Sample records for anvil cell experiments

  1. Diamond anvils with a round table designed for high pressure experiments in DAC

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, Leonid; Koemets, Egor; Bykov, Maxim; Bykova, Elena; Aprilis, Georgios; Pakhomova, Anna; Glazyrin, Konstantin; Laskin, Alexander; Prakapenka, Vitali B.; Greenberg, Eran; Dubrovinskaia, Natalia

    2017-10-01

    Here, we present new Diamond Anvils with a Round Table (DART-anvils) designed for applications in the diamond anvil cell (DAC) technique. The main features of the new DART-anvil design are a spherical shape of both the crown and the table of a diamond and the position of the centre of the culet exactly in the centre of the sphere. The performance of DART-anvils was tested in a number of high pressure high-temperature experiments at different synchrotron beamlines. These experiments demonstrated a number of advantages, which are unavailable with any of the hitherto known anvil designs. Use of DART-anvils enables to realise in situ single-crystal X-ray diffraction experiments with laser heating using stationary laser-heating setups; eliminating flat-plate design of conventional anvils, DART-anvils make the cell alignment easier; working as solid immersion lenses, they provide additional magnification of the sample in a DAC and improve the image resolution.

  2. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  3. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobanov, Sergey S., E-mail: slobanov@carnegiescience.edu; V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090; Prakapenka, Vitali B.

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typicalmore » of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.« less

  4. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, L. G.; Lawson, M.; Onyszczak, M.

    Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less

  5. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

    DOE PAGES

    Steele, L. G.; Lawson, M.; Onyszczak, M.; ...

    2017-11-28

    Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less

  6. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    PubMed

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  7. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar

    PubMed Central

    Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B; Abakumov, Artem M

    2012-01-01

    Since invention of the diamond anvil cell technique in the late 1950s for studying materials at extreme conditions, the maximum static pressure generated so far at room temperature was reported to be about 400 GPa. Here we show that use of micro-semi-balls made of nanodiamond as second-stage anvils in conventional diamond anvil cells drastically extends the achievable pressure range in static compression experiments to above 600 GPa. Micro-anvils (10–50 μm in diameter) of superhard nanodiamond (with a grain size below ∼50 nm) were synthesized in a large volume press using a newly developed technique. In our pilot experiments on rhenium and gold we have studied the equation of state of rhenium at pressures up to 640 GPa and demonstrated the feasibility and crucial necessity of the in situ ultra high-pressure measurements for accurate determination of material properties at extreme conditions. PMID:23093199

  8. Moissanite anvil cell design for Giga-Pascal nuclear magnetic resonance.

    PubMed

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-01

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. (1)H, (23)Na, (27)Al, (69)Ga, and (71)Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

  9. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-15

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. {sup 1}H, {sup 23}Na, {sup 27}Al, {sup 69}Ga, and {supmore » 71}Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.« less

  10. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    NASA Astrophysics Data System (ADS)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  11. Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    NASA Astrophysics Data System (ADS)

    Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken

    2007-07-01

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  12. Design and performance of tapered cubic anvil used for achieving higher pressure and larger sample cell

    NASA Astrophysics Data System (ADS)

    Han, Qi-Gang; Yang, Wen-Ke; Zhu, Pin-Wen; Ban, Qing-Chu; Yan, Ni; Zhang, Qiang

    2013-07-01

    In order to increase the maximum cell pressure of the cubic high pressure apparatus, we have developed a new structure of tungsten carbide cubic anvil (tapered cubic anvil), based on the principle of massive support and lateral support. Our results indicated that the tapered cubic anvil has some advantages. First, tapered cubic anvil can push the transfer rate of pressure well into the range above 36.37% compare to the conventional anvil. Second, the rate of failure crack decreases about 11.20% after the modification of the conventional anvil. Third, the limit of static high-pressure in the sample cell can be extended to 13 GPa, which can increase the maximum cell pressure about 73.3% than that of the conventional anvil. Fourth, the volume of sample cell compressed by tapered cubic anvils can be achieved to 14.13 mm3 (3 mm diameter × 2 mm long), which is three and six orders of magnitude larger than that of double-stage apparatus and diamond anvil cell, respectively. This work represents a relatively simple method for achieving higher pressures and larger sample cell.

  13. i-anvils : in situ measurements of pressure, temperature and conductivity in diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Munsch, P.; Bureau, H.; Kubsky, S.; Meijer, J.; Datchi, F.; Ninet, S.; Estève, I.

    2011-12-01

    The precise determination of the pressure and temperature conditions during diamond anvils cells (DAC) experiments is of primary importance. Such determinations are critical more especially for the fields corresponding to "low pressures" (<4 GPa) and moderate temperature (600-1500°C). Determining the electrical properties of mantle minerals is also a condition to understand the physics of the Deep Earth. This has to be done in situ at pressures and temperatures relevant for the interior of the Earth. i-anvils allow in situ pressure (P) and temperature (T) measurements in experiments using a DAC. Boron and carbon micro-structures are implanted in the diamond anvil lattice a few micrometers below the surface, the sensors are located a few μm below the center of the diamond culet (sample chamber position). When conductive electrodes are implanted at the position of the sample chamber on the culet of the anvil, instead of P,T sensors, they allow in situ measurements of electrical properties of the loaded sample at high P,T conditions in a DAC. The principle consists of applying an electrical potential across the structures through external contacts placed on the slopes of the anvil. The resistivity of these structures is sensitive to pressure and temperature applied in the sample chamber. The electrical transport properties of the sample can be measured the same way when electrodes have been implanted on the culet. Here we will present our last progresses, more especially using the focus ion beam (FIB) technology to perform contacts and electrodes. Progresses about the i-anvils connexions with the electronic devices will also be shown. We will present the last P and T sensors calibrations. Furnaces are also introduced through Boron implantation into the anvils, allowing the possibility to reach intermediate temperatures between externally heated DAC (up to 1100°C) and laser heated DAC (from 1500°C to a few thousands). Preliminary tests and the interest of such devices will be discussed at the meeting. A new diamond anvil cell has been especially designed for this purpose. This DAC allows in situ spectroscopies and X-Ray characterisation of geological fluids in their equilibrium conditions in the crust and in the upper mantle. Preliminary results will be presented.

  14. Limitations and possibilities of AC calorimetry in diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary; Colins, Gilbert; Jeanloz, Raymond

    2013-06-01

    Dynamic laser heating or internal resistive heating could allow for the determination of calorimetric properties of samples that are held statically at high pressure. However, the highly non-adiabatic environment of high-pressure cells presents several challenges. Here, we quantify the errors in AC calorimetry measurements using laser heating or internal resistive heating inside diamond anvil cells, summarize the equipment requirements of supplying sufficient power modulated at a high enough frequency to measure specific heats and latent heats of phase transitions, and propose two new experiments in internally-heated diamond anvil cells: an absolute measurement of specific heat (with ~10% uncertainty) of non-magnetic metals using resistive heating at ~10 MHz, and a relative measurement to detect changes in either the specific heat of metals or in the effusively (the product of specific heat, density and thermal conductivity) of an insulator.

  15. Amorphous boron gasket in diamond anvil cell research

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin

    2003-11-01

    Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.

  16. Note: Modified anvil design for improved reliability in DT-Cup experiments.

    PubMed

    Hunt, Simon A; Dobson, David P

    2017-12-01

    The Deformation T-Cup (DT-Cup) is a modified 6-8 multi-anvil apparatus capable of controlled strain-rate deformation experiments at pressures greater than 18 GPa. Controlled strain-rate deformation was enabled by replacing two of the eight cubic "second-stage" anvils with hexagonal cross section deformation anvils and modifying the "first-stage" wedges. However, with these modifications approximately two-thirds of experiments end with rupture of the hexagonal anvils. By replacing the hexagonal anvils with cubic anvils and, split, deformation wedge extensions, we restore the massive support to the deformation anvils that were inherent in the original multi-anvil design and prevent deformation anvil failure. With the modified parts, the DT-Cup has an experimental success rate that is similar to that of a standard hydrostatic 6-8 multi-anvil apparatus.

  17. Development of a double-stage DDIA apparatus and its application to in-situ melting experiments at high pressures

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Wang, Y.; Tange, Y.; Hilairet, N.; Yu, T.; Sakamaki, T.

    2010-12-01

    Melting experiments at high pressures are critical to our studies on the chemical evolution and dynamics of Earth and other terrestrial planets. A large volume press can generate a homogeneous and stable high-temperature environment, which is the key to melting experiments. However, previous in-situ melting experiments using a large volume press were often restricted to relatively low pressures. In order to expand the P-T conditions, a double-stage 6-8 configuration (6 first-stage anvils and 8 second stage-anvils) has been developed in a DDIA apparatus (DDIA-30), recently installed at the GSECARS Beamline 13-ID-D at the Advanced Photon Source. 27 mm DIA-type first-stage anvils and 14 mm second-stage anvils with the truncation edge length (TEL) of 1.5 mm are employed. A cell assembly that is suitable for synchrotron X-ray studies developed by Tange et al. (2008) has been adopted for melting experiments. High pressure and temperature conditions are generated up to 27 GPa and 2473 K by using tungsten carbide anvils, and up to 35 GPa and 1773 K by using sintered diamond anvils. Both LaCrO3 and TiB2 heater materials have been successfully applied for high-temperature generation. Although TiB2 shows a decrease of resistance at temperatures higher than 2000 K at 20 GPa, we are able to achieve 2473 K with temperature fluctuations in the range of ±30 K. Using tungsten carbide anvils and TiB2 heaters, we have determined the melting curve of gold up to 20 GPa. We constrain the melting temperature based on the disappearance of the gold peaks in energy dispersive X-ray diffraction patterns and the change of sample shape in the radiographic images. The combination of these two observations can reduce the uncertainties in melting temperatures to within 100 K. The measured melting temperatures of gold at 8, 13, and 20 GPa are consistent with the low-pressure results (up to 6 GPa) such as Mirwald and Kennedy (1979). Melting experiments with sintered diamond anvils are currently under development. This will enable us to conduct melting experiments up to 50 GPa on Fe alloys and silicates.

  18. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  19. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  20. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  1. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE PAGES

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...

    2015-09-01

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  2. Homoepitaxial Boron Doped Diamond Anvils as Heating Elements in a Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey; Samudrala, Gopi; Smith, Spencer; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel

    2013-03-01

    Recent advances in designer-diamond technology have allowed for the use of electrically and thermally conducting homoepitaxially-grown layers of boron-doped diamond (grown at 1200 °C with a 2% mixture of CH4 in H, resulting in extremely high doping levels ~ 1020/cm3) to be used as heating elements in a diamond anvil cell (DAC). These diamonds allow for precise control of the temperature inside of the diamond anvil itself, particularly when coupled with a cryostat. Furthermore, the unmatched thermally conducting nature of diamond ensures that no significant lateral gradient in temperature occurs across the culet area. Since a thermocouple can easily be attached anywhere on the diamond surface, we can also measure diamond temperatures directly. With two such heaters, one can raise sample temperatures uniformly, or with any desired gradient along the pressure axis while preserving optical access. In our continuing set of benchmark experiments, we use two newly created matching heater anvils with 500 μm culets to analyze the various fluorescence emission lines of ruby microspheres, which show more complicated behavior than traditional ruby chips. We also report on the temperature dependence of the high-pressure Raman modes of paracetamol (C8H9NO2) up to 20 GPa.

  3. Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogesh K. Vohra

    The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approachesmore » will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungho

    Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS undermore » high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.« less

  5. Zeeman Effect in Ruby at High Pressures

    NASA Astrophysics Data System (ADS)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  6. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    PubMed Central

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  7. Origin of temperature plateaus in laser-heated diamond anvil cell experiments

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary M.; Jeanloz, Raymond

    2012-06-01

    Many high-pressure high-temperature studies using laser-heated diamond cells have documented plateaus in the increase of temperature with increasing laser power or with time. By modeling heat transfer in typical laser-heated diamond anvil cell experiments, we demonstrate that latent heat due to melting or other phase transformation is unlikely to be the source of observed plateaus in any previously published studies, regardless of whether pulsed or continuous lasers were used. Rather, large increases (˜10-fold) in thermal conductivity can explain some of the plateaus, and modest increases in reflectivity (tens of percent) can explain any or all of them. Modeling also shows that the sub-microsecond timescale of heating employed in recent pulsed heating experiments is fast enough compared to heat transport into and through typical insulations, but too slow compared to heat transport into metallic laser absorbers themselves to allow the detection of a large plateau due to latent heat of fusion. Four new designs are suggested for future experiments that could use the simple observation of a latent heat-induced plateau to provide reliable high-pressure melting data.

  8. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Thomas; Haase, Jürgen

    2015-12-15

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It ismore » shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.« less

  9. Progress of research to identify rotating thunderstorms using satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, Charles E.

    1988-01-01

    The possibility of detecting potentially tornadic thunderstorm cells from geosynchronous satelite imagery is determined. During the life of the contract, we examined eight tornado outbreak cases which had a total of 124 individual thunderstorm cells, 37 of which were tornadic.These 37 cells produced a total of 119 tornadoes. The outflow characteristics of all the cells were measured. Through the use of a 2-D flow field model, we were able to simulate the downstream developmemt of an anvil cloud plume which was emitted by the storm updraft at or near the tropopause. We used two parameters to characterize the anvil plume behavior: its speed of downstream propagation (U max) and the clockwise deviation of the centerline of the anvil plume from the storm relative ambient wind at the anvil plume outflow level (MDA). U max was the maximum U-component of the anvil wind parameter required to successfully maintain an envelope of translating particles at the tip of the expanding anvil cloud. MDA was the measured deviation angle acquired from McIDAS, between the storm relative ambient wind direction and the storm relative anvil plume outflow direction; tha latter being manipulated by controlling a tangential wind component to force the envelope of particles to maintain their position of surrounding the expanding outflow cloud.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti3N4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations.

  11. Novel diamond cells for neutron diffraction using multi-carat CVD anvils.

    PubMed

    Boehler, R; Molaison, J J; Haberl, B

    2017-08-01

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

  12. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  13. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  14. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    NASA Astrophysics Data System (ADS)

    Palmer, A.; Silevitch, D. M.; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  15. Temperature compensated high-temperature/high-pressure Merrill--Bassett diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.

    1987-07-01

    A Merrill--Bassett diamond anvil cell for high-temperature/high-pressure studies up to 5 GPa at 1000 K and 13 GPa at 725 K is described. To maintain uniform, well-characterized temperatures, and to protect the diamond anvils from oxidation and graphitization, the entire cell is heated in a vacuum oven. The materials are chosen so that the pressure remains constant to within +-10% over the entire temperature range.

  16. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes

    NASA Astrophysics Data System (ADS)

    Ito, Eiji; Katsura, Tomoo; Yamazaki, Daisuke; Yoneda, Akira; Tado, Masashi; Ochi, Takahiro; Nishibara, Eiichi; Nakamura, Akihiro

    2009-05-01

    In order to overcome disadvantages of the DIA type press in squeezing the Kawai-cell, such as uneven compression between the upper and lower anvils and the four surrounding anvils and frictional loss of applied load in the guide block, we have developed a new 6-axis apparatus in which the movements of the six anvils are controlled by a servo mechanism. It is possible to keep the Kawai-cell cubic within an accuracy of ±2 μm during compression and decompression. Pressure generation using sintered diamond cubic anvils with edge length of 14.0 mm and a truncation of 1.5 mm has been carried out up to ca. 60 GPa by measuring electrical resistance of GaP, Zr, and Fe 2O 3. The results are compared with our previous calibration, carried out using an almost the same sample setup for identical anvils at SPring-8, by means of in situ X-ray observation. It is demonstrated that a significant amount of the applied load is lost by friction when the Kawai-cell is squeezed in the DIA type press. The load loss increases with increasing load, or pressure, and amounts to 45% at ca. 60 GPa. Therefore the 6-axis apparatus is very advantageous to generate higher pressures in the Kawai-cell. However, individual control of the anvils sometimes induces a runaway advancement of the anvils which brings about an abrupt increase of pressure.

  17. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the Universitymore » of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures ({approx}1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.« less

  18. Material transport in laser-heated diamond anvil cell melting experiments

    NASA Technical Reports Server (NTRS)

    Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.

    1992-01-01

    A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.

  19. Refinement of pressure calibration for multi-anvil press experiments

    NASA Astrophysics Data System (ADS)

    Ono, S.

    2016-12-01

    Accurate characterization of the pressure and temperature environment in high-pressure apparatuses is of essential importance when we apply laboratory data to the study of the Earth's interior. Recently, the synchrotron X-ray source can be used for the high-pressure experiments, and the in situ pressure calibration has been a common technique. However, this technique cannot be used in the laboratory-based experiments. Even now, the conventional pressure calibration is of great interest to understand the Earth's interior. Several high-pressure phase transitions used as the pressure calibrants in the laboratory-based multi-anvil experiments have been investigated. Precise determinations of phase boundaries of CaGeO3 [1], Fe2SiO4 [2], SiO2, and Zr [3] were performed by the multi-anvil press or the diamond anvil cell apparatuses combined with the synchrotron X-ray diffraction technique. The transition pressures in CaGeO3 (garnet-perovskite), Fe2SiO4 (alfa-gamma), and SiO2 (coesite-stishovite) were in general agreement with those reported by previous studies. However, significant discrepancies for the slopes, dP/dT, of these transitions between our and previous studies were confirmed. In the case of Zr study [3], our experimental results elucidate the inconsistency in the transition pressure between omega and beta phase in Zr observed in previous studies. [1] Ono et al. (2011) Phys. Chem. Minerals, 38, 735-740.[2] Ono et al. (2013) Phys. Chem. Minerals, 40, 811-816.[3] Ono & Kikegawa (2015) J. Solid State Chem., 225, 110-113.

  20. Novel diamond cells for neutron diffraction using multi-carat CVD anvils

    DOE PAGES

    Boehler, R.; Molaison, J. J.; Haberl, B.

    2017-08-17

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less

  1. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability

    DOE PAGES

    Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; ...

    2015-09-04

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide rangemore » of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.« less

  2. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A; Silevitch, D M; Feng, Yejun

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, whilemore » at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Simon A., E-mail: simon.hunt@ucl.ac.uk; McCormack, Richard J.; Bailey, Edward

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to highmore » strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1–2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C.« less

  4. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; ...

    2016-09-29

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. Lastly, these CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvilmore » cell.« less

  5. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  6. High Pressure Single Crystal Diffraction at PX 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongzhou; Dera, Przemyslaw K.; Eng, Peter J.

    2017-01-01

    In this report, we describe detailed procedures for carrying out single crystal X-ray diffraction experiments with a diamond anvil cell at the GSECARS 13-BM-C beamline at the Advanced Photon Source. ATREX and RSV programs are used to analyze the data.

  7. New diamond cell for single-crystal x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boehler, Reinhard

    2006-11-01

    A new design for a high-precision diamond cell is described. Two kinematically mounted steel disks are elastically deflected to generate pressure. This principle provides higher precision in the diamond anvil alignment than most sliding piston-cylinder or guide-pin devices at significantly lower cost. With this new diamond cell conical diamond anvils with an x-ray aperture of 85° were successfully tested to over 50GPa using helium as a pressure medium. Anvil thickness of less than 1.4mm provides high x-ray transmission and low background, a significant improvement compared to beryllium or diamond-disk backing plates. Because the diamond anvils are supported by tungsten carbide seats, samples and pressure media can be annealed by external or laser heating to provide hydrostatic pressure conditions.

  8. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: Performance and advantages for in situ analysis

    NASA Astrophysics Data System (ADS)

    Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, Linbo

    2008-11-01

    Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 μm in diameter and ˜50 μm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 °C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 °C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90° angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 μm, a pressure of 76 MPa at 500 °C was maintained for 2 h with no change in the original fluid density.

  9. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: Performance and advantages for in situ analysis

    USGS Publications Warehouse

    Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, L.

    2008-01-01

    Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 ??m in diameter and ???50 ??m deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 ??C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 ??C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90?? angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 ??m, a pressure of 76 MPa at 500 ??C was maintained for 2 h with no change in the original fluid density. ?? 2008 American Institute of Physics.

  10. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: performance and advantages for in situ analysis.

    PubMed

    Chou, I-Ming; Bassett, William A; Anderson, Alan J; Mayanovic, Robert A; Shang, Linbo

    2008-11-01

    Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 microm in diameter and approximately 50 microm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 degrees C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 degrees C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90 degrees angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 microm, a pressure of 76 MPa at 500 degrees C was maintained for 2 h with no change in the original fluid density.

  11. Image analysis of speckle patterns as a probe of melting transitions in laser-heated diamond anvil cell experiments.

    PubMed

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-09-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.

  12. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  13. Semiconducting cubic titanium nitride in the Th 3 P 4 structure

    DOE PAGES

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi; ...

    2018-01-22

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti3N4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations.

  14. Ionic Liquids as Quasihydrostatic Pressure Media for Diamond Anvil Cell Experiments

    NASA Astrophysics Data System (ADS)

    Mayorga, Sierra; Moldowan, Kaela; Dan, Ioana; Forster, Paul; Iota, Valentin

    2012-02-01

    Ionic liquids (ILs) are salts in which the ions are poorly coordinated to the point where the eutectic mixture remains liquid at room temperature. In general, ILs exhibit high chemical and thermal stability, have extended liquid regions in the pressure-temperature domain, and can be easily obtained. Commercial ionic liquids are relatively inexpensive and custom ionic solutions can be easily synthesized by mixing common reactants. These properties make ionic liquids attractive candidates for high-pressure media in Diamond Anvil Cell (DAC) experiments. In this presentation we explore the use of ionic liquids as DAS quasihydrostatic pressure media for pressures up to 50 GPa. As a measure of hydrostaticity we monitor the splitting and peak-widths of the R1 andR 2 fluorescence lines from small ruby chips (Al2O3 :Cr^3+) imbedded in the pressure medium. We present results on a series of commercially available ionic fluids against standard pressure media: methanol-ethanol mixtures, silicone oil, sodium chloride (NaCl) and noble gases (Ar, Ne, He).

  15. Shear Deformation of Fe Polycrystals in the Rotational Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Lincot, A.; Nisr, C.; Hanfland, M.; Zerr, A.

    2014-12-01

    For many years, experiments are being developed for performing deformation experiments under lower mantle conditions. They include methods such as the Deformation-DIA (Wang et al, 2003) or radial x-ray diffraction in the diamond anvil cell (Merkel et al, 2002). However, the strain applied to the sample is typically limited to about 40%. This can be an issue for studying effects of large deformation or, for the case of diamond anvil cells, applying actual plastic strain at megabar pressures. The issue can be solved using apparatus such as the Rotational-Drickamer (RDA) (e.g. Yamazaki and Karato, 2001). However, the RDA offers limited diffraction access to the sample and operating pressures do not reach those of the lower mantle.In this abstract, we investigate the potential applications of the rotational diamond anvil cell (Rot-DAC) for such studies. 300 K experiments in the Rot-DAC have been performed up to pressures exceeding 50 GPa (e.g. Serebryanaya et al, 1995) with studies focusing on the effect of shear on solid-solid phase transformation pressures. The authors did not investigate the possibility of using the Rot-DAC for studying rheological properties.Here, a sample of polycrystalline Fe is submitted to shear deformation in the Rot-DAC at pressures up to 20 GPa. Synchrotron X-ray diffraction and Rietveld refinements are then used to study the texture and stress state at multiple locations in the sample. The study shows that the Rot-DAC is efficient at producing deformation textures in a polycrystalline aggregate but that care should be taken in ensuring that the sample is actually undergoing plastic deformation and not solid rotation. Stresses, on the other hand, are difficult to extract from the x-ray diffraction data because of lack of understanding of stress distributions in the deforming aggregate.S. Merkel, H. R. Wenk, J. Shu, G. Shen, P. Gillet, H. K. Mao and R. J. Hemley, J. Geophys. Res., 107, 2271 (2002)N. Serebryanaya, V. Blank and V. Ivdenko, Phys. Lett. A, 197, 63-66 (1995)Y. Wang, W. B. Duhram, I. C. Getting and D. J. Weidner, Rev. Sci. Instrum., 74, 3002-3011 (2003)D. Yamazaki and S.-I. Karato, Rev. Sci. Instrum., 72, 4207-4211 (2001)

  16. Development of Kawai-type multianvil technology using nano-polycrystalline diamond anvils

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kunimoto, T.

    2016-12-01

    Nano-polycrystalline diamond (NPD) developed at GRC, Ehime Univ., is known to be much harder than conventional sintered polycrystalline diamond (SD), and is potentially important as material for anvils for Kawai-type (6-8 type) multianvil apparatus (KMA), as well as for diamond anvil cell. We synthesized NPD rods with about 8 mm in both diameter and length using a 6000-ton press KMA (BOTCHAN-6000), which are cut by pulsed-laser to form cubes with 6 mm edge length and tested them as anvils for KMA. In situ X-ray observations were made to evaluate the produced pressures and sample images using the "6-6-8 assembly". A combination of semi-fired pyrophyllite gaskets and alumina ceramics pressure medium optimized for the NPD anvils with a truncation (TEL) of 1.0 mm yielded pressures up to 88 GPa at a press load of only 3.4 MN, which is nearly 60% higher than the pressure (56 GPa) reached using SD anvils with the identical cell assembly at the same press load. Moreover, the high X-ray transparency of NPD has enabled us to clearly see the sample image via the anvils, allowing diffraction measurements and observations of the sample shape even if the anvil gap becomes very small under such very high pressures. The use of NPD anvils should lead to new technology for mineral physics studies under the conditions of the Earth's lowermost mantle and possibly those of the core without scarifying the advantages of KMA over DAC.

  17. Pressure mapping for sphere and half-sphere enhanced diamond anvil cells using synchrotron x-ray diffraction and fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.; Cai, Z.; Shu, J.

    2015-12-01

    The measurement for equation of state (EoS) of materials under pressure conditions above 200 GPa is a long-standing challenging subject. Recently, second stage anvil, which was loaded inside the diamond anvil cell (DAC), had been reported by various groups. This method could generate pressure over 300 GPa, or above 600 GPa from the EoS measurement of Re metal between the tiny anvil or 2 half-spheres. Several alternative approaches, using ruby balls, or glassy carbon, or diamond, with single sphere, 2 half-spheres, or multi spheres geometry inside DAC, were tested. The NIST X-ray powder standard, ZnO was selected as pressure marker. Focused ion beam (FIB) was used to cut the half-sphere from diamond anvil top directly to avoid the difficulty of alignment. The synchrotron x-ray diffraction with fine beam size down to 100 nm using zone plate set-up was used to map the pressure gradient at the sphere or half-sphere zone inside DAC. The pressure could be boosted at center of sphere by up to 10 - 70 GPa at about 200 GPa conditions. From broken anvils, trace element analysis using fine focusing synchrotron x-ray fluorescence method revealed the potential anvil damage from FIB cutting the diamond anvil tip, which might decrease the strength of anvils. Fine touch from FIB cutting at final stage using low ion beam current is suggested.

  18. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  19. Melting curve of materials: theory versus experiments

    NASA Astrophysics Data System (ADS)

    Alfè, D.; Vocadlo, L.; Price, G. D.; Gillan, M. J.

    2004-04-01

    A number of melting curves of various materials have recently been measured experimentally and calculated theoretically, but the agreement between different groups is not always good. We discuss here some of the problems which may arise in both experiments and theory. We also report the melting curves of Fe and Al calculated recently using quantum mechanics techniques, based on density functional theory with generalized gradient approximations. For Al our results are in very good agreement with both low pressure diamond-anvil-cell experiments (Boehler and Ross 1997 Earth Planet. Sci. Lett. 153 223, Hänström and Lazor 2000 J. Alloys Compounds 305 209) and high pressure shock wave experiments (Shaner et al 1984 High Pressure in Science and Technology ed Homan et al (Amsterdam: North-Holland) p 137). For Fe our results agree with the shock wave experiments of Brown and McQueen (1986 J. Geophys. Res. 91 7485) and Nguyen and Holmes (2000 AIP Shock Compression of Condensed Matter 505 81) and the recent diamond-anvil-cell experiments of Shen et al (1998 Geophys. Res. Lett. 25 373). Our results are at variance with the recent calculations of Laio et al (2000 Science 287 1027) and, to a lesser extent, with the calculations of Belonoshko et al (2000 Phys. Rev. Lett. 84 3638). The reasons for these disagreements are discussed.

  20. Improved Anvil Forecasting

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2000-01-01

    This report describes the outcome of Phase 1 of the AMU's Improved Anvil Forecasting task. Forecasters in the 45th Weather Squadron and the Spaceflight Meteorology Group have found that anvil forecasting is a difficult task when predicting LCC and FR violations. The purpose of this task is to determine the technical feasibility of creating an anvil-forecasting tool. Work on this study was separated into three steps: literature search, forecaster discussions, and determination of technical feasibility. The literature search revealed no existing anvil-forecasting techniques. However, there appears to be growing interest in anvils in recent years. If this interest continues to grow, more information will be available to aid in developing a reliable anvil-forecasting tool. The forecaster discussion step revealed an array of methods on how better forecasting techniques could be developed. The forecasters have ideas based on sound meteorological principles and personal experience in forecasting and analyzing anvils. Based on the information gathered in the discussions with the forecasters, the conclusion of this report is that it is technically feasible at this time to develop an anvil forecasting technique that will significantly contribute to the confidence in anvil forecasts.

  1. Metal-Silicate Partitioning of Various Siderophile Elements at High Pressure and High Temperatures: a Diamond Anvil Cell Study

    NASA Astrophysics Data System (ADS)

    Badro, J.; Blanchard, I.; Siebert, J.

    2015-12-01

    Core formation is the major chemical fractionation that occurred on Earth. This event is widely believed to have happened at pressures of at least 40 GPa and temperatures exceeding 3000 K. It has left a significant imprint on the chemistry of the mantle by removing most of the siderophile (iron-loving) elements from it. Abundances of most siderophile elements in the bulk silicate Earth are significantly different than those predicted from experiments at low P-T. Among them, vanadium, chromium, cobalt and gallium are four siderophile elements which abundances in the mantle have been marked by core formation processes. Thus, understand their respective abundance in the mantle can help bringing constraints on the conditions of Earth's differentiation. We performed high-pressure high-temperature experiments using laser heating diamond anvil cell to investigate the metal-silicate partitioning of those four elements. Homogeneous glasses doped in vanadium, chromium, cobalt and gallium were synthesized using a levitation furnace and load inside the diamond anvil cell along with metallic powder. Samples were recovered using a Focused Ion Beam and chemically analyzed using an electron microprobe. We investigate the effect of pressure, temperature and metal composition on the metal-silicate partitioning of V, Cr, Co and Ga. Three previous studies focused on V, Cr and Co partitioning at those conditions of pressure and temperature, but none explore gallium partitioning at the relevant extreme conditions of core formation. We will present the first measurements of gallium metal-silicate partitioning performed at the appropriate conditions of pressure and temperature of Earth's differentiation.

  2. An investigation of the detection of tornadic thunderstorms by observing storm top features using geosynchronous satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, Charles E.

    1991-01-01

    The number of tornado outbreak cases studied in detail was increased from the original 8. Detailed ground and aerial studies were carried out of two outbreak cases of considerable importance. It was demonstrated that multiple regression was able to predict the tornadic potential of a given thunderstorm cell by its cirrus anvil plume characteristics. It was also shown that the plume outflow intensity and the deviation of the plume alignment from storm relative winds at anvil altitude could account for the variance in tornadic potential for a given cell ranging from 0.37 to 0.82 for linear to values near 0.9 for quadratic regression. Several predictors were used in various discriminant analysis models and in censored regression models to obtain forecasts of whether a cell is tornadic and how strong tornadic it could be potentially. The experiments were performed with the synoptic scale vertical shear in the horizontal wind and with synoptic scale surface vorticity in the proximity of the cell.

  3. Multiple Experimental Efforts to Understand the Structure and Dynamics of Earth's Core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Han, L.; Bennett, N.; Hou, M.; Kuwayama, Y.; Huang, H.

    2014-12-01

    It requires integration of data from different types of high-pressure experiments to understand the structure and dynamics of Earth's core. In particular, measurements of physical properties and element partitioning in systems relevant to the core provide complementary data to narrow down the range of possible core compositions. We have performed both static and dynamic compression experiments and combined results from these with literature data to establish a reliable thermal equation of state of iron. This allows us to precisely determine the density deficit in the solid inner core. The combination of density and sound velocity measurements for both solid and liquid iron and its alloys provide tight constraints on the density deficit in the liquid outer core and the amount of sulphur required to match the geophysical observations. We then conducted element-partitioning experiments between solid and liquid iron in both multi-anvil apparatus and the laser-heated diamond-anvil cell to determine the sulphur, silicon, and oxygen partitioning between the liquid outer core and solid inner core. We present newly developed high-pressure experimental and nano-scale analytical techniques that allow us to simulate the conditions of the inner core boundary (ICB) and analyze the chemical compositions of coexisting phases in the recovered samples. We have established protocols to obtain high-quality partitioning data in the laser-heating diamond-anvil cell combined with FIB/SEM crossbeam technology. The partitioning data obtained up to at least 200 GPa provide additional criteria to explain the observed density and velocity jumps at the ICB.

  4. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  5. Measurements of mineral thermal conductivity at high pressures and temperatures with the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rainey, E.; Kavner, A.

    2016-12-01

    The high-pressure, high-temperature thermal conductivities of lower mantle oxides and silicates play an important role in governing the heat flow across the core-mantle boundary, and the thermal conductivity of core materials determines, at first order, the power required to run the geodynamo. Uncertainties in the pressure-dependence and compositional-dependence of thermal conductivities has complicated our understanding of the heat flow in the deep earth and has implications for the geodynamo mechanism (Buffett, 2012). The goal of this study is to measure how thermal conductivity varies with pressure and composition using a technique that combines temperature measurements as a function of power input in the laser-heated diamond anvil cell (LHDAC) with a model of three-dimensional heat flow (Rainey & Kavner, 2014). In one set of experiments, we measured temperature versus laser-power for iron, iron silicide, and stainless steel (Fe:Cr:Ni = 70:19:11 wt%), using a variety of insulating layers. In another set of experiments, we measured temperature vs. laser power for a series of Fe-bearing periclase (Mg1-x,FexO) samples, with compositions ranging from x = .24 to x = .78. These experiments were conducted up to pressures of 25 GPa and temperatures of 2800 K. A numerical model for heat conduction in the LHDAC is used to forward model the temperature versus laser power curves at successive pressures, solving for the change in thermal conductivity of the material required to best reproduce the measurements. The heat flow model is implemented using a finite element full-approximation storage (FAS) multi-grid solver, which allows for efficient computation with flexible inputs for geometry and material properties in the diamond anvil cell (Rainey et al., 2013). We use the results of our experiments and model to extract pressure and compositional dependencies of thermal conductivity for the materials described herein. The results are used to help constrain models of the thermal properties of core and mantle materials.

  6. Equation of state of rhenium and application for ultra high pressure calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzellini, Simone; Dewaele, Agnès; Occelli, Florent

    2014-01-28

    The isothermal equation of state of rhenium has been measured by powder X-ray diffraction experiments up to 144 GPa at room temperature in a diamond anvil cell. A helium pressure transmitting medium was used to minimize the non-hydrostatic stress on the sample. The fit of pressure-volume data yields a bulk modulus K{sub 0} = 352.6 GPa and a pressure derivative of the bulk modulus K′{sub 0}=4.56. This equation of state differs significantly from a recent determination [Dubrovinsky et al., Nat. Commun. 3, 1163 (2012)], giving here a lower pressure at a given volume. The possibility of using rhenium gasket X-ray diffraction signal, with themore » present equation of state, to evaluate multi-Mbar pressures in the chamber of diamond anvil cells is discussed.« less

  7. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, R.; Sasama, Y.; Yamaguchi, T.

    2016-07-15

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.

  8. Laser shock compression experiments on precompressed water in ``SG-II'' laser facility

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu

    2017-06-01

    Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.

  9. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    USGS Publications Warehouse

    Chou, I-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355–374 °C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 × 10−11 mol) of methane were produced in the HDAC at 355 °C and 30 MPa over a period of ten minutes. At temperatures of 650 °C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  10. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  11. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, William C.

    1988-01-01

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.

  12. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive large-volume presses side-by-side with a wide variety of diamond-anvil cells.

  13. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T.; J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use themore » aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.« less

  14. Anvil Clouds of Tropical Mesoscale Convective Systems in Monsoon Regions

    NASA Technical Reports Server (NTRS)

    Cetrone, J.; Houze, R. A., Jr.

    2009-01-01

    The anvil clouds of tropical mesoscale convective systems (MCSs) in West Africa, the Maritime Continent and the Bay of Bengal have been examined with TRMM and CloudSat satellite data and ARM ground-based radar observations. The anvils spreading out from the precipitating cores of MCSs are subdivided into thick, medium and thin portions. The thick portions of anvils show distinct differences from one climatological regime to another. In their upper portions, the thick anvils of West Africa MCSs have a broad, flat histogram of reflectivity, and a maximum of reflectivity in their lower portions. The reflectivity histogram of the Bay of Bengal thick anvils has a sharply peaked distribution of reflectivity at all altitudes with modal values that increase monotonically downward. The reflectivity histogram of the Maritime Continent thick anvils is intermediate between that of the West Africa and Bay of Bengal anvils, consistent with the fact this region comprises a mix of land and ocean influences. It is suggested that the difference between the statistics of the continental and oceanic anvils is related to some combination of two factors: (1) the West African anvils tend to be closely tied to the convective regions of MCSs while the oceanic anvils are more likely to be extending outward from large stratiform precipitation areas of MCSs, and (2) the West African MCSs result from greater buoyancy, so that the convective cells are more likely to produce graupel particles and detrain them into anvils

  15. Mechanochemical induced structural changes in sucrose using the rotational diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Ciezak-Jenkins, Jennifer A.; Jenkins, Timothy A.

    2018-02-01

    The response of sucrose to high-pressure and shear conditions has been studied in a rotational diamond anvil cell. Previous experiments conducted by Bridgman and Teller showed divergent behavior in regard to the existence of a rheological explosion under mechanochemical stimuli. Raman spectroscopy confirmed the existence of the isostructural Phase I to Phase II transition near 5 GPa. When subjected to high-pressure and shear, Raman spectra of Phase I showed evidence that while the sucrose molecule underwent significant molecular deformation, there was no evidence of a complete chemical reaction. In contrast, Phase II showed a near-total loss of the in-situ Raman signal in response to shear, suggesting the onset of amorphization or decomposition. The divergent behaviors of Phase I and Phase II are examined in light of the differences in the hydrogen bonding and plasticity of the material.

  16. Strength and texture of Pt compressed to 63 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Shieh, Sean R.; Duffy, Thomas S.

    2015-02-01

    Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at ˜60 GPa. Coarse-grained (˜2-μm particles) Pt has a much lower yield strength of 1-1.5 GPa at ˜60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the <110> texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed <110> and <100> texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell.

  17. The Influence of Wavelength-Dependent Absorption and Temperature Gradients on Temperature Determination in Laser-Heated Diamond-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.

    2016-12-01

    In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.

  18. Phase stability of transition metals and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.

    1997-06-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloymore » systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results.« less

  19. Accurate temperature measurement by temperature field analysis in diamond anvil cell for thermal transport study of matter under high pressures

    NASA Astrophysics Data System (ADS)

    Yue, Donghui; Ji, Tingting; Qin, Tianru; Wang, Jia; Liu, Cailong; Jiao, Hui; Zhao, Lin; Han, Yonghao; Gao, Chunxiao

    2018-02-01

    The study on the thermal transport properties of matter under high pressure is important but is hard to fulfill in a diamond anvil cell (DAC) because the accurate measurement of the temperature gradient within the sample of DAC is very difficult. In most cases, the sample temperature can be read accurately from the thermocouples that are directly attached to the lateral edges of diamond anvils because both the sample and diamond anvils can be uniformly heated up to a given temperature. But for the thermal transport property studies in DAC, an artificial temperature distribution along the compression axis is a prerequisite. Obviously, the temperature of the top or bottom surface of the sample cannot be substituted by that of diamond anvils although diamond anvils can be considered as a good medium for heat conduction. With temperature field simulation by finite element analysis, it is found that big measurement errors can occur and are fatal to the correct analysis of thermal transport properties of materials. Thus, a method of combining both the four-thermocouple configuration and temperature field analysis is presented for the accurate temperature distribution measurement in DAC, which is based on the single-function relationship between temperature distribution and sample thermal conductivity.

  20. Pressure Self-focusing Effect and Novel Methods for Increasing the Maximum Pressure in Traditional and Rotational Diamond Anvil Cells.

    PubMed

    Feng, Biao; Levitas, Valery I

    2017-04-21

    The main principles of producing a region near the center of a sample, compressed in a diamond anvil cell (DAC), with a very high pressure gradient and, consequently, with high pressure are predicted theoretically. The revealed phenomenon of generating extremely high pressure gradient is called the pressure self-focusing effect. Initial analytical predictions utilized generalization of a simplified equilibrium equation. Then, the results are refined using our recent advanced model for elastoplastic material under high pressures in finite element method (FEM) simulations. The main points in producing the pressure self-focusing effect are to use beveled anvils and reach a very thin sample thickness at the center. We find that the superposition of torsion in a rotational DAC (RDAC) offers drastic enhancement of the pressure self-focusing effect and allows one to reach the same pressure under a much lower force and deformation of anvils.

