORNIA SEA MUSSEL...AND BAY MUSSEL by William N. Shaw Fred Telonicher Marine Laboratory Humboldt State University Trinidad, CA 95570 Thomas J. Hassler U.S. Fish anu
Effect of soiling in CPV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivar, M.; Herrero, R.; Anton, I.
2010-07-15
The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?'more » The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)« less
Accessing Biomedical Literature in the Current Information Landscape
Khare, Ritu; Leaman, Robert; Lu, Zhiyong
2015-01-01
i. Summary Biomedical and life sciences literature is unique because of its exponentially increasing volume and interdisciplinary nature. Biomedical literature access is essential for several types of users including biomedical researchers, clinicians, database curators, and bibliometricians. In the past few decades, several online search tools and literature archives, generic as well as biomedicine-specific, have been developed. We present this chapter in the light of three consecutive steps of literature access: searching for citations, retrieving full-text, and viewing the article. The first section presents the current state of practice of biomedical literature access, including an analysis of the search tools most frequently used by the users, including PubMed, Google Scholar, Web of Science, Scopus, and Embase, and a study on biomedical literature archives such as PubMed Central. The next section describes current research and the state-of-the-art systems motivated by the challenges a user faces during query formulation and interpretation of search results. The research solutions are classified into five key areas related to text and data mining, text similarity search, semantic search, query support, relevance ranking, and clustering results. Finally, the last section describes some predicted future trends for improving biomedical literature access, such as searching and reading articles on portable devices, and adoption of the open access policy. PMID:24788259
Professional Identification for Biomedical Engineers
ERIC Educational Resources Information Center
Long, Francis M.
1973-01-01
Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)
A new pivoting and iterative text detection algorithm for biomedical images.
Xu, Songhua; Krauthammer, Michael
2010-12-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use. Copyright © 2010 Elsevier Inc. All rights reserved.
An ecodesign method for reducing the effects of hazardous substances in the product lifecycle
NASA Astrophysics Data System (ADS)
Simanovska, J.; Valters, K.; Bažbauers, G.; Luttropp, C.
2012-10-01
Growing evidence on the indoor and outdoor pollution caused by the flow of man-made products urges that the content and leaching of hazardous substances from products be minimised. One of the ways to reduce the potential adverse impacts caused by these substances could be via ecodesign - i.e. through the consideration of lifecycle-related environmental aspects during the product development. The authors’ review of the existing ecodesign methods highlights the weakness of these methods in identifying and assessing the health-related and environmental impacts of hazardous substances contained in products, especially with regard to the exposure assessment. Therefore, a new, semi-quantitative screening ecodesign method applicable for different types of products has been developed. The method ranks the most severe hazards based on the classification according to the Globally Harmonised System together with the exposure evaluation as well as integrates the aspects of material efficiency. This method is suitable for use in the product development process, requiring decisions to be made based on limited information while integrating the main principles of a scientific risk assessment for chemicals. Application of the method is demonstrated with a case study on products made of plywood. The method makes it possible to identify the needs for and elaboration of ecodesign proposals, and fosters communication and information exchange throughout the supply chain.
ERIC Educational Resources Information Center
Institute of Medicine (NAS), Washington, DC.
Designed to provide assistance in the assessment of the need for biomedical and behavioral research personnel, this report presents research findings related to specific medical careers. The review includes an examination of the system under which biomedical and behavioral scientists are trained for research careers and the United States…
Code of Federal Regulations, 2013 CFR
2013-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2014 CFR
2014-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2012 CFR
2012-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2010 CFR
2010-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
Introductory Course in Biomedical Ethics in the Obstetrics-Gynecology Residency.
ERIC Educational Resources Information Center
Elkins, Thomas E.
1988-01-01
Information used in a brief lecture that introduces a biomedical ethics curriculum in an obstetrics and gynecology residency is described. Major components include theories of philosophic ethics (formalist and consequentialist) and principles of biomedical ethics (honesty, contract-keeping, nonmaleficence, justice, autonomy, beneficence,…
Bio-functionalization of biomedical metals.
Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C
2017-01-01
Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.
Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Gomes, Douglas Fabiano; Souza, Renata Carolina; Chueire, Ligia Maria Oliveira; Hungria, Mariangela
2015-09-17
Bradyrhizobium pachyrhizi PAC48(T) has been isolated from a jicama nodule in Costa Rica. The draft genome indicates high similarity with that of Bradyrhizobium elkanii. Several coding sequences (CDSs) of the stress response might help in survival in the tropics. PAC48(T) carries nodD1 and nodK, similar to Bradyrhizobium (Parasponia) ANU 289 and a particular nodD2 gene. Copyright © 2015 Delamuta et al.
2006-07-27
9 10 Technical horizon sensors Over the past few years, a remarkable proliferation of designs for micro-aerial vehicles (MAVs) has occurred... photodiode Fig. 15 Fig. 14 Sky scans with a GaP UV pho to dio de a lo ng three vert ical paths. A ngle o f v iew 30 degrees, 50% clo ud co ver, sun at...Australia Email: gert.stange@anu.edu.au A biomimetic algorithm for flight stabilization in airborne vehicles , based on dragonfly ocellar vision
2011-03-09
anu.edu.au Nocturnal visual orientation in flying insects: a benchmark for the design of vision-based sensors in Micro-Aerial Vehicles Report...9 10 Technical horizon sensors Over the past few years, a remarkable proliferation of designs for micro-aerial vehicles (MAVs) has occurred...possible elevations, it may severely degrade the performance of sensors by local saturation. Therefore it is necessary to find a method whereby the effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shortis, M.R.; Johnston, G.H.G.
1996-08-01
Close range photogrammetry is a sensing technique that allows the three-dimensional coordinates of selected points on a surface of almost any dimension and orientation to be assessed. Surface characterizations of paraboloidal reflecting surfaces at the ANU using photogrammetry have indicated that three-dimensional coordinate precisions approach 1:20,000 are readily achievable using this technique. This allows surface quality assessments to be made of large solar collecting devices with a precision that is difficult to achieve with other methods.
Information Resource Management for Naval Shore Activities: Concepts and Implementation Strategy.
1984-09-01
with accurate inorl atn, at the right time and a the lowest cost. (Ref. 21: p. 15) *" managing the i0formation resource essentially means gathering...US Lf eczcJu 21 =guZ~wuLU Essential in the implementation of Information -" ]Resource anagement, is a clear understanding of the rela- tionships...of determins.ng the needs of the user of a structure anu then d9signing to meet those needs as effectively as possIble within ecnomic and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.
Perspectives on biomedical HIV prevention options among women who inject drugs in Kenya.
Bazzi, Angela Robertson; Yotebieng, Kelly A; Agot, Kawango; Rota, Grace; Syvertsen, Jennifer L
2018-03-01
Due to heightened vulnerability to HIV from frequent engagement in sex work and overlapping drug-using and sexual networks, women who inject drugs should be a high priority population for pre-exposure prophylaxis (PrEP) and other biomedical HIV prevention tools. Kenya is one of the first African countries to approve oral PrEP for HIV prevention among "key populations," including people who inject drugs and sex workers. The objective of this study was to explore preferences and perceived challenges to PrEP adoption among women who inject drugs in Kisumu, Kenya. We conducted qualitative interviews with nine HIV-uninfected women who inject drugs to assess their perceptions of biomedical HIV interventions, including oral PrEP, microbicide gels, and intravaginal rings. Despite their high risk and multiple biomedical studies in the region, only two women had ever heard of any of these methods. All women were interested in trying at least one biomedical prevention method, primarily to protect themselves from partners who were believed to have multiple other sexual partners. Although women shared concerns about side effects and product efficacy, they did not perceive drug use as a significant deterrent to adopting or adhering to biomedical prevention methods. Beginning immediately and continuing throughout Kenya's planned PrEP rollout, efforts are urgently needed to include the perspectives of high risk women who use drugs in biomedical HIV prevention research and programing.
Trends in Biomedical Education.
ERIC Educational Resources Information Center
Peppas, Nicholas A.; Mallinson, Richard G.
1982-01-01
An analysis of trends in biomedical education within chemical education is presented. Data used for the analysis included: type/level of course, subjects taught, and textbook preferences. Results among others of the 1980 survey indicate that 28 out of 79 schools responding offer at least one course in biomedical engineering. (JN)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
..., Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid Through Biomedical Dynamics.... had their wages reported under a separate unemployment insurance (UI) tax account under the name... Minnesota, Inc., including workers whose unemployment insurance (UI) wages are paid through Biomedical...
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
Xu, Songhua; Krauthammer, Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803
Information Retrieval in Biomedical Research: From Articles to Datasets
ERIC Educational Resources Information Center
Wei, Wei
2017-01-01
Information retrieval techniques have been applied to biomedical research for a variety of purposes, such as textual document retrieval and molecular data retrieval. As biomedical research evolves over time, information retrieval is also constantly facing new challenges, including the growing number of available data, the emerging new data types,…
New software developments for quality mesh generation and optimization from biomedical imaging data.
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2014-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Telemedicine optoelectronic biomedical data processing system
NASA Astrophysics Data System (ADS)
Prosolovska, Vita V.
2010-08-01
The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.
ERIC Educational Resources Information Center
Haller, Edwin W., Ed.; Myers, Ruth A., Ed.
This document contains edited versions of tape-recorded speeches given at a conference titled "American Indians and Alaskan Natives in Biomedical Research." The proceedings is divided into two sections: "Research in the Biomedical Sciences: American Indians Speak Out" that includes presentations on aspects of biomedical careers and their federal…
Biomedical Research Division significant accomplishments for FY 1983
NASA Technical Reports Server (NTRS)
Martello, N. V.
1984-01-01
Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.
Biomedical applications of aerospace technology
NASA Technical Reports Server (NTRS)
Castles, T. R.
1971-01-01
Aerospace technology transfer to biomedical research problems is discussed, including transfer innovations and potential applications. Statistical analysis of the transfer activities and impact is also presented.
[Main characteristics of current biomedical research, in Chile].
Valdés S, Gloria; Armas M, Rodolfo; Reyes B, Humberto
2012-04-01
Biomedical research is a fundamental tool for the development of a country, requiring human and financial resources. To define some current characteristics of biomedical research, in Chile. Data on entities funding bio-medical research, participant institutions, and the number of active investigators for the period 2007-2009 were obtained from institutional sources; publications indexed in PubMed for 2008-2009 were analysed. Most financial resources invested in biomedical research projects (approximately US$ 19 million per year) came from the "Comisión Nacional de Investigación Científica y Tecnológica" (CONICYT), a state institution with 3 independent Funds administering competitive grant applications open annually to institutional or independent investigators in Chile. Other sources and universities raised the total amount to US$ 26 million. Since 2007 to 2009, 408 investigators participated in projects funded by CONICYT. The main participant institutions were Universidad de Chile and Pontificia Universidad Católica de Chile, both adding up to 84% of all funded projects. Independently, in 2009,160 research projects -mainly multi centric clinical trials- received approximately US$ 24 million from foreign pharmaceutical companies. Publications listed in PubMed were classified as "clinical research" (n = 879, including public health) or "basic biomedical research" (n = 312). Biomedical research in Chile is mainly supported by state funds and university resources, but clinical trials also obtained an almost equivalent amount from foreign resources. Investigators are predominantly located in two universities. A small number of MD-PhD programs are aimed to train and incorporate new scientists. Only a few new Medical Schools participate in biomedical research. A National Registry of biomedical research projects, including the clinical trials, is required among other initiatives to stimulate research in biomedical sciences in Chile.
Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity.
Alshehri, Reem; Ilyas, Asad Muhammad; Hasan, Anwarul; Arnaout, Adnan; Ahmed, Farid; Memic, Adnan
2016-09-22
Carbon nanotubes (CNTs) represent one of the most studied allotropes of carbon. The unique physicochemical properties of CNTs make them among prime candidates for numerous applications in biomedical fields including drug delivery, gene therapy, biosensors, and tissue engineering applications. However, toxicity of CNTs has been a major concern for their use in biomedical applications. In this review, we present an overview of carbon nanotubes in biomedical applications; we particularly focus on various factors and mechanisms affecting their toxicity. We have discussed various parameters including the size, length, agglomeration, and impurities of CNTs that may cause oxidative stress, which is often the main mechanism of CNTs' toxicity. Other toxic pathways are also examined, and possible ways to overcome these challenges have been discussed.
Personnel Needs and Training for Biomedical and Behavioral Research.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.
The fourth in a series of annual reports assessing the role of and need for federal training programs in the biomedical and behavioral sciences is presented. Highlights of this 1978 report include: (1) the results of surveys of the chairpersons of 1,324 basic biomedical science departments and 474 behavioral science departments in Ph.D.-granting…
New Directions for Biomedical Engineering
ERIC Educational Resources Information Center
Plonsey, Robert
1973-01-01
Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)
Code of Federal Regulations, 2012 CFR
2012-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Code of Federal Regulations, 2011 CFR
2011-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Code of Federal Regulations, 2013 CFR
2013-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Code of Federal Regulations, 2014 CFR
2014-10-01
... reference in this part to grants includes cooperative agreements) for biomedical and behavioral research; and (2) Biomedical and behavioral research and development contract project concepts and proposals for...
Aircraft Configuration Noise Reduction. Volume 3. Computer Program Source Listing
1976-06-01
CAT GEN 11 12=1 1+11 CATGtN 32 0360 REAOIKI,10CENIj=4C)(OT(J),.I=11,I2) CATCEN 33 REAO(KI, 100) fDI (JbJ=I#Ii) CATGtkN 34 IF (EOF(KI)) 4C9 20 CATGEN...CORE ANu IURBINE CGNVk 1 COMMON/COREIN/T13,PP3,cMF3,EX3,oELT3,J83, CONVR 13 CONVR 1’ C =5 EXIT FANC .,NVx i COMMUN/FANUAT/NSIG45,NLET45,NAFT45,1CP45,N845
VizieR Online Data Catalog: Luminous of high-z QSOs with SDSS and WISE. II (Yang+, 2016)
NASA Astrophysics Data System (ADS)
Yang, J.; Wang, F.; Wu, X.-B.; Fan, X.; McGreer, I. D.; Bian, F.; Yi, W.; Yang, Q.; Ai, Y.; Dong, X.; Zuo, W.; Green, R.; Jiang, L.; Wang, S.; Wang, R.; Yue, M.
2018-03-01
Our SDSS+WISE selection technique and spectroscopic follow-up observations were discussed in detail in Wang et al. (2016, Cat. J/ApJ/819/24). Our spectroscopic follow-up campaign started in 2013 October with the Lijiang 2.4m telescope (LJT) and Xinglong 2.16m telescope in China, the Kitt Peak 2.3m Bok telescope and 6.5m MMT telescope in the U.S., as well as the 2.3m ANU telescope in Australia. (1 data file).
VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)
NASA Astrophysics Data System (ADS)
Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.
2014-11-01
Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).
Camera systems in human motion analysis for biomedical applications
NASA Astrophysics Data System (ADS)
Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.
2015-05-01
Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.
HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Day Circular Orbit
NASA Astrophysics Data System (ADS)
Brahm, R.; Jordán, A.; Bakos, G. Á.; Penev, K.; Espinoza, N.; Rabus, M.; Hartman, J. D.; Bayliss, D.; Ciceri, S.; Zhou, G.; Mancini, L.; Tan, T. G.; de Val-Borro, M.; Bhatti, W.; Csubry, Z.; Bento, J.; Henning, T.; Schmidt, B.; Rojas, F.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.
2016-04-01
We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V = 12.4) G-type ({M}\\star = 1.131+/- 0.030 {M}⊙ , {R}\\star = {1.091}-0.046+0.070 {R}⊙ ) metal-rich ([Fe/H] = +0.3 dex) host star in a circular orbit with a period of P = 16.2546 days. HATS-17b has a very compact radius of 0.777+/- 0.056 {R}{{J}} given its Jupiter-like mass of 1.338+/- 0.065 {M}{{J}}. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17 will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla and with the 3.9 m AAT in Siding Spring Observatory. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. Based on observations taken with the HARPS spectrograph (ESO 3.6 m telescope at La Silla) under programme 097.C-0571.
High-Fidelity Simulation in Biomedical and Aerospace Engineering
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.
From biomedical-engineering research to clinical application and industrialization
NASA Astrophysics Data System (ADS)
Taguchi, Tetsushi; Aoyagi, Takao
2012-12-01
The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.
Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.
Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J
2014-10-13
Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.
Industry careers for the biomedical engineer.
Munzner, Robert F
2004-01-01
This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.
A Program on Biochemical and Biomedical Engineering.
ERIC Educational Resources Information Center
San, Ka-Yiu; McIntire, Larry V.
1989-01-01
Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)
Assistance to NASA in biomedical areas of the technology utilization program
NASA Technical Reports Server (NTRS)
Culclasure, D. F.; Eckhardt, L.
1972-01-01
The applications of aerospace technology to biomedical research are reported. The medical institutions participating in the Biomedical Applications Program are listed along with the institutions currently utilizing the services of the Southwest Research Institute Biomedical Applications Team. Significant accomplishments during this period include: ultra-low bandpass amplifier for gastro-intestinal electric potentials; non-encumbering EEG electrode assembly suitable for long term sleep research; accurate cardiac telemetry system for active subjects; warning system for the deaf; tracking cane for the blind; and an improved control mechanism to expand the self-sufficiency of quadriplegics.
e-Science platform for translational biomedical imaging research: running, statistics, and analysis
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo
2015-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.
Mining biomedical images towards valuable information retrieval in biomedical and life sciences
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578
Rules and management of biomedical waste at Vivekananda Polyclinic: a case study.
Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem
2009-02-01
Hospitals and other healthcare establishments have a "duty of care" for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.
The fully integrated biomedical engineering programme at Eindhoven University of Technology.
Slaaf, D W; van Genderen, M H P
2009-05-01
The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.
2014-01-01
Background Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders’ present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. Discussion The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities’ capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. Conclusion By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has helped identify key advocacy issues that Civil Society can expend efforts on so as to strengthen support for future biomedical HIV prevention research on the continent. PMID:26636825
Folayan, Morenike Oluwatoyin; Gottemoeller, Megan; Mburu, Rosemary; Brown, Brandon
2014-01-01
Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders' present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities' capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has helped identify key advocacy issues that Civil Society can expend efforts on so as to strengthen support for future biomedical HIV prevention research on the continent.
Recent advances in bulk metallic glasses for biomedical applications.
Li, H F; Zheng, Y F
2016-05-01
With a continuously increasing aging population and the improvement of living standards, large demands of biomaterials are expected for a long time to come. Further development of novel biomaterials, that are much safer and of much higher quality, in terms of both biomedical and mechanical properties, are therefore of great interest for both the research scientists and clinical surgeons. Compared with the conventional crystalline metallic counterparts, bulk metallic glasses have unique amorphous structures, and thus exhibit higher strength, lower Young's modulus, improved wear resistance, good fatigue endurance, and excellent corrosion resistance. For this purpose, bulk metallic glasses (BMGs) have recently attracted much attention for biomedical applications. This review discusses and summarizes the recent developments and advances of bulk metallic glasses, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based alloying systems for biomedical applications. Future research directions will move towards overcoming the brittleness, increasing the glass forming ability (GFA) thus obtaining corresponding bulk metallic glasses with larger sizes, removing/reducing toxic elements, and surface modifications. Bulk metallic glasses (BMGs), also known as amorphous alloys or liquid metals, are relative newcomers in the field of biomaterials. They have gained increasing attention during the past decades, as they exhibit an excellent combination of properties and processing capabilities desired for versatile biomedical implant applications. The present work reviewed the recent developments and advances of biomedical BMGs, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based BMG alloying systems. Besides, the critical analysis and in-depth discussion on the current status, challenge and future development of biomedical BMGs are included. The possible solution to the BMG size limitation, the brittleness of BMGs has been proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Charles, John B.
2017-01-01
Before Apollo fire, early Apollo missions were expected to continue pattern established in Gemini program of accommodating significant scientific and biological experimentation, including human biomedical studies, during flights. Apollo1 and Apollo2, both 2-week engineering test flights, were to carry almost as many biomedical studies as Gemini 7, a 2-week medical test mission.
Mining biomedical images towards valuable information retrieval in biomedical and life sciences.
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. © The Author(s) 2016. Published by Oxford University Press.
Low Energy Positron Scattering, Transport, and Applications
NASA Astrophysics Data System (ADS)
Buckman, Stephen
2017-04-01
Relatively intense, high energy-resolution beams of low-energy positrons are now available through the use of buffer-gas (Surko) traps. These have led to measurements of interaction cross sections for a broad range of atoms and molecules, including molecules of biological interest. The increased energy resolution, and experimental techniques developed for scattering in strong magnetic fields has also enabled highly accurate measurements of discrete excitation processes such as electronic and vibrational excitation, positronium formation and ionization in a range of atomic and molecular species. This talk will review some of these measurements and discuss their application in new and sophisticated models of positron transport which aim, for example, to provide a better understanding of the atomic and molecular processes which occur when positrons are emitted in the body during a Positron Emission Tomography scan. This work is part of a broad collaboration between the ANU (James Sullivan, Joshua Machacek), Flinders University (Michael Brunger), James Cook University (Ronald White and co-workers) CSIC Madrid (Gustavo Garcia) and the Institute of Physics, Belgrade (Zoran Petrovic and colleagues).
Quantum Cause of Gravity Waves and Dark Matter
NASA Astrophysics Data System (ADS)
Goradia, Shantilal; Goradia Team
2016-09-01
Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell''? The question boils down to information created by quantum particles blinking ON and OFF analogous to `Ying and Yang' or some more complex ways that may include dark matter. If not, what creates curvature of space-time? Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE for any one thing. The long range relativistic propagations of the strong and weak couplings of the microscopic black holes in are just gravity waves. What else could they be?
DNA nanotechnology and its applications in biomedical research.
Sun, Lifan; Yu, Lu; Shen, Wanqiu
2014-09-01
DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.
Simbody: multibody dynamics for biomedical research.
Sherman, Michael A; Seth, Ajay; Delp, Scott L
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
[Decreasing the Output of Biomedical Waste in the Intensive Care Unit].
Shen, Ming-Yi; Chang, Chun-Chu; Li, Mung-Yeng; Lin, Jui-Hsiang
2017-10-01
Advancing healthcare technologies have increased the use of disposable supplies that are made with PVC (polyvinyl chloride). Furthermore, biomedical effluents are steadily increasing due to severe patient treatment requirements in intensive care units. If these biomedical wastes are not properly managed and disposed, they will cause great harm to the environment and to public health. The statistics from an intensive care unit at one medical center in northern Taiwan show that the per-person biomedical effluents produced in 2014 increased 8.51% over 2013 levels. The main reasons for this increase included the low accuracy of classification of the contents of biomedical effluent collection buckets and of personnel effluents in the intensive care unit and the generally poor selection and designation of appropriate containers. Improvement measures were implemented in order to decrease the per-day weight of biomedical effluents by 10% per person (-0.22 kg/person/day). The project team developed various strategies, including creating classification-related slogans and posting promotional posters, holding education and training using actual case studies, establishing an "environmental protection pioneer" team, and promoting the use of appropriate containers. The implementation of the project decreased the per-day weight of biomedical effluents by 13.2% per person. Implementation of the project effectively reduced the per-person daily output of biological wastes and improved the waste separation behavior of healthcare personnel in the unit, giving patients and their families a better healthcare environment and helping advance the cause of environmental protection worldwide.
Rules and management of biomedical waste at Vivekananda Polyclinic: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Saurabh; Boojh, Ram; Mishra, Ajai
Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedicalmore » waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.« less
Two-Photon Fluorescence Microscopy for Biomedical Research
NASA Technical Reports Server (NTRS)
Fischer, David; Zimmerli, Greg; Asipauskas, Marius
2007-01-01
This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.
Sociodemographic Factors Associated With Changes in Successful Aging in Spain: A Follow-Up Study.
Domènech-Abella, Joan; Perales, Jaime; Lara, Elvira; Moneta, Maria Victoria; Izquierdo, Ana; Rico-Uribe, Laura Alejandra; Mundó, Jordi; Haro, Josep Maria
2017-06-01
Successful aging (SA) refers to maintaining well-being in old age. Several definitions or models of SA exist (biomedical, psychosocial, and mixed). We examined the longitudinal association between various SA models and sociodemographic factors, and analyzed the patterns of change within these models. This was a nationally representative follow-up in Spain including 3,625 individuals aged ≥50 years. Some 1,970 individuals were interviewed after 3 years. Linear regression models were used to analyze the survey data. Age, sex, and occupation predicted SA in the biomedical model, while marital status, educational level, and urbanicity predicted SA in the psychosocial model. The remaining models included different sets of these predictors as significant. In the psychosocial model, individuals tended to improve over time but this was not the case in the biomedical model. The biomedical and psychosocial components of SA need to be addressed specifically to achieve the best aging trajectories.
Education of biomedical engineering in Taiwan.
Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin
2014-01-01
Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.
Campsall, Paul; Colizza, Kate; Straus, Sharon; Stelfox, Henry T
2016-05-01
Financial relationships between organizations that produce clinical practice guidelines and biomedical companies are vulnerable to conflicts of interest. We sought to determine whether organizations that produce clinical practice guidelines have financial relationships with biomedical companies and whether there are associations between organizations' conflict of interest policies and recommendations and disclosures provided in guidelines. We conducted a cross-sectional survey and review of websites of 95 national/international medical organizations that produced 290 clinical practice guidelines published on the National Guideline Clearinghouse website from January 1 to December 31, 2012. Survey responses were available for 68% (65/95) of organizations (167/290 guidelines, 58%), and websites were reviewed for 100% (95/95) of organizations (290/290 guidelines, 100%). In all, 63% (60/95) of organizations producing clinical practice guidelines reported receiving funds from a biomedical company; 80% (76/95) of organizations reported having a policy for managing conflicts of interest. Disclosure statements (disclosing presence or absence of financial relationships with biomedical companies) were available in 65% (188/290) of clinical practice guidelines for direct funding sources to produce the guideline, 51% (147/290) for financial relationships of the guideline committee members, and 1% (4/290) for financial relationships of the organizations producing the guidelines. Among all guidelines, 6% (18/290) disclosed direct funding by biomedical companies, 40% (117/290) disclosed financial relationships between committee members and biomedical companies (38% of guideline committee members, 773/2,043), and 1% (4/290) disclosed financial relationships between the organizations producing the guidelines and biomedical companies. In the survey responses, 60 organizations reported the procedures that they included in their conflict of interest policies (158 guidelines): guidelines produced by organizations reporting more comprehensive conflict of interest policies (per additional procedure, range 5-17) included fewer positive (rate ratio [RR] 0.91, 95% CI 0.86-0.95) and more negative (RR 1.32, 95% CI 1.09-1.60) recommendations regarding patented biomedical products. The clinical practice guidelines produced by organizations reporting more comprehensive conflict of interest policies were also more likely to include disclosure statements for direct funding sources (odds ratio [OR] 1.31, 95% CI 1.10-1.56) and financial relationships of guideline committee members (OR 1.36, 95% CI 1.09-1.79), but not financial relationships of the organizations (0 disclosures). Limitations of the study include the use of the National Guideline Clearinghouse as the single source of clinical practice guidelines and the self-report of survey responses and organizations' website postings. Financial relationships between organizations that produce clinical practice guidelines and biomedical companies are common and infrequently disclosed in guidelines. Our study highlights the need for an effective policy to manage organizational conflicts of interest and disclosure of financial relationships.
Zhuang, Yan; Zhang, Qian; Feng, Jinqi; Wang, Na; Xu, Weilin; Yang, Hongjun
2017-04-01
Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in tissue engineering.
BIOSSES: a semantic sentence similarity estimation system for the biomedical domain.
Sogancioglu, Gizem; Öztürk, Hakime; Özgür, Arzucan
2017-07-15
The amount of information available in textual format is rapidly increasing in the biomedical domain. Therefore, natural language processing (NLP) applications are becoming increasingly important to facilitate the retrieval and analysis of these data. Computing the semantic similarity between sentences is an important component in many NLP tasks including text retrieval and summarization. A number of approaches have been proposed for semantic sentence similarity estimation for generic English. However, our experiments showed that such approaches do not effectively cover biomedical knowledge and produce poor results for biomedical text. We propose several approaches for sentence-level semantic similarity computation in the biomedical domain, including string similarity measures and measures based on the distributed vector representations of sentences learned in an unsupervised manner from a large biomedical corpus. In addition, ontology-based approaches are presented that utilize general and domain-specific ontologies. Finally, a supervised regression based model is developed that effectively combines the different similarity computation metrics. A benchmark data set consisting of 100 sentence pairs from the biomedical literature is manually annotated by five human experts and used for evaluating the proposed methods. The experiments showed that the supervised semantic sentence similarity computation approach obtained the best performance (0.836 correlation with gold standard human annotations) and improved over the state-of-the-art domain-independent systems up to 42.6% in terms of the Pearson correlation metric. A web-based system for biomedical semantic sentence similarity computation, the source code, and the annotated benchmark data set are available at: http://tabilab.cmpe.boun.edu.tr/BIOSSES/ . gizemsogancioglu@gmail.com or arzucan.ozgur@boun.edu.tr. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Classification of PSN J13505285-3017097 as an old Type Ia SN with WiFeS
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Tucker, B.; Yuan, F.; Schmidt, B.; Klotz, A.; Conseil, E.
2013-06-01
We report spectroscopic classification of PSN J13505285-3017097 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J13505285-3017097 was discovered by Conseil on 2013 May 02.22 at mag 18.4 on TAROT images, and photometric follow up shows the light curve peaks in brightness at mag 16 on 2013 May 15.
High Voltage Design Guide for Airborne Equipment
1976-06-01
Capacitance (Capacity). That property of a system of conductors and dielec- trics which permits the storage of electricity when potential dii’ference exists...rjldtlve low prr•strPs ani’d t (.::;•t.rd t LJr e S Pol yI, rene. A thc r:".li1 ti c p!c.,duu.•’d by th [ olyref r i i it on of st yreute (vi nyl Poly i...by cutting continuous filaments, to short lengtn~s. Storage Life. The period nf time during .inich ,liquid re-i: or adi* dye ca3r. be sored anu remain
An Investigation of the Sound Generated by an Axisymmetric Jet Interacting with a Diffuser
1980-09-01
105. 120. J:’REt~U EN C Y, HZ ~OU~U PO~ER ZN’ChNSITY bEVEb,OB TOTA5 POdER ,DB C1/30CTAVK ~ANU) e.,n 209. 74.95 7o.u2 75.72 74.27 75.O7 2bO. 75.78...86.52 86.26 104.53 31500. 79.40 87.33 89.52 87.93 85.46 83.91 82.79 101.88 40000. 76.44 84.35 87.03 85.60 83.32 81.93 81.21 99.43 TOTAL POdER , DB
NASA Astrophysics Data System (ADS)
Henning, Th.; Mancini, L.; Sarkis, P.; Bakos, G. Á.; Hartman, J. D.; Bayliss, D.; Bento, J.; Bhatti, W.; Brahm, R.; Ciceri, S.; Csubry, Z.; de Val-Borro, M.; Espinoza, N.; Fulton, B. J.; Howard, A. W.; Isaacson, H. T.; Jordán, A.; Marcy, G. W.; Penev, K.; Rabus, M.; Suc, V.; Tan, T. G.; Tinney, C. G.; Wright, D. J.; Zhou, G.; Durkan, S.; Lazar, J.; Papp, I.; Sari, P.
