Sample records for aortic endothelial dysfunction

  1. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  2. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Serum from Diesel Exhaust-Exposed Rats with Cardiac Dysfunction Alters Aortic Endothelial Cell Function In Vitro: Circulating Mediators as Causative Factors?

    EPA Science Inventory

    Although circulating inflammatory mediators are strongly associated with adverse cardiovascular outcomes triggered by inhaled air pollution, direct cause-effect linkage has not been established. Given that endothelial toxicity often precedes and precipitates cardiac dysfunction, ...

  5. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    PubMed

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  6. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    PubMed

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  7. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits.

    PubMed

    Shehatou, George S G; Suddek, Ghada M

    2016-02-01

    The aim of the present work was to explore possible protective effects of sulforaphane (SFN) against atherosclerosis development and endothelial dysfunction in hypercholesterolemic rabbits. Rabbits were assigned to three groups of five: group I fed normal chow diet for four weeks, group II fed 1% high cholesterol diet (HCD) and group III fed HCD + SFN (0.25 mg/kg/day). Blood samples were collected for measurement of serum triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), lactate dehydrogenase (LDH) and C-reactive protein (CRP). Aortic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and total nitrite/nitrate (NOx) were measured. Vascular reactivity and intima/media (I/M) ratio were analyzed. Nuclear factor-kappa B (NF-κB) activation in aortic endothelial cells was identified immunohistochemically. HCD induced significant increases in serum TGs, TC, LDL-C, LDH, and CRP, and aortic MDA and SOD. Moreover, HCD caused significant reductions in serum HDL-C, aortic GSH and NOx. SFN administration significantly decreased HCD-induced elevations in serum TC, LDL-C, CRP, and LDH. while significantly increased HDL-C and GSH levels and normalized aortic SOD and NOx. Additionally, SFN significantly improved rabbit aortic endothelium-dependent relaxation to acetylcholine. Moreover, SFN significantly reduced the elevation in I/M ratio. This effect was confirmed by aortic histopathologic examination. The expression of NF-κB in aortic tissue showed a marked reduction upon treatment with SFN. In conclusion, this study reveals that SFN has the ability to ameliorate HCD-induced atherosclerotic lesions progression and vascular dysfunction, possibly via its lipid-lowering and antioxidant effects and suppression of NF-κB-mediated inflammation. © 2016 by the Society for Experimental Biology and Medicine.

  8. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits

    PubMed Central

    Suddek, Ghada M

    2016-01-01

    The aim of the present work was to explore possible protective effects of sulforaphane (SFN) against atherosclerosis development and endothelial dysfunction in hypercholesterolemic rabbits. Rabbits were assigned to three groups of five: group I fed normal chow diet for four weeks, group II fed 1% high cholesterol diet (HCD) and group III fed HCD + SFN (0.25 mg/kg/day). Blood samples were collected for measurement of serum triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), lactate dehydrogenase (LDH) and C-reactive protein (CRP). Aortic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and total nitrite/nitrate (NOx) were measured. Vascular reactivity and intima/media (I/M) ratio were analyzed. Nuclear factor-kappa B (NF-κB) activation in aortic endothelial cells was identified immunohistochemically. HCD induced significant increases in serum TGs, TC, LDL-C, LDH, and CRP, and aortic MDA and SOD. Moreover, HCD caused significant reductions in serum HDL-C, aortic GSH and NOx. SFN administration significantly decreased HCD-induced elevations in serum TC, LDL-C, CRP, and LDH. while significantly increased HDL-C and GSH levels and normalized aortic SOD and NOx. Additionally, SFN significantly improved rabbit aortic endothelium-dependent relaxation to acetylcholine. Moreover, SFN significantly reduced the elevation in I/M ratio. This effect was confirmed by aortic histopathologic examination. The expression of NF-κB in aortic tissue showed a marked reduction upon treatment with SFN. In conclusion, this study reveals that SFN has the ability to ameliorate HCD-induced atherosclerotic lesions progression and vascular dysfunction, possibly via its lipid-lowering and antioxidant effects and suppression of NF-κB-mediated inflammation. PMID:26490346

  9. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity

    PubMed Central

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.

    2013-01-01

    Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications. PMID:23594590

  10. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.

    PubMed

    Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco

    2010-11-01

    Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.

  12. The urea decomposition product cyanate promotes endothelial dysfunction

    PubMed Central

    El-Gamal, Dalia; Rao, Shailaja Prabhakar; Holzer, Michael; Hallström, Seth; Haybaeck, Johannes; Gauster, Martin; Wadsack, Christian; Kozina, Andrijana; Frank, Saša; Schicho, Rudolf; Schuligoi, Rufina; Heinemann, Akos; Marsche, Gunther

    2014-01-01

    The dramatic cardiovascular mortality of chronic kidney disease patients is attributable in a significant proportion to endothelial dysfunction. Cyanate, a reactive species in equilibrium with urea, is formed in excess in chronic kidney disease. Cyanate is thought to have a causal role in promoting cardiovascular disease, but the underlying mechanisms remain unclear. Immunohistochemical analysis performed in the present study revealed that carbamylated epitopes associate mainly with endothelial cells in human atherosclerotic lesions. Cyanate treatment of human coronary artery endothelial cells reduced expression of endothelial nitric oxide synthase and increased tissue factor and plasminogen activator inhibitor-1 expression. In mice, administration of cyanate - promoting protein carbamylation at levels observed in uremic patients - attenuated arterial vasorelaxation of aortic rings in response to acetylcholine, without affecting sodium nitroprusside-induced relaxation. Total endothelial nitric oxide synthase and nitric oxide production were significantly reduced in aortic tissue of cyanate-treated mice. This coincided with a marked increase of tissue factor and plasminogen activator inhibitor-1 protein levels in aortas of cyanate-treated mice. These data provide evidence that cyanate compromises endothelial functionality in vitro and in vivo and may contribute to the dramatic cardiovascular risk of patients suffering from chronic kidney disease. PMID:24940796

  13. Effect of agmatine on experimental vascular endothelial dysfunction.

    PubMed

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  14. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice

    PubMed Central

    Roos, Carolyn M.; Hagler, Michael; Zhang, Bin; Oehler, Elise A.; Arghami, Arman

    2013-01-01

    The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD+/+) and manganese SOD heterozygous haploinsufficient (MnSOD+/−) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16ink4a, a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD+/+ and MnSOD+/− mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD+/+ and MnSOD+/− mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD+/+ mice but significantly impaired endothelial function in MnSOD+/− mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094

  15. Soluble receptor for advanced glycation end products mitigates vascular dysfunction in spontaneously hypertensive rats.

    PubMed

    Liu, Yu; Yu, Manli; Zhang, Le; Cao, Qingxin; Song, Ying; Liu, Yuxiu; Gong, Jianbin

    2016-08-01

    Vascular dysfunction including vascular remodeling and endothelial dysfunction in hypertension often results in poor clinical outcomes and increased risk of vascular accidents. We investigate the effect of treatment with soluble receptor for advanced glycation end products (sRAGE) on vascular dysfunction in spontaneously hypertensive rats (SHR). Firstly, the aortic AGE/RAGE pathway was investigated in SHR. Secondly, SHR received intraperitoneal injections of sRAGE daily for 4 weeks. Effect of sRAGE against vascular dysfunction in SHR and underlying mechanism was investigated. SHR aortas exhibited enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE. Treatment of SHR with sRAGE had no significant effect on blood pressure, but alleviated aortic hypertrophy and endothelial dysfunction. In vitro, treatment with sRAGE reversed the effect of incubation with AGE on proliferation of smooth muscle cells and endothelial function. Treatment of SHR with sRAGE abated oxidative stress, suppressed inflammation and NF-κB activation, improved the balance between Ang II and Ang-(1-7) through reducing angiotensin-converting enzyme (ACE) activity and enhancing ACE2 expression, and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in aortas. In conclusion, treatment with sRAGE alleviated vascular adverse remodeling in SHR, possibly via suppression of oxidative stress and inflammation, improvement in RAS balance, and activation of PPAR-γ pathway.

  16. Endothelium as a Potential Target for Treatment of Abdominal Aortic Aneurysm

    PubMed Central

    Sun, Jingyuan; Deng, Hongping; Zhou, Zhen

    2018-01-01

    Abdominal aortic aneurysm (AAA) was previously ascribed to weaken defective medial arterial/adventitial layers, for example, smooth muscle/fibroblast cells. Therefore, besides surgical repair, medications targeting the medial layer to strengthen the aortic wall are the most feasible treatment strategy for AAA. However, so far, it is unclear whether such drugs have any beneficial effect on AAA prognosis, rate of aneurysm growth, rupture, or survival. Notably, clinical studies have shown that AAA is highly associated with endothelial dysfunction in the aged population. Additionally, animal models of endothelial dysfunction and endothelial nitric oxide synthase (eNOS) uncoupling had a very high rate of AAA formation, indicating there is crucial involvement of the endothelium and a possible pharmacological solution targeting the endothelium in AAA treatment. Endothelial cells have been found to trigger vascular wall remodeling by releasing proteases, or recruiting macrophages along with other neutrophils, into the medial layer. Moreover, inflammation and oxidative stress of the arterial wall were induced by endothelial dysfunction. Interestingly, there is a paradoxical differential correlation between diabetes and aneurysm formation in retinal capillaries and the aorta. Deciphering the significance of such a difference may explain current unsuccessful AAA medications and offer a solution to this treatment challenge. It is now believed that AAA and atherosclerosis are two separate but related diseases, based on their different clinical patterns which have further complicated the puzzle. Therefore, a thorough investigation of the interaction between endothelium and medial/adventitial layer may provide us a better understanding and new perspective on AAA formation, especially after taking into account the importance of endothelium in the development of AAA. Moreover, a novel medication strategy replacing the currently used, but suboptimal treatments for AAA, could be informed with this analysis. PMID:29849906

  17. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  18. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin).

    PubMed

    Pini, Alessandro; Boccalini, Giulia; Baccari, Maria Caterina; Becatti, Matteo; Garella, Rachele; Fiorillo, Claudia; Calosi, Laura; Bani, Daniele; Nistri, Silvia

    2016-05-01

    Smoking is regarded as a major risk factor for the development of cardiovascular diseases (CVD). This study investigates whether serelaxin (RLX, recombinant human relaxin-2) endowed with promising therapeutic properties in CVD, can be credited of a protective effect against cigarette smoke (CS)-induced vascular damage and dysfunction. Guinea pigs exposed daily to CS for 8 weeks were treated with vehicle or RLX, delivered by osmotic pumps at daily doses of 1 or 10 μg. Controls were non-smoking animals. Other studies were performed on primary guinea pig aortic endothelial (GPAE) cells, challenged with CS extracts (CSE) in the absence and presence of 100 ng/ml (17 nmol/l) RLX. In aortic specimens from CS-exposed guinea pigs, both the contractile and the relaxant responses to phenylephrine and acetylcholine, respectively, were significantly reduced in amplitude and delayed, in keeping with the observed adverse remodelling of the aortic wall, endothelial injury and endothelial nitric oxide synthase (eNOS) down-regulation. RLX at both doses maintained the aortic contractile and relaxant responses to a control-like pattern and counteracted aortic wall remodelling and endothelial derangement. The experiments with GPAE cells showed that CSE significantly decreased cell viability and eNOS expression and promoted apoptosis by sparkling oxygen free radical-related cytotoxicity, while RLX counterbalanced the adverse effects of CSE. These findings demonstrate that RLX is capable of counteracting CS-mediated vascular damage and dysfunction by reducing oxidative stress, thus adding a tile to the growing mosaic of the beneficial effects of RLX in CVD. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Early Endothelial Bioactivity of Serum after Diesel Exhaust ...

    EPA Pesticide Factsheets

    Adverse cardiovascular effects of air pollution are often associated with a spike in systemic proinflammatory biomarkers, but causative linkage between circulating factors and deleterious outcomes following exposure remains elusive. Endothelial dysfunction is a consequence of systemic inflammation and precedes multiple cardiovascular pathologies. The purpose of this study was to examine the plausibility of serum-bound factors as initiators of an air pollution-induced pathologic sequelae beginning with endothelial injury, and later, cardiac dysfunction. We hypothesized that serum taken from diesel exhaust (DE)-exposed rats that develop cardiac dysfunction would alter aortic endothelial cell function in vitro. To assess cardiac function in vivo, left ventricular pressure (LVP) assessments were conducted in rats one day after a single 4 hour whole body exposure to 150 or 500 μg/m3 DE or filtered air. Rat aortic endothelial cells (RAEC) were then exposed to diluted serum (10%) collected 1 hour after exposure from a separate cohort of similarly exposed rats for measures of VCAM-1, cell viability, nitric oxide synthase (NOS) levels, and mRNA expression of key mediators of inflammation. Exposure of rats to 150 or 500 μg/m3 DE increased heart rate (HR) after exposure relative to rats exposed to filtered air, suggesting a shift towards increased sympathetic tone. LVP and HR in DE-exposed rats (500 μg/m3 DE) failed to recover to normal levels after challenge with the

  1. Ergothioneine prevents endothelial dysfunction induced by mercury chloride.

    PubMed

    Gökçe, Göksel; Arun, Mehmet Zuhuri; Ertuna, Elif

    2018-06-01

    Exposure to mercury has detrimental effects on the cardiovascular system, particularly the vascular endothelium. The present study aimed to investigate the effects of ergothioneine (EGT) on endothelial dysfunction induced by low-dose mercury chloride (HgCl 2 ). Agonist-induced contractions and relaxations were evaluated in isolated aortic rings from 3-month-old male Wistar rats treated by intra-muscular injection to caudal hind leg muscle with HgCl 2 (first dose, 4.6 µg/kg; subsequent doses, 0.07 µg/kg/day for 15 days) and optionally with EGT (2 µg/kg for 30 days). Reactive oxygen species (ROS) in aortic rings were measured by means of lucigenin- and luminol-enhanced chemiluminescence. The protein level of endothelial nitric oxide synthase was evaluated by ELISA. Blood glutathione (GSH) and catalase levels, lipid peroxidation and total nitrite were measured spectrophotometrically. The results indicated that low-dose HgCl 2 administration impaired acetylcholine (ACh)-induced relaxation and potentiated phenylephrine- and serotonin-induced contractions in rat aortas. In addition, HgCl 2 significantly increased the levels of ROS in the aortic tissue. EGT prevented the loss of ACh-induced relaxations and the increase in contractile responses. These effects were accompanied by a significant decrease in ROS levels. EGT also improved the ratio of reduced GSH to oxidized GSH and catalase levels with a concomitant decrease in lipid peroxidation. In conclusion, to the best of our knowledge, the present study was the first to report that EGT prevents endothelial dysfunction induced by low-dose HgCl 2 administration. EGT may serve as a therapeutic tool to reduce mercury-associated cardiovascular complications via improving the antioxidant status.

  2. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1.

    PubMed

    Shen, Yu; Ward, Natalie C; Hodgson, Jonathan M; Puddey, Ian B; Wang, Yutang; Zhang, Di; Maghzal, Ghassan J; Stocker, Roland; Croft, Kevin D

    2013-12-01

    Several lines of evidence indicate that quercetin, a polyphenol derived in the diet from fruit and vegetables, contributes to cardiovascular health. We aimed to investigate the effects of dietary quercetin on endothelial function and atherosclerosis in mice fed a high-fat diet. Wild-type C57BL/6 (WT) and apolipoprotein E gene knockout (ApoE(-/-)) mice were fed: (i) a high-fat diet (HFD) or (ii) a HFD supplemented with 0.05% w/w quercetin (HFD+Q), for 14 weeks. Compared with animals fed HFD, HFD+Q attenuated atherosclerosis in ApoE(-/-) mice. Treatment with the HFD+Q significantly improved endothelium-dependent relaxation of aortic rings isolated from WT but not ApoE(-/-) mice and attenuated hypochlorous acid-induced endothelial dysfunction in aortic rings of both WT and ApoE(-/-) mice. Mechanistic studies revealed that HFD+Q significantly improved plasma F2-isoprostanes, 24h urinary nitrite, and endothelial nitric oxide synthase activity, and increased heme oxygenase-1 (HO-1) protein expression in the aortas of both WT and ApoE(-/-) mice (P<0.05). HFD+Q also resulted in small changes in plasma cholesterol (P<0.05 in WT) and plasma triacylglycerols (P<0.05 in ApoE (-/-)mice). In a separate experiment, quercetin did not protect against hypochlorite-induced endothelial dysfunction in arteries obtained from heterozygous HO-1 gene knockout mice with low expression of HO-1 protein. Quercetin protects mice fed a HFD against oxidant-induced endothelial dysfunction and ApoE(-/-) mice against atherosclerosis. These effects are associated with improvements in nitric oxide bioavailability and are critically related to arterial induction of HO-1. © 2013 Elsevier Inc. All rights reserved.

  3. C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction.

    PubMed

    Devaraj, Sridevi; Kumaresan, Pappanaicken R; Jialal, Ishwarlal

    2011-12-01

    Inflammation is pivotal in atherosclerosis. A key early event in atherosclerosis is endothelial dysfunction. C-reactive protein (CRP), the prototypic marker of inflammation in humans, is a risk marker for cardiovascular disease, and there is mounting evidence to support its role in atherothrombosis. CRP has been shown to promote endothelial dysfunction both in vitro and in vivo. Emerging biomarkers of endothelial dysfunction include circulating endothelial cells (CECs) and endothelial microparticles (EMPs). However, there is a paucity of data examining the effect of CRP on CEC and EMP production in vitro and in vivo. In this report, we treated human aortic endothelial cells (HAECs) with increasing concentrations of CRP (0-50 μg/mL) or boiled CRP. We counted CECs and EMPs by flow cytometry. Although CRP treatment resulted in a significant increase in release of both CECs and EMPs, boiled CRP failed to have an effect. Pretreatment of HAECs with sepiapterin or diethylenetriamine NONOate, both of which preserve nitric oxide (NO), resulted in attenuation of CRP's effects on CECs and EMPs. CD32 and CD64 blocking antibodies but not CD16 antibody or lectin-like oxidized LDL receptor 1 small interfering RNA (LOX-1 siRNA) prevented CRP-induced production of CECs and EMPs. Furthermore, delivery of human CRP to Wistar rats compared with human serum albumin resulted in significantly increased CECs and EMPs, corroborating the in vitro findings. We provide novel data that CRP, via NO deficiency, promotes endothelial dysfunction by inducing release of CECs and EMPs, which are biomarkers of endothelial dysfunction.

  4. Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats.

    PubMed

    Rossoni, Giuseppe; Manfredi, Barbara; Tazzari, Valerio; Sparatore, Anna; Trivulzio, Silvio; Del Soldato, Piero; Berti, Ferruccio

    2010-12-01

    We investigated the effects of the hydrogen sulfide (H₂S)-releasing derivatives of aspirin (ACS14) and salicylic acid (ACS21) in a rat model of metabolic syndrome induced by glutathione (GSH) depletion, causing hypertension and other pathological cardiovascular alterations. GSH depletion was induced in normal rats by the GSH-synthase inhibitor buthionine sulfoximine (BSO, 30 mmol/L day for seven days in the drinking water). Systolic blood pressure and heart rate were measured daily by the tail-cuff method, and plasma thromboxane B₂, 6-keto-prostaglandin F(2α), 8-isoprostane, GSH, insulin and glucose were determined at the end of the seven-day BSO schedule. In addition, ischemia/reperfusion-induced myocardial dysfunction and endothelial dysfunction were assayed on isolated heart and aortic rings, respectively. Unlike aspirin and salicylic acid, ACS14 and ACS21 reduced BSO-induced hypertension, also lowering plasma levels of thromboxane B₂, 8-isoprostane and insulin, while GSH remained in the control range. Neither ACS14 nor ACS21 caused gastric lesions. Both restored the endothelial dysfunction observed in aortic rings from BSO-treated rats, and in ischemia/reperfusion experiments they lowered left ventricular end-diastolic pressure, consequently improving the developed pressure and the maximum rise and fall of left ventricular pressure. Together with this improvement of heart mechanics there were reductions in the activity of creatine kinase and lactate dehydrogenase in the cardiac perfusate. This implies that H₂S released by both ACS14 and ACS21 was involved in protecting the heart from ischemia/reperfusion, and significantly limited vascular endothelial dysfunction in aortic tissue and the related hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells

    PubMed Central

    Xi, Hang; Zhang, Yuling; Xu, Yanjie; Yang, William Y; Jiang, Xiaohua; Sha, Xiaojin; Cheng, Xiaoshu; Wang, Jingfeng; Qin, Xuebin; Yu, Jun; Ji, Yong; Yang, Xiaofeng; Wang, Hong

    2016-01-01

    Rationale Endothelial injury is an initial mechanism mediating cardiovascular disease. Objective Here, we investigated the effect of hyperhomocysteinemia (HHcy) on programed cell death in endothelial cells (EC). Methods and Results We established a novel flow-cytometric gating method to define pyrotosis (Annexin V−/Propidium iodide+). In cultured human EC, we found that: 1). Hcy and Lipopolysaccharide (LPS) individually and synergistically induced inflammatory pyroptotic and non-inflammatory apoptotic cell death. 2). Hcy/LPS induced caspase-1 activation prior to caspase-8, -9, -3 activations. 3). Caspase-1/3 inhibitors rescued Hcy/LPS-induced pyroptosis/apoptosis, but caspase-8/9 inhibitors had differential rescue effect. 4). Hcy/LPS induced NLRP3 protein, caused NLRP3-containing inflammasome assembly, caspase-1 activation and IL-1β cleavage/activation. 5). Hcy/LPS elevated intracellular reactive oxidative species (ROS). 6). Intracellular oxidative gradient determined cell death destiny as intermediate intracellular ROS levels are associated with pyroptosis, whereas, high ROS corresponded to apoptosis. 7). Hcy/LPS induced mitochondrial membrane potential collapse and cytochrome-c release, and increased Bax/Bcl-2 ratio which were attenuated by antioxidants and caspase-1 inhibitor. 8). Antioxidants extracellular superoxide dismutase and catalase prevented Hcy/LPS-induced caspase-1 activation, mitochondrial dysfunction and pyroptosis/apoptosis. In cystathionine β-synthase deficient (Cbs−/−) mice, severe HHcy induced caspase-1 activation in isolated lung EC and caspase-1 expression in aortic endothelium, and elevated aortic caspase-1,9 protein/activity and Bax/Bcl-2 ratio in Cbs−/− aorta and HUVEC. Finally, Hcy-induced DNA fragmentation was reversed in caspase-1−/− EC. HHcy-induced aortic endothelial dysfunction was rescued in caspase-1−/− and NLRP3−/− mice. Conclusion HHcy preferentially induces EC pyroptosis via caspase-1-dependent inflammasome activation leading to endothelial dysfunction. We termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis. PMID:27006445

  6. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less

  7. Chlorogenic acid improves ex vivo vessel function and protects endothelial cells against HOCl-induced oxidative damage, via increased production of nitric oxide and induction of Hmox-1.

    PubMed

    Jiang, Rujia; Hodgson, Jonathan M; Mas, Emilie; Croft, Kevin D; Ward, Natalie C

    2016-01-01

    Dietary polyphenols are potential contributors toward improved cardiovascular health. Coffee is one of the richest sources of dietary polyphenols in a coffee-drinking population, the most abundant form being chlorogenic acid (CGA). Endothelial dysfunction is an early and major risk factor for cardiovascular disease. Nitric oxide (NO) is a key factor in regulation of endothelial function. Heme oxygenase-1 (Hmox-1), an inducible isoform of heme oxygenase that is produced in response to stressors such as oxidative stress, may also play a role in vascular protection. The aim of this study was to investigate the effect of CGA on endothelial function with oxidant-induced damage in isolated aortic rings from C57BL mice. We further examine the mechanism by investigating cell viability, activation of eNOS and induction of Hmox-1 in human aortic endothelial cells (HAECs). We found that pretreatment of isolated aortic rings with 10-μM CGA-protected vessels against HOCl-induced endothelial dysfunction (P<0.05). Pretreatment of cultured HAECs with 10-μM CGA increased endothelial cell viability following exposure to HOCl (P<0.05). Moreover, CGA increased NO production in HAECs in a dose-dependent manner, peaking at 6 h (P<0.05). CGA at 5 μM and 10 μM increased eNOS dimerization at 6 h and induced Hmox-1 protein expression at 6 h and 24 h in HAECs. These results are consistent with the cardiovascular protective effects of coffee polyphenols and demonstrate that CGA can protect vessels and cultured endothelial cells against oxidant-induced damage. The mechanism behind the beneficial effect of CGA appears to be in part via increased production of NO and induction of Hmox-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    PubMed Central

    2013-01-01

    Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS) and nitric oxide (NO). Sildenafil, a selective phosphodiesterase-5 (PDE5) inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/−) mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage) were compared to the untreated apoE−/− and the wild-type (WT) mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh) in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor) or apocynin (NADPH oxidase inhibitor). In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh) in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous hypercholesterolemia. These data indicate that the main mechanism of the beneficial effect of sildenafil on the endothelial function appears to involve an enhancement of the NO pathway along with a reduction in oxidative stress. PMID:23289368

  9. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  10. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    PubMed

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  11. Alterations in triglyceride rich lipoproteins are related to endothelial dysfunction in metabolic syndrome.

    PubMed

    Lucero, Diego; López, Graciela I; Gorzalczany, Susana; Duarte, Mariano; González Ballerga, Esteban; Sordá, Juan; Schreier, Laura; Zago, Valeria

    2016-08-01

    Our aim was to analyze the effect of circulating triglyceride rich lipoprotein (TRL) on endothelial function in metabolic syndrome (MetS). We studied 40 patients with MetS (ATPIII), divided into those presenting normal endothelial function (n=19) and those with endothelial dysfunction (n=21) by means of the evaluation of pulse wave velocity, before and after brachial artery ischemia. In fasting serum we measured lipid and lipoprotein profile, insulin and glucose (HOMA-IR). Moreover, isolated TRL (d<1006g/l) were chemically characterized. In parallel, using randomly selected TRL from MetS patients with endothelial dysfunction (n=6) and MetS patients with normal endothelial function (n=6), the ability of TRL to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously pre-contracted by noradrenaline (10(-8)mM) was evaluated. Interestingly, TRL isolated from MetS patients presenting endothelial dysfunction showed triglyceride over-enrichment (59.1±4.8 vs. 54.1±4.7%; p=0.04), even after adjusting by potential confounders (p=0.05). In addition, while TRL resulting from both MetS groups significantly inhibited endothelium dependent vasorelaxation (p<0.001), TRL from MetS patients with endothelial dysfunction showed a strong tendency to a greater inhibition of vasorelaxation (p=0.06). Moreover, TRL-triglyceride (%) showed a strong tendency to correlate with the grade of vasorelaxation inhibition exerted by TRL (r=0.60; p=0.05). These results, taken together, would allow inferring for the first time that the predominance of triglyceride over-enriched TRL in circulation in MetS would induce endothelial dysfunction, contributing to the inherent cardiovascular risk of MetS. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Endothelial Cell-Derived Microparticles from Patients with Obstructive Sleep Apnea Hypoxia Syndrome and Coronary Artery Disease Increase Aortic Endothelial Cell Dysfunction.

    PubMed

    Jia, Lixin; Fan, Jingyao; Cui, Wei; Liu, Sa; Li, Na; Lau, Wayne Bond; Ma, Xinliang; Du, Jie; Nie, Shaoping; Wei, Yongxiang

    2017-01-01

    Obstructive sleep apnea hypoxia syndrome (OSAHS) is an independent risk factor for coronary artery disease (CAD). Treatment of OSAHS improves clinical outcome in some CAD patients, but the relationship between OSAHS and CAD is complex. Microparticles (MPs) are shed by the plasma membrane by either physiologic or pathologic stimulation. In the current study, we investigated the role of MPs in the context of OSAHS. 54 patients with both suspected coronary artery stenosis and OSAHS were recruited and underwent both coronary arteriography and polysomnography. Circulating MPs were isolated and analyzed by flow cytometry. CAD+OSAHS patients exhibited greater levels of total MPs (Annexin V+), erythrocyte-derived MPs (CD235+ Annexin V+), platelet-derived MPs (CD41+ Annexin V+), and leukocyte-derived MPs (CD45+ Annexin V+) compared to CAD alone patients or control. CAD+OSAHS patients expressed the greatest level of endothelial-derived MPs of all cellular origin types (CD144+ Annexin V +). Treatment of human aortic endothelial cells (HAECs) with MPs isolated from CAD+OSAHS patients markedly increased HAEC permeability (as detected by FITC-dextran), and significantly upregulated mRNA levels of ICAM-1, VCAM-1, and MCP-1. OSAHS+CAD patients harbor increased levels of MPs, particularly the endothelial cell-derived subtype. When administered to HAECs, OSAHS+CAD patients MPs increase endothelial cell permeability and dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. Effect of N-acetylcysteine on vascular endothelium function in aorta from oophorectomized rats.

    PubMed

    Delgado, J L; Landeras, J; Carbonell, L F; Parilla, J J; Abad, L; Quesada, T; Fiol, G; Hernández, I

    1999-01-01

    1. Experiments were performed to examine and to compare vascular endothelial function in aortic rings from oophorectomized and from ovary-intact rats and to test the effect of thiol compound as N-acetylcysteine on endothelial function. 2. In precontracted aortic rings from oophorectomized and intact rats, vascular endothelial function was evaluated by measuring changes in isometric force in response to cumulative doses of superoxide dismutase, acetylcholine and sodium nitroprusside. 3. In studies designed to assess the tone-related release of nitric oxide from aortic rings moderately precontracted with phenylephrine, superoxide dismutase produced a lower concentration-related relaxant response in aortic rings from oophorectomized rats than from ovary intact rats. 4. Acetylcholine caused a concentration- and endothelium-dependent relaxation of less magnitude in aortic rings from oophorectomized animals compared with those from ovary-intact rats. Addition of N-omega-nitro-L-arginine methyl ester eliminated the relaxation induced by both superoxide dismutase and acetylcholine. 5. No differences between groups were noticed in the concentration-relaxation curve induced by sodium nitroprusside. 6. Preincubation with N-acetylcysteine normalized the depressed vasorelaxant response to acetylcholine in the aortic rings from oophorectomized rats, whereas the concentration-response curve for acetylcholine in aortic rings from ovary-intact rats did not alter. 7. These results suggest that the absence of ovary estrogens is associated with a vascular endothelium dysfunction that can be reverted by addition of N-acetylcysteine, a thiol-containing compound with a free radical scavenger effect.

  14. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    PubMed

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the recruitment of endothelial progenitor cells was decreased in the non-treated SHR and partially restored by kefir treatment. Kefir treatment for 60 days was able to improve the endothelial function in SHR by partially restoring the ROS/NO imbalance and the endothelial architecture due to endothelial progenitor cells recruitment.

  15. Coronary flow reserve is impaired in patients with aortic valve calcification.

    PubMed

    Bozbas, Huseyin; Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Sade, Elif; Eroglu, Serpil; Atar, Ilyas; Altin, Cihan; Demirtas, Saadet; Ozin, Bulent; Muderrisoglu, Haldun

    2008-04-01

    Calcific aortic valve disease is an active and progressive condition. Data indicate that aortic valve calcification (AVC) is associated with endothelial dysfunction and accepted as a manifestation of atherosclerosis. Coronary flow reserve (CFR) determined by transthoracic echocardiography has been introduced as a reliable indicator for coronary microvascular function. In this study we aimed to evaluate CFR in patients with AVC. Eighty patients, aged more than 60 years, without coronary heart disease or diabetes mellitus were included: 40 had AVC without significant stenosis (peak gradient across the valve <25 mm Hg) and 40 had normal aortic valves (controls). Using transthoracic Doppler echocardiography, we measured coronary diastolic peak flow velocities (PFV) at baseline and after dipyridamole infusion. CFR was calculated as the ratio of hyperemic to baseline diastolic PFV and was compared between groups. Mean ages for patients with AVC and controls were 68.9+/-6.2 and 67.6+/-5.9 years (P=.3). There were no significant differences regarding clinical characteristics, laboratory findings, ejection fraction, or peak aortic valve gradients. Mean diastolic PFV at baseline and during hyperemia were 28.4+/-4.2 and 59.2+/-7.8 cm/s for AVC and 27.7+/-3.9 and 68.5+/-10.5 cm/s for controls. Compared with controls, patients with AVC had significantly lower CFR values (2.12+/-0.41 versus 2.51+/-0.51; P<.0001). CFR is impaired in patients with AVC before valve stenosis develops, suggesting that microvascular-endothelial dysfunction is present during the early stages of the calcific aortic valve disease.

  16. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  17. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor

    PubMed Central

    Aragon, Mario; Erdely, Aaron; Bishop, Lindsey; Salmen, Rebecca; Weaver, John; Liu, Jim; Hall, Pamela; Eye, Tracy; Kodali, Vamsi; Zeidler-Erdely, Patti; Stafflinger, Jillian E.; Ottens, Andrew K.; Campen, Matthew J.

    2016-01-01

    Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9−/− mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9−/− mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose–response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36. PMID:26801584

  18. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    NASA Technical Reports Server (NTRS)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; hide

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  19. Systemic administration of thrombin peptide TP508 enhances VEGF-stimulated angiogenesis and attenuates effects of chronic hypoxia

    PubMed Central

    Olszewska-Pazdrak, Barbara; Carney, Darrell H.

    2015-01-01

    Revascularization of chronic wounds and ischemic tissue is attenuated by endothelial dysfunction and the inability of angiogenic factors to stimulate angiogenesis. We recently showed that TP508, a nonproteolytic thrombin peptide, increases perfusion and NO-dependent vasodilation in hearts with chronic ischemia and stimulates NO production by endothelial cells. In this study, we investigated systemic in vivo effects of TP508 on VEGF-stimulated angiogenesis in vitro using aortic explants in normoxic and hypoxic conditions. Mice were injected with saline or TP508 and 24h later aortas were removed and cultured to quantify endothelial sprouting. TP508 injection increased endothelial sprouting and potentiated the in vitro response to VEGF. Exposure of control explants to hypoxia inhibited basal and VEGF-stimulated endothelial cell sprouting. This effect of hypoxia was significantly prevented by TP508 injection. Thus, TP508 systemic administration increases responsiveness of aortic endothelial cells to VEGF and diminishes the effect of chronic hypoxia on endothelial cell sprouting. Studies using human endothelial cells in culture suggest that protective effects of TP508 during hypoxia may involve stimulation of endothelial cell NO production. These data suggest potential clinical benefit of using a combination of systemic TP508 and local VEGF as a therapy for revascularization of ischemic tissue. PMID:23594718

  20. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation.

    PubMed

    Mo, Jiao; Yang, Renhua; Li, Fan; Zhang, Xiaochao; He, Bo; Zhang, Yue; Chen, Peng; Shen, Zhiqiang

    2018-03-15

    Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H 2 O 2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H 2 O 2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the clinical use of scutellarin in cardiovascular diseases. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

    PubMed Central

    Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; Karabina, Sonia A.; Lusis, Aldons J.; Cambien, François; Ninio, Ewa

    2016-01-01

    Aims Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase β (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. Conclusions We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3. PMID:27694435

  2. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.

    PubMed

    Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P

    2013-07-01

    Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.

  3. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Penghao; Xie, Qihai; Wei, Tong

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less

  4. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  5. Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity.

    PubMed

    Recoquillon, Sylvain; Carusio, Nunzia; Lagrue-Lakhal, Anne-Hélène; Tual-Chalot, Simon; Filippelli, Amelia; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2015-10-01

    During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies. © 2015 Authors; published by Portland Press Limited.

  6. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    PubMed

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  7. Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols.

    PubMed

    Kane, Modou O; Etienne-Selloum, Nelly; Madeira, Soccoro V F; Sarr, Mamadou; Walter, Allison; Dal-Ros, Stéphanie; Schott, Christa; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2010-04-01

    Angiotensin II (Ang II)-induced hypertension is associated with vascular oxidative stress and an endothelial dysfunction. This study examined the role of reactive oxygen species (ROS) and endothelium-derived contracting factors in Ang II-induced endothelial dysfunction and whether these effects are prevented by red wine polyphenols (RWPs), a rich source of natural antioxidants. Rats were infused with Ang II for 14 days. RWPs were administered in the drinking water 1 week before and during the Ang II infusion. Arterial pressure was measured in conscious rats. Vascular reactivity was assessed in organ chambers and cyclooxygenase-1 (COX-1) and COX-2 expression by Western blot and immunofluorescence analyses. Ang II-induced hypertension was associated with blunted endothelium-dependent relaxations and induction of endothelium-dependent contractions in the presence of nitro-L-arginine in response to acetylcholine (Ach). These effects were not affected by the combination of membrane permeant analogs of superoxide dismutase and catalase but were abolished by the thromboxane A(2) (TP) receptor antagonist GR32191B and the COX-2 inhibitor NS-398. The COX-1 inhibitor SC-560 also prevented contractile responses to Ach. Ang II increased the expression of COX-1 and COX-2 in the aortic wall. RWPs prevented Ang II-induced hypertension, endothelial dysfunction, and upregulation of COX-1 and COX-2. Thus, Ang II-induced endothelial dysfunction cannot be explained by an acute formation of ROS reducing the bioavailability of nitric oxide but rather by COX-dependent formation of contracting factors acting on TP receptors. RWPs are able to prevent the Ang II-induced endothelial dysfunction mostly due to their antioxidant properties.

  8. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser(1177)/Thr(497) of endothelial nitric oxide synthase in diabetic mice.

    PubMed

    Matsumoto, Sachiko; Shimabukuro, Michio; Fukuda, Daiju; Soeki, Takeshi; Yamakawa, Ken; Masuzaki, Hiroaki; Sata, Masataka

    2014-01-31

    Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. (1) Vascular endothelium-dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan's higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox.

  10. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  11. Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes

    PubMed Central

    Gortan Cappellari, Gianluca; Barazzoni, Rocco; Cattin, Luigi; Muro, Andrés F.; Zanetti, Michela

    2016-01-01

    Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress. PMID:27897258

  12. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  13. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm.

    PubMed

    Chuaiphichai, Surawee; Rashbrook, Victoria S; Hale, Ashley B; Trelfa, Lucy; Patel, Jyoti; McNeill, Eileen; Lygate, Craig A; Channon, Keith M; Douglas, Gillian

    2018-07-01

    GTPCH (GTP cyclohydrolase 1, encoded by Gch1 ) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient ( Gch1 fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1 fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H 2 O 2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1 fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1 fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1 fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta. © 2018 The Authors.

  14. Urea-induced ROS cause endothelial dysfunction in chronic renal failure.

    PubMed

    D'Apolito, Maria; Du, Xueliang; Pisanelli, Daniela; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Giacco, Ferdinando; Maffione, Angela Bruna; Colia, Anna Laura; Brownlee, Michael; Giardino, Ida

    2015-04-01

    The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20mM urea for 48 h. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm.

    PubMed

    Jiménez-Altayó, Francesc; Meirelles, Thayna; Crosas-Molist, Eva; Sorolla, M Alba; Del Blanco, Darya Gorbenko; López-Luque, Judit; Mas-Stachurska, Aleksandra; Siegert, Ana-Maria; Bonorino, Fabio; Barberà, Laura; García, Carolina; Condom, Enric; Sitges, Marta; Rodríguez-Pascual, Fernando; Laurindo, Francisco; Schröder, Katrin; Ros, Joaquim; Fabregat, Isabel; Egea, Gustavo

    2018-04-01

    Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1 C1039G/+ -Nox4 -/- ). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1 C1039G/+ -Nox4 -/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1 C1039G/+ -Nox4 -/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H 2 O 2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior

    PubMed Central

    2014-01-01

    Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation. PMID:25246859

  17. Improvement of endothelial function in a murine model of mild cholesterol-induced atherosclerosis by mineralocorticoid antagonism.

    PubMed

    Kratz, Mario T; Schirmer, Stephan H; Baumhäkel, Magnus; Böhm, Michael

    2016-08-01

    The renin-angiotensin-aldosterone-system (RAAS) plays a role in endothelial dysfunction and atherosclerosis. During treatment with RAAS-inhibitors, elevated aldosterone may sustain "aldosterone escape". We investigated the effects of treatment with the mineralocorticoid antagonist eplerenone (Ep) compared with ramipril (Rami) or the combination of both on oxidative stress, plaque formation and endothelial function, in atherosclerotic apolipoprotein E deficient mice (ApoE(-/-)-mice). ApoE(-/-)-mice were fed a cholesterol rich diet (21% fat, 19.5% casein, 1.25% cholesterol) for 8 weeks to produce mild atherosclerosis (i.e. plaque load 20-30%). ApoE(-/-)-mice (control), ApoE(-/-)-mice treated with Ep (25 mg/kg/day), Rami (2.5 mg/kg/day) and their combination were compared. Heart rate (HR) and blood pressure (BP) were measured using the tail-cuff-method. Endothelial function was measured in aortic rings and corpora cavernosal strips (CCs). Atherosclerotic plaque burden, collagen content, oxidative stress (Dihydroethidium (DHE) staining) and macrophages were determined. Treatments had no effects on HR and slightly reduced BP in ApoE(-/-)-mice treated with the combination of eplerenone and ramipril. Endothelium-dependent relaxation of aortic rings and CCs with carbachol was significantly improved in animals treated with Ep, Rami or their combination (p = 0.05 - p = 0.001). DHE-stained penile and aortic sections revealed a significant reduction in superoxide production in all treated groups (p = 0.035 - p = 0.001). In parallel, aortic and penile collagen content in ApoE(-/-)-mice was significantly decreased (p = 0.035 - p < 0.001) in animals treated with Ep, Rami or their combination. In agreement, there was a trend towards a reduction of aortic plaque area by treatment with Ep (-9.0 ± 3.2%) and Rami (-11.9 ± 4%). Only the treatment with the combination induced a significant reduction of the atherosclerotic plaque burden (p = 0.045). Moreover, the treatment of ApoE(-/-)-mice with Ep, Rami and their combination significantly reduced the count macrophage count in atherosclerotic plaque lesions. Ep restored endothelial function by reduction of oxidative stress, atherosclerotic macrophage content, atherosclerotic lesion size and fibrosis to the same extent as treatment with Rami or the combination. Mineralocorticoid antagonism provides vasculoprotective effects and should be clinically evaluated for vascular disease such as erectile dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  19. [The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications].

    PubMed

    Taguchi, Kumiko

    2015-01-01

    A decrease in nitric oxide (NO) production may induce pathological conditions associated with endothelial dysfunction and diabetes. Although a decrease in NO production caused by impaired Akt/endothelial nitric oxide synthesis (eNOS) signaling has been demonstrated at the aorta in the presence of diabetic vascular complications, little is known regarding the details of the mechanism. We identified G-protein-coupled receptor kinase 2 (GRK2) as a critical factor in diabetic endothelial dysfunction. GRK2 plays a role in many physiological functions including regulation of G-protein-coupled receptors (GPCRs). We found that the vasculature affected by type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction caused by impaired Akt/eNOS signaling. GRK2 activation also induces changes in the subcellular localization of GRK2 and β-arrestin 2, a downstream protein, from the cytosol to membrane. In mouse aorta GRK2 may be, on translocation, a key negative regulator and an important regulator of β-arrestin 2/Akt/eNOS signaling, which has been implicated in diabetic endothelial dysfunction. Furthermore, in the aortic membrane of type 2 diabetic model mice under insulin stimulation, the impaired Akt/eNOS signaling was improved by a selective GRK2 inhibitor. These results suggest that in diabetes the GRK2 inhibitor ameliorates vascular endothelial dysfunction via Akt/eNOS signaling by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation to the membrane under GPCR or non-GPCR stimulation, thereby contributing to blood pressure- and blood glucose-lowering effects. We propose that the GRK2 inhibitor may be a promising therapeutic target for cardiovascular complications in type 2 diabetes.

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less

  1. Ramipril retards development of aortic valve stenosis in a rabbit model: mechanistic considerations.

    PubMed

    Ngo, Doan Tm; Stafford, Irene; Sverdlov, Aaron L; Qi, Weier; Wuttke, Ronald D; Zhang, Yuan; Kelly, Darren J; Weedon, Helen; Smith, Malcolm D; Kennedy, Jennifer A; Horowitz, John D

    2011-02-01

    Aortic valve stenosis (AVS) is associated with significant cardiovascular morbidity and mortality. To date, no therapeutic modality has been shown to be effective in retarding AVS progression. We evaluated the effect of angiotensin-converting enzyme inhibition with ramipril on disease progression in a recently developed rabbit model of AVS. The effects of 8 weeks of treatment with either vitamin D₂ at 25,000 IU for 4 days a week alone or in combination with ramipril (0.5 mg·kg⁻¹) on aortic valve structure and function were examined in New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)) and aortic valve:outflow tract flow velocity ratio were utilized to quantify changes in valve structure and function. Treatment with ramipril significantly reduced AV(BS) and improved aortic valve :outflow tract flow velocity ratio. The intravalvular content of the pro-oxidant thioredoxin-interacting protein was decreased significantly with ramipril treatment. Endothelial function, as measured by asymmetric dimethylarginine concentrations and vascular responses to ACh, was improved significantly with ramipril treatment. Ramipril retards the development of AVS, reduces valvular thioredoxin-interacting protein accumulation and limits endothelial dysfunction in this animal model. These findings provide important insights into the mechanisms of AVS development and an impetus for future human studies of AVS retardation using an angiotensin-converting enzyme inhibitor. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  2. Longxuetongluo capsule inhibits atherosclerosis progression in high-fat diet-induced ApoE-/- mice by improving endothelial dysfunction.

    PubMed

    Zheng, Jiao; Liu, Binglin; Lun, Qixing; Gu, Xiaopan; Pan, Bo; Zhao, Yunfang; Xiao, Wei; Li, Jun; Tu, Pengfei

    2016-12-01

    Chinese dragon's blood has been used to treat blood stasis for thousands of years. Its total phenolic extract (Longxuetongluo capsule, LTC) is used for the treatment of ischemic stroke; however, its protective effect against atherosclerosis remains poorly understood. This paper aims to investigate the antiatherosclerotic effect of LTC and the underlying mechanisms in high-fat diet (HFD)-induced ApoE -/- mice. The levels of plasma lipid and areas of atherosclerotic lesions in the aortic sinus in ApoE -/- mice were evaluated. The effect of LTC on the nitric oxide (NO) production in oxidized low-density lipoprotein (ox-LDL)-stimulated human umbilical vein endothelial cells (HUVECs) was determined. The adhesion of monocytes to ox-LDL-stimulated HUVECs was further studied. LTC at low, medium, and high doses markedly decreased the atherosclerotic lesion areas of the aortic sinus in HFD-induced ApoE -/- mice by 26.4% (p < 0.05), 30.1% (p < 0.05), and 46.5% (p < 0.01), respectively, although it did not improve the dyslipidemia. Furthermore, LTC restored the diminished NO production of ox-LDL-stimulated HUVECs (p < 0.001) and inhibited the adhesion between monocytes and endothelial cells (p < 0.01). LTC appeared to alleviate ox-LDL-stimulated dysfunction of HUVECs, and inhibit the adhesion of monocytes to HUVECs via the MAPK/IKK/IκB/NF-κB signaling pathway, thus decrease atherosclerotic lesions in the aortic sinus in HFD-induced ApoE -/- mice. These findings suggest the potential of LTC for use as an effective agent against atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis.

    PubMed

    Strasky, Zbynek; Zemankova, Lenka; Nemeckova, Ivana; Rathouska, Jana; Wong, Ronald J; Muchova, Lucie; Subhanova, Iva; Vanikova, Jana; Vanova, Katerina; Vitek, Libor; Nachtigal, Petr

    2013-11-01

    Spirulina platensis, a water blue-green alga, has been associated with potent biological effects, which might have important relevance in atheroprotection. We investigated whether S. platensis or phycocyanobilin (PCB), its tetrapyrrolic chromophore, can activate atheroprotective heme oxygenase-1 (Hmox1), a key enzyme in the heme catabolic pathway responsible for generation of a potent antioxidant bilirubin, in endothelial cells and in a mouse model of atherosclerosis. In vitro experiments were performed on EA.hy926 endothelial cells exposed to extracts of S. platensis or PCB. In vivo studies were performed on ApoE-deficient mice fed a cholesterol diet and S. platensis. The effect of these treatments on Hmox1, as well as other markers of oxidative stress and endothelial dysfunction, was then investigated. Both S. platensis and PCB markedly upregulated Hmox1 in vitro, and a substantial overexpression of Hmox1 was found in aortic atherosclerotic lesions of ApoE-deficient mice fed S. platensis. In addition, S. platensis treatment led to a significant increase in Hmox1 promoter activity in the spleens of Hmox-luc transgenic mice. Furthermore, both S. platensis and PCB were able to modulate important markers of oxidative stress and endothelial dysfunction, such as eNOS, p22 NADPH oxidase subunit, and/or VCAM-1. Both S. platensis and PCB activate atheroprotective HMOX1 in endothelial cells and S. platensis increased the expression of Hmox1 in aortic atherosclerotic lesions in ApoE-deficient mice, and also in Hmox-luc transgenic mice beyond the lipid lowering effect. Therefore, activation of HMOX1 and the heme catabolic pathway may represent an important mechanism of this food supplement for the reduction of atherosclerotic disease.

  4. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats.

    PubMed

    Chen, Yong-song; Zhu, Xu-xin; Zhao, Xiao-yun; Xing, Han-ying; Li, Yu-guang

    2008-02-05

    Under an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states. Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured. The expression of HO-1 mRNA and HO-1 protein in aortal tissue were detected by semi-quantitative RT-PCR and Western blot. The vasoreactive tensometry was performed with thoracic aortic rings (TARs). Compared with the normal control group, the levels of SABP, BG, insulin, TC, TG, NO, iNOS and MDA were higher, while the levels of CO, TAOC, SOD and eNOS were lower in IR control rats. After treatment of IR rats for 4 weeks a more intensive expression of HO-1 mRNA and HO-1 protein were observed in hemin treated IR group compared with the normal control group. And compared with 4-week IR control rats, the levels of CO, TAOC, SOD and eNOS were increased, while the levels of SABP and iNOS activity were lower in the hemin treated IR group. Administration of hemin in IR rats appeared to improve the disordered vasorelaxation of TARs to acetylcholine (ACh). Alternatively, the reverse results of SABP, CO, TAOC, SOD, iNOS and vasorelaxation responses to ACh were observed in IR rats with administration of ZnPP-IX. The endothelial dysfunction in the aorta is present in the IR state. The protective effects of HO-1 against aortic endothelial dysfunction may be due to its antioxidation and regulative effect of vasoactive substances. It is proposed that hemin, inducer of HO-1, could be a potential therapeutic option for vascular dysfunction in IR states.

  5. Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations.

    PubMed

    Tang, Wei-Hua; Wang, Chao-Ping; Yu, Teng-Hung; Tai, Pei-Yang; Liang, Shih-Shin; Hung, Wei-Chin; Wu, Cheng-Ching; Huang, Sung-Hao; Lee, Yau-Jiunn; Chen, Shih-Chieh

    2018-06-01

    The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.

  6. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium.

    PubMed

    Rush, James W E; Turk, James R; Laughlin, M Harold

    2003-04-01

    Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.