  1. Electrical resistivity measurements on fragile organic single crystals in the diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Tanaka, H.; Kobayashi, H.; Miyazaki, T.

    2001-05-01

    A method of sample assembly for four-probe resistivity measurements on fragile organic single crystals using a diamond anvil cell is presented. A procedure to keep insulation between the metal gasket and four leads of thin gold wires bonded to the sample crystal by gold paint is described in detail. The resistivity measurements performed on a single crystal of an organic semiconductor and that of neutral molecules up to 15 GPa and down to 4.2 K showed that this new procedure of four-probe diamond anvil resistivity measurements enables us to obtain sufficiently accurate resistivity data of organic crystals.

  2. Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell

    NASA Astrophysics Data System (ADS)

    Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.

    2017-04-01

    The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.

  3. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  4. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our understanding of mechanical properties and composite behavior to suggest new approaches to designing high-pressure experiments to target specific measurements of a wide variety of mechanical properties.

  5. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  6. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  7. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Development of Capabilities for New Experimental Studies on the Elasticity and Rheology of Lower Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Triplett, R.; Weidner, D.; Whitaker, M. L.; Chen, H.; Li, L.

    2017-12-01

    Key mineralogical components of the mid-mantle of the Earth have historically been difficult to obtain elasticity data on because they either cannot be recovered to ambient conditions (e.g. calcium silicate perovskite) or back-transform during experimental preparation (e.g. magnesium silicate perovskite). Recently the conditions of the mid-mantle (14+ GPa, 1500+ K) and even of the lower mantle (24+ GPa, 1800+ K) have become reachable using multi-anvil apparatuses (MAA) with in-situ synchrotron x-ray capabilities, but the capabilities of these facilities have not yet fully matured. Examples include that reaching such pressures typically results in samples that are too small for ultrasonics, the few ultrasonics experiments done at these conditions have extremely limited x-ray visibility, and rheological experiments that apply differential stress have not been done at these conditions on large volume samples. The pressure reachable in a Large Volume Press (LVP) is limited by the properties of available ultra-hard (UH) materials such as tungsten carbide (WC) and x-ray transparent polycrystalline diamond (PCD) and cubic boron nitride (cBN). A key factor is the interaction of 1st stage anvils and anvils of UH materials; obtaining WC anvils of larger size is prohibitive in both capability and cost, and anvils of hardened steel are limited in the tonnage that can be applied before damage occurs. Other complications include the difference in compressibility between WC and PCD/cBN anvils and the availability of WC with simultaneous high compressive strength (pressure gain per tonnage) and high transverse rupture strength (lower chance of blowout and reusability). The DT25 press to be used at the new NSLS-II beamline XPD-D is a Kawaii-style LVP MAA which accepts 25 mm UH 2nd-stage anvils and has the capability to apply a differential load while at extreme conditions. We report on our development of techniques to do new and expanded experiments at lower mantle conditions utilizing the large anvil size and advances in UH materials, in particular ultrasonic studies and rheological experiments, with our goal being to routinely reach lower mantle pressures and temperatures with large volume samples while retaining the ability to gather x-ray diffraction data along a majority of the circumference of the Debye-Scherrer rings.

  9. On the Composition and Temperature of the Terrestrial Planetary Core

    NASA Astrophysics Data System (ADS)

    Fei, Yingwei

    2013-06-01

    The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.

  10. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  11. Automated method for determining Instron Residual Seal Force of glass vial/rubber closure systems.

    PubMed

    Ludwig, J D; Nolan, P D; Davis, C W

    1993-01-01

    Instron Residual Seal Force (IRSF) of glass vial/rubber closure systems was determined using an Instron 4501 Materials Testing System. Computer programs were written to process raw data and calculate IRSF values. Preliminary experiments indicated both the appearance of the stress-deformation curves and precision of the derived IRSF values were dependent on the internal dimensions and top surface geometry of the cap anvil. Therefore, a series of five cap anvils varying in shape and dimensions were machined to optimize performance and precision. Vials capped with West 4416/50 PURCOAT button closures or Helvoet compound 6207 lyophilization closures were tested with each cap anvil. Cap anvils with spherical top surfaces and narrow internal dimensions produced more precise results and more uniform stress-deformation curves than cap anvils with flat top surfaces and wider internal dimensions.

  12. Wild bearded capuchin monkeys (Sapajus libidinosus) strategically place nuts in a stable position during nut-cracking.

    PubMed

    Fragaszy, Dorothy M; Liu, Qing; Wright, Barth W; Allen, Angellica; Brown, Callie Welch; Visalberghi, Elisabetta

    2013-01-01

    Humans can use hand tools smoothly and effectively in varying circumstances; in other words, skillfully. A few other species of primates crack encased foods using hammer tools and anvils. Are they skilled? Positioning the food on the anvil so that it does not fall off when struck is a component of skilled cracking. We discovered that bearded capuchin monkeys deliberately place palm nuts in a relatively stable position on the anvil before striking them. In the first experiment, we marked the meridians of palm nuts where they stopped when rolled on a flat surface ("Stop meridian"). We videotaped monkeys as they cracked these nuts on an anvil. In playback we coded the position of the Stop meridian prior to each strike. Monkeys typically knocked the nuts on the anvil a few times before releasing them in a pit. They positioned the nuts so that the Stop meridian was within 30 degrees of vertical with respect to gravity more often than expected, and the nuts rarely moved after the monkeys released them. In the second experiment, 14 blindfolded people (7 men) asked to position marked nuts on an anvil as if to crack them reliably placed them with the Stop meridian in the same position as the monkeys did. In the third experiment, two people judged that palm nuts are most bilaterally symmetric along a meridian on, or close to, the Stop meridian. Thus the monkeys reliably placed the more symmetrical side of the nuts against the side of the pit, and the nuts reliably remained stationary when released. Monkeys apparently used information gained from knocking the nut to achieve this position. Thus, monkeys place the nuts skillfully, strategically managing the fit between the variable nuts and pits in the anvil, and skilled placement depends upon information generated by manual action.

  13. Wild Bearded Capuchin Monkeys (Sapajus libidinosus) Strategically Place Nuts in a Stable Position during Nut-Cracking

    PubMed Central

    Fragaszy, Dorothy M.; Liu, Qing; Wright, Barth W.; Allen, Angellica; Brown, Callie Welch; Visalberghi, Elisabetta

    2013-01-01

    Humans can use hand tools smoothly and effectively in varying circumstances; in other words, skillfully. A few other species of primates crack encased foods using hammer tools and anvils. Are they skilled? Positioning the food on the anvil so that it does not fall off when struck is a component of skilled cracking. We discovered that bearded capuchin monkeys deliberately place palm nuts in a relatively stable position on the anvil before striking them. In the first experiment, we marked the meridians of palm nuts where they stopped when rolled on a flat surface (“Stop meridian”). We videotaped monkeys as they cracked these nuts on an anvil. In playback we coded the position of the Stop meridian prior to each strike. Monkeys typically knocked the nuts on the anvil a few times before releasing them in a pit. They positioned the nuts so that the Stop meridian was within 30 degrees of vertical with respect to gravity more often than expected, and the nuts rarely moved after the monkeys released them. In the second experiment, 14 blindfolded people (7 men) asked to position marked nuts on an anvil as if to crack them reliably placed them with the Stop meridian in the same position as the monkeys did. In the third experiment, two people judged that palm nuts are most bilaterally symmetric along a meridian on, or close to, the Stop meridian. Thus the monkeys reliably placed the more symmetrical side of the nuts against the side of the pit, and the nuts reliably remained stationary when released. Monkeys apparently used information gained from knocking the nut to achieve this position. Thus, monkeys place the nuts skillfully, strategically managing the fit between the variable nuts and pits in the anvil, and skilled placement depends upon information generated by manual action. PMID:23460793

  14. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C.; ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamondmore » anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.« less

  15. Cryo-Compression System in a 3000 Ton Multi-Anvil Press

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Yong, W.

    2016-12-01

    Most large volume high pressure devices are capable of high temperature experiments that are typically achieved by using localized resistive heating of a metal foil, graphite or ceramic sleeve inside a thermally insulated sample volume in a high pressure cell. Low temperatures at high pressures are needed for physical property studies of materials that comprise planetary bodies in the outer solar system. However, low temperatures are more difficult to achieve mainly because the massive steel components of the press, which are in good thermal contact with each other under high load, act as large heat reservoirs and pathways that encumber the removal of heat from the pressure cell. We describe a new custom-designed system under development for a 3000 ton multi-anvil press to reach temperatures below 295K at high pressures. The system was designed to remove heat selectively and conductively from the sample volume through six of the eight WC cubes in direct contact with the octahedral pressure cell. Cooling fins made of Cu are sandwiched between, and in thermal contact with, neighboring anvil faces and are each connected to a dedicated Cu heat exchanger chamber through which liquid nitrogen flows. The chamber internal geometry consists of either square pillars that double the internal surface area of the rectangular parallelepiped enclosed volume or continuous walls separated by valleys. Gas from each chamber is vented to the lab through an exhaust pipe. High pressure results will be presented of several temperature monitoring points in the center of the pressure cell and on the surfaces of the WC cubes and steel wedges which recorded the time-dependent cooling progress. Temperature stability tests will also be presented.

  16. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Lowell; Department of Earth Sciences, Montana State University, Bozeman, Montana 59717; Kanitpanyacharoen, Waruntorn

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate andmore » optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.« less

  17. Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case

    NASA Technical Reports Server (NTRS)

    Starr, David; Lin, Ruci-Fong; Demoz, Belay; Lare, Andrew

    2004-01-01

    A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud-system simulation with MM5 to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin. Meteorological conditions and observations for the 23 July case are described in this volume. The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.

  18. Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations

    NASA Astrophysics Data System (ADS)

    Koch-Müller, Monika; Jahn, Sandro; Birkholz, Natalie; Ritter, Eglof; Schade, Ulrich

    2016-09-01

    The stability of the high-pressure CaCO3 calcite (cc)-related polymorphs was studied in experiments that were performed in conventional diamond anvil cells (DAC) at room temperature as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) at pressures and temperatures up to 20 GPa and 800 K. To probe structural changes, we used Raman and FTIR spectroscopy. For the latter, we applied conventional and synchrotron mid-infrared as well as synchrotron far-infrared radiation. Within the cc-III stability field (2.2-15 GPa at room temperature, e.g., Catalli and Williams in Phys Chem Miner 32(5-6):412-417, 2005), we observed in the Raman spectra consistently three different spectral patterns: Two patterns at pressures below and above 3.3 GPa were already described in Pippinger et al. (Phys Chem Miner 42(1):29-43, 2015) and assigned to the phase transition of cc-IIIb to cc-III at 3.3 GPa. In addition, we observed a clear change between 5 and 6 GPa that is independent of the starting material and the pressure path and time path of the experiments. This apparent change in the spectral pattern is only visible in the low-frequency range of the Raman spectra—not in the infrared spectra. Complementary electronic structure calculations confirm the existence of three distinct stability regions of cc-III-type phases at pressures up to about 15 GPa. By combining experimental and simulation data, we interpret the transition at 5-6 GPa as a re-appearance of the cc-IIIb phase. In all types of experiments, we confirmed the transition from cc-IIIb to cc-VI at about 15 GPa at room temperature. We found that temperature stabilizes cc-VI to lower pressure. The reaction cc-IIIb to cc-VI has a negative slope of -7.0 × 10-3 GPa K-1. Finally, we discuss the possibility of the dense cc-VI phase being more stable than aragonite at certain pressure and temperature conditions relevant to the Earth's mantle.

  19. Final Report. IUT No. B560420 with UC Berkeley. Organic Chemistry at High Pressures &Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, W; Crowhurst, J C; Zaug, J M

    We have successfully completed the research outlined in our proposal: Organic Chemistry at High Pressures and Temperatures. We have experimentally determined a phase diagram which documents the phases and reaction regimes of cyanuric acid , H{sub 3}C{sub 3}N{sub 3}O{sub 3} (1,3,5-triazine-2,4,6-trione), from 300 - 750 K and 0 - 8.1 GPa. We utilized a comparatively new technique to study thin samples of cyanuric acid in the diamond anvil cell in order to collect ambient temperature, high pressure FTIR and Raman data as well as the high-pressure, high-temperature data used in the phase diagram. These experiments made use of the CMLSmore » High-pressure lab's diamond anvil facilities as well as the FTIR and Raman systems.« less

  20. The Fe-Ni-(S) System at 23 GPa: The Possibility of Strong Chemical Fractionation Between Phases in the Cores of the Earth, Mars and Mercury

    NASA Astrophysics Data System (ADS)

    Stewart, A. J.; Schmidt, M. W.

    2004-12-01

    The presence of nickel in the Earths core is widely accepted based on cosmochemical and seismological arguments. However, experimental studies into core compositions rarely include nickel, thus adding a degree of simplicity to otherwise complex experiments. Diamond-anvil cell studies have discovered that Fe-Ni alloys appear to separate into two phases upon heating above 10 GPa: from a single hexagonally close-packed (hcp) phase to the presence of both hcp and face centered cubic (fcc) phases (Lin et al., 2002). Unfortunately, due to the small size of diamond-anvil cell samples, meaningful quantitative analysis is commonly impossible. We have conducted multi-anvil experiments at 23 GPa into the Fe-Ni system and have confirmed the presence of two phases in the sub-solidus system. The starting material for these experiments contains 6 wt% nickel, approximating the amount expected to be found in the Earths core (McDonough, 2003). In experiments to 1500° C (the highest temperature thus far examined), electron microprobe analyses show dramatic phase fractionation with charges separating into an iron-rich phase containing less than 1 wt% Ni and a nickel-rich phase containing as much as 98 wt% Ni. We have observed the effect over a range of more than 500° ºC; further experiments are underway to determine whether these phases both persist toward the melting point of the alloy. Multi-anvil experiments at 23 GPa have also been conducted to examine the effect of nickel on the Fe-S system. Sulphur is an element favoured by many researchers as the light element component in the core of the Earth as well as that of Mars. Previous research has suggested that the addition of nickel to the Fe-S system results in the lowering of eutectic temperatures by about 75° C (Pike et al., 1999). The starting material for these experiments is the same as that used for the pure Fe-Ni experiments discussed above, with the addition of sulphur. Our results indicate a pseudo-binary, (Fe, Ni)-S, eutectic point lying slightly below 1200° C, roughly consistent with the results of Pike et al. (1999). The measured eutectic liquid composition contains 4.4 wt% Ni and 15.8 wt% S. This liquid composition fits closely to the ideal composition of a (Fe, Ni)3S compound (16.0 wt% S with 4.4 wt% Ni in the alloy), suggesting the possible importance of this structure in Fe-Ni-S melts. At subsolidus temperatures in the Fe-Ni-S system, our results become very interesting with each charge showing at least 3 coexisting phases. Based on these results, solid cores of Mercury and Mars containing iron, nickel and sulphur will hold at least 3 phases. Extrapolating our results to the inner core of the Earth would suggest that multiple phases occur in our planet as well.

  1. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Zhixue; Amulele, George; Lee, Kanani K. M.

    In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, themore » side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.« less

  2. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  3. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

    2015-12-01

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10-4 during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  4. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhaoli, E-mail: zl-yan@mail.ioa.ac.cn; Tian, Hao; Cheng, Xiaobin

    2015-12-15

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper.more » Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.« less

  5. Pressurizing Field-Effect Transistors of Few-Layer MoS 2 in a Diamond Anvil Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yabin; Ke, Feng; Ci, Penghong

    Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of freedom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. In this paper, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevicesmore » onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS 2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS 2 can all be significantly enhanced with pressure. Finally, we expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.« less

  6. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less

  7. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  8. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  9. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE PAGES

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; ...

    2016-02-17

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  10. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  11. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  12. Backbone N xH compounds at high pressures

    DOE PAGES

    Goncharov, Alexander F.; Holtgrewe, Nicholas; Qian, Guangrui; ...

    2015-06-05

    Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first principles theoretical structure predictions to investigate mixtures of N 2 and H 2 up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds above 10 GPa. However, we found that these N xH (0.52, H 2, and NH 3 above approximately 40 GPa. Lastly, our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.

  13. Community Extreme Tonnage User Service (CETUS): A 5000 Ton Open Research Facility in the United States

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Righter, K.; Vander Kaaden, K. E.; Rowland, R. L., II; Draper, D. S.; McCubbin, F. M.

    2017-12-01

    Large sample volume 5000 ton multi-anvil presses have contributed to the exploration of deep Earth and planetary interiors, synthesis of ultra-hard and other novel materials, and serve as a sample complement to pressure and temperature regimes already attainable by diamond anvil cell experiments. However, no such facility exists in the Western Hemisphere. We are establishing an open user facility for the entire research community, with the unique capability of a 5000 ton multi-anvil and deformation press, HERA (High pressure Experimental Research Apparatus), supported by a host of extant co-located experimental and analytical laboratories and research staff. We offer wide range of complementary and/or preparatory experimental options. Any required synthesis of materials or follow up experiments can be carried out controlled atmosphere furnaces, piston cylinders, multi-anvil, or experimental impact apparatus. Additionally, our division houses two machine shops that would facilitate any modification or custom work necessary for development of CETUS, one for general fabrication and one located specifically within our experimental facilities. We also have a general sample preparation laboratory, specifically for experimental samples, that allows users to quickly and easily prepare samples for ebeam analyses and more. Our focus as contract staff is on serving the scientific needs of our users and collaborators. We are seeking community expert input on multiple aspects of this facility, such as experimental assembly design, module modifications, immediate projects, and future innovation initiatives. We've built a cooperative network of 12 (and growing) collaborating institutions, including COMPRES. CETUS is a coordinated effort leveraging HERA with our extant experimental, analytical, and planetary process modelling instrumentation and expertise in order to create a comprehensive model of the origin and evolution of our solar system and beyond. We are looking to engage the community in how the CETUS facility can best serve your needs.

  14. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solutions up to supercritical conditions

    USGS Publications Warehouse

    Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Chou, I.-Ming

    2000-01-01

    A hydrothermal diamond anvil cell (HDAC) has been modified by drilling holes with a laser to within 150 ??m of the anvil face to minimize the loss of X-rays due to absorption and scatter by diamond. This modification enables acquisition of K-edge X-ray absorption fine structure (XAFS) spectra from first-row transition metal ions in aqueous solutions at temperatures ranging from 25??C to 660??C and pressures up to 800 MPa. These pressure-temperature (P-T) conditions are more than sufficient for carrying out experimental measurements that can provide data valuable in the interpretation of fluid inclusions in minerals found in ore-forming hydrothermal systems as well as other important lithospheric processes involving water. (C) 2000 Elsevier Science B.V. All rights reserved.

  15. High pressure generation using scaled-up Kawai-cell

    NASA Astrophysics Data System (ADS)

    Shatskiy, A.; Katsura, T.; Litasov, K. D.; Shcherbakova, A. V.; Borzdov, Y. M.; Yamazaki, D.; Yoneda, A.; Ohtani, E.; Ito, E.

    2011-11-01

    A scaled-up version of a 6-8 Kawai-type multianvil apparatus equipped with 47-mm WC anvils has been developed at the Institute for the Study of the Earth's Interior for operation over pressure ranging up to 19 and 24 GPa using the conventional system with larger compressional volumes between 1.2 and 0.4 cm 3, respectively. This system is used under uniaxial compression along cube diagonal of the Kawai-cell up to the press load of 19 MN. Experiments are performed using octahedral pressure media (PM) made of MgO- and ZrO 2-based semi-sintered ceramics and unfired pyrophyllite gaskets. In this study we used "Toshiba-F" grade WC anvils allowing pressure generation up to 24 GPa. We perform pressure calibrations at room and high temperatures, with octahedron/anvil truncation edge-length ratios ( a0/ b, mm) of 12.2/6, 14/6, 14/7, 16/7, 18/7, 18/9, and 18/10. Different configurations show that an increase in edge-length ratio of a0/b permits the achievement of higher pressure, which agrees with the results of Frost at al. (Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A., Rubie, D.C., 2004. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143, 507). However, it also shifts the pressure maximum to higher press loads, in some cases exceeding the capacity of a press. Our and Frost et al. (2004) data reveal that the 14/6, 18/8, and 18/10 assemblies are the most suitable in generating pressures of up to 19-24 GPa at 19 MN press load limits. The assemblies with a low a0/ b ratio have a lower upper pressure limit; however, they exhibit a systematically higher efficiency in pressure generation at low press loads. Consequently, assemblages with high and low a0/ b ratios should be used in high and low pressure experiments, respectively. For example, the 18/12 assembly is suitable for 5-11 GPa pressure range (Stoyanov, E., Haussermann, U., Leinenweber, K., 2010. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure Res., 30, 175), whereas the 14/6, 18/8 ( Frost et al., 2004), and 18/10 assemblies are suitable for 22-24, 19-23, and 11-19 GPa pressure ranges, respectively. The maximum pressure generation achieved in the present study is 24 GPa, using the 14/6 assembly. This appears to be the maximum pressure level attainable by using WC anvils.

  16. Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case

    NASA Technical Reports Server (NTRS)

    Starr, David; Lin, Ruei-Fong; Demoz, Belay; Lare, Andrew

    2004-01-01

    A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud- system simulation with MM5 (Starr et al., companion paper in this volume) to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin (1997). The microphysical components are described in Lin et al. (2004) - see Lin et a1 (this volume). Meteorological conditions and observations for the 23 July case are described in Starr et al. (this volume). The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.

  17. Analysis of in situ measurements of cirrus anvil outflow dynamics

    NASA Astrophysics Data System (ADS)

    Lederman, J. I.; Whiteway, J. A.

    2012-12-01

    The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.

  18. Thermal reduction of MoO3 in sub- and supercritical water: Insights on redox conditions in Hydrothermal Diamond Anvil Cell (HDAC) experiments

    NASA Astrophysics Data System (ADS)

    Solferino, G.; Anderson, A. J.

    2011-12-01

    The Hydrothermal Diamond Anvil Cell (HDAC) is a key tool used in the study of volatile bearing melts and solute-rich fluids at the pressure and temperatures existent in the crust and shallow upper mantle (100-1500 MPa). Oxygen fugacity is among the key parameters that must be constrained in phase equilibrium and speciation studies of melt and aqueous fluid systems. It is however difficult to assess fO2 during HDAC experiments due to decomposition of water, interaction of fluid with gasket materials and the diamond themselves. In this study the temperature at which molybdenum trioxide was thermally reduced to molybdenum dioxide in the presence of deoxygenated water was measured in order to constrain the oxygen fugacity in the HDAC experiment. The sample was contained within either a rhenium gasket between two diamond anvils or within a laser-milled recess in the culet face of one of the diamond anvils (i.e. no gasket). Experiments consisted of loading a MoO3 crystal and deoxygenated water into the sample chamber and then holding the system at a temperature for the desired amount of time. MoO3 dissolved in large part or completely after 30-60 minutes at high temperature. In most experiments tugarinovite (MoO2) precipitated directly from solution once the temperature of thermal reduction was attained. MicroRaman spectroscopy was used to characterize run products. The temperature at which tugarinovite appeared varied depending on the experimental setup, and was 315 ± 2.0 °C in experiments where a gasket was used and 344 ± 2.5 °C in the experiments without a gasket. This implies that the presences of a Re gasket resulted in more reducing conditions of log(fO2) = -20.6 ± 0.5, compared to log(fO2) = -19.5 ± 0.2 for the series without gasket. Moreover, in some of the experiments performed below the transition temperature to tugarinovite, and when MoO3 crystals were not dissolved completely, an additional Raman peak at 854 cm-1 was observed that is not present in pure orthorhombic molybdite (α-MoO3). This feature, which is attributed to the presence of metastable monoclinic MoO3, is absent or poorly developed in runs where no gasket was used but was very intense in experiments where a gasket was used. According to previous studies, monoclinic MoO3 is formed in reducing conditions. The results indicate that for very simple systems, where water is the only or the dominating fluid medium, a Re gasket has a significant reducing effect on the fO2 at relatively low temperatures (200-400 °C). Furthermore, the fO2 conditions appear to be imposed (mainly) by the fluid and not by the noble metal gasket. Despite the reducing effect of the rhenium metal on the fluid, fO2 values for the Re-ReO2 buffer are much smaller than those extrapolated for our runs (i.e. log (fO2) = -27 to -29).

  19. Observed Enhancement of Reflectivity and Electric Field in Long-Lived Florida Anvils

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Willett, John C.

    2007-01-01

    A study of two long-lived Florida anvils showed that reflectivity >20 dBZ increased in area, thickness and sometimes magnitude at mid-level well downstream of the convective cores. In these same regions electric fields maintained strengths >10 kV m1 for many tens of minutes and became quite uniform over tens of kilometers. Millimetric aggregates persisted at 9 to 10 km for extended times and distances. Aggregation of ice particles enhanced by strong electric fields might have contributed to reflectivity growth in the early anvil, but is unlikely to explain observations further out in the anvil. The enhanced reflectivity and existence of small, medium and large ice particles far out into the anvil suggest that an updraft was acting, perhaps in weak convective cells formed by instability generated from the evaporation and melting of falling ice particles. We conclude that charge separation must have occurred in these anvils, perhaps at the melting level but also at higher altitudes, in order to maintain fields >10 kV m 1 at 9 to 10 km for extended periods of time over large distances. We speculate that charge separation occurred as a result of ice-ice particle collisions (without supercooled water being present) via either a non-inductive or perhaps even an inductive mechanism, given the observed broad ice particle spectra, the strong pre-existing electric fields and the many tens of minutes available for particle interactions. The observations, particularly in the early anvil, show that the charge structure in these anvils was quite complex.

  20. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  1. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less

  2. Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils

    NASA Astrophysics Data System (ADS)

    Kunimoto, Takehiro; Irifune, Tetsuo; Tange, Yoshinori; Wada, Kouhei

    2016-04-01

    A pressure generation test for Kawai-type multianvil apparatus (KMA) has been made using second-stage anvils of a newly developed ultra-hard tungsten carbide composite. Superb performance of the new anvil with significantly less plastic deformation was confirmed as compared to those commonly used for the KMA experiments. A maximum pressure of ∼48 GPa was achieved using the new anvils with a truncation edge length (TEL) of 1.5 mm, based on in situ X-ray diffraction measurements. Further optimization of materials and sizes of the pressure medium/gasket should lead to pressures even higher than 50 GPa in KMA using this novel tungsten carbide composite, which may also be used for expansion of the pressure ranges in other types of high pressure apparatus operated in large volume press.

  3. CRYSTAL: The Cirrus Regional Study of Tropical Anvils and Layers

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.; Cox, Stephen K.; Curran, Robert J.

    1999-01-01

    CRYSTAL the Cirrus Regional Study of Tropical Anvils and Layers is part of the ongoing series of field experiments to study clouds and their impact on world weather and climate, and will attempt to improve the application of cloud effects in global climate models. CRYSTAL is being planned as two parts: a limited CRYSTAL field campaign in 2001 to examine towering clouds and anvil genesis over the Everglades of Florida, and the main CRYSTAL field campaign in the summer of 2003 in the Tropical Western Pacific. The latter is timed to take advantage of several cloud measurement satellites that will be operational at that time. This paper discusses some of the issues to be addressed in CRYSTAL, gives a brief description of the research plan, and describes its relationship to other important field experiments.

  4. Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.

    2002-10-01

    Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.

  5. BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements

    NASA Astrophysics Data System (ADS)

    Kantor, I.; Prakapenka, V.; Kantor, A.; Dera, P.; Kurnosov, A.; Sinogeikin, S.; Dubrovinskaia, N.; Dubrovinsky, L.

    2012-12-01

    We present a new design of a universal diamond anvil cell, suitable for different kinds of experimental studies under high pressures. Main features of the cell are an ultimate 90-degrees symmetrical axial opening and high stability, making the presented cell design suitable for a whole range of techniques from optical absorption to single-crystal X-ray diffraction studies, also in combination with external resistive or double-side laser heating. Three examples of the cell applications are provided: a Brillouin scattering of neon, single-crystal X-ray diffraction of α-Cr2O3, and resistivity measurements on the (Mg0.60Fe0.40)(Si0.63Al0.37)O3 silicate perovskite.

  6. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    PubMed Central

    Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon

    2016-01-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503

  7. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: A new cell for X-ray absorption spectroscopy study under high pressure

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Rong; Che, Rong-Zheng; Liu, Jing; Du, Yong-Hua; Zhou, Ying-Li; Hu, Tian-Dou

    2009-08-01

    X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.

  8. Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al 63Cu 24Fe 13 at high temperature

    DOE PAGES

    Stagno, Vincenzo; Bindi, Luca; Park, Changyong; ...

    2015-11-20

    Icosahedrite, the first natural quasicrystal with composition Al 63Cu 24Fe 13, was discovered in several grains of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite. The presence in the meteorite fragments of icosahedrite strictly associated with high-pressure phases like ahrensite and stishovite indicates a formation conditions at high pressures and temperatures, likely during an impact-induced shock occurred in contact with the reducing solar nebula gas. In contrast, previous experimental studies on the stability of synthetic icosahedral AlCuFe, which were limited to ambient pressure, indicated incongruent melting at ~1123 K, while high-pressure experiments carried out at room temperature showed structural stabilitymore » up to about 35 GPa. These data are insufficient to experimentally constrain the formation and stability of icosahedrite under extreme conditions. Here we present the results of in situ high pressure experiments using diamond anvil cells of the compressional behavior of synthetic icosahedrite up to ~50 GPa at room temperature. Simultaneous high P-T experiments have been also carried out using both laser-heated diamond anvil cells combined with in situ synchrotron X-ray diffraction (at ~42 GPa) and multi-anvil apparatus (at 21 GPa) to investigate the structural evolution of icosahedral Al 63Cu 24Fe 13 and crystallization of possible coexisting phases. The results demonstrate that the quasiperiodic symmetry of icosahedrite is retained over the entire experimental pressure range explored. In addition, we show that pressure acts to stabilize the icosahedral symmetry at temperatures much higher than previously reported. Based on our experimental study, direct crystallization of Al-Cu-Fe quasicrystals from an unusual Al-Cu-rich melt would be possible but limited to a narrow temperature range beyond which crystalline phases would form, like those observed in the Khatyrka meteorite. Here, an alternative mechanism would consist in late formation of the quasicrystal after crystallization and solid-solid reaction of Al-rich phases. In both cases, linking our results with observations in nature, quasicrystals are expected to preserve their structure even after hypervelocity impacts that involve simultaneous high pressures and temperatures, thus proving their cosmic stability.« less

  9. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  10. Thermally induced coloration of KBr at high pressures

    NASA Astrophysics Data System (ADS)

    Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.

    2018-03-01

    Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.

  11. AC calorimetry of H2O at pressures up to 9 GPa in diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary M.; Struzhkin, Viktor V.

    2017-06-01

    If successfully developed, calorimetry at tens of GPa of pressure could help characterize phase transitions in materials such as high-pressure minerals, metals, and molecular solids. Here, we extend alternating-current calorimetry to 9 GPa and 300 K in a diamond anvil cell and use it to study phase transitions in H2O. In particular, water is loaded into the sample chambers of diamond-cells, along with thin metal heaters (1 μm-thick platinum or 20 nm-thick gold on a glass substrate) that drive high-frequency temperature oscillations (20 Hz to 600 kHz; 1 to 10 K). The heaters also act as thermometers via the third-harmonic technique, yielding calorimetric data on (1) heat conduction to the diamonds and (2) heat transport into substrate and sample. Using this method during temperature cycles from 300 to 200 K, we document melting, freezing, and proton ordering and disordering transitions of H2O at 0 to 9 GPa, and characterize changes in thermal conductivity and heat capacity across these transitions. The technique and analysis pave the way for calorimetry experiments on any non-metal at pressures up to ˜100 GPa, provided a thin layer (several μm-thick) of thermal insulation supports a metallic thin-film (tens of nm thick) Joule-heater attached to low contact resistance leads inside the sample chamber of a diamond-cell.

  12. Anvil Glaciation in a Deep Cumulus Updraught over Florida Simulated with the Explicit Microphysics Model. I: Impact of Various Nucleation Processes

    NASA Technical Reports Server (NTRS)

    Phillips, Vaughan T. J.; Andronache, Constantin; Sherwood, Steven C.; Bansemer, Aaron; Conant, William C.; Demott, Paul J.; Flagan, Richard C.; Heymsfield, Andy; Jonsson, Haflidi; Poellot, Micheal; hide

    2005-01-01

    Simulations of a cumulonimbus cloud observed in the Cirrus regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation nuclei. Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be nucleated by activation of aerosols far above cloud base in the interior of the cloud ("secondary" or "in cloud" droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base, are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation. Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent enhancement of the warm-rain process and from the nucleation processes on the anvil ice properties are assessed.

  13. A new approach to kinetics study of the anhydrite crystallization at 373 K using a diamond anvil cell with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Zheng, H. F.

    2013-04-01

    A new approach to the kinetics study of anhydrite (CaSO4) crystallization has been performed in situ using a hydrothermal diamond anvil cell with Raman spectroscopy in the pressure range 896-1322 MPa and a constant temperature of 373 K. Transformed volume fraction X(t) was determined from Raman peak intensity of the sulfate ion in aqueous solution. The transformation-time plots display a sigmoidal shape with time, which indicates that the reaction rate is different at each stage of anhydrite crystallization. At 373 K, the rate constant k increases from 1.14 × 10-4 s-1 to 1.86 × 10-3 s-1, demonstrating a positive effect of pressure on the overall rate at isothermal condition. We first achieved the molar volume change (ΔVm) equal to -1.82 × 10-5 m3/mol in the course of anhydrite crystallization through Avrami kinetic theory, showing a process of reduction in volume at high pressure and high temperature. According to the exponent n derived from our experiments, a grain-boundary nucleation and diffusion-controlled growth kinetically dominates the crystallization of anhydrite.

  14. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    NASA Astrophysics Data System (ADS)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  15. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Fundamental Department, Aviation University, Changchun 130022; Li Ming

    2011-04-15

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases.

  16. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure.

    PubMed

    Yang, Jie; Li, Ming; Zhang, Honglin; Gao, Chunxiao

    2011-04-01

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases. © 2011 American Institute of Physics

  17. Susceptibility measurements at high pressures using a microcoil system in an anvil cell

    NASA Astrophysics Data System (ADS)

    Alireza, Patricia Lebre; Julian, Stephen R.

    2003-11-01

    We present here a microcoil setup for susceptibility measurements in anvil cells. In contrast to previous designs, we have placed the secondary coil inside the high pressure volume. This dramatically boosts the signal and eliminates the need for complex background subtraction. For samples of lead, tin, and the metal-insulator oxide calcium ruthenate (Ca2RuO4), our procedure has produced very clear signals for both superconducting transitions and ferromagnetic ordering with a weak magnetic moment (0.2μB/Ru), up to 75 kbar, with a signal-to-noise ratio of ˜80.

  18. Pressure-induced phase transition in GaN nanocrystals

    NASA Astrophysics Data System (ADS)

    Cui, Q.; Pan, Y.; Zhang, W.; Wang, X.; Zhang, J.; Cui, T.; Xie, Y.; Liu, J.; Zou, G.

    2002-11-01

    High-pressure in situ energy-dispersive x-ray diffraction experiments on GaN nanocrystals with 50 nm diameter have been carried out using a synchrotron x-ray source and a diamond-anvil cell up to about 79 GPa at room temperature. A pressure-induced first-order structural phase transition from the wurtzite-type structure to the rock-salt-type structure starts at about 48.8 GPa. The rock-salt-type phase persists to the highest pressure in our experimental range.

  19. Mineral Physics Research on Earth's Core and UTeach Outreach Activities at UT Austin

    NASA Astrophysics Data System (ADS)

    Lin, J.; Wheat, A. J.

    2011-12-01

    Comprehension of the alloying effects of major candidate light elements on the phase diagram and elasticity of iron addresses pressing issues on the composition, thermal structures, and seismic features of the Earth's core. Integrating this mineral physics research with the educational objectives of the CAREER award was facilitated by collaboration with the University of Texas at Austin's premier teaching program, UTeach. The UTeach summer outreach program hosts three one-week summer camps every year exposing K-12th graders to university level academia, emphasizing math and science initiatives and research. Each week of the camp either focuses on math, chemistry, or geology. Many of the students were underrepresented minorities and some required simultaneous translation; this is an effect of the demographics of the region, and caused some language barrier challenges. The students' opportunity to see first-hand what it is like to be on a university campus, as well as being in a research environment, such as the mineral physics lab, helps them to visualize themselves in academia in the future. A collection of displayable materials with information about deep-Earth research were made available to participating students and teachers to disseminate accurate scientific knowledge and enthusiasm. These items included a diamond anvil cell and diagrams of the diamond crystal structure, the layers of the Earth, and the phases of carbon to show that one element can have very different physical properties purely based on differences in structure. The students learned how advanced X-ray and optical laser spectroscopies are used to study properties of planetary materials in the diamond anvil cell. Stress was greatly placed on the basic mathematical relationship between force, area, and pressure, the fundamental principle involved with diamond anvil cell research. Undergraduate researchers from the lab participated in the presentations and hands-on experiments, and answered any questions the young students had about college life and studies. Outreach benefits include effective and organized collaborations with the UTeach program, which prepares undergraduates at UT-Austin to teach secondary science courses, as well as positive connections made with Austin-area science teachers, providing them with alternative knowledge and experience to share with their students in the classroom. The CAREER award offers an excellent venue to connect the PI's research and educational activities, and has made constructive impacts on the PI's career development and on his continuation in this frontier research. The students who visited the lab wrote thank you cards, some expressing great interest in being scientists, geophysicists, and chemical engineers, as well as drawings of diamond anvil cells and the pressure/area relationship, showing excellent comprehension of the subject matter. Program improvements may lie in also outreaching to teachers to create stronger relationships in an effort to enrich curricula and keep students aware of research and degree options as the time to enter college nears.

  20. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  1. Gas loading apparatus for the Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocian, A.; Kamenev, K. V.; Bull, C. L.

    2010-09-15

    We describe the design and operation of an apparatus for loading gases into the sample volume of the Paris-Edinburgh press at room temperature and high pressure. The system can be used for studies of samples loaded as pure or mixed gases as well as for loading gases as pressure-transmitting media in neutron-scattering experiments. The apparatus consists of a high-pressure vessel and an anvil holder with a clamp mechanism. The vessel, designed to operate at gas pressures of up to 150 MPa, is used for applying the load onto the anvils located inside the clamp. This initial load is sufficient formore » sealing the pressurized gas inside the sample containing gasket. The clamp containing the anvils and the sample is then transferred into the Paris-Edinburgh press by which further load can be applied to the sample. The clamp has apertures for scattered neutron beams and remains in the press for the duration of the experiment. The performance of the gas loading system is illustrated with the results of neutron-diffraction experiments on compressed nitrogen.« less

  2. Spray-loading: A cryogenic deposition method for diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  3. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, P., E-mail: pchow@carnegiescience.edu; Xiao, Y. M.; Rod, E.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input fieldmore » of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.« less

  4. Stability and melting of Fe3C at high pressure and temperature: Implication for the carbon in the Earth's core

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ohtani, E.; Sakai, T.; Hirao, N.; Ohishi, Y.

    2012-12-01

    The Earth's core is regarded as an Fe-Ni alloy but its density is lower than that of pure Fe at the core conditions. Therefore, the Earth's core is supposed to contain light elements and carbon is one of the candidates of the light elements to explain the density deficit of the Earth's core. Nakajima et al. (2009) reported the melting temperature of Fe3C up to around 30 GPa based on textual observations, the chemical analysis of the quenched run products and in situ X-ray diffraction experiments using a Kawai-type multi anvil apparatus. Lord et al. (2009) reported melting temperatures of Fe3C up to 70 GPa, which was determined by the temperature plateau during increasing laser power using a laser-heated diamond anvil cell. They also suggested Fe+Fe7C3 is a stable subsolidus phase. There are obvious discrepancies between the melting curve and the stable subsolidus phase reported by Nakajima et al. (2009) and those reported by Lord et al. (2009). In this study, the melting temperatures of Fe3C and a subsolidus phase relation were determined based on in situ X-ray diffraction experiments. This study aims to reveal the stability field of Fe3C and the melting temperature of Fe3C and to discuss the behaviors of carbon in the Earth's core. We have performed experiments using a laser-heated diamond anvil cell combined with in situ X-ray diffraction experiment at BL10XU beamline, SPring-8 synchrotron facility. An NaCl powder and a rhenium or tungsten foil were used for the insulator and gasket, respectively. Melting of the sample was determined by disappearance of the X-ray diffraction peaks. We determined the melting relation of Fe3C up to 145 GPa by in situ X-ray diffraction experiments. Present results are close to Nakajima et al. (2009) up to 30 GPa but become close to that reported by Lord et al. (2009) at higher pressure conditions. The solidus temperature extrapolated to the ICB pressure, 330 GPa, is 5400 K. We also confirmed that Fe3C is stable as a subsolidus phase at least up to 237 GPa and 4100 K. This strongly suggests that Fe3C is a potential candidate of the Earth's inner core although we need further studies at the inner core conditions.

  5. Diamond-anvil cell for radial x-ray diffraction.

    PubMed

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-06-28

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ≈54.7°, the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants.

  6. Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core.

    PubMed

    Jephcoat, Andrew P; Bouhifd, M Ali; Porcelli, Don

    2008-11-28

    The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid-liquid, metal-silicate (M-Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number-helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core-mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.