2018-02-01
We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V = 12.5–14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([{Fe}/{{H}}]=0.2{--}0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39+/- 0.10 {M}{{J}}, 1.130+/- 0.075 {R}{{J}}; HATS-51b: 0.768+/- 0.045 {M}{{J}}, 1.41+/- 0.19 {R}{{J}}; HATS-53b: 0.595+/- 0.089 {M}{{J}}, 1.340+/- 0.056 {R}{{J}}) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24+/- 0.15 {M}{{J}} and radius 1.382+/- 0.086 {R}{{J}}) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature ({T}{eq}=1834+/- 73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 {M}{{J}}), which will be able to be confirmed with TESS photometry. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations made with the ESO 3.6 m, the NTT, the MPG 2.2 m and Euler 1.2 m Telescopes at the ESO Observatory in La Silla. Based in part on observations made with the 3.9 m Anglo-Australian Telescope and the ANU 2.3 m Telescope, both at SSO. Based in part on observations made with the Keck I Telescope at Mauna Kea Observatory in Hawaii. Based in part on observations obtained with the facilities of the Las Cumbres Observatory Global Telescope and with the Perth Exoplanet Survey Telescope.
Latino Beliefs about Biomedical Research Participation: A Qualitative Study on the US-Mexico Border
Ceballos, Rachel; Knerr, Sarah; Scott, Mary Alice; Hohl, Sarah; Malen, Rachel; Vilchis, Hugo; Thompson, Beti
2015-01-01
Latinos are under-represented in biomedical research conducted in the United States (US), impeding disease prevention and treatment efforts for this growing demographic group. We gathered perceptions of biomedical research and gauged willingness to participate through elicitation interviews and focus groups with Latinos living on the US-Mexico border. Themes that emerged included a strong willingness to participate in biomedical studies and suggested that Latinos may be under-represented due to limited formal education and access to health information, not distrust. The conflation of research and clinical care was common and motivated participation. Outreach efforts and educational interventions to inform Latinos of participation opportunities and clarify harms and benefits associated with biomedical research participation will be essential to maintain trust within Latino communities. PMID:25747293
Liao, Ching-Jong; Ho, Chao Chung
2014-07-01
Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.
KaBOB: ontology-based semantic integration of biomedical databases.
Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E
2015-04-23
The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for formal reasoning over a wealth of integrated biomedical data.
IEEE International Symposium on Biomedical Imaging.
2017-01-01
The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.
Shape-Memory Polymers for Biomedical Applications
NASA Astrophysics Data System (ADS)
Yakacki, Christopher M.; Gall, Ken
Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.
Micro/Nanostructured Films and Adhesives for Biomedical Applications.
Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung
2015-12-01
The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.
Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.
2010-01-01
Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198
Agile methods in biomedical software development: a multi-site experience report.
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-05-30
Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.
Agile methods in biomedical software development: a multi-site experience report
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-01-01
Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914
Pharmacovigilance and Biomedical Informatics: A Model for Future Development.
Beninger, Paul; Ibara, Michael A
2016-12-01
The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log 10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in both fields and intense global and economic external pressures offer opportunities for a future of closer collaboration. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Medical Total Force Management
2014-05-01
additional officer corps (e.g., Veterinarians for the Army and Biomedical Sciences for the Air Force)—these are included in a composite medical...the Services have additional officer corps (e.g., Veterinarians for the Army and Biomedical Sciences for the Air Force)—these are included in a...the Uniformed Services University of Health Sciences (USUHS)), during postgraduate education at military GME programs (through the Armed Forces
Characteristics Desired in Clinical Data Warehouse for Biomedical Research
Shin, Soo-Yong; Kim, Woo Sung
2014-01-01
Objectives Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. Methods Three examples of CDWs were reviewed: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. Results A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. Conclusions The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata. PMID:24872909
Alternative methods for the use of non-human primates in biomedical research.
Burm, Saskia M; Prins, Jan-Bas; Langermans, Jan; Bajramovic, Jeffrey J
2014-01-01
The experimental use of non-human primates (NHP) in Europe is tightly regulated and is only permitted when there are no alternatives available. As a result, NHP are most often used in late, pre-clinical phases of biomedical research. Although the impetus for scientists, politicians and the general public to replace, reduce and refine NHP in biomedical research is strong, the development of 3Rs technology for NHP poses specific challenges. In February 2014 a workshop on "Alternative methods for the use of NHP in biomedical research" was organized within the international exchange program of EUPRIM-Net II, a European infrastructure initiative that links biomedical primate research centers. The workshop included lectures by key scientists in the field of alternatives as well as by experts from governmental and non-governmental organizations. Furthermore, parallel sessions were organized to stimulate discussion on the challenges of advancing the use of alternative methods for NHP. Subgroups voted on four statements and together composed a list with opportunities and priorities. This report summarizes the presentations that were held, the content of the discussion sessions and concludes with recommendations on 3Rs development for NHP specifically. These include technical, conceptual as well as political topics.
Lee, Jung-Bok; Kim, Hyun Soo; Park, Youngjin
2017-02-01
Chitin synthase (CHS) is an important enzymatic component, which is required for chitin formation in the cuticles and cuticular linings of other tissues in insects. CHSs have been divided into two classes, classes A and B, based on their amino acid sequence similarities and functions. Class A CHS (CHS-A) is specifically expressed in the epidermis and related ectodermal cells such as tracheal cells, while class B CHS (CHS-B) is expressed in gut epithelial cells that produce peritrophic matrices. In this study, we cloned the CHS-A gene from the beet armyworm, Spodoptera exigua (SeCHS-A). The SeCHS-A contains an open reading frame of 4,698 nucleotides, encoding a protein of 1,565 amino acids with a predicted molecular mass of approximately 177.8 kDa. The SeCHS-A mRNA was expressed in all developmental stages and specifically in the epidermis and tracheae tissue by quantitative real-time-PCR analysis. Expression of SeCHS-A gene was suppressed by feeding double-stranded RNA (dsCHS-A, 400 ng/larva) in the third instar larvae of S. exigua. Suppression of the SeCHS-A gene expression significantly increased 35% of mortality on pupation of S. exigua. Also, the third instar larvae fed with dsCHS-A significantly increased susceptibility to entomopathogenic fungi, Beauveria bassiana ANU1 at 3 days after treatment. These results suggest that the SeCHS-A gene plays an important role in development of S. exigua and RNA interference may apply to effective pest control with B. bassiana. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, X.
2017-12-01
Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.
Multidisciplinary studies of the dust storm that affected Sydney in September 2009
NASA Astrophysics Data System (ADS)
De Deckker, P.
2012-04-01
A major dust storm transgressed over southeastern Australia in September 2009 and continued as far as northern Queensland [to the north], New Zealand and New Caledonia [to the east] . We analysed samples of the dust for organic compounds, its microbiological composition, pollen, trace and rare earth elements as well as Sr and Nd isotopes. Grain size analysis was also performed on some of the samples. We also obtained information on the meteorological conditions that led to the large dust plume and its pathway. Our geochemical fingerprinting allowed us to determine the origin of the dust, and this was confirmed by meteorological observations and satellite imagery. As the pathway of the dust plume went over the city of Canberra, located to the southwest of Sydney, we were able to collect samples of dust that fell with rain, and the surprise was that the geochemical composition of the dust varied with time [and dust fall], identifying that as the dust plume transgressed over the landscape, it picked up additional material that was compositionally different from its point of origin. We also compared our data with those obtained from another major dust event that affected Canberra in October 2002, and a number of important differences are noted, particularly with respect of the microbiological composition of the dust, and its chemical composition. Collaborators on this project are: Chris Munday and Gwen Allison [microbiology]: Research School of Biology, ANU; Jochen Brocks and Janet Hope [organic chemistry] and Marc Norman [inorganic geochemistry]: Research School of Earth Sciences, ANU; Tadhg O'Loingsigh and Nigel Tapper [meteorology, satellite imagery] and Sander van der Kaars [palynology]: Geography and Environmental Science, Monash University; and J.-B. Stuut [grain size analysis], NIOZ.
Biomedical Ontologies in Action: Role in Knowledge Management, Data Integration and Decision Support
Bodenreider, O.
2008-01-01
Summary Objectives To provide typical examples of biomedical ontologies in action, emphasizing the role played by biomedical ontologies in knowledge management, data integration and decision support. Methods Biomedical ontologies selected for their practical impact are examined from a functional perspective. Examples of applications are taken from operational systems and the biomedical literature, with a bias towards recent journal articles. Results The ontologies under investigation in this survey include SNOMED CT, the Logical Observation Identifiers, Names, and Codes (LOINC), the Foundational Model of Anatomy, the Gene Ontology, RxNorm, the National Cancer Institute Thesaurus, the International Classification of Diseases, the Medical Subject Headings (MeSH) and the Unified Medical Language System (UMLS). The roles played by biomedical ontologies are classified into three major categories: knowledge management (indexing and retrieval of data and information, access to information, mapping among ontologies); data integration, exchange and semantic interoperability; and decision support and reasoning (data selection and aggregation, decision support, natural language processing applications, knowledge discovery). Conclusions Ontologies play an important role in biomedical research through a variety of applications. While ontologies are used primarily as a source of vocabulary for standardization and integration purposes, many applications also use them as a source of computable knowledge. Barriers to the use of ontologies in biomedical applications are discussed. PMID:18660879
Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example
NASA Astrophysics Data System (ADS)
Anastasiou, Alexandros; Saatsakis, George
2015-09-01
Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.
Campsall, Paul; Colizza, Kate; Straus, Sharon; Stelfox, Henry T.
2016-01-01
Background Financial relationships between organizations that produce clinical practice guidelines and biomedical companies are vulnerable to conflicts of interest. We sought to determine whether organizations that produce clinical practice guidelines have financial relationships with biomedical companies and whether there are associations between organizations’ conflict of interest policies and recommendations and disclosures provided in guidelines. Methods and Findings We conducted a cross-sectional survey and review of websites of 95 national/international medical organizations that produced 290 clinical practice guidelines published on the National Guideline Clearinghouse website from January 1 to December 31, 2012. Survey responses were available for 68% (65/95) of organizations (167/290 guidelines, 58%), and websites were reviewed for 100% (95/95) of organizations (290/290 guidelines, 100%). In all, 63% (60/95) of organizations producing clinical practice guidelines reported receiving funds from a biomedical company; 80% (76/95) of organizations reported having a policy for managing conflicts of interest. Disclosure statements (disclosing presence or absence of financial relationships with biomedical companies) were available in 65% (188/290) of clinical practice guidelines for direct funding sources to produce the guideline, 51% (147/290) for financial relationships of the guideline committee members, and 1% (4/290) for financial relationships of the organizations producing the guidelines. Among all guidelines, 6% (18/290) disclosed direct funding by biomedical companies, 40% (117/290) disclosed financial relationships between committee members and biomedical companies (38% of guideline committee members, 773/2,043), and 1% (4/290) disclosed financial relationships between the organizations producing the guidelines and biomedical companies. In the survey responses, 60 organizations reported the procedures that they included in their conflict of interest policies (158 guidelines): guidelines produced by organizations reporting more comprehensive conflict of interest policies (per additional procedure, range 5–17) included fewer positive (rate ratio [RR] 0.91, 95% CI 0.86–0.95) and more negative (RR 1.32, 95% CI 1.09–1.60) recommendations regarding patented biomedical products. The clinical practice guidelines produced by organizations reporting more comprehensive conflict of interest policies were also more likely to include disclosure statements for direct funding sources (odds ratio [OR] 1.31, 95% CI 1.10–1.56) and financial relationships of guideline committee members (OR 1.36, 95% CI 1.09–1.79), but not financial relationships of the organizations (0 disclosures). Limitations of the study include the use of the National Guideline Clearinghouse as the single source of clinical practice guidelines and the self-report of survey responses and organizations’ website postings. Conclusions Financial relationships between organizations that produce clinical practice guidelines and biomedical companies are common and infrequently disclosed in guidelines. Our study highlights the need for an effective policy to manage organizational conflicts of interest and disclosure of financial relationships. PMID:27244653
NASA Technical Reports Server (NTRS)
1981-01-01
Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.
Advances in Electronic-Nose Technologies Developed for Biomedical Applications
Wilson, Alphus D.; Baietto, Manuela
2011-01-01
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620
Rising Expectations: Access to Biomedical Information
Lindberg, D. A. B.; Humphreys, B. L.
2008-01-01
Summary Objective To provide an overview of the expansion in public access to electronic biomedical information over the past two decades, with an emphasis on developments to which the U.S. National Library of Medicine contributed. Methods Review of the increasingly broad spectrum of web-accessible genomic data, biomedical literature, consumer health information, clinical trials data, and images. Results The amount of publicly available electronic biomedical information has increased dramatically over the past twenty years. Rising expectations regarding access to biomedical information were stimulated by the spread of the Internet, the World Wide Web, advanced searching and linking techniques. These informatics advances simplified and improved access to electronic information and reduced costs, which enabled inter-organizational collaborations to build and maintain large international information resources and also aided outreach and education efforts The demonstrated benefits of free access to electronic biomedical information encouraged the development of public policies that further increase the amount of information available. Conclusions Continuing rapid growth of publicly accessible electronic biomedical information presents tremendous opportunities and challenges, including the need to ensure uninterrupted access during disasters or emergencies and to manage digital resources so they remain available for future generations. PMID:18587496
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
1998-01-01
The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.
Biomedical sensor technologies on the platform of mobile phones
NASA Astrophysics Data System (ADS)
Liu, Lin; Liu, Jing
2011-06-01
Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.
ChE Undergraduate Research Projects in Biomedical Engineering.
ERIC Educational Resources Information Center
Stroeve, Pieter
1981-01-01
Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)
Environmental practices for biomedical research facilities.
Medlin, E L; Grupenhoff, J T
2000-01-01
As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360
A Suggested Model for Building Robust Biomedical Implants Registries.
Aloufi, Bader; Alshagathrah, Fahad; Househ, Mowafa
2017-01-01
Registries are an essential source of information for clinical and non-clinical decision-makers; because they provide evidence for post-market clinical follow-up and early detection of safety signals for biomedical implants. Yet, many of todays biomedical implants registries are facing a variety of challenges relating to a poorly designed dataset, the reliability of inputted data and low clinician and patient participation. The purpose of this paper is to present a best practice model for the implementation and use of biomedical implants registries to monitor the safety and effectiveness of implantable medical devices. Based on a literature review and an analysis of multiple national relevant registries, we identified six factors that address contemporary challenges and are believed to be the keys for building a successful biomedical implants registry, which include: sustainable development, international comparability, data reliability, purposeful design, ease of patient participation, and collaborative development at the national level.
Functionalized carbon nanotubes: biomedical applications
Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R
2012-01-01
Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380
Constraint reasoning in deep biomedical models.
Cruz, Jorge; Barahona, Pedro
2005-05-01
Deep biomedical models are often expressed by means of differential equations. Despite their expressive power, they are difficult to reason about and make decisions, given their non-linearity and the important effects that the uncertainty on data may cause. The objective of this work is to propose a constraint reasoning framework to support safe decisions based on deep biomedical models. The methods used in our approach include the generic constraint propagation techniques for reducing the bounds of uncertainty of the numerical variables complemented with new constraint reasoning techniques that we developed to handle differential equations. The results of our approach are illustrated in biomedical models for the diagnosis of diabetes, tuning of drug design and epidemiology where it was a valuable decision-supporting tool notwithstanding the uncertainty on data. The main conclusion that follows from the results is that, in biomedical decision support, constraint reasoning may be a worthwhile alternative to traditional simulation methods, especially when safe decisions are required.
Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.
Qu, Zhenyuan; Xu, Hong; Gu, Hongchen
2015-07-15
Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.
Functionalized carbon nanotubes: biomedical applications.
Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R
2012-01-01
Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.
Biomedical research publications: 1980 - 1982
NASA Technical Reports Server (NTRS)
Pleasant, L. G.; Limbach, L.
1982-01-01
Publications concerning the major physiological and psychological problems encountered by man when he undertakes space flight are listed. Nine research areas are included: cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and eletrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research.
PSN J11290437+1714095 is a Type Ia supernova (91T-like) near maximum light
NASA Astrophysics Data System (ADS)
Childress, M.; Owen, C.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.
2013-12-01
We report spectroscopic classification of PSN J11290437+1714095 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J11290437+1714095 was discovered by TAROT on 2013 Dec 11.09 at mag 15.9 in UGC 6483. A 20 minute spectrum of the SN on 2013 Dec 12.72 shows this to be a Type Ia supernova of the SN 1991T subclass near maximum light.
Seismology at the Australian National University; an interview with Anton L. Hales
Spall, H.
1980-01-01
Dr. Anton L. Hales is a leading seismologist who has just retired as Director of the Research School of Earth Sciences at the Australian National University (ANU), Canberra. Prior to that, he headed the Geosciences Division at the University of Texas at Dallas, and, before that, he was Director of the Bernard Price Institute of Geophysical Research at the University of the Witwatersrand Johannesburg, South Africa. he is about to step down as President of the International Geodynamics Commission. Dr. Hales' research has involved marine geophysics, the travel times of seismic waves, and the structure of the Earth's crust and upper mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw
Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less
Digital fabrication of multi-material biomedical objects.
Cheung, H H; Choi, S H
2009-12-01
This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.
Preparing chimpanzees for laboratory research.
Bloomsmith, Mollie A; Schapiro, Steven J; Strobert, Elizabeth A
2006-01-01
The chimpanzee is the only representative of the Great Apes that is extensively involved in biomedical research in primate laboratories. These apes are used as animal models in a variety of studies, including research on infectious disease, parasitic disease, pharmacokinetic studies, neuroscience, cognition, and behavior. Chimpanzees used in biomedical research in the United States reside largely in six specialized research and holding facilities, and most of the research with them is conducted at these sites. Given the relatively small population of chimpanzees and its importance to biomedical research, it is imperative that we carefully manage the care, production, and use of these animals in biomedical research studies. Selection criteria and preparation techniques are reviewed in this article in an effort to begin a discussion on best practices for choosing and handling chimpanzees participating in biomedical research. The use of routine health assessment information is described for subject selection, as are behavioral issues to be considered. Due to the relatively small number of chimpanzees available, issues related to experimental design and multiple uses of chimpanzees are discussed. Practices related to the transportation and acclimation of chimpanzees are described. Finally, behavioral conditioning procedures are discussed, including habituation, desensitization, and positive reinforcement training that have been applied to reduce animal distress and improve the quality of the science being conducted with chimpanzee subjects.
Dankar, Fida K; Ptitsyn, Andrey; Dankar, Samar K
2018-04-10
Contemporary biomedical databases include a wide range of information types from various observational and instrumental sources. Among the most important features that unite biomedical databases across the field are high volume of information and high potential to cause damage through data corruption, loss of performance, and loss of patient privacy. Thus, issues of data governance and privacy protection are essential for the construction of data depositories for biomedical research and healthcare. In this paper, we discuss various challenges of data governance in the context of population genome projects. The various challenges along with best practices and current research efforts are discussed through the steps of data collection, storage, sharing, analysis, and knowledge dissemination.
Biomedical Engineering Education: A Conservative Approach
ERIC Educational Resources Information Center
Niemi, Eugene E., Jr.
1973-01-01
Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)
The Excessive Appearance of Disability
ERIC Educational Resources Information Center
Michalko, Rod
2009-01-01
This paper engages the appearance of disability in contemporary Western culture. Rather than taking disability for granted as a biomedical condition, I interrogate how disability is made to appear in our culture, including its appearance as a biomedical condition. Fundamentally, disability appears to us as a trouble and, as such, cultural…
Commercial Biomedical Experiments
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Commercial Instrumentation Technology Associates, Biomedical Experiments
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. A number of Liquids Mixing Apparatus (LMA) syringes like this one will be used in the experiments. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Biomedical Results of ISS Expeditions 1-12
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer; Sams, Clarence F.
2007-01-01
A viewgraph presentation on biomedical data from International Space Station (ISS) Expeditions 1-12 is shown. The topics include: 1) ISS Expeditions 1-12; 2) Biomedical Data; 3) Physiological Assessments; 4) Bone Mineral Density; 5) Bone Mineral Density Recovery; 6) Orthostatic Tolerance; 7) Postural Stability Set of Sensory Organ Test 6; 8) Performance Assessment; 9) Aerobic Capacity of the Astronaut Corps; 10) Pre-flight Aerobic Fitness of ISS Astronauts; 11) In-flight and Post-flight Aerobic Capacity of the Astronaut Corps; and 12) ISS Functional Fitness Expeditions 1-12.
Alginate: properties and biomedical applications
Lee, Kuen Yong; Mooney, David J.
2011-01-01
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349
Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C
2018-01-01
Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
78 FR 63230 - Office of the Director, National Institutes of Health; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... to assessing the value of biomedical research supported by the NIH and will include input from stakeholders in biomedical research. The NIH Reform Act of 2006 (Pub. L. 109-482) provides organizational... organizational authorities and identify the reasons underlying the recommendations. The meeting will be open to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... the Office of Management and Budget (OMB) a request to review and approve the information collection...: The NCI Center for Biomedical Informatics and Information Technology (CBIIT) launched the enterprise...] Enterprise Support Network (ESN), including the caBIG [supreg] Support Service Provider (SSP) Program. The ca...
Gimli: open source and high-performance biomedical name recognition
2013-01-01
Background Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application outside text mining research. Results We present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names. Gimli includes an extended set of implemented and user-selectable features, such as orthographic, morphological, linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly outperforming existing open-source solutions. Conclusions Gimli is an off-the-shelf, ready to use tool for named-entity recognition, providing trained and optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool, offering full functionality, including training of new models and customization of the feature set and model parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and functionality, both for final users and developers, and on the reported performance results, we believe that Gimli is a state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimli is freely available at http://bioinformatics.ua.pt/gimli. PMID:23413997
CAVEman: Standardized anatomical context for biomedical data mapping.
Turinsky, Andrei L; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrímsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N; Hill, Jonathan W; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W
2008-01-01
The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to the nomenclature of Terminologia Anatomica. The underlying data-indexing mechanism uses standard ontologies to map a range of biomedical data types onto the atlas. The CAVEman system is now used to visualize genetic processes in the context of the human anatomy and to facilitate visual exploration of the data. Through the use of Javatrade mark software, the atlas-based system is portable to virtually any computer environment, including personal computers and workstations. Existing Java tools for biomedical data analysis have been incorporated into the system. The affordability of virtual-reality installations has increased dramatically over the last several years. This creates new opportunities for educational scenarios that model important processes in a patient's body, including gene expression patterns, metabolic activity, the effects of interventions such as drug treatments, and eventually surgical simulations.
Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time
Seoane, Fernando; Mohino-Herranz, Inmaculada; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto
2014-01-01
The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants' operational capabilities. Within this framework the ATREC project funded by the “Coincidente” program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems. PMID:24759113
Healy, Karen
2016-01-01
In the late twentieth century, the bio-psycho-social framework emerged as a powerful influence on the conceptualisation and delivery of health and rehabilitation services including social work services in these fields. The bio-psycho-social framework is built on a systems view of health and well-being ( Garland and Howard, 2009). The systems perspective encourages medical and allied health professions, including social work, to recognise and to respond to the multiple systems impacting on individual health and well-being ( Engel, 2003). This paper analyses how advances in biomedical technology, particularly in the fields of neuroscience and human genomics, are challenging the bio-psycho-social approach to practice. The paper examines the pressures on the social work profession to embrace biomedical science and points to the problems in doing so. The conclusion points to some tentative ways forward for social workers to engage critically with biomedical advances and to strengthen the bio-psycho-social framework in the interests of holistic and ethical approaches to social work practice. PMID:27559237
Healy, Karen
2016-07-01
In the late twentieth century, the bio-psycho-social framework emerged as a powerful influence on the conceptualisation and delivery of health and rehabilitation services including social work services in these fields. The bio-psycho-social framework is built on a systems view of health and well-being ( Garland and Howard, 2009). The systems perspective encourages medical and allied health professions, including social work, to recognise and to respond to the multiple systems impacting on individual health and well-being ( Engel, 2003). This paper analyses how advances in biomedical technology, particularly in the fields of neuroscience and human genomics, are challenging the bio-psycho-social approach to practice. The paper examines the pressures on the social work profession to embrace biomedical science and points to the problems in doing so. The conclusion points to some tentative ways forward for social workers to engage critically with biomedical advances and to strengthen the bio-psycho-social framework in the interests of holistic and ethical approaches to social work practice.
Wearable biomedical measurement systems for assessment of mental stress of combatants in real time.
Seoane, Fernando; Mohino-Herranz, Inmaculada; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto
2014-04-22
The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants' operational capabilities. Within this framework the ATREC project funded by the "Coincidente" program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems.
Pacela, A F; Brush, L C
1993-01-01
This article has described the process and the resources available for locating and hiring clinical/biomedical engineers, supervisors, managers, and biomedical equipment technicians. First, the employer must determine the qualifications for the position, including job titles, descriptions, pay scales, and certification requirements. Next, the employer must find qualified applicants. The most common way to do this is to use "outside" contacts, such as help-wanted advertising, specialized job placement agencies, schools and colleges, military resources, regional biomedical societies, and nationwide societies. An "inside" search involves limited internal advertising of the position and using personal referrals for candidates. Finally, the employer must screen the applicants. The position description is the obvious first step in this process, but there are other pre-screening techniques, such as employment testing. Interviewing is the most common way to hire for job positions, but the interviewer needs to know about the position and ask the right questions. Post-interview screening is a final step to help determine the best job-person match.
Black Phosphorus and its Biomedical Applications
Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu; Nilghaz, Azadeh; Lin, Yang; Xu, Jie; Lu, Xiaonan
2018-01-01
Black phosphorus (BP), also known as phosphorene, has attracted recent scientific attention since its first successful exfoliation in 2014 owing to its unique structure and properties. In particular, its exceptional attributes, such as the excellent optical and mechanical properties, electrical conductivity and electron-transfer capacity, contribute to its increasing demand as an alternative to graphene-based materials in biomedical applications. Although the outlook of this material seems promising, its practical applications are still highly challenging. In this review article, we discuss the unique properties of BP, which make it a potential platform for biomedical applications compared to other 2D materials, including graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and hexagonal boron nitride (h-BN). We then introduce various synthesis methods of BP and review its latest progress in biomedical applications, such as biosensing, drug delivery, photoacoustic imaging and cancer therapies (i.e., photothermal and photodynamic therapies). Lastly, the existing challenges and future perspective of BP in biomedical applications are briefly discussed. PMID:29463996
Military research needs in biomedical informatics.
Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard
2002-01-01
The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.
Stimuli-responsive magnetic particles for biomedical applications.
Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A
2011-01-17
In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.
RysannMD: A biomedical semantic annotator balancing speed and accuracy.
Cuzzola, John; Jovanović, Jelena; Bagheri, Ebrahim
2017-07-01
Recently, both researchers and practitioners have explored the possibility of semantically annotating large and continuously evolving collections of biomedical texts such as research papers, medical reports, and physician notes in order to enable their efficient and effective management and use in clinical practice or research laboratories. Such annotations can be automatically generated by biomedical semantic annotators - tools that are specifically designed for detecting and disambiguating biomedical concepts mentioned in text. The biomedical community has already presented several solid automated semantic annotators. However, the existing tools are either strong in their disambiguation capacity, i.e., the ability to identify the correct biomedical concept for a given piece of text among several candidate concepts, or they excel in their processing time, i.e., work very efficiently, but none of the semantic annotation tools reported in the literature has both of these qualities. In this paper, we present RysannMD (Ryerson Semantic Annotator for Medical Domain), a biomedical semantic annotation tool that strikes a balance between processing time and performance while disambiguating biomedical terms. In other words, RysannMD provides reasonable disambiguation performance when choosing the right sense for a biomedical term in a given context, and does that in a reasonable time. To examine how RysannMD stands with respect to the state of the art biomedical semantic annotators, we have conducted a series of experiments using standard benchmarking corpora, including both gold and silver standards, and four modern biomedical semantic annotators, namely cTAKES, MetaMap, NOBLE Coder, and Neji. The annotators were compared with respect to the quality of the produced annotations measured against gold and silver standards using precision, recall, and F 1 measure and speed, i.e., processing time. In the experiments, RysannMD achieved the best median F 1 measure across the benchmarking corpora, independent of the standard used (silver/gold), biomedical subdomain, and document size. In terms of the annotation speed, RysannMD scored the second best median processing time across all the experiments. The obtained results indicate that RysannMD offers the best performance among the examined semantic annotators when both quality of annotation and speed are considered simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, K.S.
1994-12-31
When the North Carolina Association for Biomedical Research (NCABR) surveyed the state`s science teachers in March 1993, 92% of those responding requested information related to biomedical research. Most of the teachers requested lesson plans and activities designed to help them give students an accurate and balanced perspective on research. In response to that need, NCABR has recently completed production of a 300-page teacher`s manual that provides an overview of the biomedical research process and describes the role and care of animals in that process. Rx for Science Literacy incorporates background information, lesson plans, handouts and activities to assist teachers inmore » K-12 classrooms. Developed by a science teacher with assistance from science and education experts, the manual captures the complex biomedical research process in an easy-to-follow, easy-to-use format. In North Carolina, NCABR plans to begin these workshops in fall 1994. The workshops will include a tour of a biomedical research laboratory and on-site presentations by bench scientists. Teacher evaluation of the manual will be structured into the workshop program. The manual is available at cost to all interested individuals and organizations.« less
The Need for Veterinarians in Biomedical Research
Rosol, Thomas J.; Moore, Rustin M.; Saville, William J.A.; Oglesbee, Michael J.; Rush, Laura J.; Mathes, Lawrence E.; Lairmore, Michael D.
2010-01-01
The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedical research with applications to animal or human health. There are too few graduate veterinarians to serve broad national needs in private practice; academia; local, state, and federal government agencies; and private industry. There are no easy solutions to the problem of increasing the number of veterinarians in biomedical research. Progress will require creativity, modification of priorities, broad-based communication, support from faculty and professional organizations, effective mentoring, education in research and alternative careers as part of the veterinary professional curriculum, and recognition of the value of research experience among professional schools’ admissions committees. New resources should be identified to improve communication and education, professional and graduate student programs in biomedical research, and support to junior faculty. These actions are necessary for the profession to sustain its viability as an integral part of biomedical research. PMID:19435992
Shankaran, Dhesingh Ravi; Miura, Norio
2007-01-01
Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.
[Scientometrics and bibliometrics of biomedical engineering periodicals and papers].
Zhao, Ping; Xu, Ping; Li, Bingyan; Wang, Zhengrong
2003-09-01
This investigation was made to reveal the current status, research trend and research level of biomedical engineering in Chinese mainland by means of scientometrics and to assess the quality of the four domestic publications by bibliometrics. We identified all articles of four related publications by searching Chinese and foreign databases from 1997 to 2001. All articles collected or cited by these databases were searched and statistically analyzed for finding out the relevant distributions, including databases, years, authors, institutions, subject headings and subheadings. The source of sustentation funds and the related articles were analyzed too. The results showed that two journals were cited by two foreign databases and five Chinese databases simultaneously. The output of Journal of Biomedical Engineering was the highest. Its quantity of original papers cited by EI, CA and the totality of papers sponsored by funds were higher than those of the others, but the quantity and percentage per year of biomedical articles cited by EI were decreased in all. Inland core authors and institutions had come into being in the field of biomedical engineering. Their research topics were mainly concentrated on ten subject headings which included biocompatible materials, computer-assisted signal processing, electrocardiography, computer-assisted image processing, biomechanics, algorithms, electroencephalography, automatic data processing, mechanical stress, hemodynamics, mathematical computing, microcomputers, theoretical models, etc. The main subheadings were concentrated on instrumentation, physiopathology, diagnosis, therapy, ultrasonography, physiology, analysis, surgery, pathology, method, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drucker, H.