  7. Vitamin D(2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein.

    PubMed

    Ngo, Doan T M; Stafford, Irene; Kelly, Darren J; Sverdlov, Aaron L; Wuttke, Ronald D; Weedon, Helen; Nightingale, Angus K; Rosenkranz, Anke C; Smith, Malcolm D; Chirkov, Yuliy Y; Kennedy, Jennifer A; Horowitz, John D

    2008-08-20

    Understanding of the pathophysiology of aortic valve stenosis (AVS) and finding potentially effective treatments are impeded by the lack of suitable AVS animal models. A previous study demonstrated the development of AVS in rabbits with vitamin D(2) and cholesterol supplementation without any hemodynamic changes in the cholesterol supplemented group alone. The current study aimed to determine whether AVS develops in an animal model with vitamin D(2) supplementation alone, and to explore pathophysiological mechanisms underlying this process. The effects of 8 weeks' treatment with vitamin D(2) alone (n=8) at 25,000 IU/4 days weekly on aortic valve structure and function were examined in male New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)), transvalvular velocity, and transvalvular pressure gradient were utilized to quantitate changes in valve structure and function. Valvular histology/immunochemistry and function were examined after 8 weeks. Changes in valves were compared with those in endothelial function and in valvular measurement of thioredoxin-interacting protein (TXNIP), a marker/mediator of reactive oxygen species-induced oxidative stress. Vitamin D(2) treated rabbits developed AVS with increased AV(BS) (17.6+/-1.4 dB vs 6.7+/-0.8 dB, P<0.0001), increased transvalvular velocity and transvalvular pressure gradient (both P<0.01 via 2-way ANOVA) compared to the control group. There was associated valve calcification, lipid deposition and macrophage infiltration. Endothelial function was markedly impaired, and intravalvular TXNIP concentration increased. In this model, vitamin D(2) induces the development of AVS with histological features similar to those of early AVS in humans and associated endothelial dysfunction/redox stress. AVS development may result from the loss of nitric oxide suppression of TXNIP expression.

  8. Chronic treatment of DA-8159, a new phosphodiesterase type V inhibitor, attenuates endothelial dysfunction in stroke-prone spontaneously hypertensive rat.

    PubMed

    Choi, Seul Min; Kim, Jee Eun; Kang, Kyung Koo

    2006-02-09

    This study examined the effects of chronic treatment of a new phosphodiesterase type 5 inhibitor, DA-8159, on endothelial dysfunction in stroke-prone spontaneously hypertensive rats (SHR-SP). Six-week-old male SHR-SP were divided into 4 groups; vehicle control, DA-8159 1, 3, and 10 mg/kg/day. During a 32-week experimental period, the animals were administered DA-8159 orally and fed a 4% NaCl-loaded diet. The systolic blood pressure was measured every two weeks throughout the experimental period using the tail-cuff method. At the end of experiments, the vascular function (acetylcholine-induced vasodilation) in the endothelium-intact aortic rings was investigated. In addition, the mortality, the left ventricular hypertrophy index, the plasma parameters and the incidence of a cerebral infarction were assessed. In the DA-8159 treated-rats, the vascular reactivity improved significantly in a dose-dependent manner. Although DA-8159 did not alter the elevation of the systolic blood pressure directly, the 3 and 10 mg/kg/day DA-8159 treatment delayed the early death caused by stroke. DA-8159 significantly reduced the left ventricular heart weight/body weight ratio compared with the vehicle control group. Furthermore, the DA-8159 treatment significantly increased the plasma nitric oxide, cGMP, and the total antioxidative status. The DA-8159 treatment also reduced the occurrence of stroke-associated cerebral damage. These results indicate that DA-8159 can ameliorate an endothelial dysfunction-related vascular injury. Therefore, pharmacological intervention aimed at attenuating an endothelial dysfunction is important and might be useful in both preventing and treating endothelial dysfunction-related complications.

  9. Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide synthase in diabetic mice

    PubMed Central

    2014-01-01

    Background Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. Methods We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. Results (1) Vascular endothelium–dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. Conclusions These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan’s higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox. PMID:24485356

  10. Effect of Shenmai injection on preventing the development of nitroglycerin-induced tolerance in rats.

    PubMed

    Zhou, Qian; Sun, Yan; Tan, Wangxiao; Liu, Xiao; Qian, Yuchen; Ma, Xianghui; Wang, Ting; Wang, Xiaoying; Gao, Xiumei

    2017-01-01

    Long-term nitroglycerin (NTG) therapy causes tolerance to its effects attributing to increased oxidative stress and endothelial dysfunction. Shenmai injection (SMI), which is clinically used to treat cardiovascular diseases, consists of two herbal medicines, Ginseng Rubra and Ophiopogonjaponicas, and is reported to have antioxidant effects. The present study was designed to investigate the potential preventive effects of Shenmai injection on development of nitroglycerin-induced tolerance. The present study involves both in vivo and in vitro experiments to investigate nitroglycerin-induced tolerance. We examined the effect of Shenmai injection on the cardiovascular oxidative stress by measuring the serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD). Endothelial dysfunction was determined by an endothelium-dependent vasorelaxation method in aortic rings and NOS activity. Inhibition of the cGMP/cGK-I signalling pathway was determined from released serum levels of cGMP and the protein expression levels of sGC, cGK-I, PDE1A and P-VASP by western blot. Here, we showed that SMI ameliorated the decrease in AV Peak Vel, the attenuation in the vasodilation response to nitroglycerin and endothelial dysfunction. SMI also reduced the cardiovascular oxidative stress by reducing the release of MDA and increasing the activity of SOD. Shenmai injection further ameliorated inhibition of the cGMP/cGK-I signalling pathway triggered by nitroglycerin-induced tolerance through up-regulating the protein expression of sGC, cGK-I, and P-VASP and down- regulating the proteins expression of PDE1A. In vitro studies showed that Shenmai injection could recover the attenuated vasodilation response to nitroglycerin following incubation (of aortic rings) with nitroglycerin via activating the enzymes of sGC and cGK-I. Therefore, we conclude that Shenmai injection could prevent NTG nitroglycerin-induced tolerance at least in part by decreasing the cardiovascular oxidative stress, meliorating the endothelial dysfunction and ameliorating the inhibition of the cGMP/cGK-I signalling pathway. These findings indicate the potential of Shenmai injection (SMI) as a promising medicine for preventing the development of nitroglycerin-induced tolerance.

  11. Effect of Shenmai injection on preventing the development of nitroglycerin-induced tolerance in rats

    PubMed Central

    Zhou, Qian; Sun, Yan; Tan, Wangxiao; Liu, Xiao; Qian, Yuchen; Ma, Xianghui; Wang, Ting; Wang, Xiaoying; Gao, Xiumei

    2017-01-01

    Long-term nitroglycerin (NTG) therapy causes tolerance to its effects attributing to increased oxidative stress and endothelial dysfunction. Shenmai injection (SMI), which is clinically used to treat cardiovascular diseases, consists of two herbal medicines, Ginseng Rubra and Ophiopogonjaponicas, and is reported to have antioxidant effects. The present study was designed to investigate the potential preventive effects of Shenmai injection on development of nitroglycerin-induced tolerance. The present study involves both in vivo and in vitro experiments to investigate nitroglycerin-induced tolerance. We examined the effect of Shenmai injection on the cardiovascular oxidative stress by measuring the serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD). Endothelial dysfunction was determined by an endothelium-dependent vasorelaxation method in aortic rings and NOS activity. Inhibition of the cGMP/cGK-I signalling pathway was determined from released serum levels of cGMP and the protein expression levels of sGC, cGK-I, PDE1A and P-VASP by western blot. Here, we showed that SMI ameliorated the decrease in AV Peak Vel, the attenuation in the vasodilation response to nitroglycerin and endothelial dysfunction. SMI also reduced the cardiovascular oxidative stress by reducing the release of MDA and increasing the activity of SOD. Shenmai injection further ameliorated inhibition of the cGMP/cGK-I signalling pathway triggered by nitroglycerin-induced tolerance through up-regulating the protein expression of sGC, cGK-I, and P-VASP and down- regulating the proteins expression of PDE1A. In vitro studies showed that Shenmai injection could recover the attenuated vasodilation response to nitroglycerin following incubation (of aortic rings) with nitroglycerin via activating the enzymes of sGC and cGK-I. Therefore, we conclude that Shenmai injection could prevent NTG nitroglycerin-induced tolerance at least in part by decreasing the cardiovascular oxidative stress, meliorating the endothelial dysfunction and ameliorating the inhibition of the cGMP/cGK-I signalling pathway. These findings indicate the potential of Shenmai injection (SMI) as a promising medicine for preventing the development of nitroglycerin-induced tolerance. PMID:28453571

  12. Circulating metabolites of strawberry mediate reductions in vascular inflammation and endothelial dysfunction in db/db mice.

    PubMed

    Petersen, Chrissa; Bharat, Divya; Cutler, Brett Ronald; Gholami, Samira; Denetso, Christopher; Mueller, Jennifer Ellen; Cho, Jae Min; Kim, Ji-Seok; Symons, J David; Anandh Babu, Pon Velayutham

    2018-07-15

    Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ± 25 mM glucose and 100 μM palmitate. db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke.

    PubMed

    Conklin, Daniel J; Haberzettl, Petra; Prough, Russell A; Bhatnagar, Aruni

    2009-05-01

    Exposure to tobacco smoke impairs endothelium-dependent arterial dilation. Reactive constituents of cigarette smoke are metabolized and detoxified by glutathione-S-transferases (GSTs). Although polymorphisms in GST genes are associated with the risk of cancer in smokers, the role of these enzymes in regulating the cardiovascular effects of smoking has not been studied. The P isoform of GST (GSTP), which catalyzes the conjugation of electrophilic molecules in cigarette smoke such as acrolein, was expressed in high abundance in the mouse lung and aorta. Exposure to tobacco smoke for 3 days (5 h/day) decreased total plasma protein. These changes were exaggerated in GSTP(-/-) mice. Aortic rings isolated from tobacco smoke-exposed GSTP(-/-) mice showed greater attenuation of ACh-evoked relaxation than those from GSTP(+/+) mice. The lung, plasma, and aorta of mice exposed to tobacco smoke or acrolein (for 5 h) accumulated more acrolein-adducted proteins than those tissues of mice exposed to air, indicating that exposure to tobacco smoke results in the systemic delivery of acrolein. Relative to GSTP(+/+) mice, modification of some proteins by acrolein was increased in the aorta of GSTP(-/-) mice. Aortic rings prepared from GSTP(-/-) mice that inhaled acrolein (1 ppm, 5 h/day for 3 days) or those exposed to acrolein in an organ bath showed diminished ACh-induced arterial relaxation more strongly than GSTP(+/+) mice. Acrolein-induced endothelial dysfunction was prevented by pretreatment of the aorta with N-acetylcysteine. These results indicate that GSTP protects against the endothelial dysfunction induced by tobacco smoke exposure and that this protection may be related to the detoxification of acrolein or other related cigarette smoke constituents.

  14. Naringin ameliorates endothelial dysfunction in fructose-fed rats.

    PubMed

    Malakul, Wachirawadee; Pengnet, Sirinat; Kumchoom, Chanon; Tunsophon, Sakara

    2018-03-01

    High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.

  15. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats.

    PubMed

    Jabs, A; Oelze, M; Mikhed, Y; Stamm, P; Kröller-Schön, S; Welschof, P; Jansen, T; Hausding, M; Kopp, M; Steven, S; Schulz, E; Stasch, J-P; Münzel, T; Daiber, A

    2015-08-01

    Chronic nitroglycerin (GTN) anti-ischemic therapy induces side effects such as nitrate tolerance and endothelial dysfunction. Both phenomena could be based on a desensitization/oxidation of the soluble guanylyl cyclase (sGC). Therefore, the present study aims at investigating the effects of the therapy with the sGC activator BAY 60-2770 and the sGC stimulator BAY 41-8543 on side effects induced by chronic nitroglycerin treatment. Male Wistar rats were treated with nitroglycerin (100mg/kg/d for 3.5days, s.c. in ethanol) and BAY 60-2770 (0.5 or 2.5mg/kg/d) or BAY 41-8543 (1 and 5mg/kg/d) for 6days. Therapy with BAY 60-2770 but not with BAY 41-8543 improved nitroglycerin-triggered endothelial dysfunction and nitrate tolerance, corrected the decrease in aortic nitric oxide levels, improved the cGMP dependent activation of protein kinase I in aortic tissue and reduced vascular, cardiac and whole blood oxidative stress (fluorescence and chemiluminescence assays; 3-nitrotyrosine staining). In contrast to BAY 41-8543, the vasodilator potency of BAY 60-2770 was not impaired in isolated aortic ring segments from nitrate tolerant rats. sGC activator therapy improves partially the adverse effects of nitroglycerin therapy whereas sGC stimulation has only minor beneficial effects pointing to a nitroglycerin-dependent sGC oxidation/inactivation mechanism contributing to nitrate tolerance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of irradiation on release of endothelial microparticles (EMP) in vitro.

    PubMed

    Neuber, Christin; Pufe, Johanna; Pietzsch, Jens

    2015-01-01

    Survivors of Hodgkin's disease as well as of breast and lung cancer are at risk of radiation-associated cardiovascular disease. Recent studies demonstrated a correlation between cardiovascular risk factors and circulating endothelial microparticles (EMP) and thereby suggest increased EMP levels in circulation to be an early biomarker of endothelial dysfunction and cardiovascular risk. This prompted us to analyze the amount of EMP released by human aortic endothelial cells (HAEC) after exposure to different doses of X-ray (0.4, 2, 4, 6, and 20 Gy) using antibodies against the endothelial cell markers CD31, CD144, and CD146 by flow cytometry. In this pilot experiment only CD146 proved appropriate for quantification of HAEC-derived EMP. Exposure of HAEC to different doses of X-ray did not significantly influence formation of CD146-positive EMP. However, low doses (0.4 Gy) tended to decrease EMP formation, whereas higher doses (2 or 4 Gy) slightly increased release of CD146-positive EMP. By contrast, inflammatory activation of HAEC by TPA significantly increased EMP release about 15-fold (P <  0.01). In conclusion, under the present experimental conditions EMP did not prove a suitable biomarker for radiation-induced endothelial dysfunction in vitro.

  18. Nanoliposomes protect against AL amyloid light chain protein-induced endothelial injury.

    PubMed

    Truran, Seth; Weissig, Volkmar; Ramirez-Alvarado, Marina; Franco, Daniel A; Burciu, Camelia; Georges, Joseph; Murarka, Shishir; Okoth, Winter A; Schwab, Sara; Hari, Parameswaran; Migrino, Raymond Q

    2014-03-01

    A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury. To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death. Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20 µg/mL, 2 purified from AL subjects' urine, 1 from human recombinant LC [AL-09]) ± NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC ± NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC ± NL to follow changes in secondary structure and protein thermal stability. LC caused impaired dilation to acetylcholine that was restored by NL (control - 94.0 ± 1.8%, LC - 65.0 ± 7.1%, LC + NL - 95.3 ± 1.8%, p ≤ 0.001 LC versus control or LC + NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death. LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.

  19. Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction.

    PubMed

    Pieper, G M; Siebeneich, W

    1998-07-01

    Oxidative stress is believed to play an important role in the development of vascular complications associated with diabetes mellitus. In this study, we examined the efficacy of long-term treatment with the antioxidant, N-acetylcysteine, in preventing the development of defective endothelium-dependent relaxation in streptozotocin-induced, Sprague-Dawley diabetic rats. At 48 h after injection of streptozotocin, a portion of diabetic rats received 250 mg/L N-acetylcysteine in drinking water for a total duration of 8 weeks. Oral administration did not alter the increase in blood glucose or the reduction in serum insulin but did modestly reduce total glycosylated hemoglobin. In precontracted thoracic aortic rings suspended in isolated tissue baths, endothelium-dependent relaxation to acetylcholine was impaired in diabetic rings compared with control rings. Endothelium-independent relaxation to nitroglycerin was unaltered. Long-term oral administration of N-acetylcysteine did not alter responses to nitroglycerin but completely prevented the defective relaxation to acetylcholine. These studies indicate a dissociation between glycemic control and correction of endothelial dysfunction and suggest that long-term exposure to reactive oxygen subsequent to diabetes rather than hyperglycemia per se is responsible for the development of endothelial dysfunction in diabetes mellitus.

  20. Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    PubMed Central

    Siman, Fabiana D. M.; Silveira, Edna A.; Meira, Eduardo F.; da Costa, Carlos P.; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model. PMID:22529948

  1. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling.

    PubMed

    Yan, Ting-Ting; Li, Qian; Zhang, Xuan-Hong; Wu, Wei-Kang; Sun, Juan; Li, Lin; Zhang, Quan; Tan, Hong-Mei

    2010-11-01

    1. Hyperhomocysteinaemia (HHcy) is associated with endothelial dysfunction and has been recognized as a risk factor of cardiovascular disease. The present study aimed to investigate the effect of homocysteine (Hcy) on endothelial function in vivo and in vitro, and the underlying signalling pathways. 2. The HHcy animal model was established by intragastric administration with l-methionine in rats. Plasma Hcy and nitric oxide (NO) concentration were measured by fluorescence immunoassay or nitrate reductase method, respectively. Vasorelaxation in response to acetylcholine and sodium nitroprusside were carried out on aortic rings. Human umbilical vein endothelial cells (HUVEC) were treated with indicated concentrations of Hcy in the in vitro experiments. Intracellular NO level and NO concentration in culture medium were assayed. The alterations of possible signalling proteins were detected by western blot analysis. 3. l-methionine administration induced a significant increase in plasma Hcy and decrease in plasma NO. Endothelium-dependent relaxation of aortic rings in response to acetylcholine was impaired in l-methionine-administrated rats. The in vitro study showed that Hcy reduced both intracellular and culture medium NO levels. Furthermore, Hcy decreased phosphorylation of endothelial nitric oxide synthase (eNOS) at serine-1177 and phosphorylation of Akt at serine-473. Hcy-induced dephosphorylation of eNOS at Ser-1177 was partially reversed by insulin (Akt activator) and GF109203X (PKC inhibitor). Furthermore, Hcy reduced vascular endothelial growth factor (VEGF) expression in a dose-dependent manner. 4. In conclusion, Hcy impaired endothelial function through compromised VEGF/Akt/endothelial nitric oxide synthase signalling. These findings will be beneficial for further understanding the role of Hcy in cardiovascular disease. © 2010 Blackwell Publishing Asia Pty Ltd.

  2. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  3. ANGIOTENSIN-CONVERTING ENZYME 2 ACTIVATION IMPROVES ENDOTHELIAL FUNCTION

    PubMed Central

    Fraga-Silva, Rodrigo A.; Costa-Fraga, Fabiana P.; Murça, Tatiane M.; Moraes, Patrícia L.; Lima, Augusto Martins; Lautner, Roberto Q.; Castro, Carlos H.; Soares, Célia Maria A.; Borges, Clayton L.; Nadu, Ana Paula; Oliveira, Marilene L.; Shenoy, Vinayak; Katovich, Michael J.; Santos, Robson A.S.; Raizada, Mohan K.; Ferreira, Anderson J.

    2013-01-01

    Diminished release and function of endothelium-derived nitric oxide (NO) coupled with increases in reactive oxygen species (ROS) production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme2 (ACE2), Angiotensin-(1-7) [Ang-(1-7)] and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic ACE2 would improve endothelial function by decreasing the ROS production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule ACE2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1mg/kg/day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7) and it was reduced in Mas knockout mice. These effects were associated with reduction in ROS production. In addition, Ang II-induced ROS production in human aortic endothelial cells was attenuated by pre-incubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that ACE2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease. PMID:23608648

  4. Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor κB and Forkhead Box O Phosphorylation

    PubMed Central

    Durrant, Jessica R.; Connell, Melanie L.; Folian, Brian J.; Donato, Anthony J.; Seals, Douglas R.

    2011-01-01

    We hypothesized that I kappa B kinase (IKK)-mediated nuclear factor kappa B and forkhead BoxO3a phosphorylation will be associated with age-related endothelial dysfunction. Endothelium-dependent dilation and aortic protein expression/phosphorylation were determined in young and old male B6D2F1 mice and old mice treated with the IKK inhibitor, salicylate. IKK activation was greater in old mice and was associated with greater nitrotyrosine and cytokines. Endothelium-dependent dilation, nitric oxide (NO), and endothelial NO synthase phosphorylation were lower in old mice. Endothelium-dependent dilation and NO bioavailability were restored by a superoxide dismutase mimetic. Nuclear factor kappa B and forkhead BoxO3a phosphorylation were greater in old and were associated with increased expression/activity of nicotinamide adenine dinucleotide phosphate oxidase and lower manganese superoxide dismutase expression. Salicylate lowered IKK phosphorylation and reversed age-associated changes in nitrotyrosine, endothelium-dependent dilation, NO bioavailability, endothelial NO synthase, nuclear factor kappa B and forkhead BoxO3a phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase, and manganese superoxide dismutase. Increased activation of IKK with advancing age stimulates nuclear factor kappa B and inactivates forkhead BoxO3a. This altered transcription factor activation contributes to a pro-inflammatory/pro-oxidative arterial phenotype that is characterized by increased cytokines and nicotinamide adenine dinucleotide phosphate oxidase and decreased manganese superoxide dismutase leading to oxidative stress-mediated endothelial dysfunction. PMID:21303813

  5. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced vascular dysfunction. • Arsenic reduced ACh-induced aortic relaxation but didn’t alter response to SNP and PE. • Arsenic affected aortic NO signalling and production of inflammatory mediators. • Arsenic produced vasculopathic lesions in aorta. • Atorvastatin restored arsenic-induced functional, biochemical and structural changes.« less

  6. In vitro comparison of the antiproliferative effects of rhenium-186 and rhenium-188 on human aortic endothelial cells.

    PubMed

    Sauter, Alexander; Arthasana, Daniel; Dittmann, Helmut; Pritzkow, Maren; Wiesinger, Benjamin; Schmehl, Joerg; Brechtel, Klaus; Bantleon, Rüdiger; Claussen, Claus; Kehlbach, Rainer

    2011-08-01

    Rhenium-186 ((186)Re) and rhenium-188 ((188)Re) are promising radionuclides for the inhibition of restenosis after percutaneous transluminal angioplasty or other vascular interventions. Until now the maximal dose tolerance of endothelial cells has not been clearly known. To characterize the effects of local irradiation treatment, human aortic endothelial cells (ECs) were incubated with different doses of (186)Re and (188)Re. Two days after plating, ECs received treatment for a period of 5 days. The total radiation doses applied were 1, 4, 8, 16, and 32 Gy. On days 1, 3, 5, 7, and 12 after initial rhenium incubation, cell growth, clonogenic activity, cell-cycle distribution, and cytoskeletal architecture were evaluated. From the first day on, a dose-dependent growth inhibition was observed. Cumulative doses of ≥32 Gy caused a weak colony formation and significant alterations in the cytoskeletal architecture. An increased fraction of cells in G2/M phase was seen for cumulative radiation doses of ≥16 Gy. Interestingly, there were no significant differences between (186)Re and (188)Re. Even for low dose rates of β particles a dose-dependent proliferation inhibition of ECs is seen. Doses beyond 32 Gy alter the cytoskeletal architecture with possibly endothelial dysfunction and late thrombosis.

  7. CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1α activation.

    PubMed

    Cheng, Liang; Li, Bin; Chen, Xu; Su, Jie; Wang, Hongbing; Yu, Shiqiang; Zheng, Qijun

    2016-09-02

    Vascular lesions caused by endothelial dysfunction are the most common and serious complication of diabetes. The vasoactive potency of CTRP9 has been reported in our previous study via nitric oxide (NO) production. However, the effect of CTRP9 on vascular endothelial cells remains unknown. This study aimed to investigate the protection role of CTRP9 in the primary aortic vascular endothelial cells and HAECs under high-glucose condition. We found that the aortic vascular endothelial cells isolated from mice fed with a high fat diet generated more ROS production than normal cells, along with decreased mitochondrial biogenesis, which was also found in HAECs treated with high glucose. However, the treatment of CTPR9 significantly reduced ROS production and increased the activities of endogenous antioxidant enzymes, the expression of PGC-1α, NRF1, TFAM, ATP5A1 and SIRT1, and the activity of cytochrome c oxidase, indicating an induction of mitochondrial biogenesis. Furthermore, silencing the expression of SIRT1 in HAECs impeded the effect of CTRP9 on mitochondrial biogenesis, while silencing the expression of AdipoR1 in HAECs reversed the expression of SIRT1 and PGC-1α. Based on these findings, this study showed that CTRP9 might induce mitochondrial biogenesis and protect high glucose-induced endothelial oxidative damage via AdipoR1-SIRT1-PGC-1α signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction.

    PubMed

    Fetterman, Jessica L; Weisbrod, Robert M; Feng, Bihua; Bastin, Reena; Tuttle, Shawn T; Holbrook, Monica; Baker, Gregory; Robertson, Rose Marie; Conklin, Daniel J; Bhatnagar, Aruni; Hamburg, Naomi M

    2018-06-14

    Use of alternative tobacco products including electronic cigarettes is rapidly rising. The wide variety of flavored tobacco products available is of great appeal to smokers and youth. The flavorings added to tobacco products have been deemed safe for ingestion, but the cardiovascular health effects are unknown. The purpose of this study was to examine the effect of 9 flavors on vascular endothelial cell function. Freshly isolated endothelial cells from participants who use nonmenthol- or menthol-flavored tobacco cigarettes showed impaired A23187-stimulated nitric oxide production compared with endothelial cells from nonsmoking participants. Treatment of endothelial cells isolated from nonsmoking participants with either menthol (0.01 mmol/L) or eugenol (0.01 mmol/L) decreased A23187-stimulated nitric oxide production. To further evaluate the effects of flavoring compounds on endothelial cell phenotype, commercially available human aortic endothelial cells were incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine (0.1-100 mmol/L) for 90 minutes. Cell death, reactive oxygen species production, expression of the proinflammatory marker IL-6 (interleukin-6), and nitric oxide production were measured. Cell death and reactive oxygen species production were induced only at high concentrations unlikely to be achieved in vivo. Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. Our data suggest that short-term exposure of endothelial cells to flavoring compounds used in tobacco products have adverse effects on endothelial cell phenotype that may have relevance to cardiovascular toxicity. © 2018 American Heart Association, Inc.

  9. Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    PubMed

    Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M

    2017-08-01

    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Endothelial Dysfunction in Rheumatoid Arthritis: Mechanistic Insights and Correlation with Circulating Markers of Systemic Inflammation.

    PubMed

    Totoson, Perle; Maguin-Gaté, Katy; Nappey, Maude; Wendling, Daniel; Demougeot, Céline

    2016-01-01

    To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.

  11. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction.

    PubMed

    Suzuki, Yuka; Tada-Oikawa, Saeko; Hayashi, Yasuhiko; Izuoka, Kiyora; Kataoka, Misa; Ichikawa, Shunsuke; Wu, Wenting; Zong, Cai; Ichihara, Gaku; Ichihara, Sahoko

    2016-10-13

    The use of carbon nanotubes has increased lately. However, the cardiovascular effect of exposure to carbon nanotubes remains elusive. The present study investigated the effects of pulmonary exposure to single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) on atherosclerogenesis using normal human aortic endothelial cells (HAECs) and apolipoprotein E-deficient (ApoE -/- ) mice, a model of human atherosclerosis. HAECs were cultured and exposed to SWCNTs or DWCNTs for 16 h. ApoE -/- mice were exposed to SWCNTs or DWCNTs (10 or 40 μg/mouse) once every other week for 10 weeks by pharyngeal aspiration. Exposure to CNTs increased the expression level of adhesion molecule (ICAM-1) and enhanced THP-1 monocyte adhesion to HAECs. ApoE -/- mice exposed to CNTs showed increased plaque area in the aorta by oil red O staining and up-regulation of ICAM-1 expression in the aorta, compared with vehicle-treated ApoE -/- mice. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the circulation and subsequently migrate to the site of endothelial damage and repair. Exposure of ApoE -/- mice to high-dose SWCNTs or DWCNTs reduced the colony-forming units of EPCs in the bone marrow and diminished their migration function. The results suggested that SWCNTs and DWCNTs enhanced atherosclerogenesis by promoting monocyte adhesion to endothelial cells and inducing EPC dysfunction.

  12. Autoantibodies isolated from preeclamptic patients induce endothelial dysfunction via interaction with the angiotensin II AT1 receptor.

    PubMed

    Yang, Xiaoli; Wang, Feng; Lau, Wayne Bond; Zhang, Suli; Zhang, Shuo; Liu, Huirong; Ma, Xin-Liang

    2014-03-01

    Complete understanding of the etiology underlying endothelial damage in preeclampsia (PE) remains deficient. Recent studies suggest that autoantibodies against angiotensin II AT1 receptors (AT1-AA) may affect vascular endothelial integrity. However, direct evidence demonstrating association between AT1-AA from preeclamptic patients and vascular endothelial injury is lacking. The current study determined the effects of AT1-AA isolated from preeclamptic patients (Pre-IgG) upon the endothelium and attempted to elucidate the underlying mechanisms of injury. Pre-IgG markedly induced dose-dependent vasoconstriction in aortic vascular rings, an effect blocked by AT1 receptor antagonist losartan. Pre-IgG-induced vasoconstriction was increased in the absence of intact endothelium (1.59 ± 0.04 g vs. 1.63 ± 0.08 g, P < 0.05). Additionally, Pre-IgG incubation with human umbilical vein endothelial cells significantly increased lactate dehydrogenase release in a time-dependent manner (0.84 ± 0.07 vs. 3.50 ± 0.09, 24 vs. 72-h exposure group, P < 0.01) and increased caspase-3 and -8 activities (peaking at 48 h), but did not affect caspase-9 activity. Taken together, these results support the contribution of AT1-AA to endothelial cell injury and dysfunction in PE.

  13. Reduced L-Carnitine Transport in Aortic Endothelial Cells from Spontaneously Hypertensive Rats

    PubMed Central

    Salsoso, Rocío; Guzmán-Gutiérrez, Enrique; Arroyo, Pablo; Salomón, Carlos; Zambrano, Sonia; Ruiz-Armenta, María Victoria; Blanca, Antonio Jesús; Pardo, Fabián; Leiva, Andrea; Mate, Alfonso; Sobrevia, Luis; Vázquez, Carmen María

    2014-01-01

    Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na+-independent) and 2 (Octn2, Na+-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.5–8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1–100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na+-dependent (Na+ dep) compared with Na+-independent (Na+ indep) transport components. Saturable L-carnitine transport kinetics show maximal velocity (V max), without changes in apparent K m for Na+ indep transport in SHR compared with WKY rats. Total and Na+ dep component of transport were increased, but Na+ indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na+ indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results suggest that reduced L-carnitine transport (likely via Na+-dependent Octn2) could limit this compound's potential beneficial effects in RAECs from SHR. PMID:24587332

  14. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril.

    PubMed

    Liu, Yu-Hui; You, Yu; Song, Tao; Wu, Shu-Jing; Liu, Li-Ying

    2007-08-01

    To explore the effects of angiotensin-converting enzyme (ACE) inhibitors on endothelial dysfunction induced by homocysteine thiolactone (HTL). Both endothelium-dependent relaxation and nondependent relaxation of thoracic aortic rings in rats induced by acetylcholine (Ach) or sodium nitroprusside (SNP) and biochemical parameters including malondialdehyde (MDA) and nitric oxide (NO) were measured in rat isolated aorta. Exposure of aortic rings to HTL (3 to 30 mM) for 90 minutes made a significant inhibition of endothelium-dependent relaxation induced by Ach, decreased contents of NO, and increased MDA concentration in aortic tissue. After incubation of aortic rings with captopril (0.003 to 0.03 mM) attenuated the inhibition of endothelium-dependent relaxation (EDR) and significantly resisted the decrease of NO content and elevation of MDA concentration caused by HTL (30 mmol/L) in aortic tissues, a similarly protective effect was observed when the aortic rings were incubated with both N-acetylcysteine (0.05 mM). Treatment with enalaprilat (0.003 to 0.01 mM) made no significant difference with the HTL (30 mM) group regarding EDR, but enalaprilat (0.03 mM) and losartan (0.03 mM) could partly restore the EDR in response to HTL (30 mM). Captopril was more effective than enalaprilat and losartan in attenuation of the inhibition of on acetylcholine-stimulated aortic relaxation by HTL in the same concentration. Moreover, superoxide dismutase (SOD, 200 U/mL), which is a scavenger of superoxide anions, apocynin (0.03 mM), which is an inhibitor of NADPH oxidase, and l-Arginine (3 mmol/L), a precursor of nitric oxide (NO), could reduce HTL (30 mM)-induced inhibition of EDR. After pretreatment with not only the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester (L-NAME, 0.01 mM) but also the free sulfhydryl group blocking agent p-hydroxymercurybenzoate (PHMB, 0.05 mM) could abolish the protection of captopril and N-acetylcysteine, respectively. These results suggest that mechanisms of endothelial dysfunction induced by HTL may include the decrease of NO and the generation of oxygen free radicals and that captopril can restore the inhibition of EDR induced by HTL in isolated rat aorta, which may be related to scavenging oxygen free radicals and may be sulfhydryl-dependent.

  15. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    PubMed

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  16. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation

    PubMed Central

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong

    2016-01-01

    Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859

  17. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.

    PubMed

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2016-11-01

    Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.

  18. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Zeitz, Ute; Riesen, Sabine C.; Heppelmann, Monika S.; Ambrisko, Tamas D.; Markovic, Mato; Kuebler, Wolfgang M.

    2014-01-01

    The vitamin D hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is essential for the preservation of serum calcium and phosphate levels but may also be important for the regulation of cardiovascular function. Epidemiological data in humans have shown that vitamin D insufficiency is associated with hypertension, left ventricular hypertrophy, increased arterial stiffness, and endothelial dysfunction in normal subjects and in patients with chronic kidney disease and type 2 diabetes. However, the pathophysiological mechanisms underlying these associations remain largely unexplained. In this study, we aimed to decipher the mechanisms by which 1,25(OH)2D3 may regulate systemic vascular tone and cardiac function, using mice carrying a mutant, functionally inactive vitamin D receptor (VDR). To normalize calcium homeostasis in VDR mutant mice, we fed the mice lifelong with the so-called rescue diet enriched with calcium, phosphate, and lactose. Here, we report that VDR mutant mice are characterized by lower bioavailability of the vasodilator nitric oxide (NO) due to reduced expression of the key NO synthesizing enzyme, endothelial NO synthase, leading to endothelial dysfunction, increased arterial stiffness, increased aortic impedance, structural remodeling of the aorta, and impaired systolic and diastolic heart function at later ages, independent of changes in the renin-angiotensin system. We further demonstrate that 1,25(OH)2D3 is a direct transcriptional regulator of endothelial NO synthase. Our data demonstrate the importance of intact VDR signaling in the preservation of vascular function and may provide a mechanistic explanation for epidemiological data in humans showing that vitamin D insufficiency is associated with hypertension and endothelial dysfunction. PMID:24284821

  19. Augmented endothelial l-arginine transport ameliorates pressure-overload-induced cardiac hypertrophy.

    PubMed

    Rajapakse, Niwanthi W; Johnston, Tamara; Kiriazis, Helen; Chin-Dusting, Jaye P; Du, Xiao-Jun; Kaye, David M

    2015-07-01

    What is the central question of this study? What is the potential role of endothelial NO production via overexpression of the l-arginine transporter, CAT1, as a mitigator of cardiac hypertrophy? What is the main finding and its importance? Augmentation of endothelium-specific l-arginine transport via CAT1 can attenuate pressure-overload-dependent cardiac hypertrophy and fibrosis. Our findings support the conclusion that interventions that improve endothelial l-arginine transport may provide therapeutic utility in the setting of myocardial hypertrophy. Such modifications may be introduced by exercise training or locally delivered gene therapy, but further experimental and clinical studies are required. Endothelial dysfunction has been postulated to play a central role in the development of cardiac hypertrophy, probably as a result of reduced NO bioavailability. We tested the hypothesis that increased endothelial NO production, mediated by increased l-arginine transport, could attenuate pressure-overload-induced cardiac hypertrophy. Echocardiography and blood pressure measurements were performed 15 weeks after transverse aortic constriction (TAC) in wild-type (WT) mice (n = 12) and in mice with endothelium-specific overexpression of the l-arginine transporter, CAT1 (CAT+; n = 12). Transverse aortic constriction induced greater increases in heart weight to body weight ratio in WT (by 47%) than CAT+ mice (by 25%) compared with the respective controls (P ≤ 0.05). Likewise, the increase in left ventricular wall thickness induced by TAC was significantly attenuated in CAT+ mice (P = 0.05). Cardiac collagen type I mRNA expression was greater in WT mice with TAC (by 22%; P = 0.03), but not in CAT+ mice with TAC, compared with the respective controls. Transverse aortic constriction also induced lesser increases in β-myosin heavy chain mRNA expression in CAT+ mice compared with WT (P ≤ 0.05). Left ventricular systolic pressure after TAC was 36 and 39% greater in WT and CAT+ mice, respectively, compared with the respective controls (P ≤ 0.001). Transverse aortic constriction had little effect on left ventricular end-diastolic pressure in both genotypes. Taken together, these data indicate that augmenting endothelial function by overexpression of l-arginine transport can attenuate pressure-overload-induced cardiac hypertrophy. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  20. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway1[S

    PubMed Central

    Latham Birt, Sally H.; Purcell, Robert; Botham, Kathleen M.; Wheeler-Jones, Caroline P. D.

    2016-01-01

    Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs—artificial TG-rich CMR-like particles (A-CRLPs)—containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction. PMID:27185859

  1. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats.

    PubMed

    Si, Lislivia Yiang-Nee; Kamisah, Yusof; Ramalingam, Anand; Lim, Yi Cheng; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-07-01

    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) C max = 234.5 ± 3.9%, Endo-(-) C max = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) C max = 264.5 ± 6.9%, Endo-(-) C max = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) R max = 73.2 ± 2.1%, Endo-(-) R max = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) R max = 57.8 ± 1.7%, Endo-(-) R max = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.

  2. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy.

    PubMed

    Shing, Cecilia M; Fassett, Robert G; Peake, Jonathan M; Coombes, Jeff S

    2014-12-01

    Inflammation and endothelial dysfunction contribute to cardiovascular disease, prevalent in chronic kidney disease (CKD). Antioxidant supplements such as tocopherols may reduce inflammation and atherosclerosis. This study aimed to investigate the effect of tocopherol supplementation on vascular function, aortic plaque formation, and inflammation in apolipoprotein E(-/-) mice with 5/6 nephrectomy as a model of combined cardiovascular and kidney disease. Nephrectomized mice were assigned to a normal chow diet group (normal chow), a group receiving 1000 mg/kg diet of α-tocopherol supplementation or a group receiving 1000 mg/kg diet mixed-tocopherol (60% γ-tocopherol). Following 12 weeks, in vitro aortic endothelial-independent relaxation was enhanced with both α-tocopherol and mixed-tocopherol (P < 0.05), while mixed-tocopherol enhanced aortic contraction at noradrenaline concentrations of 3 × 10(-7) M to 3 × 10(-5) M (P < 0.05), when compared to normal chow. Supplementation with α- and mixed-tocopherol reduced systemic concentrations of IL-6 (P < 0.001 and P < 0.001, respectively) and IL-10 (P < 0.05 and P < 0.001, respectively), while α-tocopherol also reduced MCP-1 (P < 0.05) and tumor necrosis factor (TNF)-α (P < 0.05). Aortic sinus plaque area was significantly reduced with α-tocopherol supplementation when compared to normal chow (P < 0.01). Tocopherol supplementation favorably influenced vascular function and cytokine profile, while it was also effective in reducing atherosclerosis in the apolipoprotein E(-/-) mouse with CKD. © 2014 John Wiley & Sons Ltd.

  4. Treatment with sodium nitroprusside improves the endothelial function in aortic rings with endothelial dysfunction.

    PubMed

    Buzinari, Tereza Cristina; Oishi, Jorge Camargo; De Moraes, Thiago Francisco; Vatanabe, Izabela Pereira; Selistre-de-Araújo, Heloisa Sobreiro; Pestana, Cezar Rangel; Rodrigues, Gerson Jhonatan

    2017-07-15

    Verify if sodium nitroprusside (SNP) is able to improve endothelial function and if this effect is independent of nitric oxide (NO) release of the compound. Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. Intact endothelium aortas were placed in a myograph and incubated with SNP: 0.1nM; 1nM or 10nM during 30min. Cumulative concentration-effect curves for acetylcholine (Ach) were realized to measure the relaxing capacity. Intracellular NO were measured (by DAF-2DA probe) in HUVEC treated with SNP 0.1nM or DETA/NO 0.1μM. The detection of intracellular superoxide radical (O 2 •- ) was obtained by using DHE probe. Treatment of 2K-1C aortic rings with SNP (0.1; 1.0 and 10nM) improved endothelium dependent relaxation induced by acetylcholine. This improvement induced by SNP was verified at the concentration of 0.1nM, which does not release NO, suggesting that this effect was not induced due to NO release by SNP compound. Besides, we show that the cell treatment with 0.1nM of SNP decreased the fluorescence intensity to DHE in cells stimulated with angiotensin II. These results indicate that SNP decreases the concentration of O 2 •- in HUVEC cells. The SNP at a concentration that does not release NO inside the cells is able to attenuate endothelial dysfunction. Acetylcholine (Ach) (PubChem CID:6060); angiotensin II human (Ang II) (PubChem CID: 16211177); diethylenetriamine/nitric oxide (DETA-NO) (PubChem CID 4518); dihydroethidium (DHE) (PubChem CID: 128682); phenylephrine (Phe) (PubChem CID: 5284443); sodium nitroprusside (SNP) (PubChem CID: 11963579); Thiazolyl Blue Tetrazolium Bromide (MTT) (PubChem CID: 64965); 4,5-diaminofluorescein diacetate (DAF-2DA); 4-hidroxy-Tempo (Tempol) (PubChem CID: 137994), were purchased from Sigma-Aldrich (St. Louis, MO, USA). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protective effect of vitamin B5 (dexpanthenol) on cardiovascular damage induced by streptozocin in rats.

    PubMed

    Demirci, B; Demir, O; Dost, T; Birincioglu, M

    2014-01-01

    This study investigated whether Dexpanthenol (DEX) improves diabetic cardiovascular function and cardiac performance by regulating total oxidant and antioxidant status. Diabetes was induced by a single intraperitoneal injection of Streptozocin (50 mg/kg in 1 ml of saline) and treatment groups received DEX (300 mg/kg/day) for 6 weeks. Endothelium (in)dependent relaxation responses were assessed in thoracic aortic rings and coronary vasculature together with alpha receptor and voltage dependant contractile responses of aorta. Myocardial contractility has been recorded by an intra ventricular latex balloon. Total oxidant and antioxidant status were measured from the serum samples. Induction of diabetes resulted in an apparent body weight loss, high blood glucose, endothelial dysfunction and increased serum oxidant status. DEX supplementation restored the endothelial dysfunction, antioxidant status and body weight whereas decreasing blood glucose level. Along with the standard therapy of diabetes, DEX can be used as a safe and economical way of adjuvant therapy to diminish the burden of the disease (Tab. 3, Fig. 3, Ref. 30).

  6. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy

    PubMed Central

    Higdon, Ashlee N.; Benavides, Gloria A.; Chacko, Balu K.; Ouyang, Xiaosen; Johnson, Michelle S.; Landar, Aimee; Zhang, Jianhua

    2012-01-01

    The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity. PMID:22245770

  7. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE-/- Mice through the ROS/MAPK/NF-κB Pathway.

    PubMed

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-08-24

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE(-/-) mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.

  8. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE−/− Mice through the ROS/MAPK/NF-κB Pathway

    PubMed Central

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-01-01

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE−/− mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis. PMID:26305254

  9. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice.

    PubMed

    Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L

    2018-04-27

    Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.

  10. Intermittent, noncyclic dysfunction of a mechanical aortic prosthesis by pannus formation.

    PubMed

    Giroux, Sylvie K; Labinaz, Marino X; Grisoli, Dominique; Klug, Andrew P; Veinot, John P; Burwash, Ian G

    2010-01-01

    Mechanical aortic prosthesis dysfunction can result from thrombosis or pannus formation. Pannus formation usually restricts systolic excursion of the occluding disk, resulting in progressive stenosis of the aortic prosthesis. Intermittent dysfunction of a mechanical aortic prosthesis is usually ascribed to thrombus formation. We describe an unusual case of intermittent, noncyclic dysfunction of a mechanical aortic prosthesis due to pannus formation in the absence of systolic restriction of disk excursion that presented with intermittent massive aortic regurgitation, severe ischemia, and shock. Pannus formation should be considered as a potential cause of acute intermittent severe aortic regurgitation in a patient with a mechanical aortic prosthesis.

  11. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.

    PubMed

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-04-11

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  13. Side-Specific Endothelial-Dependent Regulation of Aortic Valve Calcification

    PubMed Central

    Richards, Jennifer; El-Hamamsy, Ismail; Chen, Si; Sarang, Zubair; Sarathchandra, Padmini; Yacoub, Magdi H.; Chester, Adrian H.; Butcher, Jonathan T.

    2014-01-01

    Arterial endothelial cells maintain vascular homeostasis and vessel tone in part through the secretion of nitric oxide (NO). In this study, we determined how aortic valve endothelial cells (VEC) regulate aortic valve interstitial cell (VIC) phenotype and matrix calcification through NO. Using an anchored in vitro collagen hydrogel culture system, we demonstrate that three-dimensionally cultured porcine VIC do not calcify in osteogenic medium unless under mechanical stress. Co-culture with porcine VEC, however, significantly attenuated VIC calcification through inhibition of myofibroblastic activation, osteogenic differentiation, and calcium deposition. Incubation with the NO donor DETA-NO inhibited VIC osteogenic differentiation and matrix calcification, whereas incubation with the NO blocker l-NAME augmented calcification even in 3D VIC–VEC co-culture. Aortic VEC, but not VIC, expressed endothelial NO synthase (eNOS) in both porcine and human valves, which was reduced in osteogenic medium. eNOS expression was reduced in calcified human aortic valves in a side-specific manner. Porcine leaflets exposed to the soluble guanylyl cyclase inhibitor ODQ increased osteocalcin and α-smooth muscle actin expression. Finally, side-specific shear stress applied to porcine aortic valve leaflet endothelial surfaces increased cGMP production in VEC. Valve endothelial-derived NO is a natural inhibitor of the early phases of valve calcification and therefore may be an important regulator of valve homeostasis and pathology. PMID:23499458

  14. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  15. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats

    PubMed Central

    Rodríguez-Mañas, Leocadio; Angulo, Javier; Peiró, Concepción; Llergo, José L; Sánchez-Ferrer, Alberto; López-Dóriga, Pedro; Sánchez-Ferrer, Carlos F

    1998-01-01

    The aim of this work was to study the influence of the metabolic control, estimated by the levels of glycosylated haemoglobin in total blood samples (HbA1c), in developing vascular endothelial dysfunction in streptozotocin-induced diabetic rats. Four groups of animals with different levels of insulin treatment were established, by determining HbA1c values in 5.5 to 7.4%, 7.5 to 9.4%, 9.5 to 12% and >12%, respectively.The parameters analysed were: (1) the endothelium-dependent relaxations to acetylcholine (ACh) in isolated aorta and mesenteric microvessels; (2) the vasodilator responses to exogenous nitric oxide (NO) in aorta; and (3) the existence of oxidative stress by studying the influence of the free radical scavenger superoxide dismutase (SOD) on the vasodilator responses to both ACh and NO.In both isolated aortic segments and mesenteric microvessels, the endothelium-mediated concentration-dependent relaxant responses elicited by ACh were significantly decreased when the vessels were obtained from diabetic animals but only with HbA1c values higher than 7.5%. There was a high correlation between HbA1c levels and the impairment of ACh-induced relaxations, measured by pD2 values.The concentration-dependent vasorelaxant responses to NO in endothelium-denuded aortic segments were significantly reduced only in vessels from diabetic animals with HbA1c values higher than 7.5%. Again, a very high correlation was found between the HbA1c values and pD2 for NO-evoked responses.In the presence of SOD, the responses to ACh or NO were only increased in the segments from diabetic rats with HbA1c levels higher than 7.5%, but not in those from non-diabetic or diabetic rats with a good metabolic control (HbA1c levels <7.5%).These results suggest the existence of: (1) a close relation between the degree of endothelial dysfunction and the metabolic control of diabetes, estimated by the levels of HbA1c; and (2) an increased production of superoxide anions in the vascular wall of the diabetic rats, which is also related to the metabolic control of the disease. PMID:9605553

  16. Dahl SS rats demonstrate enhanced aortic perivascular adipose tissue-mediated buffering of vasoconstriction through activation of NOS in the endothelium

    PubMed Central

    Spradley, Frank T.; Ho, Dao H.

    2015-01-01

    Perivascular adipose tissue (PVAT) mediates buffering of vasoconstriction through activation of endothelium-derived factors. We hypothesized that the PVAT of Dahl salt-sensitive (Dahl SS) rats has reduced ability to buffer vasoconstriction. Vascular reactivity experiments were performed on aortic rings with PVAT intact (+PVAT) or removed (−PVAT), and endothelium intact (+ENDO) or removed (−ENDO) from Dahl SS rats and control SS.13BN rats (Dahl SS rats that have had chromosome 13 completely replaced with that of the Brown Norway rat, rendering this strain insensitive to high-salt or high-fat diet-induced hypertension). Endothelial dysfunction, assessed by ACh-mediated vasorelaxation, was confirmed in aortic rings of Dahl SS rats. The +PVAT+ENDO aortic rings had indistinguishable phenylephrine-induced vasoconstriction between genotypes. In both strains, removal of PVAT significantly enhanced vasoconstriction. Dahl SS rat −PVAT+ENDO aortic rings displayed exaggerated vasoconstriction to phenylephrine vs. SS.13BN rats, indicating that PVAT-mediated buffering of vasoconstriction was greater in Dahl SS rats. Removal of both the ENDO and PVAT restored vasoconstriction in both strains. The nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME), produced a similar effect as that seen with −ENDO. These data indicate that the function of the PVAT to activate endothelium-derived NOS is enhanced in Dahl SS compared with SS.13BN rats and, most likely, occurs through a pathway that is distinct from ACh-mediated activation of NOS. PVAT weight and total PVAT leptin levels were greater in Dahl SS rats. Leptin induced a significantly decreased vasoconstriction in −PVAT+ENDO aortic rings from Dahl SS rats, but not SS.13BN rats. In contrast to our initial hypothesis, PVAT in Dahl SS rats buffers vasoconstriction by activating endothelial NOS via mechanisms that may include the involvement of leptin. Thus, the PVAT serves a vasoprotective role in Dahl SS rats on normal-salt diet. PMID:26608658

  17. Ruthenium Complex Improves the Endothelial Function in Aortic Rings From Hypertensive Rats

    PubMed Central

    Vatanabe, Izabela Pereira; Rodrigues, Carla Nascimento dos Santos; Buzinari, Tereza Cristina; de Moraes, Thiago Francisco; da Silva, Roberto Santana; Rodrigues, Gerson Jhonatan

    2017-01-01

    Background The endothelium is a monolayer of cells that extends on the vascular inner surface, responsible for the modulation of vascular tone. By means of the release of nitric oxide (NO), the endothelium has an important protective function against cardiovascular diseases. Objective Verify if cis- [Ru(bpy)2(NO2)(NO)](PF6)2 (BPY) improves endothelial function and the sensibility of conductance (aorta) and resistance (coronary) to vascular relaxation induced by BPY. Methods Normotensive (2K) and hypertensive (2K-1C) Wistar rats were used. For vascular reactivity study, thoracic aortas were isolated, rings with intact endothelium were incubated with: BPY(0.01 to10 µM) and concentration effect curves to acetylcholine were performed. In addition, cumulative concentration curves were performed to BPY (1.0 nM to 0.1 µM) in aortic and coronary rings, with intact and denuded endothelium. Results In aorta from 2K-1C animals, the treatment with BPY 0.1µM increased the potency of acetylcholine-induced relaxation and it was able to revert the endothelial dysfunction. The presence of the endothelium did not modify the effect of BPY in inducing the relaxation in aortas from 2K and 2K-1C rats. In coronary, the endothelium potentiated the vasodilator effect of BPY in vessels from 2K and 2K-1C rats. Conclusion Our results suggest that 0.1 µM of BPY is able to normalize the relaxation endothelium dependent in hypertensive rats, and the compound BPY induces relaxation in aortic from normotensive and hypertensive rats with the same potency. The endothelium potentiate the relaxation effect induced by BPY in coronary from normotensive and hypertensive rats, with lower effect on coronary from hypertensive rats. PMID:28678930

  18. Lactobacillus Fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling.

    PubMed

    Toral, Marta; Romero, Miguel; Rodríguez-Nogales, Alba; Jiménez, Rosario; Robles-Vera, Iñaki; Algieri, Francesca; Chueca-Porcuna, Natalia; Sánchez, Manuel; de la Visitación, Néstor; Olivares, Mónica; García, Federico; Pérez-Vizcaíno, Francisco; Gálvez, Julio; Duarte, Juan

    2018-05-30

    Our aim was to analyse whether the probiotic Lactobacillus fermentum CECT5716 (LC40) could prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. Tacrolimus increased systolic blood pressure (SBP) and impaired endothelium-dependent relaxation to acetylcholine and these effects were partially prevented by LC40. Endothelial dysfunction induced by tacrolimus was related to both increased NADPH oxidase (NOX2) and uncoupled eNOS driven-superoxide production and Rho-kinase mediated eNOS inhibition. LC40 treatment prevented all the aortic changes induced by tacrolimus. LC40 restored the imbalance between T-helper 17 (Th17)/ regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and spleen. Tacrolimus induced gut dysbiosis, i.e. it decreased microbial diversity, increased Firmicutes/Bacteroidetes ratio and decreased acetate- and butyrate-producing bacteria and these effects were prevented by LC40. Fecal microbiota transplantation from LC40 treated mice to control mice prevented the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. LC40 treatment prevented hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects were associated with a reduction in vascular oxidative stress, mainly through NOX2 down-regulation and prevention of eNOS-uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Abdominal aorta aneurysm (AAA): Is there a role for prevention and therapy using antioxidants?