  7. Experiments with phase transitions at very high pressure

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1984-01-01

    A diamond anvil cell is described which was developed for studying hydrogen and other materials to pressure above 100 PGa, including measurements at low temperature. The benefits of X-ray diffraction using synchrotron radiation and using a fixed anode source are examined as well as the optimization of X-ray diffraction at low temperature. A Ge diode detector was incorporated into apparatus for measuring optical absorption, reflectance, and fluorescence in order to enable luminescence studies and Raman spectra were obtained. Results of experiments on Si, Ge, GaP, InAs, hydrogen, benzene, nitrogen, graphite, and the superconductor CeCu2Si2 are given.

  8. Crystallographic phases in heavy rare earth metals under megabar pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, G. K.; Vohra, Y. K.

    2012-07-01

    Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.

  9. 90-kilobar diamond-anvil high-pressure cell for use on an automatic diffractometer.

    PubMed

    Schiferl, D; Jamieson, J C; Lenko, J E

    1978-03-01

    A gasketed diamond-anvil high-pressure cell is described which can be used on a four-circle automatic diffractometer to collect x-ray intensity data from single-crystal samples subjected to truly hydrostatic pressures of over 90 kilobars. The force generating system exerts only forces normal to the diamond faces to obtain maximum reliability. A unique design allows exceptionally large open areas for maximum x-ray access and is particularly well suited for highly absorbing materials, as the x rays are not transmitted through the sample. Studies on ruby show that high-pressure crystal structure determinations may be done rapidly, reliably, and routinely with this system.

  10. Liquid mercury sound velocity measurements under high pressure and high temperature by picosecond acoustics in a diamond anvils cell

    NASA Astrophysics Data System (ADS)

    Decremps, F.; Belliard, L.; Couzinet, B.; Vincent, S.; Munsch, P.; Le Marchand, G.; Perrin, B.

    2009-07-01

    Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.

  11. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimenmore » are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.« less

  12. Leading and Trailing Anvil Clouds of West African Squall Lines

    NASA Technical Reports Server (NTRS)

    Centrone, Jasmine; Houze, Robert A.

    2011-01-01

    The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

  13. Phase Transitions in the system CaCO3 at high P and T determined by in-situ Vibrational Spectroscopy in Diamond-Anvil-Cells

    NASA Astrophysics Data System (ADS)

    Koch-Mueller, M.; Jahn, S.; Birkholz, N.; Schade, U.

    2013-12-01

    Carbonates are the most abundant carbon-bearing minerals on Earth. They can be transported into the upper and lower mantle via subduction processes. Knowledge of the stability of solid carbonates adapting different structures with increasing pressure and temperature is therefore of great importance to understand the structure and dynamics of the Earth. Even for the very simple system CaCO3, the phase relations at high pressure and temperature are only poorly understood. It has been known for many years that calcite (cc) can adopt different structures with increasing pressure (e.g. Bridgman, 1939: cc-I to III; Tyburczy and Ahrens, 1986: cc-VI). But only recently Merlini et al. (2012) were able to solve the crystal structures of some of these high pressure polymoprhs namely cc-III, cc-IIIb and cc-VI. They report that cc-VI has a higher density then aragonite under the same conditions. To study the stability of the CaCO3-polymorphs, experiments were performed in conventional diamond anvil cells (DAC) at ambient temperatures as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) in the pressure range 9 to 20 GPa and temperatures up to 800 K. As probe for the structural changes we used conventional mid-infrared-, synchrotron far-infrared- and Raman-spectroscopy. Within the cc-III stability field (3 to 15 GPa at room temperature, e.g. Catalli and Williams, 2005) we observed in all types of experiments consistently two different spectral patterns: one at lower P < 5 GPa and another at P > 5 < 15 GPa independent on the starting material and the pressure- and time-path of the experiments. Whether these P-induced structural changes may be linked to the above mentioned different structures of cc-III is not yet clear. Also, in all types of experiments we confirmed the transition of cc-III to cc-VI at about 15 GPa at room temperature. Merlini et al. (2012) speculated that temperature may stabilize the structures of cc-III to lower pressure and surprisingly we found the same for the cc-III to cc-VI transition. The reaction has a negative slope of about -0.007 GPa/K. Thus, under the P, T- conditions of the Earth's mantle cc-VI may be stabilized towards lower pressure replacing aragonite in some parts of the mantle. References Bridgman P.W. (1939) Am J Sci, 237, 7 - 18. Catalli K. and Williams Q. (2005) Am Mineral, 90, 1679 - 1682. Merlini M. (2012) EPSL, 333-334, 265 - 271. Tyburczy J. A. and Ahrens T. J. (1986) J Geophysical Research, 91, 4730 - 4744.

  14. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.

    Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less

  15. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions

    DOE PAGES

    Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.; ...

    2018-01-23

    Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less

  16. Experimental Evidence of Negative Linear Compressibility in the MIL-53 Metal-organic Framework Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra-Crespo, Pablo; Dikhtiarenko, Alla; Stavitski, Eli

    Here we report a series of powder X-ray diffraction experiments performed on the soft porous crystals MIL-53(Al) and NH 2-MIL-53(Al) in a diamond anvil cell under different pressurization media. Systematic refinements of the obtained powder patterns demonstrate that these materials expand along a specific direction while undergoing total volume reduction under an increasing hydrostatic pressure. Our results confirm for the first time the negative linear compressibility behaviour of this family of materials, recently predicted from quantum chemical calculations.

  17. Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra-Crespo, Pablo; Dikhtiarenko, Alla; Stavitski, Eli

    Here we report a series of powder X-ray diffraction experiments performed on the soft porous crystals MIL-53(Al) and NH 2-MIL-53(Al) in a diamond anvil cell under different pressurization media. Systematic refinements of the obtained powder patterns demonstrate that these materials expand along a specific direction while undergoing total volume reduction under an increasing hydrostatic pressure. The results confirm for the first time the negative linear compressibility behaviour of this family of materials, recently predicted from quantum chemical calculations.

  18. Experimental Evidence of Negative Linear Compressibility in the MIL-53 Metal-Organic Framework Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra-Crespo, Pablo; Dikhtiarenko, Alla; Stavitski, Eli

    Here, we report a series of powder X-ray diffraction experiments performed on the soft porous crystals MIL-53(Al) and NH 2-MIL-53(Al) in a diamond anvil cell under different pressurization media. Systematic refinements of the obtained powder patterns demonstrate that these materials expand along a specific direction while undergoing total volume reduction under an increasing hydrostatic pressure. Our results confirm for the first time the negative linear compressibility behaviour of this family of materials, recently predicted from quantum chemical calculations.

  19. Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family

    DOE PAGES

    Serra-Crespo, Pablo; Dikhtiarenko, Alla; Stavitski, Eli; ...

    2014-03-24

    Here we report a series of powder X-ray diffraction experiments performed on the soft porous crystals MIL-53(Al) and NH 2-MIL-53(Al) in a diamond anvil cell under different pressurization media. Systematic refinements of the obtained powder patterns demonstrate that these materials expand along a specific direction while undergoing total volume reduction under an increasing hydrostatic pressure. The results confirm for the first time the negative linear compressibility behaviour of this family of materials, recently predicted from quantum chemical calculations.

  20. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  1. Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa.

    PubMed

    Eggert, J H; Karmon, E; Hemley, R J; Mao, A; Goncharov, A F

    1999-10-26

    We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable statesmore » in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.« less

  3. High-sensitivity NMR beyond 200,000 atmospheres of pressure

    NASA Astrophysics Data System (ADS)

    Meier, T.; Reichardt, S.; Haase, J.

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. 1 H NMR of water shows sensitivity and resolution obtained with the cells, and 63 Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. 115 In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

  4. 16 CFR Figures 11, 12 and 13 to... - Hemispherical Anvil and Curbstone Anvil

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hemispherical Anvil and Curbstone Anvil 11, Figures 11, 12 and 13 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER..., 12 and 13 to Part 1203—Hemispherical Anvil and Curbstone Anvil ER10MR98.011 ...

  5. 16 CFR Figures 11, 12 and 13 to... - Hemispherical Anvil and Curbstone Anvil

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Hemispherical Anvil and Curbstone Anvil 11, Figures 11, 12 and 13 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER..., 12 and 13 to Part 1203—Hemispherical Anvil and Curbstone Anvil ER10MR98.011 ...

  6. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

    USGS Publications Warehouse

    Bassett, William A.; Shen, A.H.; Bucknum, M.; Chou, I.-Ming

    1993-01-01

    A new style of diamond anvil cell(DAC) has been designed and built for conducting research in fluids at pressures to 2.5 GPa and temperatures from −190 to 1200 °C. The new DAC has been used for optical microscope observations and synchrotron x‐ray diffraction studies. Fringes produced by interference of laser light reflected from top and bottom anvil faces and from top and bottom sample faces provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in samples that have resulted from transitions and reactions. X‐ray diffraction patterns of samples under hydrothermal conditions have been made by the energy dispersive method using synchrotron radiation. The new DAC has individual heaters and individual thermocouples for the upper and lower anvils that can be controlled and can maintain temperatures with an accuracy of ±0.5 °C. Low temperatures are achieved by introducing liquid nitrogen directly into the DAC. The equation of state of H2O and the α‐β quartz transition are used to determine pressure with an accuracy of ±1% in the aqueous samples. The new DAC has been used to redetermine five isochores of H2O as well as the dehydration curves of brucite, Mg(OH)2, and muscovite, KAl2(Si3Al)O10(OH)2.

  7. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell.

    PubMed

    Hong, Xinguo; Newville, Matthew; Prakapenka, Vitali B; Rivers, Mark L; Sutton, Stephen R

    2009-07-01

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/-3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  8. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.; Newville, M.; Prakapenka, V.B.

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over amore » small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.« less

  9. The high - low-p clinoenstatite transition: in situ xrd and ultrasonic study

    NASA Astrophysics Data System (ADS)

    Müller, H. J.; Wunder, B.; Lathe, C.; Schilling, F. R.

    2003-04-01

    Using single-crystal X-ray diffraction analyses in a diamond anvil cell Angel et al. (1992) published the transformation of MgSiO_3 from LCEn to a C2/c-polymorph (HCEn) at around 5.5 - 8.0 GPa and room-T (RT)conditions. This LCEn - HCEn-transition is not quenchable. However, the knowledge of the exact phase boundary positions for the MgSiO_3-transitions is essential as pyroxene is an important component of the Earth's mantle and will significantly influence elastic properties (e.g. v_p, v_s) of the mantle. We determined the HCEn - LCEn-transition by in-situ XRD experiments under high P, T using the multi-anvil appar atus MAX80 at the synchrotron facility HASYLAB, Hamburg. Our preliminary results only represent the minimum P-conditions of the HCEn - LCEn phase boundary, which is approximated by equation P (GPa) = 0.0021T (/C) + 6.06. Nevertheless, our results are in good agreement to data published by Angel & Hugh-Jones (1994). The invariant point defined by the intersection of the HCEn - LCEn equilibrium determined within this study and the OEn - LCEn reaction after Angel &Hugh-Jones (1994) lies at about 7.9 GPa and 875/C. This is in contrast to earlier experimental results of Kanzaki (1991) and Ulmer &Stalder (2001). The samples for the ultrasonic interferometry experiments were prepared by hot-isostatic pressing also using the MAX80. Adjacent XRD ruled out any phase transition during the hip-process. For the ultrasonic measurements one of the six anvils of MAX80 were exchanged by an anvil equipped with lithium niobate p- and s-wave transducers of 33.3 MHz natural frequency (Mueller et al., 2002). Corresponding to the XRD experiments HCEn was formed by increasing the pressure at RT. The velocities of elastic compressional and shear waves were measured under in situ conditions using the classical digital sweep technique. After the phase transition to LCEn as a result of rising the temperature at given pressure the measurements were repeated. The newly developed ultra sonic data transfer function (UDTF) technique, first described by Li (pers. comm.), enabling much faster measurements than the classical method, was used to measure both the elastic wave velocities of LCEn in dependence on pressure at 700/C. To compare the results v_p and v_s were measured at 6.7 GPa and 7.5 GPa using both interferometric techniques. The results demonstrate the correspondence in the limits of less than 1 %.

  10. A convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Cheng, Hu; Zhang, Junran; Li, Yanchun; Li, Gong; Li, Xiaodong; Liu, Jing

    2018-01-01

    We have designed and implemented a novel DLD for controlling pressure and compression/decompression rate. Combined with the use of the symmetric diamond anvil cells (DACs), the DLD adopts three piezo-electric (PE) actuators and three static load screws to remotely control pressure in accurate and consistent manner at room temperature. This device allows us to create different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. The sample pressure compression/decompression rate that we have achieved is up to 58.6/43.3 TPa/s, respectively. The minimum of load time is less than 1 ms. The DLD is a powerful tool for exploring the effects of rapid (de)compression on the structure of materials and the properties of materials.

  11. On high-pressure melting of tantalum

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  12. A con-focal setup for micro-XRF experiments using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Wilke, Max; Rickers, Karen; Vincze, Laszlo; Schmidt, Christian; Borchert, Manuela; Pascarelli, Sakura

    2010-05-01

    In this contribution we introduce an experimental setup to perform con-focal micro X-ray fluorescence measurements in situ in samples at high temperatures and pressures in diamond anvil cells (DAC) (e.g. Schmidt et al. 2007). The con-focal arrangement is used to suppress the background in X-ray fluorescence (XRF) spectra that stems from elastic and inelastic scattering of the diamond anvils. The setup is based on a focusing optic in the incident beam that reaches a spot of 5-10 μm and a focusing poly-capillary in front of an energy-dispersive solid-state detector. The detector poly-capillary is designed to work at a very long working distance of 50 mm in order to collect the radiation from the center of the DAC at 90° to the incident beam. The probing volume is defined by the two foci and has a size of ca. 300 μm at 8 keV and 150 μm at 19 keV as measured by scans through thin metal foils. Comparison of XRF spectra acquired with a usual detector collimator and spectra recorded with the detector capillary shows a strong suppression of XRF signal generated outside the probed volume, i.e. XRF from the gasket material and signal from elastic and Compton scattering by the diamond anvils. The ratio of the Zr K-alpha fluorescence peak to the peak of the Compton scattering changes from 0.5 (collimator) to 1.26 (detector capillary) for a ca. 1000 ppm Zr standard solution and an incident beam energy of 20 keV. For a standard solution containing ca. 1000 ppm Hf, the ratio of the L-alpha to the Compton signal increases to 6 using the detector capillary and an incident beam energy of 9.7 keV. Thus, the con-focal setup substantially improves the fluorescence to background ratio. This will result in higher sensitivities for dilute elements in the sample chamber of the DAC. Furthermore, the possibilities of interference of the sample's signal with signal from the sample environment are greatly reduced. In a broader sense, the setup can also be applied to other confined samples that require long working distances. Schmidt et al. (2007) Lithos 95, 87-102

  13. Novel Techniques for High Pressure Falling Sphere Viscosimetry under Simulated Earth's Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Beckmann, F.; Dobson, D. P.; Hunt, S. A.; Secco, R.; Lauterjung, J.; Lathe, C.

    2014-12-01

    Viscosity data of melts measured under in situ high pressure conditions are crucial for the understanding of Earth's lower mantle and the interior of terrestrial and extrasolar Super-Earth planets. We report recent technical advances and techniques enabling falling sphere viscosity measurements in single- and double-stage DIA-type multi-anvil apparatus. For the experiments we used presses with a maximum load of 250 tons and 1750 tons. We anticipate that our system will enable viscosity measurements up to the maximum pressure for non-diamond anvils, i.e. pressures up to some 30 GPa. For the development of the new set ups the deformation of the cell assemblies were analyzed by X-ray absorption tomography at beamline W II at DESY/HASYLAB after the high pressure runs. These analysis gave considerable insights into strategies for improving the cell assembly with the result that the optimized assemblies could be used at much higher pressures without blow-outs. We think this approach is much faster and more beneficial than the classical way of trial and error. Additionally to prevent high pressure blow outs the task was to make the whole melting chamber accessible for the high pressure X-radiography system up to the maximum pressures. This way the accuracy and reliability of the measurements can be improved. For this goal we used X-ray transparent cBN-anvils at the single-stage DIA large volume press. Because this material is recently not available for the cube size of 32 mm this aproach did not work for the double-stage DIA. As a very useful and economical alternative we used slotted carbide anvils filled with fired pyrophyllite bars. To improve the frame quality of the platinum spheres taken by the CCD-camera the energy of the monochromatic X-rays had to be increased to 100 keV. The resulting ascent of scattered radiation required a new design of the X-radiography unit. Our results are demonstrated with viscosity measurements following Stokes law by evaluation of X-radiography sequences taken by a CCD-camera at pressures of 5 GPa as well as 10 GPa and temperatures of 1890 K. As the first result we could increase the maximum pressure range of published viscosity measurements with dacite melts by almost factor 1.5 (see Tinker et al., 2004).

  14. The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Davis, M. K.; Panero, W. R.; Stixrude, L. P.

    2003-12-01

    Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the diamond stress field: variations of up to 2.3 cm-1 or about 0.8 GPa over a pressure range of 0 to 3.5 GPa. However, heating substantially reduces inhomogeneity in the vicinity of the diamond-sample interface allowing the derivation of a useful pressure calibration. Preliminary results show that the primary Raman line of diamond shifts with respect to temperature according to the equation 1332.15 - 0.0016x - 3.5e-5x2 + 7.1e-11x3 where x is temperature. The same Raman line of diamond shifts with pressure according to the equation 1332.15 + 3.4*P where the pressure, P, is in GPa. We find that the effects of temperature and pressure are independent of one another so that an independent measurement of temperature (with thermocouples) together with the measured Raman shift determines the pressure with an accuracy of 0.27 GPa at 800K and 2 GPa. We compare our calibration to the quartz and ruby calibration scales over the range where they are stable. We also compare our calibration to previous experiments using independent pressure calibrants.

  15. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jr., R.L.; Fang, Z.; Tohoku)

    In this review, diamond anvil type cells (DACs) are reviewed as a method for studying supercritical water systems. The hydrothermal DAC provides easy and safe experimental access to high pressure (30-3000 MPa) and high temperature (400-800 C) regions and the device allows exploration of supercritical systems at high density (400-1200 kg/m{sup 3}), which is usually difficult or costly with batch or flow systems. In the first part of this review, characteristics of DACs regarding anvil type, DAC type, anvil alignment, heating, analytical methods, pressure and temperature determination, gasket, loading, physical size are discussed with emphasis on DACs that can bemore » used to generate conditions of interest for understanding supercritical water systems. In the second part of this review, applications and key findings of studies on supercritical water systems from geology, chemical, biomass, energy, environmental, polymer, and materials related fields are discussed. Some of the key findings determined with DAC are related to the dissolution or existence of phases at conditions of high temperature and high pressure, however, DAC has been used in many quantitative studies to determine fundamental properties such as speeds of sound, phase behavior, solubilities, partition coefficients and viscosities. Future prospects for DAC as a method for exploring supercritical water systems include combination of DAC with transmission electron microscopy (TEM) for studying nanostructures, use of high-speed streak cameras to study high-speed reactions, combustions, and energetic materials, use of time-dependent loads to study kinetics, precipitation and crystallization phenomena, the use of DAC with synchrotron radiation to follow reaction and material processes in situ, and the many modifications that can be made to DAC anvils and rapid heating methods such as lasers and masers used in conjunction with in situ techniques. The DAC is a highly versatile instrument and should find widespread use in studying supercritical water systems.« less

  16. An improved hydrothermal diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  17. High-pressure spectroscopic measurement on diffusion with a diamond-anvil cell

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Katoh, Eriko; Yamawaki, H.; Fujihisa, H.; Sakashita, M.

    2003-04-01

    We report a diamond-anvil-cell (DAC) technique developed for spectroscopic measurement on the diffusion process in molecular solids at high pressure. The diffusion processes of atoms, molecules, or their ionic species are investigated for a bilayer specimen by measuring the variation of infrared vibrational spectra with time. The experimental procedures for the protonic and molecular diffusion measurements on ice at 400 K and 10.2 GPa are presented as an example study. The in situ spectroscopic technique with a DAC significantly extends the pressure range accessible for diffusion measurement. The diffusion process at a rate of 10-16-10-14 m2/s can currently be observed at temperatures of 300-600 K and pressures up to several tens of gigaPascals.

  18. Iron Speciation in Minerals and Melts at High Pressure: Implications for the Redox Evolution of the Early Mantle

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.; Miyajima, N.

    2016-12-01

    During the differentiation of the early Earth, the silicates of the mantle must have been in equilibrium with core-forming metal iron, as indicated by the depletion of siderophile elements from the mantle. Studies of ancient rocks suggest that by at least 3.9 Ga, the upper mantle was 4-5 log units more oxidized than metal saturation implies (Delano 2001). The process(es) by which the mantle was oxidized is unclear, but has implications for the timing of accretion, differentiation, and volatile delivery to the early Earth, as well as evolution of the early atmosphere. One plausible oxidation mechanism is suggested by the tendency of high-pressure silicate minerals to favor Fe3+ over Fe2+ in their structures, even at metal saturation. This preference in the lower mantle mineral bridgmanite has been proposed to drive the disproportionation reaction of FeO to form Fe­2O3 and iron metal (Frost and McCammon 2008). We have performed experiments at the Ru-RuO2 fO2 buffer which show that silicate melts may mirror this behavior and Fe3+ may be stabilized with pressure for a constant fO2; by 21 GPa, the previously observed trend of Fe3+ decreasing with pressure (O'Neill, 2006) reverses and ferric iron content had increased. If this is also the case at lower oxygen fugacities, FeO disproportionation may have occurred at the base of an early magma ocean, establishing a redox gradient similar to what is presumed for the mantle today. Here we report results of further multianvil and diamond anvil cell experiments exploring the plausibility of FeO disproportionation driving mantle oxidation. Experiments investigating Fe speciation in high pressure melts at variable fO2 will be discussed along with results of diamond anvil cell experiments investigating ferric iron content of lower mantle minerals at metal saturation.

  19. In situ experimental study of subduction zone fluids using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Bureau, H.; Foy, E.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S.

    2008-12-01

    Experiments carried out in diamond anvil cells combined with in situ synchrotron light source measurements represent the only one issue to observe and study fluid equilibria in real time, at the pressure and temperature conditions of the subduction zones. We will present new results recently obtained at the DIFFABS beam line (SOLEIL Synchrotron) aiming at studying equilibria between silica-rich hydrous melts and aqueous fluids in the presence of U, Th, Pb, Ba and Br. We used synchrotron X-Ray fluorescence analysis performed in situ in Bassett-modified hydrothermal diamond anvil cells in order to monitor the chemical transfers of the studied elements between the phases in equilibrium at different pressures (up to 1.6 GPa) and temperatures (up to 900°C). We have calculated the partition coefficients for each studied element (i): Difluid/melt = Cifluid/Cimelt. Results show that U and Th exhibit more affinities for the silica-rich hydrous fluids in the presence or absence of Br, considered here such as an analogue for Cl, (i.e. 0.4 < DUfluid/melt < 0.7 depending on P,T conditions). Br partitioning shows that whereas this halogen element has very strong affinity to the aqueous fluid during magma degassing (DBrfluid/melt >> 10 after decompression) this coefficient decreases with pressure suggesting that Br would not be immediately washed out from the subducted plate during dehydration but may be recycled deeper in the mantle. These new data combined with previous ones obtained for Pb, Ba (Bureau et al., 2007, HPR vol 27, p. 235) and Rb, Sr, Zr (Bureau et al., 2004, Eos Trans. AGU, 85(47), V11C-05), allow us to propose a general outline of the fluid phase transfers through the subduction factory: (1) at shallow level: their nature and composition, the impact of the presence of halogens and the fertilizing role of such fluids in the mantle wedge, where the generation of arc magmas takes place (2) deeper in the mantle: where hydrous silica-rich supercritical fluids may also favour a deep recycling of a fraction of volatiles and trace elements present in the subducted oceanic crust.

  20. Microseismic Monitoring of the Olivine → Spinel Transition in Fayalite Under Non-Hydrostatic Stress

    NASA Astrophysics Data System (ADS)

    Officer, T.; Secco, R. A.

    2016-12-01

    In subduction zones, deep earthquakes are thought to be associated with faulting that arises from phase transformations. In order to test the viability of this mechanism experimentally, it is necessary to make microseismic measurements while the mineral under investigation is subjected to the pressure and temperature (P,T) environment at depth. A system has been developed capable of making in situ acoustic emission (AE) measurements on samples under P,T conditions representative of the upper mantle and transition zone. Experiments are performed in a 3000-ton multi-anvil press using an 18/11 octahedral cell with 6 piezoelectric transducers mounted on the rear side of the anvils. AE signals are collected at a sampling rate of 40 MHz using a triggered system and a data buffer for continuous recording so full waveforms of AE events are captured. The use of multiple transducers distributed in a microseismic array allows for events to be located within the sample through automatic arrival time picking and least squares inversion techniques. The multi-anvil apparatus constitutes an inherently noisy environment both acoustically and electrically, therefore methods of noise reduction were developed and will be discussed. This technique has been used to measure acoustic signals generated from the fracturing of quartz beads during high pressure deformation and to investigate the possibility that the phase transformation from olivine to spinel, known to occur in subduction zones, is associated with deep-focus earthquakes (300 - 690 km depth). The analog material fayalite (Fe2SiO4), the iron end member of olivine, has been examined. Information about its synthesis and sintering will be discussed as well as results of AE experiments on samples experiencing deviatoric stress under high pressure (P = 4-9 GPa) and high temperature (T = 773-1273 K) conditions in the spinel stability field.

  1. Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils

    NASA Astrophysics Data System (ADS)

    Ishii, Takayuki; Yamazaki, Daisuke; Tsujino, Noriyoshi; Xu, Fang; Liu, Zhaodong; Kawazoe, Takaaki; Yamamoto, Takafumi; Druzhbin, Dmitry; Wang, Lin; Higo, Yuji; Tange, Yoshinori; Yoshino, Takashi; Katsura, Tomoo

    2017-10-01

    We have expanded the pressure ranges at room and high temperatures generated in a Kawai-type multi-anvil apparatus (KMA) using tungsten carbide (WC) anvils with a high hardness of Hv = 2700 and a Young's modulus of 660 GPa. At room temperature, a pressure of 64 GPa, which is the highest pressure generated with KMA using WC anvils in the world, was achieved using 1°-tapered anvils with a 1.5-mm truncation. Pressures of 48-50 GPa were generated at high temperatures of 1600-2000 K, which are also higher than previously achieved. Tapered anvils make wide anvil gaps enabling efficient X-ray diffraction. The present pressure generation technique can be used for studying the upper part of the Earth's lower mantle down to 1200 km depth without sintered diamond anvils.

  2. Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering

    PubMed Central

    Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Gasteau, Damien; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E.

    2015-01-01

    The time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, allows monitoring of the propagation of coherent acoustic pulses, having lengths ranging from nanometres to fractions of a micrometre, in samples with dimension of less than a micrometre to tens of micrometres. In this study, we applied this technique to depth-profiling of a polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The method allowed examination of the characteristic dimensions of ice texturing in the direction normal to the diamond anvil surfaces with sub-micrometre spatial resolution via time-resolved measurements of the propagation velocity of the acoustic pulses travelling in the compressed sample. The achieved imaging of ice in depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterisation of the acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in a diamond anvil cell with tens of nanometres in-depth resolution and a lateral spatial resolution controlled by pump laser pulses focusing, which could approach hundreds of nanometres. PMID:25790808

  3. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  4. High-pressure synthesis, amorphization, and decomposition of silane.

    PubMed

    Hanfland, Michael; Proctor, John E; Guillaume, Christophe L; Degtyareva, Olga; Gregoryanz, Eugene

    2011-03-04

    By compressing elemental silicon and hydrogen in a diamond anvil cell, we have synthesized polymeric silicon tetrahydride (SiH(4)) at 124 GPa and 300 K. In situ synchrotron x-ray diffraction reveals that the compound forms the insulating I4(1)/a structure previously proposed from ab initio calculations for the high-pressure phase of silane. From a series of high-pressure experiments at room and low temperature on silane itself, we find that its tetrahedral molecules break up, while silane undergoes pressure-induced amorphization at pressures above 60 GPa, recrystallizing at 90 GPa into the polymeric crystal structures.

  5. High-pressure melting of molybdenum.

    PubMed

    Belonoshko, A B; Simak, S I; Kochetov, A E; Johansson, B; Burakovsky, L; Preston, D L

    2004-05-14

    The melting curve of the body-centered cubic (bcc) phase of Mo has been determined for a wide pressure range using both direct ab initio molecular dynamics simulations of melting as well as a phenomenological theory of melting. These two methods show very good agreement. The simulations are based on density functional theory within the generalized gradient approximation. Our calculated equation of state of bcc Mo is in excellent agreement with experimental data. However, our melting curve is substantially higher than the one determined in diamond anvil cell experiments up to a pressure of 100 GPa. An explanation is suggested for this discrepancy.

  6. Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa

    PubMed Central

    Eggert, Jon H.; Karmon, Eran; Hemley, Russell J.; Mao, Ho-kwang; Goncharov, Alexander F.

    1999-01-01

    We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway. PMID:10535910

  7. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation (abstract)

    NASA Astrophysics Data System (ADS)

    Sutton, S.; Eng., P. J.; Jaski, Y. R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M.

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P≳360 GPa and T˜6000 K with the diamond anvil cell and P˜25 GPa and T˜2500 °C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers.

  8. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  9. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil

    PubMed Central

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-01

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method. PMID:29382144

  10. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

    PubMed

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-29

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  11. Phase transitions of CaCO3 at high P and T determined by in-situ Vibrational Spectroscopy in Diamond-Anvil-Cells

    NASA Astrophysics Data System (ADS)

    Koch-Müller, Monika; Jahn, Sandro; Birkholz, Natalie; Schade, Ulrich

    2014-05-01

    Carbonates are the most abundant carbon-bearing minerals on Earth. They can be transported into the upper and lower mantle via subduction processes. Knowledge of the stability of solid carbonates adapting different structures with increasing pressure and temperature is therefore of great importance to understand the structure and dynamics of the Earth. Even for the very simple system CaCO3 the phase relations of at high pressure and temperature are still not fully understood. It has been known for many years that calcite (cc) can adopt different structures with increasing pressure (e.g. Bridgman, 1939: cc-I to III; Tyburczy and Ahrens, 1986: cc-VI). But only recently Merlini et al. (2012) were able to solve the crystal structures of some of these high-pressure polymorphs namely cc-III, cc-IIIb and cc-VI. They report that cc-VI has a higher density then aragonite under the same conditions. To study the stability of the CaCO3-polymorphs, experiments were performed in conventional diamond anvil cells (DAC) at ambient temperatures as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) in the pressure range 9 to 20 GPa and temperatures up to 800 K. As probe for the structural changes we used conventional mid-infrared-, synchrotron far-infrared- and Raman-spectroscopy. Within the cc-III stability field (3 to 15 GPa at room temperature, e.g. Catalli and Williams, 2005) we observed in all types of experiments consistently two different spectral patterns: one at lower P < 5 GPa and another at P > 5 < 15 GPa independent on the starting material and the pressure- and time-path of the experiments. Whether these P-induced structural changes may be linked to the above mentioned different structures of cc-III is not yet clear. Also, in all types of experiments we confirmed the transition of cc-III to cc-VI at about 15 GPa at room temperature. Merlini et al. (2012) speculated that temperature may stabilize the structures of cc-III to lower pressure and surprisingly we found the same for the cc-III to cc-VI transition. The reaction has a negative slope of about -0.007 GPa/K. However, our density-functional theory calculations indicate that cc-VI is still metastable in respect to aragonite at least at zero K. We will prove if temperature and the incorporation of smaller cations than Ca have an influence on the stability relations. References: Bridgman P.W. (1939) Am J Sci, 237, 7 - 18. Catalli K. and Williams Q. (2005) Am Mineral, 90, 1679 - 1682. Merlini M. et al. (2012) EPSL, 333-334, 265 - 271. Tyburczy J. A. and Ahrens T. J. (1986) J Geophysical Research, 91, 4730 - 4744.

  12. Phase Relations of Iron and Iron-Nickel Alloys up to 3 Mbars

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Hirose, K.; Sata, N.; Ohishi, Y.

    2007-12-01

    Iron is believed to be the major component of the Earth's core because it is the most abundant element that satisfies the observed seismic densities. Based on cosmochemical models and the studies of iron meteorites, it is generally accepted that the Earth's core also contains substantial amounts of nickel. Therefore, the high pressure behaviour of iron-nickel alloys is crucially important for interpreting and constraining geophysical and geochemical models of the Earth's core. The phase relation of iron at relatively low pressure has been well established. α-Fe with bcc structure at ambient condition transforms to γ-Fe at high temperature and to ɛ-Fe with hcp structure at above ~ 10 GPa. In contrast, the phase relation and the crystal structure at high pressure and temperature are still highly controversial. The phase relations of iron-nickel alloys were also studied in an externally-heated diamond-anvil cell (Huang et al. 1988, 1992) and in a laser-heated diamond-anvil cell (Lin et al. 2002, Mao et al. 2005, Dubrovinsky et al. 2007), but these experiments were limited to the pressure of 225 GPa. Applications of the previous results to the Earth's inner core conditions required significant extrapolations. In this study, we have investigated the phase relations of iron and a number of iron-nickel alloys in a wide range of pressures (>300 GPa), temperatures (>2000 K) and compositions (0-80 wt% Ni) using a laser-heated diamond-anvil cell with synchrotron x-ray diffraction. For iron, in-situ x-ray diffraction studies showed a wide range of stability of ɛ-Fe with an hcp structure up to 300 GPa and 2000 K and up to 343 GPa at room temperature. No evidence for the existence of phases other than ɛ-Fe, such as β-Fe with a dhcp structure (suggested by Dubrovinsky et al. 2000) or orthorhombic structure (suggested by Andrault et al. 1997), was observed. For iron-nickel alloys, high pressure and temperature experiments were conducted on Fe-18.4 wt% Ni, Fe-24.9 wt% Ni, Fe-35.7 wt% Ni, Fe-50.0 wt% Ni and Fe-80.0 wt% Ni up to 300 GPa. The experimental results indicate that the iron-nickel alloys strongly favour an fcc structure under multimegabar pressures. Our results can directly apply to the Earth's inner core pressures and the phase relations of iron- nickel alloys may interpret seismically observed anisotropy and discontinuity in the Earth's inner core.

  13. High-sensitivity NMR beyond 200,000 atmospheres of pressure.

    PubMed

    Meier, T; Reichardt, S; Haase, J

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. (1)H NMR of water shows sensitivity and resolution obtained with the cells, and (63)Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. (115)In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres[reg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Aude; Oger, Phil M.; Daniel, Isabelle

    2006-08-01

    We present an optical pressure sensor suitable for experiments in diamond anvil cell in the 0.1 MPa-2 GPa pressure range, for temperatures between ambient and 323 K. It is based on the pressure-dependent fluorescence spectrum of FluoSpheres[reg], which are commercially available fluorescent microspheres commonly used to measure blood flow in experimental biology. The fluorescence of microspheres is excited by the 514.5 nm line of an Ar{sup +} laser, and the resulting spectrum displays three very intense broad bands at 534, 558, and 598 nm, respectively. The reference wavelength and pressure gauge is that of the first inflection point of themore » spectrum, located at 525.6{+-}0.2 nm at ambient pressure. It is characterized by an instantaneous and large linear pressure shift of 9.93({+-}0.08) nm/GPa. The fluorescence of the FluoSpheres[reg] has been investigated as a function of pressure (0.1-4 GPa), temperature (295-343 K), pH (3-12), salinity, and pressure transmitting medium. These measurements show that, for pressures comprised between 0.1 MPa and 2 GPa, at temperatures not exceeding 323 K, at any pH, in aqueous pressure transmitting media, pressure can be calculated from the wavelength shift of two to three beads, according to the relation P=0.100 ({+-}0.001) {delta}{lambda}{sub i}(P) with {delta}{lambda}{sub i}(P)={lambda}{sub i}(P)-{lambda}{sub i}(0) and {lambda}{sub i}(P) as the wavelength of the first inflection point of the spectrum at the pressure P. This pressure sensor is approximately thirty times more sensitive than the ruby scale and responds instantaneously to pressure variations.« less

  15. In situ 3D-X-ray diffraction tracking of individual grains of olivine during high-pressure/ high-temperature phase transitions

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Merkel, S.; Ghosh, S.; Hilairet, N.; Perrillat, J.; Mezouar, N.; Vaughan, G.

    2013-12-01

    The series of phase transitions between olivine, wadsleyite and ringwoodite play an essential role for large scale dynamical processes in the Earth mantle. Detailed knowledge of the microscopic mechanism at the origin of these high-pressure and high-temperature phase transformations is useful to connect global seismic observations and geodynamics. Indeed, the textures of these phases can be induced either during mantle flow or during the phase transformations and they greatly affect the characteristics of seismic wave propagation. Here, we present a new design of diamond anvil cell experiments to collect three-dimensional diffraction images and track individual grains inside a polycristalline sample at high pressure and high temperature. The instrumentation includes a new resistively heated diamond anvil cell developed at beamline ID27 of the ESRF which provided stable and homogenous temperature condition over more than 24 hours. In our experiments, the pressure is first increased up to 12 GPa at a constant temperature of T = 800 K. The temperature is then further increased to 1300 K to reach the stability field of the high-pressure polymorph. Upon further compression the transformation of olivine to its high-pressure polymorph is successfully monitored. At each pressure-temperature step and while the sample is transforming the crystallographic parameters, the orientations and positions of grains within the sample are tracked in situ using three-dimensional X-ray diffraction. This will provide important information on the micromechanical properties of olivine including orientation statistics, orientation relations between parent and daughter phases, and transformation textures at different stages of the phase transition. This in turn will help in interpreting the geophysical observations. Details of the experimental and analytical approach used in this study will be given.

  16. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Andrew J; Danielson, Lisa; Righter, Kevin

    The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high pressures corresponding to the conditions of the deep Earth, oxygen fugacity buffers are poorly calibrated. Reference (1 bar) fO{sub 2} buffers can be integrated to high pressure conditions by integrating the difference in volume between the solid phases, provided that their equations of state are known. In this work, the equations of state and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotronmore » X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. The results were used to construct high pressure fO{sub 2} buffer curves for these systems. The difference between the Fe-FeO and Ni-NiO buffers is observed to decrease significantly, by several log units, over 80 GPa. The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases.« less

  17. Synchrotron in-situ deformation experiments of perovskite + (Mg,Fe)O aggregates under shallow lower mantle conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Girard, J.; Amulele, G.; Farla, R. J.; Liu, Z.; Mohiuddin, A.; Karato, S.

    2013-12-01

    Experimental studies on rheological properties of mantle's minerals are crucial to understand the dynamics of Earth's interior, but direct experimental studies under the relevant lower mantle conditions are challenging. Most of the earlier studies were performed at lower mantle pressures but low temperatures using DAC (diamond anvil cell) (e.g., Merkel et al., 2003)), and in DAC experiments strain-rate and stress are unknown. Some previous studies were carried out under high pressures and high temperatures (e.g, Cordier et al., 2004) , but quantitative results on rheological behaviour of said minerals were not obtained. Here we present the results of the first in-situ deformation experiments of perovskite + (Mg,Fe)O (Pv + fp) aggregates using RDA (rotational Drickamer apparatus). The RDA has a better support for the anvils at high pressure than the more commonly used D-DIA apparatus and hence we can reach higher pressures and temperatures than the D-DIA. We have recently made new modifications to the cell assembly to reach the lower mantle conditions with less interference in X-ray diffraction patterns by the surrounding materials. The starting material was ringwoodite synthesized using a multi-anvil. In-situ deformation experiments were then carried at pressure up to 28 GPa (calculated from thermal EOS of Pt) and estimated temperatures up to 2200 K using RDA. Under these conditions, ringwoodite transformed to Pv + fp. We subsequently deformed the sample between strain rates of 10-4 to 10-5 s-1. Stress and strain were measured in-situ using X-ray synchrotron beam. The recovered sample analyses show evidence of perovskite+(Mg,Fe)O microstructure (Fig. 1). The radial X-ray diffraction data are being analysed to determine the stress levels of two minerals. Also microstructures of deformed specimens are studied to understand the deformation mechanisms and strain partitioning. The results will contribute towards our understanding of the rheological properties of the lower mantle including the creep strength, seismic anisotropy and possible role of strain partitioning leading to strain weakening. References Cordier, P., Ungar, T., Zsoldos, L., Tichy, G., 2004. Dislocation creep in MgSiO3 perovskite at conditions of the earth's uppermost lower mantle. Nature 428, 837-840. Merkel, S., Wenk, H.R., Badro, J., Montagnac, G., Gillet, P., Mao, H.-k., Hemley, R.J., 2003. Deformation of (Mg0.9,Fe0.1)SiO3 perovskite aggregates up to 32 GPa. Earth Planet. Sci. Lett. 209, 351-360. Fig. 1: RDA recovered sample SEM Back scattering images, Eutectoid-like appearance of perovskite and (Mg,Fe)O alternated lamellae.

  18. Phase transition and strength of vanadium under shock compression up to 88 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuying, E-mail: yuyinyu@caep.cn; Tan, Ye; Dai, Chengda

    A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than themore » BCC phase, which is contrast to the findings from DAC experiments and theoretical work.« less

  19. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE PAGES

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; ...

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  20. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  1. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  2. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE PAGES

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; ...