1983-02-01
Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.
Liu, Lingyun; Li, Wenchen; Liu, Qingsheng
2014-01-01
Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.
Challenges in regulation of biomedical research: The case of Kenya.
Wekesa, M
2015-12-01
Unregulated biomedical research has previously caused untold suffering to humankind. History is full of examples of abuse of animal and human subjects for research. Several codes and instruments have been formulated to regulate biomedical research. In Kenya, the Science, Technology and Innovation Act, 2014, together with the Constitution of Kenya, 2010, provide a fairly robust legal framework. Possible challenges include capacity building, overlap of functions of institutions, monitoring and evaluation, scientific/technological advances, intellectual property rights, funding for research, and dispute resolution. It is hoped that the new legislation will adequately address these challenges.
A community of practice: librarians in a biomedical research network.
De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara
2014-01-01
Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.
Inclusion of policies on ethical standards in animal experiments in biomedical science journals.
Rands, Sean A
2011-11-01
Most published biomedical research involving animal models is evaluated carefully to ensure that appropriate ethical standards are met. In the current study, 500 journals randomly selected from MedLine were assessed for whether they presented animal research. Of the 138 journals that did, the instructions to authors of 85 (61.6%) included a requirement for author assurance of adherence to ethical standards during experiments involving animals. In comparison to a wider range of biologic journals, biomedical science journals were more likely to have some sort of ethical policy concerning the reporting and presentation of animal experiments.
2011-01-01
Background Tokenization is an important component of language processing yet there is no widely accepted tokenization method for English texts, including biomedical texts. Other than rule based techniques, tokenization in the biomedical domain has been regarded as a classification task. Biomedical classifier-based tokenizers either split or join textual objects through classification to form tokens. The idiosyncratic nature of each biomedical tokenizer’s output complicates adoption and reuse. Furthermore, biomedical tokenizers generally lack guidance on how to apply an existing tokenizer to a new domain (subdomain). We identify and complete a novel tokenizer design pattern and suggest a systematic approach to tokenizer creation. We implement a tokenizer based on our design pattern that combines regular expressions and machine learning. Our machine learning approach differs from the previous split-join classification approaches. We evaluate our approach against three other tokenizers on the task of tokenizing biomedical text. Results Medpost and our adapted Viterbi tokenizer performed best with a 92.9% and 92.4% accuracy respectively. Conclusions Our evaluation of our design pattern and guidelines supports our claim that the design pattern and guidelines are a viable approach to tokenizer construction (producing tokenizers matching leading custom-built tokenizers in a particular domain). Our evaluation also demonstrates that ambiguous tokenizations can be disambiguated through POS tagging. In doing so, POS tag sequences and training data have a significant impact on proper text tokenization. PMID:21658288
Crossing the chasm: information technology to biomedical informatics.
Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph
2011-06-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.
Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications
Zhang, Heng
2015-01-01
Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354
Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications
Ding, Xiaochu; Wang, Yadong
2017-01-01
Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484
Dingare, Shipra; Nissim, Malvina; Finkel, Jenny; Grover, Claire
2005-01-01
We present a maximum entropy-based system for identifying named entities (NEs) in biomedical abstracts and present its performance in the only two biomedical named entity recognition (NER) comparative evaluations that have been held to date, namely BioCreative and Coling BioNLP. Our system obtained an exact match F-score of 83.2% in the BioCreative evaluation and 70.1% in the BioNLP evaluation. We discuss our system in detail, including its rich use of local features, attention to correct boundary identification, innovative use of external knowledge resources, including parsing and web searches, and rapid adaptation to new NE sets. We also discuss in depth problems with data annotation in the evaluations which caused the final performance to be lower than optimal. PMID:18629295
A survey of quality assurance practices in biomedical open source software projects.
Koru, Günes; El Emam, Khaled; Neisa, Angelica; Umarji, Medha
2007-05-07
Open source (OS) software is continuously gaining recognition and use in the biomedical domain, for example, in health informatics and bioinformatics. Given the mission critical nature of applications in this domain and their potential impact on patient safety, it is important to understand to what degree and how effectively biomedical OS developers perform standard quality assurance (QA) activities such as peer reviews and testing. This would allow the users of biomedical OS software to better understand the quality risks, if any, and the developers to identify process improvement opportunities to produce higher quality software. A survey of developers working on biomedical OS projects was conducted to examine the QA activities that are performed. We took a descriptive approach to summarize the implementation of QA activities and then examined some of the factors that may be related to the implementation of such practices. Our descriptive results show that 63% (95% CI, 54-72) of projects did not include peer reviews in their development process, while 82% (95% CI, 75-89) did include testing. Approximately 74% (95% CI, 67-81) of developers did not have a background in computing, 80% (95% CI, 74-87) were paid for their contributions to the project, and 52% (95% CI, 43-60) had PhDs. A multivariate logistic regression model to predict the implementation of peer reviews was not significant (likelihood ratio test = 16.86, 9 df, P = .051) and neither was a model to predict the implementation of testing (likelihood ratio test = 3.34, 9 df, P = .95). Less attention is paid to peer review than testing. However, the former is a complementary, and necessary, QA practice rather than an alternative. Therefore, one can argue that there are quality risks, at least at this point in time, in transitioning biomedical OS software into any critical settings that may have operational, financial, or safety implications. Developers of biomedical OS applications should invest more effort in implementing systemic peer review practices throughout the development and maintenance processes.
ERIC Educational Resources Information Center
Benabentos, Rocio; Ray, Payal; Kumar, Deepak
2014-01-01
Disparities in health and healthcare are a major concern in the United States and worldwide. Approaches to alleviate these disparities must be multifaceted and should include initiatives that touch upon the diverse areas that influence the healthcare system. Developing a strong biomedical workforce with an awareness of the issues concerning health…
The human factor: Biomedicine in the manned space program to 1980
NASA Technical Reports Server (NTRS)
Pitts, J. A.
1985-01-01
The purpose of this publication is to provide NASA personnel, NASA managers, and the biomedical and historical research communities a well-documented, historical summary of the content and organization of NASA's biomedical programs from Project Mercury up to the Shuttle program. The publication includes not only a major narrative portion, but appendixes and reference notes.
NASA Technical Reports Server (NTRS)
Johnston, R. S. (Editor); Dietlein, L. F. (Editor); Berry, C. A. (Editor); Parker, James F. (Compiler); West, Vita (Compiler)
1975-01-01
The biomedical program developed for Apollo is described in detail. The findings are listed of those investigations which are conducted to assess the effects of space flight on man's physiological and functional capacities, and significant medical events in Apollo are documented. Topics discussed include crew health and inflight monitoring, preflight and postflight medical testing, inflight experiments, quarantine, and life support systems.
PSN J02455988-0734270 in NGC 1084 is a young type II-P SN
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.
2012-08-01
We report the spectroscopic classification of the optical transient PSN J02455988-0734270 in NGC 1084 (disc. 2012-08-11.039 by B. Monard) based on an optical spectrum taken with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3600-10000, 1A resolution). The transient spectrum was compared to supernova spectral templates using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) indicating it to be a supernova of type II-P at a very young age, perhaps only a few days after explosion.
Design of affordable and ruggedized biomedical devices using virtual instrumentation.
Mathern, Ryan Michael; Schopman, Sarah; Kalchthaler, Kyle; Mehta, Khanjan; Butler, Peter
2013-05-01
Abstract This paper presents the designs of four low-cost and ruggedized biomedical devices, including a blood pressure monitor, thermometer, weighing scale and spirometer, designed for the East African context. The design constraints included a mass-production price point of $10, accuracy and precision comparable to commercial devices and ruggedness to function effectively in the harsh environment of East Africa. The blood pressure device, thermometer and weighing scale were field-tested in Kenya and each recorded data within 6% error of the measurements from commercial devices and withstood the adverse climate and rough handling. The spirometer functioned according to specifications, but a re-design is needed to improve operability and usability by patients. This article demonstrates the feasibility of designing and commercializing virtual instrumentation-based biomedical devices in resource-constrained environments through context-driven design. The next steps for the devices include designing them such that they can be more easily manufactured, use standardized materials, are easily calibrated in the field and have more user-friendly software programs that can be updated remotely.
Construction of Multimedia Courseware and Web-based E-Learning Courses of "Biomedical Materials".
Xiaoying, Lu; Jian, He; Tian, Qin; Dongxu, Jiang; Wei, Chen
2005-01-01
In order to reform the traditional teaching methodology and to improve the teaching effect, we developed new teaching system for course "Biomedical Materials" in our university by the support of the computer technique and Internet. The new teaching system includes the construction of the multimedia courseware and web-based e-learning courses. More than 2000 PowerPoint slides have been designed and optimized and flash movies for several capitals are included. On the basis of this multimedia courseware, a web-based educational environment has been established further, which includes course contents, introduction of the teacher, courseware download, study forum, sitemap of the web, and relative link. The multimedia courseware has been introduced in the class teaching for "Biomedical Materials" for 6 years and a good teaching effect has been obtained. The web-based e-learning courses have been constructed for two years and proved that they are helpful for the students by their preparing and reviewing the teaching contents before and after the class teaching.
Structural Design and Physicochemical Foundations of Hydrogels for Biomedical Applications.
Li, Qingyong; Ning, Zhengxiang; Ren, Jiaoyan; Liao, Wenzhen
2018-01-01
Biomedical research, known as medical research, is conducive to support and promote the development of knowledge in the field of medicine. Hydrogels have been extensively used in many biomedical fields due to their highly absorbent and flexible properties. The smart hydrogels, especially, can respond to a broad range of external stimuli such as temperature, pH value, light, electric and magnetic fields. With excellent biocompatibility, tunable rheology, mechanical properties, porosity, and hydrated molecular structure, hydrogels are considered as promising candidate for simulating local tissue microenvironment. In this review article, we mainly focused on the most recent development of engineering synthetic hydrogels; moreover, the classification, properties, especially the biomedical applications including tissue engineering and cell scaffolding, drug and gene delivery, immunotherapies and vaccines, are summarized and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Analysis of thirteen predatory publishers: a trap for eager-to-publish researchers.
Bolshete, Pravin
2018-01-01
To demonstrate a strategy employed by predatory publishers to trap eager-to-publish authors or researchers into submitting their work. This was a case study of 13 potential, possible, or probable predatory scholarly open-access publishers with similar characteristics. Eleven publishers were included from Beall's list and two additional publishers were identified from a Google web search. Each publisher's site was visited and its content analyzed. Publishers publishing biomedical journals were further explored and additional data was collected regarding their volumes, details of publications and editorial-board members. Overall, the look and feel of all 13 publishers was similar including names of publishers, website addresses, homepage content, homepage images, list of journals and subject areas, as if they were copied and pasted. There were discrepancies in article-processing charges within the publishers. None of the publishers identified names in their contact details and primarily included only email addresses. Author instructions were similar across all 13 publishers. Most publishers listed journals of varied subject areas including biomedical journals (12 publishers) covering different geographic locations. Most biomedical journals published none or very few articles. The highest number of articles published by any single biomedical journal was 28. Several editorial-board members were listed across more than one journals, with one member listed 81 times in different 69 journals (i.e. twice in 12 journals). There was a strong reason to believe that predatory publishers may have several publication houses with different names under a single roof to trap authors from different geographic locations.
Biomedical technology prosperity game{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; Boyack, K.W.; Wesenberg, D.L.
1996-07-01
Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defensemore » Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.« less
Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul
2014-01-01
Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.
The University of Connecticut Biomedical Engineering Mentoring Program for high school students.
Enderle, John D; Liebler, Christopher M; Haapala, Stephenic A; Hart, James L; Thonakkaraparayil, Naomi T; Romonosky, Laura L; Rodriguez, Francisco; Trumbower, Randy D
2004-01-01
For the past four years, the Biomedical Engineering Program at the University of Connecticut has offered a summer mentoring program for high school students interested in biomedical engineering. To offer this program, we have partnered with the UConn Mentor Connection Program, the School of Engineering 2000 Program and the College of Liberal Arts and Sciences Summer Laboratory Apprentice Program. We typically have approximately 20-25 high school students learning about biomedical engineering each summer. The mentoring aspect of the program exists at many different levels, with the graduate students mentoring the undergraduate students, and these students mentoring the high school students. The program starts with a three-hour lecture on biomedical engineering to properly orient the students. An in-depth paper on an area in biomedical engineering is a required component, as well as a PowerPoint presentation on their research. All of the students build a device to record an EKG on a computer using LabView, including signal processing to remove noise. The students learn some rudimentary concepts on electrocardiography and the physiology and anatomy of the heart. The students also learn basic electronics and breadboarding circuits, PSpice, the building of a printed circuit board, PIC microcontroller, the operation of Multimeters (including the oscilloscope), soldering, assembly of the EKG device and writing LabView code to run their device on a PC. The students keep their EKG device, LabView program and a fully illustrated booklet on EKG to bring home with them, and hopefully bring back to their high school to share their experiences with other students and teachers. The students also work on several other projects during this summer experience as well as visit Hartford Hospital to learn about Clinical Engineering.
Biomedical and Human Factors Requirements for a Manned Earth-Orbiting Station
NASA Technical Reports Server (NTRS)
Reynolds, J. B.
1963-01-01
The study reported here has presented a measurement data pool for the determination of biomedical and behavioral effects of long-term exposure to weightlessness. This includes measures, techniques, equipment, and requirements in terms of weight, power, volume, time, crew activities, subsystem interfaces and experimental programs and designs, and confidence ratings for their effectiveness for determining weightlessness effects.
NASA Technical Reports Server (NTRS)
1976-01-01
Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.
Research and technology activities at Ames Research Center's Biomedical Research Division
NASA Technical Reports Server (NTRS)
Martello, N.
1985-01-01
Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-11-09
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
A top-level ontology of functions and its application in the Open Biomedical Ontologies.
Burek, Patryk; Hoehndorf, Robert; Loebe, Frank; Visagie, Johann; Herre, Heinrich; Kelso, Janet
2006-07-15
A clear understanding of functions in biology is a key component in accurate modelling of molecular, cellular and organismal biology. Using the existing biomedical ontologies it has been impossible to capture the complexity of the community's knowledge about biological functions. We present here a top-level ontological framework for representing knowledge about biological functions. This framework lends greater accuracy, power and expressiveness to biomedical ontologies by providing a means to capture existing functional knowledge in a more formal manner. An initial major application of the ontology of functions is the provision of a principled way in which to curate functional knowledge and annotations in biomedical ontologies. Further potential applications include the facilitation of ontology interoperability and automated reasoning. A major advantage of the proposed implementation is that it is an extension to existing biomedical ontologies, and can be applied without substantial changes to these domain ontologies. The Ontology of Functions (OF) can be downloaded in OWL format from http://onto.eva.mpg.de/. Additionally, a UML profile and supplementary information and guides for using the OF can be accessed from the same website.
Brown, L F
1989-01-01
The unique properties of piezoelectric/pyroelectric polymers offer many new opportunities for biomedical engineering sensor applications. Since their discovery nearly 20 years ago, the polymer films have been used for many novel switching and sensor applications. Despite the prodigious exposure from many recent publications describing piezo film applications, methods of sensor fabrication and circuit interfacing still elude most engineers. This paper is presented as a tutorial guide to applying piezo polymers to biomedical engineering applications. A review of the fundamentals of piezoelectricity/pyroelectricity in piezo polymers is first presented. Their material properties are contrasted with piezoelectric ceramic materials. Some advantages and disadvantages of the films for biomedical sensors are discussed. Specific details on the fabrication of piezo film sensors are presented. Methods are described for forming, cutting, and mounting film sensors, and making lead connections. A brief discussion of equivalent circuit models for the design and simulation of piezoelectric/pyroelectric sensors is included, as well as common circuit interface techniques. Finally, several sources are recommended for further information on a variety of biomedical sensor applications.
Rohra, Dileep K; Rohra, Vikram K; Cahusac, Peter
2016-11-01
To compare the journal impact factor (JIF) and Eigenfactor score (ES) of Institute for Scientific Information (ISI)-indexed biomedical journals published from the Kingdom of Saudi Arabia (KSA) over the last 8 years. Methods: This is a retrospective study, conducted at Alfaisal University, Riyadh, KSA from January to March 2016. The Journal Citation Reports of ISI Web of Knowledge were accessed, and 6 Saudi biomedical journals were included for analysis. Results: All Saudi journals have improved their IF compared with their baseline. However, the performance of the Journal of Pharmaceutical Sciences and Neurosciences has been exceptionally good. The biggest improvement in percent growth in JIF was seen in the Saudi Pharmaceutical Journal (approximately 887%) followed by Neurosciences (approximately 462%). Interestingly, the ES of all biomedical journals, except Saudi Journal of Gastroenterology and Saudi Medical Journal, increased over the years. The greatest growth in ES (more than 5 fold) was noted for Neurosciences and Saudi Pharmaceutical Journal. Conclusion: This study shows that the overall quality of all Saudi biomedical journals has improved in the last 8 years.
Institute for Scientific Information-indexed biomedical journals of Saudi Arabia
Rohra, Dileep K.; Rohra, Vikram K.; Cahusac, Peter
2016-01-01
Objectives: To compare the journal impact factor (JIF) and Eigenfactor score (ES) of Institute for Scientific Information (ISI)-indexed biomedical journals published from the Kingdom of Saudi Arabia (KSA) over the last 8 years. Methods: This is a retrospective study, conducted at Alfaisal University, Riyadh, KSA from January to March 2016. The Journal Citation Reports of ISI Web of Knowledge were accessed, and 6 Saudi biomedical journals were included for analysis. Results: All Saudi journals have improved their IF compared with their baseline. However, the performance of the Journal of Pharmaceutical Sciences and Neurosciences has been exceptionally good. The biggest improvement in percent growth in JIF was seen in the Saudi Pharmaceutical Journal (approximately 887%) followed by Neurosciences (approximately 462%). Interestingly, the ES of all biomedical journals, except Saudi Journal of Gastroenterology and Saudi Medical Journal, increased over the years. The greatest growth in ES (more than 5 fold) was noted for Neurosciences and Saudi Pharmaceutical Journal. Conclusion: This study shows that the overall quality of all Saudi biomedical journals has improved in the last 8 years. PMID:27761565
Enhancing biomedical text summarization using semantic relation extraction.
Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao
2011-01-01
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.
Commercial Instrumentation Technology Associates' Biomedical Experiments
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Student Marnix Aklian and ITA's Mark Bem prepare biological samples for flight as part of ITA's hands-on student outreach program on STS-95. Similar activities are a part of the CIBX-2 payload. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Commercial Biomedical Experiments Payload
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Cardiovascular disease in women and noncontraceptive use of hormones: a feminist analysis.
MacPherson, K I
1992-06-01
Cardiovascular disease (CVD) in women is being defined by biomedical researchers and physicians as part of the menopausal syndrome. Postmenopausal lowered levels of estrogen are presented as a prime cause of changes in cholesterol levels that are a risk factor for CVD. The biomedical model and hormone debate are described and analyzed, followed by a feminist perspective of CVD. This includes new federal policies that support CVD research. Nurses are encouraged to present a broader picture of CVD and its risks than that presented by the biomedical model and to empower women's understanding of this complex health issue through educational, clinical, and research endeavors.
Recent advances in terahertz technology for biomedical applications.
Sun, Qiushuo; He, Yuezhi; Liu, Kai; Fan, Shuting; Parrott, Edward P J; Pickwell-MacPherson, Emma
2017-06-01
Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.
Proceedings of the First Biennial Space Biomedical Investigators' Workshop
NASA Technical Reports Server (NTRS)
1999-01-01
The First Biennial Space Biomedical Investigators' Workshop, held January 11-13, 1999, was unique in that it assembled, for the first time, a broad cross section of NASA-funded biomedical researchers to present the current status of their projects and their plans for future investigations. All principal investigators with active, or recently-completed ground-based projects in NASA's Biomedical Research and Countermeasures Program that were funded through NASA's Office of Life and Microgravity Sciences and Applications were invited. Included were individual investigators funded through NASA Research Announcements, investigators with NASA Specialized Centers of Research and Training, investigators with the recently established National Space Biomedical Research Institute (NSBRI), and NASA civil servant investigators. Seventy-seven percent of all eligible projects were presented at the workshop. Thus, these Proceedings should provide a useful snapshot of the status of NASA-funded space biomedical research as of January 1999. An important workshop objective was to achieve free and open communication among the presenting investigators. Therefore, presentation of new and incomplete results, as well as hypotheses and ideas for future research, was encouraged. Comments and constructive criticisms from the presenters' colleagues were also encouraged. These ground rules resulted in many lively and useful discussions, during both the presentation sessions and informal evening gatherings and breaks.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Robertson, Christopher T
2011-01-01
The pharmaceutical and medical device industries use billions of dollars to support the biomedical science that physicians, regulators, and patients use to make healthcare decisions--the decisions that drive an increasingly large portion of the American economy. Compelling evidence suggests that this industry money buys favorable results, biasing the outcomes of scientific research. Current efforts to manage the problem, including disclosure mandates and peer reviews, are ineffective. A blinding mechanism, operating through an intermediary such as the National Institutes of Health, could instead be developed to allow industry support of science without allowing undue influence. If the editors of biomedical journals fail to mandate that industry funders utilize such a solution, the federal government has several regulatory levers available, including conditioning federal funding and direct regulation, both of which could be done without violating the First Amendment.
Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research
Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.
2010-01-01
Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594
Biomedical Applications of Nanodiamonds: An Overview.
Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C
2015-02-01
Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.
Biomedical Applications of Organometal-Peptide Conjugates
NASA Astrophysics Data System (ADS)
Metzler-Nolte, Nils
Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.
Biological and biomedical aspects of genetically modified food.
Celec, Peter; Kukucková, Martina; Renczésová, Veronika; Natarajan, Satheesh; Pálffy, Roland; Gardlík, Roman; Hodosy, Július; Behuliak, Michal; Vlková, Barbora; Minárik, Gabriel; Szemes, Tomás; Stuchlík, Stanislav; Turna, Ján
2005-12-01
Genetically modified (GM) foods are the product of one of the most progressive fields of science-biotechnology. There are major concerns about GM foods in the public; some of them are reasonable, some of them are not. Biomedical risks of GM foods include problems regarding the potential allergenicity, horizontal gene transfer, but environmental side effects on biodiversity must also be recognized. Numerous methods have been developed to assess the potential risk of every GM food type. Benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer. This includes improved nutritional composition or even therapeutic effects. Recombinant probiotics and the principle of alternative gene therapy represent the latest approach of using GM organisms for biomedical applications. This article tries to summarize and to explain the problematic topic of GM food.
Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects
Dykman, L.A.; Khlebtsov, N.G.
2011-01-01
Functionalized gold nanoparticles with controlled geometrical and optical properties are the subject of intensive studies and biomedical applications, including genomics, biosensorics, immunoassays, clinical chemistry, laser phototherapy of cancer cells and tumors, the targeted delivery of drugs, DNA and antigens, optical bioimaging and the monitoring of cells and tissues with the use of state-of-the-art detection systems. This work will provide an overview of the recent advances and current challenges facing the biomedical application of gold nanoparticles of various sizes, shapes, and structures. The review is focused on the application of gold nanoparticle conjugates in biomedical diagnostics and analytics, photothermal and photodynamic therapies, as a carrier for delivering target molecules, and on the immunological and toxicological properties. Keeping in mind the huge volume and high speed of the data update rate, 2/3 of our reference list (certainly restricted to 250 Refs.) includes publications encompassing the past 5 years. PMID:22649683
Lee, Kyubum; Kim, Byounggun; Jeon, Minji; Kim, Jihye; Tan, Aik Choon
2018-01-01
Background With the development of artificial intelligence (AI) technology centered on deep-learning, the computer has evolved to a point where it can read a given text and answer a question based on the context of the text. Such a specific task is known as the task of machine comprehension. Existing machine comprehension tasks mostly use datasets of general texts, such as news articles or elementary school-level storybooks. However, no attempt has been made to determine whether an up-to-date deep learning-based machine comprehension model can also process scientific literature containing expert-level knowledge, especially in the biomedical domain. Objective This study aims to investigate whether a machine comprehension model can process biomedical articles as well as general texts. Since there is no dataset for the biomedical literature comprehension task, our work includes generating a large-scale question answering dataset using PubMed and manually evaluating the generated dataset. Methods We present an attention-based deep neural model tailored to the biomedical domain. To further enhance the performance of our model, we used a pretrained word vector and biomedical entity type embedding. We also developed an ensemble method of combining the results of several independent models to reduce the variance of the answers from the models. Results The experimental results showed that our proposed deep neural network model outperformed the baseline model by more than 7% on the new dataset. We also evaluated human performance on the new dataset. The human evaluation result showed that our deep neural model outperformed humans in comprehension by 22% on average. Conclusions In this work, we introduced a new task of machine comprehension in the biomedical domain using a deep neural model. Since there was no large-scale dataset for training deep neural models in the biomedical domain, we created the new cloze-style datasets Biomedical Knowledge Comprehension Title (BMKC_T) and Biomedical Knowledge Comprehension Last Sentence (BMKC_LS) (together referred to as BioMedical Knowledge Comprehension) using the PubMed corpus. The experimental results showed that the performance of our model is much higher than that of humans. We observed that our model performed consistently better regardless of the degree of difficulty of a text, whereas humans have difficulty when performing biomedical literature comprehension tasks that require expert level knowledge. PMID:29305341
Otto Schmitt's contributions to basic and applied biomedical engineering and to the profession.
Patterson, Robert
2009-01-01
Otto Schmitt was one of the early giants in biomedical engineering. Best known in engineering circles for the Schmitt Trigger, he also made many other significant scientific contributions. Besides his scientific work Otto was involved in early organizational activities, which included the first large professional BME meeting in Minneapolis in 1958. A description of his many contributions will be presented along with a short video of Schmitt giving a tour of his laboratory, including the original Schmitt Trigger and the model he used to develop his vector ECG system.
It Takes A 'Village of Partnerships' To Raise A 'Big Data Facility' In A 'Big Data World'.
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Wyborn, L. A.
2015-12-01
The National Computational Infrastructure (NCI) at the Australian National University (ANU) has collocated a priority set of national and international data assets that span a wide range of domains from climate, oceans, geophysics, environment, astronomy, bioinformatics and the social sciences. The data are located on a 10 PB High Performance Data (HPD) Node that is integrated with a High Performance Computing (HPC) facility to enable a new style of Data-intensive in-situ analysis. Investigators can either log in via direct access to the data collections: access is also provided via modern standards-based web services. The NCI integrated HPD/HPC facility is supported by a 'village' of partnerships. NCI itself operates as a formal partnership between the ANU and three major National Scientific Agencies: CSIRO, the Bureau of Meteorology (BoM) and Geoscience Australia (GA). These same agencies are also the custodians of many of the national data collections hosted at NCI, and in partnership with other collaborating national and overseas organisations have agreed to work together to develop a shared data environment and use standards that enable interoperability between the collections, rather than isolating their collections as separate entities that each agency runs independently. To effectively analyse these complex and large volume data sets, NCI has entered into a series of national and national partnerships with international agencies to provide world-class digital analytical environments that allow computational to be conducted and shared. The ability for government and research to work in partnership at the NCI has been well established over the last decade, mainly with BoM, CSIRO, and GA. New emerging industry linkages are now being encouraged by revised government agendas and these promises to foster a new series of partnerships that will increase uptake of this major government funded infrastructure and promise to foster further collaboration and innovation.
HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey
NASA Astrophysics Data System (ADS)
Penev, K.; Bakos, G. Á.; Bayliss, D.; Jordán, A.; Mohler, M.; Zhou, G.; Suc, V.; Rabus, M.; Hartman, J. D.; Mancini, L.; Béky, B.; Csubry, Z.; Buchhave, L.; Henning, T.; Nikolov, N.; Csák, B.; Brahm, R.; Espinoza, N.; Conroy, P.; Noyes, R. W.; Sasselov, D. D.; Schmidt, B.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Lázár, J.; Papp, I.; Sári, P.
2013-01-01
We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V = 12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period of P ≈ 3.4465 days, mass of Mp ≈ 1.86 M J, and radius of Rp ≈ 1.30 R J. The host star has a mass of 0.99 M ⊙ and radius of 1.04 R ⊙. The discovery light curve of HATS-1b has near-continuous coverage over several multi-day timespans, demonstrating the power of using a global network of telescopes to discover transiting planets. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), and the Australian National University (ANU). The station at Las Campanas Observatory (LCO) of the Carnegie Institute, is operated by PU in conjunction with collaborators at the Pontificia Universidad Católica de Chile (PUC), the station at the High Energy Spectroscopic Survey (HESS) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations made with the MPG/ESO 2.2 m Telescope at the ESO Observatory in La Silla. FEROS ID programmes: P087.A-9014(A), P088.A-9008(A), P089.A-9008(A), P087.C-0508(A). GROND ID programme: 089.A-9006(A). This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.
Crossing the Chasm: Information Technology to Biomedical Informatics
Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph
2011-01-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632
Writing intelligible English prose for biomedical journals.
Ludbrook, John
2007-01-01
1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.
National Space Biomedical Research Institute Annual Report
NASA Technical Reports Server (NTRS)
2000-01-01
This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).
Cremades Pallas, R; Burbano, P; Valcárcel de la Iglesia, M A; Burillo-Putze, G; Martín-Sánchez, F J; Miró, Ò
2013-01-01
To analyze the impact of articles published in English compared to those published in Spanish in multilingual Spanish biomedical journals. We analyzed the language of publication, the number of original articles, the nationality of the authors, the citations received, the citing article and the nationality of the citing authors among the articles published from 2008-2012 in 5 multilingual Spanish biomedical journals. The study included 4,296 documents, 85 of which were published in English (2%). The percentage of original articles and of non-Spanish authorship was significantly higher among these latter articles and they also achieved more citations and more citing articles per article published. The proportion of articles published in English by multilingual Spanish biomedical journals is low and they are more often originals signed exclusively by foreign authors and receive more citations than those published in Spanish, which are also more frequently made by foreign authors.
Marine Polysaccharides from Algae with Potential Biomedical Applications
de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa
2015-01-01
There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519
Multiscale Integration of -Omic, Imaging, and Clinical Data in Biomedical Informatics
Phan, John H.; Quo, Chang F.; Cheng, Chihwen; Wang, May Dongmei
2016-01-01
This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data. PMID:23231990
Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.
Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei
2012-01-01
This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.
A Diagram Editor for Efficient Biomedical Knowledge Capture and Integration
Yu, Bohua; Jakupovic, Elvis; Wilson, Justin; Dai, Manhong; Xuan, Weijian; Mirel, Barbara; Athey, Brian; Watson, Stanley; Meng, Fan
2008-01-01
Understanding the molecular mechanisms underlying complex disorders requires the integration of data and knowledge from different sources including free text literature and various biomedical databases. To facilitate this process, we created the Biomedical Concept Diagram Editor (BCDE) to help researchers distill knowledge from data and literature and aid the process of hypothesis development. A key feature of BCDE is the ability to capture information with a simple drag-and-drop. This is a vast improvement over manual methods of knowledge and data recording and greatly increases the efficiency of the biomedical researcher. BCDE also provides a unique concept matching function to enforce consistent terminology, which enables conceptual relationships deposited by different researchers in the BCDE database to be mined and integrated for intelligible and useful results. We hope BCDE will promote the sharing and integration of knowledge from different researchers for effective hypothesis development. PMID:21347131
Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan
2017-07-01
Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.