    PubMed

    Pincemail, Joël; Defraigne, Jean-Olivier; Courtois, Audrey; Albert, Adelin; Cheramy-Bien, Jean-Paul; Sakalihasan, Natzi

    2017-09-18

    Abdominal aortic aneurysm (AAA) is a degenerative disease that cause mortality in people aged > 65 years. Increased reactive oxygen species (ROS) and oxidative stress seems to play a pivotal role in AAA pathogenesis. Several sources of ROS have been identified in aortic tissues using experimental models: inflammation, increased activity of NAD(P)H or NOX, over-expression of inducible nitric oxide synthase (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), platelets activation and iron release from hemoglobin. Reducing oxidative stress by antioxidants has been shown to be a potential strategy for limiting AAA development. Human studies confirmed that oxidative stress and endothelial dysfunction are well associated with AAA development. Unfortunately, there is currently no evidence showing that strategies using low molecular weight antioxidants (vitamins C and E, β-carotene) as target for ROS is effective to reduce human AAA progression. However, recent epidemiological data have highlighted the positive role of a diet enriched in fruits which contain high amounts of antioxidant polyphenols. By their ability to restore endothelial function but also their capacity to stimulate enzymatic antioxidants trough activation of the Keap1/Nrf2/ARE pathway, polyphenols can represent a promising treatment target for reducing human AAA progression. Clinical studies are therefore urgently necessary to confirm such a suggestion. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice.

    PubMed

    Krieger, M H; Santos, K F R; Shishido, S M; Wanschel, A C B A; Estrela, H F G; Santos, L; De Oliveira, M G; Franchini, K G; Spadari-Bratfisch, R C; Laurindo, F R M

    2006-02-01

    The pathophysiology of the NO/NO synthase system and dysfunctional changes in the endothelium in the early phases of the atherogenic process are incompletely understood. In this study, we investigated the effects of the nitrosothiol NO donor S-nitroso-N-acetylcysteine (SNAC) in the early prevention of plaque development in the hypercholesterolemic LDLr-/- mice as well as the changes in endothelium-dependent relaxation and NO synthase expression. LDLr-/- mice were fed a 1.25% cholesterol-enriched diet for 15 days. Plasma cholesterol/triglyceride levels increased and this increase was accompanied by the development of aortic root lesions. Aortic vasorelaxation to acetylcholine was increased, although endothelium-independent relaxation in response to sodium nitroprusside did not change, which suggest stimulated NO release enhanced. This dysfunction was associated with enhanced aortic superoxide production and with increased levels of constitutive NOS isoform expression, particularly neuronal NOS. SNAC (S-nitroso-N-acetylcysteine) administration (0.51 micromol/kg/day i.p. for 15 days) decreased the extent of the plaque by 55% in hypercholesterolemic mice, but had no effects on vasomotor changes. It did, however, lead to a decrease in constitutive NOS expression. The SNAC induced only minor changes in plasma lipid profile. The present study has shown that, in early stages of plaque development in LDLr-/- mice, specific changes in NO/NO synthase system develop, that are characterized by increased endothelium-dependent vasorelaxation and increased constitutive NOS expression. Since the development of plaque and the indicator of endothelial cell dysfunction were prevented by SNAC, such treatment may constitute a novel strategy for the halting of progression of early plaque.

  1. L-arginine and arginine analogues: effects on isolated blood vessels and cultured endothelial cells.

    PubMed Central

    Schmidt, H. H.; Baeblich, S. E.; Zernikow, B. C.; Klein, M. M.; Böhme, E.

    1990-01-01

    1. The present study examined effects of arginine (Arg) and various Arg analogues on the vascular tone of rabbit and rat aortic rings, the release of nitrite from cultured bovine aortic endothelial cells and the metabolism of L-Arg in bovine and porcine endothelial cell homogenates. The respective D-enantiomers or N-alpha-benzoyl-L-arginine ethyl ester did not substitute for L-Arg. 2. In bovine aortic endothelial cells, the release of nitrite was only observed in the presence of L-Arg or L-Arg methyl ester in the cell culture medium. 3. In dialyzed homogenates of porcine and bovine aortic endothelial cells, L-Arg was metabolized independently of NADPH and Ca2+ to yield L-ornithine (L-Orn) and L-citrulline (L-Cit). No concomitant nitrite formation was detected. 4. Pretreatment of rabbit and rat aortic rings with L-canavanine (L-Can) or NG-monomethyl-L-Arg (L-NMMA) inhibited ATP- and acetylcholine-induced relaxations (endothelium-dependent) but not glyceryltrinitrate-induced relaxations (endothelium-independent). 5. In rabbit aortic rings, Arg and monomeric Arg analogues induced endothelium-independent relaxations. L-Arg methyl ester induced an endothelium-independent contraction, and L-NMMA induced a relaxation in the absence of endothelium and a contraction in the presence of endothelium. Polymeric basic amino acids such as poly L-Arg induced endothelium-dependent relaxations (inhibited by L-Can), a subsequent refractoriness to endothelium-dependent vasodilators (not prevented by L-Can) and endothelial cell death.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2282457

  2. Ferulic acid combined with astragaloside IV protects against vascular endothelial dysfunction in diabetic rats.

    PubMed

    Yin, Yonghui; Qi, Fanghua; Song, Zhenhua; Zhang, Bo; Teng, Jialin

    2014-08-01

    Dysfunction of the endothelium is regarded as an important factor in the pathogenesis of vascular disease in diabetes mellitus (DM). Unfortunately, prevention of the progression of vascular complications of DM remains pessimistic. Ferulic acid and astragaloside IV, isolated from traditional Chinese medicine Angelica sinensis and Radix astragali respectively, exhibit potential cardio-protective and anti-hyperglycemic properties. In the present study, we investigated the protective effects and underlying mechanism of ferulic acid and astragaloside IV against vascular endothelial dysfunction in diabetic rats. After the diabetic rat model was established using streptozotocin, sixty rats were divided into 6 groups (control, model, ferulic acid, astragaloside IV, ferulic acid + astragaloside IV, and metformin) and treated for 10 weeks. Blood samples were collected to measure levels of hemoglobin A1c (HbAlc), triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), low density lipoproteins (Ox-LDL), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine (Cr), nitric oxide (NO) and endothelial nitric oxide synthase (eNOS), and abdominal aorta tissue samples were collected for observing histological morphology changes of endothelium and detecting gene and protein expression of nuclear factor-κB (NF-κB) P65, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor α (TNF-α). We found that ferulic acid combined with astragaloside IV was capable of improving the structure of the aortic endothelium wall, attenuating the increase of HbAlc, TG, TC, LDL-C and Ox-LDL, promoting the release of NO and eNOS, and inhibiting over-activation of MCP-1, TNF-α, and NF-κB P65, without damage to liver and kidney function. In conclusion, ferulic acid combined with astragaloside IV exhibited significant protective effects against vascular endothelial dysfunction in diabetic rats through the NF-κB pathway involving decrease of Ox-LDL, increase of NO and eNOS, and activation of NF-κB P65, MCP-1 and TNF-α.

  3. Comparison of vasculoprotective effects of benidipine and losartan in a rat model of metabolic syndrome.

    PubMed

    Matsuzaki, Gen; Ishizaka, Nobukazu; Furuta, Kyoko; Hongo, Makiko; Saito, Kan; Sakurai, Ryota; Koike, Kazuhiko; Nagai, Ryozo

    2008-06-10

    Although antihypertensive drugs confer improvement in endothelial dysfunction and protection from atherogenesis in hypertension, different classes of antihypertensive drugs may elicit different degrees of vasculoprotective effects. We have investigated the effects of a long-acting calcium antagonist, benidipine, and an angiotensin AT(1) receptor antagonist, losartan, on the vascular damage observed in OLETF rats, an animal model of metabolic syndrome. At 34 weeks of age, OLETF rats were treated with either benidipine (3 mg/kg/day, per os) or losartan (25 mg/kg/day, per os) for 8 weeks. The extent of blood pressure reduction, restoration endothelium-dependent aortic relaxation, and elevation of serum nitrite/nitrate concentration did not differ significantly between benidipine- and losartan-treated OLETF rats. Benidipine and losartan also reduced the aortic expression of transforming growth factor-beta1 mRNA and thickening of the vascular wall to a similar extent. Increased cardiac fibrosis was also inhibited by both benidipine and losartan. These data suggest that, when used in an antihypertensive dose, benidipine is as effective as losartan in restoring vascular endothelial function and in suppressing of cardiovascular remodeling in an animal model of metabolic syndrome.

  4. MIP-2 causes differential activation of RhoA in mouse aortic versus pulmonary artery endothelial cells

    PubMed Central

    Moldobaeva, Aigul; Baek, Amy; Wagner, Elizabeth M.

    2008-01-01

    Previously, we have shown that endothelial cell chemotaxis to the proangiogenic chemokine MIP-2 (macrophage inflammatory protein-2), is much greater in mouse aortic endothelial cells (EC) than pulmonary arterial endothelial cells (PA EC). This was true despite the observation that both cell types display comparable levels of the ligand receptor, CXCR2 (8). Since the systemic arterial circulation is proangiogenic in the adult lung and the pulmonary circulation is relatively resistant to neovascularization, we questioned whether the observed functional heterogeneity is related to inherent differences in cell signaling cascades of the two EC subtypes. Specifically, we measured activation of Rac1 and RhoA, both thought to be involved in EC cell migration. Rac1 showed inconsistent and minimal changes in both cell types after MIP-2 treatment (p>0.05). However, activated RhoA was increased upon exposure to MIP-2 only in aortic EC (61% increase; p<0.05). Decreased RhoA activation after treatment of aortic EC with specific siRNA for RhoA resulted in a functional decrease in EC chemotaxis to MIP-2 (17% increase; p<0.05). Additionally, increased RhoA activation in PA EC with adenoviral infection of RhoA caused an increase in PA EC chemotaxis to MIP-2 (46% increase; p<0.05). Inhibition of RhoA activity with the Rho kinase inhibitor, Y27632 blocked aortic EC chemotaxis and stress fiber formation. Thus, RhoA activation is increased after MIP-2 treatment in mouse aortic endothelial cells but not in pulmonary artery endothelial cells. We conclude that RhoA is part of a signaling pathway essential for aortic cell migration after CXCR2 ligation. This result provides one explanation for the difference in chemotaxis observed in these two endothelial subtypes that express similar levels of CXCR2. PMID:17662312

  5. Gender difference in cytoprotection induced by estrogen on female and male bovine aortic endothelial cells.

    PubMed

    Si, M L; Al-Sharafi, B; Lai, C C; Khardori, R; Chang, C; Su, C Y

    2001-08-01

    Before menopause, women have a lower risk of cardiovascular diseases than men. Studies attribute this gender difference to estrogenic protection in the female cardiovascular system. We have demonstrated that 17beta-estradiol (E2) protects female bovine aortic endothelial cells against oxidative injury, probably through the induction of antioxidant enzyme activities. In this study, we examined whether E2 confers a differential protection on male and female cells. Bovine aortic endothelial cells from both genders were preconditioned for 24 h with E2 (1 nM to 10 microM), and their resistance to paraquat (1 mM, 3 h), a superoxide generator, was measured using an MTT assay. In contrast to the protection observed in female bovine aortic endothelial cells, there was no protective effect by E2 on male bovine aortic endothelial cells at physiologic concentrations. However, E2 at 1-10 microM attenuated paraquat's toxicity in both male and female cells, probably through its direct antioxidant activity. E2 at 1 nM increased in female, but not in male, cells the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, which was associated with decreased levels of reactive oxygen species during subsequent paraquat exposure. This suggests that antioxidant enzyme induction plays some role in E2-augmented oxidative resistance in female endothelial cells.

  6. Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.

    PubMed

    Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung K; Li, Rongsong

    2013-07-05

    Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS

    PubMed Central

    Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung; Li, Rongsong

    2013-01-01

    Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter < 200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. PMID:23751346

  8. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice.

    PubMed

    Zou, Liangqiang; Wang, Weiyi; Liu, Shangxin; Zhao, Xiaojing; Lyv, Ying; Du, Congkuo; Su, Xueying; Geng, Bin; Xu, Guoheng

    2016-02-01

    Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Antioxidant effect of lidocaine and procaine on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta

    PubMed Central

    Lee, Jae Myeong; Jeong, Ji Seon; Cho, Sang Yun; Kim, Dong Won

    2010-01-01

    Background Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in the endothelium. We tested the antioxidant effect of lidocaine and procaine on ROS-induced endothelial damage in the rabbit aorta. Methods Aortic rings isolated from rabbits were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5℃. After precontraction with phenylephrine (PE, 10-6 M), changes in tension were recorded following a cumulative administration of acetylcholine (ACh 3 × 10-8 to 10-6 M). Differences were measured as percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS as generated by electrolysis of the K-H solution. The aortic rings were pretreated with lidocaine or procaine (10-5 M to 3 × 10-3 M) to compare their effects, as well as ROS scavengers, catalase, mannitol, sodium salicylate, and deferoxamine, and a catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Lidocaine and procaine dose-dependently maintained endothelium-dependent relaxation induced by ACh despite ROS activity (P < 0.05 vs control value). The 3AT pretreated procaine (3 × 10-3 M) group decreased more significantly than the un-pretreated procaine group (P < 0.05). Conclusions These findings suggest that lidocaine and procaine dose-dependently preserve endothelium-dependent vasorelaxation against ROS attack, potentially via hydrogen peroxide scavenging. PMID:20740215

  10. The effects of ginsenoside Rb1 on endothelial damage and ghrelin expression induced by hyperhomocysteine.

    PubMed

    Xu, Zhiwei; Lan, Taohua; Wu, Weikang; Wu, Yiling

    2011-01-01

    Studies have indicated that ginsenoside Rb1 and ghrelin could both prevent homocysteine (Hcy)-induced endothelial dysfunction through the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) mechanism. This study investigated whether endogenous ghrelin mediates the endothelial protection of ginsenosidee Rb1 through in vitro and in vivo experiments. Rats were randomized into a control group, a hyperhomocysteine (HHcy) model group with a high methionine diet, a ginsenosides (GS) group, and HHcy plus GS group. Plasma ghrelin was detected by enzyme-linked immunosorbent assay. Aortic rings for control and HHcy groups were treated with ghrelin or not. Endothelium-dependent vasodilatation function was evaluated by the aortic ring assay, and the structural changes were visualized by hematoxylin and eosin staining. Human umbilical vein endothelial cells (HUVECs) were cultured, and the experimental conditions were optimized according to NO production. After treatment, the NO, ghrelin, and von Willebrand factor (vWF) levels in the media were detected and analyzed with linear regression. Ghrelin and eNOS expression were observed by cell immunohistochemical staining. Ghrelin receptor antagonist was used to detect the mechanism of ginsenoside Rb1 on NO production, which was reflected by diacetylated 4,5-diaminofluorescein-2 diacetate fluorescence. In vivo experiments demonstrated that plasma ghrelin levels in the HHcy group were significantly elevated vs controls (P < .05) and were significantly increased in the HHcy plus GS group (P < .01). Compared with control, endothelium-dependent vasodilatation function was greatly reduced in the HHcy group (P < .01), which was significantly increased in HHcy plus ghrelin group compared with HHcy group (P < .01). The arterial walls of HHcy group exhibited characteristic pathologic changes, which were repaired in HHcy plus ghrelin group. In vivo, compared with Hcy (200 μM) group, HUVECs pretreated with ginsenoside Rb1 (10 μM) for 30 minutes showed significant increases in NO and ghrelin levels and evident reduction in vWF levels. Linear regression analysis demonstrated that ghrelin levels were significantly positively correlated with NO levels and significantly negatively correlated with vWF levels. The addition of Rb1 to Hcy also greatly reversed Hcy-induced downregulation of ghrelin and eNOS expression. Ghrelin inhibition significantly abolished the upregulation of NO levels induced by Rb1. Ghrelin can prevent Hcy-induced vascular endothelial dysfunction and structural damage. The compensatory elevation of plasma ghrelin levels in an Hcy-induced endothelial injury model may be a protective response. Ginsenoside Rb1 can significantly stimulate the ghrelin endocrine to inhibit endothelial injury. Ginsenoside also upregulates the NO signaling pathway reduced by Hcy through the ghrelin molecular mechanism. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  11. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction.

    PubMed

    Sharma, Arpeeta; Rizky, Luddwi; Stefanovic, Nada; Tate, Mitchel; Ritchie, Rebecca H; Ward, Keith W; de Haan, Judy B

    2017-03-03

    Vascular dysfunction is a pivotal event in the development of diabetes-associated vascular disease. Increased inflammation and oxidative stress are major contributors to vascular dysfunction. Nrf2, a master regulator of several anti-oxidant genes and a suppressor of inflammatory NF-κB, has potential as a target to combat oxidative stress and inflammation. The aim of this study was to investigate the effects of a novel Nrf2 activator, the bardoxolone methyl derivative dh404, on endothelial function in vitro and in vivo. dh404 at 3 mg/kg was administered to male Akita mice, an established diabetic mouse model of insulin insufficiency and hyperglycemia, from 6 weeks of age. At 26 weeks of age, vascular reactivity was assessed by wire myography, pro-inflammatory expression was assessed in the aortas by qRT-PCR and immunohistochemistry, and systemic and vascular oxidative stress measurements were determined. Additionally, studies in human aortic endothelial cells (HAECs) derived from normal and diabetic patients in the presence or absence of dh404 included assessment of pro-inflammatory genes by qRT-PCR and western blotting. Oxidative stress was assessed by three methods; L-012, DCFDA and amplex red. Static adhesion assays were performed to determine the leukocyte-endothelial interaction in the presence or absence of dh404. Dh404 significantly attenuated endothelial dysfunction in diabetic Akita mice characterized by reduced contraction in response to phenylephrine and the downregulation of inflammatory genes (VCAM-1, ICAM-1, p65, IL-1β) and pro-oxidant genes (Nox1 and Nox2). Furthermore, reduced systemic and vascular oxidative stress levels were observed in diabetic Akita mice. dh404 exhibited cytoprotective effects in diabetic HAECs in vitro, reflected by significant upregulation of Nrf2-responsive genes, NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), reduction of oxidative stress markers (O 2 ·- and H 2 O 2 ), inhibition of inflammatory genes (VCAM-1 and the p65 subunit of NF-κB) and attenuation of leukocyte-endothelial interactions (P < 0.05 for all in vitro and in vivo parameters; one or two-way ANOVA as appropriate with post hoc testing). These studies demonstrate that upregulation of Nrf2 by dh404 represents a novel therapeutic strategy to limit diabetes-associated vascular injury.

  12. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats.

    PubMed

    Chu, Shuang; Mao, Xiaodong; Guo, Hengjiang; Wang, Li; Li, Zezheng; Zhang, Yang; Wang, Yunman; Wang, Hao; Zhang, Xuemei; Peng, Wen

    2017-03-01

    Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.

  13. Aortic valve dysfunction and aortic dilation in adults with coarctation of the aorta.

    PubMed

    Clair, Mathieu; Fernandes, Susan M; Khairy, Paul; Graham, Dionne A; Krieger, Eric V; Opotowsky, Alexander R; Singh, Michael N; Colan, Steven D; Meijboom, Erik J; Landzberg, Michael J

    2014-01-01

    To determine the prevalence of aortic valve dysfunction, aortic dilation, and aortic valve and ascending aortic intervention in adults with coarctation of the aorta (CoA). Aortic valve dysfunction and aortic dilation are rare among children and adolescents with CoA. With longer follow-up, adults may be more likely to have progressive disease. We retrospectively reviewed all adults with CoA, repaired or unrepaired, seen at our center between 2004 and 2010. Two hundred sixteen adults (56.0% male) with CoA were identified. Median age at last evaluation was 28.3 (range 18.0 to 75.3) years. Bicuspid aortic valve (BAV) was present in 65.7%. At last follow-up, 3.2% had moderate or severe aortic stenosis, and 3.7% had moderate or severe aortic regurgitation. Dilation of the aortic root or ascending aorta was present in 28.0% and 41.6% of patients, respectively. Moderate or severe aortic root or ascending aortic dilation (z-score > 4) was present in 8.2% and 13.7%, respectively. Patients with BAV were more likely to have moderate or severe ascending aortic dilation compared with those without BAV (19.5% vs. 0%; P < 0.001). Age was associated with ascending aortic dilation (P = 0.04). At most recent follow-up, 5.6% had undergone aortic valve intervention, and 3.2% had aortic root or ascending aortic replacement. In adults with CoA, significant aortic valve dysfunction and interventions during early adulthood were uncommon. However, aortic dilation was prevalent, especially of the ascending aorta, in patients with BAV. © 2013 Wiley Periodicals, Inc.

  14. Aortic assessment of bicuspid aortic valve patients and their first-degree relatives.

    PubMed

    Straneo, Pablo; Parma, Gabriel; Lluberas, Natalia; Marichal, Alvaro; Soca, Gerardo; Cura, Leandro; Paganini, Juan J; Brusich, Daniel; Florio, Lucia; Dayan, Victor

    2017-03-01

    Background Bicuspid aortic valve patients have an increased risk of aortic dilatation. A deficit of nitric oxide synthase has been proposed as the causative factor. No correlation between flow-mediated dilation and aortic diameter has been performed in patients with bicuspid aortic valves and normal aortic diameters. Being a hereditary disease, we compared echocardiographic features and endothelial function in these patients and their first-degree relatives. Methods Comprehensive physical examinations, routine laboratory tests, transthoracic echocardiography, and measurements of endothelium-dependent and non-dependent flow-mediated vasodilatation were performed in 18 bicuspid aortic valve patients (14 type 1 and 4 type 2) and 19 of their first-degree relatives. Results The first-degree relatives were younger (36.7 ± 18.8 vs. 50.5 ± 13.9 years, p = 0.019) with higher ejection fractions (64.6% ± 1.7% vs. 58.4% ± 9.5%, p = 0.015). Aortic diameters indexed to body surface area were similar in both groups, the except the tubular aorta which was larger in bicuspid aortic valve patients (19.3 ± 2.7 vs. 17.4 ± 2.2 mm·m -2 , p = 0.033). Flow-dependent vasodilation was similar in both groups. A significant inverse correlation was found between non-flow-dependent vasodilation and aortic root diameter in patients with bicuspid aortic valve ( R = -0.57, p = 0.05). Conclusions Bicuspid aortic valve patients without aortopathy have larger ascending aortic diameters than their first-degree relatives. Endothelial function is similar in both groups, and there is no correlation with ascending aorta diameter. Nonetheless, an inverse correlation exists between non-endothelial-dependent dilation and aortic root diameter in bicuspid aortic valve patients.

  15. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats.

    PubMed

    Cabassi, A; Dumont, E C; Girouard, H; Bouchard, J F; Le Jossec, M; Lamontagne, D; Besner, J G; de Champlain, J

    2001-07-01

    Peroxynitrite (ONOO-), the product of superoxide and nitric oxide, seems to be involved in vascular alterations in hypertension. To evaluate the effects of ONOO- on endothelium-dependent and independent aortic vascular responsiveness, oxidized/reduced glutathione balance (GSSG/GSH), malondialdehyde aortic content, and the formation of 3-nitrotyrosine (3-NT), a stable marker of ONOO-, in N-acetylcysteine (NAC)-treated normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In SHR only, NAC significantly reduced heart rate and systolic, but not diastolic, blood pressure. It also improved endothelium-dependent aortic relaxation in SHR, but not after exposure to ONOO-. Endothelium-dependent and independent aortic relaxations were markedly impaired by ONOO- in both strains of rat. NAC partially protected SHR against the ONOO- -induced reduction in endothelium-independent relaxation. Aortic GSSG/GSH ratio and malondialdehyde, which were higher in SHR than in WKY rats, showed a greater increase in SHR after exposure to ONOO-. NAC decreased GSSG/GSH and malondialdehyde in both strains of rat before and after exposure to ONOO-. The 3-NT concentration, which was similar in both strains of rat under basal conditions, was greater in SHR than in WKY rats after the addition of ONOO-, with a reduction only in NAC-treated SHR. These findings suggest an increased vulnerability of SHR aortas to the effects of ONOO- as compared with those of WKY rats. The selective improvements produced by NAC, in systolic arterial pressure, heart rate, aortic endothelial function, ONOO- -induced impairment of endothelium-independent relaxation, aortic GSSG/GSH balance, malondialdehyde content and 3-NT formation in SHR suggest that chronic administration of NAC may have a protective effect against aortic vascular dysfunction in the SHR model of hypertension.

  16. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease.

    PubMed

    Aminzadeh, Mohammad A; Reisman, Scott A; Vaziri, Nosratola D; Shelkovnikov, Stan; Farzaneh, Seyed H; Khazaeli, Mahyar; Meyer, Colin J

    2013-01-01

    Chronic kidney disease (CKD) is associated with endothelial dysfunction and accelerated cardiovascular disease, which are largely driven by systemic oxidative stress and inflammation. Oxidative stress and inflammation in CKD are associated with and, in part, due to impaired activity of the cytoprotective transcription factor Nrf2. RTA dh404 is a synthetic oleanane triterpenoid compound which potently activates Nrf2 and inhibits the pro-inflammatory transcription factor NF-κB. This study was designed to test the effects of RTA dh404 on endothelial function, inflammation, and the Nrf2-mediated antioxidative system in the aorta of rats with CKD induced by 5/6 nephrectomy. Sham-operated rats served as controls. Subgroups of CKD rats were treated orally with RTA dh404 (2 mg/kg/day) or vehicle for 12 weeks. The aortic rings from untreated CKD rats exhibited a significant reduction in the acetylcholine-induced relaxation response which was restored by RTA dh404 administration. Impaired endothelial function in the untreated CKD rats was accompanied by significant reduction of Nrf2 activity (nuclear translocation) and expression of its cytoprotective target genes, as well as accumulation of nitrotyrosine and upregulation of NAD(P)H oxidases, 12-lipoxygenase, MCP-1, and angiotensin II receptors in the aorta. These abnormalities were ameliorated by RTA dh404 administration, as demonstrated by the full or partial restoration of the expression of all the above analytes to sham control levels. Collectively, the data demonstrate that endothelial dysfunction in rats with CKD induced by 5/6 nephrectomy is associated with impaired Nrf2 activity in arterial tissue, which can be reversed with long term administration of RTA dh404.

  17. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults.

    PubMed

    Wilson, Carole L; Gough, Peter J; Chang, Cindy A; Chan, Christina K; Frey, Jeremy M; Liu, Yonggang; Braun, Kathleen R; Chin, Michael T; Wight, Thomas N; Raines, Elaine W

    2013-01-01

    Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf(-/-) valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression.

    PubMed

    Toussaint, Jimmy; Raval, Chirag Bharavi; Nguyen, Tieuvi; Fadaifard, Hadi; Joshi, Shripad; Wolberg, George; Quarfordt, Steven; Jan, Kung-Ming; Rumschitzki, David S

    2017-11-01

    Numerous studies have examined the role of aquaporins in osmotic water transport in various systems, but virtually none have focused on the role of aquaporin in hydrostatically driven water transport involving mammalian cells save for our laboratory's recent study of aortic endothelial cells. Here, we investigated aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genetically altered Wistar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two-kidney, one-clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry and function by measuring the pressure-driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We used them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2 h of forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. NEW & NOTEWORTHY The aortic endothelia of two high-renin hypertensive rat models express greater than two times the aquaporin-1 and, at low pressures, have greater than two times the endothelial hydraulic conductivity of normotensive rats. Data are consistent with theory predicting that higher endothelial aquaporin-1 expression raises the critical pressure for subendothelial intima compression and for artery wall hydraulic conductivity to drop. Copyright © 2017 the American Physiological Society.

  19. Intermittent, Non Cyclic Severe Mechanical Aortic Valve Regurgitation

    PubMed Central

    Choi, Jong Hyun; Song, Seunghwan; Lee, Myung-Yong

    2013-01-01

    Mechanical aortic prosthesis dysfunction can result from thrombosis or pannus formation. We describe an unusual case of intermittent, non cyclic mechanical aortic prosthesis dysfunction due to pannus formation with thrombus in the absence of systolic restriction of disk excursion, that presented with intermittent severe aortic regurgitation. PMID:24459568

  20. Beyond type 2 diabetes, obesity and hypertension: an axis including sleep apnea, left ventricular hypertrophy, endothelial dysfunction, and aortic stiffness among Mexican Americans in Starr County, Texas.

    PubMed

    Hanis, Craig L; Redline, Susan; Cade, Brian E; Bell, Graeme I; Cox, Nancy J; Below, Jennifer E; Brown, Eric L; Aguilar, David

    2016-06-08

    There is an increasing appreciation for a series of less traditional risk factors that should not be ignored when considering type 2 diabetes, obesity, hypertension, and cardiovascular disease. These include aortic stiffness, cardiac structure, impaired endothelial function and obstructive sleep apnea. They are associated to varying degrees with each disease categorization and with each other. It is not clear whether they represent additional complications, concomitants or antecedents of disease. Starr County, Texas, with its predominantly Mexican American population has been shown previously to bear a disproportionate burden of the major disease categories, but little is known about the distribution of these less traditional factors. Type 2 diabetes, obesity and hypertension frequencies were determined through a systematic survey of Starr County conducted from 2002 to 2006. Individuals from this examination and an enriched set with type 2 diabetes were re-examined from 2010 to 2014 including assessment of cardiac structure, sleep apnea, endothelial function and aortic stiffness. Individual and combined frequencies of these inter-related (i.e., axis) conditions were estimated and associations evaluated. Household screening of 5230 individuals aged 20 years and above followed by direct physical assessment of 1610 identified 23.7 % of men and 26.7 % of women with type 2 diabetes, 46.2 and 49.5 % of men and women, respectively with obesity and 32.1 and 32.4 % with hypertension. Evaluation of pulse wave velocity, left ventricular mass, endothelial function and sleep apnea identified 22.3, 12.7, 48.6 and 45.2 % of men as having "at risk" values for each condition, respectively. Corresponding numbers in women were 16.0, 17.9, 23.6 and 28.8 %. Cumulatively, 88 % of the population has one or more of these while 50 % have three or more. The full axis of conditions is high among Mexican Americans in Starr County, Texas. Individual and joint patterns suggest a genesis well before overt disease. Whether they are all mediated by common underlying factors or whether there exist multiple mechanisms remains to be seen.

  1. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation, amelioration of lipid profiles, anti-inflammatory action and anti-oxidative effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Aortic, carotid intima-media thickness and flow- mediated dilation as markers of early atherosclerosis in a cohort of pediatric patients with rheumatic diseases.

    PubMed

    Del Giudice, Emanuela; Dilillo, Anna; Tromba, Luciana; La Torre, Giuseppe; Blasi, Sara; Conti, Fabrizio; Viola, Franca; Cucchiara, Salvatore; Duse, Marzia

    2018-06-01

    The aims of this study were to identify the presence of endothelial dysfunction as a marker of early atherosclerosis by measuring aortic and carotid intimal-medial thickness (aIMT and cIMT) and flow-mediated dilation (FMD) and their correlation with traditional and no traditional risk factors for atherosclerosis in children with rheumatic diseases. Thirty-nine patients (mean age 15.3 ± 5.7 years), 23 juvenile idiopathic arthritis, 9 juvenile spondyloarthropathies, 7 connective tissue diseases (mean disease duration and onset respectively 5 ± 3.6 and 10 ± 5 years), and 52 healthy children matched for sex and age were enrolled. Demographic data (age, sex, familiarity for cardiovascular disease), traditional risk factors for atherosclerosis (BMI, active and passive smoking, dyslipidemia), activity disease indexes (reactive count protein, erythrocyte sedimentation rate) autoantibodies, and complement tests were collected. aIMT, cIMT, and FMD were assessed following a standardized protocol by high-resolution ultrasonography. Patients resulted significantly more exposed to passive smoking and had a lower BMI and higher homocysteine level than controls. cIMT and aIMT were significantly higher in patients than controls (p < 0.001) and correlated with age at diagnosis (p < 0.001 r 0.516 and 0.706, respectively) but not with mean disease duration. FMD % was significantly reduced in patients compared to controls (p < 0.001). Subclinical atherosclerosis occurs in pediatric rheumatic diseases, mainly in early onset forms, and aIMT is an earlier marker of preclinical atherosclerosis. Premature endothelial dysfunction could be included in the follow-up of children with rheumatic disorders to plan prevention strategies of cardiovascular disease already in pediatrics.

  3. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study.

    PubMed

    Flint, Nir; Hamburg, Naomi M; Holbrook, Monika; Dorsey, Pamela G; LeLeiko, Rebecca M; Berger, Alvin; de Cock, Peter; Bosscher, Douwina; Vita, Joseph A

    2014-01-01

    Sugar substitutes are important in the dietary management of diabetes mellitus. Erythritol is a non-caloric dietary bulk sweetener that reverses endothelial dysfunction in diabetic rats. We completed a pilot study to examine the effects of erythritol on vascular function in patients with type 2 diabetes mellitus. Participants (n = 24) consumed erythritol 36 g/day as an orange-flavored beverage for 4 weeks and a single dose of 24 g during the baseline and final visits. We assessed vascular function before and after acute (2 h) and chronic (4 weeks) erythritol consumption. Acute erythritol improved endothelial function measured by fingertip peripheral arterial tonometry (0.52 ± 0.48 to 0.87 ± 0.29 au, P = 0.005). Chronic erythritol decreased central pulse pressure (47 ± 13 to 41 ± 9 mmHg, P = 0.02) and tended to decrease carotid-femoral pulse wave velocity (P = 0.06). Thus, erythritol consumption acutely improved small vessel endothelial function, and chronic treatment reduced central aortic stiffness. Erythritol may be a preferred sugar substitute for patients with diabetes mellitus.

  4. Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534

  5. Glutathione system participation in thoracic aneurysms from patients with Marfan syndrome.

    PubMed

    Zúñiga-Muñoz, Alejandra María; Pérez-Torres, Israel; Guarner-Lans, Verónica; Núñez-Garrido, Elías; Velázquez Espejel, Rodrigo; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Soto, María Elena

    2017-05-01

    Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.

  6. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    PubMed Central

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  7. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C.

    PubMed

    Tang, Y; Li, G D

    2004-12-01

    Overwhelming evidence indicates that endothelial cell dysfunction in diabetes is characterised by diminished endothelium-dependent relaxation, but the matter of the underlying molecular mechanism remains unclear. As nitric oxide (NO) production from the endothelium is the major player in endothelium-mediated vascular relaxation, we investigated the effects of high glucose on NO production, and the possible alterations of signalling pathways implicated in this scenario. NO production and intracellular Ca(2+) levels ([Ca(2+)](i)) were assessed using the fluorescent probes 4,5-diaminofluorescein diacetate and fura-2 respectively. Exposure of cultured bovine aortic endothelial cells to high glucose for 5 or 10 days significantly reduced NO production induced by bradykinin (but not by Ca(2+) ionophore) in a time- and dose-dependent manner. This was probably due to an attenuation in bradykinin-induced elevations of [Ca(2+)](i) under these conditions, since a close correlation between [Ca(2+)](i) increases and NO generation was observed in intact bovine aortic endothelial cells. Both bradykinin-promoted intracellular Ca(2+) mobilisation and extracellular Ca(2+) entry were affected. Moreover, bradykinin-induced formation of Ins(1,4,5)P(3), a phospholipase C product leading to increases in [Ca(2+)](i), was also inhibited following high glucose culture. This abnormality was not attributable to a decrease in inositol phospholipids, but possibly to a reduction in the number of bradykinin receptors. The alterations in NO production, the increases in [Ca(2+)](i), and the bradykinin receptor number due to high glucose could be largely reversed by protein kinase C inhibitors and D: -alpha-tocopherol (antioxidant). Chronic exposure to high glucose reduces NO generation in endothelial cells, probably by impairing phospholipase-C-mediated Ca(2+) signalling due to excess protein kinase C activation. This defect in NO release may contribute to the diminished endothelium-dependent relaxation and thus to the development of cardiovascular diseases in diabetes.

  8. Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving β-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo

    2012-07-01

    In type 2 diabetes, although Akt/endothelial NO synthase (eNOS) activation is known to be negatively regulated by G protein-coupled receptor kinase 2 (GRK2), it is unclear whether the GRK2 inhibitor would have therapeutic effects. Here we examined the hypotensive effect of the GRK2 inhibitor and its efficacy agonist both vascular (aortic) endothelial dysfunction (focusing especially on the Akt/eNOS pathway) and glucose intolerance in two type 2 diabetic models (ob/ob mice and nicotinamide+streptozotocin-induced diabetic mice). Mice were treated with a single injection of the GRK2 inhibitor or vehicle, and the therapeutic effects were compared by examining vascular function and by Western blotting. The GRK2 inhibitor lowered blood pressure in both diabetic models but not in their age-matched controls. The GRK2 inhibitor significantly improved clonidine-induced relaxation only in diabetic (ob/ob and DM) mice, with accompanying attenuations of GRK2 activity and translocation to the plasma membrane. These protective effects of the GRK2 inhibitor may be attributable to the augmented Akt/eNOS pathway activation (as evidenced by increases in Akt phosphorylation at Ser(473) and at Thr(308), and eNOS phosphorylation at Ser(1177)) and to the prevention of the GRK2 translocation and promotion of β-arrestin 2 translocation to the membrane under clonidine stimulation. Moreover, the GRK2 inhibitor significantly improved the glucose intolerance seen in the ob/ob mice. Our work provides the first evidence that in diabetes, the GRK2 inhibitor ameliorates vascular endothelial dysfunction via the Akt/eNOS pathway by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation under clonidine stimulation, thereby contributing to a blood pressure-lowering effect. We propose that the GRK2 inhibitor may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.

  9. NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart.

    PubMed

    Zhang, Ping; Hou, Mingxiao; Li, Yunfang; Xu, Xin; Barsoum, Michel; Chen, Yingjie; Bache, Robert J

    2009-03-01

    Increased reactive oxygen species (ROS) produced by the failing heart can react with nitric oxide (NO), thereby decreasing NO bioavailability. This study tested the hypothesis that increased ROS generation contributes to coronary endothelial dysfunction in the failing heart. Congestive heart failure (CHF) was produced in six dogs by ventricular pacing at 240 beats/min for 4 wk. Studies were performed at rest and during treadmill exercise under control conditions and after treatment with the NADPH oxidase inhibitor and antioxidant apocynin (4 mg/kg iv). Apocynin caused no significant changes in heart rate, aortic pressure, left ventricular (LV) systolic pressure, LV end-diastolic pressure, or maximum rate of LV pressure increase at rest or during exercise in normal or CHF dogs. Apocynin caused no change in coronary blood flow (CBF) in normal dogs but increased CBF at rest and during exercise in animals with CHF (P < 0.05). Intracoronary ACh caused dose-dependent increases of CBF that were blunted in CHF. Apocynin had no effect on the response to ACh in normal dogs but augmented the response to ACh in CHF dogs (P < 0.05). The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were significantly greater in failing than in normal myocardium. Furthermore, coelenterazine chemiluminescence for O(2)(-) was more than twice normal in failing myocardium, and this difference was abolished by apocynin. Western blot analysis of myocardial lysates demonstrated that the p47(phox) and p22(phox) subunits of NADPH were significantly increased in the failing hearts, while real-time PCR demonstrated that Nox2 mRNA was significantly increased. The data indicate that increased ROS generation in the failing heart is associated with coronary endothelial dysfunction and suggest that NADPH oxidase may contribute to this abnormality.

  10. Collagen-induced arthritis increases inducible nitric oxide synthase not only in aorta but also in the cardiac and renal microcirculation of mice.

    PubMed

    Palma Zochio Tozzato, G; Taipeiro, E F; Spadella, M A; Marabini Filho, P; de Assis, M R; Carlos, C P; Girol, A P; Chies, A B

    2016-03-01

    Rheumatoid arthritis (RA) may promote endothelial dysfunction. This phenomenon requires further investigation, especially in collagen-induced arthritis (CIA), as it is considered the experimental model most similar to RA. The objectives of this study were to identify CIA-induced changes in noradrenaline (NE) and acetylcholine (ACh) responses in mice aortas that may suggest endothelial dysfunction in these animals. Moreover, we characterize CIA-induced modifications in inducible nitric oxide synthase (iNOS) expression in the aortas and cardiac and renal tissues taken from these mice that may be related to possible endothelial dysfunction. Male DBA/1J mice were immunized with 100 μg of emulsified bovine collagen type II (CII) plus complete Freund's adjuvant. Twenty-one days later, these animals received a boost of an additional 100 μg plus incomplete Freund's adjuvant. Fifteen days after the onset of the disease, aortic rings from CIA and control mice were challenged with NE and ACh in an organ bath. In these animals, iNOS was detected through immunohistochemical analysis of aorta, heart and kidneys. Plasma nitrite concentration was determined using the Griess reaction. CIA did not change NE or ACh responses in mice aorta but apparently increased the iNOS expression not only in aorta, but also in cardiac and renal microcirculation. In parallel, CIA reduced nitrite plasma concentration. In mice, CIA appears to increase the presence of iNOS in aorta, as well as in heart and in kidney microcirculation. This iNOS increase occurs apparently in parallel to a reduction of the bioavailability of NO. This phenomenon does not appear to change NE or ACh responses in aorta. © 2015 British Society for Immunology, Clinical and Experimental Immunology.

  11. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, Catherine; Staehli, Barbara E.; Zurich Center for Integrative Human Physiology

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings weremore » suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.« less

  12. A time course study on prothrombotic parameters and their modulation by anti-platelet drugs in hyperlipidemic hamsters.

    PubMed

    Singh, Vishal; Jain, Manish; Prakash, Prem; Misra, Ankita; Khanna, Vivek; Tiwari, Rajiv Lochan; Keshari, Ravi Shankar; Singh, Shivendra; Dikshit, Madhu; Barthwal, Manoj Kumar

    2011-06-01

    The present study was undertaken to assess the chronology of major pathological events associated with high cholesterol (HC) diet and their modulation by anti-platelet drugs. Male Golden Syrian hamsters were fed HC diet up to 90 days. Plasma lipid, glucose and coagulation parameters (commercial kits), platelet activation (whole blood aggregation and static adhesion), endothelial dysfunction (aortic ring vasoreactivity), splenocyte TNF-α, IFN-γ and iNOS mRNA transcripts (RT-PCR), and ferric chloride (time to occlusion) induced thrombosis were monitored at 15, 30, 60, and 90 days after HC feeding and compared with normolipidemic hamsters. A significant increase in plasma lipid levels was observed at 15 days of HC feeding, but other parameters remain unaltered. Enhanced ADP, collagen, and thrombin-induced platelet aggregation, splenocyte TNF-α expression along with endothelial dysfunction were observed from 30 to 90 days of HC feeding. Platelet adhesion on collagen-/fibrinogen-coated surface and IFN-γ expression were augmented only after 60 days, while enhanced iNOS expression, reduction in thrombin time, and potentiation of ferric chloride-induced thrombosis was observed only at 90 days of HC feeding. Thus, pathological changes induced by HC diet depend on the duration and extent of hyperlipidemia. Moreover, hamsters treated with anti-platelet drugs aspirin (5 mg/kg) or clopidogrel (10 mg/kg) along with HC feeding exhibited reduction in platelet activation as well as subsequent changes observed in the abovementioned parameters following HC feeding. Since reduction in TNF-α was associated with reversion in endothelial dysfunction and prothrombotic state, the role of platelets is implicated in the pathological changes associated with HC feeding.

  13. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  14. Analysis of vascular endothelial dysfunction genes and related pathways in obesity through systematic bioinformatics.

    PubMed

    Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao

    2015-01-01

    Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.

  15. G Protein–Coupled Receptor Kinase 2, With β-Arrestin 2, Impairs Insulin-Induced Akt/Endothelial Nitric Oxide Synthase Signaling in ob/ob Mouse Aorta

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo

    2012-01-01

    In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein–coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction. PMID:22688330

  16. G protein-coupled receptor kinase 2, with β-arrestin 2, impairs insulin-induced Akt/endothelial nitric oxide synthase signaling in ob/ob mouse aorta.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo

    2012-08-01

    In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein-coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction.

  17. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI: NCC-9-58-162)

  18. Role of Copper and Homocysteine in Pressure Overload Heart Failure

    PubMed Central

    Hughes, William M.; Rodriguez, Walter E.; Rosenberger, Dorothea; Chen, Jing; Sen, Utpal; Tyagi, Neetu; Moshal, Karni S.; Vacek, Thomas; Kang, Y. James

    2009-01-01

    Elevated levels of homocysteine (Hcy) (known as hyperhomocysteinemia HHcy) are involved in dilated cardiomyopathy. Hcy chelates copper and impairs copper-dependent enzymes. Copper deficiency has been linked to cardiovascular disease. We tested the hypothesis that copper supplement regresses left ventricular hypertrophy (LVH), fibrosis and endothelial dysfunction in pressure overload DCM mice hearts. The mice were grouped as sham, sham + Cu, aortic constriction (AC), and AC + Cu. Aortic constriction was performed by transverse aortic constriction. The mice were treated with or without 20 mg/kg copper supplement in the diet for 12 weeks. The cardiac function was assessed by echocardiography and electrocardiography. The matrix remodeling was assessed by measuring matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMPs), and lysyl oxidase (LOX) by Western blot analyses. The results suggest that in AC mice, cardiac function was improved with copper supplement. TIMP-1 levels decreased in AC and were normalized in AC + Cu. Although MMP-9, TIMP-3, and LOX activity increased in AC and returned to baseline value in AC + Cu, copper supplement showed no significant effect on TIMP-4 activity after pressure overload. In conclusion, our data suggest that copper supplement helps improve cardiac function in a pressure overload dilated cardiomyopathic heart. PMID:18679830

  19. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments

    PubMed Central

    Herradón, Esperanza; González, Cristina; Uranga, José A.; Abalo, Raquel; Martín, Ma I.; López-Miranda, Visitacion

    2017-01-01

    In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations. PMID:28533750

  20. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments.

    PubMed

    Herradón, Esperanza; González, Cristina; Uranga, José A; Abalo, Raquel; Martín, Ma I; López-Miranda, Visitacion

    2017-01-01

    In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.

  1. Lidocaine Prevents Oxidative Stress-Induced Endothelial Dysfunction of the Systemic Artery in Rats With Intermittent Periodontal Inflammation.

    PubMed

    Saito, Takumi; Yamamoto, Yasuhiro; Feng, Guo-Gang; Kazaoka, Yoshiaki; Fujiwara, Yoshihiro; Kinoshita, Hiroyuki

    2017-06-01

    Periodontal inflammation causes endothelial dysfunction of the systemic artery. However, it is unknown whether the use of local anesthetics during painful dental procedures alleviates periodontal inflammation and systemic endothelial function. This study was designed to examine whether the gingival or systemic injection of lidocaine prevents oxidative stress-induced endothelial dysfunction of the systemic artery in rats with intermittent periodontal inflammation caused by lipopolysaccharides (LPS). Some rats received 1500 µg LPS injections to the gingiva during a week interval from the age of 8 to 11 weeks (LPS group). Lidocaine (3 mg/kg), LPS + lidocaine (3 mg/kg), LPS + lidocaine (1.5 mg/kg), and LPS + lidocaine (3 mg/kg, IP) groups simultaneously received gingival 1.5 or 3 mg/kg or IP 3 mg/kg injection of lidocaine on the same schedule as the gingival LPS. Isolated aortas or mandibles were subjected to the evaluation of histopathologic change, isometric force recording, reactive oxygen species, and Western immunoblotting. Mean blood pressure and heart rate did not differ among the control, LPS, LPS + lidocaine (3 mg/kg), and lidocaine (3 mg/kg) groups. LPS application reduced acetylcholine (ACh, 10 to 10 mol/L)-induced relaxation (29% difference at ACh 3 × 10 mol/L, P = .01), which was restored by catalase. Gingival lidocaine (1.5 and 3 mg/kg) dose dependently prevented the endothelial dysfunction caused by LPS application (24.5%-31.1% difference at ACh 3 × 10 mol/L, P = .006 or .001, respectively). Similar to the gingival application, the IP injection of lidocaine (3 mg/kg) restored the ACh-induced dilation of isolated aortas from rats with the LPS application (27.5% difference at ACh 3 × 10 mol/L, P < .001). Levels of reactive oxygen species were double in aortas from the LPS group (P < .001), whereas the increment was abolished by polyethylene glycol-catalase, gingival lidocaine (3 mg/kg), or the combination. The LPS induced a 4-fold increase in the protein expression of tumor necrosis factor-α in the periodontal tissue (P < .001), whereas the lidocaine (3 mg/kg) coadministration partly reduced the levels. Lidocaine application also decreased the protein expression of the nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox, which was enhanced by the gingival LPS (5.6-fold increase; P < .001). Lidocaine preserved the aortic endothelial function through a decrease in arterial reactive oxygen species produced by nicotinamide adenine dinucleotide phosphate oxidase and periodontal tumor necrosis factor-α levels in rats with periodontal inflammation. These results suggest the beneficial effect of the gingival application of local anesthetics on the treatment of periodontal diseases on endothelial function of systemic arteries.

  2. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall

    PubMed Central

    Guri, Amir J.; Misyak, Sarah A.; Hontecillas, Raquel; Hasty, Alyssa; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2009-01-01

    Abscisic acid (ABA) is a natural phytohormone which improves insulin sensitivity and reduces adipose tissue inflammation when supplemented into diets of obese mice. The objective of this study was to investigate the mechanisms by which abscisic acid (ABA) prevents or ameliorates atherosclerosis. Apolipoprotein E-deficient (ApoE −/−) mice were fed high-fat diets with or without ABA for 84 days. Systolic blood pressure was assessed on days 0, 28, 56, and 72. Gene expression, immune cell infiltration, and histological lesions were evaluated in the aortic root wall. Human aortic endothelial cells were used to examine the effect of ABA on 3’, 5’-cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) production in vitro. We report that ABA-treated mice had significantly improved systolic blood pressure and decreased accumulation of F4/80+CD11b+ macrophages and CD4+ T cells in aortic root walls. At the molecular level, ABA significantly enhanced aortic endothelial nitric oxide synthase (eNOS) and tended to suppress aortic vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression and plasma MCP-1 concentrations. ABA also caused a dose-dependent increase in intracellular concentrations of cAMP and NO and upregulated eNOS mRNA expression in human aortic endothelial cells. This is the first report showing that ABA prevents or ameliorates atherosclerosis-induced hypertension, immune cell recruitment into the aortic root wall, and upregulates aortic eNOS expression in ApoE−/− mice. PMID:20092994

  3. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall.