    2015-07-17

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  3. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areasmore » including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  4. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  5. Determining the phase diagram of lithium via ab initio calculation and ramp compression

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric

    2015-06-01

    Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Thunderstorms over the Pacific Ocean as seen from STS-64

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Multiple thunderstorm cells leading to Earth's atmosphere were photographed on 70mm by the astronauts of STS-64, orbiting aboard the Space Shuttle Discovery 130 nautical miles away. These thunderstorms are located about 16 degrees southeast of Hawaii in the Pacific Ocean. Every stage of a developing thunderstorm is documented in this photo: from the building cauliflower tops to the mature anvil phase. The anvil or the tops of the clouds being blown off are at about 50,000 feet. The light line in the blue atmosphere is either clouds in the distance or an atmospheric layer which is defined but different particle sizes.

  7. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitgirard, S.; Mezouar, M.; Borchert, M.

    2012-01-15

    Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample meltingmore » based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.« less

  8. Effective Ice Particle Densities for Cold Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  9. Crimp sealing of tubes flush with or below a fixed surface

    DOEpatents

    Fischer, J.E.; Walmsley, D.; Wapman, P.D.

    1996-08-20

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. 8 figs.

  10. Crimp sealing of tubes flush with or below a fixed surface

    DOEpatents

    Fischer, Jon E.; Walmsley, Don; Wapman, P. Derek

    1996-01-01

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes.

  11. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to fit...

  12. Heating rates in tropical anvils

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.; Valero, Francisco P. J.; Pfister, Leonhard; Liou, Kuo-Nan

    1988-01-01

    The interaction of infrared and solar radiation with tropical cirrus anvils is addressed. Optical properties of the anvils are inferred from satellite observations and from high-altitude aircraft measurements. An infrared multiple-scattering model is used to compute heating rates in tropical anvils. Layer-average heating rates in 2 km thick anvils were found to be on the order of 20 to 30 K/day. The difference between heating rates at cloud bottom and cloud top ranges from 30 to 200 K/day, leading to convective instability in the anvil. The calculations are most sensitive to the assumed ice water content, but also are affected by the vertical distribution of ice water content and by the anvil thickness. Solar heating in anvils is shown to be less important than infrared heating but not negligible. The dynamical implications of the computed heating rates are also explored and it is concluded that the heating may have important consequences for upward mass transport in the tropics. The potential impact of tropical cirrus on the tropical energy balance and cloud forcing are discussed.

  13. Lattice preferred orientation in MnGeO3 post-perovskite at high-temperature

    NASA Astrophysics Data System (ADS)

    Nagaya, Y.; Hirose, K.; Sata, N.; Ohishi, Y.

    2009-12-01

    In the Earth’s lowermost mantle which is called D” layer, shear-wave splitting is often observed. The velocity of horizontally polarized S-waves are faster than polarized S-waves in many areas of the D” layer. The D” layer is now recognized as being made up with the post-perovskite (PPv)-type MgSiO3 phase. MgSiO3 PPv has a strong elastic anisotropy because of its layered crystal structure. Therefore, it is expected that a lattice preferred orientation (LPO) of PPv may explain the observed seismic anisotropy. LPOs of PPv have been investigated by the high-pressure experiments using a diamond anvil cell (DAC) (Merkel et al., 2006; 2007; Okada et al., 2009). However, the reported experiments using the DAC were made only at the room temperature. In order to understand the nature of PPv deformation under the lower mantle conditions, it is necessary to operate the deformation experiments at high-temperature (~2500 K). In this study, so as to examine the LPO and the dominant slip plane of PPv at simultaneously high P-T conditions, we conducted the high-temperature plastic deformation experiments in a laser-heated diamond anvil cell (LHDAC) using synchrotron radial X-ray diffraction techniques at the beamline BL10XU, SPring-8. In the radial X-ray diffraction experiments, X-ray was irradiated to the sample perpendicular to the compression axis through gasket. LPO was investigated on the basis of the variations of diffraction intensity. We adopted a cubic boron nitride and beryllium composite gasket to obtain a radial X-ray diffraction pattern. In order to deform a sample at high temperature, we had newly developed a membrane system for the deformation experiments. We are able to regulate the gas pressure in the membrane of the DAC, and therefore compress the sample at high temperature during the laser heating. Starting material was orthopyroxene (OPx) with a composition of MnGeO3, which is an analogue of MgSiO3. First, MnGeO3 PPv was synthesized directly from OPx around 60 GPa in the LHDAC. Subsequently, PPv was plastically deformed by further compression at high-temperature during the laser heating. We also conducted the room-temperature deformation experiments. We will discuss the deformation mechanism of the PPv at high P-T conditions.

  14. Common Problems with Pyrometry at Shock Physics Experiments and How to Avoid Them

    NASA Astrophysics Data System (ADS)

    Seifter, Achim; Obst, Andrew; Holtkamp, David

    2007-06-01

    Temperature is not only one of the most prominent parameters in shock physics experiments but also very hard to determine experimentally. Only a few techniques are available because of difficulties due to the short timescale and often very low temperatures. Pyrometry is the most portable of these techniques but has to deal with some problems which give rise to uncertainties. Only if the experiment is designed very carefully some of these difficulties like background radiation from high explosive burn products, muzzle flash or laser light can be avoided. Other problems like spatial temperature non-uniformities or thermal radiation from a transparent anvil are inherent to the experiment and cannot be avoided. By choosing the proper spectral range covered by the pyrometer and fitting the obtained spectral radiance traces with appropriate models meaningful results can be obtained. In this paper we will describe the most important points to be taken into account when designing the experiment, present considerations for choosing the wavelength range of the pyrometer and show data where spatial non uniformities or radiation from hot anvils occurred and temperature data could still be obtained.

  15. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  16. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less

  17. Met The Press: What It's LIke to Talk to Reporters about Physics

    NASA Astrophysics Data System (ADS)

    Thompson, Rebecca

    2013-03-01

    Someone from the Huffington Post just called you because they are doing a story about science and you are a physicist. The problem is that they need you to take time away from your grapheme experiments to talk about the physics of exploding anvils. It's been a long time since you've shot an anvil in the air so you think you might not be right for this. But, as long as you understand general physics and can explain things well, you can be a real asset. This talk will recount first-hand experiences talking to a range of news outlets from the PBS New Hour to Real Simple Magazine about everything from quick-freezing water to pumpkin boats. It will include helpful information about preparing for an interview, learning new physics fast, timelines and follow-up.

  18. Electronic Structuring of Diamond Anvils - New Advances and Possibilities for HP Research

    NASA Astrophysics Data System (ADS)

    Burchard, M.; Zaitsev, A.; Meijer, J.; Stephan, A.; Maresch, W. V.

    2001-12-01

    DACs are powerful tools in high-pressure research, combining the principal advantages of transparency with the very HP attainable with this device. Nevertheless, a serious drawback for many in situ applications is the lack of a sufficiently precise method for determining the actual P in the sample volume. Hydrothermal DAC designs relying on the EOS of the P medium are susceptible to a number of potential sources of inaccuracy. One solution to this problem is the use of electronic sensors obtained by the structured HT, high-energy implantation of boron ions into the anvil culets of the DAC [1]. Recently, the sensitivity of such sensors at P in the GPa range has been successively improved from 20 [2] to 0.2 MPa [3], far surpassing that of any spectroscopic method. In addition, such P-sensing structures can also be used as temperature sensors, with a precision of 0.01 K [3]. To clarify and understand the principles on which these sensors function, we have performed conductivity and hall-effect measurements down to 4 K. The sensors show three conductivity mechanisms, depending on the T range involved. The HT (> 300K) mechanism is based on the activation of B acceptors in the diamond lattice. The two mechanisms at lower T are related to a defect conductivity. Because of these specific defect mechanisms the sensor structures are still operative at temperatures down to 4 K. A problem affecting HT DACs arises from heating via external resistance coils [4]. In such DACs the anvil seats are the weakest link and limit the force that can be applied to the anvils. Even when made of WC, the seats may deform considerably at P as low as 0.3 GPa at 1100 K. To overcome this drawback, we have implanted internal resistance heaters directly into the anvils next to the sample volume. These heaters are also composed of B-doped diamond produced by the same technique used to fabricate the P-T sensors [1,2,3]. In addition, it is possible to implant heavy ions such as silicon at RT to form graphite heaters in the anvils. The T of the seats can then be kept below 700 K, providing much better mechanical stability of the cell. No evidence of deformation was observed even on softer steel seats under a P of 0.7 GPa with the anvils heated to 1150 K. The use of steel as seat material makes it possible to adapt the seat design efficiently to the experimental set-up required. Further advantages of DACs with internally heated anvils are: 1) rapid heating at rates exceeding 500 K/s, and 2) the possibility of imposing large T differences between the anvils. Special holders have been designed to hold anvils in their seats and to provide the electrical contacts up to 1400 K. In addition, new anvil geometries are being tested to avoid the chipping at the edges ot the culets observed when hard materials are used as gaskets. Although it can be shown that HT B-implantation has no effect on the extent of this flaking problem, chipping in electronically structured anvils can lead to short-circuiting between the electronic pathways of the structures and must be minimized. Low-angle bevels next to the culet can be shown to enhance the lifetime of edges and electronic structures. (1) Burchard et al. (1999),Bull. Liasion SFMC,11, 106. (2) Burchard et al. (2000),Berichte der DMG, Beih. z. Eur. J. Mineral., 12, 28. (3) Zaitsev et al. (2001),Phys. Stat. sol. (a) 185,1,59-64. (4) Shen et al. (1992), in: HP Research: Applic. to Earth and Planetary Science(Terra Scientific Publishing Company, Tokyo, 1992), 61-68.

  19. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  20. Phase relations of Fe Ni alloys at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Mao, Wendy L.; Campbell, Andrew J.; Heinz, Dion L.; Shen, Guoyin

    2006-04-01

    Using a diamond anvil cell and double-sided laser-heating coupled with synchrotron X-ray diffraction, we determined phase relations for three compositions of Fe-rich FeNi alloys in situ at high pressure and high temperature. We studied Fe with 5, 15, and 20 wt.% Ni to 55, 62, and 72 GPa, respectively, at temperatures up to ˜3000 K. Ni stabilizes the face-centered cubic phase to lower temperatures and higher pressure, and this effect increases with increasing pressure. Extrapolation of our experimental results for Fe with 15 wt.% Ni suggests that the stable phase at inner core conditions is hexagonal close packed, although if the temperature at the inner core boundary is higher than ˜6400 K, a two phase outer region may also exist. Comparison to previous laser-heated diamond anvil cell studies demonstrates the importance of kinetics even at high temperatures.

  1. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique.

    PubMed

    Kimura, T; Kuwayama, Y; Yagi, T

    2014-02-21

    The melting curve of H2O from 49 to 72 GPa was determined by using a laser-heated diamond anvil cell. Double-sided CO2 laser heating technique was employed in order to heat the sample directly. Discontinuous changes of the heating efficiency attributed to the H2O melting were observed between 49 and 72 GPa. The obtained melting temperatures at 49 and 72 GPa are 1200 and 1410 K, respectively. We found that the slope of the melting curve significantly decreases with increasing pressure, only 5 K/GPa at 72 GPa while 44 K/GPa at 49 GPa. Our results suggest that the melting curve does not intersect with the isentropes of Uranus and Neptune, and hence, H2O should remain in the liquid state even at the pressure and temperature conditions found deep within Uranus and Neptune.

  2. A modified efficient purse-string stapling technique (mEST) that uses a new metal rod for intracorporeal esophagojejunostomy in laparoscopic total gastrectomy

    PubMed Central

    Moon, Jeong-Ho; Yamamoto, Kazuyoshi; Yanagimoto, Yoshitomo; Sugimura, Keijirou; Miyata, Hiroshi; Yano, Masahiko; Sakon, Masato

    2017-01-01

    Intracorporeal esophagojejunostomy after laparoscopic total gastrectomy is technically difficult because this procedure should be performed in a narrow surgical field in the upper abdomen even when completely laparoscopic approaches are used. The placement of the anvil of a circular stapling device into the esophagus and connection the instrument to the anvil are extremely difficult steps in this surgery. Therefore, we developed a simple technique for intracorporeal esophagojejunostomy using hemi-double stapling technique; we named this technique the efficient purse-string stapling technique (EST). More recently, we have developed a modified EST (mEST) that utilizes a new stainless steel anvil rod instead of a plastic rod. Relative to the plastic rod, the steel rod is reusable and shorter; thus, it was easier to perform anvil placement into the esophagus with the steel rod. Anvil preparation for mEST: a stainless steel rod is attached to the shaft of the anvil, and the needle and thread are sutured to the tip of the rod. After complete insertion of the anvil into the esophageal cavity, the needle and thread are used to penetrate the anterior esophageal wall, and the esophagus is then clamped using a linear stapler just distal to the site penetrated by the thread. The linear stapler is fired, and anvil placement in the esophagus is simultaneously accomplished. After the rod is removed from the anvil, the instrument is intracorporeally connected to the anvil and then fired to complete the gastrojejunostomy. This technique is simple and facilitates intracorporeal reconstruction procedures in laparoscopic total gastrectomy. PMID:28815221

  3. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    NASA Technical Reports Server (NTRS)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  4. Mixing Layer Formation near the Tropopause Due to Gravity Wave Critical Level Interactions in a Cloud-Resolving Model.

    NASA Astrophysics Data System (ADS)

    Moustaoui, Mohamed; Joseph, Binson; Teitelbaum, Hector

    2004-12-01

    A plausible mechanism for the formation of mixing layers in the lower stratosphere above regions of tropical convection is demonstrated numerically using high-resolution, two-dimensional (2D), anelastic, nonlinear, cloud-resolving simulations. One noteworthy point is that the mixing layer simulated in this study is free of anvil clouds and well above the cloud anvil top located in the upper troposphere. Hence, the present mechanism is complementary to the well-known process by which overshooting cloud turrets causes mixing within stratospheric anvil clouds. The paper is organized as a case study verifying the proposed mechanism using atmospheric soundings obtained during the Central Equatorial Pacific Experiment (CEPEX), when several such mixing layers, devoid of anvil clouds, had been observed. The basic dynamical ingredient of the present mechanism is (quasi stationary) gravity wave critical level interactions, occurring in association with a reversal of stratospheric westerlies to easterlies below the tropopause region. The robustness of the results is shown through simulations at different resolutions. The insensitivity of the qualitative results to the details of the subgrid scheme is also evinced through further simulations with and without subgrid mixing terms. From Lagrangian reconstruction of (passive) ozone fields, it is shown that the mixing layer is formed kinematically through advection by the resolved-scale (nonlinear) velocity field.


  5. A new type of anvil in the Acheulian of Gesher Benot Ya'aqov, Israel.

    PubMed

    Goren-Inbar, Naama; Sharon, Gonen; Alperson-Afil, Nira; Herzlinger, Gadi

    2015-11-19

    We report here on the identification and characterization of thin basalt anvils, a newly discovered component of the Acheulian lithic inventory of Gesher Benot Ya'aqov (GBY). These tools are an addition to the array of percussive tools (percussors, pitted stones and anvils) made of basalt, flint and limestone. The thin anvils were selected from particularly compact, horizontally fissured zones of basalt flows. This type of fissuring produces a natural geometry of thick and thin slabs. Hominins at GBY had multiple acquisition strategies, including the selection of thick slabs for the production of giant cores and cobbles for percussors. The selection of thin slabs was carried out according to yet another independent and targeted plan. The thinness of the anvils dictated a particular range of functions. The use of the anvils is well documented on their surfaces and edges. Two main types of damage are identified: those resulting from activities carried out on the surfaces of the anvils and those resulting from unintentional forceful blows (accidents de travaille). Percussive activities that may have been associated with the thin anvils include nut cracking and the processing of meat and bones, as well as plants. © 2015 The Author(s).

  6. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  7. Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from -190°C to 1200°C

    USGS Publications Warehouse

    Bassett, William A.; Shen, A.H.; Bucknum, M.; Chou, I.-Ming

    1993-01-01

    The new hydrothermal diamond anvil cell (HDAC) has been designed for optical microscopy and X-ray diffraction at pressures up to 10 GPa and temperatures between −190°C and 1200°C. Laser light reffected from the top and bottom anvil faces and the top and bottom solid sample faces produce interference fringes that provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in solid samples due to transitions and reactions. Synchrotron radiation has been used to make X-ray diffraction patterns of samples under hydrothermal conditions. Individual heaters and individual thermocouples provide temperature control with an accuracy of ±0.5°C. Liquid nitrogen directly introduced into the HDAC has been used to reduce the sample temperature to −190°C. The α-β phase boundary of quartz has been used to calculate the transition pressures from measured transition temperatures. With this method we have redetermined 5 isochores of H2O up to 850°C and 1.2 GPa at which the solution rate of the quartz became so rapid that the quartz dissolved completely before the α-β transition could be observed. When silica solutions were cooled, opal spherules and rods formed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinogeikin, Stanislav V., E-mail: ssinogeikin@carnegiescience.edu; Smith, Jesse S.; Rod, Eric

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperaturemore » conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.« less

  9. Clamp force and alignment checking device

    DOEpatents

    Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith

    2017-04-11

    A check fixture measures a total clamp force applied by a welder device. The welder device includes a welding horn having a plurality of weld pads and welding anvil having a plurality of weld pads. The check fixture includes a base member operatively supporting a plurality of force sensors. The base member and the force sensors are received between the weld pads of the welding horn and the anvil pads of the welding anvil. Each force sensor is configured to measure an individual clamp force applied thereto by corresponding weld and anvil pads when the base member is received between the welding horn and the welding anvil and the welder device is in the clamped position. The individual clamp forces are used to determine whether the weld and/or anvil pads are worn or misaligned.

  10. Users Guide for the Anvil Threat Corridor Forecast Tool V1.7.0 for AWIPS

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2007-01-01

    The Applied Meteorology Unit (AMU) originally developed the Anvil Threat Sector Tool for the Meteorological Interactive Data Display System (MIDDS) and delivered the capability in three phases beginning with a feasibility study in 2000 and delivering the operational final product in December 2003. This tool is currently used operationally by the 45th Weather Squadron (45 WS) Launch Weather Officers (LWO) and Spaceflight Meteorology Group (SMG) forecasters. Phase I of the task established the technical feasibility of developing an objective, observations-based tool for short-range anvil forecasting. The AMU was subsequently tasked to develop short-term anvil forecasting tools to improve predictions of the threat of triggered lightning to space launch and landing vehicles. Under the Phase II effort, the AMU developed a nowcasting anvil threat sector tool, which provided the user with a threat sector based on the most current radiosonde upper wind data from a co-located or upstream station. The Phase II Anvil Threat Sector Tool computes the average wind speed and direction in the layer between 300 and 150 mb from the latest radiosonde for a user-designated station. The following threat sector properties are consistent with the propagation and lifetime characteristics of thunderstorm anvil clouds observed over Florida and its coastal waters (Short et al. 2002): a) 20 n mi standoff circle, b) 30 degree sector width, c) Orientation given by 300 to 150 mb average wind direction, d) 1-, 2-, and 3- hour arcs in upwind direction, and e) Arc distances given by 300 to 150 mb average wind speed. Figure 1 is an example of the MIDDS Anvil Threat Sector tool overlaid on a visible satellite image at 2132 UTC 13 May 2001. Space Launch Complex 39A was selected as the center point and the Anvil Threat Sector was determined from upper-level wind data at 1500 UTC in the preconvective environment. Narrow thunderstorm anvil clouds extend from central Florida to the space launch and landing facilities at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) and beyond. The anvil clouds were generated around 1930 UTC (1430 EDT) by thunderstorm activity over central Florida and transported 90 n mi east-northeastward within 2 hours, as diagnosed by the anvil forecast tool. Phase III, delivered in February 2003, built upon the results of Phase II by enhancing the Anvil Threat Sector Tool with the capability to use national model forecast winds for depiction of potential anvil lengths and orientations over the KSC/CCAFS area with lead times from 3 through 168 hours (7 days). In September 2003, AMU customers requested the capability to use data from the KSC 50 MHz Doppler Radar Wind Profiler (DRWP) in the Anvil Threat Sector Tool and this capability was delivered by the AMU in December 2003. In March 2005, the AMU was tasked to migrate the MIDDS Anvil Threat Sector Tool capabilities onto the Advanced Weather Interactive Processing System (AWIPS) as the Anvil Threat Corridor Forecast Tool.

  11. Thermodynamics of Silica Dissolution From In-situ Raman +Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davis, M. K.; Fumagalli, P.; Stixrude, L. P.

    2001-12-01

    Solubilities of cations, such as silicon, in water strongly effect both the physical and thermodynamical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In-situ Raman experiments of the silica-water system were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples (from Owl Creek Mountains, Wyoming) were loaded in the sample chamber with de-ionized or spectrographic water. All experiments used doubly polished rhenium gaskets with a thickness of 200 μ m, diameter of 1.0 mm, and a 500 μ m drillhole for the sample chamber. Temperature was measured using K-type thermocouples wrapped around both the upper and lower diamond anvils. Pressures are obtained on the basis of the shift of the 464 cm-1 Raman mode of quartz. In-situ Raman spectra were collected from 250-1200 cm-1, focusing on the vibrational modes of aqueous silica species at temperatures up to 700 ° C and pressures up to 14 kbar. We observed Si-O stretching modes attributable to dimer (H6Si2O7, 965 cm-1) and monomer (H4SiO4, 771 cm-1) aqueous silica species. The relative intensities of these two bands as a function of isochoric heating place constraints on the energetics of the polymerization reaction, if we assume that the intensity ratio is linearly related to concentration ratio. We have been able to perform experiments along two different isochores (0.9 and 0.75 g/cm3, respectively) from which we are able to derive the enthalpy of reaction.

  12. Simulation of the planetary interior differentiation processes in the laboratory.

    PubMed

    Fei, Yingwei

    2013-11-15

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

  13. Simulation of the Planetary Interior Differentiation Processes in the Laboratory

    PubMed Central

    Fei, Yingwei

    2013-01-01

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245

  14. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was performed by SMG, 45 WS, and AMU, a number of needed improvements were identified. A bug report document was created that showed the status of each bug and desired improvement. This report lists the improvements that were made to increase the accuracy and user-friendliness of the tool. Final testing was carried out and documented and then the final version of the software and Users Guide was provided to SMG and the 45 WS. Several possible future improvements to the tool are identified that would increase the flexibility of the tool. This report contains a brief history of the development of the Anvil Tool in MIDDS, and then describes the transition and development of software to AWIPS.

  15. Dehydration of δ-AlOOH in the lower mantle

    NASA Astrophysics Data System (ADS)

    Piet, H.; Shim, S. H.; Tappan, J.; Leinenweber, K. D.; Greenberg, E.; Prakapenka, V. B.

    2017-12-01

    Hydrous phase δ-AlOOH is an important candidate for water transport and storage in the Earth's deep mantle [1]. Knowing the conditions, under which it is stable and dehydrated, is therefore important for understanding the water transportation to the deep mantle or even to the core. A few experimental studies [1, 2] have shown that δ-AlOOH may be stable in cold descending slabs while it is dehydrated into a mixture of corundum and water under normal mantle conditions, up to 25 GPa. A subsequent study [3] reported the stability of δ-AlOOH in cold descending slabs to the core-mantle boundary conditions (2300 K at 135 GPa). However, the dehydration of δ-AlOOH has not bee directly observed in the experiments conducted at pressures above 25 GPa. We have synthesized δ-AlOOH from diaspore and Al(OH)3 in multi-anvil press at ASU. The sample was mixed with Au for coupling with near IR laser beams and loaded in diamond-anvil cells. We performed the laser-heated diamond anvil cell experiments at the 13IDD beamline of the Advanced Photon Source and ASU. At APS, we measured X-ray diffraction patterns at in situ high pressure and temperature. We observed the appearance of the corundum diffraction lines at 1700-2000 K and 55-90 GPa, indicating the dehydration of δ-AlOOH to Al2O3+ H2O. We found that the transition occurs over a broad range of temperature (500 K). We also observed that the dehydration of δ-AlOOH was accompanied by sudden change in laser coupling, most likely due to the release of fluids. The property change also helps us to determine the dehydration at ASU without in situ XRD. Our new experimental results indicate that δ-AlOOH would be stable in most subducting slabs in the deep mantle. However, because the dehydration occurs very close to the temperatures expected for the lower mantle, its stability is uncertain in the normal mantle. [1] Ohtani et al. 2001, Stability field of new hydrous phase, delta-AlOOH, Geophysical Research Letters 28, 3991-3993. [2] Sano et al. 2004, In situ XRD of dehydration of AlSiO3OH and d-AlOOH, JPCS 65, 1547-1554. [3] Sano et al. 2008, Aluminous hydrous mineral d-AlOOH as a carrier of hydrogen into the core-mantle boundary, Geophysical Research Letters 35, L03303.

  16. Dolomite III: A new candidate lower mantle carbonate

    NASA Astrophysics Data System (ADS)

    Mao, Zhu; Armentrout, Matt; Rainey, Emma; Manning, Craig E.; Dera, Przemyslaw; Prakapenka, Vitali B.; Kavner, Abby

    2011-11-01

    Dolomite is a major constituent of subducted carbonates; therefore evaluation of its phase stability and equation of state at high pressures and temperatures is important for understanding the deep Earth carbon cycle. X-ray diffraction experiments in the diamond anvil cell show that Ca0.988Mg0.918Fe0.078Mn0.016(CO3)2 dolomite transforms to dolomite-II at ∼17 GPa and 300 K and then upon laser-heating transforms to a new monoclinic phase (dolomite-III), that is observed between 36 and 83 GPa. Both high-pressure polymorphs are stable up to 1500 K, indicating that addition of minor Fe stabilizes dolomite to Earth's deep-mantle conditions.

  17. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite

    PubMed Central

    Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Cerantola, Valerio; McCammon, Catherine; Boffa Ballaran, Tiziana; Bobrov, Andrei; Sinmyo, Ryosuke; Dubrovinskaia, Natalia; Glazyrin, Konstantin; Liermann, Hanns-Peter; Kupenko, Ilya; Hanfland, Michael; Prescher, Clemens; Prakapenka, Vitali; Svitlyk, Volodymyr; Dubrovinsky, Leonid

    2016-01-01

    The physical and chemical properties of Earth’s mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron–bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data. PMID:27453945

  18. Anomalous softening of yield strength in tantalum at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qiumin, E-mail: j-qm@163.com; Wu, Qiang; Xu, Ji-an

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening inmore » tantalum.« less

  19. Equation of state of liquid Indium under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaming, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; Li, Mo, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids,more » these detailed predictions are yet to be confirmed by further experiment.« less

  20. Classical dense matter physics: some basic methods and results

    NASA Astrophysics Data System (ADS)

    Čelebonović, Vladan

    2002-07-01

    This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.

  1. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.

    2006-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  2. Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools.

    PubMed

    Fragaszy, Dorothy; Izar, Patrícia; Visalberghi, Elisabetta; Ottoni, Eduardo B; de Oliveira, Marino Gomes

    2004-12-01

    We conducted an exploratory investigation in an area where nut-cracking by wild capuchin monkeys is common knowledge among local residents. In addition to observing male and female capuchin monkeys using stones to pound open nuts on stone "anvils," we surveyed the surrounding area and found physical evidence that monkeys cracked nuts on rock outcrops, boulders, and logs (collectively termed anvils). Anvils, which were identified by numerous shallow depressions on the upper surface, the presence of palm shells and debris, and the presence of loose stones of an appropriate size to pound nuts, were present even on the tops of mesas. The stones used to crack nuts can weigh >1 kg, and are remarkably heavy for monkeys that weigh <4 kg. The abundance of shell remains and depressions in the anvil surface at numerous anvil sites indicate that nut-cracking activity is common and long-enduring. Many of the stones found on anvils (presumably used to pound nuts) are river pebbles that are not present in the local area we surveyed (except on or near the anvils); therefore, we surmise that they were transported to the anvil sites. Ecologically and behaviorally, nut-cracking by capuchins appears to have strong parallels to nut-cracking by wild chimpanzees. The presence of abundant anvil sites, limited alternative food resources, abundance of palms, and the habit of the palms in this region to produce fruit at ground level all likely contribute to the monkeys' routine exploitation of palm nuts via cracking them with stones. This discovery provides a new reference point for discussions regarding the evolution of tool use and material culture in primates. Routine tool use to exploit keystone food resources is not restricted to living great apes and ancestral hominids. Copyright 2004 Wiley-Liss, Inc.

  3. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    PubMed

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  4. Experimental technique for measuring the isentrope of hydrogen to several megabars

    NASA Astrophysics Data System (ADS)

    Barker, L. M.; Truncano, T. G.; Wise, J. I.; Asay, J. R.

    The experimental measurement of the Equations of State (EOS) of hydrogen has been of interest for some time because of the theoretical expectation of a transition to the metallic state in the multi-megabar pressure regime. Previous experiments have reported results which are consistent with a metallic transition, but experimental uncertainties have precluded positive identification of the metallic phase. In this paper we describe a new experimental approach to the measurement of the high-pressure EOS of hydrogen. A cryogenic hydrogen specimen, either liquid or solid, is located in the muzzle of a gun barrel between a tungsten anvil and another tungsten disk called a shim. Helium gas in the gun barrel cushions the impact and allows nearly isentropic compression of the hydrogen. The time-resolved pressure in the specimen is calculated from a laser interferometer (VISAR) measurement of the acceleration history of the anvil's free surface, and volume measurements at specific times are made by combining VISAR data, which define the position of the anvil, with flash X-ray photographs which define the shim position.

  5. Measuring the structure factor of simple fluids under extreme conditions

    NASA Astrophysics Data System (ADS)

    Weck, Gunnar

    2013-06-01

    The structure and dynamics of fluids, although a long standing matter of investigations, is still far from being well established. In particular, with the existence of a first order liquid-liquid phase transition (LLT) discovered in liquid phosphorus at 0.9 GPa and 1300 K it is now recognized that the fluid state could present complex structural changes. At present, very few examples of LLTs have been clearly evidenced, which may mean that a larger range of densities must be probed. First order transitions between a molecular and a polymeric liquid have been recently predicted by first principles calculations in liquid nitrogen at 88 GPa and 2000 K and in liquid CO2 at 45 GPa and 1850 K. The only device capable of reaching these extreme conditions is the diamond anvil cell (DAC), in which, the sample is sandwiched between two diamond anvils of thickness 100 times larger. Consequently, the diffracted signal from the sample is very weak compared to the Compton signal of the anvils, and becomes hardly measurable for pressures above ~20 GPa. A similar problem has been faced by the high pressure community using large volume press so as to drastically reduce the x-ray background from the sample environment. In the angle-dispersive diffraction configuration, it was proposed to use a multichannel collimator (MCC). This solution has been implemented to fit the constraints of the Paris-Edimburg (PE) large volume press and it is now routinely used on beamline ID27 of the European Synchrotron Radiation Facility. In this contribution, we present our adaptation of the MCC device accessible at ID27 for the DAC experiment. Because of the small sample volume a careful alignment procedure between the MCC slits and the DAC had to be implemented. The data analysis procedure initially developed by Eggert et al. has also been completed in order to take into account the complex contribution of the MCC slits. A large reduction of the Compton diffusion from the diamond anvils is obtained enabling quantitative structure factor measurement, even for the weakest x-ray scatterer liquid. Experimental results on fluid hydrogen will be presented to test the limits of this new setup. In collaboration with Gaston Garbarino, ESRF, France; Frederic Datchi, Sandra Ninet, Université Pierre et Marie Curie-Paris VI, France; Dylan Spaulding, Paul Loubeyre, CEA, DAM, DIF, France; and Mohamed Mezouar, ESRF, France.

  6. Anvil for Flaring PCB Guide Pins

    NASA Technical Reports Server (NTRS)

    Winn, E.; Turner, R.

    1985-01-01

    Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.

  7. Process for Nondestructive Evaluation of the Quality of a Crimped Wire Connector

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cramer, Karl E. (Inventor); Perey, Daniel F. (Inventor); Williams, Keith A. (Inventor)

    2014-01-01

    A process and apparatus for collecting data for nondestructive evaluation of the quality of a crimped wire connector are provided. The process involves providing a crimping tool having an anvil and opposing jaw for crimping a terminal onto a stranded wire, moving the jaw relative to the anvil to close the distance between the jaw and the anvil and thereby compress the terminal against the wire, while transmitting ultrasonic waves that are propagated through the terminal-wire combination and received at a receiving ultrasonic transducer as the jaw is moved relative to the anvil, and detecting and recording the position of the jaw relative to the anvil as a function of time and detecting and recording the amplitude of the ultrasonic wave that is received at the receiving ultrasonic transducer as a function of time as the jaw is moved relative to the anvil.

  8. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; hide

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights.

  9. The diamond anvil cell as a deformation apparatus for investigating the rheology of the deep Earth

    NASA Astrophysics Data System (ADS)

    Gillet, P.; Merkel, S.; Merkel, S.; Wenk, H.; Shen, G.; Shu, J.; Hemley, R.; Mao, H.

    2001-12-01

    Considerable progress has been made in establishing deformation mechanisms for minerals and rocks from the Earth's crust and and upper mantle. However, much less is know about the deeper Earth's minerals because the pressures are beyond the conditions reached by ordinary deformation apparatus such as the Griggs, Heard or Paterson apparatus. Diamond anvil cells allow investigations of the whole pressure and temperature range of the lower mantle. In pilot experiments on hcp-Fe at 54 and 220 GPa development of a strong textures was observed and slip systems of the hexagonal closed packed iron could be identified (Wenk et al., 2000). The technique has now been further refined in order to study in situ the shear strength and deformation mechanisms at high pressure in great details. In this study, we apply this technique to pure periclase (MgO) to pressures of 47 GPa. The uniaxial stress component in the pollycrystalline MgO sample is found to increase rapidly to 8.5 GPa at a pressure of 10 GPa in all experiments. According to our measurements, the preferred orientation is due to deformation by slip. A quantitative comparison between the experimental textures and results from polycrystalline plasticity suggest that the {110}<110> is the only significantly active slip system under very high confining pressure. These data demonstrate the feasability of determining deformation mechanisms and shear strength under pressures relevant for the Earth's lower mantle. This approach can now be extended to study variations of the properties with both pressure and temperature and can also be used to study other deep Earth's materials such as magnesiowustite and perovskite. Wenk, H.R., S. Matthies, R.J. Hemley, H.K. Mao, and J. Shu, Nature, 405, 1044-1047, 2000. Merkel, S., H.R. Wenk, J. Shu, G. Shen, Ph. Gillet, H.K. Mao, and R.J. Hemley, J. Geophys. Res. submitted

  10. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell

    USGS Publications Warehouse

    Li, Jianking; Chou, I-Ming; Yuan, Shunda; Burruss, Robert A.

    2013-01-01

    Crystallization experiments were conducted in a new type of hydrothermal diamond-anvil cell (HDAC; type V) using LiAlSi2O6 (S) gel and H2O (W) as starting materials. A total of 21 experiments were performed at temperatures up to 950°C and pressures up to 788 MPa. In the samples with relatively low W/S ratios, many small crystals formed in the melt phase during cooling. In those with high W/S ratios, only a few crystals with smooth surfaces crystallized from the aqueous fluid in the presence of melt droplets, which were gradually consumed during crystal growth, indicating rapid transfer of material from the melt to the crystals through the aqueous fluid. The nucleation of crystals started at 710 (±70)°C and 520 (±80) MPa, and crystal growth ended at 570 (±40)°C and 320 (±90) MPa, with the cooling P-T path within the stability field of spodumene + quartz in the S-W system. The observed linear crystal growth rates in the aqueous phase, calculated by dividing the maximum length of a single crystal by the duration of the entire growth step, were 4.7 × 10−6 and 5.7 × 10−6 cm s−1 for the cooling rates of 0.5 and 1°C min−1, respectively. However, a rapid crystal growth rate of 3.6 × 10−5 cm s−1 in the aqueous fluid was observed when the components were supplied by nearby melt droplets. Our results show that when crystals nucleate in the aqueous fluid instead of the melt phase, there are fewer nuclei formed, and they grow much faster due to the low viscosity of the aqueous fluid, which accelerates diffusion of components for the growth of crystals. Therefore, the large crystals in granitic pegmatite can crystallize directly from aqueous fluids rather than hydrosilicate melt.

  11. Advances in circular stapling technique for gastric bypass: transoral placement of the anvil.

    PubMed

    Nguyen, Ninh T; Hinojosa, Marcelo W; Smith, Brian R; Reavis, Kevin M; Wilson, Samuel E

    2008-05-01

    In Roux-en-Y gastric bypass, construction of the gastrojejunostomy is commonly performed using a circular stapler. The initial description for placement of the anvil was via the transoral approach. Although the concept was ingenious, technical difficulty was encountered during passage resulting in complications such as hypopharyngeal perforation and esophageal mucosal injury. As a result, most surgeons subsequently changed their route of anvil placement to the transabdominal approach. Advances in stapler technology now allow the head of the anvil to be pre-tilted, permitting transoral introduction with greater ease and safety. This paper describes this improved method for transoral placement of the anvil during laparoscopic gastric bypass and reoperative bariatric surgery.

  12. Designer Diamonds: Applications in Iron-based Superconductors and Lanthanides

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh

    2013-06-01

    This talk will focus on the recent progress in the fabrication of designer diamond anvils as well as scientific applications of these diamonds in static high pressure research. The two critical parameters that have emerged in the microwave plasma chemical vapor deposition of designer diamond anvils are (1) the precise [100] alignment of the starting diamond substrate and (2) balancing the competing roles of parts per million levels of nitrogen and oxygen in the diamond growth plasma. The control of these parameters results in the fabrication of high quality designer diamonds with culet size in excess of 300 microns in diameter. The three different applications of designer diamond anvils will be discussed (1) simultaneous electrical resistance and crystal structure measurements using a synchrotron source on Iron-based superconductors with data on both electron and hole doped BaFe2As2 materials and other novel superconducting materials (2) high-pressure high-temperature melting studies on metals using eight-probe Ohmic heating designer diamonds and (3) high pressure low temperature studies on magnetic behavior of 4f-lanthanide metals using four-probe electrical resistance measurements and complementary neutron diffraction studies on a spallation neutron source. Future opportunities in boron-doped conducting designer diamond anvils as well as fabrication of two-stage designer diamonds for ultra high pressure experiments will also be presented. This work was supported by the Department of Energy (DOE) - National Nuclear Security Administration (NNSA) under Grant No. DE-FG52-10NA29660.

  13. On the existence of tropical anvil clouds

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  14. Thunderstorms over the Pacific Ocean as seen from STS-64

    NASA Image and Video Library

    1994-09-18

    STS064-83-099 (9-20 Sept. 1994) --- Multiple thunderstorm cells leading to Earth's atmosphere were photographed on 70mm by the astronauts, orbiting aboard the space shuttle Discovery 130 nautical miles away. These thunderstorms are located about 16 degrees southeast of Hawaii in the Pacific Ocean. Every stage of a developing thunderstorm is documented in this photo; from the building cauliflower tops to the mature anvil phase. The anvil or the tops of the clouds being blown off are at about 50,000 feet. The light line in the blue atmosphere is either clouds in the distance or an atmospheric layer which is defined but different particle sizes. Photo credit: NASA or National Aeronautics and Space Administration

  15. High Pressure Superconductivity in Iron Based Layered Compounds Studied using Designer Diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    High pressure superconductivity in Iron based superconductor FeSe0.5Te0.5 has been studied up to 15 GPa and 10 K using an eight probe designer diamond anvil in a diamond anvil cell device. Four probe electrical resistance measurements show onset of superconductivity (Tc) at 14 K at ambient pressure with Tc increasing with increasing pressure to 19 K at a pressure of 3.6 GPa. At higher pressures beyond 3.6 GPa, Tc decreases and extrapolation suggests non superconducting behavior above 10 GPa. This loss of superconductivity coincides with the pressure induced amorphization of Fe(SeTe)4 tetrahedra reported at 11 GPa in x-ray diffraction studiesmore » at ambient temperature.« less

  16. Polarized pressure dependence of the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene)

    NASA Astrophysics Data System (ADS)

    Morandi, V.; Galli, M.; Marabelli, F.; Comoretto, D.

    2010-04-01

    In this work, we combined an experimental technique and a detailed data analysis to investigate the influence of an applied pressure on the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene) (PPV). The dielectric constants were derived from polarized reflectance spectra recorded through a diamond anvil cell up to 50 kbar. The presence of the diamond anvils strongly affects measured spectra requiring the development in an optical model able to take all spurious effects into account. A parametric procedure was then applied to derive the complex dielectric constants for both polarizations as a function of pressure. A detailed analysis of their pressure dependence allows addressing the role of intermolecular interactions and electron-phonon coupling in highly oriented PPV.