DataMed - an open source discovery index for finding biomedical datasets.
Chen, Xiaoling; Gururaj, Anupama E; Ozyurt, Burak; Liu, Ruiling; Soysal, Ergin; Cohen, Trevor; Tiryaki, Firat; Li, Yueling; Zong, Nansu; Jiang, Min; Rogith, Deevakar; Salimi, Mandana; Kim, Hyeon-Eui; Rocca-Serra, Philippe; Gonzalez-Beltran, Alejandra; Farcas, Claudiu; Johnson, Todd; Margolis, Ron; Alter, George; Sansone, Susanna-Assunta; Fore, Ian M; Ohno-Machado, Lucila; Grethe, Jeffrey S; Xu, Hua
2018-01-13
Finding relevant datasets is important for promoting data reuse in the biomedical domain, but it is challenging given the volume and complexity of biomedical data. Here we describe the development of an open source biomedical data discovery system called DataMed, with the goal of promoting the building of additional data indexes in the biomedical domain. DataMed, which can efficiently index and search diverse types of biomedical datasets across repositories, is developed through the National Institutes of Health-funded biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium. It consists of 2 main components: (1) a data ingestion pipeline that collects and transforms original metadata information to a unified metadata model, called DatA Tag Suite (DATS), and (2) a search engine that finds relevant datasets based on user-entered queries. In addition to describing its architecture and techniques, we evaluated individual components within DataMed, including the accuracy of the ingestion pipeline, the prevalence of the DATS model across repositories, and the overall performance of the dataset retrieval engine. Our manual review shows that the ingestion pipeline could achieve an accuracy of 90% and core elements of DATS had varied frequency across repositories. On a manually curated benchmark dataset, the DataMed search engine achieved an inferred average precision of 0.2033 and a precision at 10 (P@10, the number of relevant results in the top 10 search results) of 0.6022, by implementing advanced natural language processing and terminology services. Currently, we have made the DataMed system publically available as an open source package for the biomedical community. © The Author 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Carmen Legaz-García, María Del; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás
2016-06-03
Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources, which makes difficult the integrated exploitation of such data. The Semantic Web paradigm offers a natural technological space for data integration and exploitation by generating content readable by machines. Linked Open Data is a Semantic Web initiative that promotes the publication and sharing of data in machine readable semantic formats. We present an approach for the transformation and integration of heterogeneous biomedical data with the objective of generating open biomedical datasets in Semantic Web formats. The transformation of the data is based on the mappings between the entities of the data schema and the ontological infrastructure that provides the meaning to the content. Our approach permits different types of mappings and includes the possibility of defining complex transformation patterns. Once the mappings are defined, they can be automatically applied to datasets to generate logically consistent content and the mappings can be reused in further transformation processes. The results of our research are (1) a common transformation and integration process for heterogeneous biomedical data; (2) the application of Linked Open Data principles to generate interoperable, open, biomedical datasets; (3) a software tool, called SWIT, that implements the approach. In this paper we also describe how we have applied SWIT in different biomedical scenarios and some lessons learned. We have presented an approach that is able to generate open biomedical repositories in Semantic Web formats. SWIT is able to apply the Linked Open Data principles in the generation of the datasets, so allowing for linking their content to external repositories and creating linked open datasets. SWIT datasets may contain data from multiple sources and schemas, thus becoming integrated datasets.
Gururaj, Anupama E.; Chen, Xiaoling; Pournejati, Saeid; Alter, George; Hersh, William R.; Demner-Fushman, Dina; Ohno-Machado, Lucila
2017-01-01
Abstract The rapid proliferation of publicly available biomedical datasets has provided abundant resources that are potentially of value as a means to reproduce prior experiments, and to generate and explore novel hypotheses. However, there are a number of barriers to the re-use of such datasets, which are distributed across a broad array of dataset repositories, focusing on different data types and indexed using different terminologies. New methods are needed to enable biomedical researchers to locate datasets of interest within this rapidly expanding information ecosystem, and new resources are needed for the formal evaluation of these methods as they emerge. In this paper, we describe the design and generation of a benchmark for information retrieval of biomedical datasets, which was developed and used for the 2016 bioCADDIE Dataset Retrieval Challenge. In the tradition of the seminal Cranfield experiments, and as exemplified by the Text Retrieval Conference (TREC), this benchmark includes a corpus (biomedical datasets), a set of queries, and relevance judgments relating these queries to elements of the corpus. This paper describes the process through which each of these elements was derived, with a focus on those aspects that distinguish this benchmark from typical information retrieval reference sets. Specifically, we discuss the origin of our queries in the context of a larger collaborative effort, the biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium, and the distinguishing features of biomedical dataset retrieval as a task. The resulting benchmark set has been made publicly available to advance research in the area of biomedical dataset retrieval. Database URL: https://biocaddie.org/benchmark-data PMID:29220453
'Spin' in published biomedical literature: A methodological systematic review.
Chiu, Kellia; Grundy, Quinn; Bero, Lisa
2017-09-01
In the scientific literature, spin refers to reporting practices that distort the interpretation of results and mislead readers so that results are viewed in a more favourable light. The presence of spin in biomedical research can negatively impact the development of further studies, clinical practice, and health policies. This systematic review aims to explore the nature and prevalence of spin in the biomedical literature. We searched MEDLINE, PreMEDLINE, Embase, Scopus, and hand searched reference lists for all reports that included the measurement of spin in the biomedical literature for at least 1 outcome. Two independent coders extracted data on the characteristics of reports and their included studies and all spin-related outcomes. Results were grouped inductively into themes by spin-related outcome and are presented as a narrative synthesis. We used meta-analyses to analyse the association of spin with industry sponsorship of research. We included 35 reports, which investigated spin in clinical trials, observational studies, diagnostic accuracy studies, systematic reviews, and meta-analyses. The nature of spin varied according to study design. The highest (but also greatest) variability in the prevalence of spin was present in trials. Some of the common practices used to spin results included detracting from statistically nonsignificant results and inappropriately using causal language. Source of funding was hypothesised by a few authors to be a factor associated with spin; however, results were inconclusive, possibly due to the heterogeneity of the included papers. Further research is needed to assess the impact of spin on readers' decision-making. Editors and peer reviewers should be familiar with the prevalence and manifestations of spin in their area of research in order to ensure accurate interpretation and dissemination of research.
The normative dimensions of extending the human lifespan by age-related biomedical innovations.
Ehni, Hans-Joerg; Marckmann, Georg
2008-10-01
The current normative debate on age-related biomedical innovations and the extension of the human lifespan has important shortcomings. Mainly, the complexity of the different normative dimensions relevant for ethical and/or juridicial norms is not fully developed and the normative quality of teleological and deontological arguments is not properly distinguished. This article addresses some of these shortcomings and develops the outline of a more comprehensive normative framework covering all relevant dimensions. Such a frame necessarily has to include conceptions of a good life on the individual and societal levels. Furthermore, as a third dimension, a model for the access to and the just distribution of age-related biomedical innovations and technologies extending the human lifespan will be developed. It is argued that such a model has to include the different levels of the general philosophical theories of distributive justice, including social rights and theories of just health care. Furthermore, it has to show how these theories can be applied to the problem area of aging and extending the human lifespan.
Processing composite materials
NASA Technical Reports Server (NTRS)
Baucom, R. M.
1982-01-01
The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.
Development of Flight-Safety Prediction Methodology for U.S. Naval Safety Center
1969-06-01
i~.n~. I ShS81.ib A m, fOP i WY ii W i i A (G Wr aft sod Nabe ~reaeded by n or 6n/ai*rgtan e e *SN ONIa "N I a)M ) ) ()Function or Equipment Name...110.1 PE99. SYSTfM D1.60ANU Y 1ET 4333 Chet A 4 0 BILOWS IIL A.134 11 VEIL SY STE BlNCS 14314 121k A OVISC0$J6 OAMPIMS Cho tic 013121230 SUNS viscous...02113 PN64*0 SPOILER P841 CYL 14212 KEA6 OUTBYOARD SPOILER PWR CYL 14252 *CC@& SPOILER FOLLOW Up Roo A1S 1425 RI ~ A FOLLOW UP TORfiJ tUsk Sy 1421. CSI5
1990-03-01
rare in Missouri. The record is from 1987. Red berried elder ( Sambucus pubens) occurs within 1.0 miles of the project area. This plant is endangered...hIALLARD IYPIACTS AAHU’x r U rr PLAN Figure 1- Plan Comparisons A-19 Note that Plan C (sediment deflection) would provide essentially no benefits to...S TA.T$ OIL UTAILS jfy 9.LE.CTtICA.l. 0 BasMW6 WORN Mfaiss wo1nu SYSTEM ,mW30mmoRALummAnuGiWEN PinOain =1~ POOL sIKIrval wLI $11 t PLATE I 44 D ~SAY8
Tsatsaronis, George; Balikas, Georgios; Malakasiotis, Prodromos; Partalas, Ioannis; Zschunke, Matthias; Alvers, Michael R; Weissenborn, Dirk; Krithara, Anastasia; Petridis, Sergios; Polychronopoulos, Dimitris; Almirantis, Yannis; Pavlopoulos, John; Baskiotis, Nicolas; Gallinari, Patrick; Artiéres, Thierry; Ngomo, Axel-Cyrille Ngonga; Heino, Norman; Gaussier, Eric; Barrio-Alvers, Liliana; Schroeder, Michael; Androutsopoulos, Ion; Paliouras, Georgios
2015-04-30
This article provides an overview of the first BIOASQ challenge, a competition on large-scale biomedical semantic indexing and question answering (QA), which took place between March and September 2013. BIOASQ assesses the ability of systems to semantically index very large numbers of biomedical scientific articles, and to return concise and user-understandable answers to given natural language questions by combining information from biomedical articles and ontologies. The 2013 BIOASQ competition comprised two tasks, Task 1a and Task 1b. In Task 1a participants were asked to automatically annotate new PUBMED documents with MESH headings. Twelve teams participated in Task 1a, with a total of 46 system runs submitted, and one of the teams performing consistently better than the MTI indexer used by NLM to suggest MESH headings to curators. Task 1b used benchmark datasets containing 29 development and 282 test English questions, along with gold standard (reference) answers, prepared by a team of biomedical experts from around Europe and participants had to automatically produce answers. Three teams participated in Task 1b, with 11 system runs. The BIOASQ infrastructure, including benchmark datasets, evaluation mechanisms, and the results of the participants and baseline methods, is publicly available. A publicly available evaluation infrastructure for biomedical semantic indexing and QA has been developed, which includes benchmark datasets, and can be used to evaluate systems that: assign MESH headings to published articles or to English questions; retrieve relevant RDF triples from ontologies, relevant articles and snippets from PUBMED Central; produce "exact" and paragraph-sized "ideal" answers (summaries). The results of the systems that participated in the 2013 BIOASQ competition are promising. In Task 1a one of the systems performed consistently better from the NLM's MTI indexer. In Task 1b the systems received high scores in the manual evaluation of the "ideal" answers; hence, they produced high quality summaries as answers. Overall, BIOASQ helped obtain a unified view of how techniques from text classification, semantic indexing, document and passage retrieval, question answering, and text summarization can be combined to allow biomedical experts to obtain concise, user-understandable answers to questions reflecting their real information needs.
Micro and nanotechnology for biological and biomedical applications.
Lim, Chwee Teck; Han, Jongyoon; Guck, Jochen; Espinosa, Horacio
2010-10-01
This special issue contains some of the current state-of-the-art development and use of micro and nanotechnological tools, devices and techniques for both biological and biomedical research and applications. These include nanoparticles for bioimaging and biosensing, optical and biophotonic techniques for probing diseases at the nanoscale, micro and nano-fabricated tools for elucidating molecular mechanisms of mechanotransduction in cell and molecular biology and cell separation microdevices and techniques for isolating and enriching targeted cells for disease detection and diagnosis. Although some of these works are still at the research stage, there is no doubt that some of the important outcomes will eventually see actual biomedical applications in the not too distant future.
Durack, Jeremy C.; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P.; Dev, Parvati
2002-01-01
Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research. PMID:12463820
Durack, Jeremy C; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P; Dev, Parvati
2002-01-01
Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research.
Data sharing for public health research: A qualitative study of industry and academia.
Saunders, Pamela A; Wilhelm, Erin E; Lee, Sinae; Merkhofer, Elizabeth; Shoulson, Ira
2014-01-01
Data sharing is a key biomedical research theme for the 21st century. Biomedical data sharing is the exchange of data among (non)affiliated parties under mutually agreeable terms to promote scientific advancement and the development of safe and effective medical products. Wide sharing of research data is important for scientific discovery, medical product development, and public health. Data sharing enables improvements in development of medical products, more attention to rare diseases, and cost-efficiencies in biomedical research. We interviewed 11 participants about their attitudes and beliefs about data sharing. Using a qualitative, thematic analysis approach, our analysis revealed a number of themes including: experiences, approaches, perceived challenges, and opportunities for sharing data.
Accessing and integrating data and knowledge for biomedical research.
Burgun, A; Bodenreider, O
2008-01-01
To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research.
Haralur, Satheesh B.; Al-Qahtani, Ali S.; Al-Qarni, Marie M.; Al-Homrany, Rami M.; Aboalkhair, Ayyob E.; Madalakote, Sujatha S.
2015-01-01
Aim: To study the awareness, attitude, practice and facilities among the different categories of dental laboratories in Abha city. Materials and Methods: A total of 80 dental technicians were surveyed in the study. The dental laboratories included in the study were teaching institute (Group I), Government Hospital (Group II), Private Dental Clinic (Group III) and Independent laboratory (Group IV). The pre-tested anonymous questionnaire was used to understand knowledge, attitude, facilities, practice and orientation regarding biomedical waste management. Results: The knowledge of biomedical waste categories, colour coding and segregation was better among Group I (55-65%) and Group II (65-75%). The lowest standard of waste disposal was practiced at Group IV (15-20%) and Group III (25-35%). The availability of disposal facilities was poor at Group IV. The continuous education on biomedical waste management lacked in all the Groups. Conclusion: The significant improvement in disposal facilities was required at Group III and Group IV laboratories. All dental technicians were in need of regular training of biomedical waste management. Clinical Significance: The dental laboratories are an integral part of dental practice. The dental laboratories are actively involved in the generation, handling and disposal of biomedical waste. Hence, it is important to assess the biomedical waste management knowledge, attitude, facilities and practice among different categories of dental laboratories. PMID:26962373
Myneni, Sahiti; Patel, Vimla L.; Bova, G. Steven; Wang, Jian; Ackerman, Christopher F.; Berlinicke, Cynthia A.; Chen, Steve H.; Lindvall, Mikael; Zack, Donald J.
2016-01-01
This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to 1) characterize specific problems faced by biomedical researchers with traditional information management practices, 2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to 3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980
Livestock in biomedical research: history, current status and future prospective.
Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D
2016-01-01
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Electroactive polymers for healthcare and biomedical applications
NASA Astrophysics Data System (ADS)
Bauer, Siegfried
2017-04-01
Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto is one of the scientists recovering experiments found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
CMT for biomedical and other applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanne, P.
This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld E.; Garshnek, Victoria
1989-01-01
Biomedical issues related to a manned mission to Mars are reviewed. Consideration is given to cardiovascular deconditioning, hematological and immunological changes, bone and muscle changes, nutritional issues, and the development of physiological countermeasures. Environmental issues are discussed, including radiation hazards, toxic chemical exposure, and the cabin environment. Also, human factors, performance and behavior, medical screening of the crew, disease prediction, and health maintenance are examined.
The Lister Hill National Center for Biomedical Communications.
Smith, K A
1994-09-01
On August 3, 1968, the Joint Resolution of the Congress established the program and construction of the Lister Hill National Center for Biomedical Communications. The facility dedicated in 1980 contains the latest in computer and communications technologies. The history, program requirements, construction management, and general planning are discussed including technical issues regarding cabling, systems functions, heating, ventilation, and air conditioning system (HVAC), fire suppression, research and development laboratories, among others.
Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field
Halib, Nadia; Perrone, Francesca; Dapas, Barbara; Farra, Rossella; Abrami, Michela; Chiarappa, Gianluca; Forte, Giancarlo; Zanconati, Fabrizio; Pozzato, Gabriele; Murena, Luigi; Fiotti, Nicola; Lapasin, Romano; Cansolino, Laura; Grassi, Gabriele
2017-01-01
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field. PMID:28825682
Clique-based data mining for related genes in a biomedical database.
Matsunaga, Tsutomu; Yonemori, Chikara; Tomita, Etsuji; Muramatsu, Masaaki
2009-07-01
Progress in the life sciences cannot be made without integrating biomedical knowledge on numerous genes in order to help formulate hypotheses on the genetic mechanisms behind various biological phenomena, including diseases. There is thus a strong need for a way to automatically and comprehensively search from biomedical databases for related genes, such as genes in the same families and genes encoding components of the same pathways. Here we address the extraction of related genes by searching for densely-connected subgraphs, which are modeled as cliques, in a biomedical relational graph. We constructed a graph whose nodes were gene or disease pages, and edges were the hyperlink connections between those pages in the Online Mendelian Inheritance in Man (OMIM) database. We obtained over 20,000 sets of related genes (called 'gene modules') by enumerating cliques computationally. The modules included genes in the same family, genes for proteins that form a complex, and genes for components of the same signaling pathway. The results of experiments using 'metabolic syndrome'-related gene modules show that the gene modules can be used to get a coherent holistic picture helpful for interpreting relations among genes. We presented a data mining approach extracting related genes by enumerating cliques. The extracted gene sets provide a holistic picture useful for comprehending complex disease mechanisms.
Biomedical journals in Republic of Macedonia: the current state.
Polenakovic, Momir; Danevska, Lenche
2014-01-01
Several biomedical journals in the Republic of Macedonia have succeeded in maintaining regular publication over the years, but only a few have a long-standing tradition. In this paper we present the basic characteristics of 18 biomedical journals that have been published without a break in the Republic of Macedonia. Of these, more details are given for 14 journals, a particular emphasis being on the journal Prilozi/Contributions of the Macedonian Academy of Sciences and Arts, Section of Medical Sciences as one of the journals with a long-term publishing tradition and one of the journals included in the Medline/PubMed database. A brief or broad description is given for the following journals: Macedonian Medical Review, Acta Morphologica, Physioacta, MJMS-Macedonian Journal of Medical Sciences, International Medical Journal Medicus, Archives of Public Health, Epilepsy, Macedonian Orthopaedics and Traumatology Journal, BANTAO Journal, Macedonian Dental Review, Macedonian Pharmaceutical Bulletin, Macedonian Veterinary Review, Journal of Special Education and Rehabilitation, Balkan Journal of Medical Genetics, Contributions of the Macedonian Scientific Society of Bitola, Vox Medici, Social Medicine: Professional Journal for Public Health, and Prilozi/Contributions of the Macedonian Academy of Sciences and Arts. Journals from Macedonia should aim to be published regularly, should comply with the Uniform requirements for manuscripts submitted to biomedical journals, and with the recommendations of reliable organizations working in the field of publishing and research. These are the key prerequisites which Macedonian journals have to accomplish in order to be included in renowned international bibliographic databases. Thus the results of biomedical science from the Republic of Macedonia will be presented to the international scientific arena.
Newcomb, Michael E; Mongrella, Melissa C; Weis, Benjamin; McMillen, Samuel J; Mustanski, Brian
2016-02-01
Recent advances in biomedical prevention strategies, including pre-exposure prophylaxis (PrEP) and achieving an undetectable viral load (UVL) among HIV-infected persons, show promise in curbing the rising incidence of HIV among men who have sex with men (MSM) in the United States. This mixed-methods study aimed to investigate the frequency with which MSM encounter potential sex partners on geosocial networking apps who disclose biomedical prevention use, and how MSM make decisions about condom use after these disclosures. Participants were recruited through advertisements placed on a large geosocial networking app for MSM. A total of 668 and 727 participants, respectively, responded to questionnaires assessing partner disclosure of PrEP use and UVL. Each questionnaire included an open-ended item assessing reasons for condomless anal sex (CAS) with partners using biomedical prevention. Across both surveys, most respondents encountered potential sex partners who disclosed PrEP use or UVL, and the majority of those who met up with these partners engaged in CAS at least once. Qualitative analyses found that most participants who reported CAS did so after making a calculated risk about HIV transmission. We also describe a novel risk reduction strategy, "biomed-matching," or having CAS only when both individuals use PrEP or have UVL. We report serostatus differences in both quantitative and qualitative findings. Disclosure of PrEP use and UVL is not uncommon among MSM. Many MSM make accurate appraisals of the risks of CAS with biomedical prevention, and mobile apps may aid with disclosing biomedical prevention use.
Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience
van Mulligen, Erik M.; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A.; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor
2008-01-01
Objective The European INFOBIOMED Network of Excellence 1 recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. Design A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a ‘brokerage service’ which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. Measurements This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. Results The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. Conclusion The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians. PMID:18096914
Kim, Seongsoon; Park, Donghyeon; Choi, Yonghwa; Lee, Kyubum; Kim, Byounggun; Jeon, Minji; Kim, Jihye; Tan, Aik Choon; Kang, Jaewoo
2018-01-05
With the development of artificial intelligence (AI) technology centered on deep-learning, the computer has evolved to a point where it can read a given text and answer a question based on the context of the text. Such a specific task is known as the task of machine comprehension. Existing machine comprehension tasks mostly use datasets of general texts, such as news articles or elementary school-level storybooks. However, no attempt has been made to determine whether an up-to-date deep learning-based machine comprehension model can also process scientific literature containing expert-level knowledge, especially in the biomedical domain. This study aims to investigate whether a machine comprehension model can process biomedical articles as well as general texts. Since there is no dataset for the biomedical literature comprehension task, our work includes generating a large-scale question answering dataset using PubMed and manually evaluating the generated dataset. We present an attention-based deep neural model tailored to the biomedical domain. To further enhance the performance of our model, we used a pretrained word vector and biomedical entity type embedding. We also developed an ensemble method of combining the results of several independent models to reduce the variance of the answers from the models. The experimental results showed that our proposed deep neural network model outperformed the baseline model by more than 7% on the new dataset. We also evaluated human performance on the new dataset. The human evaluation result showed that our deep neural model outperformed humans in comprehension by 22% on average. In this work, we introduced a new task of machine comprehension in the biomedical domain using a deep neural model. Since there was no large-scale dataset for training deep neural models in the biomedical domain, we created the new cloze-style datasets Biomedical Knowledge Comprehension Title (BMKC_T) and Biomedical Knowledge Comprehension Last Sentence (BMKC_LS) (together referred to as BioMedical Knowledge Comprehension) using the PubMed corpus. The experimental results showed that the performance of our model is much higher than that of humans. We observed that our model performed consistently better regardless of the degree of difficulty of a text, whereas humans have difficulty when performing biomedical literature comprehension tasks that require expert level knowledge. ©Seongsoon Kim, Donghyeon Park, Yonghwa Choi, Kyubum Lee, Byounggun Kim, Minji Jeon, Jihye Kim, Aik Choon Tan, Jaewoo Kang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.01.2018.
Recent advances in biomedical applications of accelerator mass spectrometry.
Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W
2009-06-17
The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-01-01
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future. PMID:28774030
Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles
Liu, Rey-Long
2015-01-01
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations. PMID:26440794
Funding for U.S. biomedical research: the case for the scientist-advocate.
Nurse, J T D; Fox, C H
2012-07-01
The U.S. biomedical research community finds itself at a particularly consequential moment. Since the end of the Fiscal Year (FY) 1998-2003 NIH budget doubling period, brought to fruition with bipartisan leadership, the Federal investment in biomedical research has been declining. The NIH budget has actually decreased in constant dollars since FY 2004. Across-the-board cuts included in the Budget Control Act of 2011 would result in a loss of $2.4 billion and roughly 2,300 research project grants in FY 2013 alone, unless Congress acts to intervene before January 2013. Many of the beneficiaries of NIH support view advocacy for research funding as "someone else's job". The case to reverse this mindset must be made. Members of Congress and their staffers are open to consideration of the case for sustaining Federal investments in science, even during these difficult budget times. However, the advocacy effort must be broad-based and repeatedly presented to effect change. The figures on economic return from spending on biomedical research are compelling, but they do not tell the entire story. The results of biomedical research improve and save lives every single day, a fact that should not be lost on our elected leaders.
Halban, P A; Boulton, A J M; Smith, U
2013-03-01
Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and data.
Recent advances in biomedical applications of accelerator mass spectrometry
Hah, Sang Soo
2009-01-01
The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. PMID:19534792
Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles.
Liu, Rey-Long
2015-01-01
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations.
OPPL-Galaxy, a Galaxy tool for enhancing ontology exploitation as part of bioinformatics workflows
2013-01-01
Background Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses. PMID:23286517
Desiderata for ontologies to be used in semantic annotation of biomedical documents.
Bada, Michael; Hunter, Lawrence
2011-02-01
A wealth of knowledge valuable to the translational research scientist is contained within the vast biomedical literature, but this knowledge is typically in the form of natural language. Sophisticated natural-language-processing systems are needed to translate text into unambiguous formal representations grounded in high-quality consensus ontologies, and these systems in turn rely on gold-standard corpora of annotated documents for training and testing. To this end, we are constructing the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-text biomedical journal articles that are being manually annotated with the entire sets of terms from select vocabularies, predominantly from the Open Biomedical Ontologies (OBO) library. Our efforts in building this corpus has illuminated infelicities of these ontologies with respect to the semantic annotation of biomedical documents, and we propose desiderata whose implementation could substantially improve their utility in this task; these include the integration of overlapping terms across OBOs, the resolution of OBO-specific ambiguities, the integration of the BFO with the OBOs and the use of mid-level ontologies, the inclusion of noncanonical instances, and the expansion of relations and realizable entities. Copyright © 2010 Elsevier Inc. All rights reserved.
The life and death of URLs in five biomedical informatics journals.
Carnevale, Randy J; Aronsky, Dominik
2007-04-01
To determine the decay rate of Uniform Record Locators (URLs) in the reference section of biomedical informatics journals. URL references were collected from printed journal articles of the first and middle issues of 1999-2004 and electronically available in-press articles in January 2005. We limited this set to five biomedical informatics journals: Artificial Intelligence in Medicine, International Journal of Medical Informatics, Journal of the American Medical Informatics Association: JAMIA, Methods of Information in Medicine, and Journal of Biomedical Informatics. During a 1-month period, URL access attempts were performed eight times a day at regular intervals. Of the 19,108 references extracted from 606 printed and 86 in-press articles, 1112 (5.8%) references contained a URL. Of the 1049 unique URLs, 726 (69.2%) were alive, 230 (21.9%) were dead, and 93 (8.9%) were comatose. URLs from in-press articles included 212 URLs, of which 169 (79.7%) were alive, 21 (9.9%) were dead, and 22 (10.4%) were comatose. The average annual decay, or link rot, rate was 5.4%. The URL decay rate in biomedical informatics journals is high. A commonly accepted strategy for the permanent archival of digital information referenced in scholarly publications is urgently needed.
[Big data, medical language and biomedical terminology systems].
Schulz, Stefan; López-García, Pablo
2015-08-01
A variety of rich terminology systems, such as thesauri, classifications, nomenclatures and ontologies support information and knowledge processing in health care and biomedical research. Nevertheless, human language, manifested as individually written texts, persists as the primary carrier of information, in the description of disease courses or treatment episodes in electronic medical records, and in the description of biomedical research in scientific publications. In the context of the discussion about big data in biomedicine, we hypothesize that the abstraction of the individuality of natural language utterances into structured and semantically normalized information facilitates the use of statistical data analytics to distil new knowledge out of textual data from biomedical research and clinical routine. Computerized human language technologies are constantly evolving and are increasingly ready to annotate narratives with codes from biomedical terminology. However, this depends heavily on linguistic and terminological resources. The creation and maintenance of such resources is labor-intensive. Nevertheless, it is sensible to assume that big data methods can be used to support this process. Examples include the learning of hierarchical relationships, the grouping of synonymous terms into concepts and the disambiguation of homonyms. Although clear evidence is still lacking, the combination of natural language technologies, semantic resources, and big data analytics is promising.
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao
2011-01-01
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization. PMID:21887336
Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C.; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul
2014-01-01
Background Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Methods Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Results Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Conclusion Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention. PMID:25254378
Kennedy's Biomedical Laboratory Makes Multi-Tasking Look Easy
NASA Technical Reports Server (NTRS)
Dunn, Carol Anne
2009-01-01
If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two years). The lab has also actively collaborated with the US Army Institute for Surgical Research, the USAF School of Aerospace Medicine, and the USN Naval Experimental Diving Unit. Because the lab often evaluates various forms of commercial-off-the-shelf life support equipment, the laboratory works closely with private companies, both domestic and foreign. The European companies seem to be more proactive and participatory with the advancement of personal protective equipment. Because these companies have viewed the space program's unique need for advanced forms of personal protective equipment, some have responded with new designs based on the prediction that these advances will soon find markets in the commercial sector. Using much of the same skills and equipment, the laboratory also addresses physiological testing of humans by supporting flight experiments and personnel involved with ground processing. While Johnson Space Center is primarily responsible for flight experiments, the Kennedy's Biomedical Lab provides the local support. However, as stated above, there are many challenges facing KSC workers that gain the attention of this lab in the measurement of the problem and the selection and testing of countermeasures. These include respiratory protection, whole body suits, hearing protection and heat stress, among many others.
The Unified Medical Language System (UMLS): integrating biomedical terminology
Bodenreider, Olivier
2004-01-01
The Unified Medical Language System (http://umlsks.nlm.nih.gov) is a repository of biomedical vocabularies developed by the US National Library of Medicine. The UMLS integrates over 2 million names for some 900 000 concepts from more than 60 families of biomedical vocabularies, as well as 12 million relations among these concepts. Vocabularies integrated in the UMLS Metathesaurus include the NCBI taxonomy, Gene Ontology, the Medical Subject Headings (MeSH), OMIM and the Digital Anatomist Symbolic Knowledge Base. UMLS concepts are not only inter-related, but may also be linked to external resources such as GenBank. In addition to data, the UMLS includes tools for customizing the Metathesaurus (MetamorphoSys), for generating lexical variants of concept names (lvg) and for extracting UMLS concepts from text (MetaMap). The UMLS knowledge sources are updated quarterly. All vocabularies are available at no fee for research purposes within an institution, but UMLS users are required to sign a license agreement. The UMLS knowledge sources are distributed on CD-ROM and by FTP. PMID:14681409
Sesia, P M
1996-06-01
Physiological and anatomical concepts about reproduction held by traditional midwives in Southern Oaxaca differ considerably from those of biomedicine. Government training courses for traditional midwives disregard these deep-seated differences, and also the underlying conceptual rationale of ethno-obstetrics. These courses constantly reinforce and actively promote the biomedical model of care. But rural midwives, despite these training courses, do not substantially change their obstetrical vision and ways. The strength of their own authoritative knowledge, fully shared by the women and men of their communities, allows them to continue their traditional style of care, despite pressures to conform to biomedical values, beliefs, and practices. Suggestions for a mutual accommodation of biomedical and midwifery approaches to prenatal care include training medical personnel in ethno-obstetric techniques and rationales, teaching midwives basic medical interventions, addressing in intervention programs all social actors participating in reproductive decision making, and adopting an interdisciplinary approach that includes nonmedical aspects of maternal care.