    PubMed

    Guri, Amir J; Misyak, Sarah A; Hontecillas, Raquel; Hasty, Alyssa; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) is a natural phytohormone which improves insulin sensitivity and reduces adipose tissue inflammation when supplemented into diets of obese mice. The objective of this study was to investigate the mechanisms by which ABA prevents or ameliorates atherosclerosis. apolipoprotein E-deficient (ApoE(-/-)) mice were fed high-fat diets with or without ABA for 84 days. Systolic blood pressure was assessed on Days 0, 28, 56 and 72. Gene expression, immune cell infiltration and histological lesions were evaluated in the aortic root wall. Human aortic endothelial cells were used to examine the effect of ABA on 3',5'-cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) production in vitro. We report that ABA-treated mice had significantly improved systolic blood pressure and decreased accumulation of F4/80(+)CD11b(+) macrophages and CD4(+) T cells in aortic root walls. At the molecular level, ABA significantly enhanced aortic endothelial nitric oxide synthase (eNOS) and tended to suppress aortic vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression and plasma MCP-1 concentrations. ABA also caused a dose-dependent increase in intracellular concentrations of cAMP and NO and up-regulated eNOS mRNA expression in human aortic endothelial cells. This is the first report showing that ABA prevents or ameliorates atherosclerosis-induced hypertension, immune cell recruitment into the aortic root wall and up-regulates aortic eNOS expression in ApoE(-/-) mice. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Inorganic nitrite supplementation for healthy arterial aging

    PubMed Central

    DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.

    2014-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999

  5. Light cigarette smoking and vascular function.

    PubMed

    Ciftçi, Ozgür; Günday, Murat; Calişkan, Mustafa; Güllü, Hakan; Güven, Aytekin; Müderrisoğlu, Haldun

    2013-06-01

    The present study was undertaken to test the hypothesis that smoking induces peripheral endothelial dysfunction and altered function in central conduit arteries. A total of 22 healthy volunteers (10 women and 12 men; mean age 25.3 +/- 5.8 years) were included. At baseline, brachial artery flowmediated dilatation (FMD), aortic stiffness index (ASI), aortic distensibility (AoD), and aortic elastic modulus (AoEM) of all subjects were measured. On the 2nd day, the subjects were assigned to smoke either 1 light (0.6 mg of nicotine, 8 mg of tar, and 9 mg of carbon monoxide) or 1 regular cigarette (0.9 mg of nicotine, 12 mg of tar, and 12 mg of carbon monoxide) and the measurements were repeated for all subjects 20 minutes following smoking. After 15 days, the subjects were assigned to smoke 1 cigarette of the type that was not smoked on the 2nd day, and the same measurements were performed 20 minutes after smoking. In response to smoking 1 light cigarette, FMD values declined from 15.0 +/- 6.8% to 9.1 +/- 2.9% (P = 0.002). After smoking 1 regular cigarette, FMD values declined from 15.0 +/- 6.8% to 9.4 +/- 4.8% (P= 0.002). Aortic elasticity and left ventricular diastolic functions (LVDF) were significantly impaired by both types of cigarettes. Smoking light cigarettes has similar acute detrimental effects on FMD, LVDF, ASI, AoD, and AoEM as regular cigarettes.

  6. Effect of melatonin on vascular responses in aortic rings of aging rats.

    PubMed

    Reyes-Toso, Carlos F; Obaya-Naredo, Daniel; Ricci, Conrado R; Planells, Fernando M; Pinto, Jorge E; Linares, Laura M; Cardinali, Daniel P

    2007-04-01

    In old animals a marked reduction in endothelium-dependent relaxation occurs. Since there is evidence that the endothelial dysfunction associated with aging may be partly related to the local formation of reactive oxygen species, the purpose of this study was to examine the effect of the natural antioxidant melatonin (10(-5)mol/l) on in vitro contractility of aged aortic rings under conditions of increased oxidative stress (40 m mol/l glucose concentration in medium). Experiments were carried out in 18-20 months old, Wistar male rats, using adult (6-7 months old) animals as controls. A higher plasma lipid peroxidation was found in aged rats as compared to the younger ones. In a first experiment, dose-response curves for acetylcholine-induced relaxation of aortic rings were conducted. Analyzed as a main factor in a factorial ANOVA, age decreased and melatonin augmented the relaxing response to acetylcholine. melatonin's restoring effect on aortic ring relaxation was found in aged aortic rings only and was more pronounced in the presence of a high glucose medium. In a second experiment, the effect of melatonin on the contractility response to phenylephrine of intact or endothelium-denuded aortic rings obtained from aged or control rats was examined in normal or high glucose medium. A main factor analysis in the factorial ANOVA indicated that age and operation augmented, and melatonin decreased, aortic ring contractility response to phenylephrine. Melatonin's restoring effect on aortic contractility was seen in aged aortic rings. The effect of age or a high glucose medium on phenylephrine-induced contractility was more pronounced in the absence of an intact endothelium. Aging did not affect the relaxant response of intact or endothelium-denuded rings to sodium nitroprusside. The results support the improvement by melatonin of vascular response in aging rats, presumably via its antioxidant activity.

  7. Distinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: Evidence for a protective role for glucosamine in atherosclerosis

    PubMed Central

    Duan, Wenlan; Paka, Latha; Pillarisetti, Sivaram

    2005-01-01

    Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine. In fact, glucosamine by increasing HSPG showed atheroprotective effects. PMID:16207378

  8. Noncardiogenic Pulmonary Edema as a Result of Urosepsis

    DTIC Science & Technology

    2010-03-01

    cause could be aortic stenosis , which may require surgery to correct, or it could be coronary artery disease, which can be treated through a variety...systolic dysfunction. Left ventricular dysfunction can occur due to many processes such as aortic or mitral valve dysfunction, coronary artery disease

  9. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops.

    PubMed

    Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Kinoshita, Shigeru

    2014-11-01

    Corneal endothelial dysfunction accompanied by visual disturbance is a primary indication for corneal endothelial transplantation. However, despite the value and potential of endothelial graft surgery, a strictly pharmacological approach for treating corneal endothelial dysfunction remains an attractive proposition. Previously, we reported that the selective Rho-associated kinase (ROCK) inhibitor Y-27632 promotes cell adhesion and proliferation, and inhibits the apoptosis of primate corneal endothelial cells in culture. These findings have led us to develop a novel medical treatment for the early phase of corneal endothelial disease using ROCK inhibitor eye drops. In rabbit and monkey models of partial endothelial dysfunction, we showed that corneal endothelial wound healing was accelerated via the topical application of ROCK inhibitor to the ocular surface, resulting in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. Based on these animal studies, we are now attempting to advance the clinical application of ROCK inhibitor eye drops for patients with corneal endothelial dysfunction. A pilot clinical study was performed at the Kyoto Prefectural University of Medicine, and the effects of Y-27632 eye drops after transcorneal freezing were evaluated in 8 patients with corneal endothelial dysfunction. We observed a positive effect of ROCK inhibitor eye drops in treating patients with central edema caused by Fuchs corneal endothelial dystrophy. We believe that our new findings will contribute to the establishment of a new approach for the treatment of corneal endothelial dysfunction.

  10. Dual Role of Endothelial Nitric Oxide Synthase in Oxidized LDL-Induced, p66Shc-Mediated Oxidative Stress in Cultured Human Endothelial Cells

    PubMed Central

    Shi, Yi; Lüscher, Thomas F.; Camici, Giovanni G.

    2014-01-01

    Background The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Methods and Results Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. Conclusions The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease. PMID:25247687

  11. Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells.

    PubMed

    Shi, Yi; Lüscher, Thomas F; Camici, Giovanni G

    2014-01-01

    The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2-). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2- production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.

  12. Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis

    PubMed Central

    Chang, Chiz-Tzung; Wang, Guei-Jane; Kuo, Chin-Chi; Hsieh, Ju-Yi; Lee, An-Sean; Chang, Chia-Ming; Wang, Chun-Cheng; Shen, Ming-Yi; Huang, Chiu-Ching; Sawamura, Tatsuya; Yang, Chao-Yuh; Stancel, Nicole; Chen, Chu-Huang

    2016-01-01

    Abstract Electronegative low-density lipoprotein (LDL) is a recognized factor in the pathogenesis of coronary artery disease (CAD) in the general population, but its role in the development of CAD in uremia patients is unknown. L5 is the most electronegative subfraction of LDL isolated from human plasma. In this study, we examined the distribution of L5 (L5%) and its association with CAD risk in uremia patients. The LDL of 39 uremia patients on maintenance hemodialysis and 21 healthy controls was separated into 5 subfractions, L1–L5, with increasing electronegativity. We compared the distribution and composition of plasma L5 between uremia patients and controls, examined the association between plasma L5% and CAD risk in uremia patients, and studied the effects of L5 from uremia patients on endothelial function. Compared to controls, uremia patients had significantly increased L5% (P < 0.001) and L5 that was rich in apolipoprotein C3 and triglycerides. L5% was significantly higher in uremia patients with CAD (n = 10) than in those without CAD (n = 29) (P < 0.05). Independent of other major CAD risk factors, the adjusted odds ratio for CAD was 1.88 per percent increase in plasma L5% (95% CI, 1.01–3.53), with a near-linear dose–response relationship. Compared with controls, uremia patients had decreased flow-mediated vascular dilatation. In ex vivo studies with preconstricted rat thoracic aortic rings, L5 from uremia patients inhibited acetylcholine-induced relaxation. In cultured human endothelial cells, L5 inhibited endothelial nitric oxide synthase activation and induced endothelial dysfunction. Our findings suggest that elevated plasma L5% may induce endothelial dysfunction and play an important role in the increased risk of CAD in uremia patients. PMID:26765403

  13. Comparison of the structure of the aortic valve and ascending aorta in adults having aortic valve replacement for aortic stenosis versus for pure aortic regurgitation and resection of the ascending aorta for aneurysm.

    PubMed

    Roberts, William Clifford; Vowels, Travis James; Ko, Jong Mi; Filardo, Giovanni; Hebeler, Robert Frederick; Henry, Albert Carl; Matter, Gregory John; Hamman, Baron Lloyd

    2011-03-01

    There is debate concerning whether an aneurysmal ascending aorta should be replaced when associated with a dysfunctioning aortic valve that is to be replaced. To examine this issue, we divided the patients by type of aortic valve dysfunction-either aortic stenosis (AS) or pure aortic regurgitation (AR)-something not previously undertaken. Of 122 patients with ascending aortic aneurysm (unassociated with aortitis or acute dissection), the aortic valve was congenitally malformed (unicuspid or bicuspid) in 58 (98%) of the 59 AS patients, and in 38 (60%) of the 63 pure AR patients. Ascending aortic medial elastic fiber loss (EFL) (graded 0 to 4+) was zero or 1+ in 53 (90%) of the AS patients, in 20 (53%) of the 38 AR patients with bicuspid valves, and in all 12 AR patients with tricuspid valves unassociated with the Marfan syndrome. An unadjusted analysis showed that, among the 96 patients with congenitally malformed valves, the 38 AR patients had a significantly higher likelihood of 2+ to 4+ EFL than the 58 AS patients (crude odds ratio: 8.78; 95% confidence interval: 2.95, 28.13). These data strongly suggest that the type of aortic valve dysfunction-AS versus pure AR-is very helpful in predicting loss of aortic medial elastic fibers in patients with ascending aortic aneurysms and aortic valve disease.

  14. Involvement of proteinase activated receptor-2 in the vascular response to sphingosine 1-phosphate.

    PubMed

    Roviezzo, Fiorentina; De Angelis, Antonella; De Gruttola, Luana; Bertolino, Antonio; Sullo, Nikol; Brancaleone, Vincenzo; Bucci, Mariarosaria; De Palma, Raffaele; Urbanek, Konrad; D'Agostino, Bruno; Ianaro, Angela; Sorrentino, Raffaella; Cirino, Giuseppe

    2014-04-01

    S1P (sphingosine 1-phosphate) represents one of the key latest additions to the list of vasoactive substances that modulate vascular tone. PAR-2 (proteinase activated receptor-2) has been shown to be involved in cardiovascular function. In the present study, we investigated the involvement of PAR-2 in S1P-induced effect on vascular tone. The present study has been performed by using isolated mouse aortas. Both S1P and PAR-2 agonists induced endothelium-dependent vasorelaxation. L-NAME (N(G)-nitro-L-arginine methyl ester) and wortmannin abrogated the S1P-induced vasorelaxatioin, while significantly inhibiting the PAR-2-mediated effect. Either ENMD1068, a PAR-2 antagonist, or gabexate, a serine protease inhibitor, significantly inhibited S1P-induced vasorelaxation. Aortic tissues harvested from mice overexpressing PAR-2 displayed a significant increase in vascular response to S1P as opposed to PAR-2-null mice. Immunoprecipitation and immunofluorescence studies demonstrated that S1P(1) interacted with PAR-2 and co-localized with PAR-2 on the vascular endothelial surface. Furthermore, S1P administration to vascular tissues triggered PAR-2 mobilization from the plasma membrane to the perinuclear area; S1P-induced translocation of PAR-2 was abrogated when aortic rings were pre-treated with ENMD1068 or when caveolae dysfunction occurred. Similarly, experiments performed in cultured endothelial cells (human umbilical vein endothelial cells) showed a co-localization of S1P(1) and PAR2, as well as the ability of S1P to induce PAR-2 trafficking. Our results suggest that S1P induces endothelium-dependent vasorelaxation mainly through S1P(1) and involves PAR-2 transactivation.

  15. Acute effects of beer on endothelial function and haemodynamics: a single-blind, cross-over study in healthy volunteers

    PubMed Central

    Karatzi, Kalliopi; Rontoyanni, Victoria G.; Protogerou, Athanase D.; Georgoulia, Aggeliki; Xenos, Konstantinos; Chrysou, John; Sfikakis, Petros P.; Sidossis, Labros S.

    2015-01-01

    Objective Moderate consumption of beer is associated with lower cardiovascular (CV) risk. To explore the underlying mechanisms we studied the acute effects of the constituents of beer (alcohol and antioxidants), on established predictors of CV risk: endothelial function, aortic stiffness, pressure wave reflections and aortic pressure. Research Methods & Proceedures In a randomized, single – blind, cross - over study 17 healthy, non-smoking, volunteers (28.5±5.2 years and 24.4±2.5 BMI) consumed in 3 separate days, at least one week apart: a) 400 ml of beer & 400 ml water, b) 800 ml of dealcoholized beer (same amount of polyphenols), and c) 67 ml of vodka & 733 ml water (same amount of alcohol). Each time aortic stiffness (pulse wave velocity, pressure wave reflections (Aix), aortic and brachial pressure (Sphygmocor device) and endothelial function (brachial flow mediated dilatation) were assessed at fast and 1 and 2 hours postprandial. Results Aortic stiffness was significantly and similarly reduced by all 3 interventions. However, endothelial function was significantly improved only after beer consumption (average of 1.33%, CI 0.15-2.53). Although wave reflections were significantly reduced by all 3 interventions (average of beer: 9.1%, dealcoholized beer: 2.8%, vodka 8.5%, all CI within limits of significance), the reduction was higher after beer consumption compared todealcoholized beer (p=0.018). Pulse pressure amplification (i.e. brachial/aortic) was increased by all 3 test drinks. Conclusions Beer improves acutely parameters of arterial function and structure, in healthy non-smokers. This benefit seems to be mediated by the additive or synergistic effects of alcohol and anti-oxidants and merits further investigation. PMID:23810643

  16. Endothelial dysfunction is associated with activation of the type I interferon system and platelets in patients with systemic lupus erythematosus

    PubMed Central

    Tydén, Helena; Lood, Christian; Gullstrand, Birgitta; Nielsen, Christoffer Tandrup; Heegaard, Niels H H; Kahn, Robin; Jönsen, Andreas; Bengtsson, Anders A

    2017-01-01

    Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated the interplay between endothelial dysfunction, platelets and type I IFN in SLE. Methods We enrolled 148 patients with SLE and 79 sex-matched and age-matched healthy controls (HCs). Type I IFN activity was assessed with a reporter cell assay and platelet activation by flow cytometry. Endothelial dysfunction was assessed using surrogate markers of endothelial activation, soluble vascular cell adhesion molecule-1 (sVCAM-1) and endothelial microparticles (EMPs), and finger plethysmograph to determine Reactive Hyperaemia Index (RHI). Results In patients with SLE, type I IFN activity was associated with endothelial activation, measured by high sVCAM-1 (OR 1.68, p<0.01) and elevated EMPs (OR 1.40, p=0.03). Patients with SLE with high type I IFN activity had lower RHI than HCs (OR 2.61, p=0.04), indicating endothelial dysfunction. Deposition of complement factors on platelets, a measure of platelet activation, was seen in patients with endothelial dysfunction. High levels of sVCAM-1 were associated with increased deposition of C4d (OR 4.57, p<0.01) and C1q (OR 4.10, p=0.04) on platelets. High levels of EMPs were associated with C4d deposition on platelets (OR 3.64, p=0.03). Conclusions Endothelial dysfunction was associated with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE. PMID:29119007

  17. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  18. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling

    PubMed Central

    Hori, Daijiro; Dunkerly-Eyring, Brittany; Nomura, Yohei; Biswas, Debjit; Steppan, Jochen; Henao-Mejia, Jorge; Adachi, Hideo; Santhanam, Lakshmi; Berkowitz, Dan E.; Steenbergen, Charles; Flavell, Richard A.

    2017-01-01

    Background Endothelial dysfunction and arterial stiffening play major roles in cardiovascular diseases. The critical role for the miR-181 family in vascular inflammation has been documented. Here we tested whether the miR-181 family can influence the pathogenesis of hypertension and vascular stiffening. Methods and results qPCR data showed a significant decrease in miR-181b expression in the aorta of the older mice. Eight miR-181a1/b1-/- mice and wild types (C57BL6J:WT) were followed weekly for pulse wave velocity (PWV) and blood pressure measurements. After 20 weeks, the mice were tested for endothelial function and aortic modulus. There was a progressive increase in PWV and higher systolic blood pressure in miR-181a1/b1-/- mice compared with WTs. At 21 weeks, aortic modulus was significantly greater in the miR-181a1/b1-/- group, and serum TGF-β was found to be elevated at this time. A luciferase reporter assay confirmed miR-181b targets TGF-βi (TGF-β induced) in the aortic VSMCs. In contrast, wire myography revealed unaltered endothelial function along with higher nitric oxide production in the miR-181a1/b1-/- group. Cultured VECs and VSMCs from the mouse aorta showed more secreted TGF-β in VSMCs of the miR-181a1/b1-/- group; whereas, no change was observed from VECs. Circulating levels of angiotensin II were similar in both groups. Treatment with losartan (0.6 g/L) prevented the increase in PWV, blood pressure, and vascular stiffness in miR-181a1/b1-/- mice. Immunohistochemistry and western blot for p-SMAD2/3 validated the inhibitory effect of losartan on TGF-β signaling in miR-181a1/b1-/- mice. Conclusions Decreased miR-181b with aging plays a critical role in ECM remodeling by removing the brake on the TGF-β, pSMAD2/3 pathway. PMID:28323879

  19. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling.

    PubMed

    Hori, Daijiro; Dunkerly-Eyring, Brittany; Nomura, Yohei; Biswas, Debjit; Steppan, Jochen; Henao-Mejia, Jorge; Adachi, Hideo; Santhanam, Lakshmi; Berkowitz, Dan E; Steenbergen, Charles; Flavell, Richard A; Das, Samarjit

    2017-01-01

    Endothelial dysfunction and arterial stiffening play major roles in cardiovascular diseases. The critical role for the miR-181 family in vascular inflammation has been documented. Here we tested whether the miR-181 family can influence the pathogenesis of hypertension and vascular stiffening. qPCR data showed a significant decrease in miR-181b expression in the aorta of the older mice. Eight miR-181a1/b1-/- mice and wild types (C57BL6J:WT) were followed weekly for pulse wave velocity (PWV) and blood pressure measurements. After 20 weeks, the mice were tested for endothelial function and aortic modulus. There was a progressive increase in PWV and higher systolic blood pressure in miR-181a1/b1-/- mice compared with WTs. At 21 weeks, aortic modulus was significantly greater in the miR-181a1/b1-/- group, and serum TGF-β was found to be elevated at this time. A luciferase reporter assay confirmed miR-181b targets TGF-βi (TGF-β induced) in the aortic VSMCs. In contrast, wire myography revealed unaltered endothelial function along with higher nitric oxide production in the miR-181a1/b1-/- group. Cultured VECs and VSMCs from the mouse aorta showed more secreted TGF-β in VSMCs of the miR-181a1/b1-/- group; whereas, no change was observed from VECs. Circulating levels of angiotensin II were similar in both groups. Treatment with losartan (0.6 g/L) prevented the increase in PWV, blood pressure, and vascular stiffness in miR-181a1/b1-/- mice. Immunohistochemistry and western blot for p-SMAD2/3 validated the inhibitory effect of losartan on TGF-β signaling in miR-181a1/b1-/- mice. Decreased miR-181b with aging plays a critical role in ECM remodeling by removing the brake on the TGF-β, pSMAD2/3 pathway.

  20. Participation of reactive oxygen species in diabetes-induced endothelial dysfunction.

    PubMed

    Zúrová-Nedelcevová, Jana; Navarová, Jana; Drábiková, Katarína; Jancinová, Viera; Petríková, Margita; Bernátová, Iveta; Kristová, Viera; Snirc, Vladimír; Nosál'ová, Viera; Sotníková, Ruzena

    2006-12-01

    In the present study, the relationship between diabetes-induced hyperglycemia, reactive oxygen species production and endothelium-mediated arterial function was examined. The effect of antioxidant on the reactive oxygen species induced damage was tested. Diabetes was induced by streptozotocin (STZ), 3 x 30 mg/kg i.p., administered on three consecutive days. After 10 weeks of diabetes, the functional state of the endothelium of the aorta was tested, endothelemia evaluation was performed and systolic blood pressure was measured. Reactive oxygen species (ROS) formation in blood and the aorta was measured using luminol-enhanced chemiluminescence (CL). Levels of reduced glutathione (GSH) were determined in the aorta, kidney, and plasma. To study the involvement of hyperglycemia in functional impairment of the endothelium, aortal rings incubated in solution with high glucose concentration were tested in in vitro experiments. After 10 weeks of diabetes, endothelial injury was observed, exhibited by diminished endothelium-dependent relaxation of the aorta, increased endothelemia and by elevated systolic blood pressure. Using luminol-enhanced CL, a significant increase of ROS production was found in arterial tissue and blood. GSH levels were significantly increased in the kidney, while there were no GSH changes in plasma and the aorta. Incubation of aortic rings in solution with high glucose concentration led to impairment of endothelium-dependent relaxation. The synthetic antioxidant SMe1EC2 was able to restore reduced endothelium-mediated relaxation. Our results suggest an important role of hyperglycemia-induced ROS production in mediating endothelial dysfunction in experimental diabetes, confirmed by CL and the protective effect of the antioxidant SMe1EC2.

  1. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose.

    PubMed

    Qin, Weiwei; Ren, Bei; Wang, Shanshan; Liang, Shujun; He, Baiqiu; Shi, Xiaoji; Wang, Liying; Liang, Jingyu; Wu, Feihua

    2016-10-01

    Endothelial dysfunction is a key event in the progression of atherosclerosis with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction. Apigenin and naringenin are two kinds of widely used flavones. In the present study, we investigated whether and how apigenin and naringenin reduced endothelial dysfunction induced by high glucose in endothelial cells. We showed that apigenin and naringenin protected against endothelial dysfunction via inhibiting phosphorylation of protein kinase C βII (PKCβII) expression and downstream reactive oxygen species (ROS) production in endothelial cells exposed to high glucose. Furthermore, we demonstrated that apigenin and naringenin reduced high glucose-increased apoptosis, Bax expression, caspase-3 activity and phosphorylation of NF-κB in endothelial cells. Moreover, apigenin and naringenin effectively restored high glucose-reduced Bcl-2 expression and Akt phosphorylation. Importantly, apigenin and naringenin significantly increased NO production in endothelial cells subjected to high glucose challenge. Consistently, high glucose stimulation impaired acetylcholine (ACh)-mediated vasodilation in the rat aorta, apigenin and naringenin treatment restored the impaired endothelium-dependent vasodilation via dramatically increasing eNOS activity and nitric oxide (NO) level. Taken together, our results manifest that apigenin and naringenin can ameliorate endothelial dysfunction via regulating ROS/caspase-3 and NO pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    PubMed

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Nucleotide-mediated relaxation in guinea-pig aorta: selective inhibition by MRS2179

    PubMed Central

    Kaiser, Robert A; Buxton, Iain L O

    2002-01-01

    The vasodilatory effects of nucleotides in the guinea-pig thoracic aorta were examined to determine the relationship between molecular expression and function of P2Y receptors. In aortic rings precontracted with norepinephrine, vasodilatory responses to purine nucleotides exhibited a rank-order of potency of 2-methylthio-ATP>ADP>ATP. Responses to UTP, but not UDP suggested a functional role for P2Y4 but not P2Y6 receptors. Aortic endothelial cells express at least four P2Y receptors; P2Y1, P2Y2, P2Y4 and P2Y6. In primary culture, these cells exhibit desensitizing transient calcium responses characteristic of P2Y1, P2Y2 and P2Y4, but not P2Y6 receptors. UDP had no effect on endothelial cell calcium. The pyrimidinergic receptor agonist UTP is capable of eliciting robust vasodilation in aortic rings and causing calcium responses in cultured guineapig aortic endothelial cells. These responses are equivalent to the maximum responses observed to ATP and ADP. Measurement of intracellular calcium release in response to ATP and 2-methylthio-ATP were similar, however only the 2-methylthio-ATP response was sensitive to the P2Y1 antagonist N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate (MRS2179). In aortic rings, vasodilatory responses to 2-methylthio-ATP, ATP and ADP were all blocked by pre-incubation of tissues with MRS2179. MRS2179 pretreatment had no effect of the ability of UTP to cause relaxation of norepinephrine responses in aortic rings or the ability of UTP to cause calcium release in aortic endothelial cells. We demonstrate robust effects of purine and pyrimidine nucleotides in guineapig aorta and provide functional and biochemical evidence that MRS2179 is a selective P2Y1 antagonist. PMID:11815389

  4. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    PubMed

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  5. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy

    PubMed Central

    Weymann, Alexander; Arif, Rawa; Weber, Antje; Zaradzki, Marcin; Richter, Karsten; Ensminger, Stephan; Robinson, Peter Nicholas; Wagner, Andreas H.; Karck, Matthias; Kallenbach, Klaus

    2016-01-01

    Objectives Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis. Methods We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM). Results IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1 (compared to untreated Marfan aorta: Ad.hTIMP-1 p = 0.902; control Ad.β-Gal. p = 0.165). The virus-untreated and not transplanted mgR/mgR aorta revealed a significant increase of albumin diffusion through the endothelial barrier (p = 0.037). TEM analysis of adenovirus-exposed mgR/mgR aortas displayed disruption of the basement membrane and basolateral space. Conclusions Murine Marfan aortic grafts developed severe inflammation after adenoviral contact. We demonstrated that fibrillin-1 deficiency is associated with relevant dysfunction of the endothelial barrier that enables adenovirus to induce vessel-harming inflammation. Endothelial dysfunction may play a pivotal role in the development of the vascular phenotype of Marfan syndrome. PMID:26840980

  6. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  7. GPER-independent effects of estrogen in rat aortic vascular endothelial cells.

    PubMed

    Ding, Q; Hussain, Y; Chorazyczewski, J; Gros, R; Feldman, R D

    2015-01-05

    GPER (aka GPR30) has been identified as an important mechanism by which estrogen mediates its effects. Previous studies from our laboratories and those of others have demonstrated that GPER activation mediates a range of vascular contractile and growth regulatory responses. However, the importance of GPER in mediating the actions of estradiol (E2) in rat aortic endothelial cells is unclear. Therefore, we sought to determine the importance of GPER vs. the "classical" estrogen receptor (ER) in mediating the endothelial growth regulatory effects of E2. To do this we assessed the effect of E2 in regulating phosphoERK content and apoptotic rates in rat aortic endothelial cells and the role of GPER in mediating these effects. E2 mediated a concentration-dependent inhibition of both ERK phosphorylation and serum deprivation-induced apoptosis with a maximal effect at a concentration of 10 nM. Pretreatment with the ER antagonist ICI 182780 abolished E2-mediated inhibition of both ERK phosphorylation and apoptosis. In contrast, pretreatment with GPER antagonist G15 had no significant effect on E2-mediated inhibition of ERK phosphorylation or on apoptosis. Further, downregulation of GPER expression with a GPER shRNA adenovirus did not block E2-mediated inhibitory effects on ERK phosphorylation and apoptosis. In fact, these inhibitory effects of E2 were further enhanced by GPER downregulation. Downregulation of ERα expression reversed the E2-mediated inhibitory effects to stimulatory effects. E2's phosphoERK and apoptosis stimulatory effects seen with ERα downregulation are attenuated by pretreatment with G15. In conclusion, in rat aortic endothelial cells, E2-mediated endothelial effects are predominantly driven by ER and not by GPER. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120.

    PubMed

    Six, Isabelle; Gross, Priscilla; Rémond, Mathieu C; Chillon, Jean Marc; Poirot, Sabrina; Drueke, Tilman B; Massy, Ziad A

    2015-11-01

    In chronic kidney disease (CKD), blood vessels are permanently exposed to uremic toxins such as indoxyl sulfate (IS). We hypothesized that IS could alter vascular tone and that reducing its serum concentration could be beneficial. We studied acute and longer-term effects of IS and AST-120, an oral charcoal adsorbent, on vascular reactivity, endothelium integrity and expression of adhesion molecules VCAM-1 and ICAM-1 in aortic rings of normal and uremic wild type (WT) mice in vitro, and the cardiovascular effects of AST-120 in both WT and apoE-/- mice with CKD in vivo. In vitro, 1.0 mM IS acutely reduced vascular relaxation (64% for IS 1.0 mM vs. 80% for control, p < 0.05). The effect was more marked after 4 days exposure (39% for IS 1.0 mM 4 days; p < 0.001, prolonged vs. acute exposure), and was associated with endothelial cell loss and upregulation of ICAM-1/VCAM-1 expression. In vitro, AST-120 restored normal vascular function and prevented IS induced endothelial cell loss and ICAM-1/VCAM-1 upregulation. In vivo, AST-120 treatment of CKD mice (1) improved vascular relaxation (72% vs. 48% maximal relaxation in treated vs. untreated mice, p < 0.001), (2) reduced aortic VCAM-1 and ICAM-1 expression, (3) decreased aorta systolic expansion rate (9 ± 3% CKD vs. 14 ± 3% CKD + AST-120, p < 0.02), and (4) prevented the increase in pulse wave velocity (3.56 ± 0.17 m/s CKD vs. 3.10 ± 0.08 m/s CKD + AST-120, p < 0.006). Similar changes were observed in apoE-/- mice. IS appears to be an important contributor to the vascular dysfunction associated with CKD. AST-120 treatment ameliorates this dysfunction, possibly via a decrease in serum IS concentration. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Associations of low grade inflammation and endothelial dysfunction with depression - The Maastricht Study.

    PubMed

    van Dooren, Fleur E P; Schram, Miranda T; Schalkwijk, Casper G; Stehouwer, Coen D A; Henry, Ronald M A; Dagnelie, Pieter C; Schaper, Nicolaas C; van der Kallen, Carla J H; Koster, Annemarie; Sep, Simone J S; Denollet, Johan; Verhey, Frans R J; Pouwer, Frans

    2016-08-01

    The pathogenesis of depression may involve low-grade inflammation and endothelial dysfunction. We aimed to evaluate the independent associations of inflammation and endothelial dysfunction with depressive symptoms and depressive disorder, and the role of lifestyle factors in this association. In The Maastricht Study, a population-based cohort study (n=852, 55% men, m=59.8±8.5years), depressive symptoms were assessed with the Patient Health Questionnaire-9 and (major and minor) depressive disorder with the Mini-International Neuropsychiatric Interview. Plasma biomarkers of inflammation (hsCRP, SAA, sICAM-1, IL-6, IL-8, TNF-α) and endothelial dysfunction (sVCAM-1, sICAM-1, sE-selectin, vWF) were measured with sandwich immunoassays and combined into two standardized sum scores. Biomarkers of inflammation (hsCRP, TNF-α, SAA, sICAM-1) and endothelial dysfunction (sICAM-1, sE-Selectin) were univariately associated with depressive symptoms and depressive disorder. The sum scores of inflammation and endothelial dysfunction were associated with depressive disorder after adjustment for age, sex, type 2 diabetes, kidney function and prior cardiovascular disease (OR 1.54, p=0.001 and 1.40, p=0.006). Both sum scores remained significantly associated with depressive disorder after additional adjustment for lifestyle factors smoking, alcohol consumption and body mass index. The sum score of inflammation was also independently associated with depressive symptoms, while the sum score of endothelial dysfunction was not. Inflammation and endothelial dysfunction are both associated with depressive disorder, independent of lifestyle factors. Our results might suggest that inflammation and endothelial dysfunction are involved in depression. Copyright © 2016. Published by Elsevier Inc.

  10. Complementary role of cardiac CT in the assessment of aortic valve replacement dysfunction

    PubMed Central

    Moss, Alastair J; Dweck, Marc R; Dreisbach, John G; Williams, Michelle C; Mak, Sze Mun; Cartlidge, Timothy; Nicol, Edward D; Morgan-Hughes, Gareth J

    2016-01-01

    Aortic valve replacement is the second most common cardiothoracic procedure in the UK. With an ageing population, there are an increasing number of patients with prosthetic valves that require follow-up. Imaging of prosthetic valves is challenging with conventional echocardiographic techniques making early detection of valve dysfunction or complications difficult. CT has recently emerged as a complementary approach offering excellent spatial resolution and the ability to identify a range of aortic valve replacement complications including structural valve dysfunction, thrombus development, pannus formation and prosthetic valve infective endocarditis. This review discusses each and how CT might be incorporated into a multimodal cardiovascular imaging pathway for the assessment of aortic valve replacements and in guiding clinical management. PMID:27843568

  11. Globotriaosylceramide induces lysosomal degradation of endothelial KCa3.1 in fabry disease.

    PubMed

    Choi, Shinkyu; Kim, Ji Aee; Na, Hye-Young; Cho, Sung-Eun; Park, Seonghee; Jung, Sung-Chul; Suh, Suk Hyo

    2014-01-01

    Globotriaosylceramide (Gb3) induces KCa3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces KCa3.1 endocytosis and degradation. KCa3.1, especially plasma membrane-localized KCa3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells. Gb3-induced KCa3.1 downregulation was prevented by lysosomal inhibitors but not by a proteosomal inhibitor. Endoplasmic reticulum stress-inducing agents did not induce KCa3.1 downregulation. Gb3 upregulated the protein levels of early endosome antigen 1 and lysosomal-associated membrane protein 2 in MAECs. Compared with MAECs from age-matched wild-type mice, those from aged α-galactosidase A (Gla)-knockout mice, an animal model of FD, showed downregulated KCa3.1 expression and upregulated early endosome antigen 1 and lysosomal-associated membrane protein 2 expression. In contrast, no significant difference was found in early endosome antigen 1 and lysosomal-associated membrane protein 2 expression between young Gla-knockout and wild-type MAECs. In aged Gla-knockout MAECs, clathrin was translocated close to the cell border and clathrin knockdown recovered KCa3.1 expression. Rab5, an effector of early endosome antigen 1, was upregulated, and Rab5 knockdown restored KCa3.1 expression, the current, and endothelium-dependent relaxation. -Gb3 accelerates the endocytosis and lysosomal degradation of endothelial KCa3.1 via a clathrin-dependent process, leading to endothelial dysfunction in FD.

  12. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    PubMed Central

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels; Quaggin, Susan E.

    2018-01-01

    Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion. PMID:29466427

  13. Acute effect of sidestream cigarette smoke extract on vascular endothelial function.

    PubMed

    Argacha, J F; Fontaine, D; Adamopoulos, D; Ajose, A; van de Borne, P; Fontaine, J; Berkenboom, G

    2008-09-01

    Acute exposure to passive smoking adversely affects vascular function by promoting oxidative stress and endothelial dysfunction. However, it is not known whether tobacco sidestream (SS) smoke has a greater deleterious effect on the endothelium than non-tobacco SS smoke and whether these effects are related to nicotinic endothelial stimulation. To test these hypotheses, endothelial-dependent relaxation and superoxide anion production were assessed in isolated rat aortas incubated with tobacco SS smoke, non-tobacco SS smoke, or pure nicotine. Tobacco SS smoke decreased the maximal relaxation to acetylcholine (Ach) from 79 +/- 6% to 57 +/- 7.3% (% inhibition of phenylephrine-induced plateau, P < 0.001) and increased superoxide anion production from 31 +/- 9.7 to 116 +/- 24 count/10 sec/mg (P < 0.01, lucigenin-enhanced chemiluminescence technique). The non-tobacco SS smoke extract had no significant effect on the response to Ach but increased superoxide anion production in the aortic wall to 133 +/- 2 count/10 sec/mg (P < 0.001). Furthermore, concentration-response curves to Ach and superoxide production remained unaltered with nicotine (0.001, 0.01, or 0.1 mM). In conclusion, despite similar increases in vascular wall superoxide production with tobacco and non-tobacco SS smoke, only the tobacco SS smoke extracts affected endothelium-dependent vasorelaxation. Nicotine alone does not reproduce the effects seen with tobacco SS smoke, suggesting that the acute endothelial toxicity of passive smoking cannot simply be ascribed to a nicotine-dependent mechanism.

  14. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015 the American Physiological Society.

  15. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  16. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice

    NASA Technical Reports Server (NTRS)

    Winters, B.; Mo, Z.; Brooks-Asplund, E.; Kim, S.; Shoukas, A.; Li, D.; Nyhan, D.; Berkowitz, D. E.

    2000-01-01

    Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.

  17. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.

    PubMed

    Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David

    2007-01-01

    The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.

  18. Leptin promotes endothelial dysfunction in chronic kidney disease through AKT/GSK3β and β-catenin signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Nannan; Liu, Bing; Song, Jiaguang

    Endothelial dysfunction (ED) is a well-recognized instigator of cardiovascular diseases and develops in chronic kidney disease (CKD) with high rate. Recent studies have implicated that leptin is associated with endothelial dysfunction. We investigated the relationship between leptin and markers of ED in CKD patients and how leptin contributed to endothelial damage. 140 CKD patients and 140 healthy subjects were studied. Serum leptin levels were significantly higher in CKD than in controls and displayed significantly positive association with the increase levels of sICAM-1 and sVCAM-1 but negative correlation with flow-mediated dilatation (FMD) reduction in patients. Our in vitro study demonstrated that leptinmore » induced overexpression of ICAM-1 and VCAM-1, led to f-actin reorganization and vinculin assembly, increased endothelial monolayer permeability for FITC-dextran, and accelerated endothelial cell migration; these changes were markedly reversed when the cells were transfected with AKT or β-catenin shRNA vectors. Notably, high leptin resulted in hyper-phosphorylation of AKT and GSK3β, along with nuclear accumulation of β-catenin. In conclusion, serum leptin was elevated in CKD patients and it might contribute to endothelial dysfunction by disarrangement of f-actin cytoskeleton via a mechanism involving the AKT/GSK3β and β-catenin pathway. - Highlights: • Serum leptin was elevated in CKD patients and it was associated with endothelial dysfunction. • Leptin induced endothelial dysfunction by remodeling cytoskeleton in HUVECs. • Leptin promoted endothelial dysfunction via a mechanism involving the AKT/GSK3β and β-catenin signals.« less

  19. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    PubMed

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  20. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  1. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA).

    PubMed

    Ramella, Martina; Boccafoschi, Francesca; Bellofatto, Kevin; Md, Antonia Follenzi; Fusaro, Luca; Boldorini, Renzo; Casella, Francesco; Porta, Carla; Settembrini, Piergiorgio; Cannas, Mario

    2017-01-01

    Progression of abdominal aortic aneurysm (AAA) is typified by chronic inflammation and extracellular matrix (ECM) degradation of the aortic wall. Vascular inflammation involves complex interactions among inflammatory cells, endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and ECM. Although vascular endothelium and medial neoangiogenesis play a key role in AAA, the molecular mechanisms underlying their involvement are only partially understood. In AAA biopsies, we found increased MMP-9, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which correlated with massive medial neo-angiogenesis (C4d positive staining). In this study, we developed an in vitro model in order to characterize the role of endothelial matrix metalloproteinase-9 (e-MMP-9) as a potential trigger of medial disruption and in the inflammatory response bridging between ECs and vSMC. Lentiviral-mediated silencing of e-MMP-9 through RNA interference inhibited TNF-alpha-mediated activation of NF-κB in EA.hy926 human endothelial cells. In addition, EA.hy926 cells void of MMP-9 failed to migrate in a 3D matrix. Moreover, silenced EA.hy926 affected vSMC behavior in terms of matrix remodeling. In fact, also MMP-9 in vSMC resulted inhibited when endothelial MMP-9 was suppressed.

  2. Acute obstruction by Pannus in patients with aortic medtronic-hall valves: 30 years of experience.

    PubMed

    Ellensen, Vegard Skalstad; Andersen, Knut Sverre; Vitale, Nicola; Davidsen, Einar Skulstad; Segadal, Leidulf; Haaverstad, Rune

    2013-12-01

    Acute dysfunction of mechanical aortic valve prostheses is a life-threatening adverse event. Pannus overgrowth, which is fibroelastic hyperplasia originating from the periannular area, is one cause of dysfunction. The aim of this study was to determine the annual incidence of readmittance resulting from acute obstruction caused by pannus during 30 years of observation in patients with Medtronic-Hall aortic valve prostheses and to analyze the risk factors associated with pannus development. From 1982 to 2004, 1,187 patients in our department underwent aortic valve replacement with Medtronic-Hall mechanical monoleaflet valve prostheses. As of December 31, 2012, 27 of these patients (2.3%) had presented with acute valve dysfunction caused by pannus obstruction. The annual incidence of pannus was 0.7 per 1,000. The median time from the primary operation to prosthetic dysfunction was 11.1 years (range, 1.2 to 26.8 years). Of the 20 patients who underwent reoperation, 2 died. Seven patients died before reoperation. Women had a higher risk for the development of obstructing pannus, and patients with pannus obstruction were younger. Valve size was not an independent risk factor. Women and younger patients are at higher risk for pannus development. When acute dysfunction by pannus is suspected in a mechanical aortic valve, an immediate echocardiogram and an emergency aortic valve replacement should be carried out because of the potential of a fatal outcome. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Cardiovascular risk reduction by reversing endothelial dysfunction:ARBs, ACE inhibitors, or both? Expectations from The ONTARGET Trial Programme

    PubMed Central

    Ruilope, Luis Miguel; Redón, Josep; Schmieder, Roland

    2007-01-01

    Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin–angiotensin system (RAS), has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB) and/or angiotensin-converting enzyme (ACE) inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET) Programme is expected to provide the ultimate evidence of whether improved endothelial function translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade). Completion of ONTARGET is expected in 2008. PMID:17583170

  4. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    PubMed

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  5. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ran; Xie, Jun; Wu, Han

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4more » protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular angiogenesis in db/db mice.« less

  6. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    PubMed

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  7. IRAP inhibition using HFI419 prevents moderate to severe acetylcholine mediated vasoconstriction in a rabbit model.

    PubMed

    El-Hawli, Aisha; Qaradakhi, Tawar; Hayes, Alan; Rybalka, Emma; Smith, Renee; Caprnda, Martin; Opatrilova, Radka; Gazdikova, Katarina; Benckova, Maria; Kruzliak, Peter; Zulli, Anthony

    2017-02-01

    Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Proton Pump Inhibitors Decrease Soluble fms-Like Tyrosine Kinase-1 and Soluble Endoglin Secretion, Decrease Hypertension, and Rescue Endothelial Dysfunction.

    PubMed

    Onda, Kenji; Tong, Stephen; Beard, Sally; Binder, Natalie; Muto, Masanaga; Senadheera, Sevvandi N; Parry, Laura; Dilworth, Mark; Renshall, Lewis; Brownfoot, Fiona; Hastie, Roxanne; Tuohey, Laura; Palmer, Kirsten; Hirano, Toshihiko; Ikawa, Masahito; Kaitu'u-Lino, Tu'uhevaha; Hannan, Natalie J

    2017-03-01

    Preeclampsia is a severe complication of pregnancy. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. Oxidative stress and vascular inflammation exacerbate the endothelial injury. A drug that can block these pathophysiological steps would be an attractive treatment option. Proton pump inhibitors (PPIs) are safe in pregnancy where they are prescribed for gastric reflux. We performed functional studies on primary human tissues and animal models to examine the effects of PPIs on sFlt-1 and soluble endoglin secretion, vessel dilatation, blood pressure, and endothelial dysfunction. PPIs decreased sFlt-1 and soluble endoglin secretion from trophoblast, placental explants from preeclamptic pregnancies, and endothelial cells. They also mitigated tumor necrosis factor-α-induced endothelial dysfunction: PPIs blocked endothelial vascular cell adhesion molecule-1 expression, leukocyte adhesion to endothelium, and disruption of endothelial tube formation. PPIs decreased endothelin-1 secretion and enhanced endothelial cell migration. Interestingly, the PPI esomeprazole vasodilated maternal blood vessels from normal pregnancies and cases of preterm preeclampsia, but its vasodilatory effects were lost when the vessels were denuded of their endothelium. Esomeprazole decreased blood pressure in a transgenic mouse model where human sFlt-1 was overexpressed in placenta. PPIs upregulated endogenous antioxidant defenses and decreased cytokine secretion from placental tissue and endothelial cells. We have found that PPIs decrease sFlt-1 and soluble endoglin secretion and endothelial dysfunction, dilate blood vessels, decrease blood pressure, and have antioxidant and anti-inflammatory properties. They have therapeutic potential for preeclampsia and other diseases where endothelial dysfunction is involved. © 2017 American Heart Association, Inc.

  9. Acute effects of beer on endothelial function and hemodynamics: a single-blind, crossover study in healthy volunteers.

    PubMed

    Karatzi, Kalliopi; Rontoyanni, Victoria G; Protogerou, Athanase D; Georgoulia, Aggeliki; Xenos, Konstantinos; Chrysou, John; Sfikakis, Petros P; Sidossis, Labros S

    2013-09-01

    Moderate consumption of beer is associated with lower cardiovascular (CV) risk. The goal of this study was to determine the effect of beer consumption on CV risk. To explore the underlying mechanisms, we studied the acute effects of the constituents of beer (alcohol and antioxidants), on established predictors of CV risk: endothelial function, aortic stiffness, pressure wave reflections and aortic pressure. In a randomized, single-blind, crossover study, 17 healthy, non-smoking, men (ages 28.5 ± 5.2 y with body mass index 24.4 ± 2.5 kg/m(2)) consumed on three separate occasions, at least 1 wk apart: 1. 400 mL of beer and 400 mL water, 2. 800 mL of dealcoholized beer (same amount of polyphenols as in the 400 mL of beer), and 3. 67 mL of vodka and 733 mL water (same amount of alcohol as in the 400 mL of beer). Each time aortic stiffness (pulse wave velocity), pressure wave reflections (AΙx), aortic and brachial pressure (Sphygmocor device), and endothelial function (brachial flow mediated dilatation) were assessed at fast and 1 and 2 h postprandial. Aortic stiffness was significantly and similarly reduced by all three interventions. However, endothelial function was significantly improved only after beer consumption (average 1.33%, 95% confidence interval [CI] 0.15-2.53). Although wave reflections were significantly reduced by all three interventions (average of beer: 9.1%, dealcoholized beer: 2.8%, vodka 8.5%, all CI within limits of significance), the reduction was higher after beer consumption compared with dealcoholized beer (P = 0.018). Pulse pressure amplification (i.e., brachial/aortic) was increased by all three test drinks. Beer acutely improves parameters of arterial function and structure, in healthy non-smokers. This benefit seems to be mediated by the additive or synergistic effects of alcohol and antioxidants and merits further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Are there Race-Dependent Endothelial Cell Responses to Exercise?

    PubMed Central

    Brown, Michael D.; Feairheller, Deborah L.

    2013-01-01

    African Americans have endothelial dysfunction which likely contributes to their high prevalence of hypertension. Endothelial cell responses to stimuli could play a role in the development of endothelial dysfunction and hypertension. High physiological levels of vascular laminar shear stress can profoundly alter endothelial cell phenotype. It is not known whether there are race-dependent endothelial cell responses to laminar shear stress. PMID:23262464

  11. Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice.

    PubMed

    Padilla, Jaume; Ramirez-Perez, Francisco I; Habibi, Javad; Bostick, Brian; Aroor, Annayya R; Hayden, Melvin R; Jia, Guanghong; Garro, Mona; DeMarco, Vincent G; Manrique, Camila; Booth, Frank W; Martinez-Lemus, Luis A; Sowers, James R

    2016-11-01

    We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs. © 2016 American Heart Association, Inc.

  12. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers. PMID:26473356

  13. Transient severe left ventricular dysfunction following percutaneous patent ductus arteriosus closure in an adult with bicuspid aortic valve: A case report

    PubMed Central

    HWANG, HUI-JEONG; YOON, KYUNG LIM; SOHN, IL SUK

    2016-01-01

    The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans. PMID:26998021

  14. Transient severe left ventricular dysfunction following percutaneous patent ductus arteriosus closure in an adult with bicuspid aortic valve: A case report.

    PubMed

    Hwang, Hui-Jeong; Yoon, Kyung Lim; Sohn, Il Suk

    2016-03-01

    The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans.

  15. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis.

    PubMed

    Xue, Yunxing; Wei, Zhe; Ding, Hanying; Wang, Qiang; Zhou, Zhen; Zheng, Shasha; Zhang, Yujing; Hou, Dongxia; Liu, Yuchen; Zen, Ke; Zhang, Chen-Yu; Li, Jing; Wang, Dongjin; Jiang, Xiaohong

    2015-08-01

    Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of cellular energy metabolism that is associated with many cardiovascular diseases, including atherosclerosis. However, the role and underling regulatory mechanisms of PGC-1α in the pathogenesis of atherosclerosis are not completely understood. Here, we identified the microRNAs that post-transcriptionally regulate PGC-1α production and their roles in the pathogenesis of atherosclerosis. A significant down-regulation of PGC-1α protein was observed in human atherosclerotic vessel samples. Using microarray and bioinformatics analyses, PGC-1α was identified as a common target gene of miR-19b-3p, miR-221-3p and miR-222-3p, which are mainly located in the intima of atherosclerotic vessels. In vitro induction of miR-19b-3p, miR-221-3p and miR-222-3p by the inflammatory cytokines TNFα and IFNγ may affect PGC-1α protein production and consequently result in mitochondrial dysfunction in Human Aortic Endothelial Cells (HAECs). The overexpression of miR-19b-3p, miR-221-3p and miR-222-3p in HAECs caused intracellular ROS accumulation, which led to cellular apoptosis. Taken together, these results demonstrate that PGC-1α plays a protective role against the vascular complications of atherosclerosis. Moreover, the posttranscriptional regulation of PGC-1α by miR-19b/221/222 was unveiled, which provides a novel mechanism in which a panel of microRNAs can modulate endothelial cell apoptosis via the regulation mitochondrial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Endothelial cell cytotoxicity of cotton bracts tannin and aqueous cotton bracts extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.M.; Hanson, M.N.; Rohrbach, M.S.