  17. Rapid vertical trace gas transport by an isolated midlatitude thunderstorm

    NASA Astrophysics Data System (ADS)

    Hauf, Thomas; Schulte, Peter; Alheit, Reiner; Schlager, Hans

    1995-11-01

    During the cloud dynamics and chemistry field experiment CLEOPATRA in the summer of 1992 in southern Germany, the Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR) (German Aerospace Research Establishment) research aircraft Falcon traversed four times the anvil of a severe, isolated thunderstorm. The first two traverses were at 8 km altitude and close to the anvil cloud base, while the second two traverses were at 10 km. During the 8-km traverse, measured ozone mixing ratios dropped by 13 parts per billion by volume (ppbv) from the ambient cloud free environment to the anvil cloud, while water vapor increased by 0.3 g kg-1. At the 10-km traverses, ozone dropped by 25 ppbv, while water vapor increased by 0.18 g kg-1. Three-dimensional numerical thunderstorm simulations were performed to understand the cause of these changes. The simulations included the transport of two chemical inert tracers. Ozone was assumed to be one of them. The initial ozone profile was composed from an ozone routine sounding and the in situ Falcon measurements prior to the thunderstorm development. The second tracer is typical for a surface released pollutant with a nonzero, constant value in the boundary layer but zero above it. The redistribution of both tracers by the storm is calculated and compared with the observations. For the anvil penetration at 10 km, the calculated difference in ozone mixing ratios is 21 ppbv, while for water vapor an increase of 0.25 g kg-1 was found, in good agreement with the observations. To validate the model results, the radar reflectivity was calculated from simulated fields of cloud water, rain, graupel, hail, and snow and ice crystals and compared with observed values. With respect to maximum reflectivity values and spatial scales, again, excellent agreement was achieved. It is concluded that the rapid transport from the boundary layer directly into the anvil level is the most likely cause of the observed ozone decrease and water vapor increase. Entrainment of ozone-rich environmental air into the anvil cloud occurred but left a protected core with undiluted boundary layer air in the anvil cloud even at a distance of 120 km from the main updraft. Processes such as production of O3 by electrical discharges, chemical reactions of ozone with boundary layer-released or lightning-produced nitrogen compounds, scavenging by hydrometeors, and heterogeneous reactions at the surface of ice crystals may occur, but on the timescale of 0.5-1 hour seem to have a negligible influence on the observed ozone drop.

  18. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less

  19. High-pressure studies with x-rays using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.

  20. A Safe and Reproducible Anastomotic Technique for Minimally Invasive Ivor Lewis Esophagectomy: The Circular Stapled Anastomosis with the Transoral Anvil

    PubMed Central

    Campos, Guilherme M; Jablons, David; Brown, Lisa M; Ramirez, René M; Rabl, Charlotte; Theodore, Pierre

    2010-01-01

    Objectives In expert hands, the intra-thoracic esophago-gastric anastamosis usually provides a low rate of strictures and leaks. However, anastomoses can be technically challenging and time consuming when minimally invasive techniques are used. We present our preliminary results of a standardized 25mm/4.8mm circular stapled anastomosis using a trans-orally placed anvil. Materials and Methods We evaluated a prospective cohort of 37 consecutive patients offered minimally invasive Ivor Lewis Esophagectomy at a tertiary referral center. The esophagogastric anastomosis was created using a 25mm anvil (Orvil, Autosuture, Norwalk, CT) passed trans-orally, in a tilted position, and connected to a 90cm long PVC delivery tube through an opening in the esophageal stump. The anastomosis was completed by joining the anvil to a circular stapler (EEA XL 25mm with 4.8mm Staples, Autosuture, Norwalk, CT) inserted into the gastric conduit. Primary outcomes were leak and stricture rates. Results Thirty-seven patients (mean age 65 yrs) with distal esophageal adenocarcinoma (n=29), squamous cell cancer (n=5), or high-grade dysplasia in Barrett's Esophagus (n=3) underwent an Ivor Lewis Esophagectomy between October 2007 and August 2009. The abdominal portion of the operation was completed laparoscopically in 30 patients (81.1%). The thoracic portion was done using a muscle sparing mini-thoracotomy in 23 patients (62.2%) and thoracoscopic techniques in 14 patients (37.8%). There were no intra-operative technical failures of the anastomosis or deaths. Five patients had strictures (13.5%) and all were successfully treated with endoscopic dilations. One patient had an anastomotic leak (2.7%) that was successfully treated by re-operation and endoscopic stenting of the anastomosis. Discussion The circular stapled anastomosis with the transoral anvil allows for an efficient, safe and reproducible anastomosis. This straightforward technique is particularly suited to the completely minimally invasive Ivor Lewis Esophagectomy. PMID:20153660

  1. Demonstration of a Large-Scale Tank Assembly Via Circumferential Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Jones, Chip; Adams, Glynn; Colligan, Kevin; McCool, A. (Technical Monitor)

    2000-01-01

    Five (5) each 14-foot diameter circumferential FSWelds were conducted on the modified CWT, two (2) each pathfinder and three (3) each assembly welds Tapered circumferential welds were successfully demonstrated The use of a closeout anvil was successfully demonstrated during one of the pathfinder welds Considerable difficulty maintaining joint f it-up during the weld process Anvil deflections Hardware dimensional tolerances Inadequate clamping Variations in the heat sink characteristics of the circumferential anvil as compared to the test panel anvil

  2. Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations

    DOE PAGES

    Pierleoni, Carlo; Morales, Miguel A.; Rillo, Giovanni; ...

    2016-04-20

    The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron-ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measuredmore » in diamond anvil cell experiments but at 25-30 GPa higher pressure. Here, the transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.« less

  3. Formation of superconducting platinum hydride under pressure: an ab initio approach

    NASA Astrophysics Data System (ADS)

    Kim, Duck Young; Scheicher, Ralph; Pickard, Chris; Needs, Richard; Ahuja, Rajeev

    2012-02-01

    Noble metals such as Pt, Au, or Re are commonly used for electrodes and gaskets in diamond anvil cells for high-pressure research because they are expected to rarely undergo structural transformation and possess simple equation of states. Specifically Pt has been used widely for high-pressure experiments and has been considered to resist hydride formation under pressure. Pressure-induced reactions of metals with hydrogen are in fact quite likely because hydrogen atoms can occupy interstitial positions in the metal lattice, which can lead to unexpected effects in experiments. In our study, PRL 107 117002 (2011), we investigated crystal structures using ab initio random structure searching (AIRSS) and predicted the formation of platinum mono-hydride above 22 GPa and superconductivity Tc was estimated to be 10 -- 25 K above around 80 GPa. Furthermore, we showed that the formation of fcc noble metal hydrides under pressure is common and examined the possibility of superconductivity in these materials.

  4. PSICHE: a new beamline dedicated to X-ray diffraction and tomography at high pressure at synchrotron SOLEIL

    NASA Astrophysics Data System (ADS)

    Guignot, N.; Itié, J.; Zerbino, P.; Delmotte, A.; Moreno, T.

    2013-12-01

    The PSICHE beamline (for 'Pressure, Structure and Imaging by Contrast at High Energy') is a new facility opened for high pressure experiments at synchrotron SOLEIL (St-Aubin, France). With its source, optics, detectors and 3 experimental stations, it can handle a large variety of experimental setups. High energy photons are produced with an in-vacuum wiggler. The white beam obtained, with photons energy ranging continuously from 15 to 80 keV (from a 2.75 GeV machine), is used on the first experimental station for energy dispersive X-ray diffraction (EDX) measurements using different pressure cells. The main setup is a 1200 tons load capacity multi-anvil press featuring a (100) DIA compression module with a 15° horizontal aperture, allowing measurements up to 30° in 2theta by rotating the press. Other setups are a Paris-Edinburgh (PE) large volume press and diamond anvil cells (DACs). On the detection side we have a rotating Ge detector, based on the CAESAR design described by Wang et al. (2004) (combination of EDX and angular dispersive X-ray diffraction, ADX). One of the difficulties when building such setups is the rotation mechanism which cannot be physically attached to the rotation axis, potentially leading to large circle of confusions on the horizontal position of this axis. Thanks to translation corrections done at each angle step, the circle of confusion is minimized to 3x6 μm2 along the 35° travel, making possible measurements on very small objects. Combining EDX and ADX has a lot of advantages and we will present our first results obtained using this setup. The PSICHE focusing optics and monochromator are also used to focus monochromatic beams (up to 52 keV) on 2 different experimental stations. The first focal point at 31 m gives a beam size of 100x50 μm2 (HxV) and is useful for low pressure experiments and experiments done with the PE press associated with Soller slits. A PerkinElmer flatpanel detector can be precisely scanned in 3 directions, making ADX measurements at the highest possible resolution on this beamline. This station will also be used for diffraction tomography experiments. The second focal point at 37.6 m is located behind KB mirrors on the third experimental station. 10x10 μm2 beam sizes (full width) are expected. This station will be used for DAC experiments, with or without our future laser heating setup. Finally, parallel beams can be produced with sizes up to 15x5 mm2 (HxV) for tomography experiments, in pink (filtered white) beam or monochromatic beam. We plan to use rotating anvils presses such as the rotoPEc (J. Philippe et al., 2013) to take full advantage of this beam mode, but it can be opened to other techniques. The PSICHE beamline is opened for users since July 2013. Some stations are not available yet, and will be opened through 2014 and 2015. References X. Dong et al., Ray tracing application in hard x-ray optical development: Soleil first wiggler beamline (PSICHÉ) case" (2011), Proc. SPIE 8141, 814113 Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)

  5. Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) Cost-Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) are designed to prevent space launch vehicles from flight through environments conducive to natural or triggered lightning and are used for all U.S. government and commercial launches at government and civilian ranges. They are maintained by a committee known as the NASA/USAF Lightning Advisory Panel (LAP). The previous LLCC for anvil cloud, meant to avoid triggered lightning, have been shown to be overly restrictive. Some of these rules have had such high safety margins that they prohibited flight under conditions that are now thought to be safe 90% of the time, leading to costly launch delays and scrubs. The LLCC for anvil clouds was upgraded in the summer of 2005 to incorporate results from the Airborne Field Mill (ABFM) experiment at the Eastern Range (ER). Numerous combinations of parameters were considered to develop the best correlation of operational weather observations to in-cloud electric fields capable of rocket triggered lightning in anvil clouds. The Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) was the best metric found. Dr. Harry Koons of Aerospace Corporation conducted a risk analysis of the VAHIRR product. The results indicated that the LLCC based on the VAHIRR product would pose a negligible risk of flying through hazardous electric fields. Based on these findings, the Kennedy Space Center Weather Office is considering seeking funding for development of an automated VAHIRR algorithm for the new ER 45th Weather Squadron (45 WS) RadTec 431250 weather radar and Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Before developing an automated algorithm, the Applied Meteorology Unit (AMU) was tasked to determine the frequency with which VAHIRR would have allowed a launch to safely proceed during weather conditions otherwise deemed "red" by the Launch Weather Officer. To do this, the AMU manually calculated VAHIRR values based on candidate cases from past launches with known anvil cloud LLCC violations. An automated algorithm may be developed if the analyses from past launches show VAHIRR would have provided a significant cost benefit by allowing a launch to proceed. The 45 WS at the ER and 30th Weather Squadron (30 WS) at the Western Range provided the AMU with launch weather summaries from past launches that were impacted by LLCC. The 45 WS provided summaries from 14 launch attempts and the 30 WS fkom 5. The launch attempts occurred between December 2001 and June 2007. These summaries helped the AMU determine when the LLCC were "red" due to anvil cloud. The AMU collected WSR-88D radar reflectivity, cloud-to-ground lightning strikes, soundings and satellite imagery. The AMU used step-by-step instructions for calculating VAHIRR manually as provided by the 45 WS. These instructions were used for all of the candidate cases when anvil cloud caused an LLCC violation identified in the launch weather summaries. The AMU evaluated several software programs capable of visualizing radar data so that VAHIRR could be calculated and chose GR2Analyst from Gibson Ridge Software, LLC. Data availability and lack of detail from some launch weather summaries permitted analysis of six launch attempts from the ER and none from the WR. The AMU did not take into account whether or not other weather LCC violations were occurring at the same time as the anvil cloud LLCC since the goal of this task was to determine how often VAHIRR provided relief to the anvil cloud LLCC at any time during several previous launch attempts. Therefore, in the statistics presented in this report, it is possible that even though VAHIRR provided relief to the anvil cloud LLCC, other weather LCC could have been violated not permitting the launch to proceed. The results of this cost-benefit analysis indicated VAHIRR provided relief from the anvil cloud LLCC between about 15% and 18% of the time for varying 5-minute time periods based on summaries fkom six launch attempts and would have allowed launch to proceed that were otherwise "NO GO" due to the anvil cloud LLCC if the T-0 time occurred during the anvil cloud LLCC violations.

  6. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  7. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  8. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  9. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a...

  10. Formation of a metastable hollandite phase from amorphous plagioclase: A possible origin of lingunite in shocked chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Kubo, Tomoaki; Kono, Mari; Imamura, Masahiro; Kato, Takumi; Uehara, Seiichiro; Kondo, Tadashi; Higo, Yuji; Tange, Yoshinori; Kikegawa, Takumi

    2017-11-01

    We conducted high-pressure experiments in plagioclase with different anorthite contents at 18-27 GPa and 25-1750 °C using both a laser-heated diamond anvil cell and a Kawai-type multi-anvil apparatus to clarify the formation conditions of the hollandite phase in shocked chondritic and Martian meteorites. Lingunite (NaAlSi3O8-rich hollandite) was found first to crystallize from amorphous oligoclase as a metastable phase before decomposing into the final stable state. This process might account for the origin of lingunite found along with maskelynite in shocked chondritic meteorites. Metastable lingunite appeared at ∼20-24 GPa and ∼1100-1300 °C in laboratory tests lasting tens of minutes; however, it might also form at the higher temperatures and shorter time periods of shock events. In contrast, the hollandite phase was not observed during any stage of crystallization when using albite or labradorite as starting materials. The formation process of (Ca,Na)-hollandite in the labradorite composition found in Martian shergottites remains unresolved. The orthoclase contents of the hollandite phase both in shocked meteorites (2.4-8.2 mol%) and our oligoclase sample (3.9 mol%) are relatively high compared to the albite and labradorite samples (0.6 and 1.9 mol%, respectively). This might critically affect the crystallization kinetics of hollandite phase.

  11. Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Ni, Xiao-Lin; Fang, Lei-Ming; Li, Xin; Chen, Xi-Ping; Xie, Lei; He, Duan-Wei; Kou, Zi-Li

    2018-04-01

    Not Available Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401503, the Science Challenge Project under Grant No TZ2016001, and the National Natural Science Foundation of China under Grant No 11427810.

  12. User Guide for the Anvil Threat Cooridor Forecast Tool V2.4 for AWIPS

    NASA Technical Reports Server (NTRS)

    Barett, Joe H., III; Bauman, William H., III

    2008-01-01

    The Anvil Tool GUI allows users to select a Data Type, toggle the map refresh on/off, place labels, and choose the Profiler Type (source of the KSC 50 MHz profiler data), the Date- Time of the data, the Center of Plot, and the Station (location of the RAOB or 50 MHz profiler). If the Data Type is Models, the user selects a Fcst Hour (forecast hour) instead of Station. There are menus for User Profiles, Circle Label Options, and Frame Label Options. Labels can be placed near the center circle of the plot and/or at a specified distance and direction from the center of the circle (Center of Plot). The default selection for the map refresh is "ON". When the user creates a new Anvil Tool map with Refresh Map "ON, the plot is automatically displayed in the AWIPS frame. If another Anvil Tool map is already displayed and the user does not change the existing map number shown at the bottom of the GUI, the new Anvil Tool map will overwrite the old one. If the user turns the Refresh Map "OFF", the new Anvil Tool map is created but not automatically displayed. The user can still display the Anvil Tool map through the Maps dropdown menu* as shown in Figure 4.

  13. Experimental Study of Grit Particle Enhancement in Non-Shock Ignition

    NASA Astrophysics Data System (ADS)

    Browning, Richard V.; Peterson, Paul D.; Roemer, Edward L.; Oldenborg, Michael R.; Thompson, Darla G.; Deluca, Racci

    2006-07-01

    The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper, we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested with three conditions: (1) smooth steel anvils, (2) standard flint sandpaper, and (3) shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.

  14. Experimental Study of Grit Particle Enhancement in Non-Shock Ignition of PBX 9501

    NASA Astrophysics Data System (ADS)

    Peterson, Paul

    2005-07-01

    The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested in three conditions, (1) with smooth steel anvils, (2) with standard flint sandpaper, and (3) with shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.

  15. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuebing; Chen, Ting; Qi, Xintong

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in anmore » offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.« less

  16. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    NASA Technical Reports Server (NTRS)

    Hence, Deanna A.; Houze, Robert A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  17. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    NASA Technical Reports Server (NTRS)

    Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  18. Electric Fields, Cloud Microphysics, and Reflectivity in Anvils of Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Dye, J. E.; Bateman, M. G.; Christian, H. J.; Grainger, C. A.; Hall, W. D.; Krider, E. P.; Lewis, S. A.; Mach, D. M.; Merceret, F. J.; Willett, J. C.; hide

    2006-01-01

    A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approx.1 to >10 kV/m even though the particle concentrations and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was <3 kV/m. Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.

  19. Integrated in-situ probes for structural and dynamic properties of geological materials at ultrahigh pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Mao, H.; Mao, W. L.

    2005-12-01

    Multiple x-ray and allied probes have been recently developed and integrated with diamond-anvil cells at synchrotron facilities. They have effectively opened up the vast field area of the Earth's interior to direct, in-situ study. For instance, x-ray emission spectroscopy identifies the high-spin-low-spin transition that governs Fe-Mg partitioning, the most important factor in element differentiation in the mantle. Inelastic x-ray near-edge spectroscopy reveals the bonding nature of light elements that control the phase transitions, structure and partitioning of these elements (e.g., carbon bonding changes as an element, and in oxides, carbonates, and silicates). X-ray diffraction combined with laser-heated diamond anvil cell determines crystal structures and P-V-T equations of state. Shear moduli, single-crystal elasticity, and phonon dynamics can be measured to the core pressures with newly-enabled, complementary techniques, including radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, non-resonant inelastic x-ray scattering, high-temperature Raman spectroscopy, and Brillouin scattering spectroscopy. The nonhydrostatic stress in solid samples which was previously regarded as a nuisance that degraded the experiments, can now be used for extracting important rheological information, including deformation mechanisms, preferred orientation, slip systems, plasticity, failure, and shear strength of major mantle and core minerals at high pressures. With the new arsenal of experimental techniques over the extended P-T-x regimes at we can now address questions that were not conceivable only a decade ago. Knowledge of the high P-T properties is leading to fundamental improvements in interpreting seismological observations and understanding the structure, dynamics, and evolution of the Earth's deep interior.

  20. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  1. Electrical structure in two thunderstorm anvil clouds

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.

    1989-01-01

    Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.

  2. XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    1999-01-01

    The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

  3. Experimental constraints on the sulfur content in the Earth's core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Huang, H.; Leng, C.; Hu, X.; Wang, Q.

    2015-12-01

    Any core formation models would lead to the incorporation of sulfur (S) into the Earth's core, based on the cosmochemical/geochemical constraints, sulfur's chemical affinity for iron (Fe), and low eutectic melting temperature in the Fe-FeS system. Preferential partitioning of S into the melt also provides petrologic constraint on the density difference between the liquid outer and solid inner cores. Therefore, the center issue is to constrain the amount of sulfur in the core. Geochemical constraints usually place 2-4 wt.% S in the core after accounting for its volatility, whereas more S is allowed in models based on mineral physics data. Here we re-examine the constraints on the S content in the core by both petrologic and mineral physics data. We have measured S partitioning between solid and liquid iron in the multi-anvil apparatus and the laser-heated diamond anvil cell, evaluating the effect of pressure on melting temperature and partition coefficient. In addition, we have conducted shockwave experiments on Fe-11.8wt%S using a two-stage light gas gun up to 211 GPa. The new shockwave experiments yield Hugoniot densities and the longitudinal sound velocities. The measurements provide the longitudinal sound velocity before melting and the bulk sound velocity of liquid. The measured sound velocities clearly show melting of the Fe-FeS mix with 11.8wt%S at a pressure between 111 and 129 GPa. The sound velocities at pressures above 129GPa represent the bulk sound velocities of Fe-11.8wt%S liquid. The combined data set including density, sound velocity, melting temperature, and S partitioning places a tight constraint on the required sulfur partition coefficient to produce the density and velocity jumps and the bulk sulfur content in the core.

  4. Equation of state, initiation, and detonation of pure ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, D. L.; Sheffield, S. A.; Dattelbaum, D. M.; Velisavljevic, N.; Stahl, D. B.

    2009-06-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive throughout the world. One of the more common explosives using AN is called ANFO, a mixture of AN prills and fuel oil in a 94:6 ratio by weight. The AN prills are specially made to absorb the fuel oil, forming a mixture that reacts under shock loading through a diffusion-controlled process, resulting in a non-ideal explosive with detonation velocities around 4 km/s. While there are a number of studies on ANFO, there are only a few studies relating to the equation of state (EOS) and detonation properties of pure AN - resulting mainly from studies of accidents that have occurred during transportation of large quantities of AN. We present the results of a series of gas gun-driven plate impact experiments on pressed AN ranging in density from 1.72 to 0.9 g/cm^3. Several of the high density experiments were performed in front surface impact geometry, in which pressed AN disks were built into the projectile front and impacted onto LiF windows. Additional experiments at low density have been done in ``half cell'' multiple magnetic gauge gun experiments. From this work a complete unreacted EOS has been developed, as well as some initiation and detonation information. Additional high pressure x-ray diffraction experiments in diamond anvil cells have provided a static isotherm for AN.

  5. Electric Fields, Cloud Microphysics, and Reflectivity in Anvils of Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Dye, J. E.; Bateman, M. G.; Christian, H. J.; Defer, E.; Grainger, C. A.; Hall, W. D.; Krider, E. P.; Lewis, S. A.; Mach, D. M.; Merceret, F. J.; hide

    2007-01-01

    A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approximately 1 to more than 10 kV m(exp -1) even though the particle concentration and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was les than kV m(exp -1). Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.

  6. Thread gauge for tapered threads

    DOEpatents

    Brewster, Albert L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads.

  7. Thread gauge for tapered threads

    DOEpatents

    Brewster, A.L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads. 13 figures.

  8. Standard-free Pressure Measurement by Ultrasonic Interferometry in a Multi-Anvil Device

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Lathe, C.; Schilling, F. R.; Lauterjung, J.

    2002-12-01

    A key question to all high pressure research arises from the reliability of pressure standards. There is some indication and discussion of an uncertainty of 10-20% for higher pressures in all standards. Simultaneous and independent investigation of the dynamical (ultrasonic interferometry of elastic wave velocities) and static (XRD-measurement of the pressure-induced volume decline) compressibility on a sample reveal the possibility of a standard-free pressure calibration (see Getting, 1998) and, consequently an absolute pressure measurement. Ultrasonic interferometry is used to measure velocities of elastic compressional and shear waves in the multi-anvil high pressure device MAX80 at HASYLAB Hamburg enabling simultaneous XRD and ultrasonic experiments. Two of the six anvils were equipped with overtone polished lithium niobate transducers of 33.3 MHz natural frequency, for generation and detection of ultrasonic waves with a frequency sweep between 5 and 55 MHz. Different buffer - reflector combinations were tested to optimize the critical interference between both sample echoes. NaCl powder of 99.5 % purity (analytical grade by Merck) was used as starting material for manufacturing the samples used as pressure calibrant after Decker (1971). The medium grain size was 50 μm. The powder was pressed to a crude sample cylinder of 10 mm diameter and a length of 20 mm using a load of 6 tons resulting in an effective pressure of 0.25 to 0.3 GPa. The millimeter sized samples (diameter 2.4 mm and 1.6 mm length for 6 mm anvil truncation and diameter 3.1 mm and 1.1 mm length for 3.5 mm anvil truncation) for the high pressure experiments were shaped with a high-precision (+/- 0.5 μm) cylindrical grinding machine and polished at the front faces. From the ultrasonic wave velocity data we calculated the compressibility of NaCl. This requires in situ density data. Therefore the sample deformation during the high pressure experiments was analyzed in detail and the results were compared with models published by different authors. The experimental results measured with different set-ups under different pressure conditions were compared with EoS-data derived from static compression experiments up to 5 GPa (Bridgman, 1940) and up to 30 GPa (Holland and Ahrens, 1998; Birch, 1986) using experimental data from Boehler and Kennedy (1980) and Fritz et al. (1971). At 1.2 GPa and 5.3 GPa the results of static compression data exactly correspond to our velocity-based data, polynomial-fitted up to the power of 7. In the range between 2 and 4 GPa our dynamical data have 1.5 - 3 % higher values. Furthermore the pressure revealed according to Decker (1971) is in accordance to our standard-free pressure calibration within the uncertainty of the experiment. Birch, F., J., Geophys. Res., 91, 4,949-4,954, (1986).\\Boehler, R., Kennedy, G.C., J. Phys. Chem. Solids, 41, 517-523, (1980). Bridgman, P.W., Physical Review, 57, 237-239, (1940).\\Decker, D.L., J. Appl. Physics, 42, 3,239-3,244, (1971).\\Fritz, J.N., Marsh, S.P., Carter, W.J., McQueen, R.G., NBS Spec. Publ., E.C. Lloyd ed., 326, 201-208, (1971). Getting, I.C., Eos, 79, F830, (1998).\\Holland, K.G., Ahrens, T.H., Geophys. Mon. 101, Manghnani, M.H. and Yagi, T. eds., 335-355, (1998).

  9. A safe and reproducible anastomotic technique for minimally invasive Ivor Lewis oesophagectomy: the circular-stapled anastomosis with the trans-oral anvil.

    PubMed

    Campos, Guilherme M; Jablons, David; Brown, Lisa M; Ramirez, René M; Rabl, Charlotte; Theodore, Pierre

    2010-06-01

    In expert hands, the intrathoracic oesophago-gastric anastamosis usually provides a low rate of strictures and leaks. However, anastomoses can be technically challenging and time consuming when minimally invasive techniques are used. We present our preliminary results of a standardised 25 mm/4.8mm circular-stapled anastomosis using a trans-orally placed anvil. We evaluated a prospective cohort of 37 consecutive patients offered minimally invasive Ivor Lewis oesophagectomy at a tertiary referral centre. The oesophago-gastric anastomosis was created using a 25-mm anvil (Orvil, Autosuture, Norwalk, CT, USA) passed trans-orally, in a tilted position, and connected to a 90-cm long polyvinyl chloride delivery tube through an opening in the oesophageal stump. The anastomosis was completed by joining the anvil to a circular stapler (end-to-end anastomosis stapler (EEA XL) 25 mm with 4.8-mm staples, Autosuture, Norwalk, CT, USA) inserted into the gastric conduit. Primary outcomes were leak and stricture rates. Thirty-seven patients (mean age 65 years) with distal oesophageal adenocarcinoma (n=29), squamous cell cancer (n=5) or high-grade dysplasia in Barrett's oesophagus (n=3) underwent an Ivor Lewis oesophagectomy between October 2007 and August 2009. The abdominal portion was operated laparoscopically in 30 patients (81.1%). The thoracic portion was done using a muscle-sparing mini-thoracotomy in 23 patients (62.2%) and thoracoscopic techniques in 14 patients (37.8%). There were no intra-operative technical failures of the anastomosis or deaths. Five patients had strictures (13.5%) and all were successfully treated with endoscopic dilations. One patient had an anastomotic leak (2.7%) that was successfully treated by re-operation and endoscopic stenting of the anastomosis. The circular-stapled anastomosis with the trans-oral anvil allows for an efficient, safe and reproducible anastomosis. This straightforward technique is particularly suited to the completely minimally invasive Ivor Lewis oesophagectomy. Copyright 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  10. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  11. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  12. Suppression of the ferromagnetic order in the Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15} by hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.

    2016-06-27

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to themore » magnetic properties.« less

  13. High-pressure melting curve of hydrogen.

    PubMed

    Davis, Sergio M; Belonoshko, Anatoly B; Johansson, Börje; Skorodumova, Natalia V; van Duin, Adri C T

    2008-11-21

    The melting curve of hydrogen was computed for pressures up to 200 GPa, using molecular dynamics. The inter- and intramolecular interactions were described by the reactive force field (ReaxFF) model. The model describes the pressure-volume equation of state solid hydrogen in good agreement with experiment up to pressures over 150 GPa, however the corresponding equation of state for liquid deviates considerably from density functional theory calculations. Due to this, the computed melting curve, although shares most of the known features, yields considerably lower melting temperatures compared to extrapolations of the available diamond anvil cell data. This failure of the ReaxFF model, which can reproduce many physical and chemical properties (including chemical reactions in hydrocarbons) of solid hydrogen, hints at an important change in the mechanism of interaction of hydrogen molecules in the liquid state.

  14. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol

    2015-09-14

    There is a long-standing controversy over the melting curve of Fe at high pressure as determined from static laser heated diamond anvil cell and dynamic compression studies. X-ray absorption spectroscopy measurements are used here as a criterion to detect melting under pressure. Confronted with a diversity of obtained melting curves, this technique, used at such pressure and temperature conditions, is eligible to be at the forefront to probe Earth's deep interior. Furthermore, the experiment reported here holds promise for addressing important issues related to the structure and phase diagram of compressed melts, such as the existence of structural complexity (polyamorphism)more » in the liquid phase or the extent of icosahedral ordering whose investigation has been limited until now to ambient conditions.« less

  15. Chemistry through cocrystals: pressure-induced polymerization of C 2H 2·C 6H 6 to an extended crystalline hydrocarbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew D.; Huang, Haw-Tyng; Zhu, Li

    The 1:1 acetylene–benzene cocrystal, C 2H 2·C 6H 6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.

  16. Chemistry through cocrystals: pressure-induced polymerization of C 2H 2·C 6H 6 to an extended crystalline hydrocarbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew D.; Huang, Haw-Tyng; Zhu, Li

    The 1 : 1 acetylene–benzene cocrystal, C 2H 2·C 6H 6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.

  17. The stability and Raman spectra of ikaite, CaCO3·6H2O, at high pressure and temperature

    USGS Publications Warehouse

    Shahar, Anat; Bassett, William A.; Mao, Ho-kwang; Chou, I-Ming; Mao, Wendy

    2005-01-01

    Raman analyses of single crystals of ikaite, CaCO3·6H2O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm−1 corresponding to Eg(external) and A1g (internal) modes of vibrations in CO2− 3 ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a P-T phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite ↔ aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.

  18. How to measure heat capacity of metals at 10s to 100s of GPa

    NASA Astrophysics Data System (ADS)

    Geballe, Z. M.; Townley, A.; Jeanloz, R.

    2014-12-01

    Adapting methods of calorimetry to the diamond-anvil cell can provide important new information for understanding planetary interiors. Here we show that heat capacity of metals can be measured to the 10-100 GPa range by using AC electrical heating inside diamond anvil cells. Frequencies of f ≈ 1-100 MHz must be used to contain the heat within the sample of interest, as evidenced by numerical and physical models of heat flow: f > DinsCins2/(Csamdsam)2, where Dins is the thermal diffusivity of the insulation, Cins and Csam are specific heat capacities of insulation and metal sample, and dsam is sample thickness. Heat must be deposited uniformly (e.g. skin depth > sample thickness) for the most accurate and unambiguous measurements, thereby allowing measurement of the energetics of pre-melting, melting and partial melting of metals, including iron and its alloys. In principle, high-pressure calorimetry can be used to independently determine melting at high pressures, and also to quantify latent heats of fusion, thereby revealing the density of liquid metals at Earth core conditions.

  19. Zero-Kelvin Compression Isotherms of the Elements 1 ≤ Z ≤ 92 to 100 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David A.; Cynn, Hyunchae; Söderlind, Per

    2016-12-01

    Most of the chemical elements have now been compressed close to or above 100 GPa (1 Mbar) pressure in diamond-anvil cells and the pressure–volume room-temperature isotherms have been measured. We collect these data and use simple lattice-dynamics models to reduce the isotherms to 0 K. We have extended the published work by making new diamond-anvil-cell measurements on Cr and Rh, and by conducting density-functional calculations on the elements Po, At, Rn, Fr, Ra, and Ac. The 0 K data are tabulated for all elements 1 ≤ Z ≤ 92 and 0 ≤ P ≤ 100 GPa. These data are usefulmore » for generating wide-range equation of state models and for studying the stability of chemical compounds at high pressure (“Megabar chemistry”). The tables presented here are intended to be reference thermodynamic tables for use in high-pressure research. Further experimental and theoretical work will be needed to extend the tables to higher pressure and to improve accuracy.« less

  20. Meso-beta scale perturbations of the wind field by thunderstorm cells

    NASA Technical Reports Server (NTRS)

    Ulanski, S. L.; Heymsfield, G. M.

    1986-01-01

    Data from the high density storm-scale rawinsonde network of the Severe Environmental Storms and Mesoscale Experiment revealed temporal and spatial changes in the divergence fields of the troposphere in response to severe storm evolution on May 2, 1979; these changes were detectable on the meso-beta scale. This unique set of data was subsequently used to study the evolution of the wind, divergence and vertical motion fields in the presence of intense convection. Mid- and upper-tropospheric divergence was superimposed over low-level convergence. The divergence, which has a maximum value of .0004/s, occurred 75 to 100 km upwind as well as over the tornadic cells. To the south of the storm cells, the kinematic pattern was in reverse, upper level convergence was superimposed over low-level divergence. A vertical motion doublet was found to ascend over the squall line and descend about 70 km south of the squall line. It is suggested that the following effects are accountable for the nature of the kinematic fields: (1) blocking of tropospheric environmental flow by the storm cells, (2) anvil outflows, particularly from the tornadic cells, and (3) divergence from the exit region of the jet stream.

  1. CRYSTAL-FACE Analysis and Simulations of the July 23rd Extended Anvil Case

    NASA Technical Reports Server (NTRS)

    Starr, David

    2003-01-01

    A key focus of CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers - Florida Area Cirrus Experiment) was the generation and subsequent evolution of cirrus outflow from deep convective cloud systems. Present theoretical background and motivations will be discussed. An integrated look at the observations of an extended cirrus anvil cloud system observed on 23 July 2002 will be presented, including lidar and millimeter radar observation; from NASA s ER-2 and in-situ observations from NASA s WB-57 and University of North Dakota Citation. The observations will be compared to results of simulations using 1-D and 2-D high-resolution (100 meter) cloud resolving models. The CRMs explicitly account for cirrus microphysical development by resolving the evolving ice crystal size distribution (bin model) in time and space. Both homogeneous and heterogeneous nucleation are allowed in the model. The CRM simulations are driven using the output of regional simulations using MM5 that produces deep convection similar to what was observed. The MM5 model employs a 2 km inner grid (32 layers) over a 360 km domain, nested within a 6-km grid over a 600-km domain. Initial and boundary conditions for the 36-hour MM5 simulation are taken from NCEP Eta model analysis at 32 km resolution. Key issues to be explored are the settling of the observed anvil versus the model simulations, and comparisons of dynamical properties, such as vertical motions, occurring in the observations and models. The former provides an integrated measure of the validity of the model microphysics (fallspeed) while the latter is the key factor in forcing continued ice generation.

  2. Deviatoric stress-induced phase transitions in diamantane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.

    2014-10-21

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressuremore » medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.« less

  3. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  4. Super-deep diamond genesis at Redox conditions of slab-mantle boundary

    NASA Astrophysics Data System (ADS)

    Gao, J.; Chen, B.; Wu, X.

    2017-12-01

    Diamond genesis is an intriguing issue for diamond resources and the deep carbon cycle of the Earth's interiors. Super-deep diamonds, representing only 6% of the global diamond population, often host inclusions with phase assemblages requiring a sublithospheric origin (>300 km). Being the windows for probing the deep Earth, super-deep diamonds with their distinctive micro-inclusions not only record a history of oceanic lithosphere subduction and upward transport at a depth of >250 km to even 1000 km, but indicate their genesis pertinent to mantle-carbonate melts in a Fe0-bufferred reduced condition. Our pilot experiments have evidenced the formation of diamonds from MgCO3-Fe0 system in a diamond anvil cell device at 25 GPa and 1800 K. Detailed experimental investigations of redox mechanism of MgCO3-Fe0 and CaCO3-Fe0 coupling have been conducted using multi-anvil apparatus. The conditions are set along the oceanic lithosphere subduction paths in the pressure-temperature range of 10-24 GPa and 1200-2000 K, covering the formation region of most super-deep diamonds. The clear reaction zones strongly support the redox reaction between carbonatitic slab and Fe0-bearing metals under mantle conditions. Our study has experimentally documented the possibility of super-deep diamond genesis at redox conditions of carbonateitic slab and Fe0-bearings. The kinetics of diamond formation as a function of pressure-temperature conditions are also discussed.

  5. The relation of the yield stress of high-pressure anvils to the pressure attained at yielding and the ultimate attainable pressure

    NASA Technical Reports Server (NTRS)

    Panda, P. C.; Ruoff, A. L.

    1979-01-01

    A sensitive microprofilometer was used to determine the onset of yielding in the anvils of a supported opposed anvil device for the case of 3% cobalt-cemented tungsten carbide as the anvil material. In addition, it is shown how the commencement of yielding in boron carbide pistons, the yield strength being known, can be used to obtain the transition pressure to a conducting phase in gallium phosphide. The transition pressures of bismuth and gallium phosphide are obtained and it is found that these transitions are extremely close to the maximum attainable pressure in, respectively, a maraging steel and a 3% cobalt-cemented tungsten carbide.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purelymore » hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.« less

  7. X-ray Raman spectroscopic study of benzene at high pressure.

    PubMed

    Pravica, Michael; Grubor-Urosevic, Ognjen; Hu, Michael; Chow, Paul; Yulga, Brian; Liermann, Peter

    2007-10-11

    We have used X-ray Raman spectroscopy (XRS) to study benzene up to approximately 20 GPa in a diamond anvil cell at ambient temperature. The experiments were performed at the High-Pressure Collaborative Access Team's 16 ID-D undulator beamline at the Advanced Photon Source. Scanned monochromatic X-rays near 10 keV were used to probe the carbon X-ray edge near 284 eV via inelastic scattering. The diamond cell axis was oriented perpendicular to the X-ray beam axis to prevent carbon signal contamination from the diamonds. Beryllium gaskets confined the sample because of their high transmission throughput in this geometry. Spectral alterations with pressure indicate bonding changes that occur with pressure because of phase changes (liquid: phase I, II, III, and III') and possibly due to changes in the hybridization of the bonds. Changes in the XRS spectra were especially evident in the data taken when the sample was in phase III', which may be related to a rate process observed in earlier shock wave studies.

  8. NMR at pressures up to 90 GPa

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Khandarkhaeva, Saiana; Petitgirard, Sylvain; Körber, Thomas; Lauerer, Alexander; Rössler, Ernst; Dubrovinsky, Leonid

    2018-07-01

    The past 15 years have seen an astonishing increase in Nuclear Magnetic Resonance (NMR) sensitivity and accessible pressure range in high-pressure NMR experiments, owing to a series of new developments of NMR spectroscopy applied to the diamond anvil cell (DAC). Recently, with the application of electro-magnetic lenses, so-called Lenz lenses, in toroidal diamond indenter cells, pressures of up to 72 GPa with NMR spin sensitivities of about 1012 spin/Hz1/2 has been achieved. Here, we describe the implementation of a refined NMR resonator structure using a pair of double stage Lenz lenses driven by a Helmholtz coil within a standard DAC, allowing to measure sample volumes as small as 100 pl prior to compression. With this set-up, pressures close to 100 GPa could be realised repeatedly, with enhanced spin sensitivities of about 5 × 1011 spin/Hz1/2. The manufacturing and handling of these new NMR-DACs is relatively easy and straightforward, which will allow for further applications in physics, chemistry, or biochemistry.

  9. Natural occurrence and synthesis of two new postspinel polymorphs of chromite.

    PubMed

    Chen, Ming; Shu, Jinfu; Mao, Ho-kwang; Xie, Xiande; Hemley, Russell J

    2003-12-09

    A high-pressure polymorph of chromite, the first natural sample with the calcium ferrite structure, has been discovered in the shock veins of the Suizhou meteorite. Synchrotron x-ray diffraction analyses reveal an orthorhombic CaFe2O4-type (CF) structure. The unit-cell parameters are a = 8.954(7) A, b = 2.986(2) A, c = 9.891(7) A, V = 264.5(4) A3 (Z = 4) with space group Pnma. The new phase has a density of 5.62 g/cm3, which is 9.4% denser than chromite-spinel. We performed laser-heated diamond anvil cell experiments to establish that chromite-spinel transforms to CF at 12.5 GPa and then to the recently discovered CaTi2O4-type (CT) structure above 20 GPa. With the ubiquitous presence of chromite, the CF and CT phases may be among the important index minerals for natural transition sequence and pressure and temperature conditions in mantle rocks, shock-metamorphosed terrestrial rocks, and meteorites.

  10. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance

    PubMed Central

    Meier, Thomas; Wang, Nan; Mager, Dario; Korvink, Jan G.; Petitgirard, Sylvain; Dubrovinsky, Leonid

    2017-01-01

    A new pathway to nuclear magnetic resonance (NMR) spectroscopy for picoliter-sized samples (including those kept in harsh and extreme environments, particularly in diamond anvil cells) is introduced, using inductively coupled broadband passive electromagnetic lenses, to locally amplify the magnetic field at the isolated sample, leading to an increase in sensitivity. The lenses are adopted for the geometrical restrictions imposed by a toroidal diamond indenter cell and yield signal-to-noise ratios at pressures as high as 72 GPa at initial sample volumes of only 230 pl. The corresponding levels of detection are found to be up to four orders of magnitude lower compared to formerly used solenoidal microcoils. Two-dimensional nutation experiments on long-chained alkanes, CnH2n+2 (n = 16 to 24), as well as homonuclear correlation spectroscopy on thymine, C5H6N2O2, were used to demonstrate the feasibility of this approach for higher-dimensional NMR experiments, with a spectral resolution of at least 2 parts per million. This approach opens up the field of ultrahigh-pressure sciences to one of the most versatile spectroscopic methods available in a pressure range unprecedented up to now. PMID:29230436

  11. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance.