The Unified Medical Language System (UMLS): integrating biomedical terminology.
Bodenreider, Olivier
2004-01-01
The Unified Medical Language System (http://umlsks.nlm.nih.gov) is a repository of biomedical vocabularies developed by the US National Library of Medicine. The UMLS integrates over 2 million names for some 900,000 concepts from more than 60 families of biomedical vocabularies, as well as 12 million relations among these concepts. Vocabularies integrated in the UMLS Metathesaurus include the NCBI taxonomy, Gene Ontology, the Medical Subject Headings (MeSH), OMIM and the Digital Anatomist Symbolic Knowledge Base. UMLS concepts are not only inter-related, but may also be linked to external resources such as GenBank. In addition to data, the UMLS includes tools for customizing the Metathesaurus (MetamorphoSys), for generating lexical variants of concept names (lvg) and for extracting UMLS concepts from text (MetaMap). The UMLS knowledge sources are updated quarterly. All vocabularies are available at no fee for research purposes within an institution, but UMLS users are required to sign a license agreement. The UMLS knowledge sources are distributed on CD-ROM and by FTP.
Ribera, Josep M; Cardellach, Francesc; Selva, Albert
2005-12-01
The decision-making process includes a series of activities undertaken in biomedical journals from the moment a manuscript is received until it is accepted or rejected. Firstly, the manuscript is evaluated by the members of the Editorial Board, who analyze both its suitability for the journal and its scientific quality. After this initial evaluation, the article is evaluated by peer reviewers, an essential process to guarantee its scientific validity. Both the Editorial Board and the peer reviewers usually use checklists which are of enormous help in this task. Once the biomedical article has been accepted, the publication process is started, which in turn includes a series of steps, beginning with technical and medical review of the article's contents and ending with the article's publication in the journal. The present article provides a detailed description of the main technical and ethical issues involved in the processes of decision-making and publication of biomedical articles.
Cabello C, Felipe
2011-09-01
The National Library of Medicine (NLM) of the United States of America, celebrates in 2011 its 175th anniversary. This Library, the largest biomedical library in the world, has a proud and rich history serving the health community and the public, especially since its transfer to the National Institutes of Health in Bethesda, Maryland, in 1968. It holds 17 million publications in 150 languages, and has an important collection of ancient and modern historical books as well as original publications of Vesalius and other founders of biomedicine. Its modern document collections illustrate the progress of medical sciences. These collections include laboratory notes from many scientists whose work forms the foundations of contemporary life sciences. The Library also provides several services for health research and for the public, including databases and services such as MedLine and BLAST. The NLM constantly strives to fulfill the information needs of its customers, whether scientists or the public at large. For example, as the Hispanic population of the Unites States has increased in recent years, the NLM has made larger and larger amounts of data available in Spanish to fulfill the health information needs of this population. NLM programs train professionals in library science and biomedical informatics and link biomedical libraries of 18 academic centers throughout the United States. The NLM funds competitive grants for training at the Library, organizing short instruction courses about library science and informatics, and writing books on health related matters including the history of medicine and public health. The NLM is managed and maintained by an outstanding and farsighted group of professionals and dedicated support staff. Their focus on serving and reaching both the biomedical community and the public at large has been crucial to its development into a world icon of biomedical sciences, information technology and the humanities.
Mixed Methods in Biomedical and Health Services Research
Curry, Leslie A.; Krumholz, Harlan M.; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.
2013-01-01
Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to the general readership of peer-reviewed biomedical and health services journals. Furthermore, existing guidelines for publishing mixed methods studies are not well known or applied by researchers and journal editors. Accordingly, this paper is intended to serve as a concise, practical resource for readers interested in core principles and practices of mixed methods research. We briefly describe mixed methods approaches and present illustrations from published biomedical and health services literature, including in cardiovascular care, summarize standards for the design and reporting of these studies, and highlight four central considerations for investigators interested in using these methods. PMID:23322807
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2005-01-01
NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.
Superhydrophobic Materials for Biomedical Applications
Colson, Yolonda L.; Grinstaff, Mark W.
2016-01-01
Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946
Commercialising genetically engineered animal biomedical products.
Sullivan, Eddie J; Pommer, Jerry; Robl, James M
2008-01-01
Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.
A Hospital-Based Committee of Moral Philosophy to Revive Ethics.
Illy, Margaux; Le Coz, Pierre; Mege, Jean-Louis
2017-08-15
The Méditerranée Infection Foundation's primary goal is supporting a research hospital for the treatment of infectious diseases in Marseille. The main objective of this innovative center is to understand the mechanisms of contagion and face them. The Foundation will include a committee on moral philosophy that will accompany and supervise biomedical research. This is not a conventional ethics committee, frequently giving rise to a board's bureaucratic excesses, which might slow down creative biomedical clinical research without necessarily restricting abuses. Moral philosophy, however, can handle contemporary biomedical issues. In all its diversity, this discipline is able to enrich the debate on medical issues, thanks to many philosophical currents such as deontological ethics and consequentialism. The purpose of this committee is therefore to advance reflection on the bioethical issues encountered in biomedical research in infectious diseases, while respecting the precepts of moral philosophy. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza
2015-01-01
Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.
Singh, Vijai; Gohil, Nisarg; Ramírez García, Robert; Braddick, Darren; Fofié, Christian Kuete
2018-01-01
The Type II CRISPR-Cas9 system is a simple, efficient, and versatile tool for targeted genome editing in a wide range of organisms and cell types. It continues to gain more scientific interest and has established itself as an extremely powerful technology within our synthetic biology toolkit. It works upon a targeted site and generates a double strand breaks that become repaired by either the NHEJ or the HDR pathway, modifying or permanently replacing the genomic target sequences of interest. These can include viral targets, single-mutation genetic diseases, and multiple-site corrections for wide scale disease states, offering the potential to manage and cure some of mankind's most persistent biomedical menaces. Here, we present the developing progress and future potential of CRISPR-Cas9 in biological and biomedical investigations, toward numerous therapeutic, biomedical, and biotechnological applications, as well as some of the challenges within. J. Cell. Biochem. 119: 81-94, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Mapping biomedical concepts onto the human genome by mining literature on chromosomal aberrations
Van Vooren, Steven; Thienpont, Bernard; Menten, Björn; Speleman, Frank; Moor, Bart De; Vermeesch, Joris; Moreau, Yves
2007-01-01
Biomedical literature provides a rich but unstructured source of associations between chromosomal regions and biomedical concepts. By mining MEDLINE abstracts, we annotate the human genome at the level of cytogenetic bands. Our method creates a set of chromosomal aberration maps that associate cytogenetic bands to biomedical concepts from a variety of controlled vocabularies, including disease, dysmorphology, anatomy, development and Gene Ontology branches. The association between a band (e.g. 4p16.3) and a concept (e.g. microcephaly) is assessed by the statistical overrepresentation of this concept in the abstracts relating to this band. Our method is validated using existing genome annotation resources and known chromosomal aberration maps and is further illustrated through a case study on heart disease. Our chromosomal aberration maps provide diagnostics support to clinical geneticists, aid cytogeneticists to interpret and report cytogenetic findings and support researchers interested in human gene function. The method is available as a web application, aBandApart, at http://www.esat.kuleuven.be/abandapart/. PMID:17403693
Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.
Elingaramil, Sauli; Li, Xiaolong; He, Nongyue
2013-07-01
Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.
Göröcs, Zoltán; Ozcan, Aydogan
2012-01-01
Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and micro electromechanical systems achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lensfree holographic microscopy, fluorescent on-chip microscopy and lensfree optical tomography. PMID:23558399
Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce
Fuhrmann, Cynthia N.
2016-01-01
PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise. PMID:27762630
Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce.
Fuhrmann, Cynthia N
2016-11-01
PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise.
Use of Nonhuman Primates in Research in North America
Turner, Patricia V; Mullan, Robert J; Galland, G Gale
2014-01-01
In North America, the biomedical research community faces social and economic challenges to nonhuman primate (NHP) importation that could reduce the number of NHP available for research needs. The effect of such limitations on specific biomedical research topics is unknown. The Association of Primate Veterinarians (APV), with assistance from the Centers for Disease Control and Prevention, developed a survey regarding biomedical research involving NHP in the United States and Canada. The survey sought to determine the number and species of NHP maintained at APV members’ facilities, current uses of NHP to identify the types of biomedical research that rely on imported animals, and members’ perceived trends in NHP research. Of the 149 members contacted, 33 (22%) replied, representing diverse facility sizes and types. Cynomolgus and rhesus macaques were the most common species housed at responding institutions and comprised the majority of newly acquired and imported NHP. The most common uses for NHP included pharmaceutical research and development and neuroscience, neurology, or neuromuscular disease research. Preclinical safety testing and cancer research projects usually involved imported NHP, whereas research on aging or degenerative disease, reproduction or reproductive disease, and organ or tissue transplantation typically used domestic-bred NHP. The current results improve our understanding of the research uses for imported NHP in North America and may facilitate estimating the potential effect of any future changes in NHP accessibility for research purposes. Ensuring that sufficient NHP are available for critical biomedical research remains a pressing concern for the biomedical research community in North America. PMID:24827570
Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J
2016-04-01
This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Current investigations into magnetic nanoparticles for biomedical applications.
Li, Xiaoming; Wei, Jianrong; Aifantis, Katerina E; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio
2016-05-01
It is generally recognized that nanoparticles possess unique physicochemical properties that are largely different from those of conventional materials, specifically the electromagnetic properties of magnetic nanoparticles (MNPs). These properties have attracted many researchers to launch investigations into their potential biomedical applications, which have been reviewed in this article. First, common types of MNPs were briefly introduced. Then, the biomedical applications of MNPs were reviewed in seven parts: magnetic resonance imaging (MRI), cancer therapy, the delivery of drugs and genes, bone and dental repair, tissue engineering, biosensors, and in other aspects, which indicated that MNPs possess great potentials for many kinds of biomedical applications due to their unique properties. Although lots of achievements have been obtained, there is still a lot of work to do. New synthesis techniques and methods are still needed to develop the MNPs with satisfactory biocompatibility. More effective methods need to be exploited to prepare MNPs-based composites with fine microstructures and high biomedical performances. Other promising research points include the development of more appropriate techniques of experiments both in vitro and in vivo to detect and analyze the biocompatibility and cytotoxicity of MNPs and understand the possible influencing mechanism of the two properties. More comprehensive investigations into the diagnostic and therapeutic applications of composites containing MNPs with "core-shell" structure and deeper understanding and further study into the properties of MNPs to reveal their new biomedical applications, are also described in the conclusion and perspectives part. © 2016 Wiley Periodicals, Inc.
Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary
2014-11-01
Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Accessing and Integrating Data and Knowledge for Biomedical Research
Burgun, A.; Bodenreider, O.
2008-01-01
Summary Objectives To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Methods Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. Results New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. Conclusion As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research. PMID:18660883
Emerging roles for biomedical librarians: a survey of current practice, challenges, and changes.
Crum, Janet A; Cooper, I Diane
2013-10-01
This study is intended to (1) identify emerging roles for biomedical librarians and determine how common these roles are in a variety of library settings, (2) identify barriers to taking on new roles, and (3) determine how librarians are developing the capacity to take on new roles. A survey was conducted of librarians in biomedical settings. Most biomedical librarians are taking on new roles. The most common roles selected by survey respondents include analysis and enhancement of user experiences, support for social media, support for systematic reviews, clinical informationist, help for faculty or staff with authorship issues, and implementation of researcher profiling and collaboration tools. Respondents in academic settings are more likely to report new roles than hospital librarians are, but some new roles are common in both settings. Respondents use a variety of methods to free up time for new roles, but predominant methods vary between directors and librarians and between academic and hospital respondents. Lack of time is the biggest barrier that librarians face when trying to adopt new roles. New roles are associated with increased collaboration with individuals and/or groups outside the library. This survey documents the widespread incorporation of new roles in biomedical libraries in the United States, as well as the barriers to adopting these roles and the means by which librarians are making time for them. The results of the survey can be used to inform strategic planning, succession planning, library education, and career development for biomedical librarians.
Batteries used to Power Implantable Biomedical Devices
Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.
2012-01-01
Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249
Batteries used to Power Implantable Biomedical Devices.
Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2012-12-01
Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.
Fluorescent nanoparticles based on AIE fluorogens for bioimaging.
Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing
2016-02-07
Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.
Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon
2015-01-01
Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676
Prayer Camps and Biomedical Care in Ghana: Is Collaboration in Mental Health Care Possible?
Arias, Daniel; Taylor, Lauren; Ofori-Atta, Angela; Bradley, Elizabeth H
2016-01-01
Experts have suggested that intersectoral partnerships between prayer camps and biomedical care providers may be an effective strategy to address the overwhelming shortage of mental health care workers in Africa and other low-income settings. Nevertheless, previous studies have not explored whether the prayer camp and biomedical staff beliefs and practices provide sufficient common ground to enable cooperative relationships. Therefore, we sought to examine the beliefs and practices of prayer camp staff and the perspective of biomedical care providers, with the goal of characterizing interest in-and potential for-intersectoral partnership between prayer camp staff and biomedical care providers. We conducted 50 open-ended, semi-structured interviews with prophets and staff at nine Christian prayer camps in Ghana, and with staff within Ghana's three public psychiatric hospitals. We used the purposive sampling method to recruit participants and the constant comparative method for qualitative data analysis. Prayer camp staff expressed interest in collaboration with biomedical mental health care providers, particularly if partnerships could provide technical support introducing medications in the prayer camp and address key shortcomings in their infrastructure and hygienic conditions. Nevertheless, challenges for collaboration were apparent as prayer camp staff expressed strong beliefs in a spiritual rather than biomedical explanatory model for mental illness, frequently used fasting and chained restraints in the course of treatment, and endorsed only short-term use of medication to treat mental illness-expressing concerns that long-term medication regimens masked underlying spiritual causes of illness. Biomedical providers were skeptical about the spiritual interpretations of mental illness held by faith healers, and were concerned by the use of chains, fasting, and the lack of adequate living facilities for patients in prayer camps; many, however, expressed interest in engaging with prayer camps to expand access to clinical care for patients residing in the camps. The findings demonstrate that biomedical care providers are interested in engaging with prayer camps. Key areas where partnerships may best improve conditions for patients at prayer camps include collaborating on creating safe and secure physical spaces and delivering medication for mental illness to patients living in prayer camps. However, while prayer camp staff are willing to engage biomedical knowledge, deeply held beliefs and routine practices of faith and biomedical healers are difficult to reconcile Additional discussion is needed to find the common ground on which the scarce resources for mental health care in Ghana can collaborate most effectively.
Prayer Camps and Biomedical Care in Ghana: Is Collaboration in Mental Health Care Possible?
Arias, Daniel; Taylor, Lauren; Ofori-Atta, Angela; Bradley, Elizabeth H.
2016-01-01
Background Experts have suggested that intersectoral partnerships between prayer camps and biomedical care providers may be an effective strategy to address the overwhelming shortage of mental health care workers in Africa and other low-income settings. Nevertheless, previous studies have not explored whether the prayer camp and biomedical staff beliefs and practices provide sufficient common ground to enable cooperative relationships. Therefore, we sought to examine the beliefs and practices of prayer camp staff and the perspective of biomedical care providers, with the goal of characterizing interest in—and potential for—intersectoral partnership between prayer camp staff and biomedical care providers. Methods We conducted 50 open-ended, semi-structured interviews with prophets and staff at nine Christian prayer camps in Ghana, and with staff within Ghana’s three public psychiatric hospitals. We used the purposive sampling method to recruit participants and the constant comparative method for qualitative data analysis. Results Prayer camp staff expressed interest in collaboration with biomedical mental health care providers, particularly if partnerships could provide technical support introducing medications in the prayer camp and address key shortcomings in their infrastructure and hygienic conditions. Nevertheless, challenges for collaboration were apparent as prayer camp staff expressed strong beliefs in a spiritual rather than biomedical explanatory model for mental illness, frequently used fasting and chained restraints in the course of treatment, and endorsed only short-term use of medication to treat mental illness—expressing concerns that long-term medication regimens masked underlying spiritual causes of illness. Biomedical providers were skeptical about the spiritual interpretations of mental illness held by faith healers, and were concerned by the use of chains, fasting, and the lack of adequate living facilities for patients in prayer camps; many, however, expressed interest in engaging with prayer camps to expand access to clinical care for patients residing in the camps. Conclusions The findings demonstrate that biomedical care providers are interested in engaging with prayer camps. Key areas where partnerships may best improve conditions for patients at prayer camps include collaborating on creating safe and secure physical spaces and delivering medication for mental illness to patients living in prayer camps. However, while prayer camp staff are willing to engage biomedical knowledge, deeply held beliefs and routine practices of faith and biomedical healers are difficult to reconcile Additional discussion is needed to find the common ground on which the scarce resources for mental health care in Ghana can collaborate most effectively. PMID:27618551
Opal web services for biomedical applications.
Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W
2010-07-01
Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.
State of reporting of primary biomedical research: a scoping review protocol
Mbuagbaw, Lawrence; Samaan, Zainab; Jin, Yanling; Nwosu, Ikunna; Levine, Mitchell A H; Adachi, Jonathan D; Thabane, Lehana
2017-01-01
Introduction Incomplete or inconsistent reporting remains a major concern in the biomedical literature. Incomplete or inconsistent reporting may yield the published findings unreliable, irreproducible or sometimes misleading. In this study based on evidence from systematic reviews and surveys that have evaluated the reporting issues in primary biomedical studies, we aim to conduct a scoping review with focuses on (1) the state-of-the-art extent of adherence to the emerging reporting guidelines in primary biomedical research, (2) the inconsistency between protocols or registrations and full reports and (3) the disagreement between abstracts and full-text articles. Methods and analyses We will use a comprehensive search strategy to retrieve all available and eligible systematic reviews and surveys in the literature. We will search the following electronic databases: Web of Science, Excerpta Medica Database (EMBASE), MEDLINE and Cumulative Index to Nursing and Allied Health Literature (CINAHL). Our outcomes are levels of adherence to reporting guidelines, levels of consistency between protocols or registrations and full reports and the agreement between abstracts and full reports, all of which will be expressed as percentages, quality scores or categorised rating (such as high, medium and low). No pooled analyses will be performed quantitatively given the heterogeneity of the included systematic reviews and surveys. Likewise, factors associated with improved completeness and consistency of reporting will be summarised qualitatively. The quality of the included systematic reviews will be evaluated using AMSTAR (a measurement tool to assess systematic reviews). Ethics and dissemination All findings will be published in peer-reviewed journals and relevant conferences. These results may advance our understanding of the extent of incomplete and inconsistent reporting, factors related to improved completeness and consistency of reporting and potential recommendations for various stakeholders in the biomedical community. PMID:28360252
Misconduct Policies in High-Impact Biomedical Journals
Bosch, Xavier; Hernández, Cristina; Pericas, Juan M.; Doti, Pamela; Marušić, Ana
2012-01-01
Background It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct. Methods We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were reviewed for information relevant to misconduct policies. Results Of 399 journals, 140 (35.1%) provided explicit definitions of misconduct. Falsification was explicitly mentioned by 113 (28.3%) journals, fabrication by 104 (26.1%), plagiarism by 224 (56.1%), duplication by 242 (60.7%) and image manipulation by 154 (38.6%). Procedures for responding to misconduct were described in 179 (44.9%) websites, including retraction, (30.8%) and expression of concern (16.3%). Plagiarism-checking services were used by 112 (28.1%) journals. The prevalences of all types of misconduct policies were higher in journals that endorsed any policy from editors’ associations, Office of Research Integrity or professional societies compared to those that did not state adherence to these policy-producing bodies. Elsevier and Wiley-Blackwell had the most journals included (22.6% and 14.8%, respectively), with Wiley journals having greater a prevalence of misconduct definition and policies on falsification, fabrication and expression of concern and Elsevier of plagiarism-checking services. Conclusions Only a third of top-ranking peer-reviewed journals had publicly-available definitions of misconduct and less than a half described procedures for handling allegations of misconduct. As endorsement of international policies from policy-producing bodies was positively associated with implementation of policies and procedures, journals and their publishers should standardize their policies globally in order to increase public trust in the integrity of the published record in biomedicine. PMID:23284820
Misconduct policies in high-impact biomedical journals.
Bosch, Xavier; Hernández, Cristina; Pericas, Juan M; Doti, Pamela; Marušić, Ana
2012-01-01
It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct. We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were reviewed for information relevant to misconduct policies. Of 399 journals, 140 (35.1%) provided explicit definitions of misconduct. Falsification was explicitly mentioned by 113 (28.3%) journals, fabrication by 104 (26.1%), plagiarism by 224 (56.1%), duplication by 242 (60.7%) and image manipulation by 154 (38.6%). Procedures for responding to misconduct were described in 179 (44.9%) websites, including retraction, (30.8%) and expression of concern (16.3%). Plagiarism-checking services were used by 112 (28.1%) journals. The prevalences of all types of misconduct policies were higher in journals that endorsed any policy from editors' associations, Office of Research Integrity or professional societies compared to those that did not state adherence to these policy-producing bodies. Elsevier and Wiley-Blackwell had the most journals included (22.6% and 14.8%, respectively), with Wiley journals having greater a prevalence of misconduct definition and policies on falsification, fabrication and expression of concern and Elsevier of plagiarism-checking services. Only a third of top-ranking peer-reviewed journals had publicly-available definitions of misconduct and less than a half described procedures for handling allegations of misconduct. As endorsement of international policies from policy-producing bodies was positively associated with implementation of policies and procedures, journals and their publishers should standardize their policies globally in order to increase public trust in the integrity of the published record in biomedicine.
Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J
2015-11-01
Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research.
Kannan, Srimathi; Sparks, Arlene V; Webster, J DeWitt; Krishnakumar, Ambika; Lumeng, Julie
2010-07-01
The purpose was to develop, implement and evaluate a peer-led nutrition curriculum Healthy Eating and Harambee that addresses established objectives of maternal and infant health and to shift the stage for African American women of childbearing age in Genesee County toward healthier dietary patterns using a socio-cultural and biomedical orientation. The PEN-3 model, which frames culture in the context of health promotion interventions, was integrated with the Transtheoretical Model to guide this 13-week pre-test/post-test curriculum. Materials developed included soul food plate visuals, a micronutrient availability worksheet, a fruit stand, and gardening kits. Learning activities included affirmations, stories, case-scenarios, point-of-purchase product recognition, church health teams, and community health fairs. We investigated health-promoting dietary behaviors (consumption of more fruits and vegetables (F&V), serving more F&V to their families, and moderating dietary sodium and fat intakes), and biomedical behaviors (self-monitoring blood pressure and exercising) across five stages of change. Session attendance and program satisfaction were assessed. N = 102 women participated (mean age = 27.5 years). A majority (77%) reported adopting at least one healthy eating behavior (moderating sodium, serving more F&V to their families), 23% adopted at least two such behaviors (reading food labels for sodium; using culinary herbs/spices; serving more F&V to their families), and 45% adopted both dietary (moderating sodium; eating more fruits) and biomedical behaviors. Participants and facilitators favorably evaluated the curriculum and suggested improvements. A multi-conceptual approach coupled with cultural and biomedical tailoring has potential to promote young African American women's movement to more advanced stages of change and improve self-efficacy for fruit and vegetable intake, dietary sodium moderation, and self-monitoring blood pressure and physical activity.
Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J
2015-01-01
Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo. PMID:25634122
Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B
2016-04-01
Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.
How to teach artificial organs.
Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B
2011-01-01
Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.
Caulfield, Timothy; Ogbogu, Ubaka
2008-01-01
This article reviews a range of issues associated with the commercialization of biomedical research and speculates on how these issues might apply to the neuroscience context. Drawing on existing studies of the impact of research commercialization activities on various areas of biotechnology research, the authors explore normative benchmarks for assessing and resolving issues likely to arise from the commercialization of neuroscientific research, including such topics as patenting, marketing pressures, and representations of research prospects.
A possible biomedical facility at the European Organization for Nuclear Research (CERN).
Dosanjh, M; Jones, B; Myers, S
2013-05-01
A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.
A possible biomedical facility at the European Organization for Nuclear Research (CERN)
Dosanjh, M; Myers, S
2013-01-01
A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990
Mwaka, A D; Okello, E S; Orach, C G
2015-07-01
Use of traditional medicines for treatment of cancers has increased worldwide. We used a qualitative approach to explore barriers to biomedical care and reasons for use of traditional medicines for the treatment of cervical cancer in Gulu, northern Uganda. We carried out 24 focus group discussions involving men and women aged 18-59 years. We employed content analyses technique in data analysis. Traditional medicines were used mainly due to barriers to biomedical care for cervical cancer. The barriers included health system factors, for example long distances to health facilities and unavailability of medicines; health workers' factors, for example negative attitudes towards patients and demands for bribes; individual patient's factors, for example inability to pay for medical care; and socio-cultural beliefs about superiority of traditional medicines and perceived greater privacy in accessing traditional healers. Barriers to biomedical care and community beliefs in the effectiveness of traditional medicines encourage use of traditional medicines for treatment of cervical cancer but might hinder help-seeking at biomedical facilities. There is need for targeted culturally sensitive awareness campaign to promote effectiveness of modern medicine and to encourage cautious use of traditional medicines in the treatment of cervical cancer. © 2014 The Authors. European Journal of Cancer Care published by John Wiley & Sons Ltd.
Mwaka, A.D.; Okello, E.S.; Orach, C.G.
2016-01-01
Use of traditional medicines for treatment of cancers has increased worldwide. We used a qualitative approach to explore barriers to biomedical care and reasons for use of traditional medicines for the treatment of cervical cancer in Gulu, northern Uganda. We carried out 24 focus group discussions involving men and women aged 18–59 years. We employed content analyses technique in data analysis. Traditional medicines were used mainly due to barriers to biomedical care for cervical cancer. The barriers included health system factors, for example long distances to health facilities and unavailability of medicines; health workers’ factors, for example negative attitudes towards patients and demands for bribes; individual patient’s factors, for example inability to pay for medical care; and socio-cultural beliefs about superiority of traditional medicines and perceived greater privacy in accessing traditional healers. Barriers to biomedical care and community beliefs in the effectiveness of traditional medicines encourage use of traditional medicines for treatment of cervical cancer but might hinder help-seeking at biomedical facilities. There is need for targeted culturally sensitive awareness campaign to promote effectiveness of modern medicine and to encourage cautious use of traditional medicines in the treatment of cervical cancer. PMID:24923866
Perspectives of clinician and biomedical scientists on interdisciplinary health research.
Laberge, Suzanne; Albert, Mathieu; Hodges, Brian D
2009-11-24
Interdisciplinary health research is a priority of many funding agencies. We surveyed clinician and biomedical scientists about their views on the value and funding of interdisciplinary health research. We conducted semistructured interviews with 31 biomedical and 30 clinician scientists. The scientists were selected from the 2000-2006 membership lists of peer-review committees of the Canadian Institutes of Health Research. We investigated respondents' perspectives on the assumption that collaboration across disciplines adds value to health research. We also investigated their perspectives on funding agencies' growing support of interdisciplinary research. The 61 respondents expressed a wide variety of perspectives on the value of interdisciplinary health research, ranging from full agreement (22) to complete disagreement (11) that it adds value; many presented qualified viewpoints (28). More than one-quarter viewed funding agencies' growing support of interdisciplinary research as appropriate. Most (44) felt that the level of support was unwarranted. Arguments included the belief that current support leads to the creation of artificial teams and that a top-down process of imposing interdisciplinary structures on teams constrains scientists' freedom. On both issues we found contrasting trends between the clinician and the biomedical scientists. Despite having some positive views about the value of interdisciplinary research, scientists, especially biomedical scientists, expressed reservations about the growing support of interdisciplinary research.
Translation of biomedical prevention strategies for HIV: Prospects and pitfalls
Vermund, Sten H.; Tique, José A.; Cassell, Holly M.; Johnson, Megan E.; Ciampa, Philip J.; Audet, Carolyn M.
2013-01-01
Early achievements in biomedical approaches for HIV prevention included physical barriers (condoms), clean injection equipment (both for medical use and for injection drug users), blood and blood product safety, and prevention of mother to child transmission. In recent years, antiretroviral drugs to reduce risk of transmission (when the infected person takes the medicines; treatment as prevention or TasP) or reduce risk of acquisition (when the seronegative person takes them; pre-exposure prophylaxis or PrEP) have proven efficacious. Circumcision of men has also been a major tool relevant for higher prevalence regions such as sub-Saharan Africa. Well-established prevention strategies in the control of sexually transmitted diseases and tuberculosis are highly relevant for HIV (i.e., screening, linkage to care, early treatment, and contact tracing). Unfortunately, only slow progress is being made in some available HIV prevention strategies such as family planning for HIV-infected women who do not want more children and prevention mother-to-child HIV transmission. Current studies seek to integrate strategies into approaches that combine biomedical, behavioral, and structural methods to achieve prevention synergies. This review identifies the major biomedical approaches demonstrated to be efficacious that are now available. We also highlight the need for behavioral risk reduction and adherence as essential components of any biomedical approach. PMID:23673881
Caruana, C J; Wasilewska-Radwanska, M; Aurengo, A; Dendy, P P; Karenauskaite, V; Malisan, M R; Meijer, J H; Mihov, D; Mornstein, V; Rokita, E; Vano, E; Weckstrom, M; Wucherer, M
2010-04-01
Although biomedical physicists provide educational services to the healthcare professions in the majority of universities in Europe, their precise role with respect to the education of the healthcare professions has not been studied systematically. To address this issue we are conducting a research project to produce a strategic development model for the role using the well-established SWOT (Strengths, Weaknesses, Opportunities, Threats) methodology. SWOT based strategic planning is a two-step process: one first carries out a SWOT position audit and then uses the identified SWOT themes to construct the strategic development model. This paper reports the results of a SWOT audit for the role of the biomedical physicist in the education of the healthcare professions in Europe. Internal Strengths and Weaknesses of the role were identified through a qualitative survey of biomedical physics departments and biomedical physics curricula delivered to healthcare professionals across Europe. External environmental Opportunities and Threats were identified through a systematic survey of the healthcare, healthcare professional education and higher education literature and categorized under standard PEST (Political, Economic, Social-Psychological, Technological-Scientific) categories. The paper includes an appendix of terminology. Defined terms are marked with an asterisk in the text. Copyright 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Towards the SQL: Status of the direct thermal-noise measurements at the ANU
NASA Astrophysics Data System (ADS)
Mow-Lowry, C. M.; Goßler, S.; Slagmolen, B. J. J.; Cumpston, J.; Gray, M. B.; McClelland, D. E.
2006-03-01
We present the preliminary results for an experiment that aims to perform direct measurements of suspension thermal noise. The experiment is based on a niobium flexure membrane approximately 200 µm thickness that is operated as a stable inverted pendulum. A 0.25 g mirror suspended by this flexure membrane is used as the end mirror of a Fabry-Perot test cavity. This test cavity has a length of 12mm and a finesse of about 800. It is mounted at the lowest stage of a quadruple cascaded pendulum suspension, enclosed in a high-vacuum envelope. The length of test cavity is stabilized with 1Hz bandwidth to a Nd:YAG laser, which itself is stabilized with high bandwidth to the length of a suspended Zerodur reference cavity of finesse 6000.
NASA Astrophysics Data System (ADS)
Gajek, Z.
2004-05-01
The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.