    1986-04-01

    Using an in vitro cytotoxicity assay based on the release of /sup 51/Cr from cultured porcine thoracic aortic and pulmonary arterial endothelial cells, we have demonstrated that cotton bracts tannin is a potent endothelial cell cytotoxin. It produces dose-dependent lethal injury to both types of endothelial cells with the aortic cells, being somewhat more sensitive to tannin-mediated injury than the pulmonary arterial cells. Cytotoxic injury to the cells was biphasic. During the first 3 hr of exposure to tannin, no lethal injury was detected. However, during this period, profound changes in morphology were observed suggesting sublethal injury to the cellsmore » preceded the ultimate toxic damage. Comparison of the cytotoxicity dose curves for aqueous bracts extracts with those for tannin demonstrated that tannin was major cytotoxin present in bracts.« less

  17. Relative biological effectiveness (RBE) of alpha radiation in cultured porcine aortic endothelial cells.

    PubMed

    Thomas, Patricia; Tracy, Bliss; Ping, Tilly; Baweja, Anar; Wickstrom, Mark; Sidhu, Narinder; Hiebert, Linda

    2007-03-01

    Northern peoples can receive elevated radiation doses (1- 10 mSv/y) from transfer of polonium-210 (210Po) through the lichen-caribou-human food chain. Ingested 210Po is primarily blood-borne and thus many of its short range alpha particles irradiate the endothelial cells lining the blood vessels. The relative biological effectiveness (RBE) of alpha particles vs. x-rays was examined in porcine aortic endothelial cells as a surrogate for understanding what might happen to human endothelial cells in northern populations consuming traditional foods. Cultured porcine aortic endothelial cells were exposed to x-ray and 210Po alpha particle radiation. Alpha irradiation was applied to the cell cultures internally via the culture medium and externally, using thin-bottomed culture dishes. The results given here are based on the external irradiation method, which was found to be more reliable. Dose-response curves were compared for four lethal endpoints (cell viability, live cell fraction, release of lactate dehydrogenase [LDH] and clonogenic survival) to determine the relative biological effectiveness (RBE) of alpha radiation. The alpha RBE for porcine cells varied from 1.6-21, depending on the endpoint: 21.2+/-4.5 for cell viability, 12.9+/-2.7 for decrease in live cell number, 5.3+/-0.4 for LDH release to the medium but only 1.6 +/-0.1 for clonogenic survival. The low RBE of 1.6 was due to x-ray hypersensitivity of endothelial cells at low doses.

  18. Targeting Endothelial Function to Treat Heart Failure with Preserved Ejection Fraction: The Promise of Exercise Training

    PubMed Central

    Lemmens, Katrien; Vrints, Christiaan J.

    2017-01-01

    Although the burden of heart failure with preserved ejection fraction (HFpEF) is increasing, there is no therapy available that improves prognosis. Clinical trials using beta blockers and angiotensin converting enzyme inhibitors, cardiac-targeting drugs that reduce mortality in heart failure with reduced ejection fraction (HFrEF), have had disappointing results in HFpEF patients. A new “whole-systems” approach has been proposed for designing future HFpEF therapies, moving focus from the cardiomyocyte to the endothelium. Indeed, dysfunction of endothelial cells throughout the entire cardiovascular system is suggested as a central mechanism in HFpEF pathophysiology. The objective of this review is to provide an overview of current knowledge regarding endothelial dysfunction in HFpEF. We discuss the molecular and cellular mechanisms leading to endothelial dysfunction and the extent, presence, and prognostic importance of clinical endothelial dysfunction in different vascular beds. We also consider implications towards exercise training, a promising therapy targeting system-wide endothelial dysfunction in HFpEF. PMID:28706575

  19. Sirt6 mRNA-incorporated endothelial microparticles (EMPs) attenuates DM patient-derived EMP-induced endothelial dysfunction

    PubMed Central

    Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu

    2017-01-01

    Background Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. Aim The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 (Sirt6) mRNA -incorporated EMPs on endothelial dysfunction. Methods EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv-Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. Results The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. Conclusion The Sirt6 mRNA-carrying EMPs may ameliorate endothelial dysfunction in diabetic patients. PMID:29371988

  20. Sirt6 mRNA-incorporated endothelial microparticles (EMPs) attenuates DM patient-derived EMP-induced endothelial dysfunction.

    PubMed

    Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu

    2017-12-26

    Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 ( Sirt6 ) mRNA -incorporated EMPs on endothelial dysfunction. EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv- Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. The Sirt6 mRNA -carrying EMPs may ameliorate endothelial dysfunction in diabetic patients.

  1. Modulatory Effect of 2-(4-Hydroxyphenyl)amino-1,4-naphthoquinone on Endothelial Vasodilation in Rat Aorta.

    PubMed

    Palacios, Javier; Cifuentes, Fredi; Valderrama, Jaime A; Benites, Julio; Ríos, David; González, Constanza; Chiong, Mario; Cartes-Saavedra, Benjamín; Lafourcade, Carlos; Wyneken, Ursula; González, Pamela; Owen, Gareth I; Pardo, Fabián; Sobrevia, Luis; Buc Calderon, Pedro

    The vascular endothelium plays an essential role in the control of the blood flow. Pharmacological agents like quinone (menadione) at various doses modulate this process in a variety of ways. In this study, Q7 , a 2-phenylamino-1,4-naphthoquinone derivative, significantly increased oxidative stress and induced vascular dysfunction at concentrations that were not cytotoxic to endothelial or vascular smooth muscle cells. Q7 reduced nitric oxide (NO) levels and endothelial vasodilation to acetylcholine in rat aorta. It also blunted the calcium release from intracellular stores by increasing the phenylephrine-induced vasoconstriction when CaCl 2 was added to a calcium-free medium but did not affect the influx of calcium from extracellular space. Q7 increased the vasoconstriction to BaCl 2 (10 -3  M), an inward rectifying K + channels blocker, and blocked the vasodilation to KCl (10 -2  M) in aortic rings precontracted with BaCl 2 . This was recovered with sodium nitroprusside (10 -8  M), a NO donor. In conclusion, Q7 induced vasoconstriction was through a modulation of cellular mechanisms involving calcium fluxes through K + channels, and oxidative stress induced endothelium damage. These findings contribute to the characterization of new quinone derivatives with low cytotoxicity able to pharmacologically modulate vasodilation.

  2. Resveratrol and Cardiovascular Diseases

    PubMed Central

    Bonnefont-Rousselot, Dominique

    2016-01-01

    The increased incidence of cardiovascular diseases (CVDs) has stimulated research for substances that could improve cardiovascular health. Among them, resveratrol (RES), a polyphenolic compound notably present in grapes and red wine, has been involved in the “French paradox”. RES is known for its antioxidant and anti-inflammatory properties and for its ability to upregulate endothelial NO synthase (eNOS). RES was able to scavenge •OH/O2•− and peroxyl radicals, which can limit the lipid peroxidation processes. Moreover, in bovine aortic endothelial cells (BAEC) under glucose-induced oxidative stress, RES restored the activity of dimethylargininedimethylaminohydrolase (DDAH), an enzyme that degrades an endogenous inhibitor of eNOS named asymmetric dimethylarginine (ADMA). Thus, RES could improve •NO availability and decrease the endothelial dysfunction observed in diabetes. Preclinical studies have made it possible to identify molecular targets (SIRT-1, AMPK, Nrf2, NFκB…); however, there are limited human clinical trials, and difficulties in the interpretation of results arise from the use of high-dose RES supplements in research studies, whereas low RES concentrations are present in red wine. The discussions on potential beneficial effects of RES in CVDs (atherosclerosis, hypertension, stroke, myocardial infarction, heart failure) should compare the results of preclinical studies with those of clinical trials. PMID:27144581

  3. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  4. [Comparison of aortic valve dysfunction and ascending aorta dimension between patients with different bicuspid aortic valve morphology].

    PubMed

    Ren, X S; Yu, Y T; Liu, K; Hou, Z H; Gao, Y; Yin, W H; Lyu, B

    2017-06-24

    Objective: To compare the characteristics of aortic valve dysfunction and ascending aorta dimension in patients with different bicuspid aortic valve (BAV) morphology. Methods: A total of 197 patients who underwent aortic valve replacement between April 2014 and March 2015 and were diagnosed with BAV by pathology were included, and their clinical data were retrospectively analyzed. Patients were divided into raphe(+) group(109 cases) and raphe(-) group(88 cases) according to the presence or absence of raphe, and L-R group(fusion of left and right cusp, 125 cases) and L/R-N group(fusion of left or right and noncoronary cusp, 72 cases) according to fusion type of the cusps. The characteristics of aortic valve dysfunction and ascending aorta dimension in patients with different BAV morphology were compared. Results: (1) Aortic stenosis incidence was lower in raphe(+) group than in raphe(-) group(22.9%(25/109) vs. 69.3%(61/88), P <0.001). Aortic regurgitation incidence was higher in raphe(+) group than in raphe(-) group (61.5%(67/109) vs. 22.7%(20/88), P <0.001). Incidence of type 1 of aortic root dilation was higher in raphe(+) group than in raphe(-) group (23.9%(26/109)vs.10.2%(9/88), P =0.024). (2) Aortic stenosis incidence was lower in L-R group than in L/R-N group(29.6%(37/125) vs. 68.1%(49/72), P <0.001). Aortic regurgitation incidence was higher in L-R group than in L/R-N group (59.2%(74/125) vs. 18.1%(13/72), P <0.001). Incidence of type 3 of aortic root dilation was lower in L-R group than in L/R-N group(10.4%(13/125) vs. 37.5%(27/72), P =0.006). (3) Aortic stenosis incidence was lower in L-R patients than in L/R-N patients(15.1%(13/86)vs. 52.2%(12/23), P =0.001), and aortic regurgitation incidence was higher in L-R patients than in L/R-N patients in raphe(+) group(73.3%(63/86)vs. 17.4%(4/23), P <0.001). Conclusion: There is significant difference in the type of valvular dysfunction and ascending aorta dilatation in patients with different morphological characteristics of BAV.

  5. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice.

    PubMed

    Lu, Junyan; Xiang, Guangda; Liu, Min; Mei, Wen; Xiang, Lin; Dong, Jing

    2015-12-01

    The circulating irisin increases energy expenditure and improves insulin resistance in mice and humans. The improvement of insulin resistance ameliorates atherosclerosis. Therefore, we hypothesized that irisin alleviates atherosclerosis in diabetes. Endothelial function was measured by acetylcholine-induced endothelium-dependent vasodilation using aortic rings in apolipoprotein E-Null (apoE(-/-)) streptozotocin-induced diabetic mice. Atherosclerotic lesion was evaluated by plaque area and inflammatory response in aortas. In addition, the endothelium-protective effects of irisin were also further investigated in primary human umbilical vein endothelial cells (HUVECs) in vitro. The in vivo experiments showed that irisin treatment significantly improved endothelial dysfunction, decreased endothelial apoptosis, and predominantly decreased atherosclerotic plaque area of both en face and cross sections when compared with normal saline-treated diabetic mice. Moreover, the infiltrating macrophages and T lymphocytes within plaque and the mRNA expression levels of inflammatory cytokines in aortas were also significantly reduced by irisin treatment in mice. The in vitro experiments revealed that irisin inhibited high glucose-induced apoptosis, oxidative stress and increased antioxidant enzymes expression in HUVECs, and pretreatment with LY294002, l-NAME, AMPK-siRNA or eNOS-siRNA, attenuated the protection of irisin on HUVECs apoptosis induced by high glucose. In addition, the in vivo and in vitro experiments showed that irisin increased the phosphorylation of AMPK, Akt and eNOS in aortas and cultured HUVECs. The present study indicates that systemic administration of irisin may be protected against endothelial injury and ameliorated atherosclerosis in apoE(-/-) diabetic mice. The endothelium-protective action of irisin was through activation of AMPK-PI3K-Akt-eNOS signaling pathway. Irisin could be therapeutic for atherosclerotic vascular diseases in diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Attenuation of oxidative stress in Type 1 diabetic rats supplemented with a seasoning obtained from winemaking by-products and its effect on endothelial function.

    PubMed

    Del Pino-García, Raquel; Rivero-Pérez, María D; González-SanJosé, María L; Castilla-Camina, Pablo; Croft, Kevin D; Muñiz, Pilar

    2016-10-12

    Type 1 diabetes mellitus (DM) is characterized by hyperglycemia resulting from insulin deficiency. This is usually accompanied by a pro-oxidative environment, dyslipidemia and endothelial dysfunction, thus leading to several micro- and macro-vascular complications. This study investigated the potential benefits of a seasoning obtained from seedless red wine pomace (RWPS) in protecting against oxidative damage and preserving endothelial function in Type 1 DM, and the underlying mechanisms involved at the level of gene expression. The diet of streptozotocin (45 mg kg -1 )-induced diabetic (DB) and control (CN) male Wistar rats (n = 5 rats per group) was supplemented with RWPS (300 mg per kg per day) or vehicle for 4 weeks. Characteristic indicators of DM such as increased food and water intakes and weight loss were significantly ameliorated in DB + RWPS rats, with a notable normalization in their fasting glycemic control and cholesterol profile. Plasma total antioxidant capacity (TAC) was substantially increased, and biomarkers of oxidative damage to lipids (F 2 -isoprostanes, 24.9%; malondialdehyde, 28.4%) and proteins (carbonyl groups, 5.91%) were significantly decreased. Nitric oxide availability tended to improve in plasma of DB + RWPS compared with DB rats. Insulin levels were increased (1.51-fold) and aortic tissue antioxidant enzymes such as mitochondrial superoxide dismutase (SOD2, 1.93-fold) were up-regulated. Other important genes for endothelial function, including endothelial β-nicotinamide adenine dinucleotide phosphate oxidase (NOX4), endothelial and inducible nitric oxide synthases (eNOS, iNOS), and angiotensin-converting enzyme-I (ACE), were non-significantly modulated, although certain potentially positive trends were observed. These results indicate that RWPS supplementation might be a useful nutritional approach to manage Type 1 DM and ameliorate its vascular complications.

  7. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    PubMed Central

    Pokrovskiy, Mihail V.; Korokin, Mihail V.; Tsepeleva, Svetlana A.; Pokrovskaya, Tatyana G.; Gureev, Vladimir V.; Konovalova, Elena A.; Gudyrev, Oleg S.; Kochkarov, Vladimir I.; Korokina, Liliya V.; Dudina, Eleonora N.; Babko, Anna V.; Terehova, Elena G.

    2011-01-01

    This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction. PMID:21747978

  8. Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase.

    PubMed

    Li, Chuan; Zhang, Wei-Jian; Choi, Jaewoo; Frei, Balz

    2016-10-01

    Endothelial dysfunction due to vascular inflammation and oxidative stress critically contributes to the etiology of atherosclerosis. The intracellular redox environment plays a key role in regulating endothelial cell function and is intimately linked to cellular thiol status, including and foremost glutathione (GSH). In the present study we investigated whether and how the dietary flavonoid, quercetin, affects GSH status of human aortic endothelial cells (HAEC) and their response to oxidative stress. We found that treating cells with buthionine sulfoximine to deplete cellular GSH levels significantly reduced the capacity of quercetin to inhibit lipopolysaccharide (LPS)-induced oxidant production. Furthermore, incubation of HAEC with quercetin caused a transient decrease and then full recovery of cellular GSH concentrations. The initial decline in GSH was not accompanied by a corresponding increase in glutathione disulfide (GSSG). To the contrary, GSSG levels, which were less than 0.5% of GSH levels at baseline (0.26±0.01 vs. 64.7±1.9nmol/mg protein, respectively), decreased by about 25% during incubation with quercetin. As a result, the GSH: GSSG ratio increased by about 70%, from 253±7 to 372±23. These quercetin-induced changes in GSH and GSSG levels were not affected by treating HAEC with 500µM ascorbic acid phosphate for 24h to increase intracellular ascorbate levels. Incubation of HAEC with quercetin also led to the appearance of extracellular quercetin-glutathione conjugates, which was paralleled by upregulation of the multidrug resistance protein 1 (MRP1). Furthermore, quercetin slightly but significantly increased mRNA and protein levels of glutamate-cysteine ligase (GCL) catalytic and modifier subunits. Taken together, our results suggest that quercetin causes loss of GSH in HAEC, not because of oxidation but due to formation and cellular export of quercetin-glutathione conjugates. Induction by quercetin of GCL subsequently restores GSH levels, thereby suppressing LPS-induced oxidant production. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Shear-Sensitive Genes in Aortic Valve Endothelium

    PubMed Central

    Fernández Esmerats, Joan; Heath, Jack

    2016-01-01

    Abstract Significance: Currently, calcific aortic valve disease (CAVD) is only treatable through surgical intervention because the specific mechanisms leading to the disease remain unclear. In this review, we explore the forces and structure of the valve, as well as the mechanosensors and downstream signaling in the valve endothelium known to contribute to inflammation and valve dysfunction. Recent Advances: While the valvular structure enables adaptation to dynamic hemodynamic forces, these are impaired during CAVD, resulting in pathological systemic changes. Mechanosensing mechanisms—proteins, sugars, and membrane structures—at the surface of the valve endothelial cell relay mechanical signals to the nucleus. As a result, a large number of mechanosensitive genes are transcribed to alter cellular phenotype and, ultimately, induce inflammation and CAVD. Transforming growth factor-β signaling and Wnt/β-catenin have been widely studied in this context. Importantly, NADPH oxidase and reactive oxygen species/reactive nitrogen species signaling has increasingly been recognized to play a key role in the cellular response to mechanical stimuli. In addition, a number of valvular microRNAs are mechanosensitive and may regulate the progression of CAVD. Critical Issues: While numerous pathways have been described in the pathology of CAVD, no treatment options are available to avoid surgery for advanced stenosis and calcification of the aortic valve. More work must be focused on this issue to lead to successful therapies for the disease. Future Directions: Ultimately, a more complete understanding of the mechanisms within the aortic valve endothelium will lead us to future therapies important for treatment of CAVD without the risks involved with valve replacement or repair. Antioxid. Redox Signal. 25, 401–414. PMID:26651130

  10. Physical activity on endothelial and erectile dysfunction: a literature review.

    PubMed

    Leoni, Luís Antônio B; Fukushima, André R; Rocha, Leandro Y; Maifrino, Laura B M M; Rodrigues, Bruno

    2014-09-01

    Physical inactivity, diabetes, hypertension, dyslipidemia, smoking and obesity were associated with imbalance in oxidative stress, leading to endothelial dysfunction. Such dysfunction is present in both cardiovascular disease (CVD) and erectile dysfunction (ED). ED is the persistent inability to achieve or sustain an erection sufficient for satisfactory sexual performance and is one of the first manifestations of endothelial damage in men with CVD risk factors. The purpose of this article is to review the results of studies involving physical activity, CVD, endothelial dysfunction and ED in order to verify its applicability for improving the health and quality of life of men with such disorders. There is consistent evidence that endothelial damage is intimately linked to ED, and this manifestation seems to be associated with the appearance CVDs. On the other hand, physical activity has been pointed out as an important clinical strategy in the prevention and treatment of CVDs and ED mainly associated with improvement of endothelial function. However, further experimental and clinical prospective investigations are needed to test the role of physical exercises in the modulation of endothelial function and their implications on erectile function and the appearance of CVDs.

  11. Age-related changes in endothelial function and blood flow regulation.

    PubMed

    Toda, Noboru

    2012-02-01

    Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Flavanol-rich cocoa ameliorates lipemia-induced endothelial dysfunction.

    PubMed

    Westphal, Sabine; Luley, Claus

    2011-09-01

    Consumption of flavanols improves chronic endothelial dysfunction. We investigated whether it can also improve acute lipemia-induced endothelial dysfunction. In this randomized, placebo-controlled, double-blind, crossover trial, 18 healthy subjects received a fatty meal with cocoa either rich in flavanols (918 mg) or flavanol-poor. Flow-mediated dilation (FMD), triglycerides, and free fatty acids were then determined over 6 h. After the flavanol-poor fat loading, the FMD deteriorated over 4 h. The consumption of flavanol-rich cocoa, in contrast, improved this deterioration in hours 2, 3, and 4 without abolishing it completely. Flavanols did not have any influence on triglycerides or on free fatty acids. Flavanol-rich cocoa can alleviate the lipemia-induced endothelial dysfunction, probably through an improvement in endothelial NO synthase.

  13. Upregulation of microRNA-876 Induces Endothelial Cell Apoptosis by Suppressing Bcl-Xl in Development of Atherosclerosis.

    PubMed

    Xu, Kaicheng; Liu, Peng; Zhao, Yue

    2017-01-01

    The injury and apoptotic cell death of endothelial cells hallmark the development of atherosclerosis (AS), characterized by dysregulation of lipid homeostasis, immune responses, and formation of coronary plaques. However, the mechanisms underlying the initiation of endothelial cell apoptosis remain ill-defined. Recent evidence suggests a role of microRNAs in the processes of AS-associated endothelial cell apoptosis. Thus, we studied this question in the current study. AS was developed in ApoE (-/-) mice suppled with high-fat diet (HFD), compared to ApoE (-/-) mice suppled with normal diet (ND). Mouse endothelial cells were isolated from the aortic arch using flow cytometry based on their expression of Pecam-1. Oxidized low-density lipoprotein (ox-LDL) were used to treat human aortic endothelial cells (HAECs) as an in vitro model for AS. Gene expression was quantified by RT-qPCR and protein levels were analyzed by Western blotting. Apoptosis was evaluated by FITC Annexin V Apoptosis essay and by TUNEL staining. Prediction of the binding between miRNAs and 3'-UTR of mRNA from the target gene was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. HFD mice, but not ND mice, developed AS in 12 weeks. Significantly reduced endothelial cell marks and significantly increased mesenchymal cell marks were detected in the aortic arch of the HFD mice, compared to the ND mice. The endothelial cell apoptosis was significantly higher in HFD mice, seemingly due to functional suppression of protein translation of anti-apoptotic Bcl-Xl protein through upregulation of miR-876. Similar results were obtained from in vitro study. Inhibition of miR-876 abolished the effects of ox-LDL-induced apoptotic cell death of HAECs. AS-associated endothelial cell apoptosis may partially result from downregulation of Bcl-Xl, through upregulation of miR-876 that binds and suppresses translation of Bcl-Xl mRNA. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Type of supplemented simple sugar, not merely calorie intake, determines adverse effects on metabolism and aortic function in female rats

    PubMed Central

    Sangüesa, Gemma; Shaligram, Sonali; Akther, Farjana; Roglans, Núria; Laguna, Juan C.; Rahimian, Roshanak

    2017-01-01

    High consumption of simple sugars causes adverse cardiometabolic effects. We investigated the mechanisms underlying the metabolic and vascular effects of glucose or fructose intake and determined whether these effects are exclusively related to increased calorie consumption. Female Sprague-Dawley rats were supplemented with 20% wt/vol glucose or fructose for 2 mo, and plasma analytes and aortic response to vasodilator and vasoconstrictor agents were determined. Expression of molecules associated with lipid metabolism, insulin signaling, and vascular response were evaluated in hepatic and/or aortic tissues. Caloric intake was increased in both sugar-supplemented groups vs. control and in glucose- vs. fructose-supplemented rats. Hepatic lipogenesis was induced in both groups. Plasma triglycerides were increased only in the fructose group, together with decreased expression of carnitine palmitoyltransferase-1A and increased microsomal triglyceride transfer protein expression in the liver. Plasma adiponectin and peroxisome proliferator-activated receptor (PPAR)-α expression was increased only by glucose supplementation. Insulin signaling in liver and aorta was impaired in both sugar-supplemented groups, but the effect was more pronounced in the fructose group. Fructose supplementation attenuated aortic relaxation response to a nitric oxide (NO) donor, whereas glucose potentiated it. Phenylephrine-induced maximal contractions were reduced in the glucose group, which could be related to increased endothelial NO synthase (eNOS) phosphorylation and subsequent elevated basal NO in the glucose group. In conclusion, despite higher caloric intake in glucose-supplemented rats, fructose caused worse metabolic and vascular responses. This may be because of the elevated adiponectin level and the subsequent enhancement of PPARα and eNOS phosphorylation in glucose-supplemented rats. NEW & NOTEWORTHY This is the first study comparing the effects of glucose and fructose consumption on metabolic factors and aortic function in female rats. Our results show that, although total caloric consumption was higher in glucose-supplemented rats, fructose ingestion had a greater impact in inducing metabolic and aortic dysfunction. PMID:27923787

  15. Nitric Oxide-Mediated Coronary Flow Regulation in Patients with Coronary Artery Disease: Recent Advances

    PubMed Central

    Toda, Noboru; Tanabe, Shinichi; Nakanishi, Sadanobu

    2011-01-01

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD. PMID:22942627

  16. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction.

    PubMed

    Loke, Wai Mun; Proudfoot, Julie M; Hodgson, Jonathan M; McKinley, Allan J; Hime, Neil; Magat, Maria; Stocker, Roland; Croft, Kevin D

    2010-04-01

    Animal and clinical studies have suggested that polyphenols in fruits, red wine, and tea may delay the development of atherosclerosis through their antioxidant and anti-inflammatory properties. We investigated whether individual dietary polyphenols representing different polyphenolic classes, namely quercetin (flavonol), (-)-epicatechin (flavan-3-ol), theaflavin (dimeric catechin), sesamin (lignan), or chlorogenic acid (phenolic acid), reduce atherosclerotic lesion formation in the apolipoprotein E (ApoE)(-/-) gene-knockout mouse. Quercetin and theaflavin (64-mg/kg body mass daily) significantly attenuated atherosclerotic lesion size in the aortic sinus and thoracic aorta (P<0.05 versus ApoE(-/-) control mice). Quercetin significantly reduced aortic F(2)-isoprostane, vascular superoxide, vascular leukotriene B(4), and plasma-sP-selectin concentrations; and augmented vascular endothelial NO synthase activity, heme oxygenase-1 protein, and urinary nitrate excretion (P<0.05 versus control ApoE(-/-) mice). Theaflavin showed similar, although less extensive, significant effects. Although (-)-epicatechin significantly reduced F(2)-isoprostane, superoxide, and endothelin-1 production (P<0.05 versus control ApoE(-/-) mice), it had no significant effect on lesion size. Sesamin and chlorogenic acid treatments exerted no significant effects. Quercetin, but not (-)-epicatechin, significantly increased the expression of heme oxygenase-1 protein in lesions versus ApoE(-/-) controls. Specific dietary polyphenols, in particular quercetin and theaflavin, may attenuate atherosclerosis in ApoE(-/-) gene-knockout mice by alleviating inflammation, improving NO bioavailability, and inducing heme oxygenase-1. These data suggest that the cardiovascular protection associated with diets rich in fruits, vegetables, and some beverages may in part be the result of flavonoids, such as quercetin.

  17. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L.

    PubMed

    Wang, Qilong; Wu, Shengnan; Zhu, Huaiping; Ding, Ye; Dai, Xiaoyan; Ouyang, Changhan; Han, Young-Min; Xie, Zhonglin; Zou, Ming-Hui

    2017-02-01

    PRKAA (protein kinase, AMP-activated, α catalytic subunit) regulates mitochondrial biogenesis, function, and turnover. However, the molecular mechanisms by which PRKAA regulates mitochondrial dynamics remain poorly characterized. Here, we report that PRKAA regulated mitochondrial fission via the autophagy-dependent degradation of DNM1L (dynamin 1-like). Deletion of Prkaa1/AMPKα1 or Prkaa2/AMPKα2 resulted in defective autophagy, DNM1L accumulation, and aberrant mitochondrial fragmentation in the mouse aortic endothelium. Furthermore, autophagy inhibition by chloroquine treatment or ATG7 small interfering RNA (siRNA) transfection, upregulated DNM1L expression and triggered DNM1L-mediated mitochondrial fragmentation. In contrast, autophagy activation by overexpression of ATG7 or chronic administration of rapamycin, the MTOR inhibitor, promoted DNM1L degradation and attenuated mitochondrial fragmentation in Prkaa2-deficient (prkaa2 -/- ) mice, suggesting that defective autophagy contributes to enhanced DNM1L expression and mitochondrial fragmentation. Additionally, the autophagic receptor protein SQSTM1/p62, which bound to DNM1L and led to its translocation into the autophagosome, was involved in DNM1L degradation by the autophagy-lysosome pathway. Gene silencing of SQSTM1 markedly reduced the association between SQSTM1 and DNM1L, impaired the degradation of DNM1L, and enhanced mitochondrial fragmentation in PRKAA-deficient endothelial cells. Finally, the genetic (DNM1L siRNA) or pharmacological (mdivi-1) inhibition of DNMA1L ablated mitochondrial fragmentation in the mouse aortic endothelium and prevented the acetylcholine-induced relaxation of isolated mouse aortas. This suggests that aberrant DNM1L is responsible for enhanced mitochondrial fragmentation and endothelial dysfunction in prkaa knockout mice. Overall, our results show that PRKAA deletion promoted mitochondrial fragmentation in vascular endothelial cells by inhibiting the autophagy-dependent degradation of DNM1L.

  18. Gender disparity in LDL-induced cardiovascular damage and the protective role of estrogens against electronegative LDL

    PubMed Central

    2014-01-01

    Background Increased levels of the most electronegative type of LDL, L5, have been observed in the plasma of patients with metabolic syndrome (MetS) and ST-segment elevation myocardial infarction and can induce endothelial dysfunction. Because men have a higher predisposition to developing coronary artery disease than do premenopausal women, we hypothesized that LDL electronegativity is increased in men and promotes endothelial damage. Methods L5 levels were compared between middle-aged men and age-matched, premenopausal women with or without MetS. We further studied the effects of gender-influenced LDL electronegativity on aortic cellular senescence and DNA damage in leptin receptor–deficient (db/db) mice by using senescence-associated–β-galactosidase and γH2AX staining, respectively. We also studied the protective effects of 17β-estradiol and genistein against electronegative LDL–induced senescence in cultured bovine aortic endothelial cells (BAECs). Results L5 levels were higher in MetS patients than in healthy subjects (P < 0.001), particularly in men (P = 0.001). LDL isolated from male db/db mice was more electronegative than that from male or female wild-type mice. In addition, LDL from male db/db mice contained abundantly more apolipoprotein CIII and induced more BAEC senescence than did female db/db or wild-type LDL. In the aortas of db/db mice but not wild-type mice, we observed cellular senescence and DNA damage, and the effect was more significant in male than in female db/db mice. Pretreatment with 17β-estradiol or genistein inhibited BAEC senescence induced by male or female db/db LDL and downregulated the expression of lectin-like oxidized LDL receptor-1 and tumor necrosis factor-alpha protein. Conclusion The gender dichotomy of LDL-induced cardiovascular damage may underlie the increased propensity to coronary artery disease in men. PMID:24666525

  19. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation.

    PubMed

    Cicek, Figen Amber; Amber, Cicek Figen; Tokcaer-Keskin, Zeynep; Zeynep, Tokcaer-Keskin; Ozcinar, Evren; Evren, Ozcinar; Bozkus, Yosuf; Yusuf, Bozkus; Akcali, Kamil Can; Can, Akcali Kamil; Turan, Belma; Belma, Turan

    2014-08-01

    Metabolic syndrome (MetS) is a complex medical disorder characterized by insulin resistance, hypertension, and high risk of coronary disease and stroke. Microvascular rarefaction and endothelial dysfunction have also been linked with MetS, and recent evidence from clinical studies supports the efficacy of incretin-based antidiabetic therapies for vascular protection in diabetes. Previous studies pointed out the importance of dipeptidyl peptidase-4 (DPP-4) inhibition in endothelial cells due to getting protection against metabolic pathologies. We therefore aimed to investigate the acute effects of a DPP-4 inhibitor, sitagliptin, on vascular function in rats with high-sucrose diet-induced MetS. In order to elucidate the mechanisms implicated in the effects of DPP-4 inhibition, we tested the involvement of NO pathway and epigenetic regulation in the MetS. Acute use of sitagliptin protects the vascular function in the rats with MetS in part due to NO pathway via restoring the depressed aortic relaxation responses mediated by receptors. Application of sitagliptin enhanced the depressed phosphorylation levels of both the endothelial NO synthase and the apoptotic status of protein kinase B, known as Akt, in endothelium-intact thoracic aorta from rats with MetS. One-hour application of sitagliptin on aortic rings from rats with MetS also induced remarkable histon posttranslational modifications such as increased expression of H3K27Me3, but not of H3K27Me2, resulting in an accumulation of the H3K27Me3. Our findings suggest that, in addition to its well-known hypoglycemic action, sitagliptin may also have beneficial effects on hyperglycemia-induced vascular changes in an endotheium-dependent manner. These present results with sitagliptin aside from the glycaemic control, may demonstrate its important role in the treatment of patients with MetS.

  20. Artificial aortic valve dysfunction due to pannus and thrombus – different methods of cardiac surgical management

    PubMed Central

    Marcinkiewicz, Anna; Kośmider, Anna; Walczak, Andrzej; Zwoliński, Radosław; Jaszewski, Ryszard

    2015-01-01

    Introduction Approximately 60 000 prosthetic valves are implanted annually in the USA. The risk of prosthesis dysfunction ranges from 0.1% to 4% per year. Prosthesis valve dysfunction is usually caused by a thrombus obstructing the prosthetic discs. However, 10% of prosthetic valves are dysfunctional due to pannus formation, and 12% of prostheses are damaged by both fibrinous and thrombotic components. The authors present two patients with dysfunctional aortic prostheses who were referred for cardiac surgery. Different surgical solutions were used in the treatment of each case. Case study 1 The first patient was a 71-year-old woman whose medical history included arterial hypertension, stable coronary artery disease, diabetes mellitus, chronic obstructive pulmonary disease (COPD), and hypercholesterolemia; she had previously undergone left-sided mastectomy and radiotherapy. The patient was admitted to the Cardiac Surgery Department due to aortic prosthesis dysfunction. Transthoracic echocardiography revealed complete obstruction of one disc and a severe reduction in the mobility of the second. The mean transvalvular gradient was very high. During the operation, pannus covering the discs’ surface was found. A biological aortic prosthesis was reimplanted without complications. Case study 2 The second patient was an 87-year-old woman with arterial hypertension, persistent atrial fibrillation, and COPD, whose past medical history included gastric ulcer disease and ischemic stroke. As in the case of the first patient, she was admitted due to valvular prosthesis dysfunction. Preoperative transthoracic echocardiography revealed an obstruction of the posterior prosthetic disc and significant aortic regurgitation. Transesophageal echocardiography and fluoroscopy confirmed the prosthetic dysfunction. During the operation, a thrombus growing around a minor pannus was found. The thrombus and pannus were removed, and normal functionality of the prosthetic valve was restored. Conclusions Precise and modern diagnostic methods facilitated selection of the treatment method. However, the intraoperative view also seems to be crucial in individualizing the surgical approach. PMID:26702274

  1. Artificial aortic valve dysfunction due to pannus and thrombus - different methods of cardiac surgical management.

    PubMed

    Ostrowski, Stanisław; Marcinkiewicz, Anna; Kośmider, Anna; Walczak, Andrzej; Zwoliński, Radosław; Jaszewski, Ryszard

    2015-09-01

    Approximately 60 000 prosthetic valves are implanted annually in the USA. The risk of prosthesis dysfunction ranges from 0.1% to 4% per year. Prosthesis valve dysfunction is usually caused by a thrombus obstructing the prosthetic discs. However, 10% of prosthetic valves are dysfunctional due to pannus formation, and 12% of prostheses are damaged by both fibrinous and thrombotic components. The authors present two patients with dysfunctional aortic prostheses who were referred for cardiac surgery. Different surgical solutions were used in the treatment of each case. The first patient was a 71-year-old woman whose medical history included arterial hypertension, stable coronary artery disease, diabetes mellitus, chronic obstructive pulmonary disease (COPD), and hypercholesterolemia; she had previously undergone left-sided mastectomy and radiotherapy. The patient was admitted to the Cardiac Surgery Department due to aortic prosthesis dysfunction. Transthoracic echocardiography revealed complete obstruction of one disc and a severe reduction in the mobility of the second. The mean transvalvular gradient was very high. During the operation, pannus covering the discs' surface was found. A biological aortic prosthesis was reimplanted without complications. The second patient was an 87-year-old woman with arterial hypertension, persistent atrial fibrillation, and COPD, whose past medical history included gastric ulcer disease and ischemic stroke. As in the case of the first patient, she was admitted due to valvular prosthesis dysfunction. Preoperative transthoracic echocardiography revealed an obstruction of the posterior prosthetic disc and significant aortic regurgitation. Transesophageal echocardiography and fluoroscopy confirmed the prosthetic dysfunction. During the operation, a thrombus growing around a minor pannus was found. The thrombus and pannus were removed, and normal functionality of the prosthetic valve was restored. Precise and modern diagnostic methods facilitated selection of the treatment method. However, the intraoperative view also seems to be crucial in individualizing the surgical approach.

  2. Placental-Specific sFLT-1 e15a Protein Is Increased in Preeclampsia, Antagonizes Vascular Endothelial Growth Factor Signaling, and Has Antiangiogenic Activity.

    PubMed

    Palmer, Kirsten R; Kaitu'u-Lino, Tu'uhevaha J; Hastie, Roxanne; Hannan, Natalie J; Ye, Louie; Binder, Natalie; Cannon, Ping; Tuohey, Laura; Johns, Terrance G; Shub, Alexis; Tong, Stephen

    2015-12-01

    In preeclampsia, the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFLT-1) is released from placenta into the maternal circulation, causing endothelial dysfunction and organ injury. A recently described splice variant, sFLT-1 e15a, is primate specific and the most abundant placentally derived sFLT-1. Therefore, it may be the major sFLT-1 isoform contributing to the pathophysiology of preeclampsia. sFLT-1 e15a protein remains poorly characterized: its bioactivity has not been comprehensively examined, and serum levels in normal and preeclamptic pregnancy have not been reported. We generated and validated an sFLT-1 e15a-specific ELISA to further characterize serum levels during pregnancy, and in the presence of preeclampsia. Furthermore, we performed assays to examine the bioactivity and antiangiogenic properties of sFLT-1 e15a protein. sFLT-1 e15a was expressed in the syncytiotrophoblast, and serum levels rose across pregnancy. Strikingly, serum levels were increased 10-fold in preterm preeclampsia compared with normotensive controls. We confirmed sFLT-1 e15a is bioactive and is able to inhibit vascular endothelial growth factor signaling of vascular endothelial growth factor receptor 2 and block downstream Akt phosphorylation. Furthermore, sFLT-1 e15a has antiangiogenic properties. sFLT-1 e15a decreased endothelial cell migration, invasion, and inhibited endothelial cell tube formation. Administering sFLT-1 e15a blocked vascular endothelial growth factor induced sprouts from mouse aortic rings ex vivo. We have demonstrated that sFLT-1 e15a is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Future development of diagnostics and therapeutics for preeclampsia should consider targeting placentally derived sFLT-1 e15a. © 2015 American Heart Association, Inc.

  3. mPGES-1 (Microsomal Prostaglandin E Synthase-1) Mediates Vascular Dysfunction in Hypertension Through Oxidative Stress.

    PubMed

    Avendaño, María S; García-Redondo, Ana B; Zalba, Guillermo; González-Amor, María; Aguado, Andrea; Martínez-Revelles, Sonia; Beltrán, Luis M; Camacho, Mercedes; Cachofeiro, Victoria; Alonso, María J; Salaices, Mercedes; Briones, Ana M

    2018-06-11

    mPGES-1 (microsomal prostaglandin E synthase-1), the downstream enzyme responsible for PGE 2 (prostaglandin E 2 ) synthesis in inflammatory conditions and oxidative stress are increased in vessels from hypertensive animals. We evaluated the role of mPGES-1-derived PGE 2 in the vascular dysfunction and remodeling in hypertension and the possible contribution of oxidative stress. We used human peripheral blood mononuclear cells from asymptomatic patients, arteries from untreated and Ang II (angiotensin II)-infused mPGES-1 -/- and mPGES-1 +/+ mice, and vascular smooth muscle cells exposed to PGE 2 In human cells, we found a positive correlation between mPGES-1 mRNA and carotid intima-media thickness ( r =0.637; P <0.001) and with NADPH oxidase-dependent superoxide production ( r =0.417; P <0.001). In Ang II-infused mice, mPGES-1 deletion prevented all of the following: (1) the augmented wall:lumen ratio, vascular stiffness, and altered elastin structure; (2) the increased gene expression of profibrotic and proinflammatory markers; (3) the increased vasoconstrictor responses and endothelial dysfunction; (4) the increased NADPH oxidase activity and the diminished mitochondrial membrane potential; and (5) the increased reactive oxygen species generation and reduced NO bioavailability. In vascular smooth muscle cells or aortic segments, PGE 2 increased NADPH oxidase expression and activity and reduced mitochondrial membrane potential, effects that were abolished by antagonists of the PGE 2 receptors (EP), EP1 and EP3, and by JNK (c-Jun N-terminal kinase) and ERK1/2 (extracellular-signal-regulated kinases 1/2) inhibition. Deletion of mPGES-1 augmented vascular production of PGI 2 suggesting rediversion of the accumulated PGH 2 substrate. In conclusion, mPGES-1-derived PGE 2 is involved in vascular remodeling, stiffness, and endothelial dysfunction in hypertension likely through an increase of oxidative stress produced by NADPH oxidase and mitochondria. © 2018 American Heart Association, Inc.

  4. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model.

    PubMed

    Zhaorigetu, Siqin; Bair, Henry; Lu, Jonathan; Jin, Di; Olson, Scott D; Harting, Matthew T

    2018-01-01

    Although it is well known that nitrofen induces congenital diaphragmatic hernia (CDH), including CDH-associated lung hypoplasia and pulmonary hypertension (PH) in rodents, the mechanism of pathogenesis remains largely unclear. It has been reported that pulmonary artery (PA) endothelial cell (EC) dysfunction contributes to the development of PH in CDH. Thus, we hypothesized that there is significant alteration of endothelial dysfunction-associated proteins in nitrofen-induced CDH PAs. Pregnant SD rats received either nitrofen or olive oil on gestational day 9.5. The newborn rats were sacrificed and divided into a CDH (n = 81) and a control (n = 23) group. After PA isolation, the expression of PA endothelial dysfunction-associated proteins was assessed on Western blot and immunostaining. We demonstrate that the expression of C-reactive protein and endothelin-1 and its receptors, ETA and ETB, were significantly increased in the CDH PAs. Levels of phosphorylated myosin light chain were significantly elevated, but those of phosphorylated endothelial nitric oxide synthase, caveolin-1, and mechanistic target of rapamycin were significantly decreased in the CDH PAs. In this work, we elucidate alterations in the expression of endothelial dysfunction-associated proteins specific to nitrofen-induced CDH rodent PAs, thereby advancing our understanding of the critical role of endothelial dysfunction-associated pathways in the pathogenesis of nitrofen-induced CDH. © 2017 S. Karger AG, Basel.

  5. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.

  6. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  7. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase.

    PubMed

    Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev

    2017-01-01

    Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.

  8. Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation.

    PubMed

    Uryash, Arkady; Wu, Heng; Bassuk, Jorge; Kurlansky, Paul; Sackner, Marvin A; Adams, Jose A

    2009-06-01

    Low-amplitude pulses to the vasculature increase pulsatile shear stress to the endothelium. This activates endothelial nitric oxide (NO) synthase (eNOS) to promote NO release and endothelial-dependent vasodilatation. Descent of the dicrotic notch on the arterial pulse waveform and a-to-b ratio (a/b; where a is the height of the pulse amplitude and b is the height of the dicrotic notch above the end-diastolic level) reflects vasodilator (increased a/b) and vasoconstrictor effects (decreased a/b) due to NO level change. Periodic acceleration (pG(z)) (motion of the supine body head to foot on a platform) provides systemic additional pulsatile shear stress. The purpose of this study was to determine whether or not pG(z) applied to rats produced endothelial-dependent vasodilatation and increased NO production, and whether the latter was regulated by the Akt/phosphatidylinositol 3-kinase (PI3K) pathway. Male rats were anesthetized and instrumented, and pG(z) was applied. Sodium nitroprusside, N(G)-nitro-l-arginine methyl ester (l-NAME), and wortmannin (WM; to block Akt/PI3K pathway) were administered to compare changes in a/b and mean aortic pressure. Descent of the dicrotic notch occurred within 2 s of initiating pG(z). Dose-dependent increase of a/b and decrease of mean aortic pressure took place with SNP. l-NAME produced a dose-dependent rise in mean aortic pressure and decrease of a/b, which was blunted with pG(z). In the presence of WM, pG(z) did not decrease aortic pressure or increase a/b. WM also abolished the pG(z) blunting effect on blood pressure and a/b of l-NAME-treated animals. eNOS expression was increased in aortic tissue after pG(z). This study indicates that addition of low-amplitude pulses to circulation through pG(z) produces endothelial-dependent vasodilatation due to increased NO in rats, which is mediated via activation of eNOS, in part, by the Akt/PI3K pathway.

  9. Aorta-atria-septum combined incision for aortic valve re-replacement

    PubMed Central

    Xu, Yiwei; Ye, Xiaofeng; Li, Zhaolong

    2018-01-01

    This case report illustrates a patient who underwent supra-annular mechanical aortic valve replacement then suffered from prosthesis dysfunction, increasing pressure gradient with aortic valve. She was successfully underwent aortic valve re-replacement, sub-annular pannus removing and aortic annulus enlargement procedures through combined cardiac incision passing through aortic root, right atrium (RA), and upper atrial septum. This incision provides optimal visual operative field and simplifies dissection. PMID:29850170

  10. Cardiovascular effects of Urtica dioica L. (Urticaceae) roots extracts: in vitro and in vivo pharmacological studies.

    PubMed

    Testai, Lara; Chericoni, Silvio; Calderone, Vincenzo; Nencioni, Giulia; Nieri, Paola; Morelli, Ivano; Martinotti, Enrica

    2002-06-01

    Urtica dioica (Urticaceae) is a plant principally used in the traditional medicine of oriental Marocco as antihypertensive remedy (J. Ethnopharmacol., 58 (1997), 45). The aim of this work was to evaluate a possible direct cardiovascular action of the plant and to investigate its mechanism of action. In aortic preparations with intact and functional endothelial layer, pre-contracted with KCl 20 mM or norepinephrine 3 microM, the crude aqueous and methanolic extracts of the plant roots, as well as purified fractions elicited a vasodilator action. Nevertheless, the vasodilator activity was not present in aortic rings without endothelial layer. In aortic rings with intact endothelial layer, the vasorelaxing effect was abolished by L-NAME, a NO-biosynthesis inhibitor, and ODQ, a guanylate cyclase inhibitor. Furthermore, potassium channel blockers (TEA, 4-aminopyridine, quinine, but not glybenclamide) antagonized the vasodilator action of the purified fraction F1W of U. dioica. The same fraction produced a marked decrease of inotropic activity, in spontaneously beating atria of guinea-pig, and a marked, but transient, hypotensive activity on the blood pressure of anaesthetized rats. It is concluded that U. dioica can produce hypotensive responses, through a vasorelaxing effect mediated by the release of endothelial nitric oxide and the opening of potassium channels, and through a negative inotropic action.

  11. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    PubMed Central

    2012-01-01

    Background Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). Method EAL-I (100 mg·kg−1/day), EAL-II (200 mg·kg−1/day), and fluvastatin (3 mg·kg−1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation. PMID:22866890

  12. Unusual cause of central aortic prosthetic regurgitation during transcatheter replacement.

    PubMed

    López-Mínguez, José Ramón; Millán-Núñez, Victoria; González-Fernández, Reyes; Nogales-Asensio, Juan Manuel; Fuentes-Cañamero, María Eugenia; Merchán-Herrera, Antonio

    2016-04-01

    Transcatheter aortic valve replacement (TAVR) is an increasingly common procedure for the treatment of aortic stenosis in elderly patients with comorbidities that prevent the use of standard surgery. It has been shown that implantation without aortic regurgitation is related to lower mortality. Mild paravalvular regurgitation is inevitable in some cases due to calcification of the aortic annulus and its usually somewhat elliptical shape. Central regurgitation is less common, but has been associated with valve overdilatation in cases in which reduction of paravalvular regurgitation was attempted after the initial inflation. However, there are no reported cases of central prosthetic aortic regurgitation due to acute LV dysfunction. We report a case in which central aortic regurgitation occurred due to transient ventricular dysfunction secondary to occlusion of the right coronary artery by an embolus. The regurgitation disappeared after thrombus aspiration and normal ventricular function was immediately recovered. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  13. Integrated analysis of long noncoding RNA and mRNA profiling ox-LDL-induced endothelial dysfunction after atorvastatin administration.

    PubMed

    Jiang, Ling-Yu; Jiang, Yue-Hua; Qi, Ying-Zi; Shao, Lin-Lin; Yang, Chuan-Hua

    2018-06-01

    Long noncoding RNAs (lncRNAs) play a key role in the development of endothelial dysfunction. However, few lncRNAs associated with endothelial dysfunction after atorvastatin administration have been reported. In the present study, differentially expressed (DE) genes in ox-LDL versus control and ox-LDL + atorvastatin versus control were detected. Bioinformatics analysis and integrated analysis of mRNAs and lncRNAs were conducted to study the mechanisms of endothelial dysfunction after atorvastatin administration and to explore the regulation functions of lncRNAs. Here, 532 DE mRNAs and 532 DE lncRNAs were identified (among them, 195 mRNAs and 298 lncRNAs were upregulated, 337 mRNAs and 234 lncRNAs were downregulated) after ox-LDL treatment for 24 hours (fold change ≥2.0, P < .05). After ox-LDL treatment following atorvastatin administration, 750 DE mRNAs and 502 DE lncRNAs were identified (among them, 149 mRNAs and 218 lncRNAs were upregulated and 601 mRNAs and 284 lncRNAs were downregulated). After atorvastatin administration, 167 lncRNAs and 262 mRNAs were still DE. Q-PCR validated the results of microarrays. Chronic inflammatory response, nitric oxide biosynthetic process, microtubule cytoskeleton, cell proliferation and cell migration are regulated by lncRNAs, which also participated in the mainly molecular function and biological processes underlying endothelial dysfunction. Atorvastatin partly improved endothelial dysfunction, but the aspects beyond recovery were mainly concentrated in cell cycle, mitosis, and metabolism. Further exploration is required to explicit the mechanism by which lncRNAs participate in endothelial dysfunction.

  14. Tissue expander stimulated lengthening of arteries (TESLA) induces early endothelial cell proliferation in a novel rodent model.

    PubMed

    Potanos, Kristina; Fullington, Nora; Cauley, Ryan; Purcell, Patricia; Zurakowski, David; Fishman, Steven; Vakili, Khashayar; Kim, Heung Bae

    2016-04-01

    We examine the mechanism of aortic lengthening in a novel rodent model of tissue expander stimulated lengthening of arteries (TESLA). A rat model of TESLA was examined with a single stretch stimulus applied at the time of tissue expander insertion with evaluation of the aorta at 2, 4 and 7day time points. Measurements as well as histology and proliferation assays were performed and compared to sham controls. The aortic length was increased at all time points without histologic signs of tissue injury. Nuclear density remained unchanged despite the increase in length suggesting cellular hyperplasia. Cellular proliferation was confirmed in endothelial cell layer by Ki-67 stain. Aortic lengthening may be achieved using TESLA. The increase in aortic length can be achieved without tissue injury and results at least partially from cellular hyperplasia. Further studies are required to define the mechanisms involved in the growth of arteries under increased longitudinal stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  16. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  17. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  18. Ibrolipim attenuates high glucose-induced endothelial dysfunction in cultured human umbilical vein endothelial cells via PI3K/Akt pathway.