    PubMed

    Meier, Thomas; Wang, Nan; Mager, Dario; Korvink, Jan G; Petitgirard, Sylvain; Dubrovinsky, Leonid

    2017-12-01

    A new pathway to nuclear magnetic resonance (NMR) spectroscopy for picoliter-sized samples (including those kept in harsh and extreme environments, particularly in diamond anvil cells) is introduced, using inductively coupled broadband passive electromagnetic lenses, to locally amplify the magnetic field at the isolated sample, leading to an increase in sensitivity. The lenses are adopted for the geometrical restrictions imposed by a toroidal diamond indenter cell and yield signal-to-noise ratios at pressures as high as 72 GPa at initial sample volumes of only 230 pl. The corresponding levels of detection are found to be up to four orders of magnitude lower compared to formerly used solenoidal microcoils. Two-dimensional nutation experiments on long-chained alkanes, C n H 2 n +2 ( n = 16 to 24), as well as homonuclear correlation spectroscopy on thymine, C 5 H 6 N 2 O 2 , were used to demonstrate the feasibility of this approach for higher-dimensional NMR experiments, with a spectral resolution of at least 2 parts per million. This approach opens up the field of ultrahigh-pressure sciences to one of the most versatile spectroscopic methods available in a pressure range unprecedented up to now.

  12. Dependence of Cumulus Anvil Radiative Properties on Environmental Conditions in the Tropical West Pacific

    NASA Technical Reports Server (NTRS)

    Ye, B.; DelGenio, A. D.

    1999-01-01

    Areally extensive, optically thick anvil clouds associated with mesoscale convective clusters dominate the shortwave cloud forcing in the tropics and provide longwave forcing comparable to that of thin cirrus. Changes in the cover and optical thickness of tropical anvils as climate warms can regulate the sign of cloud feedback. As a prelude to the study of MMCR data from the ARM TWP sites, we analyze ISCCP-derived radiative characteristics of anvils observed in the tropical west Pacific during the TOGA-COARE IOP. Anvils with radius greater than 100 km were identified and tracked from inception to decay using the Machado-Rossow algorithm. Corresponding environmental conditions just prior to the start of the convectove event were diagnosed using the Lin-Johnson objective analysis product. Small clusters (100-200 km radius) are observed to have a broad range of optical thicknesses (10-50), while intermediate optical thickness clusters are observed to range in size from 100 km to almost 1000 km. Large-size clusters appear to be favored by strong pre-storm large scale upward motion throughout the troposphere, moist low-to-midlevel relative humidities, environments with slightly higher CAPE than those for smaller clusters, and strong front-to-rear flow. Optically thick anvils are favored in situations of strong low-level moisture convergence and strong upper-level shear.

  13. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and manually installing a small assembly carrying 2 infrared mirrors and an objective lens. Using this system we have performed two pilot studies recording texture and lattice strain development during deformation of FeO up to 1300 K and 45 GPa and bridgmanite up to 1600 K and 80 GPa.

  14. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert A. Houze, Jr.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at highmore » resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.« less

  15. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  16. The composition of Earth's core from equations of state, metal-silicate partitioning, and core formation modeling

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca; Campbell, Andrew; Ciesla, Fred

    2016-04-01

    The Earth accreted in a series of increasingly large and violent collisions. Simultaneously, the metallic core segregated from the silicate mantle, acquiring its modern composition through high pressure (P), high temperature (T) partitioning reactions. Here we present a model that couples these aspects of early planetary evolution, building on recent accretion simulations and metal-silicate partitioning experiments, constrained by density measurements of Fe-rich alloys. Previously, the equations of state of FeO, Fe-9Si, Fe-16Si, and FeSi were measured to megabar pressures and several thousand K using a laser-heated diamond anvil cell. With these equations of state, we determined that the core's density can be reproduced through the addition of 11.3 +/- 0.6 wt% silicon or 8.1 +/- 1.1 wt% oxygen to an Fe-Ni alloy (Fischer et al., 2011, 2014). Metal-silicate partitioning experiments of Ni, Co, V, Cr, Si, and O have been performed in a diamond anvil cell to 100 GPa and 5700 K, allowing the effects of P, T, and composition on the partitioning behaviors of these elements to be parameterized (Fischer et al., 2015; Siebert et al., 2012). Here we apply those experimental results to model Earth's core formation, using N-body simulations to describe the delivery, masses, and original locations of planetary building blocks (Fischer and Ciesla, 2014). As planets accrete, their core and mantle compositions are modified by high P-T reactions with each collision (Rubie et al., 2011). For partial equilibration of the mantle at 55% of the evolving core-mantle boundary pressure and the liquidus temperature, we find that the core contains 5.4 wt% Si and 1.9 wt% O. This composition is consistent with the seismologically-inferred density of Earth's core, based on comparisons to our equations of state, and indicate that the core cannot contain more than ~2 wt% S or C. Earth analogues experience 1.2 +/- 0.2 log units of oxidation during accretion, due to both the effects of high P-T partitioning and the temporal evolution of the Earth's feeding zone. This modeling can reveal the relative importance of various accretion and differentiation processes to core composition, highlighting targets for future experimental and numerical studies.

  17. In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell

    NASA Astrophysics Data System (ADS)

    Walte, N.; Keppler, H.

    2005-12-01

    A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.

  18. The photochemical reaction of hydrocarbons under extreme thermobaric conditions

    NASA Astrophysics Data System (ADS)

    Serovaiskii, Aleksandr; Kolesnikov, Anton; Mukhina, Elena; Kutcherov, Vladimir

    2017-10-01

    The photochemical reaction of hydrocarbons was found to play an important role in the experiments with the synthetic petroleum conducted in Diamond Anvil Cell (DAC). Raman spectroscopy with a green laser (514.5 nm) was used for in situ sample analysis. This photochemical effect was investigated in the pressure range of 0.7-5 GPa, in the temperature interval from the ambient conditions to 450°C. The power of laser used in these experiment series was from 0.05 W to 0.6 W. The chemical transformation was observed when the necessary threshold pressure (~2.8 GPa) was reached. This transformation correlated with the luminescence appearance on the Raman spectra and a black opaque spot in the sample was observed in the place where the laser focus was forwarded. The exposure time and laser power (at least in the 0.1-0.5 W range) did not play a role in the 0.1-0.5 GPa range.

  19. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  20. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOEpatents

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  1. A perforated diamond anvil cell for high-energy x-ray diffraction of liquids and amorphous solids at high pressure.

    PubMed

    Soignard, Emmanuel; Benmore, Chris J; Yarger, Jeffery L

    2010-03-01

    Diamond anvil cells (DACs) are widely used for the study of materials at high pressure. The typical diamonds used are between 1 and 3 mm thick, while the sample contained within the opposing diamonds is often just a few microns in thickness. Hence, any absorbance or scattering from diamond can cause a significant background or interference when probing a sample in a DAC. By perforating the diamond to within 50-100 microm of the sample, the amount of diamond and the resulting background or interference can be dramatically reduced. The DAC presented in this article is designed to study amorphous materials at high pressure using high-energy x-ray scattering (>60 keV) using laser-perforated diamonds. A small diameter perforation maintains structural integrity and has allowed us to reach pressures >50 GPa, while dramatically decreasing the intensity of the x-ray diffraction background (primarily Compton scattering) when compared to studies using solid diamonds. This cell design allows us for the first time measurement of x-ray scattering from light (low Z) amorphous materials. Here, we present data for two examples using the described DAC with one and two perforated diamond geometries for the high-pressure structural studies of SiO(2) glass and B(2)O(3) glass.

  2. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOEpatents

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  3. Flash Location, Size, and Rates Relative to the Evolving Kinematics and Microphysics of the 29 May 2012 DC3 Supercell Storm

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; DiGangi, E.; Ziegler, C.; Biggerstaff, M. I.; Betten, D.; Bruning, E. C.

    2014-12-01

    A supercell thunderstorm was observed on 29 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. This storm was part of a cluster of severe storms and produced 5" hail, an EF-1 tornado, and copious lightning over the course of a few hours. During a period in which flash rates were increasing rapidly, observations were obtained from mobile polarimetric radars and a balloon-borne electric field meter (EFM) and particle imager, while aircraft sampled the chemistry of the inflow and anvil. In addition, the storm was within the domain of the 3-dimensional Oklahoma Lightning Mapping Array (LMA) and the S-band KTLX WSR-88D radar. The focus of this paper is the evolution of flash rates, the location of flash initiations, and the distribution of flash size and flash extent density as they relate to the evolving kinematics and microphysics of the storm for the approximately 30-minute period in which triple-Doppler coverage was available. Besides analyzing reflectivity structure and three-dimensional winds for the entire period, we examine mixing ratios of cloud water, cloud ice, rain, and graupel/hail that have been retrieved by a Lagrangian analysis for three select times, one each at the beginning, middle, and end of the period. Flashes in an around the updraft of this storm were typically small. Flash size tended to increase, and flash rates tended to decrease as distance from the updraft increased. Although flash initiations were most frequent near the updraft, some flashes were initiated near the edge of 30 dBZ cores and propagated into the anvil. Later, some flashes were initiated in the anvil itself, in vertical cells that formed and became electrified tens of kilometers downshear of the main body of the storm. Considerable lightning structure was inferred to be in regions dominated by cloud ice in the upper part of the storm. The continual small discharges in the overshooting top of the storm tended to be near or within 15 dBZ contours, although occasional discharges appeared to extend above the storm.

  4. CePt2In7: Shubnikov-de Haas measurements on micro-structured samples under high pressures

    NASA Astrophysics Data System (ADS)

    Kanter, J.; Moll, P.; Friedemann, S.; Alireza, P.; Sutherland, M.; Goh, S.; Ronning, F.; Bauer, E. D.; Batlogg, B.

    2014-03-01

    CePt2In7 belongs to the CemMnIn3 m + 2 n heavy fermion family, but compared to the Ce MIn5 members of this group, exhibits a more two dimensional electronic structure. At zero pressure the ground state is antiferromagnetically ordered. Under pressure the antiferromagnetic order is suppressed and a superconducting phase is induced, with a maximum Tc above a quantum critical point around 31 kbar. To investigate the changes in the Fermi Surface and effective electron masses around the quantum critical point, Shubnikov-de Haas measurements were conducted under high pressures in an anvil cell. The samples were micro-structured and contacted using a Focused Ion Beam (FIB). The Focused Ion Beam enables sample contacting and structuring down to a sub-micrometer scale, making the measurement of several samples with complex shapes and multiple contacts on a single anvil feasible.

  5. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (< 1 mD), possibly because of limited fracture connectivity through the anvils. In pure share experiments, shale with bedding planes perpendicular to shear loading developed complex fracture networks with narrow apertures and peak permeability of 30 mD. Shale with bedding planes parallel to shear loading developed simple fractures with large apertures and a peak permeability as high as 1 D. Fracture systems held at static conditions for periods of several hours showed little change in effective permeability at hydrostatic conditions as high as 140 bars. However, permeability of fractured systems was a function of hydrostatic pressure, declining in a pseudo-linear, exponential fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  6. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  7. A New Technique for In Situ X-ray Microtomography Under High Pressure

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Wang, Y.; Westferro, F.; Gebhardt, J.; Rivers, M. L.; Sutton, S. R.

    2004-12-01

    We have developed a new technique for in situ synchrotron microtomography to study texture evolution in multi-phase specimens under high pressure and temperature. Two critical issues in performing tomography experiments under pressure are (1) the limited X-ray access to the sample because of the highly absorbing materials, such as tungsten carbide and tool steel, typically used in the pressure vessel and (2) a high pressure compatible rotation mechanism to collect projections of the sample continuously from 0 to 180° . We addressed these issues by (1) employing an opposed-anvil high pressure cell, known as the Drickamer cell, with an X-ray transparent containment ring, to allow panoramic X-ray access, and (2) rotating the Dricakmer cell by Harmonic DriveTM gear reducers, with thrust bearings supporting the hydraulic load. The design of the rotation mechanism benefited from the rotational deformation apparatus developed by Yamazaki and Karato (Rev. Sci. Instrum., 72, 4207, 2001). We report results obtained from a test run performed under pressure with monochromatic synchrotron radiation. A sapphire sphere (1.0 mm dia.) was embedded in a powdered mixture of Fe and 9 wt.% S alloy. The diameter of the sample chamber was 2 mm. Under pressure, the entire Drickamer cell was rotated to collect radiographs of the sample at various angles from 0 to 179.5° in 0.5° step size. Computational reconstruction of these projections provided three dimensional (3D) distribution of linear attenuation coefficient of the sample with a spatial resolution of 6 microns. The shape change in the sapphire sphere during compression was clearly observed. Using the program Blob3d, reconstructed 3D images of the sphere were separated from the surrounding Fe-S alloy. Volumes of the sphere were then accurately determined from the extracted images, by carefully defining the image intensity threshold. The errors in the volume measurement are about 0.3 to 0.7%, mostly due to shadowing by anvil deformation. The results, although performed using a solid sample, demonstrate the potential of measuring melt volume. Previous density measurements using X-ray radiography with only one dimensional data assumed that the shape of the sample remained unchanged throughout the experiment. In our new technique, this assumption is no longer required and density of melts can be inferred directly from the sample volume even when the molten sample is distorted. Other applications of this apparatus will be also discussed.

  8. Detonation Product EOS Studies: Using ISLS to Refine Cheetah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaug, J M; Howard, W M; Fried, L E

    2001-08-08

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less

  9. Shock and Static Compression of Nitrobenzene

    NASA Astrophysics Data System (ADS)

    Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake

    2000-08-01

    The Hugoniot and static compression curve (isotherm) were investigated using explosive plane wave generators and diamond anvil cells, respectively. The obtained Hugoniot from the shock experiments is represented by two linear lines: Us=2.52+1.23 up (0.8

  10. Automated method for determining Instron Residual Seal Force of glass vial/rubber closure systems. Part II. 13 mm vials.

    PubMed

    Ludwig, J D; Davis, C W

    1995-01-01

    Instron Residual Seal Force (IRSF) of 13 mm glass vial/rubber closure systems was determined using an Instron 4501 Materials Testing System and computerized data analysis. A series of three cap anvils varying in shape and dimensions were machined to optimize cap anvil performance. Cap anvils with spherical top surfaces and narrow internal dimensions produced uniform stress-deformation curves from which precise IRSF values were derived.

  11. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  12. Nanocrystalline hexagonal diamond formed from glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.

    Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less

  13. In situ defect annealing of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronalmore » annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO 2 and ThO 2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO 2 and ThO 2.« less

  14. Measurements of sound velocity in iron-nickel alloys by femtosecond laser pulses in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Tatsuya; Ohta, Kenji; Yagi, Takashi; Hirose, Kei; Ohishi, Yasuo

    2018-01-01

    By comparing the seismic wave velocity profile in the Earth with laboratory data of the sound velocity of iron alloys, we can infer the chemical composition of materials in the Earth's core. The sound velocity of pure iron (Fe) has been sufficiently measured using various techniques, while experimental study on the sound velocity of iron-nickel (Fe-Ni) alloys is limited. Here, we measured longitudinal wave velocities of hexagonal-close-packed (hcp) structured Fe up to 29 GPa, Fe-5 wt% Ni, and Fe-15 wt% Ni up to 64 GPa via a combination of the femtosecond pulse laser pump-probe technique and a diamond anvil cell at room temperature condition. We found that the effect of Ni on the sound velocity of an Fe-based alloy is weaker than that determined by previous experimental study. In addition, we obtained the parameters of Birch's law to be V P = 1146(57)ρ - 3638(567) for Fe-5 wt% Ni and V P = 1141(45)ρ- 3808(446) for Fe-15 wt% Ni, respectively, where V P is longitudinal wave velocity (m/s) and ρ is density (g/cm3).

  15. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  16. Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 92 to 100 GPa [Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 90 to 100 GPa (1 megabar)

    DOE PAGES

    Young, David A.; Cynn, Hyunchae; Soderlind, Per; ...

    2016-10-24

    Most of the chemical elements have now been compressed close to or above 100 GPa (1 Mbar) pressure in diamond-anvil cells and the pressure–volume room-temperature isotherms have been measured. We collect these data and use simple lattice-dynamics models to reduce the isotherms to 0 K. We have extended the published work by making new diamond-anvil-cell measurements on Cr and Rh, and by conducting density-functional calculations on the elements Po, At, Rn, Fr, Ra, and Ac. The 0 K data are tabulated for all elements 1 ≤ Z ≤ 92 and 0 ≤ P ≤ 100 GPa. These data are usefulmore » for generating wide-range equation of state models and for studying the stability of chemical compounds at high pressure (“Megabar chemistry”). As a result, the tables presented here are intended to be reference thermodynamic tables for use in high-pressure research. Further experimental and theoretical work will be needed to extend the tables to higher pressure and to improve accuracy.« less

  17. Measurements of sound velocity in iron-nickel alloys by femtosecond laser pulses in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Tatsuya; Ohta, Kenji; Yagi, Takashi; Hirose, Kei; Ohishi, Yasuo

    2018-06-01

    By comparing the seismic wave velocity profile in the Earth with laboratory data of the sound velocity of iron alloys, we can infer the chemical composition of materials in the Earth's core. The sound velocity of pure iron (Fe) has been sufficiently measured using various techniques, while experimental study on the sound velocity of iron-nickel (Fe-Ni) alloys is limited. Here, we measured longitudinal wave velocities of hexagonal-close-packed (hcp) structured Fe up to 29 GPa, Fe-5 wt% Ni, and Fe-15 wt% Ni up to 64 GPa via a combination of the femtosecond pulse laser pump-probe technique and a diamond anvil cell at room temperature condition. We found that the effect of Ni on the sound velocity of an Fe-based alloy is weaker than that determined by previous experimental study. In addition, we obtained the parameters of Birch's law to be V P = 1146(57) ρ - 3638(567) for Fe-5 wt% Ni and V P = 1141(45) ρ- 3808(446) for Fe-15 wt% Ni, respectively, where V P is longitudinal wave velocity (m/s) and ρ is density (g/cm3).

  18. Nanocrystalline hexagonal diamond formed from glassy carbon

    DOE PAGES

    Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; ...

    2016-11-29

    Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less

  19. The Solidus of Mar

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Schmerr, N. C.; Fei, Y.

    2017-12-01

    Knowledge of the melting behavior of a planetary interior is critical to determine the thermal history of a planet. In particular, the location of the mantle solidus with depth is a key parameter for constraining temperatures of magma ocean crystallization, understanding volcanic and magmatic processes, and inferring mantle rheology. The properties of the martian mantle are experimentally accessible through a combination of piston cylinder and multi-anvil apparatuses. Here we constrain the solidus of martian mantle from the surface to the potential core-mantle boundary by combining previous low pressure experiments with new, high pressure multi-anvil experiments. Experiments were conducted on a simplified anhydrous Dreibus and Wänke composition [Bertka and Fei, JGR, 1997] from 10 to 25 GPa and 1775 to 2300 °C placed in rhenium capsules. The mineralogy and melt phases in each experiment were identified and quantified with an electron microprobe. Experiments spanned 100 to 200 °C at each pressure (10, 16, 20, 23, 25 GPa) and allowed us to constrain the location of the solidus within 50 °C. By combining our data with solidus experiments at lower pressures completed previously with the Dreibus and Wänke composition, we parameterized the solidus of the entire martian mantle. When considering the high pressure experiments, the Fe-rich solidus of the martian mantle is 100 °C lower than the peridotite mantle solidus for the Earth [Hirschmann et al., PEPI, 2009]. These new results provide an experimental determination of the melting temperature of martian mantle that is an essential constraint for modeling the thermal evolution and volcanism on Mars.

  20. Anvil Forecast Tool in the Advanced Weather Interactive Processing System, Phase II

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2008-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Light Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input.

  1. Validation Testing and Numerical Modeling of Advanced Armor Materials

    DTIC Science & Technology

    2012-11-01

    Rigid Anvil A ground steel high-hard plate was placed in front of a massive block of steel that was anchored to the gun table. After every shot, the...photovoltaic sensors • 15.24-cm RHA steel block with a 1.27-cm thick high hard steel anvil plate The following instruments/equipment was used to perform...Range 167 was prepared using the 2.77-cm bore gas operated gun, an RHA anvil block with a high hard steel faceplate that was surface polished, and a

  2. Role of interfacial bonding in the design and realization of Magnetically Applied Pressure Shear (MAPS) experiments

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott

    2017-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that can be used to explore the material behavior under dynamic compression-shear loadings at strain rates and pressures that are much higher than those that can be achieved by gas-gun driven pressure shear experiments. A significant challenge for MAPS is the transmission of large shear stress through material interfaces. In this study, numerical simulations were used to gain insights on the behavior of the interface between molybdenum, which is the driver, and zirconia, the anvil, in MAPS experiments. Molybdenum was stressed into the plastic regime and zirconia stayed elastic but appeared to have incurred some spall damage at the later stage of the experiments. By including damage for the anvil and interfacial sliding in the simulations, both the longitudinal and transverse velocity data were able to be reasonably simulated. The results indicate that the interfacial slip appears to usually occur at the beginning stage of the shear loading when the pressure is relatively low. After the pressure reaches a certain level, the shear stress could be fully transmitted. Some other possible experiment designs to minimize the role of interface in MAPS are discussed. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. High-Sensitivity Nuclear Magnetic Resonance at Giga-Pascal Pressures: A New Tool for Probing Electronic and Chemical Properties of Condensed Matter under Extreme Conditions

    PubMed Central

    Meier, Thomas; Haase, Jürgen

    2014-01-01

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe. PMID:25350694

  4. Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Bureau, Hélène; Foy, Eddy; Raepsaet, Caroline; Somogyi, Andrea; Munsch, Pascal; Simon, Guilhem; Kubsky, Stefan

    2010-07-01

    The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br) fluid/(Br) melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br) fluid/(Br) glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing "fluid" leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.

  5. High-sensitivity nuclear magnetic resonance at Giga-Pascal pressures: a new tool for probing electronic and chemical properties of condensed matter under extreme conditions.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2014-10-10

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.

  6. Experimental studies of transplutonium metals and compounds under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.R.; Haire, R.G.; Benedict, U.

    1986-01-01

    The structural behavior of the first four transplutonium metals and two Bk-Cf alloys as a function of pressure has been studied in diamond anvil cells via x-ray diffraction. The sequence of structures exhibited as pressure is increased is dhcp ..-->.. ccp ..-->.. orthorhombic. In addition a distorted ccp phase is observed in Am, Bk/sub 0.40/Cf/sub 0.60/, and Cf between the ccp and orthorhombic phases. Diamond anvil cells have also been used to contain AmI/sub 3/, CfBr/sub 3/, and CfCl/sub 3/ under pressure for investigation by absorption spectrophotometry. Both AmI/sub 3/ and CfBr/sub 3/ exhibit pressure-induced, irreversible phase transformations to themore » PuBr/sub 3/-type orthorhombic structure, a more dense form of these compounds. Thus the driving force for these transformations is more efficient crystal packing. Both hexagonal (to 22 GPa) and orthorhombic (to 35 GPa) CfCl/sub 3/ exhibit only reversible spectral changes with pressure. This probably reflects their nearly identical RTP unit cell volumes. In both cases the spectra obtained are consistent with a continuous alteration of the RTP structure with pressure; physical compression seems to make a given f-f transition easier. Additional data are being sought to elucidate more completely the behavior of CfCl/sub 3/ under pressure. 23 refs., 4 figs.« less

  7. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... and six research aircraft at the US Naval Air Station near Key West, Florida for the Cirrus Regional Study of Tropical Anvils Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The campaign had many goals, one of which was making ... the MAS instrument on the ER-2. Data from the MAS shortwave infrared channel that detects cirrus is shown in blue. An animation of the ...

  8. High-pressure Irreversible Amorphization of La1/3NbO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I Halevy; A Hen; A Broide

    2011-12-31

    The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.

  9. 31. FORGE, ANVIL, POWER FORGE HAMMER (FRONT TO BACK), AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. FORGE, ANVIL, POWER FORGE HAMMER (FRONT TO BACK), AND DOORWAY INTO MAIN SHOP-LOOKING SOUTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  10. Space treatments of insecticide for control of dengue virus vector Aedes aegypti in southern Mexico. I. Baseline penetration trials in open field and houses.

    PubMed

    Arrendondo-Jimenez, Juan I; Rivero, Norma E

    2006-06-01

    We studied the efficacy of space ultra-low volume treatments of 3 insecticides for the control of the dengue virus vector Aedes aegypti in southern Mexico. Insecticides tested were permethrin (Aqua-Reslin Super), d-phenothrin (Anvil), and cyfluthrin (Solfac), applied at rates of 10.87, 7.68, and 2 g/ha, respectively, by using London Fog, HP910-PHXL, or Micro-Gen pumps mounted on vehicles. Studies included 1) open field penetration tests and 2) house penetration tests. Open field tests indicated that Anvil and Solfac were more effective than Aqua-Reslin Super. In house tests, Anvil yielded the highest mosquito mortalities (>/=88%) of the three insecticides in the front porch, living room, bedroom, and backyard. Therefore, Anvil proved to be better than other insecticides evaluated to control Ae. aegypti in Chiapas, Mexico.

  11. Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel

    Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  12. Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds

    DOE PAGES

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; ...

    2015-04-27

    Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  13. Detonation product EOS studies: Using ISLS to refine CHEETAH

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Fried, Larry; Hansen, Donald

    2001-06-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  14. Detonation Product EOS Studies: Using ISLS to Refine Cheetah

    NASA Astrophysics Data System (ADS)

    Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.

    2002-07-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  15. Melting of Iron to 290 Gigapascals

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Hirose, K.; Ohishi, Y.

    2017-12-01

    The Earth's core is composed mainly of iron. Since liquid core coexists with solid core at the inner core boundary (ICB), the melting point of iron at 330 gigapascals offers a key constraint on core temperatures. However, previous results using a laser-heated diamond-anvil cell (DAC) have been largely inconsistent with each other, likely because of an intrinsic large temperature gradient and its temporal fluctuation. Here we employed an internal-resistance-heated DAC and determined the melting temperature of pure iron up to 290 gigapascals, the highest ever in static compression experiments. A small extrapolation indicates a melting point of 5500 ± 80 kelvin at the ICB, about 500-1000 degrees lower than earlier shock-compression data. It suggests a relatively low temperature for the core-mantle boundary, which avoids global melting of the lowermost mantle in the last more than 1.5 billion years.

  16. The compression behavior of blödite at low and high temperature up to ~10GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra

    Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blödite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blödite at pressures up to ~10.4 GPa and temperatures from ~118.8 K to ~490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperaturemore » equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede.« less

  17. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less

  18. Reproducible and Verifiable Equations of State Using Microfabricated Materials

    NASA Astrophysics Data System (ADS)

    Martin, J. F.; Pigott, J. S.; Panero, W. R.

    2017-12-01

    Accurate interpretation of observable geophysical data, relevant to the structure, composition, and evolution of planetary interiors, requires precise determination of appropriate equations of state. We present the synthesis of controlled-geometry nanofabricated samples and insulation layers for the laser-heated diamond anvil cell. We present electron-gun evaporation, sputter deposition, and photolithography methods to mass-produce Pt/SiO2/Fe/SiO2 stacks and MgO insulating disks to be used in LHDAC experiments to reduce uncertainties in equation of state measurements due to large temperature gradients. We present a reanalysis of published iron PVT data to establish a statistically-valid extrapolation of the equation of state to inner core conditions with quantified uncertainties, addressing the complication of covariance in equation of state parameters. We use this reanalysis, together with the synthesized samples, to propose a scheme for measurement and validation of high-precision equations of state relevant to the Earth and super-Earth exoplanets.

  19. Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Takaki; Gasparov, Lev V.; Berger, Helmuth

    2016-04-07

    We measured the pressure dependence of electrical resistance of single-crystal magnetite (Fe 3O 4) under quasi-hydrostatic conditions to 100 GPa using low-temperature, megabar diamond-anvil cell techniques in order to gain insight into the anomalous behavior of this material that has been reported over the years in different high-pressure experiments. The measurements under nearly hydrostatic pressure conditions allowed us to detect the clear Verwey transition and the high-pressure structural phase. Furthermore, the appearance of a metallic ground state after the suppression of the Verwey transition around 20 GPa and the concomitant enhancement of electrical resistance caused by the structural transformation tomore » the high-pressure phase form reentrant semiconducting-metallic-semiconducting behavior, though the appearance of the metallic phase is highly sensitive to stress conditions and details of the measurement technique.« less

  20. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  1. Science and technology in the stockpile stewardship program, S & TR reprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, E

    This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Õs New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gÕs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinÕ Jupiter! Metallic Hydrogen;more » Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryÐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma« less

  2. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  3. Raman and X-Ray Investigation of High-Temperature Methane in the Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Spaulding, D.; Weck, G.; Loubeyre, P.; Mezouar, M.

    2016-12-01

    The chemistry and equations of state of simple molecular systems are of extreme importance to planetary astrophysics and for accurate characterization of reaction products and pathways at high pressures and temperatures. Simple molecules such as H2O, CO2 and CH4 are model systems for understanding the effects of pressure on chemical bonding. Here we present recent work to conduct fine-scale studies of the vibrational, chemical and structural properties of CH4 at pressures and temperatures up to 12 GPa and 1000K, with particular attention to behavior in the vicinity of the melting curve. We present results from resistive and laser-heating experiments, coupled with Raman spectroscopy. In addition, high P/T synchrotron powder x-ray diffraction provides tight constraints on melting and solid structure. Our results favor a somewhat higher melting curve and lower dissociative stability limit for the CH4 molecule than other recent work.

  4. Disproportionation of (Mg,Fe)SiO 3 perovskite in Earth's deep lower mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Meng, Y.; Yang, W.

    2014-05-22

    The mineralogical constitution of the Earth's mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D" layer contains ferromagnesian silicate [(Mg,Fe)SiO 3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO 3 perovskite phase and anmore » Fe-rich phase with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.« less

  5. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Meng, Y.; Yang, W.

    2014-05-22

    The mineralogical constitution of the Earth’s mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D'' layer contains ferromagnesian silicate [(Mg,Fe)SiO3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO3 perovskite phase and an Fe-rich phasemore » with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.« less

  6. Behavior of magnesium at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Cynn, H.; Evans, W.; Yoo, C. S.; Ohishi, Y.; Sata, N.; Shimomura, O.

    2004-03-01

    Structural stability relationship manifested by 3-, 4-, 5d-electron transition metals also appears in so-called nearly free electron metal, magnesium as exampled by HCP to BCC structure change at high pressures. This transition has been examined by theory and confirmed by experiment. Recently, HCP to DHCP crystal structure change has been reported at high temperatures below 20 GPa. However, this type of structure change is rather common in 4f-electron lanthanides. In this study, we used synchrotron x-ray diffraction to find out the relationship between BCC and DHCP employing a diamond anvil cell technique coupled with external and laser heating methods. We also examined pressure gradient effects in relation with the existence of DHCP. This work has been supported by PDRP program at the Lawrence Livermore National Laboratory, University of California under the auspices of the U.S. Department of Energy under Contract No. W-7405-ENG-48

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Zaug, J M; Burnham, A K

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures.more » The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.« less

  8. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  9. On the Importance of Small Ice Crystals in Tropical Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Lawson, P.; Baker, B.; Pilson, B.; Mo, Q.; Heymsfield, A. J.; Bansemer, A.; Bui, T. P.; McGill, M.; Hlavka, D.; hide

    2009-01-01

    In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (< 50 m diameter) crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP) and the Cloud Aerosol Spectrometer (CAS), ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small ]crystals could be artifacts of large ]crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4) campaign with the 2 ] Dimensional Stereo (2D ]S) probe, which detects particles as small as 10 m. The 2D ]S has detector "arms" instead of an inlet tube. Since the 2D ]S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D ]S will be less susceptible to shattering artifacts. In addition, particle inter ]arrival times are used to identify and remove shattering artifacts that occur even with the 2D ]S probe. The number of shattering artifacts identified by the 2D ]S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small ]crystal concentration. The 2D ]S measurements in tropical anvil cirrus suggest that natural small ]crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D ]S ratio of small ]crystal concentrations and large ]crystal concentration suggests that the discrepancy is likely caused by shattering of large crystals on the CAS inlet. We argue that past measurements with CAS in cirrus with large crystals present may contain errors due to crystal shattering, and past conclusions derived from these measurements may need to be revisited. Further, we present correlations between CAS spurious concentration and 2D ]S large ]crystal mass from spatially uniform anvil cirrus sampling periods as an approximate guide for estimating quantitative impact of large ]crystal shattering on CAS concentrations in previous datasets. We use radiative transfer calculations to demonstrate that in the maritime anvil cirrus sampled during TC4, small crystals indicated by 2D ]S contribute relatively little cloud extinction, radiative forcing, or radiative heating in the anvils, regardless of anvil age or vertical location in the clouds. While 2D ]S ice concentrations in fresh anvil cirrus may often exceed 1 cm.3, and are observed to exceed 10 cm.3 in turrets, they are typically 0.1 cm.3 and rarely exceed 1 cm.3 (<1.4% of the time) in aged anvil cirrus. We hypothesize that isolated occurrences of higher ice concentrations in aged anvil cirrus may be caused by ice nucleation driven by either small ]scale convection or gravity waves. It appears that the numerous small crystals detrained from convective updrafts do not persist in the anvil cirrus sampled during TC ]4.

  10. Characteristics of flash initiations in a supercell cluster with tornadoes

    NASA Astrophysics Data System (ADS)

    Zheng, Dong; MacGorman, Donald R.

    2016-01-01

    Flash initiations within a supercell cluster during 10-11 May 2010 in Oklahoma were investigated based on observations from the Oklahoma Lightning Mapping Array and the Norman, Oklahoma, polarimetric radar (KOUN). The flash initiations at positions dominated by graupel, dry snow, small hail and crystals accounted for 44.3%, 44.1%, 8.0% and 3.0% of the total flashes, respectively. During the tornadic stage of the southern supercell in the cluster, flash initiations associated with graupel occupied the main body, the right flank and the forward flank of the supercell, while those associated with dry snow dominated the outskirts of the adjacent forward anvil, right anvil and rear anvil. The flash initiations associated with small hail were concentrated around the main updraft, particularly toward its front side. Highly dense flash initiations were located in the regions overlying the differential reflectivity (ZDR) arc and right anvil. The average initial height of the flashes decreased gradually from the rear to the front and from the right to the left flanks, while the height range over which initiations occurred reached a maximum at the front of the updraft. The flashes that were initiated in the adjacent forward anvils were largest on average, followed by those in the regions ahead of the updraft and near the ZDR arc. This study supports the concept of charge pockets and further deduces that the pockets in the right anvil are the most abundant and compact due to the frequent flash initiations, small-sized flashes and thin layers including flash initiations.

  11. Structural, optical and high pressure electrical resistivity studies of pure NiO and Cu-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Marselin, M. Abila; Jaya, N. Victor

    2016-04-01

    In this paper, pure NiO and Cu-doped NiO nanoparticles are prepared by co-precipitation method. The electrical resistivity measurements by applying high pressure on pure NiO and Cu-doped NiO nanoparticles were reported. The Bridgman anvil set up is used to measure high pressures up to 8 GPa. These measurements show that there is no phase transformation in the samples till the high pressure is reached. The samples show a rapid decrease in electrical resistivity up to 5 GPa and it remains constant beyond 5 GPa. The electrical resistivity and the transport activation energy of the samples under high pressure up to 8 GPa have been studied in the temperature range of 273-433 K using diamond anvil cell. The temperature versus electrical resistivity studies reveal that the samples behave like a semiconductor. The activation energies of the charge carriers depend on the size of the samples.

  12. Thermal conductance of metal–diamond interfaces at high pressure

    DOE PAGES

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au 0.95Pd 0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. Inmore » all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.« less

  13. NMR at pressures up to 90 GPa.

    PubMed

    Meier, Thomas; Khandarkhaeva, Saiana; Petitgirard, Sylvain; Körber, Thomas; Lauerer, Alexander; Rössler, Ernst; Dubrovinsky, Leonid

    2018-05-14

    The past 15 years have seen an astonishing increase in Nuclear Magnetic Resonance (NMR) sensitivity and accessible pressure range in high-pressure NMR experiments, owing to a series of new developments of NMR spectroscopy applied to the diamond anvil cell (DAC). Recently, with the application of electro-magnetic lenses, so-called Lenz lenses, in toroidal diamond indenter cells, pressures of up to 72 GPa with NMR spin sensitivities of about 10 12  spin/Hz 1/2 has been achieved. Here, we describe the implementation of a refined NMR resonator structure using a pair of double stage Lenz lenses driven by a Helmholtz coil within a standard DAC, allowing to measure sample volumes as small as 100 pl prior to compression. With this set-up, pressures close to 100 GPa could be realised repeatedly, with enhanced spin sensitivities of about 5 × 10 11 spin/Hz 1/2 . The manufacturing and handling of these new NMR-DACs is relatively easy and straightforward, which will allow for further applications in physics, chemistry, or biochemistry. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Johnson, M.; Koumvakalis, A. S.

    1984-01-01

    Progress is reported on a project to determine the properties and boundaries of high pressure phases of the H2-He-H2O-NH3-CH4 system that are needed to constrain theoretical models of the interiors of the major planets. This project is one of the first attempts to measure phase equilibria in binary fluid-solid systems in diamond anvil cells. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes. Adiabats of these materials are also measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Initial efforts involve the NH3-H2O binary. This system is especially relevant to models for surface reconstruction of the icy satellites of Jupiter and Saturn. Thermal analysis experiments were completed for the P-X space, p4GPa:0 or = 0.50, near room temperature. The cryostat, sample handling equipment, and optics needed to extend the optical P-T-X work below room temperature was completed.

  15. The effects of fluorine on the compressibility of chondrodite structure

    NASA Astrophysics Data System (ADS)

    KURIBAYASHI, T.; KUDOH, Y.; KAGI, H.

    2001-12-01

    High-pressure single crystal X-ray diffraction study on OH-chondrodite (synthesis) and natural chondrodite were performed using a diamond anvil cell with graphite monochromatized MoKα radiation (50kV,40 mA,λ =0.71069Å) up to 4.1 GPa for OH-chondrodite and 7.2 GPa for Natural sample at room temperature. Chemical formula of these samples are Mg4.99Si2.01O8(OH)1.97 and Mg4.76Fe0.22Ti_{0.02}Si_{1.99}O_{8}(OH_{1.24},F_{0.76}), respectively. OH-chondrodite was synthesized at 6 GPa, 900\\degree condition and natural chondrodite was from Tilley Foster Mine, U.S.A.. In high-pressure experiments, 4:1 methanol-ethanol fluid was used as pressure medium and pressure was determined by ruby fluorescence method (Piermarnini, 1974). Unit cell parameters at each pressure were determined using 20-25 centered reflections within 11.5\\deg$<2θ <30.1° range. X-ray intensity data of natural chondrodite were collected up to 2θ max=60° at some pressure points (ambient, 3.6, 5.6 and 7.1 GPa). In high-pressure experiments, out of 1500 reflections in a reciprocal sphere through a diamond anvil cell, a total of 245-310 symmetrically independent reflections (Io>1.5σ (Io)) were obtained by averaging the equivalent intensities in Laue group 2/m. The isothermal bulk modulus of each sample, determined using Birch-Murnaghan equation of state, is 110(10) GPa (assuming K'=4) for OH-sample and 118(2) GPa (K'=4.3 (8)) for Tilley sample. These values are in good agreement with 115 GPa (K'=4.9(2)) for OH-chondrodite (Ross and Crichton, 2001) and 118 GPa for F-bearing chondrodite (Sinogeikin and Bass, 1999). Also, the linear compressibility of each sample is β a=1.89(5),β b=3.18(4),β c=2.89(8) x10-3/GPa for OH-sample and β a=1.72(5),β b=2.99(4),β c=2.77(2) x10-3/GPa for Natural sample, respectively. F-bearing chondrodite is slightly less compressible than OH-chondrodite. The most compressible axis is b-axis (10 Å length period) corresponded to b-axis of olivine (Pbnm). The anisotropy of compressibility of natural sample is the same trend as those (β b>β c>β a) of Kuribayashi et al. (1998) and Ross and Crichton (2001).

  16. Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.

    2009-12-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  17. High Pressure Raman Spectroscopic Studies on CuInTe2 Quantum Dots

    NASA Astrophysics Data System (ADS)

    Yanxon, Howard; Kumar, Ravhi; HiPSEC-University of Nevada Las Vegas Team

    High pressure Raman spectroscopy studies were performed on CuInTe2 Quantum Dots (QD) up to 7.7 GPa. At ambient conditions, the Raman modes of the QD loaded into a high-pressure diamond anvil cell (DAC) were observed at 125.1 cm-1 (A1 mode) and 142.8 cm-1 (B2 or E mode). As the pressure increases, the A1 mode starts to split above 2 GPa and shifts to the left as indication of a structural change. A pressure-induced phase transition was observed around 2.9 GPa due to the collapse of the modes with the appearance of a new Raman peaks. The phase transition observed in our experiments compare well with the characteristics of bulk and larger nanoparticles. Further, it could be concluded that the phase transition pressure observed mainly depends on the particle size. H.Y. thanks McNair foundation for fellowship award. He also acknowledges Melanie White, Jason Baker and Phuc Tran for help in the experiments. He thanks Michael Pravica for using the Raman facility.