Avalanche photo diodes in the observatory environment: lucky imaging at 1-2.5 microns
NASA Astrophysics Data System (ADS)
Vaccarella, A.; Sharp, R.; Ellis, M.; Singh, S.; Bloxham, G.; Bouchez, A.; Conan, R.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Hart, J.; Herrald, N.; Ireland, M.; Jacoby, G.; Nielsen, J.; Vest, C.; Young, P.; Fordham, B.; Zovaro, A.
2016-08-01
The recent availability of large format near-infrared detectors with sub-election readout noise is revolutionizing our approach to wavefront sensing for adaptive optics. However, as with all near-infrared detector technologies, challenges exist in moving from the comfort of the laboratory test-bench into the harsh reality of the observatory environment. As part of the broader adaptive optics program for the GMT, we are developing a near-infrared Lucky Imaging camera for operational deployment at the ANU 2.3 m telescope at Siding Spring Observatory. The system provides an ideal test-bed for the rapidly evolving Selex/SAPHIRA eAPD technology while providing scientific imaging at angular resolution rivalling the Hubble Space Telescope at wavelengths λ = 1.3-2.5 μm.
Wear Calculation for Sliding Friction Pairs
NASA Astrophysics Data System (ADS)
Springis, G.; Rudzitis, J.; Avisane, A.; Leitans, A.
2014-04-01
One of the principal objectives of modern production process is the improvement of quality level; this means also guaranteeing the required service life of different products and increase in their wear resistance. To perform this task, prediction of service life of fitted components is of crucial value, since with the development of production technologies and measuring devices it is possible to determine with ever increasing precision the data to be used also in analytical calculations. Having studied the prediction theories of wear process that have been developed in the course of time and can be classified into definite groups one can state that each of them has shortcomings that might strongly impair the results thus making unnecessary theoretical calculations. The proposed model for wear calculation is based on the application of theories from several branches of science to the description of 3D surface micro-topography, assessing the material's physical and mechanical characteristics, substantiating the regularities in creation of the material particles separated during the wear process and taking into consideration definite service conditions of fittings. ums Mūsdienu ražošanas procesa viens no pamatmērķiem ir produkcijas kvalitātes līmeņa paaugstināšana, tas nozīmē arī dažādu izstrādājumu nepieciešamā kalpošanas laika nodrošināšanu un nodilumizturības palielināšanu. Svarīga loma šī uzdevuma sasniegšanā ir salāgojamo detaļu kalpošanas laika prognozēšanai, kas ir ļoti aktuāls jautājums, jo attīstoties dažādām ražošanas, kā arī mēriekārtu tehnoloģijām, kļūst iespējams arvien precīzāk noteikt nepieciešamos datus, kuri vēlāk tiek izmantoti arī analītiskajos aprēķinos. Apskatot laika gaitā izstrādātās dilšanas procesa prognozēšanas teorijas, kuras var klasificēt, apkopojot tās noteiktās grupās, ņemot par pamatu līdzīgas teorētiskās pieejas, jāsaka, ka katrai no tām piemīt dažādi trūkumi, kuri var ietekmēt rezultātu precizitāti, neievērtējot svarīgus pamatparametrus, kā arī radīt nepieciešamību pēc nelietderīgiem papildus praktiskajiem eksperimentiem, kā rezultātā zūd nepieciešamība pēc teorētiskā aprēķina. Piedāvātais dilšanas procesa aprēķinu modelis ir balstīts uz vairāku zinātnes nozaru teoriju pielietošanu, piemērojot šīs teorijas 3D virsmas mikrotopogrāfijas aprakstā, ievērtējot materiāla fizikāli-mehāniskos raksturlielumus, pamatojot dilšanas procesā radušos atdalīto materiāla daļiņu rašanās likumsakarības un ņemot vērā konkrētus salāgojuma ekspluatācijas apstākļus.
Problems of quality and equity in pain management: exploring the role of biomedical culture.
Crowley-Matoka, Megan; Saha, Somnath; Dobscha, Steven K; Burgess, Diana J
2009-10-01
To explore how social scientific analyses of the culture of biomedicine may contribute to advancing our understanding of ongoing issues of quality and equity in pain management. Drawing upon the rich body of social scientific literature on the culture of biomedicine, we identify key features of biomedical culture with particular salience for pain management. We then examine how these cultural features of biomedicine may shape key phases of the pain management process in ways that have implications not just for quality, but for equity in pain management as well. We bring together a range of literatures in developing our analysis, including literatures on the culture of biomedicine, pain management and health care disparities. We surveyed the relevant literatures to identify and inter-relate key features of biomedical culture, key phases of the pain management process, and key dimensions of identified problems with suboptimal and inequitable treatment of pain. We identified three key features of biomedical culture with critical implications for pain management: 1) mind-body dualism; 2) a focus on disease vs illness; and 3) a bias toward cure vs care. Each of these cultural features play a role in the key phases of pain management, specifically pain-related communication, assessment and treatment decision-making, in ways that may hinder successful treatment of pain in general -- and of pain patients from disadvantaged groups in particular. Deepening our understanding of the role of biomedical culture in pain management has implications for education, policy and research as part of ongoing efforts to ameliorate problems in both quality and equity in managing pain. In particular, we suggest that building upon the existing the cultural competence movement in medicine to include fostering a deeper understanding of biomedical culture and its impact on physicians may be useful. From a policy perspective, we identify pain management as an area where the need for a shift to a more biopsychosocial model of health care is particularly pressing, and suggest prioritization of inter-disciplinary, multimodal approaches to pain as one key strategy in realizing this shift. Finally, in terms of research, we identify the need for empirical research to assess aspects of biomedical culture that may influence physician's attitudes and behaviors related to pain management, as well as to explore how these cultural values and their effects may vary across different settings within the practice of medicine.
Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.
Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei
2018-04-27
In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.
Metal-containing and related polymers for biomedical applications.
Yan, Yi; Zhang, Jiuyang; Ren, Lixia; Tang, Chuanbing
2016-10-07
A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.
NASA Astrophysics Data System (ADS)
Green, David A.
2010-12-01
Terrestrial translation of biomedical advances is insufficient justification for lunar exploration. However, terrestrial translation should be viewed as a critical part of the cycle of mission planning, execution and review, both in terms of the progress of space exploration, but also of sustained life on Earth. Thus, both the mission and its potential to benefit mankind are increased by the adoption of human-based exploration of the lunar surface. Whilst European biomedical sciences have grown in stature, there remains a gap between space biomedical science and terrestrial medical application. As such, an opportunity for the UK to take a sustainable leadership role exists by utilising its biomedical science community, socialised health care system (National Health Service) and defined mechanisms to determine the clinical efficacy and cost-effectiveness upon health and wellbeing (i.e. National Institute Clinical Excellence), aiding the difficult process of health care rationing. By focusing upon exploitation of the more scientifically rewarding, potentially long-term and more terrestrially analogous challenge of lunar habitation, the UK would circumnavigate the current impediments to International Space Station utilisation. Early engagement in lunar exploration would promote the UK, and its adoption of a leadership role incorporating a considered approach to the development of space biomedicine with an eye to its terrestrial value. For instance, prolonged lunar habitation could provide an `ideal controlled environment' for investigation of medical interventions, in particular multiple interactions (e.g. between exercise and nutrition), a model of accelerated aging and a number of chronic pathologies, including those related to disuse. Lunar advances could provide a springboard for individualized medicine, insights into occupational and de-centralised medicine (e.g. telemedicine) and act as a stimulus for biomedical innovation and understanding. Leadership in biomedical science activities would retain mission critically (and thus avoid obsolesce) so long as a human is involved (irrespective of specific mission architecture) and could be used to leverage opportunities for UK-based institutions, companies and individuals, most notably current ESA astronaut candidate Major Tim Peake. A combination of ESA engagement and national support for space biomedical sciences via research councils (e.g. Medical Research Council) could facilitate a virtuous circle of investment, advancement and socio-economic return invigorating the NHS, education, and key research initiatives such as ESA Harwell, UK Centre for Medical Research and Innovation, and the newly instigated Academic Health Science Centres. Such a strategy could also boost private space enterprise within the UK including the creation of a space port and could help retain the UK's position as a European aerospace transportation, services and legislative hub. By focusing upon its biomedical strength within a multi-faceted but co-ordinated strategy of engagement, the UK could reap significant socio-economic benefits for the UK and its citizens, be they on the Moon, or the Earth.
INFLUENCE OF AEROSPACE MEDICINE ACHIEVEMENTS ON THE DEVELOPMENT OF SPORT MEDICINE METHODOLOGY.
R Yashina, E R; Kurashvili, V A; Turzin, P S
Modern technologies of aerospace medicine develop at rapid pace pulling on its orbit all spheres of the human activity, including sport. Innovations play a major role in the progress of sport medicine areas related to the biomedical support of precontest training. Overview of the most important aerospace medicine achievements and their methodical implications for sport medicine is presented. Discussion is devoted to how the aerospace medicine technologies can raise effectiveness of the biomedical support to different sectors of sport and fitness.
Luminescent nanodiamonds for biomedical applications.
Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C
2011-12-01
In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.
[Ethics of biomedical research: questions about patient information].
Moutel, Grégoire
2013-02-01
All recommendations and laws concerning biomedical research, including the most recent in France in 2012, emphasize the quality of patient information to justify its participation. To optimize practices, it is important to take into account the central issues: what limits of information? What role for the relatives and family in the decision in case of disability or vulnerability of a patient? What need for specific information for long protocol and follow-up cohort? What information about research results? © 2013 médecine/sciences – Inserm / SRMS.
Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites
NASA Astrophysics Data System (ADS)
Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita
2009-07-01
In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*
CHAHINE, Georges L.; HSIAO, Chao-Tsung
2012-01-01
Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696
Sagace: A web-based search engine for biomedical databases in Japan
2012-01-01
Background In the big data era, biomedical research continues to generate a large amount of data, and the generated information is often stored in a database and made publicly available. Although combining data from multiple databases should accelerate further studies, the current number of life sciences databases is too large to grasp features and contents of each database. Findings We have developed Sagace, a web-based search engine that enables users to retrieve information from a range of biological databases (such as gene expression profiles and proteomics data) and biological resource banks (such as mouse models of disease and cell lines). With Sagace, users can search more than 300 databases in Japan. Sagace offers features tailored to biomedical research, including manually tuned ranking, a faceted navigation to refine search results, and rich snippets constructed with retrieved metadata for each database entry. Conclusions Sagace will be valuable for experts who are involved in biomedical research and drug development in both academia and industry. Sagace is freely available at http://sagace.nibio.go.jp/en/. PMID:23110816
Uzuner, Özlem; Szolovits, Peter
2017-01-01
Research on extracting biomedical relations has received growing attention recently, with numerous biological and clinical applications including those in pharmacogenomics, clinical trial screening and adverse drug reaction detection. The ability to accurately capture both semantic and syntactic structures in text expressing these relations becomes increasingly critical to enable deep understanding of scientific papers and clinical narratives. Shared task challenges have been organized by both bioinformatics and clinical informatics communities to assess and advance the state-of-the-art research. Significant progress has been made in algorithm development and resource construction. In particular, graph-based approaches bridge semantics and syntax, often achieving the best performance in shared tasks. However, a number of problems at the frontiers of biomedical relation extraction continue to pose interesting challenges and present opportunities for great improvement and fruitful research. In this article, we place biomedical relation extraction against the backdrop of its versatile applications, present a gentle introduction to its general pipeline and shared resources, review the current state-of-the-art in methodology advancement, discuss limitations and point out several promising future directions. PMID:26851224
Alkemio: association of chemicals with biomedical topics by text and data mining
Gijón-Correas, José A.; Andrade-Navarro, Miguel A.; Fontaine, Jean F.
2014-01-01
The PubMed® database of biomedical citations allows the retrieval of scientific articles studying the function of chemicals in biology and medicine. Mining millions of available citations to search reported associations between chemicals and topics of interest would require substantial human time. We have implemented the Alkemio text mining web tool and SOAP web service to help in this task. The tool uses biomedical articles discussing chemicals (including drugs), predicts their relatedness to the query topic with a naïve Bayesian classifier and ranks all chemicals by P-values computed from random simulations. Benchmarks on seven human pathways showed good retrieval performance (areas under the receiver operating characteristic curves ranged from 73.6 to 94.5%). Comparison with existing tools to retrieve chemicals associated to eight diseases showed the higher precision and recall of Alkemio when considering the top 10 candidate chemicals. Alkemio is a high performing web tool ranking chemicals for any biomedical topics and it is free to non-commercial users. Availability: http://cbdm.mdc-berlin.de/∼medlineranker/cms/alkemio. PMID:24838570
Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics
Goel, Shreya; Chen, Feng; Cai, Weibo
2013-01-01
Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015
Home telecare system using cable television plants--an experimental field trial.
Lee, R G; Chen, H S; Lin, C C; Chang, K C; Chen, J H
2000-03-01
To solve the inconvenience of routine transportation of chronically ill and handicapped patients, this paper proposes a platform based on a hybrid fiber coaxial (HFC) network in Taiwan designed to make a home telecare system feasible. The aim of this home telecare system is to combine biomedical data, including three-channel electrocardiogram (ECG) and blood pressure (BP), video, and audio into a National Television Standard Committee (NTSC) channel for communication between the patient and healthcare provider. Digitized biomedical data and output from medical devices can be further modulated to a second audio program (SAP) subchannel which can be used for second-language audio in NTSC television signals. For long-distance transmission, we translate the digital biomedical data into the frequency domain using frequency shift key (FSK) technology and insert this signal into an SAP band. The whole system has been implemented and tested. The results obtained using this system clearly demonstrated that real-time video, audio, and biomedical data transmission are very clear with a carrier-to-noise ratio up to 43 dB.
Pennington, Jeffrey W; Ruth, Byron; Italia, Michael J; Miller, Jeffrey; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; White, Peter S
2014-01-01
Biomedical researchers share a common challenge of making complex data understandable and accessible as they seek inherent relationships between attributes in disparate data types. Data discovery in this context is limited by a lack of query systems that efficiently show relationships between individual variables, but without the need to navigate underlying data models. We have addressed this need by developing Harvest, an open-source framework of modular components, and using it for the rapid development and deployment of custom data discovery software applications. Harvest incorporates visualizations of highly dimensional data in a web-based interface that promotes rapid exploration and export of any type of biomedical information, without exposing researchers to underlying data models. We evaluated Harvest with two cases: clinical data from pediatric cardiology and demonstration data from the OpenMRS project. Harvest's architecture and public open-source code offer a set of rapid application development tools to build data discovery applications for domain-specific biomedical data repositories. All resources, including the OpenMRS demonstration, can be found at http://harvest.research.chop.edu.
Biomedical Applications of Zinc Oxide Nanomaterials
Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo
2013-01-01
Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130
Pennington, Jeffrey W; Ruth, Byron; Italia, Michael J; Miller, Jeffrey; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; White, Peter S
2014-01-01
Biomedical researchers share a common challenge of making complex data understandable and accessible as they seek inherent relationships between attributes in disparate data types. Data discovery in this context is limited by a lack of query systems that efficiently show relationships between individual variables, but without the need to navigate underlying data models. We have addressed this need by developing Harvest, an open-source framework of modular components, and using it for the rapid development and deployment of custom data discovery software applications. Harvest incorporates visualizations of highly dimensional data in a web-based interface that promotes rapid exploration and export of any type of biomedical information, without exposing researchers to underlying data models. We evaluated Harvest with two cases: clinical data from pediatric cardiology and demonstration data from the OpenMRS project. Harvest's architecture and public open-source code offer a set of rapid application development tools to build data discovery applications for domain-specific biomedical data repositories. All resources, including the OpenMRS demonstration, can be found at http://harvest.research.chop.edu PMID:24131510
Rezaeian, Mohsen
2015-01-01
OBJECTIVES: English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. METHODS: In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. RESULTS: The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. CONCLUSIONS: The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans. PMID:25968115
Myneni, Sahiti; Patel, Vimla L.
2010-01-01
Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892
Rezaeian, Mohsen
2015-01-01
English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans.
Myneni, Sahiti; Patel, Vimla L
2010-06-01
Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.
Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua
2016-04-01
Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.
Emerging roles for biomedical librarians: a survey of current practice, challenges, and changes
Crum, Janet A.; Cooper, I. Diane
2013-01-01
Objective: This study is intended to (1) identify emerging roles for biomedical librarians and determine how common these roles are in a variety of library settings, (2) identify barriers to taking on new roles, and (3) determine how librarians are developing the capacity to take on new roles. Methods: A survey was conducted of librarians in biomedical settings. Results: Most biomedical librarians are taking on new roles. The most common roles selected by survey respondents include analysis and enhancement of user experiences, support for social media, support for systematic reviews, clinical informationist, help for faculty or staff with authorship issues, and implementation of researcher profiling and collaboration tools. Respondents in academic settings are more likely to report new roles than hospital librarians are, but some new roles are common in both settings. Respondents use a variety of methods to free up time for new roles, but predominant methods vary between directors and librarians and between academic and hospital respondents. Lack of time is the biggest barrier that librarians face when trying to adopt new roles. New roles are associated with increased collaboration with individuals and/or groups outside the library. Conclusion and Implications: This survey documents the widespread incorporation of new roles in biomedical libraries in the United States, as well as the barriers to adopting these roles and the means by which librarians are making time for them. The results of the survey can be used to inform strategic planning, succession planning, library education, and career development for biomedical librarians. PMID:24163599
Engineering Stem Cells for Biomedical Applications
Yin, Perry T.; Han, Edward
2018-01-01
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134
Bridging the social and the biomedical: engaging the social and political sciences in HIV research.
Kippax, Susan C; Holt, Martin; Friedman, Samuel R
2011-09-27
This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologies (such as HIV treatments, HIV testing, viral load testing, male circumcision, microbicides, and pre-and post-exposure prophylaxis) on sexual cultures, drug practices, relationships and social networks in different cultural, economic and political contexts. The supplement is also concerned with how we might examine the relationship between HIV prevention and treatment, understand the social and political mobilization required to tackle HIV, and sustain the range of disciplinary approaches needed to inform and guide responses to the global pandemic. The six articles included in the supplement demonstrate the value of fostering high quality social and political research to inform, guide and challenge our collaborative responses to HIV/AIDS.
Fabricating biomedical origami: a state-of-the-art review
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2018-01-01
Purpose Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Methods Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. Results This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Conclusion Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency. PMID:28260164
Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Mattioli-Belmonte, Monica
2014-01-01
The present review article is intended to direct attention to the technological advances made in the 2010–2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas. PMID:25415349
Fabricating biomedical origami: a state-of-the-art review.
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-01
Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.
Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr
2010-03-24
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less
The Center for Computational Biology: resources, achievements, and challenges
Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott
2011-01-01
The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains. PMID:22081221
The Center for Computational Biology: resources, achievements, and challenges.
Toga, Arthur W; Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott
2012-01-01
The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains.
HATS-31b through HATS-35b: Five Transiting Hot Jupiters Discovered By the HATSouth Survey
NASA Astrophysics Data System (ADS)
de Val-Borro, M.; Bakos, G. Á.; Brahm, R.; Hartman, J. D.; Espinoza, N.; Penev, K.; Ciceri, S.; Jordán, A.; Bhatti, W.; Csubry, Z.; Bayliss, D.; Bento, J.; Zhou, G.; Rabus, M.; Mancini, L.; Henning, T.; Schmidt, B.; Tan, T. G.; Tinney, C. G.; Wright, D. J.; Kedziora-Chudczer, L.; Bailey, J.; Suc, V.; Durkan, S.; Lázár, J.; Papp, I.; Sári, P.
2016-12-01
We report the discovery of five new transiting hot-Jupiter planets discovered by the HATSouth survey, HATS-31b through HATS-35b. These planets orbit moderately bright stars with V magnitudes within the range of 11.9-14.4 mag while the planets span a range of masses of 0.88-1.22 {M}{{J}} and have somewhat inflated radii between 1.23 and 1.64 {R}{{J}}. These planets can be classified as typical hot Jupiters, with HATS-31b and HATS-35b being moderately inflated gas giant planets with radii of 1.64+/- 0.22 {R}{{J}} and {1.464}-0.044+0.069 {R}{{J}}, respectively, that can be used to constrain inflation mechanisms. All five systems present a higher Bayesian evidence for a fixed-circular-orbit model than for an eccentric orbit. The orbital periods range from 1.8209993+/- 0.0000016 day for HATS-35b) to 3.377960+/- 0.000012 day for HATS-31b. Additionally, HATS-35b orbits a relatively young F star with an age of 2.13+/- 0.51 Gyr. We discuss the analysis to derive the properties of these systems and compare them in the context of the sample of well-characterized transiting hot Jupiters known to date. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on observations made with the MPG 2.2 m and Euler1.2 m Telescopes at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.
NASA Astrophysics Data System (ADS)
Wyborn, L. A.; Evans, B. J. K.; Pugh, T.; Lescinsky, D. T.; Foster, C.; Uhlherr, A.
2014-12-01
The National Computational Infrastructure (NCI) at the Australian National University (ANU) is a partnership between CSIRO, ANU, Bureau of Meteorology (BoM) and Geoscience Australia. Recent investments in a 1.2 PFlop Supercomputer (Raijin), ~ 20 PB data storage using Lustre filesystems and a 3000 core high performance cloud have created a hybrid platform for higher performance computing and data-intensive science to enable large scale earth and climate systems modelling and analysis. There are > 3000 users actively logging in and > 600 projects on the NCI system. Efficiently scaling and adapting data and software systems to petascale infrastructures requires the collaborative development of an architecture that is designed, programmed and operated to enable users to interactively invoke different forms of in-situ computation over complex and large scale data collections. NCI makes available major and long tail data collections from both the government and research sectors based on six themes: 1) weather, climate and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology and 6) astronomy, bio and social. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. Collections are the operational form for data management and access. Similar data types from individual custodians are managed cohesively. Use of international standards for discovery and interoperability allow complex interactions within and between the collections. This design facilitates a transdisciplinary approach to research and enables a shift from small scale, 'stove-piped' science efforts to large scale, collaborative systems science. This new and complex infrastructure requires a move to shared, globally trusted software frameworks that can be maintained and updated. Workflow engines become essential and need to integrate provenance, versioning, traceability, repeatability and publication. There are also human resource challenges as highly skilled HPC/HPD specialists, specialist programmers, and data scientists are required whose skills can support scaling to the new paradigm of effective and efficient data-intensive earth science analytics on petascale, and soon to be exascale systems.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Mike Casasanto, also with ITA, looks on. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Development of an information retrieval tool for biomedical patents.
Alves, Tiago; Rodrigues, Rúben; Costa, Hugo; Rocha, Miguel
2018-06-01
The volume of biomedical literature has been increasing in the last years. Patent documents have also followed this trend, being important sources of biomedical knowledge, technical details and curated data, which are put together along the granting process. The field of Biomedical text mining (BioTM) has been creating solutions for the problems posed by the unstructured nature of natural language, which makes the search of information a challenging task. Several BioTM techniques can be applied to patents. From those, Information Retrieval (IR) includes processes where relevant data are obtained from collections of documents. In this work, the main goal was to build a patent pipeline addressing IR tasks over patent repositories to make these documents amenable to BioTM tasks. The pipeline was developed within @Note2, an open-source computational framework for BioTM, adding a number of modules to the core libraries, including patent metadata and full text retrieval, PDF to text conversion and optical character recognition. Also, user interfaces were developed for the main operations materialized in a new @Note2 plug-in. The integration of these tools in @Note2 opens opportunities to run BioTM tools over patent texts, including tasks from Information Extraction, such as Named Entity Recognition or Relation Extraction. We demonstrated the pipeline's main functions with a case study, using an available benchmark dataset from BioCreative challenges. Also, we show the use of the plug-in with a user query related to the production of vanillin. This work makes available all the relevant content from patents to the scientific community, decreasing drastically the time required for this task, and provides graphical interfaces to ease the use of these tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Literature-based discovery of diabetes- and ROS-related targets
2010-01-01
Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy. PMID:20979611
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Technology Focus: Mechanical Components; Electronics/Computers; Software; Materials; Mechanics/Machinery; Manufacturing; Bio-Medical; Physical Sciences; Information Sciences; and Books and Reports.
[An analysis of Spanish biomedical journals by the impact factor].
Baños, J E; Casanovas, L; Guardiola, E; Bosch, F
1992-06-13
One of the most frequently used parameters for evaluating scientific publications is that of impact factor (IF) published in the Science Citation Index-Journal Citation Reports (SCI-JCR) which evaluates the number of citations a journal receives on behalf of other journals. The present study analyzed the Spanish biomedical journals included in the SCI-JCR by the IF. The IF were obtained from the SCI-JCR (1980-89). The journals were evaluated by the IF and the weighted impact factor (WIF) calculated according to WIF = (IF/MIF) x 100 in which MIF = maximum IF of the considered area. Nine Spanish biomedical journals were included in the SCI-JCR, four being basic sciences (Histology and Histopathology, Inmunología, Methods and Findings in Experimental and Clinical Pharmacology, Revista Española de Fisiología) and five clinical journals (Allergologia et Immunopathologia, Medicina Clínica, Nefrología, Revista Española de las Enfermedades del Aparato Digestivo, Revista Clínica Española). Their IF were much lower than the most important journals in each area with the mean (+/- standard deviation) being 0.21 +/- 0.22 (range 0.016-0.627). The mean WIF was 2.88 +/- 4.07 (0.16-12.82). The journals of basic sciences had higher IF and WIF than the clinical journals (p less than 0.05). Only the four journals of basic sciences were included in the SCI. Four journals, those of basic sciences, are preferentially or exclusively published in English and other five are published in Spanish. The differences in IF among these groups were not significant (p = 0.06) while those of WIF were significant (p less than 0.05). The number of Spanish biomedical journals in the SCI-JCR has risen from 1 in 1980 to 9 in 1989 with IF which have evolved variably. In mind of impact factor, the contribution of Spanish journals is low, with that of biomedical sciences being higher than that of clinical journals. Language and inclusion in the Science Citation Index may explain, at least in part, the low impact factors obtained.
A modular framework for biomedical concept recognition
2013-01-01
Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88%, cell 71%, cellular components 72%, gene and proteins 64%, chemicals 53%, and biological processes and molecular functions 40%). Neji provides fast and multi-threaded data processing, annotating up to 1200 sentences/second when using dictionary-based concept identification. Conclusions Considering the provided features and underlying characteristics, we believe that Neji is an important contribution to the biomedical community, streamlining the development of complex concept recognition solutions. Neji is freely available at http://bioinformatics.ua.pt/neji. PMID:24063607
A scoping review of competencies for scientific editors of biomedical journals.
Galipeau, James; Barbour, Virginia; Baskin, Patricia; Bell-Syer, Sally; Cobey, Kelly; Cumpston, Miranda; Deeks, Jon; Garner, Paul; MacLehose, Harriet; Shamseer, Larissa; Straus, Sharon; Tugwell, Peter; Wager, Elizabeth; Winker, Margaret; Moher, David
2016-02-02
Biomedical journals are the main route for disseminating the results of health-related research. Despite this, their editors operate largely without formal training or certification. To our knowledge, no body of literature systematically identifying core competencies for scientific editors of biomedical journals exists. Therefore, we aimed to conduct a scoping review to determine what is known on the competency requirements for scientific editors of biomedical journals. We searched the MEDLINE®, Cochrane Library, Embase®, CINAHL, PsycINFO, and ERIC databases (from inception to November 2014) and conducted a grey literature search for research and non-research articles with competency-related statements (i.e. competencies, knowledge, skills, behaviors, and tasks) pertaining to the role of scientific editors of peer-reviewed health-related journals. We also conducted an environmental scan, searched the results of a previous environmental scan, and searched the websites of existing networks, major biomedical journal publishers, and organizations that offer resources for editors. A total of 225 full-text publications were included, 25 of which were research articles. We extracted a total of 1,566 statements possibly related to core competencies for scientific editors of biomedical journals from these publications. We then collated overlapping or duplicate statements which produced a list of 203 unique statements. Finally, we grouped these statements into seven emergent themes: (1) dealing with authors, (2) dealing with peer reviewers, (3) journal publishing, (4) journal promotion, (5) editing, (6) ethics and integrity, and (7) qualities and characteristics of editors. To our knowledge, this scoping review is the first attempt to systematically identify possible competencies of editors. Limitations are that (1) we may not have captured all aspects of a biomedical editor's work in our searches, (2) removing redundant and overlapping items may have led to the elimination of some nuances between items, (3) restricting to certain databases, and only French and English publications, may have excluded relevant publications, and (4) some statements may not necessarily be competencies. This scoping review is the first step of a program to develop a minimum set of core competencies for scientific editors of biomedical journals which will be followed by a training needs assessment, a Delphi exercise, and a consensus meeting.
ERIC Educational Resources Information Center
Journal of Engineering Education, 1972
1972-01-01
Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…
Caruana, C J; Wasilewska-Radwanska, M; Aurengo, A; Dendy, P P; Karenauskaite, V; Malisan, M R; Mattson, S; Meijer, J H; Mihov, D; Mornstein, V; Rokita, E; Vano, E; Weckstrom, M; Wucherer, M
2012-10-01
This is the third of a series of articles targeted at biomedical physicists providing educational services to other healthcare professions, whether in a university faculty of medicine/health sciences or otherwise (e.g., faculty of science, hospital-based medical physics department). The first paper identified the past and present role of the biomedical physicist in the education of the healthcare professions and highlighted issues of concern. The second paper reported the results of a comprehensive SWOT (strengths, weaknesses, opportunities, threats) audit of that role. In this paper we present a strategy for the development of the role based on the outcomes of the SWOT audit. The research methods adopted focus on the importance of strategic planning at all levels in the provision of educational services. The analytical process used in the study was a pragmatic blend of the various theoretical frameworks described in the literature on strategic planning research as adapted for use in academic role development. Important results included identification of the core competences of the biomedical physicist in this context; specification of benchmarking schemes based on experiences of other biomedical disciplines; formulation of detailed mission and vision statements; gap analysis for the role. The paper concludes with a set of strategies and specific actions for gap reduction. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
2016-01-01
Background As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. Objective To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. Methods A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. Results The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. Conclusions A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. PMID:27986644
Labor and skills gap analysis of the biomedical research workforce.
Mason, Julie L; Johnston, Elizabeth; Berndt, Sam; Segal, Katie; Lei, Ming; Wiest, Jonathan S
2016-08-01
The United States has experienced an unsustainable increase of the biomedical research workforce over the past 3 decades. This expansion has led to a myriad of consequences, including an imbalance in the number of researchers and available tenure-track faculty positions, extended postdoctoral training periods, increasing age of investigators at first U.S. National Institutes of Health R01 grant, and exodus of talented individuals seeking careers beyond traditional academe. Without accurate data on the biomedical research labor market, challenges will remain in resolving these problems and in advising trainees of viable career options and the skills necessary to be productive in their careers. We analyzed workforce trends, integrating both traditional labor market information and real-time job data. We generated a profile of the current biomedical research workforce, performed labor gap analyses of occupations in the workforce at regional and national levels, and assessed skill transferability between core and complementary occupations. We conclude that although supply into the workforce and the number of job postings for occupations within that workforce have grown over the past decade, supply continues to outstrip demand. Moreover, we identify practical skill sets from real-time job postings to optimally equip trainees for an array of careers to effectively meet future workforce demand.-Mason, J. L., Johnston, E., Berndt, S., Segal, K., Lei, M., Wiest, J. S. Labor and skills gap analysis of the biomedical research workforce. © FASEB.