    PubMed

    Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali

    2011-10-01

    Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.

  19. Late outcome analysis of the Braile Biomédica® pericardial valve in the aortic position

    PubMed Central

    Azeredo, Lisandro Gonçalves; Veronese, Elinthon Tavares; Santiago, José Augusto Duncan; Brandão, Carlos Manuel de Almeida; Pomerantzeff, Pablo Maria Alberto; Jatene, Fabio Biscegli

    2014-01-01

    Objective Aortic valve replacement with Braile bovine pericardial prosthesis has been routinely done at the Heart Institute of the Universidade de São Paulo Medical School since 2006. The objective of this study is to analyze the results of Braile Biomédica® aortic bioprosthesis in patients with aortic valve disease. Methods We retrospectively evaluated 196 patients with aortic valve disease submitted to aortic valve replacement with Braile Biomédica® bovine pericardial prosthesis, between 2006 and 2010. Mean age was 59.41±16.34 years and 67.3% were male. Before surgery, 73.4% of patients were in NYHA functional class III or IV. Results Hospital mortality was 8.16% (16 patients). Linearized rates of mortality, endocarditis, reintervention, and structural dysfunction were 1.065%, 0.91%, 0.68% and 0.075% patients/year, respectively. Actuarial survival was 90.59±2.56% in 88 months. Freedom from reintervention, endocarditis and structural dysfunction was respectively 91.38±2.79%, 89.84±2.92% and 98.57±0.72% in 88 months. Conclusion The Braile Biomédica® pericardial aortic valve prosthesis demonstrated actuarial survival and durability similar to that described in the literature, but further follow up is required to assess the incidence of prosthetic valve endocarditis and structural dysfunction in the future. PMID:25372903

  20. The Aarskog-Scott Syndrome Protein Fgd1 Regulates Podosome Formation and Extracellular Matrix Remodeling in Transforming Growth Factor β-Stimulated Aortic Endothelial Cells ▿

    PubMed Central

    Daubon, Thomas; Buccione, Roberto; Génot, Elisabeth

    2011-01-01

    Podosomes are dynamic actin-rich adhesion plasma membrane microdomains endowed with extracellular matrix-degrading activities. In aortic endothelial cells, podosomes are induced by transforming growth factor β (TGF-β), but how this occurs is largely unknown. It is thought that, in endothelial cells, podosomes play a role in vessel remodeling and/or in breaching anatomical barriers. We demonstrate here that, in bovine aortic endothelial cells, that the Cdc42-specific guanine exchange factor (GEF) Fgd1 is expressed and regulated by TGF-β to induce Cdc42-dependent podosome assembly. Within 15 min of TGF-β stimulation, Fgd1, but none of the other tested Cdc42 GEFs, undergoes tyrosine phosphorylation, associates with Cdc42, and translocates to the subcortical cytoskeleton via a cortactin-dependent mechanism. Small interfering RNA-mediated Fgd1 knockdown inhibits TGF-β-induced Cdc42 activation. Fgd1 depletion also reduces podosome formation and associated matrix degradation and these defects are rescued by reexpression of Fgd1. Although overexpression of Fgd1 does not promote podosome formation per se, it enhances TGF-β-induced matrix degradation. Our results identify Fgd1 as a TGF-β-regulated GEF and, as such, the first GEF to be involved in the process of cytokine-induced podosome formation. Our findings reveal the involvement of Fgd1 in endothelial cell biology and open up new avenues to study its role in vascular pathophysiology. PMID:21911474

  1. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    PubMed

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    EPA Science Inventory

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  3. Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust

    PubMed Central

    Maresh, J. Gregory; Campen, Matthew J.; Reed, Matthew D.; Darrow, April L.; Shohet, Ralph V.

    2012-01-01

    Background Inhalation of diesel exhaust induces vascular effects including impaired endothelial function and increased atherosclerosis. Objective To examine the in vivo effects of subchronic diesel exhaust exposure on endothelial cell transcriptional responses in the presence of hypercholesterolemia. Methods ApoE (−/−) and ApoE (+/+) mice inhaled diesel exhaust diluted to particulate matter levels of 300 or 1000 μg/m3 vs. filtered air. After 30 days, endothelial cells were harvested from dispersed aortic cells by fluorescent-activated cell sorting (FACS). Relative mRNA abundance was evaluated by microarray analysis to measure strain-specific transcriptional responses in mice exposed to dilute diesel exhaust vs. filtered air. Results Forty-nine transcripts were significantly dysregulated by >2.8-fold in the endothelium of ApoE (−/−) mice receiving diesel exhaust at 300 or 1000 μg/m3. These included transcripts with roles in plasminogen activation, endothelial permeability, inflammation, genomic stability, and atherosclerosis; similar responses were not observed in ApoE (+/+) mice. Conclusions The potentiation of diesel exhaust-related endothelial gene regulation by hypercholesterolemia helps to explain air pollution-induced vascular effects in animals and humans. The observed regulated transcripts implicate pathways important in the acceleration of atherosclerosis by air pollution. PMID:21222557

  4. Survival after aortic valve replacement for severe aortic stenosis with low transvalvular gradients and severe left ventricular dysfunction

    NASA Technical Reports Server (NTRS)

    Pereira, Jeremy J.; Lauer, Michael S.; Bashir, Mohammad; Afridi, Imran; Blackstone, Eugene H.; Stewart, William J.; McCarthy, Patrick M.; Thomas, James D.; Asher, Craig R.

    2002-01-01

    OBJECTIVE: We sought to assess whether aortic valve replacement (AVR) among patients with severe aortic stenosis (AS), severe left ventricular (LV) dysfunction and a low transvalvular gradient (TVG) is associated with improved survival. BACKGROUND: The optimal management of patients with severe AS with severe LV dysfunction and a low TVG remains controversial. METHODS: Between 1990 and 1998, we evaluated 68 patients who underwent AVR at our institution (AVR group) and 89 patients who did not undergo AVR (control group), with an aortic valve area < or = 0.75 cm(2), LV ejection fraction < or = 35% and mean gradient < or = 30 mm Hg. Using propensity analysis, survival was compared between a cohort of 39 patients in the AVR group and 56 patients in the control group. RESULTS: Despite well-matched baseline characteristics among propensity-matched patients, the one- and four-year survival rates were markedly improved in patients in the AVR group (82% and 78%), as compared with patients in the control group (41% and 15%; p < 0.0001). By multivariable analysis, the main predictor of improved survival was AVR (adjusted risk ratio 0.19, 95% confidence interval 0.09 to 0.39; p < 0.0001). The only other predictors of mortality were age and the serum creatinine level. CONCLUSIONS: Among select patients with severe AS, severe LV dysfunction and a low TVG, AVR was associated with significantly improved survival.

  5. Gestational diabetes, preeclampsia and cytokine release: similarities and differences in endothelial cell function.

    PubMed

    Rao, Rashmi; Sen, Suvajit; Han, Bing; Ramadoss, Sivakumar; Chaudhuri, Gautam

    2014-01-01

    Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy affects the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. Similarly, some but not all studies have suggested that infection of the mother under certain circumstances can also lead to preeclampsia as women with either a bacterial or viral infection were at a higher risk of developing preeclampsia, compared to women without infection and infection also leads to a release in TNFα. Endothelial cells exposed to either high glucose or TNFα leads to an increase in the production of H2O2 and to a decrease in endothelial cell proliferation. The cellular and molecular mechanisms involved in this phenomenon are discussed.Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy has profound effects on the fetus and long term effects on the neonate. All three conditions affect the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. It has also been suggested although not universally accepted that under certain circumstances maternal infection may also predispose to pre-eclampsia. Pre-eclampsia is also associated with the release of TNFα and endothelial dysfunction. However, the cellular and molecular mechanism(s) leading to the endothelial dysfunction by either hyperglycemia or by the cytokine TNFα appear to be different. In this chapter, we explore some of the similarities and differences leading to endothelial dysfunction by both hyperglycemia and by the inflammatory cytokine TNFα and the cellular and molecular mechanism(s) involved.

  6. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Qin, Wei; Zhang, Longyin; Wu, Xianxian; Du, Ning; Hu, Yingying; Li, Xiaoguang; Shen, Nannan; Xiao, Dan; Zhang, Haiying; Li, Zhange; Zhang, Yue; Yang, Huan; Gao, Feng; Du, Zhimin; Xu, Chaoqian; Yang, Baofeng

    2015-03-01

    Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial apoptosis plays a vital role in the initiation and progression of atherosclerotic lesions. Although a subset of microRNAs (miRs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In our study, we found that miR-26a expression was substantially reduced in the aortic intima of ApoE-/- mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein (ox-LDL) suppressed miR-26a expression. Forced expression of miR-26a inhibited endothelial apoptosis as evidenced by MTT assay and TUNEL staining results. Further analysis identified TRPC6 as a target of miR-26a, and TRPC6 overexpression abolished the anti-apoptotic effect of miR-26a. Moreover, the cytosolic calcium and the mitochondrial apoptotic pathway were found to mediate the beneficial effects of miR-26a on endothelial apoptosis. Taken together, our study reveals a novel role of miR-26a in endothelial apoptosis and indicates a therapeutic potential of miR-26a for atherosclerosis associated with apoptotic cell death.

  7. Inhibition of angiogenic attributes by decursin in endothelial cells and ex vivo rat aortic ring angiogenesis model.

    PubMed

    Bhat, Tariq A; Moon, Jung S; Lee, Sookyeon; Yim, Dongsool; Singh, Rana P

    2011-11-01

    The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.

  8. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    PubMed Central

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  9. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    PubMed

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  11. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction.

    PubMed

    La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G

    2013-03-01

    Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.

  12. Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction.

    PubMed

    Li, YanGuang; Chen, FuKun; Deng, Long; Lin, Kun; Shi, Xiangmin; Zhaoliang, Shan; Wang, YuTang

    2017-01-01

    Paroxysmal atrial fibrillation (PAF) can increase thrombogenesis risk, especially in the left atrium (LA). The exact mechanism is still unclear. We assessed the effects of PAF on endothelial function, and investigated if febuxostat (FX) can attenuate endothelial dysfunction by inhibition of xanthine oxidase (XO). Eighteen male New Zealand white rabbits were divided randomly into sham-operated (S), PAF (P) or FX+pacing (FP) groups. Group P and group FP received rapid atrial pacing (RAP). Group FP was administered febuxostat (FX) for 7days before RAP. Post-procedure, blood samples were collected from the LA, right atrium (RA) and peripheral circulation. Tissues from the LA and RA were obtained. Endothelial dysfunction (thrombomodulin [TM], von Willebrand factor [VWF], asymmetric dimethylarginine [ADMA]), and indirect thrombin generation (thrombin-antithrombin complex [TAT], prothrombin fragment 1+2 [F1.2]) and oxidative stress in atrial tissue (xanthine oxidase [XO], superoxide dismutase [SOD], malondialdehyde [MDA]) were measured using an Enzyme-linked immunosorbent assay. Atrial endothelial expression of TM and VWF was measured by histology/western blotting. Endothelial dysfunction (TM, VWF, ADMA), TAT generation and oxidative stress (XO, SOD, MDA) in group P were more significant compared with that in group S (p<0.05, respectively). In group P, all of these changes occurred to a greater extent in the LA compared with those in the RA or peripheral circulation. In group FP, FX attenuated endothelial dysfunction and reduced TAT levels by inhibition of XO-mediated oxidative stress. PAF can lead to endothelial dysfunction and TAT generation by XO-mediated oxidative stress. The LA is more susceptible to these effects. FX can attenuate these changes by inhibition XO and XO-mediated oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  13. Deletion of CD73 in mice leads to aortic valve dysfunction.

    PubMed

    Zukowska, P; Kutryb-Zajac, B; Jasztal, A; Toczek, M; Zabielska, M; Borkowski, T; Khalpey, Z; Smolenski, R T; Slominska, E M

    2017-06-01

    Aortic stenosis is known to involve inflammation and thrombosis. Changes in activity of extracellular enzyme - ecto-5'-nucleotidase (referred also as CD73) can alter inflammatory and thrombotic responses. This study aimed to evaluate the effect of CD73 deletion in mice on development of aortic valve dysfunction and to compare it to the effect of high-fat diet. Four groups of mice (normal-diet Wild Type (WT), high-fat diet WT, normal diet CD73-/-, high-fat diet CD73-/-) were maintained for 15weeks followed by echocardiographic analysis of aortic valve function, measurement of aortic surface activities of nucleotide catabolism enzymes as well as alkaline phosphatase activity, mineral composition and histology of aortic valve leaflets. CD73-/- knock out led to an increase in peak aortic flow (1.06±0.26m/s) compared to WT (0.79±0.26m/s) indicating obstruction. Highest values of peak aortic flow (1.26±0.31m/s) were observed in high-fat diet CD73-/- mice. Histological analysis showed morphological changes in CD73-/- including thickening and accumulation of dark deposits, proved to be melanin. Concentrations of Ca 2+ , Mg 2+ and PO 4 3- in valve leaflets were elevated in CD73-/- mice. Alkaline phosphatase (ALP) activity was enhanced after ATP treatment and reduced after adenosine treatment in aortas incubated in osteogenic medium. AMP hydrolysis in CD73-/- was below 10% of WT. Activity of ecto-adenosine deaminase (eADA), responsible for adenosine deamination, in the CD73-/- was 40% lower when compared to WT. Deletion of CD73 in mice leads to aortic valve dysfunction similar to that induced by high-fat diet suggesting important role of this surface protein in maintaining heart valve integrity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  15. Endothelial dysfunction in the regulation of portal hypertension

    PubMed Central

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  16. A cohort evaluation on arterial stiffness and hypertensive disorders in pregnancy.

    PubMed

    Lim, Wai Yee; Saw, Seang Mei; Tan, Kok Hian; Yeo, George S H; Kwek, Kenneth Y C

    2012-12-26

    Hypertensive disorders in pregnancy are associated with systemic endothelial dysfunction leading to impaired physiological vasodilation. Recent evidence has shown central aortic pressures obtained through pulse wave analysis, at less than 14 weeks of gestation, to be predictive of pre-eclampsia. In light of this, we aimed to evaluate the role of central aortic stiffness in the prediction and discrimination of hypertensive disorders in pregnancy. A cohort study of women with viable, singleton pregnancies at less than 14 weeks of amenorrhoea, and without multiple pregnancies, autoimmune or renal disease, diagnosed with aneuploidy or fetal anomaly will be recruited from a single maternity hospital and followed up till delivery and puerperium. A targeted sample size of 1000 eligible pregnant women will be enrolled into the study from antenatal clinics. Main exposure under study is central aortic pulse pressure using radial pulse wave recording, and the outcomes under follow-up are gestational hypertension and pre-eclampsia. Other measures include lifestyle factors such as smoking, physical exercise, psychometric evaluations, vasoactive factors, uterine artery pulsatility index, height and weight measurements. These measures will be repeated over 4 antenatal visits at 11-14, 18-22, 28-32 and above 34 weeks of gestation. Double data entry will be performed on Microsoft Access, and analysis of data will include the use of random effect models and receiver operating characteristic curves on Stata 11.2. The proposed study design will enable a longitudinal evaluation of the central aortic pressure changes as a marker for vascular compliance during pregnancy. As measures are repeated over time, the timing and severity of changes are detectable, and findings may yield important information on how aberrant vascular responses occur and its role in the early detection and prediction of hypertensive disorders.

  17. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta.

    PubMed

    Lempereur, A; Canto, P Y; Richard, C; Martin, S; Thalgott, J; Raymond, K; Lebrin, F; Drevon, C; Jaffredo, T

    2018-02-15

    The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    PubMed

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  19. MOLECULAR IMAGING REVEALS RAPID REDUCTION OF ENDOTHELIAL ACTIVATION IN EARLY ATHEROSCLEROSIS WITH APOCYNIN INDEPENDENT OF ANTI-OXIDATIVE PROPERTIES

    PubMed Central

    Khanicheh, Elham; Qi, Yue; Xie, Aris; Mitterhuber, Martina; Xu, Lifen; Mochizuki, Michika; Daali, Youssef; Jaquet, Vincent; Krause, Karl-Heinz; Ruggeri, Zaverio M.; Kuster, Gabriela M.; Lindner, Jonathan R.; Kaufmann, Beat A.

    2013-01-01

    OBJECTIVE Anti-oxidative drugs continue to be developed for the treatment of atherosclerosis. Apocynin is an NADPH-oxidase-inhibitor with anti-inflammatory properties. We used contrast enhanced ultrasound (CEU) molecular imaging to assess whether short-term apocynin therapy in atherosclerosis reduces vascular oxidative stress and endothelial activation APPROACH AND RESULTS Genetically-modified mice with early atherosclerosis were studied at baseline and after 7 days of therapy with apocynin (4mg/kg/d I.P.) or saline. CEU molecular imaging of the aorta was performed with microbubbles targeted to vascular cell adhesion molecule 1 (VCAM-1; MBV), to platelet GPIbα (MBPl), and control microbubbles (MBCtr). Aortic VCAM-1 was measured using Western Blot. Aortic ROS generation was measured using a lucigenin assay. Hydroethidine (HE) oxidation was used to assess aortic superoxide generation. Baseline signal for MBV (1.3±0.3 A.U.) and MBPl (1.5±0.5 A.U.) was higher than for MBCtr (0.5±0.2 A.U., p<0.01). In saline-treated animals, signal did not significantly change for any microbubble agent whereas short-term apocynin significantly (p<0.05) reduced VCAM-1 and platelet signal (MBV: 0.3±0.1, MBPl: 0.4±0.1 MBCtr: 0.3±0.2 A.U., p=0.6 between agents). Apocynin reduced aortic VCAM-1 expression by 50% (p<0.05). However, apocynin therapy did not reduce either ROS content, superoxide generation, or macrophage content. CONCLUSIONS Short-term treatment with apocynin in atherosclerosis reduces endothelial cell adhesion molecule expression. This change in endothelial phenotype can be detected by molecular imaging before any measurable decrease in macrophage content, and is not associated with a detectable change in oxidative burden. PMID:23908248

  20. Effect of dark chocolate on arterial function in healthy individuals.

    PubMed

    Vlachopoulos, Charalambos; Aznaouridis, Konstantinos; Alexopoulos, Nikolaos; Economou, Emmanuel; Andreadou, Ioanna; Stefanadis, Christodoulos

    2005-06-01

    Epidemiologic studies suggest that high flavonoid intake confers a benefit on cardiovascular outcome. Endothelial function, arterial stiffness, and wave reflections are important determinants of cardiovascular performance and are predictors of cardiovascular risk. The effect of flavonoid-rich dark chocolate (100 g) on endothelial function, aortic stiffness, wave reflections, and oxidant status were studied for 3 h in 17 young healthy volunteers according to a randomized, single-blind, sham procedure-controlled, cross-over protocol. Flow-mediated dilation (FMD) of the brachial artery, aortic augmentation index (AIx), and carotid-femoral pulse wave velocity (PWV) were used as measures of endothelial function, wave reflections, and aortic stiffness, respectively. Plasma oxidant status was evaluated with measurement of plasma malondialdehyde (MDA) and total antioxidant capacity (TAC). Chocolate led to a significant increase in resting and hyperemic brachial artery diameter throughout the study (maximum increase by 0.15 mm and 0.18 mm, respectively, P < .001 for both). The FMD increased significantly at 60 min (absolute increase 1.43%, P < .05). The AIx was significantly decreased with chocolate throughout the study (maximum absolute decrease 7.8%, P < .001), indicating a decrease in wave reflections, whereas PWV did not change to a significant extent. Plasma MDA and TAC did not change after chocolate, indicating no alterations in plasma oxidant status. Our study shows for the first time that consumption of dark chocolate acutely decreases wave reflections, that it does not affect aortic stiffness, and that it may exert a beneficial effect on endothelial function in healthy adults. Chocolate consumption may exert a protective effect on the cardiovascular system; further studies are warranted to assess any long-term effects.

  1. Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis

    PubMed Central

    Adya, Raghu; Tan, Bee K.; Randeva, Harpal S.

    2015-01-01

    Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD). In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor) and cardiovascular system (endothelial dysfunction leading to atherosclerosis). Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity. PMID:25650072

  2. Prognostic Implications of Raphe in Bicuspid Aortic Valve Anatomy.

    PubMed

    Kong, William K F; Delgado, Victoria; Poh, Kian Keong; Regeer, Madelien V; Ng, Arnold C T; McCormack, Louise; Yeo, Tiong Cheng; Shanks, Miriam; Parent, Sarah; Enache, Roxana; Popescu, Bogdan A; Liang, Michael; Yip, James W; Ma, Lawrence C W; Kamperidis, Vasileios; van Rosendael, Philippe J; van der Velde, Enno T; Ajmone Marsan, Nina; Bax, Jeroen J

    2017-03-01

    Little is known about the association between bicuspid aortic valve (BAV) morphologic findings and the degree of valvular dysfunction, presence of aortopathy, and complications, including aortic valve surgery, aortic dissection, and all-cause mortality. To investigate the association between BAV morphologic findings (raphe vs nonraphe) and the degree of valve dysfunction, presence of aortopathy, and prognosis (including need for aortic valve surgery, aortic dissection, and all-cause mortality). In this large international multicenter registry of patients with BAV treated at tertiary referral centers, 2118 patients with BAV were evaluated. Patients referred for echocardiography from June 1, 1991, through November 31, 2015, were included in the study. Clinical and echocardiographic data were analyzed retrospectively. The morphologic BAV findings were categorized according to the Sievers and Schmidtke classification. Aortic valve function was divided into normal, regurgitation, or stenosis. Patterns of BAV aortopathy included the following: type 1, dilation of the ascending aorta and aortic root; type 2, isolated dilation of the ascending aorta; and type 3, isolated dilation of the sinus of Valsalva and/or sinotubular junction. Association between the presence and location of raphe and the risk of significant (moderate and severe) aortic valve dysfunction and aortic dilation and/or dissection. Of the 2118 patients (mean [SD] age, 47 [18] years; 1525 [72.0%] male), 1881 (88.8%) had BAV with fusion raphe, whereas 237 (11.2%) had BAV without raphe. Bicuspid aortic valves with raphe had a significantly higher prevalence of valve dysfunction, with a significantly higher frequency of aortic regurgitation (622 [33.1%] vs 57 [24.1%], P < .001) and aortic stenosis (728 [38.7%] vs 51 [21.5%], P < .001). Furthermore, aortic valve replacement event rates were significantly higher among patients with BAV with raphe (364 [19.9%] at 1 year, 393 [21.4%] at 2 years, and 447 [24.4%] at 5 years) vs patients without raphe (30 [14.0%] at 1 year, 32 [15.0%] at 2 years, and 40 [18.0%] at 5 years) (P = .02). In addition, the all-cause mortality event rates were significantly higher among patients with BAV with raphe (77 [5.1%] at 1 year, 87 [6.2%] at 2 years, and 110 [9.5%] at 5 years) vs patients without raphe (2 [1.8%] at 1 year, 3 [3.0%] at 2 years, and 5 [4.4%] at 5 years) (P = .03). However, on multivariable analysis, the presence of raphe was not significantly associated with all-cause mortality. In this large multicenter, international BAV registry, the presence of raphe was associated with a higher prevalence of significant aortic stenosis and regurgitation. The presence of raphe was also associated with increased rates of aortic valve and aortic surgery. Although patients with BAV and raphe had higher mortality rates than patients without, the presence of a raphe was not independently associated with increased all-cause mortality.

  3. Association Between the Female Athlete Triad and Endothelial Dysfunction in Dancers

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Schimke, Jane E.; Gutterman, David D.

    2013-01-01

    Objective To determine the prevalence of the 3 components of the female athlete triad [disordered eating, menstrual dysfunction, low bone mineral density (BMD)] and their relationships with brachial artery flow-mediated dilation in professional dancers. Design Prospective study. Setting Academic institution in the Midwest. Participants Twenty-two professional ballet dancers volunteered for this study. Interventions The prevalence of the female athlete triad and its relationship to endothelial dysfunction. Main Outcome Measures Subjects completed questionnaires to assess disordered eating and menstrual status/history. They also completed a 3-day food record and wore an accelerometer for 3 days to determine energy availability. Serum baseline thyrotropin, prolactin, and hormonal concentrations were obtained. Bone mineral density and body composition were measured with a GE Lunar Prodigy dual-energy X-ray absorptiometry. Endothelial function was determined as flow-mediated vasodilation measured by high-frequency ultrasound in the brachial artery. An increase in brachial diameter <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Results Seventeen dancers (77%) had evidence of low/negative energy availability. Thirty-two percent had disordered eating (EDE-Q score). Thirty-six percent had menstrual dysfunction and 14% were currently using hormone contraception. Twenty-three percent had evidence of low bone density (Z-score < −1.0). Sixty-four percent had abnormal brachial artery flow-mediated dilation (<5%). Flow-mediated dilation values were significantly correlated with serum estrogen and whole-body and lumbar BMD. All the 3 components of the triad plus endothelial dysfunction were present in 14% of the subjects. Conclusions Endothelial dysfunction was correlated with reduced BMD, menstrual dysfunction, and low serum estrogen. These findings may have profound implications for cardiovascular and bone health in professional women dancers. PMID:21358502

  4. Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction

    PubMed Central

    Ferguson, Joanne K.; Burford, James L.; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J.; Bates, David O.; Peti-Peterdi, Janos

    2012-01-01

    Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease. PMID:22797190

  5. Endothelial dysfunction and amyloid-β-induced neurovascular alterations

    PubMed Central

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2015-01-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  6. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications.

    PubMed

    Banarjee, Reema; Sharma, Akshay; Bai, Shakuntala; Deshmukh, Arati; Kulkarni, Mahesh

    2018-06-20

    Endothelial dysfunction is one of the primary steps in the development of diabetes associated cardiovascular diseases. Hyperglycemic condition in diabetes promotes accumulation of advanced glycation end products (AGEs) in the plasma, that interact with the receptor for AGEs (RAGE) present on the endothelial cells and negatively affect their function. Using Human umbilical vascular endothelial cells (HUVECs) in culture, the effect of glycated human serum albumin on global proteomic changes was studied by SWATH-MS, a label free quantitative proteomic approach. Out of the 1860 proteins identified, 161 showed higher abundance while 123 showed lesser abundance in cells treated with glycated HSA. Bioinformatic analysis revealed that the differentially regulated proteins were involved in various processes such as apoptosis, oxidative stress etc. that are associated with endothelial dysfunction. Furthermore, the iRegulon analysis and immunofuorescence studies indicated that several of the differentially regulated proteins were transcriptionally regulated by NF-κB, that is downstream to AGE-RAGE axis. Some of the important differentially regulated proteins include ICAM1, vWF, PAI-1that affect important endothelial functions like cell adhesion and blood coagulation. qPCR analysis showed an increase in expression of the AGE receptor RAGE along with other genes involved in endothelial function. AGE treatment to HUVEC cells led to increased oxidative stress and apoptosis. This is the first proteomics study that provides insight into proteomic changes downstream to AGE-RAGE axis leading to endothelial dysfunction and predisposing to cardiovascular complications. Cardiovascular disease (CVD) is a major pathological outcome in diabetic patients and it is important to address ways that target its development before the onset. Elevated plasma AGEs in diabetes can affect endothelial function and can continue to show their effects even after blood glucose levels are back to normal. Since endothelial dysfunction acts as one of the initiating factors for the development of CVD, understanding how AGEs affect the endothelial cell proteome to cause dysfunction will provide insight into the mechanisms involved and aid designing new therapeutic approaches. Copyright © 2018. Published by Elsevier B.V.

  7. [Epithelial dysfunction associated with pyo-inflammatory diseases of the ENT organs].

    PubMed

    Petukhova, N A

    The modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome associated with pyo-inflammatory ENT diseases is presented. It has provided a basis for the analysis of the initial stages of etiopathogenesis of acute and chronic inflammation in the ENT system including the mucous and associated lymphoid tissues as well as the Pirogov-Waldeyer limphopharyngeal ring making up the first protective barrier. The leading role of dysbiosis of synanthropic microflora and endotoxins of the Gram-negative bacteria in the mechanisms of regional responsiveness of the organism to the infection and chronic endotoxic aggression is demonstrated. The regional and synthetic mechanisms underlying the interaction between the external and internal media of the organism are subjected to the analysis with special reference to those operating in epithelium. The possible variants of the outcome of these processes are considered including both the recovery and the development of chronic inflammation. It has been proved that the exhaustion of the internal reserves for the stabilization of the epithelium-associated lymphoid tissue system including the Pirogov-Waldeyer limphopharyngeal ring leads to the formation of epithelial dysfunction as the initial stage of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome. It is concluded that the modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome is a fundamental interdisciplinary phenomenon.

  8. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    PubMed

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  9. Balance of autonomic nervous system in children having signs of endothelial dysfunction, that were born and are domiciled in contaminated territories.

    PubMed

    Kondrashova, V G; Kolpakov, I E; Vdovenko, V Yu; Leonovych, O S; Lytvynets, O M; Stepanova, E I

    2014-09-01

    Objective. The study examined the features of functional state of the autonomic nervous system in children having endothelial dysfunction and permanently residing in contaminated areas. Materials and methods. Clinical and instrumental examination of 101 children aged 7-18 years that were born and are domiciled in contaminated territories, including 37 persons with signs of endothelial dysfunction (subgroup IA) and 64 ones with no signs of endothelial dysfunction (IB subgroup) was conducted. The control group being comparable to the subgroups IA and IB by age, gender and clinical examination results included 37 children neither been domiciled in contaminated areas nor were belonging to the contingent of Chornobyl accident survivors. There were 20 apparently healthy children also examined. Results. Due to peculiarities of physiological pathways providing adaptive responses the children having signs of endothelial dysfunction are characterized by a more pronounced dysregulation of autonomous nervous system both in a resting state and under a functional load simulation, and also by a high strain of adaptation pathways. The lack of autonomous support of cardiovascular system is caused by inadequate adaptive responses of both central regulatory bodies (hypothalamus, vasomotor center) and peripheral receptors. Mainly the failure of segmental autonomous (parasympathetic) structures was revealed. The mode of their response to stress in this case corresponds to that in healthy individuals but at a lower functional level. There is a reduced aerobic capacity of the organism by the Robinson index, contributing to low adaptive range to non-specific stress in children being domiciled on contaminated territories including children having the endothelial dysfunction. Conclusions. Endothelial dysfunction was associated with more pronounced manifestations of autonomic dysregulation and reduced aerobic capacity of the organism being the risk factors of development of a range of somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas. autonomous nervous system balance, endothelial dysfunction, children, Chornobyl accident. V. G. Kondrashova, I. E. Kolpakov, V. Yu. Vdovenko, O. S. Leonovych, O. M. Lytvynets, E. I. Stepanova.

  10. Therapeutic Efficacy of an ω-3-Fatty Acid-Containing 17-β Estradiol Nano-Delivery System against Experimental Atherosclerosis

    PubMed Central

    Deshpande, Dipti; Kethireddy, Sravani; Janero, David R.; Amiji, Mansoor M.

    2016-01-01

    Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease. PMID:26840601

  11. Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction.

    PubMed

    Taguchi, K; Matsumoto, T; Kamata, K; Kobayashi, T

    2013-01-01

    Pre-menopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Previously, we noted in mice that G-protein-coupled receptor kinase 2 (GRK2) negatively regulates the Akt/eNOS pathway in male diabetic aortas and that endothelial function via the Akt/eNOS pathway is less affected in female diabetic aortas. The cellular mechanisms underlying these sex differences remain unclear. We aimed to investigate the ways in which GRK2 might modulate vascular functions in male and female diabetic mice (DM). Vascular functions were examined in aortic rings. GRK2, β-arrestin 2 and Akt/eNOS-signalling-pathway protein levels and activities were assayed by Western blotting. Phenylephrine-induced contraction was greater, while both clonidine-induced and insulin-induced relaxations were weaker (vs. male controls), in aortas from male type 2 DM, suggesting impairments of the Akt/eNOS pathway and α-adrenoceptor function. GRK2-inhibitor reversed only the impairment in Akt/eNOS-pathway-mediated relaxation in male DM. Increases in GRK2 activity, GRK2 expression in the membrane, plasma Ang II and systolic blood pressure were seen in male DM (vs. male controls) but not in female DM; these increases were attenuated by GRK2-inhibitor treatment. Repeatedly obtaining clonidine concentration-response curves led to reduced relaxation in male and in female DM aortas, indicating similar desensitization between female DM and male DM. This effect was reversed by GRK2-inhibitor in both sexes. GRK2 plays a key role in modulating the aortic vasodilator effect of clonidine by selectively affecting the Akt/eNOS pathway. This action of GRK2 is more powerful in male than in female DM. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  12. Transcellular transport of cobalamin in aortic endothelial cells.

    PubMed

    Hannibal, Luciana; Bolisetty, Keerthana; Axhemi, Armend; DiBello, Patricia M; Quadros, Edward V; Fedosov, Sergey; Jacobsen, Donald W

    2018-05-09

    Cobalamin [Cbl (or B 12 )] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B 12 , namely, the complex formed between serum transcobalamin and B 12 , designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [ 57 Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [ 57 Co]-CNCbl, and via transcytosis as [ 57 Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [ 57 Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various β-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B 12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B 12 .-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P. M., Quadros, E. V., Fedosov, S., Jacobsen, D. W. Transcellular transport of cobalamin in aortic endothelial cells.

  13. Resveratrol recruits rat muscle microvasculature via a nitric oxide-dependent mechanism that is blocked by TNFα

    PubMed Central

    Wang, Nasui; Ko, Seung-Hyun; Chai, Weidong; Li, Guolian; Barrett, Eugene J.; Tao, Lijian; Cao, Wenhong

    2011-01-01

    Resveratrol, a polyphenol found in many plants, has antioxidant and anti-inflammatory actions. It also improves endothelial function and may be cardioprotective. Tumor necrosis factor-α (TNFα) causes oxidative stress and microvascular endothelial dysfunction. Whether resveratrol affects microvascular function in vivo and, if so, whether inflammatory cytokines antagonize its microvascular action are not clear. In cultured bovine aortic endothelial cells (BAECs), reserveratrol (100 nM) increased the phosphorylation of protein kinase B (Akt), endothelial nitric oxide (NO) synthase (eNOS), and ERK1/2 within 15 min by more than twofold, and this effect lasted for at least 2 h. Treatment of BAECs with TNFα (10 ng/ml) significantly increased the NADPH oxidase activity and the production of hydrogen peroxide and superoxide. Pretreatment of cells with resveratrol (100 nM) prevented each of these. Injection (ip) of resveratrol in rats potently increased muscle microvascular blood volume (MBV; P = 0.007) and flow (MBF; P < 0.02) within 30 min, and this was sustained for at least 2 h. The phosphorylation of Akt in liver or muscle was unchanged. Superimposed systemic infusion of l-NAME (NOS inhibitor) completely abolished resveratrol-induced increases in MBV and MBF. Similarly, systemic infusion of TNFα prevented resveratrol-induced muscle microvascular recruitment. In conclusion, resveratrol activates eNOS and increases muscle microvascular recruitment via an NO-dependent mechanism. Despite the potent antioxidant effect of resveratrol, TNFα at concentrations that block insulin-mediated muscle microvascular recruitment completely neutralized resveratrol's microvascular action. Thus, chronic inflammation, as seen in type 2 diabetes, may limit resveratrol's vasodilatory actions on muscle microvasculature. PMID:20978231

  14. Restoration of Autophagy in Endothelial Cells from Patients with Diabetes Mellitus Improves Nitric Oxide Signaling

    PubMed Central

    Fetterman, Jessica L.; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Duess, Mai-Ann; Farb, Melissa G.; Gokce, Noyan; Shirihai, Orian S.; Hamburg, Naomi M.; Vita, Joseph A.

    2016-01-01

    Background Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. Methods and Results We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n=45) and non-diabetic controls (n=41). p62 levels were higher in cells from diabetics (34.2±3.6 vs. 20.0±1.6, P=0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (−21±5% vs. 64±22%, P=0.003) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P=0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P=0.01) in cells from diabetics to a lesser extent than in cells from controls (P=0.04), suggesting ongoing, but inadequate autophagic clearance. Conclusion Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. PMID:26926601

  15. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A

    2016-04-01

    Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Predictive factor of secondary tricuspid regurgitation after aortic valve replacement for aortic stenosis: the importance of myocardial hypertrophy and diastolic dysfunction.

    PubMed

    Igarashi, Takashi; Tanji, Masahiro; Takahashi, Koki; Ishida, Keiichi; Sasaki, Satomi; Yokoyama, Hitoshi

    2017-05-01

    The aim of this study is to determine the predictors of secondary tricuspid regurgitation after aortic valve replacement for aortic stenosis. Seventy-one patients, who underwent aortic valve replacement for aortic stenosis at our institute from January 2006 to July 2011, were divided into two groups: an STR group, which included 15 patients with moderate or greater than moderate secondary tricuspid regurgitation at a follow-up visit and a control group. Echocardiography was performed before surgery, at discharge, and at a late follow-up visit (mean follow-up 36 ± 19 months, range 0-77). Preoperatively, the number of women (p < .01), body surface area (p < .001), and relative wall thickness (0.60 ± 0.15 vs 0.71 ± 0.13, p = .022) showed significant differences between the two groups. At a follow-up visit, moderate or severe mitral regurgitation (p = .0001) and severe diastolic dysfunction (p = .003) showed significant differences between the two groups. In the Cox regression analysis, moderate or severe mitral regurgitation at follow-up (p = .038, hazard ratio 4.394, 95% CI 1.085-17.791) was the only independent predictor of secondary tricuspid regurgitation. This study suggested that preoperative concentric myocardial hypertrophy and diastolic dysfunction were associated with development of the secondary tricuspid regurgitation at late follow-up.

  17. Metabolic Profiling in Association with Vascular Endothelial Cell Dysfunction Following Non-Toxic Cadmium Exposure

    PubMed Central

    Li, Xiaofei; Nong, Qingjiao; Mao, Baoyu; Pan, Xue

    2017-01-01

    This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure. PMID:28872622

  18. Characteristics of aortic valve dysfunction and ascending aorta dimensions according to bicuspid aortic valve morphology.

    PubMed

    Shin, Hong Ju; Shin, Je Kyoun; Chee, Hyun Kun; Kim, Jun Suk; Ko, Sung Min

    2015-07-01

    To characterize aortic valve dysfunction and ascending aorta dimensions according to bicuspid aortic valve (BAV) morphology using computed tomography (CT) and surgical findings. We retrospectively enrolled 209 patients with BAVs who underwent transthoracic echocardiography (TTE) and CT. BAVs were classified as anterior-posterior (BAV-AP) or lateral (BAV-LA) orientation of the cusps and divided according to the presence (raphe+) or absence (raphe-) of a raphe. Ascending aortic dimensions were measured by CT at four levels. BAV-AP was present in 129 patients (61.7%) and raphe+ in 120 (57.4%). Sixty-nine patients (33.0%) had aortic regurgitation (AR), 70 (33.5%) had aortic stenosis (AS), and 58 (27.8%) had combined AS and AR. AR was more common in patients with BAV-AP and raphe+; AS was more common with BAV-LA and raphe-.Annulus/body surface area and tubular portion/body surface area diameters in patients with BAV-AP (17.1 ± 2.3 mm/m(2) and 24.2 ± 5.3 mm/m(2), respectively) and raphe+ (17.3 ± 2.2 mm/m(2) and 24.2 ± 5.5 mm/m(2), respectively) were significantly different from those with BAV-LA (15.8 ± 1.9 mm/m(2) and 26.4 ± 5.5 mm/m(2), respectively) and raphe- (15.7 ± 1.9 mm/m(2) and 26.2 ± 5.4 mm/m(2), respectively). The morphological characteristics of BAV might be associated with the type of valvular dysfunction, and degree and location of an ascending aorta dilatation. • The BAV-AP type had more frequent aortic regurgitation, raphe, and a larger aortic annulus. • BAV without raphe had more frequent aortic stenosis and mid-ascending aorta dilatation. • CT allows assessment of the morphological characteristics of BAV and associated aortopathy.

  19. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    PubMed Central

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  20. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis

    PubMed Central

    Zhang, Yong; Qin, Wei; Zhang, Longyin; Wu, Xianxian; Du, Ning; Hu, Yingying; Li, Xiaoguang; Shen, Nannan; Xiao, Dan; Zhang, Haiying; Li, Zhange; Zhang, Yue; Yang, Huan; Gao, Feng; Du, Zhimin; Xu, Chaoqian; Yang, Baofeng

    2015-01-01

    Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial apoptosis plays a vital role in the initiation and progression of atherosclerotic lesions. Although a subset of microRNAs (miRs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In our study, we found that miR-26a expression was substantially reduced in the aortic intima of ApoE−/− mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein (ox-LDL) suppressed miR-26a expression. Forced expression of miR-26a inhibited endothelial apoptosis as evidenced by MTT assay and TUNEL staining results. Further analysis identified TRPC6 as a target of miR-26a, and TRPC6 overexpression abolished the anti-apoptotic effect of miR-26a. Moreover, the cytosolic calcium and the mitochondrial apoptotic pathway were found to mediate the beneficial effects of miR-26a on endothelial apoptosis. Taken together, our study reveals a novel role of miR-26a in endothelial apoptosis and indicates a therapeutic potential of miR-26a for atherosclerosis associated with apoptotic cell death. PMID:25801675

  1. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    PubMed

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. © 2016 American Heart Association, Inc.

  3. ALDOSTERONE-INDUCED VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION REQUIRE FUNCTIONAL ANGIOTENSIN TYPE 1a RECEPTORS

    PubMed Central

    Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Schiffrin, Ernesto L.

    2016-01-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, and enhanced fibronectin and collagen deposition, and vascular inflammation. None of these vascular effects were observed in Agtr1a−/− mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in wild-type mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in wild-type and Agtr1a−/− mice. Agtr1a−/− mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting sodium retention that could contribute to the exaggerated blood pressure rise induced by aldosterone. Agtr1a−/− mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention exacerbate BP responses to aldosterone/salt in Agtr1a−/− mice. We conclude that although aldosterone activation of MR raises BP more in Agtr1a−/− mice, AGTR1a is required for MR stimulation to induce vascular remodeling and inflammation, and endothelial dysfunction. PMID:27045029

  4. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets.

    PubMed

    Whaley-Connell, Adam; Sowers, James R

    2017-08-01

    The global burden of kidney disease is increasing strikingly in parallel with increases in obesity and diabetes. Indeed, chronic kidney disease (CKD) and end-stage renal disease (ESRD) coupled with comorbidities such as obesity, diabetes, and hypertension cost the health care system hundreds of billions of dollars in the US alone. The progression to ESRD in patients with obesity and diabetes continues despite widespread use of inhibitors of the renin-angiotensin-aldosterone system (RAAS) along with aggressive blood pressure and glycemic control in these high-risk populations. Thereby, it is increasingly important to better understand the underlying mechanisms involved in obesity-related CKD in order to develop new strategies that prevent or interrupt the progression of this costly disease. In this context, a key mechanism that drives development and progression of kidney disease in obesity is endothelial dysfunction and associated tubulointerstitial fibrosis. However, the precise interactive mechanisms in the development of aortic and kidney endothelial dysfunction and tubulointerstitial fibrosis remain unclear. Further, strategies specifically targeting kidney fibrosis have yielded inconclusive benefits in human studies. While clinical data support the benefits derived from inhibition of the RAAS, there is a tremendous amount of residual risk for the progression of kidney disease in individuals with obesity and diabetes. There is promising experimental data to suggest that exercise, targeting inflammation and oxidative stress, lowering uric acid, and targeting the mineralocorticoid receptor signaling and/or sodium channel inhibition could improve tubulointerstitial fibrosis and mitigate progression of kidney disease in persons with obesity and diabetes. Published by Elsevier Inc.

  5. [Nitrid oxide, levosimendan and sildenafile in a patient with right ventricle dysfunction and severe pulmonary hypertension after cardiac surgery].

    PubMed

    Aleixandre, L; Cortell, J; Vicente, R; Herrera, P; Loro, J M; Valera, F

    2014-11-01

    Pulmonary hypertension (PHT) and the resulting right ventricle dysfunction are important risk factors in patients who undergo cardiac surgery. The treatment of PHT and right ventricle dysfunction should be focused on maintaining the correct right ventricle after load, improving right ventricle function and reducing the right ventricle pre-load and therefore reducing pulmonary vascular resistance by means of vasodilators. A combined therapy of vasodilators and medicines which have different mechanisms of action, is becoming an option for the treatment of PHT. We present a 65 year old woman that suffered from mitral regurgitation, aortic valve disease, tricuspid and ascending aortic dilation with 115mmHg of pulmonary artery pressure (by ultrasound evaluation). The patient was operated on of mitral, aortic valve and tricuspid plastia and proximal aortic artery plastia as well. Previosly to surgery the patient suffered right ventricle dysfunction and PHT and was treated with nitric oxide, intravenous sildenafil and levosimendan. Subsequent evolution was satisfactory, PHT being controlled, without arterial hypotension nor respiratory alterations. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainlymore » mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.« less

  7. Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults.

    PubMed

    Rossman, Matthew J; Santos-Parker, Jessica R; Steward, Chelsea A C; Bispham, Nina Z; Cuevas, Lauren M; Rosenberg, Hannah L; Woodward, Kayla A; Chonchol, Michel; Gioscia-Ryan, Rachel A; Murphy, Michael P; Seals, Douglas R

    2018-06-01

    Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period ( P <0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo ( P <0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P <0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo ( P <0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo ( P <0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P >0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023. © 2018 American Heart Association, Inc.

  8. [Prevention and preventive therapy of age-related macular degeneration through the beneficial effect of treatment of endothelial dysfunction].

    PubMed

    Fischer, Tamás

    2006-12-24

    The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD) - a disease leading to tragic loss of vision with its etiology and therapy being unknown -, endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, anti-adhesive and anti-inflammatory functions. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive - taking into consideration all possible side effects - ACE-inhibitor and/or AR-blocker and statin and aspirin treatment: 1) those without maculopathy but being over the age of 50 and having risk factors inducing endothelial dysfunction; 2) those, who already developed AMD in one eye as a prevention in the second, unaffected eye; and 3) those patients who developed AMD in both eyes in order to ameliorate or merely slow the progression of the disease. Besides, it is advisory to inhibit AMD risk factors inducing oxidative stress with consecutive endothelial dysfunction.

  9. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    NASA Astrophysics Data System (ADS)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  10. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    PubMed

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  11. Targeting vascular (endothelial) dysfunction

    PubMed Central

    Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago

    2016-01-01

    Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006

  12. Transcriptional responses of human aortic endothelial cells to nanoconstructs used in biomedical applications.

    PubMed

    Moos, Philip J; Honeggar, Matthew; Malugin, Alexander; Herd, Heather; Thiagarajan, Giridhar; Ghandehari, Hamidreza

    2013-08-05

    Understanding the potential toxicities of manufactured nanoconstructs used for drug delivery and biomedical applications may help improve their safety. We sought to determine if surface-modified silica nanoparticles and poly(amido amine) dendrimers elicit genotoxic responses on vascular endothelial cells. The nanoconstructs utilized in this study had a distinct geometry (spheres vs worms) and surface charge, which were used to evaluate the contributions of these parameters to any potential adverse effects of these materials. Time-dependent cytotoxicity was found for surfaced-functionalized but geometrically distinct silica materials, while amine-terminated dendrimers displayed time-independent cytotoxicity and carboxylated dendrimers were nontoxic in our assays. Transcriptomic evaluation of human aortic endothelial cell (HAEC) responses indicated time-dependent gene induction following silica exposure, consisting of cell cycle gene repression and pro-inflammatory gene induction. However, the dendrimers did not induce genomic toxicity, despite displaying general cytotoxicity.

  13. Inhibition of Endothelial Progenitor Cells May Explain the High Cardiovascular Event Rate in Patients with Rheumatoid Arthritis.

    PubMed

    Adawi, Mohamad; Pastuck, Nina; Saaida, Golan; Sirchan, Rizak; Watad, Abdalla; Blum, Arnon

    2018-05-16

    Rheumatoid arthritis (RA) patients may suffer cardiovascular (CV) events much more than the general population, and CV disease is the leading cause of death in patients with RA. Our hypothesis was that impaired function of endothelial progenitor cells may contribute to endothelial dysfunction and the clinical CV events of patients with RA. 27 RA patients (9 males and 18 females) with an active disease and 13 healthy subjects who served as the control group (9 males and 4 females) were enrolled to this prospective study. The ability to grow in culture colony-forming units of endothelial progenitor cells (CFU-EPCs) was measured, as well as their endothelial function using high-resolution ultrasonography of the brachial artery, and levels of C reactive protein (CRP) in the serum. For statistical analysis we used the students T-test test. As a group, patients with RA were older (p < 0.0001), had severe endothelial dysfunction (<0.0001), with impaired ability to grow CFU-EPCs (<0.0001), and a higher inflammatory state (p = 0001). No difference was observed in BMI. All RA patients had an active disease (DAS28 3.9±0.9) for 9.2±6.5 years. The same differences were observed in both genders. Patients with RA had an impaired ability to grow endothelial progenitor cells and severe endothelial dysfunction. Inability to grow colonies of endothelial progenitor cells reflects the impaired regenerative capacity of patients with RA, and may explain the endothelial dysfunction and the high CV event rate among patients with RA.

  14. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association, Inc.

  15. Measurement of endothelial dysfunction via peripheral arterial tonometry predicts vasculogenic erectile dysfunction

    PubMed Central

    Kovac, Jason R.; Gomez, Lissette; Smith, Ryan P.; Coward, Robert M.; Gonzales, Marshall A.; Khera, Mohit; Lamb, Dolores J.; Lipshultz, Larry I.

    2014-01-01

    Introduction Endothelial cell dysfunction is associated with cardiovascular disease and vasculogenic erectile dysfunction (ED). Measured via Peripheral Artery Tonometry (PAT), endothelial dysfunction in the penis is an independent predictor of future cardiovascular events. Aim Determine whether measurement of endothelial dysfunction differentiates men with vasculogenic ED identified by duplex ultrasound from those without. Methods A total of 142 men were retrospectively assessed using patient history, penile duplex ultrasonography (US) and PAT (EndoPAT 2000). ED was self reported and identified on history. Vasculogenic ED was identified in men who exhibited a peak systolic velocity (PSV) of ≤25 cm/s obtained 15 minutes following vasodilator injection. The reactive hyperemia index (RHI), a measurement of endothelial dysfunction in medium/small arteries and the Augmentation Index (AI), a measurement of arterial stiffness, were recorded via PAT. Results Penile duplex US separated men into those with ED (n=111) and without (n=31). The cohort with ED had a PSV of 21±1 cm/s (left cavernous artery) and 22±1 cm/s (Right). The control group without ED had values of 39±2 cm/s (Left) and 39±2 (Right). Given the potential for altered endothelial function in diabetes mellitus, we confirmed that hemoglobin A1c, urinary microalbumin, and vibration pulse threshold were not different in men with vasculogenic ED and those without. RHI in patients with ED (1.85±0.06) was significantly decreased compared to controls (2.15±0.2) (p<0.05). The AI was unchanged when examined in isolation, and when standardized to heart rate. Conclusions Measurement of endothelial function with EndoPAT differentiates men with vasculogenic ED from those without. RHI could be used as a non-invasive surrogate in the assessment of vasculogenic ED and to identify those patients with higher cardiovascular risk. PMID:24784889

  16. Endothelial dysfunction in metabolic diseases: role of oxidation and possible therapeutic employment of N-acetylcysteine.