  18. A dehydration mechanism for the stratosphere

    NASA Technical Reports Server (NTRS)

    Danielsen, E. F.

    1982-01-01

    Although mean circulations are generally credited with dehydration of the earth's stratosphere, convective instability in the tropics converts mean circulations to small residuals of local convective circulations. The effects of large cumulonimbus which penetrate the stratosphere and form huge anvils in the lower stratosphere are discussed with respect to hydration and dehydration of the stratosphere. Radiative heating at anvil base combined with cooling at anvil top drives a dehydration engine considered essential to explain the dry stratosphere. Seasonal and longitudinal variations in dehydration potentials are examined with maximum potential attributed to Micronesian area during winter and early spring.

  19. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  20. Mineralogical modeling of the anisotropic inner core based on the phase relations and elasticity of iron and iron alloys under the Earth's core condition

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Tsuchiya, T.; Ohishi, Y.

    2011-12-01

    The inner-core and the outer-core, which make up the center of the Earth, are thought to be composed predominantly of a solid and liquid iron alloying with 5 to 15 % nickel, respectively. Determination of the physical properties of iron alloy at extremely high pressures found in the deep Earth's core (>300 GPa) is a fundamental issue for understanding the thermal and dynamical state of the Earth's core. According to seismological observations, it is widely accepted that the Earth's inner-core is elastically anisotropic; the compressional wave in the inner-core propagates 3~4 % faster along its rotational axis than in the equatorial direction. A number of models on core dynamics have been proposed to explain the origin of the inner-core anisotropy, but all of them are based on the idea of the crystal preferred orientation of iron. The phase relation of iron at high pressures has been extensively studied using LH-DACs. At relatively low temperatures, around room temperature, the phase relations are already well established; a low pressure phase with a bcc structure transforms into an hcp structure above ~10 GPa and it persists above 300 GPa. In contrast, the phase relations of iron at high temperatures are highly controversial. Some experiments assigned different crystal structures including orthorhombic, dhcp, fcc, and bcc as candidate stable crystal structures, whereas others suggested that the hcp structure remains stable at high temperatures. Despite considerable attention on these new phases, there is, however, no experimental reproducibility. The lack of plausible data is mainly because of the substantial difficulties associated with high-temperature experiments at multimegabar pressures. In order to overcome these difficulties, we have developed experimental techniques using a laser-heated diamond-anvil cell for the past decade and succeeded in obtaining excellent quality data under extremely high-pressure and high-temperature conditions. In order to investigate the nature of the Earth's inner core, we conducted a series of high P-T experiments on various iron-rich iron-alloys using laser-heated diamond anvil cells on the basis of in-situ x-ray diffraction measurements at SPring-8, Japan, along with ab-initio density functional simulations, under the Earth's core condition. Here we will present a mineralogical model of the observed anisotropy in the inner core based on the experimental and theoretical studies on the phase relations and physical properties of iron-alloys.

  1. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  2. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  3. Very high pressure combustion; Reaction propagation rates of nitromethane within a diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.F.; Foltz, M.F.

    1991-11-01

    This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less

  4. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1986-07-22

    This patent describes a diamond-anvil high-pressure cell having a tubular piston and a cylinder in which the piston is slidable to effect compression of a pair of opposed diamonds located between the piston and the cylinder. The piston includes a central bore opening on one end, an adjustable X-ray collimation system comprising a tubular insert engageable in the bore of the piston, the insert including a central bore and having first and second ends, with the first end of the insert being closest to the opposed diamonds and the second end of the insert extending out of the open endmore » of the piston, a collimator insertable in the bore of the tubular insert. The collimator has a central bore and having first and second ends corresponding respectively with the first and second ends of the insert, elastomeric pivot means mounted in the bore of the insert at the first end of the insert for flexibly retaining the first end of the collimator while allowing the collimator to pivot within the pivot means, and adjustable locking means located at the second end of the insert for adjusting and securing the second end of the collimator so as to be in alignment with the opposed diamonds.« less

  5. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE PAGES

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.; ...

    2018-05-17

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  6. High-pressure synthesis of predicted oxynitride perovskite: Yttrium Silicon Oxynitride (YSiO2N)

    NASA Astrophysics Data System (ADS)

    Ahart, Muhtar; Somayazulu, M.; Vadapoo, Rajasekarakumar; Cohen, R. E.

    We synthesized the previously predicted polar oxynitride perovskite in a diamond anvil cell with laser heating. YSiO2N was predicted to have the polar P4mm structure with an effective spontaneous polarization of 130 μC/cm2. A mixture of Yttrium nitride (YN) and amorphous Silicon dioxide (SiO2) were loaded into a diamond anvil cell and laser heated at or above 1200 C at 12 GPa. The run products were investigated by x-ray diffraction, Raman spectroscopy, and second harmonic generation, for their phase and structural properties. The x-ray diffraction pattern (a = 3.235 Å, c = 4.485 Å) shows the phase formation of YSiO2N and matches with the diffraction pattern derived from the first-principle predicted lattice parameters. However, minor unknown peaks are on the diffraction pattern indicating of the co-existence of other unknown phases. Further study of Raman spectroscopy observes the theoretically predicted modes, and second harmonic generation shows strong non-linear optical signal, which confirms the polar properties of YSiO2N. This work is supported by ONR Grants N00014-12-1-1038 and N00014-14-1-0561, by the ERC Advanced Grant ToMCaT.

  7. A compact membrane-driven diamond anvil cell and cryostat system for nuclear resonant scattering at high pressure and low temperature

    DOE PAGES

    Zhao, J. Y.; Bi, W.; Sinogeikin, S.; ...

    2017-12-13

    In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less

  8. A compact membrane-driven diamond anvil cell and cryostat system for nuclear resonant scattering at high pressure and low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. Y.; Bi, W.; Sinogeikin, S.

    In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less

  9. Pressure calibrants in the hydrothermal diamond-anvil cell

    USGS Publications Warehouse

    Chou, I.-Ming

    2007-01-01

    Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr,c). Phase transitions for these three pressure calibrants are easy to detect visually, and their P-T phase boundaries have negative slopes and intersect isochors of most of the geologic fluids at high angles and, therefore, are easy to apply. Copyright ?? 2007 by V. H. Winston & Son, Inc. All rights reserved.

  10. Impact initiation of reactive aluminized fluorinated acrylic nanocomposites

    DOE PAGES

    White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.; ...

    2016-04-18

    The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less

  11. Modified Cooling System for Low Temperature Experiments in a 3000 Ton Multi-Anvil Press

    NASA Astrophysics Data System (ADS)

    Secco, R.; Yong, W.

    2017-12-01

    A new modified cooling system for a 3000-ton multi-anvil press has been developed to reach temperatures below room temperature at high pressures. The new system is much simpler in design, easier to make and use, and has the same cooling capability as the previous design (Secco and Yong, RSI, 2016). The key component of the new system is a steel ring surrounding the module wedges that contains liquid nitrogen (LN2) which flows freely through an entrance port to flood the interior of the pressure module. Upper and lower O-rings on the ring seal in the liquid while permitting modest compression and an thermally insulating layer of foam is attached to the outside of the ring. The same temperature of 220 K reached with two different cooling systems suggests that thermal equilibrium is reached between the removal of heat by LN2 and the influx of heat through the massive steel components of this press.

  12. Explosive Compations of Intermetallic-Forming Powder Mixtures for Fabricating Structural Energetic Materials

    NASA Astrophysics Data System (ADS)

    Du, S. W.; Aydelotte, B.; Fondse, D.; Wei, C.-T.; Jiang, F.; Herbold, E.; Vecchio, K.; Meyers, M. A.; Thadhani, N. N.

    2009-12-01

    A double-tube implosion geometry is used to explosively shock consolidate intermetallic-forming Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al powder mixtures for fabricating bulk structural energetic materials, with mechanical strength and ability to undergo impact-initiated exothermic reactions. The compacts are characterized based on uniformity of micro structure and degree of densification. Mechanical properties of the compacts are characterized over the strain-rate range of 10-3 to 104 s-1. The impact reactivity is determined using rod-on-anvil experiments, in which disk-shaped compacts mounted on a copper projectile, are impacted against a steel anvil in using a 7.62 mm gas gun. The impact reactivity of the various explosively-consolidated reactive powder mixture compacts is correlated with overall kinetic energy and impact stress to determine their influence on threshold for reaction initiation. The characteristics of the various compacts, their mechanical properties and impact-initiated chemical reactivity will be described in this paper.

  13. Impact initiation of reactive aluminized fluorinated acrylic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.

    The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less

  14. Static compression of the 3.65 Å phase of MgSi(OH)6 to 45 GPa

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Wunder, B.; Reichmann, H. J.; Marquardt, H.; Jahn, S.; Koch-Mueller, M.; Liermann, H.

    2011-12-01

    Dense hydrous magnesium silicates (DHMS), due to their high-pressure stability and large hydrogen content, are important potential carriers for deep water recycling in the deep Earth. They can play an especially relevant role in regions related to recent and old subduction. Knowledge of their physical properties is necessary to constrain the chemical budget of hydrogen in the Earth interior. The high-pressure polymorph of stoichimetric MgSi(OH)6 stable at pressures above 9 GPa and temperatures below 500 °C, often referred to as "3.65 Å phase" is one of the members of the DHMS family. Phase 3.65 Å is the only DHMS, together with phase D, with Si only in octahedral coordination. The 3.65 Å phase sample was synthesized at 10 GPa and 425 °C in a multi-anvil apparatus and the structure and chemical composition of were precisely characterized in a very recent study (Wunder et al., 2011). The composition is stoichiometric MgSi(OH)6; its structure is strongly related to that of δ-Al(OH)3, and it can be considered as a modified hydrous A-site defective perovskite. The structural refinement was compatible with Pnma space group suggesting a random distribution of Si and Mg in the A-site. A structure based on P212121 is also compatible with the x-ray diffraction data and would imply partial ordering of H. Additional ab initio computations indicate that a small monoclinic distortion is induced by structural ordering of Mg and Si leading to P21. Here we present the results of a high-pressure x-ray diffraction study on the same synthesis product compressed in the diamond-anvil cell up to 45 GPa at ambient temperature. The powdered sample was loaded in a short symmetric diamond-anvil cell together with few ruby spheres and few specks of Au foil as pressures gauges. Ne was used as a pressure transmitting medium to insure quasi-hydrostatic stress conditions. The x-ray measurements were performed at the new extreme condition beamline (P02.2) of PETRA III synchrotron source at HASYLAB, Hamburg. The results of two separate experiments are presented here. The isothermal compression curve was analyzed by fitting a 3rd order Birch-Murnaghan equation to the measured volumes. The fit yields KT0 = 90 ± 1 GPa and (∂KT/∂P)T0 = 4.1 ± 0.2 fixing the starting volume V0 to 194.53 Å3. The new results are important to the improvement of the quantitative thermodynamic model of the system SiO2-MgO-H2O with implications for the understanding of the petrology of the upper mantle in subduction related regions.

  15. Life Cycle of Tropical Convection and Anvil in Observations and Models

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  16. Concept design and simulation study on a "phantom" anvil for circular stapler.

    PubMed

    Rulli, Francesco; Kartheuser, Alex; Amirhassankhani, Sasan; Mourad, Michel; Stefani, Mario; de Ferrá Aureli, Andrés; Sileri, Pierpaolo; Valentini, Pier Paolo

    2015-04-01

    Complications and challenges arising from the intraoperative double-stapling technique are seldom reported in colorectal surgery literature. Partial or full-thickness rectal injuries can occur during the introduction and the advancement of the circular stapler along the upper rectum. The aim of this study is to address some of these issues by designing and optimizing a "phantom" anvil manufactured to overcome difficulties throughout the rectal introduction and advancement of the circular stapler for the treatment of benign and malignant colon disease. The design of the "phantom" anvil has been performed using computer-aided modeling techniques, finite element investigations, and 2 essential keynotes in mind. The first one is the internal shape of the anvil, which is used for the connection to the gun. The second is the shape of the cap, which makes possible the insertion of the gun through the rectum. The "phantom" anvil has 2 functional requirements, which have been taken into account. The design has been optimized to avoid colorectal injuries, neoplastic dissemination (ie, mechanical seeding) and to reduce the fecal contamination. Numerical simulations show that a right combination of both top and bottom fillet radii of the shape of the anvil can reduce the stress for the considered anatomic configuration of >90%. Both the fillet radii at the top and the bottom of the device influence the local stress of the colon rectum. A dismountable device, which is used only for the insertion and advancement of the stapler, allows a dedicated design of its shape, keeping the remainder of the stapler unmodified. Computer-aided simulations are useful to perform numerical investigations to optimize the design of this auxiliary part for both the safety of the patient and the ease of the stapler advancement through the rectum.

  17. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  18. Fabrication of diamond based sensors for use in extreme environments

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    2015-04-23

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less

  19. Thermodynamic control of anvil cloud amount

    PubMed Central

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  20. Fabrication of diamond based sensors for use in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less

  1. Thermodynamic control of anvil cloud amount

    DOE PAGES

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; ...

    2016-07-13

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  2. Effects of iron enrichment on the chemistry and physical properties of deep lower mantle silicates

    NASA Astrophysics Data System (ADS)

    De Pasquale, Antonella

    Variations in seismic wave speed and density in the Earth's deep lower mantle have been linked to chemical heterogeneities. In order to identify the compositions of these regions and determine their roles in Earth history and dynamics, experimental measurements are needed of the effects of compositional variation, particularly major elements Fe and Al, on phase equilibria and physical properties of mantle minerals. The experiments that comprise this dissertation provide new constraints on the chemistry and compressibility of mantle silicates. Experiments were conducted at mantle pressure-temperature conditions using the laser-heated diamond anvil cell. Determination of pressure in the diamond anvil cell requires internal pressure calibrants which suffer from uncertainty as high as 10% at Mbar pressures. A series of experiments were performed to test the reliability and agreement of pressure scales for Au, Mo, MgO, NaCl B2, Ne and Pt. These data were used to determine a new comprehensive pressure scale for use in experiments on mantle materials. The lower mantle's dominant phase is (Mg,Fe,Al)(Fe,Al,Si)O3 perovskite. At pressure-temperature conditions comparable to the deep lower mantle, perovskite undergoes a transition to a post-perovskite phase. I synthesized perovskites and post-perovskites from a series of Fe-rich (enstatite--ferrosilite, (Mg1--x,Fex)SiO 3, 0 < x < 74) and Fe,Al-rich (pyrope--almandine, (Mg1--x,Fex) 3Al2Si3O12, 0 < x < 100) compositions. These experiments have shown that as much as 75% FeSiO 3 is soluble in perovskite at 70--80 GPa. Fe was observed to lower and broaden the pressure range of the post-perovskite transition. Volume data were collected over a range of pressures for all compositions to constrain the effects of Fe and Al on the equations of state of these phases. Fe and Al incorporation were observed to increase the unit cell volume of perovskite but have a weak effect on its compressibility. The electronic behavior of Fe in perovskite is complex due to multiple possible valence and spin states. Synchrotron Mossbauer spectroscopy was used to determine the electronic states of Fe in almandine-composition perovskite and glass at pressures up to 180 GPa. Unlike some previous studies, no evidence was observed for disproportionation of Fe2+ to Fe3+ and Fe metal. However, multiple structural sites and/or spin states were observed. Based on equation of state measurements of Fe and Fe,Al-rich perovskite and post-perovskite, I modeled the effects of composition on observable properties including density and seismic velocity. Experimental observations and density functional theory calculations for seismic properties of the perovskite phase as a function of Fe content are highly consistent. However, the properties of the post-perovskite phase are more poorly constrained. The systematic analysis presented in this work allows us to constrain the compositions of observed heterogeneities based on their densities. Large low shear velocity provinces and ultra-low velocity zones may be consistent with Fe-enrichment to Mg#78--88 and <50, respectively.

  3. High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust?

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo

    2018-01-01

    The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.

  4. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  5. Ultrapressure materials science

    NASA Technical Reports Server (NTRS)

    Ruoff, A. L.

    1984-01-01

    Three active areas of research at ultra pressure are pursued, i.e., diffraction studies with the Cornell High Energy Synchrotron Source (CHESS), band gap and absorption edge effects, indentor-anvil experiments and theory and research to attain higher pressures. The range over which X-ray diffraction data and absorption edge data are obtained is extended to 700 kbars. Using the indentor technique pressures of 2.1 Mbars are obtained. Research results and methods are discussed.

  6. A modified technique for esophagojejunostomy or esophagogastrostomy after laparoscopic gastrectomy.

    PubMed

    Chong-Wei, Ke; Dan-Lei, Chen; Dan, Ding

    2013-06-01

    Reconstruction of the digestive tract involving esophageal anastomosis after laparoscopic gastrectomy is a surgically difficult procedure. In this study, a newly developed transoral pretilted circular anvil, a "the oral to the abdomen" method, was proven to be effective. A total of 34 consecutive patients underwent esophageal anastomosis using the OrVil in our hospital from July 2009 to February 2011. The esophagus was transected and a small hole was then made in the esophageal stump through which the nasogastric tube of the OrVil was passed to insert the anvil into the abdominal cavity. After fixation with a stapler and a glove at the jejunal loop or the remnant stomach, the abdominal cavity was entered through the minilaparotomy. Pneumoperitoneum and airtightness were reestablished after the glove edge was turned over to seal off the protector. Eventually, intracorporeal esophagojejunostomy or esophagogastrostomy was accomplished under the guidance of laparoscopy. There were 34 patients in the study: 1 with Zollinger-Ellison syndrome, 7 with stromal tumors in cardia, 23 with adenocarcinoma in the stomach, and 3 with cardia adenocarcinoma involving the lower esophagus. The surgical margins for all tumor patients were negative for tumor cells. The mean operative time was 175.0 minutes (90 to 240 min) and the mean intraoperative blood loss was 195.6 mL (50 to 800 mL). The 34 patients underwent successful laparoscopic surgeries with no open conversions. For 32 patients, there were no technological complications in the transoral insertion of the anvil to the esophageal stump. There were no anastomotic leaks after the surgery. The use of the OrVil device, a "the oral to the abdomen" method, changes the direction of the anvil insertion and significantly decreases both difficulty and duration of the laparoscopic surgery. More importantly, if the mass is at a higher position, this approach can achieve a higher surgical margin compared with the hand-sewn purse-string suture technique, thus avoiding the need to undergo a thoracotomy (Supplemental Digital Content 1, http://links.lww.com/SLE/A83).

  7. Pressure–Temperature Phase Diagram Reveals Spin–Lattice Interactions in Co[N(CN) 2 ] 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musfeldt, J. L.; O’Neal, K. R.; Brinzari, T. V.

    2017-04-07

    Diamond anvil cell techniques, synchrotron-based infrared and Raman spectroscopies, and lattice dynamics calculations are combined with prior magnetic property work to reveal the pressure–temperature phase diagram of Co[N(CN)2]2. The second-order structural boundaries converge on key areas of activity involving the spin state exposing how the pressure-induced local lattice distortions trigger the ferromagnetic → antiferromagnetic transition in this quantum material.

  8. Experimental and Computational Studies of Molecular and Lattice Symmetries of Energetic Materials at High Pressure

    DTIC Science & Technology

    2002-01-01

    Prescribed by ANSI Std Z39-18 Research and Technology Department Dynamics and Diagnostics Division, Static High- Pressure Group Overall Research...Department Dynamics and Diagnostics Division, Static High- Pressure Group Impact of this Basic Research • This research generates phase and density...Static High- Pressure Group Experimental Methodology Use Diamond Anvil Cells (DAC) with coil Heaters (HDAC) to achieve • High pressures (P) to 10 GPa

  9. X-Ray Diffraction Study of Elemental Erbium to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, M.G.; Lipinska-Kalita, K.; Quine, Z.

    2006-02-02

    We have investigated phase transitions in elemental erbium in a diamond anvil cell up to 65 GPa using x-ray powder diffraction methods. We present preliminary evidence of a series of phase transitions that appear to follow the expected hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc sequence. In particular, we believe that we have evidence for the predicted dhcp {yields} distorted fcc transition between 43 GPa and 65 GPa.

  10. The 1980 stratospheric-tropospheric exchange experiment

    NASA Technical Reports Server (NTRS)

    Margozzi, A. P. (Editor)

    1983-01-01

    Data are presented from the Stratospheric-Tropospheric Water Vapor Exchange Experiment. Measurements were made during 11 flights of the NASA U-2 aircraft which provided data from horizontal traverser and samplings in and about the tops of extensive cirrus-anvil clouds produced by overshooting cumulus turrets. Aircraft measurements were made of water vapor, ozone, ambient and cloud top temperature, fluorocarbons, nitrous oxide, nitric acid, aerosols, and ice crystal populations. Balloonsondes were flown about twice daily providing data on ozone, wind fields, pressure and temperature to altitudes near 30 km. Satellite photography provided detailed cloud and cloud top temperature information. Descriptions of individual experiments and detailed compilations of all results are provided.

  11. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  12. CO Signatures in Subtropical Convective Clouds and Anvils During CRYSTAL-FACE: An Analysis of Convective Transport and Entertainment Using Observations and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Jurg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.; hide

    2006-01-01

    Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H20v), and total water (H20t) aboard NASA's . WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the fiee troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.

  13. CO Signatures in Subtropical Convective Clouds and Anvils during CRYSTAL-FACE: An Analysis of Convective Transport and Entrainment using Observations and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Juerg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.

    2006-01-01

    Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H2Ov), and total water (H2Ot) aboard NASA's WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the free troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.

  14. A Circular Surgical Stapler Designed to Anastomose Aorta and Dacron Tube Graft: Validation of the Concept and Comparison to Hand-Sewn Anastomosis in Bench Experiments.

    PubMed

    Raza, Syed T

    2013-06-01

    A circular aortic stapler has been developed to anastomose the open end of the aorta to a size-matched Dacron tube graft in one quick motion and without having to pull sutures through the aortic wall. A prototype was developed, and its design and function were tested in bench experiments and compared with hand-sewn anastomosis. The basic design of the stapler is a central rod (anvil) surrounded by 10 stapling limbs, which can be closed over the anvil in a full circle, with staples extruded by turning a knob at the back. To test its function, a Dacron tube graft was inserted in the middle of a length of bovine aorta. One side was anastomosed with the stapler and the other hand-sewn in each of 10 experiments. Bovine blood was infused under increasing pressure. It took considerably less time to complete the stapled anastomosis than the hand-sewn side (3 minutes, 46 seconds versus 15 minutes, 42 seconds). Initial leak occurred at low pressures on the hand-sewn side (mean pressure 40 mm Hg) compared with the stapled side (mean pressure 70 mm Hg). In 7 of 10 experiments, the leak became too brisk on the hand-sewn side to sustain pressure, compared with 3 of 10 with stapled anastomoses. The stapling device performed well in all cases except when the bovine aorta was too thick for the staples (two cases) or when there was a missed branch at the anastomotic site (one case). These experiments validate the concept and the design of this aortic stapler. There are some limitations in the current design, which will need to be modified before its use in live animals or clinically.

  15. Equation of state for Eu-doped SrSi2O2N2

    NASA Astrophysics Data System (ADS)

    Ermakova, Olga; Paszkowicz, Wojciech; Kaminska, Agata; Barzowska, Justyna; Szczodrowski, Karol; Grinberg, Marek; Minikayev, Roman; Nowakowska, Małgorzata; Carlson, Stefan; Li, Guogang; Liu, Ru-Shi; Suchocki, Andrzej

    2014-07-01

    α-SrSi2O2N2 is one of the recently studied oxonitridosilicates applicable in optoelectronics, in particular in white LEDs. Its elastic properties remain unknown. A survey of literature shows that, up to now, nine oxonitridosilicate materials have been identified. For most of these compounds, doped with rare earths and manganese, a luminescence has been reported at a wavelength characteristic for the given material; all together cover a broad spectral range. The present study focuses on the elastic properties of one of these oxonitridosilicates, the Eu-doped triclinic α-SrSi2O2N2. High-pressure powder diffraction experiments are used in order to experimentally determine, for the first time, the equation of state of this compound. The in situ experiment was performed for pressures ranging up to 9.65 GPa, for Eu-doped α-SrSi2O2N2 sample mounted in a diamond anvil cell ascertaining the hydrostatic compression conditions. The obtained experimental variation of volume of the triclinic unit cell of α-SrSi2O2N2:Eu with rising pressure served for determination of the Birch-Murnaghan equation of state. The determined above quoted bulk modulus is 103(5) GPa, its first derivative is 4.5(1.1). The above quoted bulk modulus value is found to be comparable to that of earlier reported oxynitrides of different composition.

  16. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  17. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 μm of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lackmore » of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.« less

  18. X-ray diffraction study of elemental erbium to 70 GPa

    NASA Astrophysics Data System (ADS)

    Pravica, Michael G.; Romano, Edward; Quine, Zachary

    2005-12-01

    We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp→Sm-type→doublehcp(dhcp)→distorted fcc sequence. In particular, we present evidence for the predicted dhcp→distorted fcc transition above 63GPa . Equation of state data are also presented up to 70GPa .

  19. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    USGS Publications Warehouse

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  20. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes.

    PubMed

    Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T; Qian, Jiang; Zhu, Yuntian; Shen, Tongde

    2004-09-21

    A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of approximately 100 GPa. A hexagonal carbon phase was formed at approximately 75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp(3)-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a(0) = 2.496(4) A, c(0) = 4.123(8) A, and V(0) = 22.24(7) A (3). There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 +/- 0.2 g/cm(3), which is at least compatible to that of diamond (3.52 g/cm(3)). The bulk modulus was determined to be 447 GPa at fixed K' identical with 4, slightly greater than the reported value for diamond of approximately 440-442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond.

  1. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes

    PubMed Central

    Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T.; Qian, Jiang; Zhu, Yuntian; Shen, Tongde

    2004-01-01

    A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of ≈100 GPa. A hexagonal carbon phase was formed at ≈75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp3-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a0 = 2.496(4) Å, c0 = 4.123(8) Å, and V0 = 22.24(7) Å 3. There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 ± 0.2 g/cm3, which is at least compatible to that of diamond (3.52 g/cm3). The bulk modulus was determined to be 447 GPa at fixed K′≡4, slightly greater than the reported value for diamond of ≈440–442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond. PMID:15361581

  2. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa.

    PubMed

    Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka

    2018-04-28

    High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

  3. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka

    2018-04-01

    High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

  4. Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey S.; Holtgrewe, Nicholas; Goncharov, Alexander F.

    2016-09-01

    The ability of Earth's mantle to conduct heat by radiation is determined by optical properties of mantle phases. Optical properties of mantle minerals at high pressure are accessible through diamond anvil cell experiments, but because of the intense thermal radiation at T > 1000 K such studies are limited to lower temperatures. Accordingly, radiative thermal conductivity at mantle conditions has been evaluated with the assumption of the temperature-independent optical properties. Particularly uncertain is the temperature-dependence of optical properties of lower mantle minerals across the spin transition, as the spin state itself is a strong function of temperature. Here we use laser-heated diamond anvil cells combined with a pulsed ultra-bright supercontinuum laser probe and a synchronized time-gated detector to examine optical properties of high and low spin ferrous iron at 45-73 GPa up to 1600 K in an octahedral crystallographic unit (FeO6), one of the most abundant building blocks in the mantle. Siderite (FeCO3) is used as a model for FeO6-octahedra as it contains no ferric iron and exhibits a sharp optically apparent pressure-induced spin transition at 44 GPa, simplifying data interpretation. We find that the optical absorbance of low spin FeO6 increases with temperature due to the partially lifted Laporte selection rule. The temperature-induced low-to-high spin transition, however, results in a dramatic drop in absorbance of the FeO6 unit in siderite. The absorption edge (Fe-O charge transfer) red-shifts (∼1 cm-1/K) with increasing temperature and at T > 1600 K and P > 70 GPa becomes the dominant absorption mechanism in the visible range, suggesting its superior role in reducing the ability of mantle minerals to conduct heat by radiation. This implies that the radiative thermal conductivity of analogous FeO6-bearing minerals such as ferropericlase, the second most abundant mineral in the Earth's lower mantle, is substantially reduced approaching the core-mantle boundary conditions.

  5. A High Pressure Post-Perovskite Phase Transition in NaMgF3--a MgSiO3 Analog Material

    NASA Astrophysics Data System (ADS)

    Martin, C.; Liu, H.; Crichton, W.; Parise, J. B.

    2005-12-01

    Since Murakami et al. (2004) identified a perovskite (pv, Pbnm) to post-perovskite (ppv, Cmcm) structural phase transition in MgSiO3, the transition has been reported to occur in many oxides at ultra-high pressures (>60 GPa). The layered ppv structure is rapidly shaping a better understanding of seismic anisotropy in the controversial D" region of the lower mantle. While the ppv unit cell may be derived from indexing of the powder pattern, the structure adopted at high pressure is experimentally ill-constrained due to compromised powder diffraction statistics typically obtained from small sample volumes at extreme conditions in the diamond anvil cell. NaMgF3, a structural analog material to MgSiO3 pv, exhibits a large compressibility and presents the possibility of reducing the pv-ppv transition pressure, allowing for improved powder statistics from a larger sample volume. In accordance with our previous theoretical and experimental evidence (Liu et al., 2005; Parise et al., 2004), we have observed a phase transition in NaMgF3 during two recent independent high pressure trials utilizing monochromatic x-ray diffraction and in-situ laser heating in the diamond anvil cell at pressures as low as 30 GPa. From our analysis thus far, we have found the unit cell of the high pressure phase cannot be indexed according to pv (Pbnm) or close permutations of ppv (Cmcm) unit cells predicted for NaMgF3 or unit cells observed for ppv MgSiO3 and MgGeO3. In addition, we have precluded a breakdown to high pressure phases of NaF and MgF3 as an explanation for the observed data. Upon pressure release, we observe diffraction peaks from the high pressure phase in the absence of pv NaMgF3, suggesting the high pressure structure is quenchable to ambient conditions. The results of the work in progress will be presented at the meeting.

  6. Techniques used to identify tornado producing thunderstorms using geosynchronous satellite data

    NASA Technical Reports Server (NTRS)

    Schrab, Kevin J.; Anderson, Charles E.; Monahan, John F.

    1992-01-01

    Satellite imagery in the outbreak region in the time prior to and during tornado occurrence was examined in detail to obtain descriptive characteristics of the anvil plume. These characteristics include outflow strength (UMAX), departure of anvil centerline from the storm relative ambient wind (MDA), storm relative ambient wind (SRAW), and maximum surface vorticity (SFCVOR). It is shown that by using satellite derived parameters which characterize the flow field in the anvil region, the occurrence and intensity of tornadoes, which the parent thunderstorm produces, can be identified. Analysis of the censored regression models revealed that the five explanatory variables (UMAX, MDA, SRAW, UMAX-2, and SFCVOR) were all significant predictors in the identification of tornadic intensity of a particular thunderstorm.

  7. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less

  8. Hydrogen-bearing iron peroxide and its implications to the deep Earth

    NASA Astrophysics Data System (ADS)

    Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.

    2017-12-01

    Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.

  9. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  10. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications.

    PubMed

    Aprilis, G; Strohm, C; Kupenko, I; Linhardt, S; Laskin, A; Vasiukov, D M; Cerantola, V; Koemets, E G; McCammon, C; Kurnosov, A; Chumakov, A I; Rüffer, R; Dubrovinskaia, N; Dubrovinsky, L

    2017-08-01

    A portable double-sided pulsed laser heating system for diamond anvil cells has been developed that is able to stably produce laser pulses as short as a few microseconds with repetition frequencies up to 100 kHz. In situ temperature determination is possible by collecting and fitting the thermal radiation spectrum for a specific wavelength range (particularly, between 650 nm and 850 nm) to the Planck radiation function. Surface temperature information can also be time-resolved by using a gated detector that is synchronized with the laser pulse modulation and space-resolved with the implementation of a multi-point thermal radiation collection technique. The system can be easily coupled with equipment at synchrotron facilities, particularly for nuclear resonance spectroscopy experiments. Examples of applications include investigations of high-pressure high-temperature behavior of iron oxides, both in house and at the European Synchrotron Radiation Facility using the synchrotron Mössbauer source and nuclear inelastic scattering.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavriliuk, A.G.; Lin, J.F.; Lyubutin, I.S.

    The effect of the experimental conditions on the shape of the nuclear resonant forward scattering (NFS) from (Mg{sub 0.75}Fe{sub 0.25})O magnesiowustite has been studied at high pressures up to 100 GPa in diamond anvil cells by the method of the NFS of synchrotron radiation from the Fe-57 nuclei at room temperature. The behavior of the system in the electronic transition of the Fe{sup 2+} ion from the high-spin to low-spin state (spin crossover) near 62 GPa is analyzed as a function of the sample thickness, degree of nonhydrostaticity, and focusing and collimation conditions of a synchrotron beam. It is foundmore » that the inclusion of dynamical beats associated with the sample thickness is very important in the approximation of the experimental NFS spectra. It is shown that the electronic transition occurs in a much narrower pressure range ({+-}6 GPa) rather than in a broad range as erroneously follows from experiments with thick samples under strongly nonhydrostatic conditions.« less

  12. Carbonate stability in the reduced lower mantle

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; Prakapenka, Vitali B.; Cantoni, Marco; Gillet, Philippe

    2018-05-01

    Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth's deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg, Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3 component, producing a mixture of diamond, Fe7C3, and (Mg, Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.

  13. Time-resolved x-ray diffraction and electrical resistance measurements of structural phase transitions in zirconium

    DOE PAGES

    Velisavljevic, N.; Sinogeikin, S.; Saavedra, R.; ...

    2014-05-07

    Here, we have designed a portable pressure controller module to tune compression rates and maximum pressures attainable in a standard gas-membrane diamond anvil cell (DAC). During preliminary experiments, performed on zirconium (Zr) metal sample, pressure jumps of up to 80 GPa were systematically obtained in less than 0.2s (resulting in compression rate of few GPa/s up to more than 400 GPa/s). In-situ x-ray diffraction and electrical resistance measurements were performed simultaneously during this rapid pressure increase to provide the first time resolved data on α → ω → β structural evolution in Zr at high pressures. Direct control of compressionmore » rates and peak pressures, which can be held for prolonged time, allows for investigation of structural evolution and kinetics of structural phase transitions of materials under previously unexplored compression rate-pressure conditions that bridge traditional static and shock/dynamic experimental platforms.« less

  14. Carbonate stability in the reduced lower mantle

    DOE PAGES

    Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; ...

    2018-05-01

    Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth’s deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg,Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3more » component, producing a mixture of diamond, Fe7C3, and (Mg,Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.« less

  15. Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal.

    PubMed

    León-Luis, S F; Muñoz-Santiuste, J E; Lavín, V; Rodríguez-Mendoza, U R

    2012-04-23

    Hypersensitivity to pressure and temperature is observed in the near-infrared emission lines of the Nd(3+) ion in a Cr(3+),Nd(3+):Gd(3)Sc(2)Ga(3)O(12) crystal, associated to the R(1,2)((4)F(3/2))→Z(5)((4)I(9/2)) and R(1,2)((4)F(3/2))→Z(1)((4)I(9/2)) transitions. The former emissions show large linear pressure coefficients of -11.3 cm(-1)/GPa and -8.8 cm(-1)/GPa, while the latter show high thermal sensitivity in the low temperature range. Thus this garnet crystal can be considered a potential optical pressure and/or temperature sensor in high pressure and temperature experiments up to 12 GPa and below room temperature, used in diamond anvil cells and excited with different UV and visible commercial laser due to the multiple Cr(3+) and Nd(3+) absorption bands. © 2012 Optical Society of America

  16. Structural transition and amorphization in compressed α - Sb 2 O 3

    DOE PAGES

    Zhao, Zhao; Zeng, Qiaoshi; Zhang, Haijun; ...

    2015-05-27

    Sb₂O₃-based materials are of broad interest in materials science and industry. High-pressure study using diamond anvil cells shows promise in obtaining new crystal and electronic structures different from their pristine states. Here, we conducted in situ angle dispersive synchrotron x-ray-diffraction and Raman spectroscopy experiments on α-Sb₂O₃ up to 50 GPa with neon as the pressure transmitting medium. A first-order structural transition was observed in between 15 and 20 GPa, where the cubic phase I gradually transformed into a layered tetragonal phase II through structural distortion and symmetry breaking. To explain the dramatic changes in sample color and transparency, we performedmore » first-principles calculations to track the evolution of its density of states and electronic structure under pressure. At higher pressure, a sluggish amorphization was observed. Our results highlight the structural connections among the sesquioxides, where the lone electron pair plays an important role in determining the local structures.« less

  17. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    2017-01-01

    The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.

  18. High-pressure synthesis of a pentazolate salt [High-pressure synthesis of condensed-phase pentazolate

    DOE PAGES

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; ...

    2016-12-06

    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N 5 –, which is achieved by compressing and laser heating cesium azide (CsN 3) mixed with N 2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN 5). Electronmore » transfer from Cs atoms to N 5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN 5 crystal. As a result, this work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.« less

  19. Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa.

    PubMed

    Glascoe, Elizabeth A; Zaug, Joseph M; Burnham, Alan K

    2009-12-03

    The effect of pressure on the global thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Global decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low-to-moderate pressures (i.e., between ambient pressure and 0.1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure-enhanced autocatalysis, whereas the deceleration at high pressures is attributed to pressure-inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both the beta- and delta-polymorphs of HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  20. Melting temperatures of MgO under high pressure by micro-texture analysis

    PubMed Central

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2017-01-01

    Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth's lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic compressions and theoretical predictions. Here we show the melting temperatures in earlier LHDAC experiments are underestimated due to misjudgment of melting, based on micro-texture observations of the quenched samples. The high melting temperatures of MgO suggest that the subducted cold slabs should have higher viscosities than previously thought, suggesting that the inter-connecting textural feature of MgO would not play important roles for the slab stagnation in the lower mantle. The present results also predict that the ultra-deep magmas produced in the lower mantle are peridotitic, which are stabilized near the core–mantle boundary. PMID:28580945

  1. Shock-Compressed Hydrogen

    NASA Astrophysics Data System (ADS)

    Bickham, S. R.; Collins, L. A.; Kress, J. D.; Lenosky, T. J.

    1999-06-01

    To investigate recent gas-gun and laser experiments on hydrogen at elevated temperatures and high densities, we have performed quantum molecular dynamics simulations using a variety of sophisticated models, ranging from tight-binding(TB) to density functional(DF)(T.J. Lenosky, J.D. Kress, L.A. Collins, and I. Kwon Phys. Rev. B 55), R11907(1997) and references therein.. The TB models have been especially tailored to reproduce experimental findings, such as Diamond-Anvil Cell data, and ab initio calculations, such as H_2, H_3, and H4 potential energy surfaces. The DF calculations have employed the local-density approximation(LDA) as well as generalized gradient corrections(GGA) with large numbers of plane-waves ( ~10^5) that represent a very broad range of excited and continuum electronic states. Good agreement obtains among all these models. The simulations exhibit a rapidly rising electrical conductivity at low temperatures and high pressures in good agreement with the gas-gun results. This conduction property stems from a mobility of the electrons provided principally by the dissociated monomers. The Hugoniot for the conditions of the laser experiment, generated from the TB Equation-of-State, shows a maximum compression of around four instead of the observed six. We also report optical properties of the hydrogen media.

  2. Studies in useful hard x-ray induced chemistry

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-06-01

    The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.

  3. Micro-focusing System of the Taiwan Contract Beamline BL12XU at SPring-8 for IXS Experiments under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.-Y.; Cai, Y.-Q.; Chung, S.-C.

    The Taiwan Contract Beamline BL12XU at SPring-8 is designed for inelastic X-ray scattering (IXS) experiments. DCS is a powerful technique capable of probing the dynamic behavior and electronic structure of materials under high pressure. The state-of-the-arts technology to generate static high pressure up to mega-bar range uses diamond anvil cells (DAC). The allowed volume of the sample in DAC scales inversely with the pressure and is limited to the order of 1 x 10-3 mm3. In order to utilize such a device to explore the interesting phenomena under high pressure, we have designed a micro-focusing system using a set ofmore » KB mirrors, which is compatible with the existing optical system of BL12XU. Realistic ray-tracing results indicate that the system can achieve a focus of 10 {mu}m x 5.3 {mu}m(H x V) with a total efficiency of about 86%. The improved focus is expected to substantially enhance the experimental capability of BL12XU for high-pressure research.« less

  4. When and where to practice: social influences on the development of nut-cracking in bearded capuchins (Sapajus libidinosus).

    PubMed

    Eshchar, Y; Izar, P; Visalberghi, E; Resende, B; Fragaszy, D

    2016-05-01

    The habitual use of tools by wild capuchin monkeys presents a unique opportunity to study the maintenance and transmission of traditions. Young capuchins spend several years interacting with nuts before cracking them efficiently with stone tools. Using a two-observer method, we quantified the magnitude of the social influences that sustain this long period of practice. During five collection periods (over 26 months), one observer recorded the behavior of 16 immature monkeys, and another observer concurrently recorded behavior of group members in the focal monkey's vicinity. The two-observer method provides a means to quantify distinct social influences. Data show that immatures match the behavior of the adults in time and especially in space. The rate of manipulation of nuts by the immatures quadrupled when others in the group cracked and ate nuts, and immatures were ten times more likely to handle nuts and 40 times more likely to strike a nut with a stone when they themselves were near the anvils. Moreover, immature monkeys were three times more likely to be near an anvil when others were cracking. We suggest a model for social influence on nut-cracking development, based on two related processes: (1) social facilitation from observing group members engaged in nut-cracking, and (2) opportunity for practice provided by the anvils, hammer stones and nut shells available on and around the anvils. Nut-cracking activities by others support learning by drawing immatures to the anvils, where extended practice can take place, and by providing materials for practice at these places.