Madigan, Sheri; Wade, Mark; Plamondon, Andre; Maguire, Jonathon L; Jenkins, Jennifer M
2017-08-01
To assess the mechanisms accounting for the transfer of risk from one generation to the next, especially as they relate to maternal adverse childhood experiences and infant physical and emotional health outcomes. Participants were 501 community mother-infant dyads recruited shortly after the birth and followed up at 18 months. Mothers retrospectively reported on their adverse childhood experiences. The main outcome measures were parent-reported infant physical health and emotional problems. Potential mechanisms of intergenerational transmission included cumulative biomedical risk (eg, prenatal and perinatal complications) and postnatal psychosocial risk (eg, maternal depression, single parenthood, marital conflict). Four or more adverse childhood experiences were related to a 2- and 5-fold increased risk of experiencing any biomedical or psychosocial risk, respectively. There was a linear association between number of adverse childhood experiences and extent of biomedical and psychosocial risk. Path analysis revealed that the association between maternal adverse childhood experiences and infant physical health operated specifically through cumulative biomedical risk, while the relationship between adverse childhood experiences and infant emotional health operated specifically through cumulative psychosocial risk. This pattern was not explained by maternal childhood disadvantage or current neighborhood poverty. Maternal adverse childhood experiences confer vulnerability to prenatal, perinatal, and postnatal psychosocial health. The association between adverse childhood experiences and offspring physical and emotional health operates through discrete intermediary mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Labor and skills gap analysis of the biomedical research workforce
Mason, Julie L.; Johnston, Elizabeth; Berndt, Sam; Segal, Katie; Lei, Ming; Wiest, Jonathan S.
2016-01-01
The United States has experienced an unsustainable increase of the biomedical research workforce over the past 3 decades. This expansion has led to a myriad of consequences, including an imbalance in the number of researchers and available tenure-track faculty positions, extended postdoctoral training periods, increasing age of investigators at first U.S. National Institutes of Health R01 grant, and exodus of talented individuals seeking careers beyond traditional academe. Without accurate data on the biomedical research labor market, challenges will remain in resolving these problems and in advising trainees of viable career options and the skills necessary to be productive in their careers. We analyzed workforce trends, integrating both traditional labor market information and real-time job data. We generated a profile of the current biomedical research workforce, performed labor gap analyses of occupations in the workforce at regional and national levels, and assessed skill transferability between core and complementary occupations. We conclude that although supply into the workforce and the number of job postings for occupations within that workforce have grown over the past decade, supply continues to outstrip demand. Moreover, we identify practical skill sets from real-time job postings to optimally equip trainees for an array of careers to effectively meet future workforce demand.—Mason, J. L., Johnston, E., Berndt, S., Segal, K., Lei, M., Wiest, J. S. Labor and skills gap analysis of the biomedical research workforce. PMID:27075242
[Facilitators and barriers to implementation of intercultural health policy in Chile].
Pérez, Camila; Nazar, Gabriela; Cova, Félix
2016-02-01
Objective To identify elements that either facilitate or hinder implementation of Chile's intercultural health policy. Methods A descriptive study was conducted with the participation of health services users from the Mapuche ethnic group, biomedical health professionals, intercultural facilitators, and key informants in two health facilities serving towns with a high density of Mapuche population. The information was obtained through semi-structured interviews that were analyzed thematically. Results Factors identified as facilitating the implementation of this policy include laws and regulations pertaining to the rights of indigenous peoples, the empowerment of users around their rights, the formation of implementation teams, the presence of professionals of Mapuche origin in health facilities, and the existence of processes for systematization of the work carried out. The asymmetric relationship between the Mapuche people and the state, and between the Mapuche health system and the biomedical model, constitutes a fundamental barrier. Other obstacles include the lack of theoretical and practical clarity around the concept of intercultural health and a lack of resources. Conclusions Despite the facilitators identified and the achievements to date, meaningful progress in implementation of an intercultural health policy is limited by barriers that are hard to change. These include the usual forms of government planning and the hegemony of the biomedical model.
Polymer-Based Electrospun Nanofibers for Biomedical Applications
Al-Enizi, Abdullah M.; Zagho, Moustafa M.
2018-01-01
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics such as high permeability, stability, porosity, surface area to volume ratio, ease of functionalization, and excellent mechanical performance. Nanofibers can be synthesized and tailored to suit a wide range of applications including energy, biotechnology, healthcare, and environmental engineering. A comprehensive outlook on the recent developments, and the influence of electrospinning on biomedical uses such as wound dressing, drug release, and tissue engineering, has been presented. Concerns regarding the procedural restrictions and research contests are addressed, in addition to providing insights about the future of this fabrication technique in the biomedical field. PMID:29677145
Robot-aided electrospinning toward intelligent biomedical engineering.
Tan, Rong; Yang, Xiong; Shen, Yajing
2017-01-01
The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.
A System for Information Management in BioMedical Studies—SIMBioMS
Krestyaninova, Maria; Zarins, Andris; Viksna, Juris; Kurbatova, Natalja; Rucevskis, Peteris; Neogi, Sudeshna Guha; Gostev, Mike; Perheentupa, Teemu; Knuuttila, Juha; Barrett, Amy; Lappalainen, Ilkka; Rung, Johan; Podnieks, Karlis; Sarkans, Ugis; McCarthy, Mark I; Brazma, Alvis
2009-01-01
Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented. Availability: The source code, documentation and initialization scripts are available at http://simbioms.org. Contact: support@simbioms.org; mariak@ebi.ac.uk PMID:19633095
Lowe, H J; Lomax, E C; Polonkey, S E
1996-01-01
The Internet is rapidly evolving from a resource used primarily by the research community to a true global information network offering a wide range of databases and services. This evolution presents many opportunities for improved access to biomedical information, but Internet-based resources have often been difficult for the non-expert to develop and use. The World Wide Web (WWW) supports an inexpensive, easy-to-use, cross-platform, graphic interface to the Internet that may radically alter the way we retrieve and disseminate medical data. This paper summarizes the Internet and hypertext origins of the WWW, reviews WWW-specific technologies, and describes current and future applications of this technology in medicine and medical informatics. The paper also includes an appendix of useful biomedical WWW servers. PMID:8750386
Biomedical imaging with THz waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2010-03-01
We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.
Revisit of Machine Learning Supported Biological and Biomedical Studies.
Yu, Xiang-Tian; Wang, Lu; Zeng, Tao
2018-01-01
Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.
Nnko, Soori; Bukenya, Dominic; Kavishe, Bazil Balthazar; Biraro, Samuel; Peck, Robert; Kapiga, Saidi; Grosskurth, Heiner; Seeley, Janet
2015-01-01
Research has shown that health system utilization is low for chronic diseases (CDs) other than HIV. We describe the knowledge and perceptions of CDs identified from rural and urban communities in north-west Tanzania and southern Uganda. Data were collected through a quantitative population survey, a quantitative health facility survey and focus group discussions (FGDs) and in-depth interviews (IDIs) in subgroups of population survey participants. The main focus of this paper is the findings from the FGDs and IDIs. We conducted 24 FGDs, involving approximately 180 adult participants and IDIs with 116 participants (≥18 years). CDs studied included: asthma/chronic obstructive lung disease (COPD), diabetes, epilepsy, hypertension, cardiac failure and HIV- related disease. The understanding of most chronic conditions involved a combination of biomedical information, gleaned from health facility visits, local people who had suffered from a complaint or knew others who had and beliefs drawn from information shared in the community. The biomedical contribution shows some understanding of the aetiology of a condition and the management of that condition. However, local beliefs for certain conditions (such as epilepsy) suggest that biomedical treatment may be futile and therefore work counter to biomedical prescriptions for management. Current perceptions of selected CDs may represent a barrier that prevents people from adopting efficacious health and treatment seeking behaviours. Interventions to improve this situation must include efforts to improve the quality of existing health services, so that people can access relevant, reliable and trustworthy services.
The 6dF Galaxy Survey: First Data Release
NASA Astrophysics Data System (ADS)
Jones, H.; Saunders, W.; Colless, M.; Read, M.; Parker, Q.; Watson, F.; Campbell, L.
2005-06-01
The 6dF Galaxy Survey (6dFGS) is currently measuring the redshifts of around 170 000 galaxies and the peculiar velocities of a 15 000-member sub-sample. It will be the largest redshift survey of the local universe and more than an order of magnitude larger than any peculiar velocity survey to date. When complete, it will cover essentially the entire southern sky around a mean redshift of z = 0.05. Central to the survey is the Six-Degree Field (6dF) multi-fibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7°-field of the UK Schmidt Telescope. Targets have been drawn from the 2MASS Extended Source Catalog (XSC) to include all galaxies brighter than Ktot = 12.75, supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, rF, bJ) = (13.05, 13.75, 15.6, 16.75). Here we describe the implementation of the survey and the procedures used to select sources and determine redshifts. We also describe early results utilising the First Data Release of ˜ 45 000 redshifts. There is an online database of 6dFGS data accessible from the 6dFGS web site (http://www.mso.anu.edu.au/6dFGS).
Concept annotation in the CRAFT corpus.
Bada, Michael; Eckert, Miriam; Evans, Donald; Garcia, Kristin; Shipley, Krista; Sitnikov, Dmitry; Baumgartner, William A; Cohen, K Bretonnel; Verspoor, Karin; Blake, Judith A; Hunter, Lawrence E
2012-07-09
Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: the Cell Type Ontology, the Chemical Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Ontology, the Sequence Ontology, the entries of the Entrez Gene database, and the three subontologies of the Gene Ontology. The first public release includes the annotations for 67 of the 97 articles, reserving two sets of 15 articles for future text-mining competitions (after which these too will be released). Concept annotations were created based on a single set of guidelines, which has enabled us to achieve consistently high interannotator agreement. As the initial 67-article release contains more than 560,000 tokens (and the full set more than 790,000 tokens), our corpus is among the largest gold-standard annotated biomedical corpora. Unlike most others, the journal articles that comprise the corpus are drawn from diverse biomedical disciplines and are marked up in their entirety. Additionally, with a concept-annotation count of nearly 100,000 in the 67-article subset (and more than 140,000 in the full collection), the scale of conceptual markup is also among the largest of comparable corpora. The concept annotations of the CRAFT Corpus have the potential to significantly advance biomedical text mining by providing a high-quality gold standard for NLP systems. The corpus, annotation guidelines, and other associated resources are freely available at http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml.
A survey of working conditions within biomedical research in the United Kingdom.
Riddiford, Nick
2017-01-01
Background: Many recent articles have presented a bleak view of career prospects in biomedical research in the US. Too many PhDs and postdocs are trained for too few research positions, creating a "holding-tank" of experienced senior postdocs who are unable to get a permanent position. Coupled with relatively low salaries and high levels of pressure to publish in top-tier academic journals, this has created a toxic environment that is perhaps responsible for a recently observed decline in biomedical postdocs in the US, the so-called "postdocalypse". Methods: In order to address the gulf of information relating to working habits and attitudes of UK-based biomedical researchers, a link to an online survey was included in an article published in the Guardian newspaper. Survey data were collected between 21 st March 2016 and 6 th November 2016 and analysed to examine discrete profiles for three major career stages: the PhD, the postdoc and the principal investigator. Results: Overall, the data presented here echo trends observed in the US: The 520 UK-based biomedical researchers responding to the survey reported feeling disillusioned with academic research, due to the low chance of getting a permanent position and the long hours required at the bench. Also like the US, large numbers of researchers at each distinct career stage are considering leaving biomedical research altogether. Conclusions: There are several systemic flaws in the academic scientific research machine - for example the continual overproduction of PhDs and the lack of stability in the early-mid stages of a research career - that are slowly being addressed in countries such as the US and Germany. These data suggest that similar flaws also exist in the UK, with a large proportion of respondents concerned about their future in research. To avoid lasting damage to the biomedical research agenda in the UK, addressing such concerns should be a major priority.
Concept annotation in the CRAFT corpus
2012-01-01
Background Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. Results This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: the Cell Type Ontology, the Chemical Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Ontology, the Sequence Ontology, the entries of the Entrez Gene database, and the three subontologies of the Gene Ontology. The first public release includes the annotations for 67 of the 97 articles, reserving two sets of 15 articles for future text-mining competitions (after which these too will be released). Concept annotations were created based on a single set of guidelines, which has enabled us to achieve consistently high interannotator agreement. Conclusions As the initial 67-article release contains more than 560,000 tokens (and the full set more than 790,000 tokens), our corpus is among the largest gold-standard annotated biomedical corpora. Unlike most others, the journal articles that comprise the corpus are drawn from diverse biomedical disciplines and are marked up in their entirety. Additionally, with a concept-annotation count of nearly 100,000 in the 67-article subset (and more than 140,000 in the full collection), the scale of conceptual markup is also among the largest of comparable corpora. The concept annotations of the CRAFT Corpus have the potential to significantly advance biomedical text mining by providing a high-quality gold standard for NLP systems. The corpus, annotation guidelines, and other associated resources are freely available at http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml. PMID:22776079
The World Wide Web--a new tool for biomedical engineering education.
Blanchard, S M
1997-01-01
An ever-increasing variety of materials (text, images, videos, and sound) are available through the World Wide Web (WWW). While textbooks, which are often outdated by the time they are published, are usually limited to black and white text and images, many supplemental materials can be found on the WWW. The WWW also provides many resources for student projects. In BAE 465: Biomedical Engineering Applications, student teams developed WWW-based term projects on biomedical topics, e.g. biomaterials, MRI, and medical ultrasound. After the projects were completed and edited by the instructor, they were placed on-line for world-wide access if permission for this had been granted by the student authors. Projects from three classes have been used to form the basis for an electronic textbook which is available at http:@www.eos.ncsu.edu/bae/research/blanchard /www/465/textbook/. This electronic textbook also includes instructional objectives and sample tests for specific topic areas. Student projects have been linked to the appropriate topic areas within the electronic textbook. Links to relevant sites have been included within the electronic textbook as well as within the individual projects. Students were required to link to images and other materials they wanted to include in their project in order to avoid copyright issues. The drawback to this approach to copyright protection is that addresses can change making links unavailable. In BAE 465 and in BAE 235: Engineering Biology, the WWW has also been used to distribute instructional objectives, the syllabi and class policies, homework problems, and abbreviated lecture notes. This has made maintaining course-related material easier and has reduced the amount of paper used by both the students and the instructor. Goals for the electronic textbook include the addition of instructional simulation programs that can be run from remote sites. In the future, biomedical engineering may be taught in a virtual classroom with participation by an instructor and students from many different parts of the world.
Imaging photomultiplier array with integrated amplifiers and high-speed USB interfacea)
NASA Astrophysics Data System (ADS)
Blacksell, M.; Wach, J.; Anderson, D.; Howard, J.; Collis, S. M.; Blackwell, B. D.; Andruczyk, D.; James, B. W.
2008-10-01
Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16bits simultaneous acquisition of 16 signal channels at rates up to 2MS/s per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.
Imaging photomultiplier array with integrated amplifiers and high-speed USB interface.
Blacksell, M; Wach, J; Anderson, D; Howard, J; Collis, S M; Blackwell, B D; Andruczyk, D; James, B W
2008-10-01
Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16 bits simultaneous acquisition of 16 signal channels at rates up to 2 MSs per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.
VizieR Online Data Catalog: Cobalt emission in nebular phase spectra (Childress+, 2015)
NASA Astrophysics Data System (ADS)
Childress, M. J.; Hillier, D. J.; Seitenzahl, I.; Sullivan, M.; Maguire, K.; Taubenberger, S.; Scalzo, R.; Ruiter, A.; Blagorodnova, N.; Camacho, Y.; Castillo, J.; Elias-Rosa, N.; Fraser, M.; Gal-Yam, A.; Graham, M.; Howell, D. A.; Inserra, C.; Jha, S. W.; Kumar, S.; Mazzali, P. A.; McCully, C.; Morales-Garoffolo, A.; Pandya, V.; Polshaw, J.; Schmidt, B.; Smartt, S.; Smith, K. W.; Sollerman, J.; Spyromilio, J.; Tucker, B.; Valenti, S.; Walton, N.; Wolf, C.; Yaron, O.; Young, D. R.; Yuan, F.; Zhang, B.
2018-01-01
The analysis in this work relies on a compilation of SN Ia nebular spectra from the literature as well as new observations. We obtained new late-phase (+50=
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
26 CFR 1.501(e)-1 - Cooperative hospital service organizations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...
Biomedical technology in Franconia.
Efferth, T
2000-01-01
Medical instrumentation and biotechnology business is developing rapidly in Franconia. The universities of Bayreuth, Erlangen-Nürnberg, and Würzburg hold upper ranks in biomedical extramural funding research. They have a high competence in biomedical research, medical instrumentation, and biotechnology. The association "BioMedTec Franken e.V" has been founded at the beginning of 1999 both to foster the information exchange between universities, industry and politics and to facilitate the establishment of biomedical companies by means of science parks. In the IGZ (Innovation and Foundation Center Nürnberg-Fürth-Erlangen) 4,500 square meters of space are currently shared by 19 novel companies. Since 1985 60 companies in the IGZ had a total turnover of about 74 Mio Euro. The TGZ (Technologie- und Gründerzentrum) in Würzburg provides space for 11 companies. For the specific needs of biomedical technology companies further science parks will be set up in the near future. A science park for medical instrumentation will be founded in Erlangen (IZMP, Innovations- und Gründerzentrum für Medizintechnik und Pharma in der Region Nürnberg, Fürch, Erlangen). Furthermore, a Biomedical Technology Center and a Research Center for Bicompatible Materials are to be founded in Würzburg and Bayreuth, respectively. Several communication platforms (Bayern Innovativ, FORWISS, FTT, KIM, N-TEC-VISIT, TBU, WETTI etc.) allow the transfer of local academic research activities to industrial utilization and open new co-operation possibilities. International pharmaceutical companies (Novartis, Nürnberg; Pharmacia Upjohn, Erlangen) are located in Franconia. Central Franconia represents a national focus for medical instrumentation. The Erlangen settlement of the Medical Engineering Section of Siemens employs 4,500 people including approximately 1,000 employees in the Siemens research center.
Taylor, Barbara E; Reynolds, Arleigh J; Etz, Kathy E; MacCalla, Nicole M G; Cotter, Paul A; DeRuyter, Tiffany L; Hueffer, Karsten
2017-01-01
Most postsecondary institutions in the state of Alaska (USA) have a broad mission to serve diverse students, many of whom come from schools in rural villages that are accessible only by plane, boat, or snowmobile. The major research university, the University of Alaska in Fairbanks (UAF), serves a population whereby 40% are from groups recognized as underrepresented in the biomedical workforce. The purpose of this article is to describe the Building Infrastructure Leading to Diversity (BUILD)-supported program in the state of Alaska that seeks to engage students from rural areas with a culturally relevant approach that is centered on the One Health paradigm, integrating human, animal, and environmental health. The Biomedical Learning and Student Training (BLaST) program distinguished by broad themes that address recruitment, retention, and success of students in biomedical programs, especially for students from rural backgrounds. Targeted rural outreach emphasizes that biomedical research includes research on the integration of human, animal, and environmental health. This One Health perspective gives personal relevance and connection to biomedical research. This outreach is expected to benefit student recruitment, as well as foster family and community support for pursuit of college degrees. BLaST promotes integration of research into undergraduate curricula through curriculum development, and by creating a new class of instructors, laboratory research and teaching technicians, who provide research mentorship, course instruction, and comprehensive advising. Finally, BLaST facilitates early and sustained undergraduate research experiences in collaborations with graduate students and faculty. BLaST's approach is highly adapted to the Alaskan educational and physical environment, but components and concepts could be adapted to other rural areas as a means to engage students from rural backgrounds, who often have a closer relationship with the natural environment than urban students.
User needs analysis and usability assessment of DataMed - a biomedical data discovery index.
Dixit, Ram; Rogith, Deevakar; Narayana, Vidya; Salimi, Mandana; Gururaj, Anupama; Ohno-Machado, Lucila; Xu, Hua; Johnson, Todd R
2017-11-30
To present user needs and usability evaluations of DataMed, a Data Discovery Index (DDI) that allows searching for biomedical data from multiple sources. We conducted 2 phases of user studies. Phase 1 was a user needs analysis conducted before the development of DataMed, consisting of interviews with researchers. Phase 2 involved iterative usability evaluations of DataMed prototypes. We analyzed data qualitatively to document researchers' information and user interface needs. Biomedical researchers' information needs in data discovery are complex, multidimensional, and shaped by their context, domain knowledge, and technical experience. User needs analyses validate the need for a DDI, while usability evaluations of DataMed show that even though aggregating metadata into a common search engine and applying traditional information retrieval tools are promising first steps, there remain challenges for DataMed due to incomplete metadata and the complexity of data discovery. Biomedical data poses distinct problems for search when compared to websites or publications. Making data available is not enough to facilitate biomedical data discovery: new retrieval techniques and user interfaces are necessary for dataset exploration. Consistent, complete, and high-quality metadata are vital to enable this process. While available data and researchers' information needs are complex and heterogeneous, a successful DDI must meet those needs and fit into the processes of biomedical researchers. Research directions include formalizing researchers' information needs, standardizing overviews of data to facilitate relevance judgments, implementing user interfaces for concept-based searching, and developing evaluation methods for open-ended discovery systems such as DDIs. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Munkhdalai, Tsendsuren; Li, Meijing; Batsuren, Khuyagbaatar; Park, Hyeon Ah; Choi, Nak Hyeon; Ryu, Keun Ho
2015-01-01
Chemical and biomedical Named Entity Recognition (NER) is an essential prerequisite task before effective text mining can begin for biochemical-text data. Exploiting unlabeled text data to leverage system performance has been an active and challenging research topic in text mining due to the recent growth in the amount of biomedical literature. We present a semi-supervised learning method that efficiently exploits unlabeled data in order to incorporate domain knowledge into a named entity recognition model and to leverage system performance. The proposed method includes Natural Language Processing (NLP) tasks for text preprocessing, learning word representation features from a large amount of text data for feature extraction, and conditional random fields for token classification. Other than the free text in the domain, the proposed method does not rely on any lexicon nor any dictionary in order to keep the system applicable to other NER tasks in bio-text data. We extended BANNER, a biomedical NER system, with the proposed method. This yields an integrated system that can be applied to chemical and drug NER or biomedical NER. We call our branch of the BANNER system BANNER-CHEMDNER, which is scalable over millions of documents, processing about 530 documents per minute, is configurable via XML, and can be plugged into other systems by using the BANNER Unstructured Information Management Architecture (UIMA) interface. BANNER-CHEMDNER achieved an 85.68% and an 86.47% F-measure on the testing sets of CHEMDNER Chemical Entity Mention (CEM) and Chemical Document Indexing (CDI) subtasks, respectively, and achieved an 87.04% F-measure on the official testing set of the BioCreative II gene mention task, showing remarkable performance in both chemical and biomedical NER. BANNER-CHEMDNER system is available at: https://bitbucket.org/tsendeemts/banner-chemdner.
Monsarrat, Paul; Vergnes, Jean-Noel
2018-01-01
In medicine, effect sizes (ESs) allow the effects of independent variables (including risk/protective factors or treatment interventions) on dependent variables (e.g., health outcomes) to be quantified. Given that many public health decisions and health care policies are based on ES estimates, it is important to assess how ESs are used in the biomedical literature and to investigate potential trends in their reporting over time. Through a big data approach, the text mining process automatically extracted 814 120 ESs from 13 322 754 PubMed abstracts. Eligible ESs were risk ratio, odds ratio, and hazard ratio, along with their confidence intervals. Here we show a remarkable decrease of ES values in PubMed abstracts between 1990 and 2015 while, concomitantly, results become more often statistically significant. Medians of ES values have decreased over time for both "risk" and "protective" values. This trend was found in nearly all fields of biomedical research, with the most marked downward tendency in genetics. Over the same period, the proportion of statistically significant ESs increased regularly: among the abstracts with at least 1 ES, 74% were statistically significant in 1990-1995, vs 85% in 2010-2015. whereas decreasing ESs could be an intrinsic evolution in biomedical research, the concomitant increase of statistically significant results is more intriguing. Although it is likely that growing sample sizes in biomedical research could explain these results, another explanation may lie in the "publish or perish" context of scientific research, with the probability of a growing orientation toward sensationalism in research reports. Important provisions must be made to improve the credibility of biomedical research and limit waste of resources. © The Authors 2017. Published by Oxford University Press.
The use and misuse of biomedical data: is bigger really better?
Hoffman, Sharona; Podgurski, Andy
2013-01-01
Very large biomedical research databases, containing electronic health records (EHR) and genomic data from millions of patients, have been heralded recently for their potential to accelerate scientific discovery and produce dramatic improvements in medical treatments. Research enabled by these databases may also lead to profound changes in law, regulation, social policy, and even litigation strategies. Yet, is "big data" necessarily better data? This paper makes an original contribution to the legal literature by focusing on what can go wrong in the process of biomedical database research and what precautions are necessary to avoid critical mistakes. We address three main reasons for approaching such research with care and being cautious in relying on its outcomes for purposes of public policy or litigation. First, the data contained in biomedical databases is surprisingly likely to be incorrect or incomplete. Second, systematic biases, arising from both the nature of the data and the preconceptions of investigators, are serious threats to the validity of research results, especially in answering causal questions. Third, data mining of biomedical databases makes it easier for individuals with political, social, or economic agendas to generate ostensibly scientific but misleading research findings for the purpose of manipulating public opinion and swaying policymakers. In short, this paper sheds much-needed light on the problems of credulous and uninformed acceptance of research results derived from biomedical databases. An understanding of the pitfalls of big data analysis is of critical importance to anyone who will rely on or dispute its outcomes, including lawyers, policymakers, and the public at large. The Article also recommends technical, methodological, and educational interventions to combat the dangers of database errors and abuses.
Lukianova-Hleb, Ekaterina Y; Lapotko, Dmitri O
2017-01-01
Laser pulse-induced vapor nanobubbles are nonstationary nanoevents that offer a broad range of applications, especially in the biomedical field. Plasmonic (usually gold) nanoparticles have the highest energy efficacy of the generation of vapor nanobubbles and such nanobubbles were historically named as plasmonic nanobubbles. Below we review methods (protocols) for generating and detecting plasmonic nanobubbles in liquids. The biomedical applications of plasmonic nanobubbles include in vivo and in vitro detection and imaging, gene transfer, micro-surgery, drug delivery, and other diagnostic, therapeutic, and theranostic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivey, Wade
Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, received five swipe samples on December 10, 2013 from the Northern Biomedical Research Facility in Norton Shores, Michigan. The samples were analyzed for tritium and carbon-14 according to the NRC Form 303 supplied with the samples. The sample identification numbers are presented in Table 1 and the tritium and carbon-14 results are provided in Table 2. The pertinent procedure references are included with the data tables.
Genomic Data Commons and Genomic Cloud Pilots - Google Hangout
Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.
Space Product Development (SPD)
2003-01-12
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Implantable biomedical devices on bioresorbable substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Kim, Dae-Hyeong; Omenetto, Fiorenzo
Provided herein are implantable biomedical devices and methods of administering implantable biomedical devices, making implantable biomedical devices, and using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment.
Optimizing biomedical science learning in a veterinary curriculum: a review.
Warren, Amy L; Donnon, Tyrone
2013-01-01
As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.
NASA Technical Reports Server (NTRS)
Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)
1992-01-01
The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - The crystals visible in this laboratory dish were part of an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, work on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto (foreground), Instrumentation Technology Associates, Inc., examines one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, works with one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Gurunathan, Sangiliyandi; Kim, Jin-Hoi
2016-01-01
Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications.
Gurunathan, Sangiliyandi; Kim, Jin-Hoi
2016-01-01
Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. PMID:27226713
NASA Astrophysics Data System (ADS)
He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui
2017-03-01
As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.
Computational approaches for predicting biomedical research collaborations.
Zhang, Qing; Yu, Hong
2014-01-01
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.
Alkemio: association of chemicals with biomedical topics by text and data mining.
Gijón-Correas, José A; Andrade-Navarro, Miguel A; Fontaine, Jean F
2014-07-01
The PubMed® database of biomedical citations allows the retrieval of scientific articles studying the function of chemicals in biology and medicine. Mining millions of available citations to search reported associations between chemicals and topics of interest would require substantial human time. We have implemented the Alkemio text mining web tool and SOAP web service to help in this task. The tool uses biomedical articles discussing chemicals (including drugs), predicts their relatedness to the query topic with a naïve Bayesian classifier and ranks all chemicals by P-values computed from random simulations. Benchmarks on seven human pathways showed good retrieval performance (areas under the receiver operating characteristic curves ranged from 73.6 to 94.5%). Comparison with existing tools to retrieve chemicals associated to eight diseases showed the higher precision and recall of Alkemio when considering the top 10 candidate chemicals. Alkemio is a high performing web tool ranking chemicals for any biomedical topics and it is free to non-commercial users. http://cbdm.mdc-berlin.de/∼medlineranker/cms/alkemio. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
100 Metrics to Assess and Communicate the Value of Biomedical Research: An Ideas Book.
Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A; Wooding, Steven
2017-01-01
Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders.
100 Metrics to Assess and Communicate the Value of Biomedical Research
Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A.; Wooding, Steven
2017-01-01
Abstract Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders. PMID:28983437
Metrological reliability of optical coherence tomography in biomedical applications
NASA Astrophysics Data System (ADS)
Goloni, C. M.; Temporão, G. P.; Monteiro, E. C.
2013-09-01
Optical coherence tomography (OCT) has been proving to be an efficient diagnostics technique for imaging in vivo tissues, an optical biopsy with important perspectives as a diagnostic tool for quantitative characterization of tissue structures. Despite its established clinical use, there is no international standard to address the specific requirements for basic safety and essential performance of OCT devices for biomedical imaging. The present work studies the parameters necessary for conformity assessment of optoelectronics equipment used in biomedical applications like Laser, Intense Pulsed Light (IPL), and OCT, targeting to identify the potential requirements to be considered in the case of a future development of a particular standard for OCT equipment. In addition to some of the particular requirements standards for laser and IPL, also applicable for metrological reliability analysis of OCT equipment, specific parameters for OCT's evaluation have been identified, considering its biomedical application. For each parameter identified, its information on the accompanying documents and/or its measurement has been recommended. Among the parameters for which the measurement requirement was recommended, including the uncertainty evaluation, the following are highlighted: optical radiation output, axial and transverse resolution, pulse duration and interval, and beam divergence.
Functional supramolecular polymers for biomedical applications.
Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian
2015-01-21
As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liberty to decide on dual use biomedical research: an acknowledged necessity.
Keuleyan, Emma
2010-03-01
Humanity entered the twenty-first century with revolutionary achievements in biomedical research. At the same time multiple "dual-use" results have been published. The battle against infectious diseases is meeting new challenges, with newly emerging and re-emerging infections. Both natural disaster epidemics, such as SARS, avian influenza, haemorrhagic fevers, XDR and MDR tuberculosis and many others, and the possibility of intentional mis-use, such as letters containing anthrax spores in USA, 2001, have raised awareness of the real threats. Many great men, including Goethe, Spinoza, J.B. Shaw, Fr. Engels, J.F. Kennedy and others, have recognized that liberty is also a responsibility. That is why the liberty to decide now represents an acknowledged necessity: biomedical research should be supported, conducted and published with appropriate measures to prevent potential "dual use". Biomedical scientists should work according to the ethical principles of their Code of Conduct, an analogue of Hippocrates Oath of doctors; and they should inform government, society and their juniors about the problem. National science consulting boards of experts should be created to prepare guidelines and control the problem at state level. An international board should develop minimum standards to be applicable by each country. Bio-preparedness is considered another key-measure.