    PubMed

    Masha, A; Martina, V

    2014-01-01

    Several metabolic diseases present a high cardiovascular mortality due to endothelial dysfunction consequences. In the last years of the past century, it has come to light that the endothelial cells, previously considered as inert in what regards an eventual secretion activity, play a pivotal role in regulating different aspects of the vascular function (endothelial function). It was clearly demonstrated that the endothelium acts as a real active organ, owning endocrine, paracrine and autocrine modulation activities by means of which it is able to regulate the vascular homeostasis. The present review will investigate the relationship between some metabolic diseases and the endothelial dysfunction and in particular the mechanisms underlying the effects of metabolic pathologies on the endothelium. Furthermore, it will consider the possible therapeutic employment of the N-acetilcysteine in such conditions.

  17. Peripheral vascular dysfunction in migraine: a review

    PubMed Central

    2013-01-01

    Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826

  18. Assessment of endothelial dysfunction: the role of symmetrical dimethylarginine and proinflammatory markers in chronic kidney disease and renal transplant recipients.

    PubMed

    Memon, Lidija; Spasojevic-Kalimanovska, Vesna; Bogavac-Stanojevic, Natasa; Kotur-Stevuljevic, Jelena; Simic-Ogrizovic, Sanja; Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana; Spasic, Slavica

    2013-01-01

    The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙-) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙- to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙- had better screening performance than SDMA alone. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies.

  19. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice.

    PubMed

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-06-15

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  20. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice

    PubMed Central

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-01-01

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093

  1. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells.

    PubMed

    Schramm, D D; Wang, J F; Holt, R R; Ensunsa, J L; Gonsalves, J L; Lazarus, S A; Schmitz, H H; German, J B; Keen, C L

    2001-01-01

    Polyphenolic phytochemicals inhibit vascular and inflammatory processes that contribute to disease. These effects are hypothesized to result from polyphenol-mediated alterations in cellular eicosanoid synthesis. The objective was to determine and compare the ability of cocoa procyanidins to alter eicosanoid synthesis in human subjects and cultured human aortic endothelial cells. After an overnight fast, 10 healthy subjects (4 men and 6 women) consumed 37 g low-procyanidin (0.09 mg/g) and high-procyanidin (4.0 mg/g) chocolate; the treatments were separated by 1 wk. The investigation had a randomized, blinded, crossover design. Plasma samples were collected before treatment and 2 and 6 h after treatment. Eicosanoids were quantitated by enzyme immunoassay. Endothelial cells were treated in vitro with procyanidins to determine whether the effects of procyanidin in vivo were associated with procyanidin-induced alterations in endothelial cell eicosanoid synthesis. Relative to the effects of the low-procyanidin chocolate, high-procyanidin chocolate induced increases in plasma prostacyclin (32%; P<0.05) and decreases in plasma leukotrienes (29%; P<0.04). After the in vitro procyanidin treatments, aortic endothelial cells synthesized twice as much 6-keto-prostaglandin F(1alpha) (P<0.01) and 16% less leukotriene (P<0.05) as did control cells. The in vitro and in vivo effects of procyanidins on plasma leukotriene-prostacyclin ratios in culture medium were also comparable: decreases of 58% and 52%, respectively. Data from this short-term investigation support the concept that certain food-derived flavonoids can favorably alter eicosanoid synthesis in humans, providing a plausible hypothesis for a mechanism by which they can decrease platelet activation in humans.

  2. Relation between aortic knob width and subclinical left ventricular dysfunction in hypertensive patients.

    PubMed

    Gürbak, İsmail; Yıldız, İbrahim; Panç, Cafer

    2018-01-29

    The assessment of left ventricular (LV) structure and function is important in the evaluation of hypertensive heart disease, as it provides information on the cardiovascular morbidity and mortality. Aortic knob width (AKW) is a measurement of radiographic structure formed by the foreshortened aortic arch and a portion of the descending aorta. The main aim of this study was to investigate the relation between AKW on the routine chest radiography and subclinical LV dysfunction in hypertensive patients. A total of 144 patients with hypertension admitted to the cardiology outpatients clinic were enrolled consecutively. The patients were divided into two groups according to tissue Doppler-derived myocardial performance index (MPI): subclinical LV dysfunction group (abnormal MPI ≥ 0.5, n = 85) and absence of subclinical LV dysfunction group (normal MPI< 0.5, n = 59). Patients with subclinical LV dysfunction were older (60 ± 8 vs. 54 ± 8, p = 0.001). Left ventricular mass index (LVMI) (96 ± 27 vs. 74 ± 24, p < 0.001) and prevalence of LV hypertrophy (28 vs. 8%, p = 0.011) were significantly different between two groups. Patients with subclinical LV dysfunction had higher AKW (42 ± 6 vs. 34 ± 5, p < 0.001) compared with patients without subclinical LV dysfunction. There was a significant correlation between MPI and AKW (r = 0.7, p < 0.001). Multiple logistic regression analysis showed that AKW (β = 0.617, p = 0.001) and posterior wall thickness (PWth) (β = 1.189, p = 0.021) were independently associated with subclinical LV dysfunction. Analysis using the Receiver Operating Characteristic (ROC) curve has demonstrated that aortic knob of 37 mm constitutes the cutoff value for the presence of subclinical LV dysfunction with 85.9% sensitivity and 86.4% specificity (The Area under the Curve ± Standard Error (AUC±SE) = 0.916 ± 0.024, p < 0.001). AKW may provide important predictive information on subclinical LV dysfunction in patients with hypertension.

  3. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload.

    PubMed

    Hong, Quan; Qi, Ka; Feng, Zhe; Huang, Zhiyong; Cui, Shaoyuan; Wang, Liyuan; Fu, Bo; Ding, Rui; Yang, Jurong; Chen, Xiangmei; Wu, Di

    2012-05-01

    Uric acid (UA) has proven to be a causal agent in endothelial dysfunction in which ROS production plays an important role. Calcium overload in mitochondria can promote the mitochondrial production of ROS. We hypothesize that calcium transduction in mitochondria contributes to UA-induced endothelial dysfunction. We first demonstrated that high concentrations of UA cause endothelial dysfunction, marked by a reduction in eNOS protein expression and NO release in vitro. We further found that a high concentration of UA increased levels of [Ca2+]mito, total intracellular ROS, H2O2, and mitochondrial O2·-, and Δψmito but not the [Ca2+]cyt level. When the mitochondrial calcium channels NCXmito and MCU were blocked by CGP-37157 and Ru360, respectively, the UA-induced increases in the levels of [Ca2+]mito and total intracellular ROS were significantly reduced. Mitochondrial levels of O2·- and Δψmito were reduced by inhibition of NCXmito but not of MCU. Moreover, inhibition of NCXmito, but not of MCU, blocked the UA-induced reductions in eNOS protein expression and NO release. The increased generation of mitochondrial O2·- induced by a high concentration of UA is triggered by mitochondrial calcium overload and ultimately leads to endothelial dysfunction. In this process, the activation of NCXmito is the major cause of the influx of calcium into mitochondria. Our results provide a new pathophysiological mechanism for UA-induced endothelial dysfunction and may offer a new therapeutic target for clinicians. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Ezetimibe in Combination With Statins Ameliorates Endothelial Dysfunction in Coronary Arteries After Stenting: The CuVIC Trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction After Coronary Stenting), a Multicenter Randomized Controlled Trial.

    PubMed

    Takase, Susumu; Matoba, Tetsuya; Nakashiro, Soichi; Mukai, Yasushi; Inoue, Shujiro; Oi, Keiji; Higo, Taiki; Katsuki, Shunsuke; Takemoto, Masao; Suematsu, Nobuhiro; Eshima, Kenichi; Miyata, Kenji; Yamamoto, Mitsutaka; Usui, Makoto; Sadamatsu, Kenji; Satoh, Shinji; Kadokami, Toshiaki; Hironaga, Kiyoshi; Ichi, Ikuyo; Todaka, Koji; Kishimoto, Junji; Egashira, Kensuke; Sunagawa, Kenji

    2017-02-01

    We sought to investigate whether treatment with ezetimibe in combination with statins improves coronary endothelial function in target vessels in coronary artery disease patients after coronary stenting. We conducted a multicenter, prospective, randomized, open-label, blinded-end point trial among 11 cardiovascular treatment centers. From 2011 to 2013, 260 coronary artery disease patients who underwent coronary stenting were randomly allocated to 2 arms (statin monotherapy, S versus ezetimibe [10 mg/d]+statin combinational therapy, E+S). We defined target vessel dysfunction as the primary composite outcome, which comprised target vessel failure during treatment and at the 6- to 8-month follow-up coronary angiography and coronary endothelial dysfunction determined via intracoronary acetylcholine testing performed in cases without target vessel failure at the follow-up coronary angiography. Coadministration of ezetimibe with statins further lowered low-density lipoprotein cholesterol levels (83±23 mg/dL in S versus 67±23 mg/dL in E+S; P<0.0001), with significant decreases in oxidized low-density lipoprotein and oxysterol levels. Among patients without target vessel failure, 46 out of 89 patients (52%) in the S arm and 34 out of 96 patients (35%) in the E+S arm were found to have coronary endothelial dysfunction (P=0.0256), and the incidence of target vessel dysfunction at follow-up was significantly decreased in the E+S arm (69/112 (62%) in S versus 47/109 (43%) in E+S; P=0.0059). A post hoc analysis of post-treatment low-density lipoprotein cholesterol-matched subgroups revealed that the incidence of both target vessel dysfunction and coronary endothelial dysfunction significantly decreased in the E+S arm, with significant reductions in oxysterol levels. The CuVIC trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction after Coronary Stenting) has shown that ezetimibe with statins, compared with statin monotherapy, improves functional prognoses, ameliorating endothelial dysfunction in stented coronary arteries, and was associated with larger decreases in oxysterol levels. © 2016 American Heart Association, Inc.

  5. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced bymore » treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.« less

  6. High fat diet-induced metabolically obese and normal weight rabbit model shows early vascular dysfunction: mechanisms involved.

    PubMed

    Alarcon, Gabriela; Roco, Julieta; Medina, Mirta; Medina, Analia; Peral, Maria; Jerez, Susana

    2018-01-30

    Obesity contributes significantly to the development and evolution of cardiovascular disease (CVD) which is believed to be mediated by oxidative stress, inflammation and endothelial dysfunction. However, the vascular health of metabolically obese and normal weight (MONW) individuals is not completely comprehended. The purpose of our study was to evaluate vascular function on the basis of a high fat diet (HFD)-MONW rabbit model. Twenty four male rabbits were randomly assigned to receive either a regular diet (CD, n = 12) or a high-fat diet (18% extra fat on the regular diet, HFD, n = 12) for 6 weeks. Body weight, TBARS and gluthathione serum levels were similar between the groups; fasting glucose, triglycerides, C reactive protein (CRP), visceral adipose tissue (VAT), triglyceride-glucose index (TyG index) were higher in the HFD group. Compared to CD, the HFD rabbits had glucose intolerance and lower HDL-cholesterol and plasma nitrites levels. Thoracic aortic rings from HFD rabbits exhibited: (a) a reduced acetylcholine-induced vasorelaxation; (b) a greater contractile response to norepinephrine and KCl; (c) an improved angiotensin II-sensibility. The HFD-effect on acetylcholine-response was reversed by the cyclooxygenase-2 (COX-2) inhibitor (NS398) and the cyclooxygenase-1 inhibitor (SC560), and the HFD-effect on angiotensin II was reversed by NS398 and the TP receptor blocker (SQ29538). Immunohistochemistry and western blot studies showed COX-2 expression only in arteries from HFD rabbits. Our study shows a positive pro-inflammatory status of HFD-induced MONW characterized by raised COX-2 expression, increase of the CRP levels, reduction of NO release and oxidative stress-controlled conditions in an early stage of metabolic alterations characteristic of metabolic syndrome. Endothelial dysfunction and increased vascular reactivity in MONW individuals may be biomarkers of early vascular injury. Therefore, the metabolic changes induced by HFD even in normal weight individuals may be associated to functional alterations of blood vessels.

  7. Targeting the Endoplasmic Reticulum Unfolded Protein Response to Counteract the Oxidative Stress-Induced Endothelial Dysfunction

    PubMed Central

    Moltedo, Ornella; Faraonio, Raffaella

    2018-01-01

    In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction. PMID:29725497

  8. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Endothelial dysfunction in patients with obstructive sleep apnoea independent of metabolic syndrome.

    PubMed

    Amra, Babak; Karbasi, Elaheh; Hashemi, Mohammad; Hoffmann-Castendiek, Birgit; Golshan, Mohammad

    2009-05-01

    Obstructive sleep apnoea syndrome (OSAS), characterised by intermittent hypoxia/re-oxygenation, has been identified as an independent risk factor for cardiovascular diseases and endothelial dysfunction. Our aim was to investigate flow-mediated dilatation (FMD) in patients with obstructive sleep apnoea with and without metabolic syndrome. Fifty-two subjects with OSAS diagnosed by polysomnography were classified into 2 groups according to the presence and absence of the metabolic syndrome and also according to the severity: mild to moderate OSAS group and severe OSAS group. Endothelial function of the brachial artery was evaluated by using high-resolution vascular ultrasound. Endothelial-dependent dilatation (EDD) was assessed by establishing reactive hyperaemia and endothelial-independent dilatation (EID) was determined by using sublingual isosorbide dinitrate. Spearman correlation and regression analysis were performed. EDD was not significantly different in patients with OSAS and metabolic syndrome as compared with OSAS without metabolic syndrome (4.62 +/- 0.69 versus 4.49 +/- 0.93, P >0.05). Endothelial dysfunction in OSA may be independent of metabolic syndrome.

  10. Effects of Flavonoid-Containing Beverages and EGCG on Endothelial Function

    PubMed Central

    Shenouda, Sherene M.; Vita, Joseph A.

    2009-01-01

    Abnormalities of the vascular endothelium contribute to all stages of atherosclerosis from lesion development to clinical cardiovascular disease events. Recognized risk factors, including diabetes mellitus, hypertension, dyslipidemia, cigarette smoking, and sedentary lifestyle are associated with endothelial dysfunction. A variety of pharmacological and behavioral interventions have been shown to reverse endothelial dysfunction in patients with cardiovascular disease. A large number of epidemiological studies suggest that dietary factors, including increased intake of flavonoid-containing foods and beverages, reduce cardiovascular risk, and recent studies have shown that such beverages have favorable effects on endothelial function. These studies have engendered interest in the development of dietary supplements or drugs that would allow for more convenient and higher dose administration of flavonoids and might prove useful for prevention or treatment of cardiovascular disease. In this paper, we will review the contribution of endothelial dysfunction to the pathogenesis and clinical expression of atherosclerosis and recent data linking flavonoid and EGCG consumption to improved endothelial function and reduced cardiovascular risk. PMID:17906190

  11. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less

  12. Childhood obesity-related endothelial dysfunction: an update on pathophysiological mechanisms and diagnostic advancements.

    PubMed

    Bruyndonckx, Luc; Hoymans, Vicky Y; Lemmens, Katrien; Ramet, José; Vrints, Christiaan J

    2016-06-01

    Childhood obesity jeopardizes a healthy future for our society's children as it is associated with increased cardiovascular morbidity and mortality later on in life. Endothelial dysfunction, the first step in the development of atherosclerosis, is already present in obese children and may well represent a targetable risk factor. Technological advancements in recent years have facilitated noninvasive measurements of endothelial homeostasis in children. Thereby this topic ultimately starts to get the attention it deserves. In this paper, we aim to summarize the latest insights on endothelial dysfunction in childhood obesity. We discuss methodological advancements in peripheral endothelial function measurement and newly identified diagnostic markers of vascular homeostasis. Finally, future challenges and perspectives are set forth on how to efficiently tackle the catastrophic rise in cardiovascular morbidity and mortality that will be inflicted on obese children if they are not treated optimally.

  13. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells.

    PubMed

    Aguilar, Edenil C; Santos, Lana Claudinez Dos; Leonel, Alda J; de Oliveira, Jamil Silvano; Santos, Elândia Aparecida; Navia-Pelaez, Juliana M; da Silva, Josiane Fernandes; Mendes, Bárbara Pinheiro; Capettini, Luciano S A; Teixeira, Lilian G; Lemos, Virginia S; Alvarez-Leite, Jacqueline I

    2016-08-01

    Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Bioactivation of organic nitrates and the mechanism of nitrate tolerance.

    PubMed

    Klemenska, Emila; Beresewicz, Andrzej

    2009-01-01

    Organic nitrates, such as nitroglycerin, are commonly used in the therapy of cardiovascular disease. Long-term therapy with these drugs, however, results in the rapid development of nitrate tolerance, limiting their hemodynamic and anti-ischemic efficacy. In addition, nitrate tolerance is associated with the expression of potentially deleterious modifications such as increased oxidative stress, endothelial dysfunction, and sympathetic activation. In this review we discuss current concepts regarding the mechanisms of organic nitrate bioactivation, nitrate tolerance, and nitrate-mediated oxidative stress and endothelial dysfunction. We also examine how hydralazine may prevent nitrate tolerance and related endothelial dysfunction.

  15. Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD

    PubMed Central

    Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248

  16. Diagnostic significance of three-dimensional echocardiography in asymptomatic unicuspid aortic valve.

    PubMed

    Mladenovic, Zorica; Vranes, Danijela; Obradovic, Slobodan; Dzudovic, Boris; Angelkov Ristic, Andjelka; Ratkovic, Nenad; Jovic, Zoran; Spasic, Marijan; Maric Kocijancic, Jelena; Djruic, Predrag

    2018-06-04

    Unicuspid aortic valve (UAV) is a rare congenital anomaly of aorta associated with a faster progress of valvular dysfunction, aortic dilatation and with necessity for more frequent controls and precise evaluation Asymptomatic 35 year old man had abnormal systolic diastolic murmur on aortic valve during routine examination. Initial diagnostic with transthoracic echocardiography (TTE) supposed bicuspid aortic valve, while three-dimensional transesophageal echocardiography (3D TEE) and multidetector computed tomography defined unicuspid, unicomissural aortic valve with moderate aortic stenosis and regurgitation. This case report confirmed that 3D TEE gives us opportunity for early, improved and precise diagnosis of UAV. © 2018 Wiley Periodicals, Inc.

  17. Sex Differences in Phenotypes of Bicuspid Aortic Valve and Aortopathy: Insights From a Large Multicenter, International Registry.

    PubMed

    Kong, William K F; Regeer, Madelien V; Ng, Arnold C T; McCormack, Louise; Poh, Kian Keong; Yeo, Tiong Cheng; Shanks, Miriam; Parent, Sarah; Enache, Roxana; Popescu, Bogdan A; Yip, James W; Ma, Lawrence; Kamperidis, Vasileios; van der Velde, Enno T; Mertens, Bart; Ajmone Marsan, Nina; Delgado, Victoria; Bax, Jeroen J

    2017-03-01

    This large multicenter, international bicuspid aortic valve (BAV) registry aimed to define the sex differences in prevalence, valve morphology, dysfunction (aortic stenosis/regurgitation), aortopathy, and complications (endocarditis and aortic dissection). Demographic, clinical, and echocardiographic data at first presentation of 1992 patients with BAV (71.5% men) were retrospectively analyzed. BAV morphology and valve function were assessed; aortopathy configuration was defined as isolated dilatation of the sinus of Valsalva or sinotubular junction, isolated dilatation of the ascending aorta distal to the sinotubular junction, or diffuse dilatation of the aortic root and ascending aorta. New cases of endocarditis and aortic dissection were recorded. There were no significant sex differences regarding BAV morphology and frequency of normal valve function. When presenting with moderate/severe aortic valve dysfunction, men had more frequent aortic regurgitation than women (33.8% versus 22.2%, P <0.001), whereas women were more likely to have aortic stenosis (34.5% versus 44.1%, P <0.001). Men had more frequently isolated dilatation of the sinus of Valsalva or sinotubular junction (14.2% versus 6.7%, P <0.001) and diffuse dilatation of the aortic root and ascending aorta (16.2% versus 7.3%, P <0.001) than women. Endocarditis (4.5% versus 2.5%, P =0.037) and aortic dissections (0.5% versus 0%, P <0.001) occurred more frequently in men. Although there is a male predominance among patients with BAV, men with BAV had more frequently moderate/severe aortic regurgitation at first presentation compared with women, whereas women presented more often with moderate/severe aortic stenosis compared with men. Furthermore, men had more frequent aortopathy than women. © 2017 American Heart Association, Inc.

  18. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  19. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAHmore » associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.« less

  20. Small dense HDLs display potent vasorelaxing activity, reflecting their elevated content of sphingosine-1-phosphate.

    PubMed

    Perségol, Laurence; Darabi, Maryam; Dauteuille, Carolane; Lhomme, Marie; Chantepie, Sandrine; Rye, Kerry-Anne; Therond, Patrice; Chapman, M John; Salvayre, Robert; Nègre-Salvayre, Anne; Lesnik, Philippe; Monier, Serge; Kontush, Anatol

    2018-01-01

    The functional heterogeneity of HDL is attributed to its diverse bioactive components. We evaluated whether the vasodilatory effects of HDL differed across HDL subpopulations, reflecting their distinct molecular composition. The capacity of five major HDL subfractions to counteract the inhibitory effects of oxidized LDL on acetylcholine-induced vasodilation was tested in a rabbit aortic rings model. NO production, an essential pathway in endothelium-dependent vasorelaxation, was studied in simian vacuolating virus 40-transformed murine endothelial cells (SVECs). Small dense HDL3 subfractions displayed potent vasorelaxing activity (up to +31% vs. baseline, P < 0.05); in contrast, large light HDL2 did not induce aortic-ring relaxation when compared on a total protein basis. HDL3 particles were enriched with sphingosine-1-phosphate (S1P) (up to 3-fold vs. HDL2), with the highest content in HDL3b and -3c that concomitantly revealed the strongest vasorelaxing properties. NO generation was enhanced by HDL3c in SVECs (1.5-fold, P < 0.01), a phenomenon that was blocked by the S1P receptor antagonist, VPC 23019. S1P-enriched reconstituted HDL (rHDL) was a 1.8-fold ( P < 0.01) more potent vasorelaxant than control rHDL in aortic rings. Small dense HDL3 particles displayed potent protective effects against oxidative stress-associated endothelium dysfunction, potentially reflecting their elevated content of S1P that might facilitate interaction with S1P receptors and ensuing NO generation. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Gender discrimination in the influence of hyperglycemia and hyperosmolarity on rat aortic tissue responses to insulin.

    PubMed

    Wong, Nikki L; Achike, Francis I

    2010-08-09

    Hyperglycaemia initiates endothelial dysfunction causing diabetic macro- and micro-vasculopathy, the main causes of morbidity and mortality in diabetes mellitus. The vasculopathy exhibits gender peculiarities. We therefore explored gender differences in comparing the effects of hyperglycaemia (50 mM) per se with its hyperosmolar (50 mM) effects on vascular tissue responses to insulin. Endothelium-intact or denuded thoracic aortic rings from age-matched male and female Sprague-Dawley rats were incubated for 10 min or 6 h (acute versus chronic exposure) in normal, hyperglycaemic or hyperosmolar Krebs solution. Relaxant responses to insulin (6.9x10(-7)-6.9x10(-5) M) of the phenylephrine-contracted tissues were recorded. Endothelium denudation in both genders inhibited relaxation to insulin in all conditions, more significantly in female than in male tissues, suggesting the female response to insulin is more endothelium-dependent than the male. Acutely and chronically exposed normoglycemic endothelium-intact or -denuded tissues responded similarly to insulin. Chronic hyperglycemic or hyperosmolar exposure did not alter the endothelium-denuded tissue responses to insulin, whereas the responses of the endothelium-intact male and female hyperosmolar, and male hyperglycemic tissues were enhanced. The results show that insulin exerts an endothelium-dependent and independent relaxation with the female tissue responses more endothelium-dependent than the male. The data also suggest that hyperosmolarity per se enhances aortic tissue relaxant responses to insulin whereas hyperglycemia per se inhibits the same and more so in female than male tissues. These effects are endothelium-dependent. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors.

    PubMed

    Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong

    2010-10-01

    To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor.

  3. Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors

    PubMed Central

    Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong

    2010-01-01

    Aim: To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Methods: Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Results: Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. Conclusion: These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor. PMID:20871620

  4. Brief group training of medical students in focused cardiac ultrasound may improve diagnostic accuracy of physical examination.

    PubMed

    Stokke, Thomas M; Ruddox, Vidar; Sarvari, Sebastian I; Otterstad, Jan E; Aune, Erlend; Edvardsen, Thor

    2014-11-01

    Physical examination and auscultation can be challenging for medical students. The aim of this study was to investigate whether a brief session of group training in focused cardiac ultrasound (FCU) with a pocket-sized device would allow medical students to improve their ability to detect clinically relevant cardiac lesions at the bedside. Twenty-one medical students in their clinical curriculum completed 4 hours of FCU training in groups. The students examined patients referred for echocardiography with emphasis on auscultation, followed by FCU. Findings from physical examination and FCU were compared with those from standard echocardiography performed and analyzed by cardiologists. In total, 72 patients were included in the study, and 110 examinations were performed. With a stethoscope, sensitivity to detect clinically relevant (moderate or greater) valvular disease was 29% for mitral regurgitation, 33% for aortic regurgitation, and 67% for aortic stenosis. FCU improved sensitivity to detect mitral regurgitation (69%, P < .001). However, sensitivity to detect aortic regurgitation (43%) and aortic stenosis (70%) did not improve significantly. Specificity was ≥89% for all valvular diagnoses by both methods. For nonvalvular diagnoses, FCU's sensitivity to detect moderate or greater left ventricular dysfunction (90%) was excellent, detection of right ventricular dysfunction (79%) was good, while detection of dilated left atrium (53%), dilated right atrium (49%), pericardial effusion (40%), and dilated aortic root (25%) was less accurate. Specificity varied from 57% to 94%. After brief group training in FCU, medical students could detect mitral regurgitation significantly better compared with physical examination, whereas detection of aortic regurgitation and aortic stenosis did not improve. Left ventricular dysfunction was detected with high sensitivity. More extensive training is advised. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  5. Reoperation for non-structural valvular dysfunction caused by pannus ingrowth in aortic valve prosthesis.

    PubMed

    Oh, Se Jin; Park, Samina; Kim, Jun Sung; Kim, Kyung-Hwan; Kim, Ki Bong; Ahn, Hyuk

    2013-07-01

    The authors' clinical experience is presented of non-structural valvular dysfunction of the prosthetic aortic valve caused by pannus ingrowth during the late postoperative period after previous heart valve surgery. Between January 1999 and April 2012, at the authors' institution, a total of 33 patients underwent reoperation for increased mean pressure gradient of the prosthetic aortic valve. All patients were shown to have pannus ingrowth. The mean interval from the previous operation was 16.7 +/- 4.3 years, and the most common etiology for the previous aortic valve replacement (AVR) was rheumatic valve disease. The mean effective orifice area index (EOAI) of the previous prosthetic valve was 0.97 +/- 0.11 cm2/m2, and the mean pressure gradient on the aortic prosthesis before reoperation was 39.1 +/- 10.7 mmHg. Two patients (6.1%) died in-hospital, and late death occurred in six patients (18.2%). At the first operation, 30 patients underwent mitral or tricuspid valve surgery as a concomitant procedure. Among these operations, mitral valve replacement (MVR) was combined in 24 of all 26 patients with rheumatic valve disease. Four patients underwent pannus removal only while the prosthetic aortic valve was left in place. The mean EOAI after reoperation was significantly increased to 1.16 +/- 0.16 cm2/m2 (p < 0.001), and the mean pressure gradient was decreased to 11.9 +/- 1.9 mmHg (p < 0.001). Non-structural valvular dysfunction caused by pannus ingrowth was shown in patients with a small EOAI of the prosthetic aortic valve and combined MVR for rheumatic disease. As reoperation for pannus overgrowth showed good clinical outcomes, an aggressive resection of pannus and repeated AVR should be considered in symptomatic patients to avoid the complications of other cardiac diseases.

  6. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through NO and Akt

    PubMed Central

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J.

    2011-01-01

    Objective Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous NO synthase (NOS) inhibitors ADMA and L-NMMA. This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA independent effects that influence endothelial function. Methods and Results Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in HUVEC, we found that DDAH1 acts to promote endothelial cell proliferation, migration and tube formation both by Akt phosphorylation as well as through the traditional role of degrading ADMA. Incubation of HUVEC with the NOS inhibitors L-NAME or ADMA, the soluble guanylyl cyclase inhibitor ODQ, or the cGMP analog 8-pCPT-cGMP had no effect on p-AktSer473, indicating that the increase of p-AktSer473 produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase of p-AktSer473. Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. Conclusions DDAH1 exerts a unique role in activating Akt that affects endothelial function independent of degrading endogenous NOS inhibitors. PMID:21212404

  7. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load

    PubMed Central

    Walsh, Lauren K.; Restaino, Robert M.; Neuringer, Martha; Manrique, Camila; Padilla, Jaume

    2017-01-01

    Postprandial hyperglycemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. Herein we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, 1 hour, and 2 hours post an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized crossover design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycemia under the placebo condition (−32% at 1 hr and −28% at 2 hr post oral glucose load; p<0.05 from baseline) but not under the TUDCA condition (−4% at 1 hr and +0.3% at 2 hr post oral glucose load; p>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and TBARs remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycemia. PMID:27503949

  8. Assessment of Endothelial Dysfunction: The Role of Symmetrical Dimethylarginine and Proinflammatory Markers in Chronic Kidney Disease and Renal Transplant Recipients

    PubMed Central

    Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana

    2013-01-01

    Objectives. The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙−) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. Materials and Methods. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Results. Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙− to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙− had better screening performance than SDMA alone. Conclusions. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies. PMID:24167363

  9. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    PubMed

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt.

    PubMed

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2011-04-01

    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.

  11. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.

    PubMed

    Kesavan, R; Chandel, S; Upadhyay, S; Bendre, R; Ganugula, R; Potunuru, U R; Giri, H; Sahu, G; Kumar, P Uday; Reddy, G Bhanuprakash; Joksic, G; Bera, A K; Dixit, Madhulika

    2016-04-01

    Studies suggest that Gentiana lutea (GL), and its component isovitexin, may exhibit anti-atherosclerotic properties. In this study we sought to investigate the protective mechanism of GL aqueous root extract and isovitexin on endothelial inflammation, smooth muscle cell migation, and on the onset and progression of atherosclerosis in streptozotocin (STZ)-induced diabetic rats. Our results show that both GL extract and isovitexin, block leukocyte adhesion and generation of reactive oxygen species in human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs), following TNF-alpha and platelet derived growth factor-BB (PDGF-BB) challenges respectively. Both the extract and isovitexin blocked TNF-α induced expression of ICAM-1 and VCAM-1 in HUVECs. PDGF-BB induced migration of RASMCs and phospholipase C-γ activation, were also abrogated by GL extract and isovitexin. Fura-2 based ratiometric measurements demonstrated that, both the extact, and isovitexin, inhibit PDGF-BB mediated intracellular calcium rise in RASMCs. Supplementation of regular diet with 2% GL root powder for STZ rats, reduced total cholesterol in blood. Oil Red O staining demonstrated decreased lipid accumulation in aortic wall of diabetic animals upon treatment with GL. Medial thickness and deposition of collagen in the aortic segment of diabetic rats were also reduced upon supplementation. Immunohistochemistry demonstrated reduced expression of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and vascular endothelial cadherin (VE-cadherin) in aortic segments of diabetic rats following GL treatment. Thus, our results support that GL root extract/powder and isovitexin exhibit anti-atherosclerotic activities. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  12. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice.

    PubMed

    Martorell, Sara; Hueso, Luisa; Gonzalez-Navarro, Herminia; Collado, Aida; Sanz, Maria-Jesus; Piqueras, Laura

    2016-08-01

    Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression. © 2016 American Heart Association, Inc.

  13. Comparison of captopril and enalapril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE inhibitors in high dieted methionine mice.

    PubMed

    Liu, Yu-Hui; Liu, Li-Ying; Wu, Jin-Xiang; Chen, Shuang-Xiu; Sun, Yin-Xue

    2006-01-01

    To examine the role of sulfhydryl (-SH) group in improvement of endothelial dysfunction with angiotensin-converting enzyme (ACE) inhibitors in experimental high dose of methionine dieted rats. We compared the effects of Captopril (an ACE inhibitor with -SH group), enalapril (an ACE-inhibitor without -SH group), N-acetylcysteine (only -SH group not ACE inhibitor) on endothelial dysfunction injured by methionine-induced hyperhomocysteinemia (HHcy) in rats. Male Sprague-Dawley rats were divided randomly into seven groups: control group, L-methionine group, low dose Captopril (15 mg/kg), middle dose Captopril (30 mg/kg), high dose Captopril (45 mg/kg), enalapril (20 mg/kg), N-acetylcysteine (200 mg/kg); control group were intragastric gavaged by water and others groups were intragastric gavaged by L-methionine and drugs in water one time every day. Acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), sodium nitroprusside (SNP)-induced endothelium-independent relaxation of aortic rings were examined. Paraoxonase1 (PON1) and ACE activity, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD) in serum were analyzed. It was found that a single intragastric gavage by L-methionine resulted in inhibition of endothelium-dependent relaxation, markedly increased the serum level of malondialdehyde and decreased the activity of PON1 and SOD, similarly decreased the level of NO in the serum; but had no effects on endothelium-independent relaxation and angiotensin-converting enzyme activity compared with the control group. Given the treatment with three doses of Captopril (15 approximately 45 mg/kg) markedly attenuated inhibition of vasodilator responses to ACh, and eliminated the increased level of malondialdehyde, the decreased level of NO, activity of PON1 and SOD in serum by single intragastric gavaged L-methionine. However, there were some significant differences among Captopril (30 mg/kg or 45 mg/kg), enalapril (20 mg/kg), and N-acetylcysteine particular in the activity of PON1 and ACE. These results suggested that Captopril can protect the vascular endothelium against the damages induced by L-methionine in rats, and the beneficial effects of Captopril may be related to attenuating the decrease in PON1 activity and NO levels. Furthermore, this protective effect may be concerned with the sulfhydryl group.

  14. Improvement of Aging-Associated Cardiovascular Dysfunction by the Orally Administered Copper(II)-Aspirinate Complex

    PubMed Central

    Gerö, Domokos; Lin, Li-ni; Loganathan, Sivakkanan; Hoppe-Tichy, Torsten; Szabó, Csaba; Karck, Matthias; Sakurai, Hiromu; Szabó, Gábor

    2008-01-01

    Abstract Background Aging-associated nitro-oxidative stress causes tissue injury and activates proinflammatory pathways that play an important role in the pathogenesis of aging-associated cardiovascular dysfunction. It has been recently reported, that the copper(II)–aspirinate complex (CuAsp) exerts not only the well-known anti-inflammatory and platelet antiaggregating effects of aspirin, but, due to its superoxide dismutase mimetic activity, it acts as a potent antioxidant as well. In this study we investigated the effects of CuAsp on aging-associated myocardial and endothelial dysfunction. Methods and Results Aging and young rats were treated for 3 weeks with vehicle, or with CuAsp (200 mg/kg per day per os). Left ventricular pressure–volume relations were measured by using a microtip pressure–volume conductance catheter, and indexes of contractility (e.g., slope of end-systolic pressure–volume relationships [ESPVR] [Ees], and dP/dtmax – end-diastolic volume [EDV]) were calculated. In organ bath experiments for isometric tension with isolated aortic rings, endothelium-dependent and -independent vasorelaxation were investigated by using acetylcholine and sodium nitroprusside. When compared to the young controls, aging rats showed impaired left ventricular contractility (Ees, 0.51 ± 0.04 vs. 2.16 ± 0.28 mmHg/μL; dP/dtmax – EDV, 10.71 ± 2.02 vs. 37.23 ± 4.18 mmHg/sec per μL; p < 0.05) and a marked endothelial dysfunction (maximal relaxation to acetylcholine: 66.66 ± 1.30 vs. 87.09 ± 1.35%; p < 0.05). Treatment with CuAsp resulted in reduced nitro-oxidative stress, improved cardiac function (Ees, 1.21 ± 0.17 vs. 0.51 ± 0.04 mmHg/μL; dP/dtmax – EDV, 23.40 ± 3.34 vs. 10.71 ± 2.02 mmHg/sec per μL; p < 0.05) and higher vasorelaxation to acetylcholine in aging animals (94.83 ± 0.73 vs. 66.66 ± 1.30%; p < 0.05). The treatment did not influence the cardiovascular functions of young rats. Conclusions Our results demonstrate that oxidative stress and inflammatory pathways contribute to the pathogenesis of cardiovascular dysfunction in the aging organism, which can be reversed by CuAsp. PMID:18922047

  15. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries.

    PubMed

    Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A

    2017-08-01

    Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  16. Cellular antioxidant effects of atorvastatin in vitro and in vivo.

    PubMed

    Wassmann, Sven; Laufs, Ulrich; Müller, Kirsten; Konkol, Christian; Ahlbory, Katja; Bäumer, Anselm T; Linz, Wolfgang; Böhm, Michael; Nickenig, Georg

    2002-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert direct effects on vascular cells and beneficially influence endothelial dysfunction. Because reactive oxygen species (ROS) may lead to vascular damage and dysfunction, we investigated the effect of atorvastatin on ROS production and the underlying mechanisms in vitro and in vivo. Cultured rat aortic vascular smooth muscle cells were incubated with 10 micromol/L atorvastatin. Angiotensin II-induced and epidermal growth factor-induced ROS production were significantly reduced by atorvastatin (dichlorofluorescein fluorescence laser microscopy). Atorvastatin downregulated mRNA expression of the NAD(P)H oxidase subunit nox1, whereas p22phox mRNA expression was not significantly altered (reverse transcription-polymerase chain reaction, Northern analysis). Membrane translocation of rac1 GTPase, which is required for the activation of NAD(P)H oxidase, was inhibited by atorvastatin (Western blot). mRNA expression of superoxide dismutase isoforms and glutathione peroxidase was not modified by atorvastatin, whereas catalase expression was upregulated at mRNA and protein levels, resulting in an increased enzymatic activity. Effects of atorvastatin on ROS production and nox1, rac1, and catalase expression were inhibited by L-mevalonate but not by 25-hydroxycholesterol. In addition, spontaneously hypertensive rats were treated with atorvastatin for 30 days. ROS production in aortic segments was significantly reduced in statin-treated rats (lucigenin chemiluminescence). Treatment with atorvastatin reduced vascular mRNA expression of p22phox and nox1 and increased aortic catalase expression. mRNA expression of superoxide dismutases, glutathione peroxidase, and NAD(P)H oxidase subunits gp91phox, p40phox, p47phox, and p67phox remained unchanged. Translocation of rac1 from the cytosol to the cell membrane was also reduced in vivo. Thus, atorvastatin exerts cellular antioxidant effects in cultured rat vascular smooth muscle cells and in the vasculature of spontaneously hypertensive rats mediated by decreased expression of essential NAD(P)H oxidase subunits and by upregulation of catalase expression. These effects of atorvastatin may contribute to the vasoprotective effects of statins.

  17. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  18. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design.

    PubMed

    Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay

    2006-02-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.

  19. Characterizing Nanoscale Topography of the Aortic Heart Valve Basement Membrane for Tissue Engineering Heart Valve Scaffold Design

    PubMed Central

    BRODY, SARAH; ANILKUMAR, THAPASIMUTHU; LILIENSIEK, SARA; LAST, JULIE A.; MURPHY, CHRISTOPHER J.; PANDIT, ABHAY

    2016-01-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane. PMID:16548699

  20. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    PubMed

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase

    PubMed Central

    Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884

  2. Aortic Valve Replacement for Moderate Aortic Stenosis with Severe Calcification and Left Ventricualr Dysfunction-A Case Report and Review of the Literature.

    PubMed

    Narang, Nikhil; Lang, Roberto M; Liarski, Vladimir M; Jeevanandam, Valluvan; Hofmann Bowman, Marion A

    2017-01-01

    A 55-year-old man with a history of erosive, seropositive rheumatoid arthritis (RA), and interstitial lung disease presented with shortness of breath. Echocardiography showed new-onset severe left ventricular (LV) dysfunction with an ejection fraction (EF) of 15% and moderately increased mean aortic valve gradient of 20 mmHg in a trileaflet aortic valve with severe sclero-calcific degeneration. Coronary angiography revealed no significant obstructive coronary disease. Invasive hemodynamic studies and dobutamine stress echocardiography were consistent with moderate aortic stenosis. Guideline directed medical therapy for heart failure with reduced EF was initiated; however, diuretics and neurohormonal blockade (beta-blocker and angiotensin receptor blocker) provided minimal improvement, and the patient remained functionally limited. Of interest, echocardiography performed 1 year prior to his presentation showed normal LV EF and mild aortic leaflet calcification with moderate stenosis, suggesting a rapid progressing of calcific aortic valve disease. Subsequently, the patient underwent surgical aortic valve replacement and demonstrated excellent postsurgical recovery of LV EF (55%). Calcific aortic valve disease is commonly associated with aging, bicuspid aortic valve, and chronic kidney disease. Pathophysiological mechanism for valvular calcification is incompletely understood but include osteogenic transformation of valvular interstitial cells mediated by local and systemic inflammatory processes. Several rheumatologic diseases including RA are associated with premature atherosclerosis and arterial calcification, and we speculated a similar role of RA accelerating calcific aortic valve disease. We present a case of accelerated aortic valve calcification with (only) moderate stenosis, complicated by a rapid decline in LV systolic performance. Guidelines for AVR in moderate stenosis without concomitant cardiac surgery are not well established, although it should be considered in selected patients.

  3. Peripheral Endothelial Function After Arterial Switch Operation for D-looped Transposition of the Great Arteries.

    PubMed

    Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda

    2017-06-01

    Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.

  4. Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis.

    PubMed

    Chowdhury, Kaustav Dutta; Sen, Gargi; Sarkar, Avik; Biswas, Tuli

    2011-07-01

    Evidence in the literature suggests that down-regulation of nitric oxide (NO) is associated with the pathophysiological conditions during visceral leishmaniasis (VL). Here we have investigated the mechanism that leads to the down regulation of systemic NO in the infected condition. Moreover, we have determined whether down regulation of NO is associated with increased generation of reactive oxygen species (ROS) during this disease. Therapeutic strategy targeting signaling molecules of these events was evaluated. Plasma protein-nitrotyrosine was examined by ELISA kit. Generation of superoxides and peroxynitrites was investigated by flow cytometry. NO bioavailability in endothelial cells was evaluated using DAF-2DA fluorescence. Ceramide contents were evaluated using FACS analysis, HPTLC and HPLC. L. donovani infected reticulo-endothelial cells regulated the activity of eNOS and NAD(P)H oxidase in the endothelial cells through the generation of intercellular messenger, ceramide. Activation of SMases played an important role in the generation of ceramide in animals during chronic infection. These events led to generation of ROS within endothelial cells. Modulation of redox status of plasma and accumulation of ROS in endothelial cells were critically involved in the regulation of NO bioavailability in plasma of the infected animal. Endothelial dysfunction and decline of NO were resulted from an increased production of superoxide where upregulation of eNOS expression appeared as an ineffective compensatory event. Inhibition of ceramide generation increased NO bioavailability, prevented endothelial dysfunction and concomitant oxidative stress. Decreased NO bioavailability and endothelial dysfunction were the downstream of ceramide signaling cascade. ROS accumulation promoted peroxynitrite generation and reduced NO bioavailability. Inhibition of ceramide generation may be a potential therapeutic option in preventing the co-morbidity associated with VL. 2011 Elsevier B.V. All rights reserved.

  5. Prevalence and Prognostic Significance of Right Ventricular Systolic Dysfunction in Patients Undergoing Transcatheter Aortic Valve Implantation.

    PubMed

    Lindsay, Alistair C; Harron, Katie; Jabbour, Richard J; Kanyal, Ritesh; Snow, Thomas M; Sawhney, Paramvir; Alpendurada, Francisco; Roughton, Michael; Pennell, Dudley J; Duncan, Alison; Di Mario, Carlo; Davies, Simon W; Mohiaddin, Raad H; Moat, Neil E

    2016-07-01

    Cardiovascular magnetic resonance (CMR) can provide important structural information in patients undergoing transcatheter aortic valve implantation. Although CMR is considered the standard of reference for measuring ventricular volumes and mass, the relationship between CMR findings of right ventricular (RV) function and outcomes after transcatheter aortic valve implantation has not previously been reported. A total of 190 patients underwent 1.5 Tesla CMR before transcatheter aortic valve implantation. Steady-state free precession sequences were used for aortic valve planimetry and to assess ventricular volumes and mass. Semiautomated image analysis was performed by 2 specialist reviewers blinded to patient treatment. Patient follow-up was obtained from the Office of National Statistics mortality database. The median age was 81.0 (interquartile range, 74.9-85.5) years; 50.0% were women. Impaired RV function (RV ejection fraction ≤50%) was present in 45 (23.7%) patients. Patients with RV dysfunction had poorer left ventricular ejection fractions (42% versus 69%), higher indexed left ventricular end-systolic volumes (96 versus 40 mL), and greater indexed left ventricular mass (101 versus 85 g/m(2); P<0.01 for all) than those with normal RV function. Median follow-up was 850 days; 21 of 45 (46.7%) patients with RV dysfunction died, compared with 43 of 145 (29.7%) patients with normal RV function (P=0.035). After adjustment for significant baseline variables, both RV ejection fraction ≤50% (hazard ratio, 2.12; P=0.017) and indexed aortic valve area (hazard ratio, 4.16; P=0.025) were independently associated with survival. RV function, measured on preprocedural CMR, is an independent predictor of mortality after transcatheter aortic valve implantation. CMR assessment of RV function may be important in the risk stratification of patients undergoing transcatheter aortic valve implantation. © 2016 American Heart Association, Inc.

  6. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Vallejo, Susana; Palacios, Erika; Romacho, Tania; Villalobos, Laura; Peiró, Concepción; Sánchez-Ferrer, Carlos F

    2014-12-18

    Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.

  7. [Endothelial dysfunction and nonspecific immune reactions in development and progression of osteoarthrosis in women engaged into manual work].

    PubMed

    Maliutina, N N; Nevzorova, M S

    2015-01-01

    The article considers mechanisms of development and progression of osteoarthrosis as an occupationally conditioned disease in women of manual work. Women working in physical overstrain conditions are under occupational risk with dysfunction of many body systems. The authors set a hypothesis on association of endothelial dysfunction markers dysbalance and structural remodelling of cartilage matrix as a proof of degenerative changes.

  8. Vascular extracellular vesicles in comorbidities of heart failure with preserved ejection fraction in men and women: The hidden players. A mini review.

    PubMed

    Gohar, Aisha; de Kleijn, Dominique P V; Hoes, Arno W; Rutten, Frans H; Hilfiker-Kleiner, Denise; Ferdinandy, Péter; Sluijter, Joost P G; den Ruijter, Hester M

    2018-05-25

    Left ventricular diastolic dysfunction, the main feature of heart failure with preserved ejection fraction (HFpEF), is thought to be primarily caused by comorbidities affecting the endothelial function of the coronary microvasculature. Circulating extracellular vesicles, released by the endothelium have been postulated to reflect endothelial damage. Therefore, we reviewed the role of extracellular vesicles, in particularly endothelium microparticles, in these comorbidities, including obesity and hypertension, to identify if they may be potential markers of the endothelial dysfunction underlying left ventricular diastolic dysfunction and HFpEF. Copyright © 2017. Published by Elsevier Inc.

  9. Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres

    2017-08-01

    In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.

  10. Fluid Mechanical Forces and Endothelial Mitochondria: A Bioengineering Perspective.

    PubMed

    Scheitlin, Christopher G; Nair, Devi M; Crestanello, Juan A; Zweier, Jay L; Alevriadou, B Rita

    2014-12-01

    Endothelial cell dysfunction is the hallmark of every cardiovascular disease/condition, including atherosclerosis and ischemia/reperfusion injury. Fluid shear stress acting on the vascular endothelium is known to regulate cell homeostasis. Altered hemodynamics is thought to play a causative role in endothelial dysfunction. The dysfunction is associated with/preceded by mitochondrial oxidative stress. Studies by our group and others have shown that the form and/or function of the mitochondrial network are affected when endothelial cells are exposed to shear stress in the absence or presence of additional physicochemical stimuli. The present review will summarize the current knowledge on the interconnections among intracellular Ca 2+ - nitric oxide - mitochondrial reactive oxygen species, mitochondrial fusion/fission, autophagy/mitophagy, and cell apoptosis vs. survival. More specifically, it will list the evidence on potential regulation of the above intracellular species and processes by the fluid shear stress acting on the endothelium under either physiological flow conditions or during reperfusion (following a period of ischemia). Understanding how the local hemodynamics affects mitochondrial physiology and the cell redox state may lead to development of novel therapeutic strategies for prevention or treatment of the endothelial dysfunction and, hence, of cardiovascular disease.

  11. The relationship between vascular endothelial dysfunction and treatment frequency in neovascular age-related macular degeneration.

    PubMed

    Ueda-Consolvo, Tomoko; Hayashi, Atsushi; Ozaki, Mayumi; Nakamura, Tomoko; Yagou, Takaaki; Abe, Shinya

    2017-07-01

    To assess the correlation between endothelial dysfunction and frequency of antivascular endothelial growth factor (anti-VEGF) treatment for neovascular age-related macular degeneration (nAMD). We examined 64 consecutive patients with nAMD who were evaluated for endothelial function by use of peripheral arterial tonometry (EndoPAT 2000; Itamar Medical, Caesarea, Israel) at Toyama University Hospital from January 2015. We tallied the number of anti-VEGF treatments between January 2014 and December 2015 and determined the correlation between the number of anti-VEGF injections and endothelial function expressed as the reactive hyperemia index (RHI). Multiple regression analysis was also performed to identify the independent predictors of a larger number of injections. The mean number of anti-VEGF injections was 8.2 ± 3.3. The mean lnRHI was 0.47 ± 0.17. The lnRHI correlated with the number of anti-VEGF injections (r = -0.56; P = 0.030). The multiple regression analysis revealed that endothelial function, neovascular subtypes, and treatment regimens were associated with the number of injections. Endothelial dysfunction may affect the efficacy of anti-VEGF therapy. Neovascular subtypes may also predict a larger number of injections.

  12. The Autophagy Enhancer Spermidine Reverses Arterial Aging

    PubMed Central

    LaRocca, Thomas J.; Gioscia-Ryan, Rachel A.; Hearon, Christopher M.; Seals, Douglas R.

    2013-01-01

    Arterial aging, characterized by stiffening of large elastic arteries and the development of arterial endothelial dysfunction, increases cardiovascular disease (CVD) risk. We tested the hypothesis that spermidine, a nutrient associated with the anti-aging process autophagy, would improve arterial aging. Aortic pulse wave velocity (aPWV), a measure of arterial stiffness, was ~20% greater in old (O, 28 months) compared with young C57BL6 mice (Y, 4 months, P < 0.05). Arterial endothelium-dependent dilation (EDD), a measure of endothelial function, was ~25% lower in O (P < 0.05 vs. Y) due to reduced nitric oxide (NO) bioavailability. These impairments were associated with greater arterial oxidative stress (nitrotyrosine), superoxide production, and protein cross-linking (advanced glycation end-products, AGEs) in O (all P < 0.05). Spermidine supplementation normalized aPWV, restored NO-mediated EDD and reduced nitrotyrosine, superoxide, AGEs and collagen in O. These effects of spermidine were associated with enhanced arterial expression of autophagy markers, and in vitro experiments demonstrated that vascular protection by spermidine was autophagy-dependent. Our results indicate that spermidine exerts a potent anti-aging influence on arteries by increasing NO bioavailability, reducing oxidative stress, modifying structural factors and enhancing autophagy. Spermidine may be a promising nutraceutical treatment for arterial aging and prevention of age-associated CVD. PMID:23612189

  13. Role of HDL in neutralizing the VLDL effect on endothelial dysfunction.

    PubMed

    Zago, Valeria; Gorzalczany, Susana; Lucero, Diego; Taira, Carlos; Schreier, Laura

    2013-09-01

    It has been reported that LDL inhibits endothelium-dependent relaxation (EDR) and that HDL can neutralize this effect. However, the atherogenic properties of VLDL have been so far difficult to demonstrate. Studies on VLDL are controversial, and nothing is known about the role of HDL on potential VLDL vascular actions. We examined the effect of human VLDLs on EDR, and the role of HDL in this system. VLDL (n=14) and LDL (n=6) were isolated from volunteer subjects. Normal HDL was obtained from one healthy donor. VLDL ability to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously precontracted by noradrenaline (10(-8)mM) was measured in the presence and absence of HDL. ACh-induced maximal relaxation (R%) was mildly, but not significantly attenuated in the presence of VLDL (72±7%), while LDL caused a significant inhibition (60±10%, p<0.05) when compared to incubation in the absence of lipoproteins. VLDLs were subdivided into 2 groups depending on their cholesterol/triglyceride ratio: 0.18-0.22 (n=8) was considered typical and 0.10-0.15, rich in triglycerides (VLDLRT, n=6). Typical VLDL had no effect on EDR (p=0.38), however R% from VLDLRT was lower (54±7%, p<0.01) similar to the one obtained with LDL (p=0.32). HDL showed favorable effects on EDR inhibition induced by the presence of VLDLRT (p<0.05.). Although typical VLDL did not cause endothelial dysfunction, triglyceride-enriched VLDL had inhibitory effect on EDR. It is proposed that alterations in VLDL composition would increase its atherogenic capacity. Moreover HDL appears to protect endothelium from VLDL action. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb.