  5. A Circular Surgical Stapler Designed to Anastomose Aorta and Dacron Tube Graft

    PubMed Central

    2013-01-01

    Background: A circular aortic stapler has been developed to anastomose the open end of the aorta to a size-matched Dacron tube graft in one quick motion and without having to pull sutures through the aortic wall. Methods: A prototype was developed, and its design and function were tested in bench experiments and compared with hand-sewn anastomosis. The basic design of the stapler is a central rod (anvil) surrounded by 10 stapling limbs, which can be closed over the anvil in a full circle, with staples extruded by turning a knob at the back. To test its function, a Dacron tube graft was inserted in the middle of a length of bovine aorta. One side was anastomosed with the stapler and the other hand-sewn in each of 10 experiments. Bovine blood was infused under increasing pressure. Results: It took considerably less time to complete the stapled anastomosis than the hand-sewn side (3 minutes, 46 seconds versus 15 minutes, 42 seconds). Initial leak occurred at low pressures on the hand-sewn side (mean pressure 40 mm Hg) compared with the stapled side (mean pressure 70 mm Hg). In 7 of 10 experiments, the leak became too brisk on the hand-sewn side to sustain pressure, compared with 3 of 10 with stapled anastomoses. The stapling device performed well in all cases except when the bovine aorta was too thick for the staples (two cases) or when there was a missed branch at the anastomotic site (one case). Conclusions: These experiments validate the concept and the design of this aortic stapler. There are some limitations in the current design, which will need to be modified before its use in live animals or clinically. PMID:26798678

  6. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.

    2005-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  7. Achieving high-density states through shock-wave loading of precompressed samples

    PubMed Central

    Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul

    2007-01-01

    Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771

  8. Pressure induced phase transitions studies using advanced synchrotron techniques

    NASA Astrophysics Data System (ADS)

    Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration

    2013-06-01

    In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.

  9. Raman spectroscopic study of DL valine under pressure up to 20 GPa

    NASA Astrophysics Data System (ADS)

    Rêgo, F. S. C.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Polian, A.

    2016-04-01

    DL-valine crystal was studied by Raman spectroscopy under hydrostatic pressure using a diamond anvil cell from ambient pressure up to 19.4 GPa in the spectral range from 40 to 3300 cm-1. Modifications in the spectra furnished evidence of the occurrence of two structural phase transitions undergone by this racemic amino acid crystal. The classification of the vibrational modes, the behavior of their wavenumber as a function of the pressure and the reversibility of the phase transitions are discussed.

  10. Static high-pressure structural studies on Dy to 119 GPa

    NASA Astrophysics Data System (ADS)

    Patterson, Reed; Saw, Cheng K.; Akella, Jagannadham

    2004-05-01

    Structural phase transitions in the rare-earth metal dysprosium have been studied in a diamond anvil cell to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp→Sm-type→dhcp→hR24 (hexagonal)→bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa, respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.

  11. X-ray diffraction study of elemental erbium to 70 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, Michael G.; Romano, Edward; Quine, Zachary

    2005-12-01

    We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70 GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp{yields}Sm-type{yields}double hcp (dhcp){yields}distorted fcc sequence. In particular, we present evidence for the predicted dhcp{yields}distorted fcc transition above 63 GPa. Equation of state data are also presented up to 70 GPa.

  12. Melting and Freezing of Metals Under the High Pressures of Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary Michael

    The goal of this thesis is to help improve models of the evolution of cores of the Earth and other planets, and to improve understanding of melting transitions of metals in general. First, I present laboratory studies of high-pressure melting and near-melting phase transitions of two metals. The epsilon-to-B2 phase boundary of FeSi is constrained to 30 +/- 2 GPa with no measurable pressure-dependence from 1200 +/- 200 to 2300 +/- 200 K using x-ray diffraction in laser heated diamond anvil cells. The miscibility of Si in crystalline Fe likely increases at this transition due to the increasing effective ionic radius of Si, evidenced by the coordination change documented here. The result is that silicon is even more miscible in iron in the cores of Mercury and Mars than shown previously. Solid-solid transitions are also documented in AuGa2 from cubic (fluorite-type) to denser phases above 5.5 GPa and 600 K, in close proximity to the reversal in melting curve from negative slope to positive slope, which is also documented here. The change in melting curve therefore seems to be primarily driven by the crystallographic transitions and not the electronic transitions thought to occur at low temperatures. All transitions described here are reversed in the experiments, revealing hysteresis that ranges from 90 K to less than 15 K, and from 7 GPa to less than 2 GPa. This complexity, along with other complexities seen here and in other studies, suggest the need for new experimental techniques to make unambiguous measurements of a variety of equilibrium properties at melting and near melting. To improve future laboratory studies of melting at high pressure, I analyze several varieties of dynamic heating experiments. Laser heating experiments on metals in diamond anvil cells are shown to be at least 5 times less sensitive (and sometimes > 100 times less sensitive) to the latent heat of melting than suggested by published experimental data from pulsed-heating and continuous-heating experiments. Rather, experimentally detected plateaus in temperature likely result from changes in reflectivity of the laser absorber. To reveal a material's energetic properties (latent heat or heat capacity) in the highly conductive environment of diamond cells, heating frequencies >100 kHz should be used, and heat should be deposited uniformly through the material. Specifically, an "adiabaticity parameter'' is presented in Chapter 4 to guide experiments seeking to measure temperature plateaus that reveal the latent heats of first order phase transitions. Focusing on heat capacity alone, two experimental possibilities are described in Chapter 5: relative measures of heat capacity of metallic samples using modulated laser heating at 1 MHz to 1 GHz, and absolute measure of heat capacity using Joule-heating of metallic samples at 1 to 100 MHz frequency. Finally, Chapter 6 shows that a specific experimental design for Joule-heating is feasible: a realistic electrical circuit using two amplifiers and a Wheatstone bridge can couple electrical current into a diamond-cell-sized metal sample and output 20 mu V residual voltage oscillations induced by the sample's 1 MHz temperature oscillations, allowing measurement of the sample's heat capacity with 11% contribution from the insulation. The thermal models of Joule heating in diamond cells are validated by laboratory data of the heat capacity of a nickel foil pressed between thin glass pieces glued to a diamond: measured heat capacities decrease from 100s of % above the actual heat capacity of a 6 mu m-thick nickel sample at ≤ 1 kHz, to within ~ 20% of the actual heat capacity at 30 kHz.

  13. Community Extreme Tonnage User Service (CETUS): A 5000 Ton Open Research Facility in the United States

    NASA Technical Reports Server (NTRS)

    Danielson, L.; Righter, K.; McCubbin, F.

    2016-01-01

    Large sample volume 5000 ton multi-anvil presses have contributed to the exploration of deep Earth and planetary interiors, synthesis of ultra-hard and other novel materials, and serve as a sample complement to pressure and temperature regimes already attainable by diamond anvil cell experiments. However, no such facility exists on the North American continent. We propose the establishment of an open user facility for COMPRES members and the entire research community, with the unique capability of a 5000 ton (or more) press, supported by a host of extant co-located experimental and analytical laboratories and research staff. We offer wide range of complementary and/or preparatory experimental options. Any required synthesis of materials or follow up experiments can be carried out controlled atmosphere furnaces, piston cylinders, multi-anvil, or experimental impact apparatus. Additionally, our division houses two machine shops that would facilitate any modification or custom work necessary for development of CETUS, one for general fabrication and one located specifically within our experimental facilities. We also have a general sample preparation laboratory, specifically for experimental samples, that allows users to quickly and easily prepare samples for ebeam analyses and more. A service we can offer to COMPRES community members in general, and CETUS visiting users specifically, is a multitude of analytical instrumentation literally steps away from the experimental laboratories. This year we will be pursuing site funding of our laboratories through NASA's Planetary Science Directorate, which should result in substantial cost savings to all visiting users, and supports our mission of interagency cooperation for the enhancement of science for all (see companion PSAMS abstract). The PI is in a unique position as an employee of Jacobs Technology to draw funding from multiple sources, including those from industry and commerce. We submitted a Planetary Major Equipment proposal to the NASA Emerging Worlds solicitation for the full cost of a press, with competitive bids submitted from Sumitomo, Rockland Research, and Voggenreiter. Additional funding is currently being sought from industry sources through the Strategic Partnerships Office at NASA JSC, External Pursuits Program Office on the JETS contract, and Jacobs corporate in the United States. Internal funding is available for JETS contract personnel to travel to large press locations worldwide to study set-up and operations. We also anticipate a fortuitous cost savings in installation of the large press because plans are already underway for major renovations to the entire experimental petrology suite within the next 2 years in order to accommodate our growing user base. Our focus as contract staff is on serving the scientific needs of our users and collaborators. We are seeking community expert input on multiple aspects of this proposed facility, such as the press type and design, access management, immediate projects, and future innovation initiatives.

  14. Welding fixture for joining bar-wound stator conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, Urban J.; Rhoads, Frederick W.; Hanson, Justin

    A fixture assembly for welding a plurality of stator wire end pairs may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state. The moveable clamp includes a separator feature that generally extends toward the anvil. Each of the first grounding electrode and second grounding electrodes may be configured to translate between a clamped state and an unclamped state. When in themore » clamped state, each of the first and second grounding electrodes is configured to urge a pair of the plurality of stator wire end pairs against the separator feature.« less

  15. X-radiography, XRD and Ultrasonic Data Transfer Function Technique - Simultaneous Measurements Under Simulated Mantle Conditions in a Multi-Anvil Device

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lathe, C.

    2004-05-01

    The interpretation of seismic data from the Earth's deep interior requires measurements of the physical properties of Earth materials under experimental simulated mantle conditions. Elastic wave velocity measurement is an important tool for the determination of the elastic properties. Ultrasonic interferometry allows the highly precise travel time measurement at a sample enclosed in a high-pressure multi-anvil device. But the calculation of wave velocities requires the exact sample length under in situ conditions. There are two options - scanning the interfaces of the sample by XRD (Mueller et al., 2003) and X-radiography (Li et al., 2001). The multi-anvil apparatus MAX80 is equipped for both methods. Only the X-radiography is fast enough for transient measurements. Contrary to XRD measurements, imaging the sample by X-rays requires a beam diameter larger than the sample length. Therefore the fixed primary slits of Max80 were exchanged by 4-blade high precision slits of Advanced Design Consulting, Inc. A Ce-YAG-crystal converts the X-ray image to an optical one, redirected by a mirror and captured by a CCD-camera. To derive the sample length, the different brightness of sample, buffer rod and reflector at the electronic image is evaluated. Classical ultrasonic interferometry is very time consuming, because the ultrasonic waves of the frequency range under study are generated and detected one after another with a given step rate. A 60 MHz frequency sweep with 100 kHz steps lasts for more than 30 minutes. This is a serious limitation for all transient measurements, but also limits the data collection at elevated temperatures to prevent the pressure transmitting boron epoxy cubes and the anvils from overheating. The ultrasonic transfer function technique (UTF), first described by Li et al. (2002), generates all the frequencies simultaneously. Related to the results and experiences of Li the UTF-technique was developed independently at GFZ. This version allows to consider the characteristics of the specific transducer-glue-anvil combination (Mueller et al., 2003). To collect the data for the following calculation of Vp and Vs requires just few seconds. The excitation function, applied to the transducer by an arbitrary waveform generator, is the result of the summation of all sinusoidal waves inside the frequency range. The response of the system - transducer - anvil - buffer rod - sample - reflector - for each of the frequencies can be reproduced by convoluting the resulting transfer function with these monochromatic waves step by step. Some recent results on the non-quenchable high-P - low-P clinoenstatite transition and to the quartz-coesite transition will be given to discuss the different interferometric techniques, including the XRD-data and X-radiography results, necessary to detect the phase transitions under in situ conditions and to measure the sample deformation. Li, B.; Vaughan, M.T.; Kung, J.; Weidner, D.J., NSLS Activity Report 2001, 2-103-106, (2001). Li, B.; Chen, K.; Kung, J.; Liebermann, R.C.; Weidner, D.J., J. Phys.: Condens. Matter 14, 11337-11342, (2002). Mueller, H.J.; Schilling, F.R.; Lauterjung, J.; Lathe, C., Eur. J. Mineral., 15, 865-873, (2003). Mueller, H.J.; Wunder, B.; Lathe, C.; Schilling, F.R.; Eur. J. Mineral., submitted, (2004).

  16. Electron Density Distribution Changes of Magnesiowüstite With Pressure

    NASA Astrophysics Data System (ADS)

    Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.

    2017-12-01

    Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.

  17. Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Errandonea, Daniel; Meng, Yue; Häusermann, Daniel; Uchida, Takeyuki

    2003-03-01

    We studied the phase behaviour and the P - V - T equation of state of Mg by in situ energy-dispersive x-ray diffraction in a multi-anvil apparatus in the pressure-temperature range up to 18.6 GPa and 1527 K. At high temperatures, an hcp to dhcp transition was found above 9.6 GPa, which differs from the hcp to bcc transformation predicted by theoretical calculations. At room temperature, the hcp phase remains stable within the pressure range of this study with an axial ratio, c/a, close to the ideal. The melting of Mg was determined at 2.2, 10 and 12 GPa; the detected melting temperatures are in good agreement with previous diamond anvil cell results. The P - V - T equation of state determined based on the data of this study gives B0 = (36.8 ± 3) GPa, B0 ' = 4.3 ± 0.4, alpha0 = 25 × 10-6 K-1, partialalpha/partialT = (2.3 ± 0.2) × 10-7 K-2 and partialB0,T /partialT = (-2.08 ± 0.09) × 10-2 GPa K-1.

  18. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  19. Automatic monitoring of vibration welding equipment

    DOEpatents

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  20. Structure of organic solids at low temperature and high pressure.

    PubMed

    Lee, Rachael; Howard, Judith A K; Probert, Michael R; Steed, Jonathan W

    2014-07-07

    This tutorial review looks at structural and supramolecular chemistry of molecular solids under extreme conditions, and introduces the instrumentation and facilities that enable single crystal diffraction studies on molecular crystals at both high pressure and low temperature. The equipment used for crystallography under extreme conditions is explored, particularly pressure cells such as the diamond anvil cell, and their mechanism of action, as well as the cryogenic apparatus which allows materials to be cooled to significantly low temperatures. The review also covers recent advances in the structural chemistry of molecular solids under extreme conditions with an emphasis on the use of single crystal crystallography in high pressure and low temperature environments to probe polymorphism and supramolecular interactions.

  1. High-temperature/high-pressure x-ray diffraction: Recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Johnson, S.W.; Zinn, A.S.

    1989-01-01

    We have developed two Merrill-Bassett diamond-anvil cells for specialized high-temperature uses. The first is constructed largely of rhenium to provide uniform, constant P and T on the order of 20 GPa at 1200 K for extended periods. The second is for single-crystal x-ray diffraction, but can be heated to 630 K at 20 GPa to grow single-crystal samples which cannot be produced at room temperature. With this cell, the crystal structure of /var epsilon/-O/sub 2/ was shown to be monoclinic with a = 3.649 A, b = 5.493 A, c = 7.701 A, and /Beta/ = 116.11/degree/ at 19.7 GPa.more » 15 refs.« less

  2. Near Mbar-Level Dynamic Loading of Materials by Direct Laser-Irradiation

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Swift, D. C.; Gammel, J. T.; Luo, S.; Johnson, R. P.

    2003-12-01

    We are developing techniques to perform direct-laser-illumination-driven, dynamic materials experiments at up to Mbar pressures with use of the Trident Laser Laboratory at Los Alamos. By temporally controlling the laser-irradiance, we are able to shape our loading for studies of fast-rise shocks, precursors, or isentropic compression. Laser-driven shock experiments are advantageous when considering the efficiency (fast turnaround), relative ease of sample recovery, taylorable dynamic loading, and in-situ structure diagnostics. Frequently, these experiments last 1-5 nanoseconds, and thus, permit investigation of rate-dependent processes and high strain rate environments. Laser-driven dynamic experiments are an important complement to traditional dynamic (e.g., light-gas gun) and static (e.g., diamond-anvil cell) experiments with certain advantages in studying equation of state, phase transitions and mechanical-chemical properties of Earth and planetary materials. Understanding high-pressure behavior in this regime is critical to phase boundaries for planetary interiors and dynamic properties of impact processes. Although we have studied silicates, oxides, metals, alloys and organic materials, this paper will focus on shocked and isentropically-compressed results obtained for iron in the range of 10-70 GPa (0.1-0.7 Mbar). Free surface velocities are measured using a Velocity Interferometer System for Any Reflector (VISAR). Nanosecond-scale laser experiments were interpreted with careful attention to exaggerated elastic-plastic effects and using accurate new equations of state for the phases of iron. This poster will present our technique, experimental results, and interpretation. *Work performed under the auspices of the US DOE under contract No. W-7405-ENG-36.

  3. High-pressure cell for terahertz time-domain spectroscopy.

    PubMed

    Zhang, Wei; Nickel, Daniel; Mittleman, Daniel

    2017-02-06

    We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm-1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.

  4. FAST TRACK COMMUNICATION: High pressure study of BaFe2As2—the role of hydrostaticity and uniaxial stress

    NASA Astrophysics Data System (ADS)

    Duncan, W. J.; Welzel, O. P.; Harrison, C.; Wang, X. F.; Chen, X. H.; Grosche, F. M.; Niklowitz, P. G.

    2010-02-01

    We investigate the evolution of the electrical resistivity of BaFe2As2 single crystals with pressure. The samples used were from the same batch, grown using a self-flux method, and showed properties that were highly reproducible. Samples were pressurized using three different pressure media: pentane-isopentane (in a piston-cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces the spin density wave order and favours the appearance of superconductivity, which is similar to what is seen in SrFe2As2.

  5. Effect of hydrogen on the melting of the Fe-C system and the fate of the subducted carbon

    NASA Astrophysics Data System (ADS)

    Lai, X.; Chen, B.; Gao, J.; Zhu, F.

    2017-12-01

    The subducted oceanic crust carries significant amount of carbonates and organic carbons from the surface into the deep mantle. Through slab-mantle interactions, subducted carbons can react with metallic iron in the metal-saturated regions of the mantle and form various reduced species such as Fe carbides. The Fe-C system is found to have higher eutectic melting temperature than mantle geotherm and thus carbon by forming iron carbides may be "redox freezed" in the mantle (Rohrbach and Schmidt 2011). Hydrogen was found to be have significant effect on the melting of the Fe-light-elements systems such as the Fe-S system (Shibazaki et al., 2011). Here we report experimental results from both multi-anvil press and diamond anvil cell experiments on the melting behaviors of the Fe-C-H system. C14H12, a solid-state C-H organic compound was used as a C-H source to react with the metallic iron at high pressure and high temperature conditions. With excess C14H12, hydrogen in the FeHx alloy was totally replaced by carbon at 14.8-24.7 GPa. Conversely, with excess Fe, the existence of hydrogen is found to depress the melting temperature of the Fe-C system by at least 100 K. Hydrogen may facilitate the transport and cycling of subducted carbon in the deep mantle and contribute to formation of superdeep diamonds (Smith et al. 2016). Rohrbach, Arno, and Max W. Schmidt. "Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling." Nature 472.7342 (2011): 209. Shibazaki, Yuki, et al. "Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede." Earth and Planetary Science Letters 301.1 (2011): 153-158. Smith, Evan M., et al. "Large gem diamonds from metallic liquid in Earth's deep mantle." Science 354.6318 (2016): 1403-1405.

  6. Partnering with NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and Psams Initiative

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Draper, D. S.

    2016-12-01

    NASA Johnson Space Center's (JSC) Astromaterials Research and Exploration Science Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. We intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science, which should result in substantial cost savings to PIs who wish to use our facilities. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products and standards that could be shared and distributed to community members, products that could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale. A CT scanner will be delivered August 2016 and installed in the same building as all the other division experimental and analytical facilities, allowing users to construct a 3 dimensional model of their run product and/or starting material before any destruction of their sample for follow up analyses. The 3D printer may also be utilized to construct containers for diamond anvil cell experiments. Our staff scientists will work with PIs to maximize science return and serve the needs of the community. We welcome student visitors, and a graduate semester internship is available through Jacobs.

  7. Demonstration of a Large-Scale Tank Assembly via Circumferential Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Adams, Glynn; Colligan, Kevin

    2000-01-01

    A collaborative effort between NASA/Marshall Space Flight Center and the Michoud Unit of Lockheed Martin Space Systems Company was undertaken to demonstrate assembly of a large-scale aluminum tank using circumferential friction stir welds. The hardware used to complete this demonstration was fabricated as a study of near-net- shape technologies. The tooling used to complete this demonstration was originally designed for assembly of a tank using fusion weld processes. This presentation describes the modifications and additions that were made to the existing fusion welding tools required to accommodate circumferential friction stir welding, as well as the process used to assemble the tank. The tooling modifications include design, fabrication and installation of several components. The most significant components include a friction stir weld unit with adjustable pin length capabilities, a continuous internal anvil for 'open' circumferential welds, a continuous closeout anvil, clamping systems, an external reaction system and the control system required to conduct the friction stir welds and integrate the operation of the tool. The demonstration was intended as a development task. The experience gained during each circumferential weld was applied to improve subsequent welds. Both constant and tapered thickness 14-foot diameter circumferential welds were successfully demonstrated.

  8. Elevated O3 in Fresh and Aged Lightning-NOx Plumes Interacting with Biomass Burning Plumes over the Central U.S. during DC3 (Invited)

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Fütterer, D.; Rappenglück, B.; Ackermann, L.; Pickering, K. E.; Cummings, K.; Barth, M. C.

    2013-12-01

    During the Deep Convective Clouds and Chemistry Experiment (DC3) in summer 2012 a variety of different thunderstorm systems were investigated over the Central U.S. by the DLR research aircraft Falcon together with the NCAR GV and NASA DC-8 aircraft. In addition, the complete DC3 field phase was characterized by a number of extended wildfires burning in the surroundings of the thunderstorms. Here we mainly focus on trace gas in situ measurements, such as NOx, CO, O3, CH4, SO2, NMHC, and a variety of aerosol measurements carried out by the Falcon in the fresh (~0-6 h) and aged (~12-24 h) anvil outflow at ~10-12 km altitude. It is well-known that thunderstorms modify the trace gas composition in the upper troposphere (UT) and may affect O3 mixing ratios, an important greenhouse gas in the UT. However, a complete picture of the different processes affecting the UT-O3 composition in vicinity of thunderstorms and its large-scale effects is still missing. From the DC3 data set we present an example of small-scale effects on the O3 composition in the anvil outflow, such as immediate O3 production by an aircraft-induced flash. But we also show how the efficient convective transport that extended over the whole updraft region may transport O3-poorer air masses from the, in general, rather unpolluted inflow region (with regard to anthropogenic emissions) over the Central U.S. directly to the UT. However, in a few cases enhanced O3 mixing ratios were observed in the anvil outflow attributed to different chemical and dynamical processes. In the two most powerful convective systems, an intense MCS over Missouri/Arkansas and a supercell over Texas, extended biomass burning (BB) plumes from New Mexico interacted with the thunderstorms. Ozone production was obvious in the BB plumes transported mainly in the lower troposphere at ~2-5 km altitude (ΔO3/ΔCO=0.1). However, if these air masses affected by BB emissions (containing high amounts of O3 precursors such as CH4 and NMHC) were ingested into the surrounding thunderstorms (with high HOx and NOx) and transported to the UT region, the ΔO3/ΔCO slope increased dramatically to values up to ~0.6-2.5. In addition to enhanced O3 production rates in thunderstorm outflows interacting with BB plumes, the pronounced downward mixing of O3-rich air mass from the stratosphere down to 8 km was observed in an aged anvil outflow from a squall line active over Colorado which was advected to Kansas the day after. Overall, from the local DC3 Falcon measurements the effect of downward mixing of O3-rich stratospheric air masses seems to cause the largest increase in O3 mixing ratios in the aged anvil outflow.

  9. High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Ehm, Lars

    In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.

  10. High pressure melting curve of platinum up to 35 GPa

    NASA Astrophysics Data System (ADS)

    Patel, Nishant N.; Sunder, Meenakshi

    2018-04-01

    Melting curve of Platinum (Pt) has been measured up to 35 GPa using our laboratory based laser heated diamond anvil cell (LHDAC) facility. Laser speckle method has been employed to detect onset of melting. High pressure melting curve of Pt obtained in the present study has been compared with previously reported experimental and theoretical results. The melting curve measured agrees well within experimental error with the results of Kavner et al. The experimental data fitted with simon equation gives (∂Tm/∂P) ˜25 K/GPa at P˜1 MPa.

  11. X-ray diffraction on radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Roof, R.B.

    1978-01-01

    X-ray diffraction studies on radioactive materials are discussed with the aim of providing a guide to new researchers in the field. Considerable emphasis is placed on the safe handling and loading of not-too-exotic samples. Special considerations such as the problems of film blackening by the gamma rays and changes induced by the self-irradiation of the sample are covered. Some modifications of common diffraction techniques are presented. Finally, diffraction studies on radioactive samples under extreme conditions are discussed, with primary emphasis on high-pressure studies involving diamond-anvil cells.

  12. Effect of pressure on infrared spectra of ice 7

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. B.; Seiler, B.; Nicol, M.

    1983-01-01

    The effect of pressure on the infrared spectra of H2O and D2O ice VII was studied at room temperature and pressures between 2 and 15 GPa with a Fourier transform infrared spectrometer and a diamond anvil high pressure cell. Two librational modes, one bending mode, and various overtone bands are well resolved. The stretching modes, nu sub 1 and nu sub 3 are poorly resolved due to overlap with diamond window absorption. Differences between the spectra of H2O and D2O are discussed.

  13. Raman spectra of solid benzene under high pressure

    NASA Technical Reports Server (NTRS)

    Thiery, M.-M.; Kobashi, K.; Spain, I. L.

    1985-01-01

    Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.

  14. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  15. Static High Pressure Structural studies on Dy to 119 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J R; Saw, C K; Akella, J

    2003-11-12

    Structural phase transitions in the rare-earth metal Dysprosium have been studied in a Diamond Anvil Cell (DAC) to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp {yields} Sm-type {yields} dhcp {yields} hR24 (hexagonal) {yields} bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.

  16. X-ray diffraction study of elemental thulium to 86 GPa

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Romano, Edward; Quine, Zachary; Pravica, Walter

    2006-03-01

    We have studied the structures and equation of state of elemental thulium up to 86 GPa in a diamond anvil cell using angular-dispersive x-ray powder diffraction methods at the Advanced Photon Source. This is part of a study of phase transitions in the lanthanide-series metals using cyclohexane as a quasi-hydrostatic medium. We present evidence of a series of phase transitions that appear to follow the anticipated hcp ->Sm-type -> dhcp -> distorted fcc sequence of transitions and show the equation of state derived from the x-ray fit data.

  17. Homogenizing Surface and Satellite Observations of Cloud. Aspects of Bias in Surface Data.

    DTIC Science & Technology

    1987-11-10

    both ( pannus ), usually below fractus of bad weather, or both ( pannus ), usu- Altostratus or Nimbostratus ally below Altostratus or Nimbostratus 8 Cumulus...Stratocumulus, Stratus of an anvil; either accompanied or not by Cu- or pannus mulonimbus without anvil or fibrous upper part, by Cumulus, Stratocumulus...Stratus or pannus CL clouds invisible owing to darkness, fog, / Stratocumulus, Stratus, Cumulus and Cu- blowing dust or sand, or other similar mulonimbus

  18. Integrated-fin gasket for palm cubic-anvil high pressure apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J.-G.; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Matsubayashi, K.

    2014-09-15

    We described an integrated-fin gasket technique for the palm cubic-anvil apparatus specialized for the high-pressure and low-temperature measurements. By using such a gasket made from the semi-sintered MgO ceramics and the tungsten-carbide anvils of 2.5 mm square top, we successfully generate pressures over 16 GPa at both room and cryogenic temperatures down to 0.5 K. We observed a pressure self-increment for this specific configuration and further characterized the thermally induced pressure variation by monitoring the antiferromagnetic transition temperature of chromium up to 12 GPa. In addition to enlarge the pressure capacity, such a modified gasket also improves greatly the survivingmore » rate of electrical leads hanging the sample inside a Teflon capsule filled with the liquid pressure-transmitting medium. These improvements should be attributed to the reduced extrusion of gasket materials during the initial compression.« less

  19. Proceedings of the IMOG (Interagency Manufacturing Operations Group) Numerical Systems Group. 62nd Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, G.J.

    1993-10-01

    This document contains the proceedings of the 62nd Interagency Manufacturing Operations Group (IMOG) Numerical Systems Group. Included are the minutes of the 61st meeting and the agenda for the 62nd meeting. Presentations at the meeting are provided in the appendices to this document. Presentations were: 1992 NSG Annual Report to IMOG Steering Committee; Charter for the IMOG Numerical Systems Group; Y-12 Coordinate Measuring Machine Training Project; IBH NC Controller; Automatically Programmed Metrology Update; Certification of Anvil-5000 for Production Use at the Y-12 Plant; Accord Project; Sandia National Laboratories {open_quotes}Accord{close_quotes}; Demo/Anvil Tool Path Generation 5-Axis; Demo/Video Machine/Robot Animation Dynamics; Demo/Certification ofmore » Anvil Tool Path Generation; Tour of the M-60 Inspection Machine; Distributed Numerical Control Certification; Spline Usage Method; Y-12 NC Engineering Status; and Y-12 Manufacturing CAD Systems.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  1. Robotic end gripper with a band member to engage object

    DOEpatents

    Pollard, Roy E.; Robinson, Samuel C.; Thompson, William F.; Couture, Scott A.; Sutton, Bill J.

    1994-01-01

    An end effector for use with robotic arms and like devices that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator.

  2. Automatic monitoring of the alignment and wear of vibration welding equipment

    DOEpatents

    Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith

    2017-05-23

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host machine, a check station, and a welding robot. At least one displacement sensor is positioned with respect to one of the welding equipment and the check station. The robot moves the horn and anvil via an arm to the check station, when a threshold condition is met, i.e., a predetermined amount of time has elapsed or a predetermined number of welds have been completed. The robot moves the horn and anvil to the check station, activates the at least one displacement sensor, at the check station, and determines a status condition of the welding equipment by processing the received signals. The status condition may be one of the alignment of the vibration welding equipment and the wear or degradation of the vibration welding equipment.

  3. Paris-Edinburgh cell applications at HPCAT

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Shen, Guoyin; Wang, Yanbin

    2011-06-01

    A Paris-Edinburgh cell (model VX-3) has been installed at HPCAT 16BM-B, a bending magnet white X-ray beamline at the Advanced Photon Source. The PE anvil and the heater assembly are specifically designed to contain the sample volume ranging from 0.03 mm3 to >1.2 mm3 while the entire sample volume can be seen through X-ray windows widely open in radial direction. The pressure and temperature of sample can reach up to 7 GPa and 2,300 K, respectively. For diffraction experiment, the maximum momentum transfer, Q = 4 πsin(θ) / λ, can reach up to ~40 Å -1. A real-time white-beam radiography imaging system obtains the absorption contrast images of compressed sample with 7x magnification, 5 μm image resolutions, and update rate of 0.1 msec to 60 sec per frame. A table top channel-cut monochromator which can provide 30-90 keV monochromatic X-rays is also available for transmission measurement. These series of new instrumental developments are expected to widen the range of user sciences at HPCAT with new opportunities for in-situ measurement of real-time radiography, amorphous and liquid structure, ultrasound velocity, density, electrical resistivity and thermal conductivity. Work supported by DOE-NNSA, DOE-BES, and NSF-COMPRESS.

  4. Shock Initiation and Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad

    2013-06-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.

  5. Multi-Mbar Ramp Compression of Copper

    NASA Astrophysics Data System (ADS)

    Kraus, Rick; Davis, Jean-Paul; Seagle, Christopher; Fratanduono, Dayne; Swift, Damian; Eggert, Jon; Collins, Gilbert

    2015-06-01

    The cold curve is a critical component of equation of state models. Diamond anvil cell measurements can be used to determine isotherms, but these have generally been limited to pressures below 1 Mbar. The cold curve can also be extracted from Hugoniot data, but only with assumptions about the thermal pressure. As the National Ignition Facility will be using copper as an ablator material at pressures in excess of 10 Mbar, we need a better understanding of the high-density equation of state. Here we present ramp-wave compression experiments at the Sandia Z-Machine that we have used to constrain the isentrope of copper to a stress state of nearly 5 Mbar. We use the iterative Lagrangian analysis technique, developed by Rothman and Maw, to determine the stress-strain path. We also present a new iterative forward analysis (IFA) technique coupled to the ARES hydrocode that performs a non-linear optimization over the pressure drive and equation of state in order to match the free surface velocities. The IFA technique is an advantage over iterative Lagrangian analysis for experiments with growing shocks or systems with time dependent strength, which violate the assumptions of iterative Lagrangian analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Analysis of satellite data for sensor improvement (detection of severe storms from space)

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1984-01-01

    Stereo photography of clouds over southeast Asia was obtained using NOAA-7 and the Japanese GMS. Due to the breakdown of GMS2, GMS1, which had been retired, is being used as the replacement satellite. The launch of GMS should permit the US-Japan stereo experiment to be reactivated. The Lear jet experiment based at Grand Island, Nebraska was successful and provided data on the Redwood Falls clouds & Grand Island thunderstorm; an anvil-top cirrus deck; a circular thunderstorm; and jumping cirrus. The IR temperature field of the thunderstorm which induced the Andrews AFB microburst was analyzed with 1 C accuracy. The microburst and severe thunderstorm project is being planned.

  7. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;

  8. Eutectic propeties of primitive Earth's magma ocean

    NASA Astrophysics Data System (ADS)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and/or (c) appearance of a broad band of diffuse X-ray scattering associated to the presence of silicate liquid. The pressure evolution of the eutectic temperature is found below the melting curve of pure MgSiO3 perovskite [7] for more than 500 K and also below the solidus curve of pyrolite [4] for 100-200 K at 60 GPa. References [1] B. T. Tonks, H. J. Melosh, Journal of Geophysical Research 98 5319 (1993). [2] Litasov, K., and Ohtani, E. Physics of The Earth and Planetary Interiors, 134(1-2), 105-127, (2002). [3] E. Ito, A. Kubo, T. Katsura et al., Phys. Earth Planet. Inter. 143-144 397 (2004). [4] A. Zerr, R. Boehler, Nature 506-508 (1994). [5] J. A. Akins, S. N. Luo, P. D. Asimov et al., Geophys. Res. Lett. 31 doi:10.1029/2004GL020237 (2004). [6] Schultz et al. International Journal of High Pressure Research. 25, 1, 71-83 (2005). [7] Zerr, A. and Boehler, R. Science, 262, 553-555 (1993).

  9. KSC00pp0888

    NASA Image and Video Library

    2000-06-19

    This anvil-shaped cloud over the Central Florida coast is part of a NASA study measuring electric fields in this type of cloud. A specially equipped Cessna Citation aircraft is being flown into anvil clouds in the KSC area . The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00

  10. KSC-00pp0888

    NASA Image and Video Library

    2000-06-19

    This anvil-shaped cloud over the Central Florida coast is part of a NASA study measuring electric fields in this type of cloud. A specially equipped Cessna Citation aircraft is being flown into anvil clouds in the KSC area . The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00

  11. Gleeble Testing of Tungsten Samples

    DTIC Science & Technology

    2013-02-01

    as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during

  12. Effects of Iron and Pressure on the c11 Elastic Constant of (Mg,Fe)O Using a New GHz-Ultrasonic Diamond Cell With In-Situ X-ray Diffraction to 10 GPa

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Spetzler, H.; Reichmann, H.; Mackwell, S.; Smyth, J.

    2002-12-01

    (Mg,Fe)O may be one of the most elastically anisotropic cubic minerals likely to occur in Earth's interior. At ambient P-T, pure MgO exhibits ~10% P-wave and ~13% S-wave anisotropy. The landmark single-crystal ultrasonic experiment of Chen et al. (1998) showed that increasing pressure reduces this anisotropy, leading to either zero anisotropy or a switch in sign of the anisotropy factor (A=2c44+c12)/c11-1) expected at ~20 GPa. They also showed that on increasing temperature (at pressure) the value of A recovers to bench-top values at only 1000 K (at 8 GPa). The effects of pressure and iron in amounts relevant to Earth's interior on the anisotropic elastic properties of (Mg,Fe)O are not yet known. With this and other questions at hand, we are undertaking hydrostatic single-crystal elasticity measurements on (Mg,Fe)O using GHz-ultrasonic interferometry. Thus far, we have determined the pressure derivative of c11 to a maximum hydrostatic pressure of 9 GPa, resulting in linear derivatives (dc11/dP) = 9.4(1), 11.7(4), 9.8(4), and 9.4(2) for MgO, and (Mg,Fe)O with 15, 24, and 56 mol% FeO, respectively. This behavior is consistent with our previous results on the compositional dependence of the bulk modulus, which we observed to increase between MgO and (Mg,Fe)O with 25 mol% FeO, before decreasing towards non-stoichiometric Fe0.95O. Therefore we speculate that the decrease in dc11/dP for the highest Fe-content sample is due at least in part to defects. The experiments were carried out in a new GHz-ultrasonic diamond cell modeled after the classic three-pin Merrill-Bassett design. The cell is capable of pressures >10 GPa and features a 60° opening for in-situ single-crystal X-ray diffraction. The anvil seats contain no glue or epoxy so the entire frame (Vascomax 250) may be heated, as we have done readily up to 300°C for annealing. Perhaps most notably, the ultrasonic measurements were made without the use of a bonding agent (such as glue or gold) between the sample and the acoustic anvil. We have successfully implemented a novel ultrasonic pressure medium using aerogel, which has the lowest density of any known solid (~0.1 g/cm3) corresponding to about 95% porosity. By wetting the aerogel with a 16:4:1 Methanol:Ethanol:Water fluid, we achieved a hydrostatic but supportive pressure medium. The gel appears cloudy at zero pressure, but becomes more transparent above ~0.5 GPa, facilitating optical alignment of the acoustic buffer rod. Reference: Chen et al. (1998) Science, Vol. 280, 1913-1916.

  13. High-pressure structural study of MnF 2

    DOE PAGES

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...

    2015-02-01

    In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less

  14. Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent

    Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.

  15. Pressure-Stabilized Tin Selenide Phase with an Unexpected Stoichiometry and a Predicted Superconducting State at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Hulei; Lao, Wenxin; Wang, Lijuan; Li, Kuo; Chen, Yue

    2017-03-01

    Tin-selenium binary compounds are important semiconductors that have attracted much interest for thermoelectric and photovoltaic applications. As tin has a +2 or +4 oxidation state and selenium has an oxidation number of -2 , only SnSe and SnSe2 have been observed. In this work, we show that the chemical bonding between tin and selenium becomes counterintuitive under pressures. Combining evolutionary algorithms and density functional theory, a novel cubic tin-selenium compound with an unexpected stoichiometry 3 ∶4 has been predicted and further synthesized in laser-heated diamond anvil cell experiments. Different from the conventional SnSe and SnSe2 semiconductors, Sn3 Se4 is predicted to be metallic and exhibit a superconducting transition at low temperatures. Based on electron density and Bader charge analysis, we show that Sn3 Se4 has a mixed nature of chemical bonds. The successful synthesis of Sn3 Se4 paves the way for the discovery of other IV-VI compounds with nonconventional stoichiometries and novel properties.

  16. Pressure-Stabilized Tin Selenide Phase with an Unexpected Stoichiometry and a Predicted Superconducting State at Low Temperatures.

    PubMed

    Yu, Hulei; Lao, Wenxin; Wang, Lijuan; Li, Kuo; Chen, Yue

    2017-03-31

    Tin-selenium binary compounds are important semiconductors that have attracted much interest for thermoelectric and photovoltaic applications. As tin has a +2 or +4 oxidation state and selenium has an oxidation number of -2, only SnSe and SnSe_{2} have been observed. In this work, we show that the chemical bonding between tin and selenium becomes counterintuitive under pressures. Combining evolutionary algorithms and density functional theory, a novel cubic tin-selenium compound with an unexpected stoichiometry 3∶4 has been predicted and further synthesized in laser-heated diamond anvil cell experiments. Different from the conventional SnSe and SnSe_{2} semiconductors, Sn_{3}Se_{4} is predicted to be metallic and exhibit a superconducting transition at low temperatures. Based on electron density and Bader charge analysis, we show that Sn_{3}Se_{4} has a mixed nature of chemical bonds. The successful synthesis of Sn_{3}Se_{4} paves the way for the discovery of other IV-VI compounds with nonconventional stoichiometries and novel properties.

  17. Radiation attenuation by single-crystal diamond windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie, M.; Pruteanu, C. G.; Donnelly, M. -E.

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  18. Radiation attenuation by single-crystal diamond windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  19. Radiation attenuation by single-crystal diamond windows

    DOE PAGES

    Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...

    2017-02-01

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  20. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less

Top