Toxicity of inorganic nanomaterials in biomedical imaging.
Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang
2014-01-01
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
eHealth and IMIA's Strategic Planning Process - IMIA conference introductory address.
Murray, Peter; Haux, Reinhold; Lorenzi, Nancy
2008-01-01
The International Medical Informatics Association (IMIA) is the only organization in health and biomedical informatics which is fully international in scope, bridging the academic, health practice, education, and health industry worlds through conferences, working groups, special interest groups and publications. Authored by the IMIA Interim Vice President for Strategic Planning Implementation and co-authored by the current IMIA President and the IMIA Past-President, the intention of this paper is to introduce IMIA's current strategic planning process and to set this process in relation to 'eHealth: Combining Health Telematics, Telemedicine, Biomedical Engineering and Bioinformatics to the Edge', the theme of this conference. From the viewpoint of an international organization such as IMIA, an eHealth strategy needs to be considered in a comprehensive way, including broadly stimulating high-quality health and biomedical informatics research and education, as well as providing support to bridging outcomes towards a new practice of health care in a changing world.
Stress and morale of academic biomedical scientists.
Holleman, Warren L; Cofta-Woerpel, Ludmila M; Gritz, Ellen R
2015-05-01
Extensive research has shown high rates of burnout among physicians, including those who work in academic health centers. Little is known, however, about stress, burnout, and morale of academic biomedical scientists. The authors interviewed department chairs at one U.S. institution and were told that morale has plummeted in the past five years. Chairs identified three major sources of stress: fear of not maintaining sufficient funding to keep their positions and sustain a career; frustration over the amount of time spent doing paperwork and administrative duties; and distrust due to an increasingly adversarial relationship with the executive leadership.In this Commentary, the authors explore whether declining morale and concerns about funding, bureaucracy, and faculty-administration conflict are part of a larger national pattern. The authors also suggest ways that the federal government, research sponsors, and academic institutions can address these concerns and thereby reduce stress and burnout, increase productivity, and improve overall morale of academic biomedical scientists.
Graduate Biomedical Science Education Needs a New Philosophy.
Bosch, Gundula; Casadevall, Arturo
2017-12-19
There is a growing realization that graduate education in the biomedical sciences is successful at teaching students how to conduct research but falls short in preparing them for a diverse job market, communicating with the public, and remaining versatile scientists throughout their careers. Major problems with graduate level education today include overspecialization in a narrow area of science without a proper grounding in essential critical thinking skills. Shortcomings in education may also contribute to some of the problems of the biomedical sciences, such as poor reproducibility, shoddy literature, and the rise in retracted publications. The challenge is to modify graduate programs such that they continue to generate individuals capable of conducting deep research while at the same time producing more broadly trained scientists without lengthening the time to a degree. Here we describe our first experiences at Johns Hopkins and propose a manifesto for reforming graduate science education. Copyright © 2017 Bosch and Casadevall.
Graduate Biomedical Science Education Needs a New Philosophy
Bosch, Gundula
2017-01-01
ABSTRACT There is a growing realization that graduate education in the biomedical sciences is successful at teaching students how to conduct research but falls short in preparing them for a diverse job market, communicating with the public, and remaining versatile scientists throughout their careers. Major problems with graduate level education today include overspecialization in a narrow area of science without a proper grounding in essential critical thinking skills. Shortcomings in education may also contribute to some of the problems of the biomedical sciences, such as poor reproducibility, shoddy literature, and the rise in retracted publications. The challenge is to modify graduate programs such that they continue to generate individuals capable of conducting deep research while at the same time producing more broadly trained scientists without lengthening the time to a degree. Here we describe our first experiences at Johns Hopkins and propose a manifesto for reforming graduate science education. PMID:29259084
Nitzlnader, Michael; Schreier, Günter
2014-01-01
Dealing with data from different source domains is of increasing importance in today's large scale biomedical research endeavours. Within the European Network for Cancer research in Children and Adolescents (ENCCA) a solution to share such data for secondary use will be established. In this paper the solution arising from the aims of the ENCCA project and regulatory requirements concerning data protection and privacy is presented. Since the details of secondary biomedical dataset utilisation are often not known in advance, data protection regulations are met with an identity management concept that facilitates context-specific pseudonymisation and a way of data aggregation using a hidden reference table later on. Phonetic hashing is proposed to prevent duplicated patient registration and re-identification of patients is possible via a trusted third party only. Finally, the solution architecture allows for implementation in a distributed computing environment, including cloud-based elements.
Retraction policies of high-impact biomedical journals
Atlas, Michel C.
2004-01-01
Purpose: The purpose is to review the issue of retraction in the scientific literature and to examine the policies on retraction of major biomedical journals. Method: The historical background of this issue was investigated through a literature search. The Instructions to Authors of 122 major biomedical journals were reviewed for evidence of a policy on the retraction of articles. Editors of those journals with no mention of retraction in their Instructions to Authors were contacted by email and/or postal mail. Results: Sixty-two percent of the journals investigated did not post or report having a policy on issuing retractions. Only twenty-one (18%) did. The remainder did not post any policy and did not respond to inquiries. Discussion: Including policies in Instructions to Authors relating to the principled conduct of research and publication will improve the ethical environment in which the scientific community works. PMID:15098054
Biomedical sensing analyzer (BSA) for mobile-health (mHealth)-LTE.
Adibi, Sasan
2014-01-01
The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.
Software for biomedical engineering signal processing laboratory experiments.
Tompkins, Willis J; Wilson, J
2009-01-01
In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.
Payne, Philip R O; Embi, Peter J; Niland, Joyce
2010-01-01
Advances in clinical and translational science, along with related national-scale policy and funding mechanisms, have provided significant opportunities for the advancement of applied clinical research informatics (CRI) and translational bioinformatics (TBI). Such efforts are primarily oriented to application and infrastructure development and are critical to the conduct of clinical and translational research. However, they often come at the expense of the foundational CRI and TBI research needed to grow these important biomedical informatics subdisciplines and ensure future innovations. In light of this challenge, it is critical that a number of steps be taken, including the conduct of targeted advocacy campaigns, the development of community-accepted research agendas, and the continued creation of forums for collaboration and knowledge exchange. Such efforts are needed to ensure that the biomedical informatics community is able to advance CRI and TBI science in the context of the modern clinical and translational science era.
Toward a Bio-Medical Thesaurus: Building the Foundation of the UMLS
Tuttle, Mark S.; Blois, Marsden S.; Erlbaum, Mark S.; Nelson, Stuart J.; Sherertz, David D.
1988-01-01
The Unified Medical Language System (UMLS) is being designed to provide a uniform user interface to heterogeneous machine-readable bio-medical information resources, such as bibliographic databases, genetic databases, expert systems and patient records.1 Such an interface will have to recognize different ways of saying the same thing, and provide links to ways of saying related things. One way to represent the necessary associations is via a domain thesaurus. As no such thesaurus exists, and because, once built, it will be both sizable and in need of continuous maintenance, its design should include a methodology for building and maintaining it. We propose a methodology, utilizing lexically expanded schema inversion, and a design, called T. Lex, which together form one approach to the problem of defining and building a bio-medical thesaurus. We argue that the semantic locality implicit in such a thesaurus will support model-based reasoning in bio-medicine.2
Nanomaterials and nanofabrication for biomedical applications
NASA Astrophysics Data System (ADS)
Cheng, Chao-Min; Chia-Wen Wu, Kevin
2013-08-01
Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.
Categorizing biomedicine images using novel image features and sparse coding representation
2013-01-01
Background Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process. Method We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features. Results we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance. Conclusions Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study. PMID:24565470
Ghanbari, Hossein; de Mel, Achala; Seifalian, Alexander M
2011-01-01
Revolutionary advances in nanotechnology propose novel materials with superior properties for biomedical application. One of the most promising nanomaterials for biomedical application is polyhedral oligomeric silsesquioxane (POSS), an amazing nanocage consisting of an inner inorganic framework of silicon and oxygen atoms and an outer shell of organic groups. The unique properties of this nanoparticle has led to the development of a wide range of nanostructured copolymers with significantly enhanced properties including improved mechanical, chemical, and physical characteristics. Since POSS nanomaterials are highly biocompatible, biomedical application of POSS nanostructures has been intensely explored. One of the most promising areas of application of POSS nanomaterials is the development of cardiovascular implants. The incorporation of POSS into biocompatible polymers has resulted in advanced nanocomposite materials with improved hemocompatibility, antithrombogenicity, enhanced mechanical and surface properties, calcification resistance, and reduced inflammatory response, which make these materials the material of choice for cardiovascular implants. These highly versatile POSS derivatives have opened new horizons to the field of cardiovascular implant. Currently, application of POSS containing polymers in the development of new generation cardiovascular implants including heart valve prostheses, bypass grafts, and coronary stents is under intensive investigation, with encouraging outcomes. PMID:21589645
Engineering Stem Cells for Biomedical Applications.
Yin, Perry T; Han, Edward; Lee, Ki-Bum
2016-01-07
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schultz, Jane S; Rodgers, V G J
2012-07-01
The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.
Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M
2017-04-25
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.
Wang, Youfa; Xue, Hong; Liu, Shiyong
2015-01-01
Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.
Logical Experimental Design and Execution in the Biomedical Sciences.
Holder, Daniel J; Marino, Michael J
2017-03-17
Lack of reproducibility has been highlighted as a significant problem in biomedical research. The present unit is devoted to describing ways to help ensure that research findings can be replicated by others, with a focus on the design and execution of laboratory experiments. Essential components for this include clearly defining the question being asked, using available information or information from pilot studies to aid in the design the experiment, and choosing manipulations under a logical framework based on Mill's "methods of knowing" to build confidence in putative causal links. Final experimental design requires systematic attention to detail, including the choice of controls, sample selection, blinding to avoid bias, and the use of power analysis to determine the sample size. Execution of the experiment is done with care to ensure that the independent variables are controlled and the measurements of the dependent variables are accurate. While there are always differences among laboratories with respect to technical expertise, equipment, and suppliers, execution of the steps itemized in this unit will ensure well-designed and well-executed experiments to answer any question in biomedical research. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Page, Kimberly; Tsui, Judith; Maher, Lisa; Choopanya, Kachit; Vanichseni, Suphak; Mock, Philip A; Celum, Connie; Martin, Michael
2015-06-01
Women who inject drugs (WWID) are at higher risk of HIV compared with their male counterparts as a result of multiple factors, including biological, behavioral, and sociostructural factors, yet comparatively little effort has been invested in testing and delivering prevention methods that directly target this group. In this article, we discuss the need for expanded prevention interventions for WWID, focusing on 2 safe, effective, and approved, yet underutilized biomedical prevention methods: opiate agonist therapy (OAT) and oral pre-exposure prophylaxis (PrEP). Although both interventions are well researched, they have not been well examined in the context of gender. We discuss the drivers of women injectors' higher HIV risk, review the effectiveness of OAT and PrEP interventions among women, and explain why these new HIV prevention tools should be prioritized for WWID. There is substantial potential for impact of OAT and PrEP programs for WWID in the context of broader gender-responsive HIV prevention initiatives. Although awaiting efficacy data on other biomedical approaches in the HIV prevention research "pipeline," we propose that the scale-up and implementation of these proven, safe, and effective interventions are needed now.
A simple microbial fuel cell model for improvement of biomedical device powering times.
Roxby, Daniel N; Tran, Nham; Nguyen, Hung T
2014-01-01
This study describes a Matlab based Microbial Fuel Cell (MFC) model for a suspended microbial population, in the anode chamber for the use of the MFC in powering biomedical devices. The model contains three main sections including microbial growth, microbial chemical uptake and secretion and electrochemical modeling. The microbial growth portion is based on a Continuously Stirred Tank Reactor (CSTR) model for the microbial growth with substrate and electron acceptors. Microbial stoichiometry is used to determine chemical concentrations and their rates of change and transfer within the MFC. These parameters are then used in the electrochemical modeling for calculating current, voltage and power. The model was tested for typically exhibited MFC characteristics including increased electrode distances and surface areas, overpotentials and operating temperatures. Implantable biomedical devices require long term powering which is the main objective for MFCs. Towards this end, our model was tested with different initial substrate and electron acceptor concentrations, revealing a four-fold increase in concentrations decreased the power output time by 50%. Additionally, the model also predicts that for a 35.7% decrease in specific growth rate, a 50% increase in power longevity is possible.
Collaboration of doctors and nurses with ethnomedical practitioners.
Bastien, J W
1994-01-01
In Bolivia, workshops serve as a means for biomedical practitioners and Aymara and Quechua ethnomedical practitioners from the Andes to share information about illnesses. The traditional practitioners demonstrate and biomedical personnel participate in curing rituals. Joint therapy sessions and development of joint strategies to improve health are included. Participants list the names, symptoms, causes, and treatments of diarrhea in a column for ethnomedicine and another for biomedicine. Biomedical and ethnomedical practitioners work together to persuade indigenous peoples to overcome their fear of and resistance to vaccination. One way to achieve this is by having people examine unsterilized knives under the microscope to see the tetanus toxoid. Physicians tend not to respect midwives and traditional birth attendants (TBAs). Biomedical trainers are not trained in and/or undervalue ethnomedicine, and can introduce midwives and TBAs to unhealthy practices. For example, they insist on scissors to cut the umbilical cord, but scissors are hard to sterilize, resulting in increased rates of neonatal tetanus. Women trained in medical anthropology, cross-cultural communication, and public health are the best trainers of TBAs and midwives. Supervision is needed to integrate TBAs and midwives into health programs and to improve their skills. Herbalism and ritual healing are more popular than the rural health care delivery system. Integrated clinics attract more clients than standard clinics. Recommended guidelines on collaboration revolve around recognition and respect of traditional healers, rewards for biomedical and ethnomedical personnel who collaborate, and issuance of health cards so both sets of practitioners can view patients' medical histories.
Carbon nanotubes from synthesis to in vivo biomedical applications.
Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid
2016-03-30
Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Research evaluation support services in biomedical libraries.
Gutzman, Karen Elizabeth; Bales, Michael E; Belter, Christopher W; Chambers, Thane; Chan, Liza; Holmes, Kristi L; Lu, Ya-Ling; Palmer, Lisa A; Reznik-Zellen, Rebecca C; Sarli, Cathy C; Suiter, Amy M; Wheeler, Terrie R
2018-01-01
The paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries. A group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans. The seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions. Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.
A negative trend of biomedical research in Libya: a bibliometric study.
Benamer, Hani T S; Bredan, Amin; Bakoush, Omran
2009-09-01
It is well established that Libya is lagging behind its peers in biomedical research. The aim of this study is to analyse all the original biomedical publications affiliated with Libya from 1973 to 2007. PubMed and the Science Citation Index Expanded were searched for 'original research' biomedical studies affiliated with Libya. The generated data were hand searched and 329 'original research' studies were included in the analysis. The first study was published in 1973. Publication rate peaked to an average of 15.2 studies per year during 1986-1996 and dropped to an average of 8.8 studies per year during 1997-2007. Of 166 first authors; 41% were Libyans and 59% were expatriates. The latter contributed 104 studies between 1986 and 1996 and 36 studies between 1997 and 2007, while the Libyans contributed 63 and 61 studies in the two respective periods. Authors affiliated with Benghazi produced 67% of the published studies, while authors from Tripoli produced 30% and other medical schools, hospitals and research centres from other Libyan cities produced only 3%. This study showed a decline in biomedical research publication in Libya. We propose that the lack of a research culture among the Libyan medical professionals is one of the factors contributing to this decline, which coincided with the departure of expatriate doctors from Libya. Raising awareness of the importance of research and improving research skills among Libyan medical professionals may help to reverse the current trend.
Abraham, Parvin; Maliekal, Tessy Thomas
2017-04-01
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.
Ravid, Katya; Seta, Francesca; Center, David; Waters, Gloria; Coleman, David
2017-10-01
Team science has been recognized as critical to solving increasingly complex biomedical problems and advancing discoveries in the prevention, diagnosis, and treatment of human disease. In 2009, the Evans Center for Interdisciplinary Biomedical Research (ECIBR) was established in the Department of Medicine at Boston University School of Medicine as a new organizational paradigm to promote interdisciplinary team science. The ECIBR is made up of affinity research collaboratives (ARCs), consisting of investigators from different departments and disciplines who come together to study biomedical problems that are relevant to human disease and not under interdisciplinary investigation at the university. Importantly, research areas are identified by investigators according to their shared interests. ARC proposals are evaluated by a peer review process, and collaboratives are funded annually for up to three years.Initial outcomes of the first 12 ARCs show the value of this model in fostering successful biomedical collaborations that lead to publications, extramural grants, research networking, and training. The most successful ARCs have been developed into more sustainable organizational entities, including centers, research cores, translational research projects, and training programs.To further expand team science at Boston University, the Interdisciplinary Biomedical Research Office was established in 2015 to more fully engage the entire university, not just the medical campus, in interdisciplinary research using the ARC mechanism. This approach to promoting team science may be useful to other academic organizations seeking to expand interdisciplinary research at their institutions.
Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric
2013-01-01
This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions.
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility and possible advantages of processing materials in a nongravitational field are considered. Areas of investigation include biomedical applications, the processing of inorganic materials, and flight programs and funding.
ERIC Educational Resources Information Center
Rowan, Andrew N.
1981-01-01
Summarizes viewpoints on the use of animals in science experiments in the biology classroom, including those of teachers, education researchers, biomedical scientists, science education administrators, and animal welfare advocates. (Author/CS)
Kapoor, Daljit; Nirola, Ashutosh; Kapoor, Vinod
2014-01-01
Objectives: Proper handling, treatment and disposal of biomedical wastes are important elements in any health care setting. Not much attention has been paid to the management of Biomedical Waste (BMW) in recent years, in dental colleges and hospitals in India. The present systematic review was conducted to assess knowledge and awareness regarding BMW management among staff and students of dental teaching institutions in India. Material and Methods: A systematic review of relevant cross-sectional studies was conducted regarding BMW management in India in dental teaching institutions in India. Six studies were finally included in the present review after conducting both electronic and manual search like Pubmed, EMBASE etc. and after making necessary exclusions. Potential biases were addressed and relevant data was extracted by the concerned investigators. Results: Six studies were finally included in the review. Colour coding of wastes was not done by 67% of the subjects in one of the studies conducted in Haryana. Almost all the subjects agreed to the fact that exposure to hazardous health care waste can result in disease or infection in another study. According to another study reports, none of the respondents was able to list the legislative act regarding BMW when asked. Conclusions: The results of the present review showed that knowledge and awareness level of subjects was inadequate and there is considerable variation in practice and management regarding BMW. There is a great need for continuing education and training programmes to be conducted in dental teaching institutions in India. Key words:Biomedical waste, knowledge, awareness, dentists, institution. PMID:25593667
Albert, Sandra; Porter, John; Green, Judith
2017-10-16
Despite decades of research on India's plural health care market, the practices of many local health traditions outside the allopathic and codified traditions are under-studied. Drawing on interview and observational data, this paper explores the space in which indigenous traditional Khasi healers in Meghalaya state, northeast India, practice. Khasi indigenous healers describe themselves as doktor sla, plant doctors, to distinguish themselves from doktor kot, or book doctors. This distinction operates as a rhetorical resource, utilised to carve a distinct sphere of expertise in relation to the allopathic sector, and to mark claims for the specifically local appropriateness of traditional practices within a shifting market of state-sponsored provision. Khasi healers are a heterogeneous group who treat a wide variety of conditions, including physical ailments which have no obvious correlates in biomedical systems, and musculoskeletal disorders, with which they have recognised expertise. In addition to claiming these discrete strengths, healers also present themselves as accommodating deficiencies in biomedicine, including inherent generic weaknesses of allopathic care as well as specific local gaps in rural health care provision. Thus, the expertise niches of traditional healers have evolved through their interactions with, and the needs of, the community, but also through managing a shifting boundary with biomedical practitioners, who are explicitly sceptical of their efficacy, but tacitly accepting of the ways in which they manage the gaps in biomedical provision. While codified non-biomedical traditions in India have engaged in universalising professionalising projects, in this setting at least, non-codified practitioners have instead utilised discourses of localism.
New roles & responsibilities of hospital biomedical engineering.
Frisch, P H; Stone, B; Booth, P; Lui, W
2014-01-01
Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments.
Kapoor, Daljit; Nirola, Ashutosh; Kapoor, Vinod; Gambhir, Ramandeep-Singh
2014-10-01
Proper handling, treatment and disposal of biomedical wastes are important elements in any health care setting. Not much attention has been paid to the management of Biomedical Waste (BMW) in recent years, in dental colleges and hospitals in India. The present systematic review was conducted to assess knowledge and awareness regarding BMW management among staff and students of dental teaching institutions in India. A systematic review of relevant cross-sectional studies was conducted regarding BMW management in India in dental teaching institutions in India. Six studies were finally included in the present review after conducting both electronic and manual search like Pubmed, EMBASE etc. and after making necessary exclusions. Potential biases were addressed and relevant data was extracted by the concerned investigators. Six studies were finally included in the review. Colour coding of wastes was not done by 67% of the subjects in one of the studies conducted in Haryana. Almost all the subjects agreed to the fact that exposure to hazardous health care waste can result in disease or infection in another study. According to another study reports, none of the respondents was able to list the legislative act regarding BMW when asked. The results of the present review showed that knowledge and awareness level of subjects was inadequate and there is considerable variation in practice and management regarding BMW. There is a great need for continuing education and training programmes to be conducted in dental teaching institutions in India. Key words:Biomedical waste, knowledge, awareness, dentists, institution.
Building a biomedical cyberinfrastructure for collaborative research.
Schad, Peter A; Mobley, Lee Rivers; Hamilton, Carol M
2011-05-01
For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis. Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two well-established consensus-based approaches to identifying standard measures and systems: PhenX (consensus measures for phenotypes and eXposures), and the Open Geospatial Consortium (OGC). NIH support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of geo-referenced variables and extensive meta-data that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support measures and systems that enhance collaboration and data interoperability is clear; this paper includes a discussion of standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures and vocabularies, and open-source systems architecture, such as the two well-established systems discussed here, will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Topics in Biomedical Optics: Introduction
NASA Astrophysics Data System (ADS)
Hebden, Jeremy C.; Boas, David A.; George, John S.; Durkin, Anthony J.
2003-06-01
The field of biomedical optics is experiencing tremendous growth. Biomedical technologies contribute in the creation of devices used in healthcare of various specialties (ophthalmology, cardiology, anesthesiology, and immunology, etc.). Recent research in biomedical optics is discussed. Overviews of meetings held at the 2002 Optical Society of America Biomedical Topical Meetings are presented.
A hybrid model based on neural networks for biomedical relation extraction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang
2018-05-01
Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Wireless augmented reality communication system
NASA Technical Reports Server (NTRS)
Devereaux, Ann (Inventor); Agan, Martin (Inventor); Jedrey, Thomas (Inventor)
2006-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)
2014-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)
2016-01-01
The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.
Health information technology and the medical school curriculum.
Triola, Marc M; Friedman, Erica; Cimino, Christopher; Geyer, Enid M; Wiederhorn, Jo; Mainiero, Crystal
2010-12-01
Medical schools must teach core biomedical informatics competencies that address health information technology (HIT), including explaining electronic medical record systems and computerized provider order entry systems and their role in patient safety; describing the research uses and limitations of a clinical data warehouse; understanding the concepts and importance of information system interoperability; explaining the difference between biomedical informatics and HIT; and explaining the ways clinical information systems can fail. Barriers to including these topics in the curricula include lack of teachers; the perception that informatics competencies are not applicable during preclinical courses and there is no place in the clerkships to teach them; and the legal and policy issues that conflict with students' need to develop skills. However, curricular reform efforts are creating opportunities to teach these topics with new emphasis on patient safety, team-based medical practice, and evidence-based care. Overarching HIT competencies empower our students to be lifelong technology learners.
Chen, Chuanrui; Karshalev, Emil; Guan, Jianguo; Wang, Joseph
2018-06-01
The new capabilities and functionalities of synthetic micro/nanomotors open up considerable opportunities for diverse environmental and biomedical applications. Water-powered micromachines are particularly attractive for realizing many of these applications. Magnesium-based motors directly use water as fuel to generate hydrogen bubbles for their propulsion, eliminating the requirement of common toxic fuels. This Review highlights the development of new Mg-based micromotors and discusses the chemistry that makes it extremely attractive for micromotor applications. Understanding these Mg properties and its transient nature is essential for controlling the propulsion efficiency, lifetime, and overall performance. The unique and attractive behavior of Mg offers significant advantages, including efficient water-powered movement, remarkable biocompatibility, controlled degradation, convenient functionalization, and built-in acid neutralization ability, and has paved the way for multifunctional micromachines for diverse real-life applications, including operation in living animals. A wide range of such Mg motor-based applications, including the detection and destruction of environmental threats, effective in-vivo cargo delivery, and autonomous release, have been demonstrated. In conclusion, the current challenges, future opportunities, and performance improvements of the Mg-based micromotors are discussed. With continuous innovation and attention to key challenges, it is expected that Mg-based motors will have a profound impact on diverse biomedical and environmental applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
COEUS: “semantic web in a box” for biomedical applications
2012-01-01
Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467
COEUS: "semantic web in a box" for biomedical applications.
Lopes, Pedro; Oliveira, José Luís
2012-12-17
As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.
The BioLexicon: a large-scale terminological resource for biomedical text mining
2011-01-01
Background Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. Results This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. Conclusions The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring. PMID:21992002
The BioLexicon: a large-scale terminological resource for biomedical text mining.
Thompson, Paul; McNaught, John; Montemagni, Simonetta; Calzolari, Nicoletta; del Gratta, Riccardo; Lee, Vivian; Marchi, Simone; Monachini, Monica; Pezik, Piotr; Quochi, Valeria; Rupp, C J; Sasaki, Yutaka; Venturi, Giulia; Rebholz-Schuhmann, Dietrich; Ananiadou, Sophia
2011-10-12
Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.
Segregation of biomedical waste in an South Indian tertiary care hospital.
Sengodan, Vetrivel Chezian
2014-07-01
Hospital wastes pose significant public health hazard if not properly managed. Hence, it is necessary to develop and adopt optimal waste management systems in the hospitals. Biomedical waste generated in Coimbatore Medical College Hospital was color coded (blue, yellow, and red) and the data was analyzed retrospectively on a daily basis for 3 years (January 2010-December 2012). Effective segregation protocols significantly reduced biomedical waste generated from 2011 to 2012. While biomedical waste of red category was significantly higher (>50%), the category yellow was the least. Per unit (per bed per day) total biomedical waste generated was 68.5, 68.8, and 61.3 grams in 2010, 2011, and 2012, respectively. Segregation of biomedical waste at the source of generation is the first and essential step in biomedical waste management. Continuous training, fixing the responsibility on the nursing persons, and constant supervision are the key criteria's in implementing biomedical waste segregation process, which can significantly reduce per unit biomedical waste generated. We highly recommend all hospitals to adopt our protocol and effectively implement them to reduce generation of biomedical waste.
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
Library Bulletin [International Planned Parenthood Federation, May 1976].
ERIC Educational Resources Information Center
International Planned Parenthood Federation, London (England).
This loose-leaf collection includes a brief discussion of usage procedures for International Planned Parenthood Federation (IPPF) libraries. A set of annotated bibliographies follows, including descriptions of documents on the following topics: family planning and biomedical science, social sciences related to family planning, education and…
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....
NASA Tech Briefs, September 2000. Volume 24, No. 9
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Sensors; Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Bio-Medical; semiconductors/ICs; Books and Reports.
Space Product Development (SPD)
2003-01-12
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. This drawing depicts a cross-section of a set of Dual-Materials Dispersion Apparatus (DMDA) specimen wells, one of which can include a reverse osmosis membrane to dewater a protein solution and thus cause crystallization. Depending on individual needs, two or three wells may be used, the membrane may be absent, or other proprietary enhancements may be present. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Use of telescience for biomedical research during space flight
NASA Technical Reports Server (NTRS)
Huntoon, Carolyn L.; Schneider, Howard J.; Karamanos, Gayle M.
1991-01-01
When the U.S. first embarked on a manned space flight program, NASA's use of medical telescience was focused on crew health monitoring. In recent years, medical telescience use has been expanded to include support of basic research in space medicine. It enables ground support personnel to assist on-board crews in the performance of experiments and improves the quality and quantity of data return. NASA is continuing to develop its telescience capabilities. Future plans include telemedicine that will enable physicians on Earth to support crewmembers during flight and telescience that will enable investigators at their home institutions to support and conduct in-flight medical research. NASA's use of telescience for crew safety and biomedical research from Project Mercury to the present is described and NASA's plans for the future are presented.
2003-05-06
KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., examines closely the container containing one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
2003-05-06
KENNEDY SPACE CENTER, FLA. - The apparatus shown was designed to hold microcapsules for research on mission STS-107. It is one over several included in the Commercial ITA Biomedical Experiments payload. The box was recently recovered during the search for Columbia debris. The drug delivery system and spaceflight hardware was developed jointly by JSC, the Institute for Research Inc. and Instrumentation Technology Associates Inc. to conduct microencapsulation experiments under microgravity conditions.
Dual-Materials Dispersion Apparatus
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. This drawing depicts a cross-section of a set of Dual-Materials Dispersion Apparatus (DMDA) specimen wells, one of which can include a reverse osmosis membrane to dewater a protein solution and thus cause crystallization. Depending on individual needs, two or three wells may be used, the membrane may be absent, or other proprietary enhancements may be present. The experiments are sponsored by NASA's Space Product Development Program (SPD).
Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.
El-Sherbiny, Ibrahim M; Elbaz, Nancy M; Sedki, Mohammed; Elgammal, Abdulaziz; Yacoub, Magdi H
2017-02-01
Magnetic nanoparticles (MNPs) have gained much attention due to their unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. Due to these inherent properties, MNPs have been widely used in various biomedical applications including targeted drug delivery and hyperthermia-based therapy. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. Additionally, due to their large loading capacity and controlled release ability, several MNP-based drug delivery systems have been emerged for treatment of cystic fibrosis and lung cancer. This review provides an overview on the unique properties of MNPs and magnetic-mediated hyperthermia with emphasis on the recent biomedical applications of MNPs in treatment of both lung cancer and cystic fibrosis.
Piezoelectric single crystals for ultrasonic transducers in biomedical applications
Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk
2014-01-01
Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032
Pub-Med-dot-com, here we come!
Pulst, Stefan M
2016-08-01
As of April 8, 2016, articles in Neurology® Genetics can be searched using PubMed. Launched in 1996, PubMed is a search engine that accesses citations and abstracts of more than 26 million articles. Its primary sources include the MEDLINE database, which was started in the 1960s, and biomedical and life sciences journal articles that date back to 1946. In addition, PubMed accesses other sources, for example, citations to those life sciences journals that submit full-text articles to PubMed Central (PMC). PubMed Central was launched in 2000 as a free archive of biomedical and life science journals.
Astronaut William Gregory activates Liquids Mixing Apparatus
NASA Technical Reports Server (NTRS)
2003-01-01
Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Astronaut William G. Gregory activates Liquids Mixing Apparatus (LMA) vials during STS-67. Other LMAs hang at top on the face of the middeck locker array. The experiments are sponsored under NASA's Space Product Development Program (SPD).
Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello
2016-01-01
Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030