    PubMed

    Massberg, Steffen; Schürzinger, Katrin; Lorenz, Michael; Konrad, Ildiko; Schulz, Christian; Plesnila, Nikolaus; Kennerknecht, Elisabeth; Rudelius, Martina; Sauer, Susanne; Braun, Siegmund; Kremmer, Elisabeth; Emambokus, Nikla R; Frampton, Jon; Gawaz, Meinrad

    2005-08-23

    The platelet glycoprotein (GP) IIb/IIIa integrin binds to fibrinogen and thereby mediates platelet aggregation. Here, we addressed the role of GP IIb for platelet adhesion and determined the relevance of platelet GP IIb for the processes of atherosclerosis and cerebral ischemia-reperfusion (I/R) injury. GP IIb(-/-) mice were generated and bred with ApoE(-/-) animals to create GP IIb(-/-)ApoE(-/-) mice. Platelet adhesion to the mechanically injured or atherosclerotic vessel wall was monitored by in vivo video fluorescence microscopy. In the presence of GP IIb, vascular injury and early atherosclerosis induced platelet adhesion in the carotid artery (CA). In contrast, platelet adhesion was significantly reduced in the absence of GP IIb integrin (P<0.05). To address the contribution of platelet GP IIb to atheroprogression, we determined atherosclerotic lesion formation in the CA and aortic arch (AA) of GP IIb(+/+)ApoE(-/-) or GP IIb(-/-)ApoE(-/-) mice. Interestingly, the absence of GP IIb attenuated lesion formation in CA and AA, indicating that platelets, via GP IIb, contribute substantially to atherosclerosis. Next, we assessed the implication of GP IIb for cerebral I/R injury. We observed that after occlusion of the middle cerebral artery, the cerebral infarct size was drastically reduced in mice lacking GP IIb compared with wild-types. These findings show for the first time in vivo that GP IIb not only mediates platelet aggregation but also triggers platelet adhesion to exposed extracellular matrices and dysfunctional endothelial cells. In a process strictly involving GP IIb, platelets, which are among the first blood cells to arrive at the scene of endothelial dysfunction, contribute essentially to atherosclerosis and cerebral I/R injury.

  15. Contribution of oxidative stress and prostanoids in endothelial dysfunction induced by chronic fluoxetine treatment.

    PubMed

    Simplicio, Janaina A; Resstel, Leonardo B; Tirapelli, Daniela P C; D'Orléans-Juste, Pedro; Tirapelli, Carlos R

    2015-10-01

    The effects of chronic fluoxetine treatment were investigated on blood pressure and on vascular reactivity in the isolated rat aorta. Male Wistar rats were treated with fluoxetine (10 mg/kg/day) for 21 days. Fluoxetine increased systolic blood pressure. Chronic, but not acute, fluoxetine treatment increased the contractile response induced by phenylephrine, serotonin (5-HT) and KCl in endothelium-intact rat aortas. L-NAME and ODQ did not alter the contraction induced by phenylephrine and 5-HT in aortic rings from fluoxetine-treated rats. Tiron, SC-560 and AH6809 reversed the increase in the contractile response to phenylephrine and 5-HT in aortas from fluoxetine-treated rats. Fluoxetine treatment increased superoxide anion generation (O2(-)) and the expression of cyclooxygenase (COX)-1 in the rat aorta. Reduced expression of nNOS, but not eNOS or iNOS was observed in animals treated with fluoxetine. Fluoxetine treatment increased prostaglandin (PG)F2α levels but did not affect thromboxane (TX)B2 levels in the rat aorta. Reduced hydrogen peroxide (H2O2) levels and increased catalase (CAT) activity were observed after treatment. The major new finding of our study is that chronic fluoxetine treatment induces endothelial dysfunction, which alters vascular responsiveness by a mechanism that involves increased oxidative stress and the generation of a COX-derived vasoconstrictor prostanoid (PGF2α). Moreover, our results evidenced a relation between the period of treatment with fluoxetine and the magnitude in the increment of blood pressure. Finally, our findings raise the possibility that fluoxetine treatment increases the risk for vascular injury, a response that could predisposes to cardiovascular diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Asymmetric Dimethylarginine as a Surrogate Marker of Endothelial Dysfunction and Cardiovascular Risk in Patients with Systemic Rheumatic Diseases

    PubMed Central

    Dimitroulas, Theodoros; Sandoo, Aamer; Kitas, George D.

    2012-01-01

    The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease. PMID:23202900

  17. Impact of HIV and Type 2 diabetes on Gut Microbiota Diversity, Tryptophan Catabolism and Endothelial Dysfunction.

    PubMed

    Hoel, Hedda; Hove-Skovsgaard, Malene; Hov, Johannes R; Gaardbo, Julie Christine; Holm, Kristian; Kummen, Martin; Rudi, Knut; Nwosu, Felix; Valeur, Jørgen; Gelpi, Marco; Seljeflot, Ingebjørg; Ueland, Per Magne; Gerstoft, Jan; Ullum, Henrik; Aukrust, Pål; Nielsen, Susanne Dam; Trøseid, Marius

    2018-04-30

    HIV infection and type 2 diabetes are associated with altered gut microbiota, chronic inflammation, and increased cardiovascular risk. We aimed to investigate the combined effect of these diseases on gut microbiota composition and related metabolites, and a potential relation to endothelial dysfunction in individuals with HIV-infection only (n = 23), diabetes only (n = 16) or both conditions (n = 21), as well as controls (n = 24). Fecal microbiota was analyzed by Illumina sequencing of the 16 S rRNA gene. Markers of endothelial dysfunction (asymmetric dimethylarginine [ADMA]), tryptophan catabolism (kynurenine/tryptophan [KT]-ratio), and inflammation (neopterin) were measured by liquid chromatography-tandem mass spectrometry. The combination of HIV and type 2 diabetes was associated with reduced gut microbiota diversity, increased plasma KT-ratio and neopterin. Microbial genes related to tryptophan metabolism correlated with KT-ratio and low alpha diversity, in particular in HIV-infected with T2D. In multivariate analyses, KT-ratio associated with ADMA (β = 4.58 [95% CI 2.53-6.63], p < 0.001), whereas microbiota composition per se was not associated with endothelial dysfunction. Our results indicate that tryptophan catabolism may be related to endothelial dysfunction, with a potentially detrimental interaction between HIV and diabetes. The potential contribution of gut microbiota and the impact for cardiovascular risk should be further explored in prospective studies powered for clinical end points.

  18. Assessment of Parylene C Thin Films for Heart Valve Tissue Engineering

    PubMed Central

    Marei, Isra; Chester, Adrian; Carubelli, Ivan; Prodromakis, Themistoklis; Trantidou, Tatiana

    2015-01-01

    Background: Scaffolds are a key component of tissue-engineered heart valves (TEHVs). Several approaches had been adopted in the design of scaffolds using both natural and synthetic resources. We have investigated the suitability of parylene C (PC), a vapor deposited polymeric material, for the use as a scaffold in TEHV. Aims: To evaluate the adsorption of extracellular matrix components onto plasma-activated PC and study the biocompatibility of PC by measuring cellular adhesion, viability, apoptosis, and phenotypic expression of valve endothelial and interstitial cells. Finally, the mechanical properties of PC were compared with those of native aortic valve cusp tissue. Methods: PC slides were plasma activated and then coated with gelatin, type I collagen, or fibronectin. Porcine pulmonary valve endothelial and interstitial cells were then grown on plasma oxidized PC with different types of coatings and their adhesion was observed after 20 h of incubation. Cell viability was tested using the MTS assay, and apoptosis was estimated using TUNEL staining. The mechanical properties of PC and valve tissue were measured using a Bose Mechanical Tester. Finally, cell-seeded PC films were exposed to pulsatile pressure and aortic shear stress, respectively, to test their durability in a dynamic environment. Results: Our findings show that collagen and fibronectin could bind to plasma oxidized PC. Both valve endothelial and interstitial cells adhered to protein-coated ECM. PC had a profile of mechanical stiffness and ultimate tensile strength that were comparable with or in excess of those seen in porcine aortic valve cusps. Cells were still attached to PC films after 3 days of exposure to up to 50 mmHg pulsatile pressure or aortic levels of shear stress. Conclusion: PC is a promising candidate for use as a scaffold in tissue engineering heart valves. Additional studies are required to determine both the durability and long-term performance of cell-seeded PC when in a similar hemodynamic environment to that of the aortic valve. PMID:26101808

  19. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a.

    PubMed

    Chen, Zhen; Wen, Liang; Martin, Marcy; Hsu, Chien-Yi; Fang, Longhou; Lin, Feng-Mao; Lin, Ting-Yang; Geary, McKenna J; Geary, Greg G; Zhao, Yongli; Johnson, David A; Chen, Jaw-Wen; Lin, Shing-Jong; Chien, Shu; Huang, Hsien-Da; Miller, Yury I; Huang, Po-Hsun; Shyy, John Y-J

    2015-03-03

    Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction. © 2014 American Heart Association, Inc.

  20. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation.

    PubMed

    Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling

    2013-06-01

    N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.

  2. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a highmore » VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black-Right-Pointing-Pointer Endothelial VEGFR levels are modulated during this response. Black-Right-Pointing-Pointer The cell regulates VEGF-A bioavailability and cell survival. Black-Right-Pointing-Pointer This may partly underlie endothelial dysfunction seen in many pathologies.« less

  3. Inhibitive Effects of Quercetin on Myeloperoxidase-Dependent Hypochlorous Acid Formation and Vascular Endothelial Injury.

    PubMed

    Lu, Naihao; Sui, Yinhua; Tian, Rong; Peng, Yi-Yuan

    2018-05-16

    Myeloperoxidase (MPO) from activated neutrophils plays important roles in multiple human inflammatory diseases by catalyzing the formation of powerful oxidant hypochlorous acid (HOCl). As a major flavonoid in the human diet, quercetin has been suggested to act as antioxidant and anti-inflammatory agent in vitro and in vivo. In this study, we showed that quercetin inhibited MPO-mediated HOCl formation (75.0 ± 6.2% for 10 μM quercetin versus 100 ± 5.2% for control group, P < 0.01) and cytotoxicity to endothelial cells in vitro, while this flavonoid was nontoxic to endothelial cell cultures ( P > 0.05, all cases). Moreover, quercetin inhibited HOCl generation by stimulated neutrophils (a rich source of MPO) and protected endothelial cells from neutrophils-induced injury. Furthermore, quercetin could inhibit HOCl-induced endothelial dysfunction such as loss of cell viability, and decrease of nitric oxide formation in endothelial cells ( P < 0.05, all cases). Consistent with these in vitro data, quercetin attenuated lipopolysaccharide-induced endothelial dysfunction and increase of MPO activity in mouse aortas, while this flavonoid could protect against HOCl-mediated endothelial dysfunction in isolated aortas ( P < 0.05). Therefore, it was proposed that quercetin attenuated endothelial injury in inflammatory vasculature via inhibition of vascular-bound MPO-mediated HOCl formation or scavenging of HOCl. These data indicate that quercetin is a nontoxic inhibitor of MPO activity and MPO/neutrophils-induced cytotoxicity in endothelial cells and may be useful for targeting MPO-dependent vascular disease and inflammation.

  4. Effect of tricuspid regurgitation and the right heart on survival after transcatheter aortic valve replacement: insights from the Placement of Aortic Transcatheter Valves II inoperable cohort.

    PubMed

    Lindman, Brian R; Maniar, Hersh S; Jaber, Wael A; Lerakis, Stamatios; Mack, Michael J; Suri, Rakesh M; Thourani, Vinod H; Babaliaros, Vasilis; Kereiakes, Dean J; Whisenant, Brian; Miller, D Craig; Tuzcu, E Murat; Svensson, Lars G; Xu, Ke; Doshi, Darshan; Leon, Martin B; Zajarias, Alan

    2015-04-01

    Tricuspid regurgitation (TR) and right ventricular (RV) dysfunction adversely affect outcomes in patients with heart failure or mitral valve disease, but their impact on outcomes in patients with aortic stenosis treated with transcatheter aortic valve replacement has not been well characterized. Among 542 patients with symptomatic aortic stenosis treated in the Placement of Aortic Transcatheter Valves (PARTNER) II trial (inoperable cohort) with a Sapien or Sapien XT valve via a transfemoral approach, baseline TR severity, right atrial and RV size and RV function were evaluated by echocardiography according to established guidelines. One-year mortality was 16.9%, 17.2%, 32.6%, and 61.1% for patients with no/trace (n=167), mild (n=205), moderate (n=117), and severe (n=18) TR, respectively (P<0.001). Increasing severity of RV dysfunction as well as right atrial and RV enlargement were also associated with increased mortality (P<0.001). After multivariable adjustment, severe TR (hazard ratio, 3.20; 95% confidence interval, 1.50-6.82; P=0.003) and moderate TR (hazard ratio, 1.60; 95% confidence interval, 1.02-2.52; P=0.042) remained associated with increased mortality as did right atrial and RV enlargement, but not RV dysfunction. There was an interaction between TR and mitral regurgitation severity (P=0.04); the increased hazard of death associated with moderate/severe TR only occurred in those with no/trace/mild mitral regurgitation. In inoperable patients treated with transcatheter aortic valve replacement, moderate or severe TR and right heart enlargement are independently associated with increased 1-year mortality; however, the association between moderate or severe TR and an increased hazard of death was only found in those with minimal mitral regurgitation at baseline. These findings may improve our assessment of anticipated benefit from transcatheter aortic valve replacement and support the need for future studies on TR and the right heart, including whether concomitant treatment of TR in operable but high-risk patients with aortic stenosis is warranted. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01314313. © 2015 American Heart Association, Inc.

  5. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity

    PubMed Central

    Murthy, Shubha; Koval, Olha M.; Ramiro Diaz, Juan M.; Kumar, Santosh; Nuno, Daniel; Scott, Jason A.; Allamargot, Chantal; Zhu, Linda J.; Broadhurst, Kim; Santhana, Velarchana; Kutschke, William J.; Irani, Kaikobad; Lamping, Kathryn G.; Grumbach, Isabella M.

    2017-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions. PMID:29059213

  6. Evaluation of the effects of glimepiride (Amaryl) and repaglinide (novoNorm) on atherosclerosis progression in high cholesterol-fed male rabbits.

    PubMed

    Hadi, Najah R; Al-Amran, Fadhil; Hussein, Mohammad A A; Rezeg, Fadhil A

    2012-01-01

    Atherosclerosis is an inflammatory disease of the blood vessel wall, characterized in early stages by endothelial dysfunction, recruitment and activation of monocyte/macrophages. Glimepiride is one of the third generation sulphonylurea drugs, useful for control of diabetes mellitus type two and it may exert anti inflammatory activity, by induction of nitric oxide production or through selective suppression of the cyclooxygenase pathway. Repaglinide is a new hypoglycemic agent, and a member of the carbamoylmethyl benzoic acid family. Some results from the literature demonstrate that repaglinide has favorable effects on the parameters of antioxidative balance. The objective of the present study was to assess the effect of glimepiride and repaglinide on atherosclerosis via interfering with the inflammatory and oxidative pathways. Twenty four local domestic male rabbits were involved in this study. The animals were randomly divided into four groups; Group I rabbits fed normal chow (oxiod) diet for 10 weeks. Group II rabbits were fed with 1% cholesterol enriched diet. Group III rabbits were fed with 1% cholesterol enriched diet together with Glimepiride (0.1 mg/kg once daily before morning feed). Group IV rabbits were fed with 1% cholesterol enriched diet together with Repaglinide (0.3 mg/kg once daily before morning feed). Blood samples were collected before (0 time) and every two weeks of experimental diets for measurement of serum triglycerides (TG), total cholesterol (TC), High-density lipoprotein cholesterol (HDL-C), high sensitive C - reactive protein (hsCRP), Interleukin - 6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α) levels. At the end of 10 weeks, the aorta was removed for measurement of aortic Malondialdehyde (MDA), reduced glutathione (GSH) and aortic intimal thickness. Glimepiride and repaglinide treatment did show significant effect on lipid parameters compared with induced untreated group (P < 0.05). Also, they significantly reduced the elevation in hsCRP, IL-6, TNF-α, aortic MDA and aortic intimal thickness compared with induced untreated group (P < 0.05), and they helped to restore the aortic GSH levels (P < 0.05). Glimepiride and repaglinide may reduce atherosclerosis progression in hypercholesterolemic rabbits by interfering with the inflammatory and oxidative pathways without affecting lipid parameters.

  7. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro.

    PubMed

    Al-Magableh, Mohammad R; Kemp-Harper, Barbara K; Ng, Hooi H; Miller, Alyson A; Hart, Joanne L

    2014-01-01

    The aim of this study was to examine the ability of H2S, released from NaHS to protect vascular endothelial function under conditions of acute oxidative stress by scavenging superoxide anions (O2(-)) and suppressing vascular superoxide anion production. O2(-) was generated in Krebs' solution by reacting hypoxanthine with xanthine oxidase (Hx-XO) or with the O2(-) generator pyrogallol to model acute oxidative stress in vitro. O2(-) generation was measured by lucigenin-enhanced chemiluminescence. Functional responses in mouse aortic rings were assessed using a small vessel myograph. NaHS scavenged O2(-) in a concentration-dependent manner. Isolated aortic rings exposed to either Hx-XO or pyrogallol displayed significantly attenuated maximum vasorelaxation responses to the endothelium-dependent vasodilator acetylcholine, and significantly reduced NO bioavailability, which was completely reversed if vessels were pre-incubated with NaHS (100 μM). NADPH-stimulated aortic O2(-) production was significantly attenuated by the NADPH oxidase inhibitor diphenyl iodonium. Prior treatment of vessels with NaHS (100 nM-100 μM; 30 min) inhibited NADPH-stimulated aortic O2(-) production in a concentration-dependent manner. This effect persisted when NaHS was washed out prior to measuring NADPH-stimulated O2(-) production. These data show for the first time that NaHS directly scavenges O2(-) and suppresses vascular NADPH oxidase-derived O2(-) production in vitro. Furthermore, these properties protect endothelial function and NO bioavailability in an in vitro model of acute oxidative stress. These results suggest that H2S can elicit vasoprotection by both scavenging O2(-) and by reducing vascular NADPH oxidase-derived O2(-) production.

  8. Left ventricular mass index as a prognostic factor in patients with severe aortic stenosis and ventricular dysfunction.

    PubMed

    Fuster, Rafael García; Montero Argudo, José A; Albarova, Oscar Gil; Hornero Sos, Fernando; Cánovas López, Sergio; Bueno Codoñer, María; Buendía Miñano, José A; Rodríguez Albarran, Ignacio

    2005-06-01

    Ventricular dysfunction and high hypertrophy may influence surgical outcome in aortic stenosis. Our aim was to determine whether an excessive left ventricular mass index (LVMI) discriminates different risk profiles in aortic stenosis with low ventricular ejection fraction (LVEF). Three hundred and thirty-nine patients with severe aortic stenosis underwent valve replacement (Mar-1994 and Nov-2001). LVMI values over the superior quartile were considered increased. Mortality models were constructed in global and LVEF

  9. HSP27 phosphorylation protects against endothelial barrier dysfunction under burn serum challenge.

    PubMed

    Sun, Huan-bo; Ren, Xi; Liu, Jie; Guo, Xiao-wei; Jiang, Xu-pin; Zhang, Dong-xia; Huang, Yue-sheng; Zhang, Jia-ping

    2015-07-31

    F-actin rearrangement is an early event in burn-induced endothelial barrier dysfunction. HSP27, a target of p38 MAPK/MK2 pathway, plays an important role in actin dynamics through phosphorylation. The question of whether HSP27 participates in burn-related endothelial barrier dysfunction has not been identified yet. Here, we showed that burn serum induced a temporal appearance of central F-actin stress fibers followed by a formation of irregular dense peripheral F-actin in pulmonary endothelial monolayer, concomitant with a transient increase of HSP27 phosphorylation that conflicted with the persistent activation of p38 MAPK/MK2 unexpectedly. The appearance of F-actin stress fibers and transient increase of HSP27 phosphorylation occurred prior to the burn serum-induced endothelial hyperpermeability. Overexpressing phospho-mimicking HSP27 (HSP27(Asp)) reversed the burn serum-induced peripheral F-actin rearrangement with the augmentation of central F-actin stress fibers, and more importantly, attenuated the burn serum-induced endothelial hyperpermeability; such effects were not observed by HSP27(Ala), a non-phosphorylated mutant of HSP27. HSP27(Asp) overexpression also rendered the monolayer more resistant to barrier disruption caused by Cytochalasin D, a chemical reagent that depolymerizes F-actin specifically. Further study showed that phosphatases and sumoylation-inhibited MK2 activity contributed to the blunting of HSP27 phosphorylation during the burn serum-induced endothelial hyperpermeability. Our study identifies HSP27 phosphorylation as a protective response against burn serum-induced endothelial barrier dysfunction, and suggests that targeting HSP27 wound be a promising therapeutic strategy in ameliorating burn-induced lung edema and shock development. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  11. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  12. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John

    2016-11-01

    The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.

  13. Vascular endothelium summary statement II: Cardiovascular disease prevention and control.

    PubMed

    Mensah, George A; Ryan, Una S; Hooper, W Craig; Engelgau, Michael M; Callow, Allan D; Kapuku, Gaston K; Mantovani, Alberto

    2007-05-01

    The prevention and control of cardiovascular disease (CVD), principally ischemic heart disease and stroke, are a major clinical and public health challenge. Worldwide, CVD accounts for substantial morbidity and mortality. The major modifiable CVD risk factors are known and all of them cause endothelial activation and dysfunction. Preventing and controlling the established risk factors are associated with preserved endothelial function and reduced risk of CVD. Research advances that improve our understanding of strategies to preserve endothelial function or make the endothelial cells resilient to environmental insults may help improve our preventive interventions. This summary statement addresses the current state of the science with respect to endothelial dysfunction and CVD pathogenesis, diagnostic evaluation, and suggested strategies for public health practice and research.

  14. Dehydrodiconiferyl alcohol suppresses monocyte adhesion to endothelial cells by attenuation of JNK signaling pathway.

    PubMed

    Tsuneyoshi, Tadamitsu; Kanamori, Yuta; Matsutomo, Toshiaki; Morihara, Naoaki

    2015-09-25

    Several clinical studies have shown that the intake of aged garlic extract improves endothelial dysfunction. Lignan compounds, (+)-(2S,3R)-dehydrodiconiferyl alcohol (DDC) and (-)-(2R,3S)-dihydrodehydrodiconiferyl alcohol (DDDC), have been isolated as antioxidants in aged garlic extract. There is evidence showing the importance of oxidative stress in endothelial dysfunction. In the present study, we examined whether DDC and DDDC enhance endothelial cell function in vitro. Cell adhesion assay was performed using THP-1 monocyte and human umbilical vein endothelial cells (HUVECs) which were activated by lipopolysaccharide (LPS) or advanced glycation end products (AGEs)-BSA. Cellular ELISA method was used for the evaluation of vascular cell adhesion molecule 1 (VCAM-1) expression on HUVECs. DDC and DDDC suppressed the adhesion of THP-1 to HUVECs which was activated by LPS or AGEs-BSA. DDC and DDDC also inhibited VCAM-1 expression induced by LPS or AGEs-BSA, but DDDC was less effective than DDC. In addition, the inhibitory effect of DDC on VCAM-1 expression involved suppressing JNK/c-Jun pathway rather than NF-κB pathway. DDC has an inhibitory effect on VCAM-1 expression via JNK pathway in endothelial cells and therefore may serve as a novel pharmacological agent to improve endothelial dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Endothelial dysfunction and negative emotions in adolescent girls.

    PubMed

    Pajer, Kathleen; Hoffman, Robert; Gardner, William; Chang, Chien-Ni; Boley, David; Wang, Wei

    2016-05-01

    Endothelial dysfunction predicts adult cardiovascular disorder and may be associated with negative emotions in adolescents. This study was conducted to determine if hopelessness, hostility, and depressive, anxiety, or conduct disorders were associated with compromised endothelial function and whether those associations were mediated by health risk behaviors. Endothelial function, assessed through brachial artery reactive hyperemia, was measured in a psychopathology enriched sample of 60 15-18-year-old girls. The correlations between hopelessness, hostility, and depressive, anxiety, or conduct disorders and the percent change in forearm vascular resistance (PCFVR) were measured. Possible mediation effects of health risk behaviors were tested. Hopelessness was negatively associated with PCFVR, controlling for race and body mass index. Conduct disorder without any anxiety disorder was associated with better endothelial function. The other negative emotions were not associated with PCFVR. Risky health behaviors were associated with conduct disorder and hopelessness, but not with PCFVR, so there was no evidence of mediation. The main finding was that hopelessness in adolescent girls was associated with endothelial dysfunction. This may indicate that when present, hopelessness places a girl at risk for later cardiovascular disease, whether she has a psychiatric disorder or not. Possible mechanisms for this finding are examined and the surprising finding that conduct disorder is associated with better endothelial function is also discussed. Suggestions for future research are presented.

  16. Febuxostat improves endothelial function in hemodialysis patients with hyperuricemia: A randomized controlled study.

    PubMed

    Tsuruta, Yuki; Kikuchi, Kan; Tsuruta, Yukio; Sasaki, Yuko; Moriyama, Takahito; Itabashi, Mitsuyo; Takei, Takashi; Uchida, Keiko; Akiba, Takashi; Tsuchiya, Ken; Nitta, Kosaku

    2015-10-01

    Endothelial dysfunction is often found in both hyperuricemia and hemodialysis patients. Recent studies have shown that treating hyperuricemia with allopurinol improves endothelial dysfunction. This study is performed to assess the effect of febuxostat on endothelial dysfunction in hemodialysis patients with hyperuricemia. We randomly assigned 53 hemodialysis patients with hyperuricemia to a febuxostat (10 mg daily) group and a control group and measured flow-mediated dilation, serum uric acid (UA) levels, systolic and diastolic blood pressure, malondialdehyde-modified low-density lipoprotein (MDA-LDL), and highly sensitive C-reactive protein (hsCRP) at baseline and at the end of a 4-week study period. Flow-mediated dilation increased from 5.3% ± 2.4% to 8.9% ± 3.6% in the febuxostat group but did not change significantly in the control group. Treatment with febuxostat resulted in a significant decrease in serum UA level and a significant decrease in MDA-LDL compared with baseline, but no significant difference was observed in hsCRP level or blood pressure. No significant differences were observed in the control group. Febuxostat improved endothelial dysfunction and reduced serum UA levels and oxidative stress in hemodialysis patients with hyperuricemia. © 2015 International Society for Hemodialysis.

  17. Allopurinol improves endothelial dysfunction in chronic heart failure.

    PubMed

    Farquharson, Colin A J; Butler, Robert; Hill, Alexander; Belch, Jill J F; Struthers, Allan D

    2002-07-09

    Increased oxidative stress in chronic heart failure is thought to contribute to endothelial dysfunction. Xanthine oxidase produces oxidative stress and therefore we examined whether allopurinol improved endothelial dysfunction in chronic heart failure. We performed a randomized, placebo-controlled, double-blind crossover study on 11 patients with New York Heart Association class II-III chronic heart failure, comparing 300 mg allopurinol daily (1 month) versus placebo. Endothelial function was assessed by standard forearm venous occlusion plethysmography with acetylcholine, nitroprusside, and verapamil. Plasma malondialdehyde levels were also compared to assess significant changes in oxidative stress. Allopurinol significantly increased the forearm blood flow response to acetylcholine (percentage change in forearm blood flow [mean+/-SEM]: 181+/-19% versus 120+/-22% allopurinol versus placebo; P=0.003). There were no significant differences in the forearm blood flow changes between the placebo and allopurinol treatment arms with regard to sodium nitroprusside or verapamil. Plasma malondialdehyde was significantly reduced with allopurinol treatment (346+/-128 nmol/L versus 461+/-101 nmol/L, allopurinol versus placebo; P=0.03), consistent with reduced oxidative stress with allopurinol therapy. We have shown that allopurinol improves endothelial dysfunction in chronic heart failure. This raises the distinct possibility that allopurinol might reduce cardiovascular events and even improve exercise capacity in chronic heart failure.

  18. Anti-Inflammatory Activity of Marine Ovothiol A in an In Vitro Model of Endothelial Dysfunction Induced by Hyperglycemia.

    PubMed

    Castellano, Immacolata; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Pipino, Caterina; Formoso, Gloria; Napolitano, Alessandra; Palumbo, Anna; Pandolfi, Assunta

    2018-01-01

    Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor- α -stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.

  19. Acute failure of a St. Jude's prosthetic aortic valve: large pannus formation masked by a small thrombus.

    PubMed

    Hurwitz, Seth Eric; Waxman, Daniel; Hecht, Susan

    2009-09-01

    Pannus formation and valve thrombus can cause prosthetic valve failure. The authors report the case of a 50-year-old woman who presented to the emergency room with decompensated heart failure secondary to mechanical valve dysfunction. On two-dimensional and transesophageal echocardiography, the patient had severe aortic stenosis and regurgitation. A thrombus seen on the valve was felt to be the etiology of her prosthetic valve failure. She underwent emergent cardiac surgery for aortic valve replacement. Pathology revealed that although a small thrombus was present, extensive pannus was the underlying mechanism of valve dysfunction. Differentiation between pannus and thrombus may have important clinical implications, but this case illustrates that distinguishing between these entities by echocardiographic and clinical criteria may not be possible.

  20. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus.

    PubMed

    Mikołajczyk, T P; Osmenda, G; Batko, B; Wilk, G; Krezelok, M; Skiba, D; Sliwa, T; Pryjma, J R; Guzik, T J

    2016-01-01

    Systemic lupus erythematosus (SLE) is characterized by increased cardiovascular morbidity and mortality. SLE patients have increased prevalence of subclinical atherosclerosis, although the mechanisms of this observation remain unclear. Considering the emerging role of monocytes in atherosclerosis, we aimed to investigate the relationship between subclinical atherosclerosis, endothelial dysfunction and the phenotype of peripheral blood monocytes in SLE patients. We characterized the phenotype of monocyte subsets defined by the expression of CD14 and CD16 in 42 patients with SLE and 42 non-SLE controls. Using ultrasonography, intima-media thickness (IMT) of carotid arteries and brachial artery flow-mediated dilation (FMD) as well as nitroglycerin-induced dilation (NMD) were assessed. Patients with SLE had significantly, but only modestly, increased IMT when compared with non-SLE controls (median (25th/75th percentile) 0.65 (0.60/0.71) mm vs 0.60 (0.56/0.68) mm; p < 0.05). Importantly, in spite of early atherosclerotic complications in the studied SLE group, marked endothelial dysfunction was observed. CD14dimCD16+proinflammatory cell subpopulation was positively correlated with IMT in SLE patients. This phenomenon was not observed in control individuals. Interestingly, endothelial dysfunction assessed by FMD was not correlated with any of the studied monocyte subsets. Our observations suggest that CD14dimCD16+monocytes are associated with subclinical atherosclerosis in SLE, although the mechanism appears to be independent of endothelial dysfunction. © The Author(s) 2015.

  1. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Duffy, S J; Keaney , J F; Holbrook, M; Gokce, N; Swerdloff, P L; Frei, B; Vita, J A

    2001-07-10

    Epidemiological studies suggest that tea consumption decreases cardiovascular risk, but the mechanisms of benefit remain undefined. Endothelial dysfunction has been associated with coronary artery disease and increased oxidative stress. Some antioxidants have been shown to reverse endothelial dysfunction, and tea contains antioxidant flavonoids. Methods and Results-- To test the hypothesis that tea consumption will reverse endothelial dysfunction, we randomized 66 patients with proven coronary artery disease to consume black tea and water in a crossover design. Short-term effects were examined 2 hours after consumption of 450 mL tea or water. Long-term effects were examined after consumption of 900 mL tea or water daily for 4 weeks. Vasomotor function of the brachial artery was examined at baseline and after each intervention with vascular ultrasound. Fifty patients completed the protocol and had technically suitable ultrasound measurements. Both short- and long-term tea consumption improved endothelium- dependent flow-mediated dilation of the brachial artery, whereas consumption of water had no effect (P<0.001 by repeated-measures ANOVA). Tea consumption had no effect on endothelium-independent nitroglycerin-induced dilation. An equivalent oral dose of caffeine (200 mg) had no short-term effect on flow-mediated dilation. Plasma flavonoids increased after short- and long-term tea consumption. Short- and long-term black tea consumption reverses endothelial vasomotor dysfunction in patients with coronary artery disease. This finding may partly explain the association between tea intake and decreased cardiovascular disease events.

  2. Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study.

    PubMed

    Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M

    2016-12-01

    Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined. We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2%; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid-femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid-radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm 5 ; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal. In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. © 2016 American Heart Association, Inc.

  3. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    PubMed

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  4. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity.

    PubMed

    Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie

    2016-11-01

    The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.

  5. Descemet Stripping Automated Endothelial Keratoplasty for Endothelial Dysfunction in Xeroderma Pigmentosum: A Clinicopathological Correlation and Review of Literature.

    PubMed

    Vira, Divya; Fernandes, Merle; Mittal, Ruchi

    2016-07-01

    Xeroderma pigmentosum (XP) mainly affects the ocular surface; however, endothelial damage may also occur. We would like to report changes in the endothelial-Descemet layer and review the literature on similar findings in patients with XP, including the role of Descemet stripping automated endothelial keratoplasty (DSAEK) in the management of a 21-year-old man who presented with nonresolving corneal edema in the right eye after excision biopsy for conjunctival intraepithelial neoplasia. His best-corrected visual acuity (BCVA) was 20/200 in the right eye and 20/20 in the left eye. On general examination, there was patchy hyperpigmentation of the exposed areas of skin suggestive of XP. On examination of the right eye, there was stromal edema involving the exposed half of cornea. The left eye appeared normal. Pachymetry readings were 860 and 600 μm in the right and left eye, respectively. Descemet stripping automated endothelial keratoplasty was performed for endothelial dysfunction and the stripped endothelium, and Descemet membrane (DM) was sent for histopathologic evaluation. Postoperatively, the donor lenticule was well apposed and the overlying stromal edema resolved. The patient achieved a BCVA of 20/30 in the right eye without progression of corneal scarring at 1-year follow-up. In the meanwhile, however, the left eye developed corneal edema. Histopathology revealed gross attenuation of endothelial cells with uniform thickness of the DM. Corneal endothelial dysfunction in XP is amenable to treatment with DSAEK.

  6. Testosterone Deficiency Causes Endothelial Dysfunction via Elevation of Asymmetric Dimethylarginine and Oxidative Stress in Castrated Rats.

    PubMed

    Kataoka, Tomoya; Hotta, Yuji; Maeda, Yasuhiro; Kimura, Kazunori

    2017-12-01

    Testosterone is believed to mediate the penile erectile response by producing adequate nitric oxide; therefore, testosterone deficiency results in erectile dysfunction through decreased nitric oxide bioavailability. However, the mechanisms underlying endothelial dysfunction in testosterone deficiency remain unclear. To investigate the mechanism of endothelial dysfunction in a rat model of testosterone deficiency. Rats were distributed into 3 groups: castrated (Cast), castrated and supplemented with testosterone (Cast + T), and sham (Sham). In the Cast + T group, castrated rats were treated daily with subcutaneous testosterone (3 mg/kg daily) for 4 weeks; Sham and Cast rats received only the vehicle. Erectile function using intracavernosal pressure and mean arterial pressure measurements after electrical stimulation of the cavernous nerve, endothelial function using isometric tension, asymmetric dimethylarginine (ADMA) levels using ultra-performance liquid chromatography and tandem mass spectrometry, and inflammatory biomarker expression were performed 4 weeks after the operation. In the Cast group, the ratio of intracavernosal pressure to mean arterial pressure significantly decreased, acetylcholine-induced relaxation was lower, and serum ADMA, oxidative stress, and inflammation biomarker levels were significantly increased (P < .01). Testosterone injection significantly improved each of these parameters (P < .01). The present results provide scientific evidence of the effect of testosterone deficiency on erectile function and the effect of testosterone replacement therapy. This study provides evidence of the influence of testosterone deficiency on endothelial function by investigating ADMA and oxidative stress. A major limitation of this study is the lack of a direct link of increased ADMA by oxidative stress to inflammation. Testosterone deficiency increased not only ADMA levels but also oxidative stress and inflammation in castrated rats, which can cause damage to the corpus cavernosum, resulting in erectile dysfunction. Kataoka T, Hotta Y, Maeda Y, Kimura K. Testosterone Deficiency Causes Endothelial Dysfunction via Elevation of Asymmetric Dimethylarginine and Oxidative Stress in Castrated Rats. J Sex Med 2017;14:1540-1548. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  7. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors for the disease and are older than 50 years; (2) who have been diagnosed with unilateral age-related macular degeneration in order to prevent damage of the contralateral eye; (3) who have bilateral age-related macular degeneration in order to avert deterioration and in the hope of a potential improvement. However, randomised prospective clinical trials are still needed to elucidate the potential role of these drug treatments in the prevention and treatment of age-related macular degeneration.

  8. Tissue Vibration Induces Carotid Artery Endothelial Dysfunction: A Mechanism Linking Snoring and Carotid Atherosclerosis?

    PubMed Central

    Cho, Jin-Gun; Witting, Paul K.; Verma, Manisha; Wu, Ben J.; Shanu, Anu; Kairaitis, Kristina; Amis, Terence C.; Wheatley, John R.

    2011-01-01

    Study Objectives: We have previously identified heavy snoring as an independent risk factor for carotid atherosclerosis. In order to explore the hypothesis that snoring-associated vibration of the carotid artery induces endothelial dysfunction (an established atherogenic precursor), we utilized an animal model to examine direct effects of peri-carotid tissue vibration on carotid artery endothelial function and structure. Design: In supine anesthetized, ventilated rabbits, the right carotid artery (RCA) was directly exposed to vibrations for 6 h (peak frequency 60 Hz, energy matched to that of induced snoring in rabbits). Similarly instrumented unvibrated rabbits served as controls. Features of OSA such as hypoxemia, large intra-pleural swings and blood pressure volatility were prevented. Carotid endothelial function was then examined: (1) biochemically by measurement of tissue cyclic guanosine monophosphate (cGMP) to acetylcholine (ACh) and sodium nitroprusside (SNP); and (2) functionally by monitoring vessel relaxation with acetylcholine in a myobath. Measurement and Results: Vessel cGMP after stimulation with ACh was reduced in vibrated RCA compared with unvibrated (control) arteries in a vibration energy dose-dependent manner. Vibrated RCA also showed decreased vasorelaxation to ACh compared with control arteries. Notably, after addition of SNP (nitric oxide donor), cGMP levels did not differ between vibrated and control arteries, thereby isolating vibration-induced dysfunction to the endothelium alone. This dysfunction occurred in the presence of a morphologically intact endothelium without increased apoptosis. Conclusions: Carotid arteries subjected to 6 h of continuous peri-carotid tissue vibration displayed endothelial dysfunction, suggesting a direct plausible mechanism linking heavy snoring to the development of carotid atherosclerosis. Citation: Cho JG; Witting PK; Verma M; Wu BJ; Shanu A; Kairaitis K; Amis TC; Wheatley JR. Tissue vibration induces carotid artery endothelial dysfunction: a mechanism linking snoring and carotid atherosclerosis?. SLEEP 2011;34(6):751-757. PMID:21629363

  9. Alcohol and red wine consumption, but not fruit, vegetables, fish or dairy products, are associated with less endothelial dysfunction and less low-grade inflammation: the Hoorn Study.

    PubMed

    van Bussel, B C T; Henry, R M A; Schalkwijk, C G; Dekker, J M; Nijpels, G; Feskens, E J M; Stehouwer, C D A

    2018-06-01

    Endothelial dysfunction and low-grade inflammation are key phenomena in the pathobiology of cardiovascular disease (CVD). Their dietary modification might explain the observed reduction in CVD that has been associated with a healthy diet rich in fruit, vegetables and fish, low in dairy products and with moderate alcohol and red wine consumption. We investigated the associations between the above food groups and endothelial dysfunction and low-grade inflammation in a population-based cohort of Dutch elderly individuals. Diet was measured by food frequency questionnaire (n = 801; women = 399; age 68.5 ± 7.2 years). Endothelial dysfunction was determined (1) by combining von Willebrand factor, and soluble intercellular adhesion molecule 1 (sICAM-1), vascular cell adhesion molecule 1, endothelial selectin and thrombomodulin, using Z-scores, into a biomarker score and (2) by flow-mediated vasodilation (FMD), and low-grade inflammation by combining C-reactive protein, serum amyloid A, interleukin 6, interleukin 8, tumour necrosis factor α and sICAM-1 into a biomarker score, with smaller FMD and higher scores representing more dysfunction and inflammation, respectively. We used linear regression analyses to adjust associations for sex, age, energy, glucose metabolism, body mass index, smoking, prior CVD, educational level, physical activity and each of the other food groups. Moderate [β (95% CI) -0.13 (-0.33; 0.07)] and high [-0.22 (-0.45; -0.003)] alcohol consumption, and red wine [-0.16 (-0.30; -0.01)] consumption, but none of the other food groups, were associated with a lower endothelial dysfunction biomarker score and a greater FMD. The associations for FMD were, however, not statistically significant. Only red wine consumption was associated with a lower low-grade inflammation biomarker score [-0.18 (-0.33; -0.04)]. Alcohol and red wine consumption may favourably influence processes involved in atherothrombosis.

  10. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production

    PubMed Central

    Martin, Sophie; Andriambeloson, Emile; Takeda, Ken; Andriantsitohaina, Ramaroson

    2002-01-01

    The present study investigates the mechanisms by which polyphenolic compounds from red wine elicit Ca2+ mobilization in bovine aortic endothelial cells (BAECs). Two polyphenol-containing red wine extracts, red wine polyphenolic compounds (RWPC) and Provinols™, and delphinidin, an anthocyanin were used. RWPC stimulated a Ca2+-dependent release of nitric oxide (NO) from BAECs accounting for the relaxation of endothelium-denuded rat aortic rings as shown by cascade bioassay. RWPC, Provinols™ and delphinidin increased cytosolic free calcium ([Ca2+]i), by releasing Ca2+ from intracellular stores and by increasing Ca2+ entry. The RWPC-induced increase in [Ca2+]i was decreased by exposure to ryanodine (30 μM), whereas Provinols™ and delphinidin-induced increases in [Ca2+]i were decreased by bradykinin (0.1 μM) and thapsigargin (1 μM) pre-treatment. RWPC, Provinols™ and delphinidin-induced increases in [Ca2+]i were sensitive to inhibitors of phospholipase C (neomycin, 3 mM; U73122, 3 μM) and tyrosine kinase (herbimycin A, 1 μM). RWPC, Provinols™ and delphinidin induced herbimycin A (1 μM)-sensitive tyrosine phosphorylation of several intracellular proteins. Provinols™ released Ca2+ via both a cholera (CTX) and pertussis toxins (PTX)-sensitive pathway, whereas delphinidin released Ca2+ only via a PTX-sensitive mechanism. Our data contribute in defining the mechanisms of endothelial NO production caused by wine polyphenols including the increase in [Ca2+]i and the activation of tyrosine kinases. Furthermore, RWPC, Provinols™ and delphinidin display differences in the process leading to [Ca2+]i increases in endothelial cells illustrating multiple cellular targets of natural dietary polyphenolic compounds. PMID:11906973

  11. Protective effects of dark chocolate on endothelial function and diabetes.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio

    2013-11-01

    Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.

  12. Impact of pannus formation on hemodynamic dysfunction of prosthetic aortic valve: pannus extent and its relationship to prosthetic valve motion and degree of stenosis.

    PubMed

    Koo, Hyun Jung; Ha, Hojin; Kang, Joon-Won; Kim, Jeong A; Song, Jae-Kwan; Kim, Hwa Jung; Lim, Tae-Hwan; Yang, Dong Hyun

    2018-02-19

    Although pannus is an important cause of prosthetic valve dysfunction, the minimum pannus size that can induce hemodynamic dysfunction has not yet been determined. This study investigated the correlation between the limitation of motion (LOM) of the prosthetic valve and pannus extent and determined the pannus extent that could induce severe aortic stenosis. This study included 49 patients who underwent mechanical aortic valve replacement (AVR) and showed pannus on cardiac computed tomography (CT). Pannus width, ratio of pannus width to valve diameter, pannus area, effective orifice area, encroachment ratio by pannus, pannus involvement angle and percent LOM of mechanical valves were evaluated on CT. Transvalvular peak velocity (TPV) and transvalvular pressure gradient (TPG) were measured by transesophageal echocardiography to determine the degree of aortic stenosis. The relationship between percent LOM of the prosthetic valve and pannus extent and the cut-off of pannus extent required to induce severe aortic stenosis were evaluated. The mean interval between AVR and pannus formation was 11 years and was longer in patients with than without severe aortic stenosis (14.0 vs. 7.3 years). On CT, the percent LOM of the prosthetic valve was significantly associated with the extent of pannus only in patients with pannus involvement angle > 180° (r = 0.55-0.68, P < 0.01). Pannus width, effective orifice area, and encroachment ratio were significantly associated with increased TPV and TPG (r = 0.51-0.62, P < 0.01). Pannus width > 3.5 mm, pannus width/valve inner diameter > 0.15, and encroachment ratio > 0.14 were significantly associated with severe aortic stenosis (TPV > 4 m/s; mean TPG ≥ 35 mmHg), with c-indices of 0.74-079 (P < 0.005). CT-derived pannus extent parameters are good indicators of significant hemodynamic changes with increased TPV and mean TPG.

  13. Acetone fraction from Sechium edule (Jacq.) S.w. edible roots exhibits anti-endothelial dysfunction activity.

    PubMed

    Trejo-Moreno, Celeste; Castro-Martínez, Gabriela; Méndez-Martínez, Marisol; Jiménez-Ferrer, Jesús Enrique; Pedraza-Chaverri, José; Arrellín, Gerardo; Zamilpa, Alejandro; Medina-Campos, Omar Noel; Lombardo-Earl, Galia; Barrita-Cruz, Gerardo Joel; Hernández, Beatriz; Ramírez, Christian Carlos; Santana, María Angélica; Fragoso, Gladis; Rosas, Gabriela

    2018-06-28

    A recent ethnomedical survey on medicinal plants grown in Mexico revealed that Sechium edule (Jacq.) Sw. (Cucurbitaceae) is one of the most valued plant species to treat cardiovascular diseases, including hypertension. Fruits, young leaves, buds, stems, and tuberous roots of the plant are edible. Considering that endothelial dysfunction induced by Angiotensin II plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage, and that S. edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity, its capability to control endothelial dysfunction was also assessed. To assess in vivo the anti-endothelial dysfunction activity of the acetone fraction (rSe-ACE) of the hydroalcoholic extract from S. edule roots. Endothelial dysfunction was induced in female C57BL/6 J mice by a daily intraperitoneal injection of angiotensin II for 10 weeks. Either rSe-ACE or losartan (as a control) were co-administered with angiotensin II for the same period. Blood pressure was measured at weeks 0, 5, and 10. Kidney extracts were prepared to determine IL1β, IL4, IL6, IL10, IL17, IFNγ, TNFα, and TGFβ levels by ELISA, along with the prooxidative status as assessed by the activity of antioxidant enzymes. The expression of ICAM-1 was evaluated by immunohistochemistry in kidney histological sections. Kidney and hepatic damage, as well as vascular tissue remodeling, were studied. The rSe-ACE fraction administered at a dose of 10 mg/kg was able to control hypertension, as well as the prooxidative and proinflammatory status in kidney as efficiently as losartan, returning mice to normotensive levels. Additionally, the fraction was more efficient than losartan to prevent liver and kidney damage. Phytochemical characterization identified cinnamic acid as a major compound, and linoleic, palmitic, and myristic acids as the most abundant non-polar components in the mixture, previously reported to aid in the control of hypertension, inflammation, and oxidative stress, three important components of endothelial dysfunction. this study demonstrated that rSe-ACE has anti-endothelial dysfunction activity in an experimental model and highlights the role of cinnamic acid and fatty acids in the observed effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca2+-Activated Potassium Channel-Nitric Oxide Mediated Mechanism.

    PubMed

    Olver, T Dylan; Hiemstra, Jessica A; Edwards, Jenna C; Schachtman, Todd R; Heesch, Cheryl M; Fadel, Paul J; Laughlin, M Harold; Emter, Craig A

    2017-10-31

    Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups ( P <0.05), with significant impairments in the AB-OVX group ( P <0.05). Resting carotid artery β stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group ( P <0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups ( P <0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group ( P <0.05), and vasodilation to the Ca 2+ -activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups ( P <0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca 2+ -activated potassium channel α-subunit protein was increased in AB groups ( P <0.05). Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca 2+ -activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease

    PubMed Central

    Peuler, Jacob D.; Scotti, Melissa-Ann L.; Phelps, Laura E.; McNeal, Neal; Grippo, Angela J.

    2012-01-01

    Humans with depression show impaired endothelium-dependent vasodilation, one recent demonstration of which was in the form of a reduced acetylcholine (ACh)-induced relaxation of adrenergically-precontracted small arteries biopsied from older depressed patients. Results from such uses of ACh in general have been validated as the most predictive marker of endothelium-related cardiovascular diseases. Accordingly, we examined vascular reactivity to ACh in the socially isolated prairie vole, a new animal model relevant to human depression and cardiovascular disease. Thoracic aortas were carefully dissected from female prairie voles after one month of social isolation (versus pairing with a sibling). Only aortas that contracted to the adrenergic agent phenylephrine (PE) and then relaxed to ACh were evaluated. Among those, ACh-induced relaxations were significantly reduced by social isolation (p<0.05), with maximum relaxation reaching only 30% (of PE-induced precontraction) compared to 47% in aortas from paired (control) animals. Experimental removal of the endothelium from an additional set of aortic tissues abolished all ACh relaxations including that difference. In these same tissues, maximally-effective concentrations of the nitric oxide-donor nitroprusside still completely relaxed all PE-induced precontraction of the endothelial-free smooth muscle, and to the same degree in tissues from isolated versus paired animals. Finally, in the absence of PE-induced precontraction ACh did not relax but rather contracted aortic tissues, and to a significantly greater extent in tissues from socially isolated animals if the endothelium was intact (p<0.05). Thus, social isolation in the prairie vole may 1) impair normal release of protective anti-atherosclerotic factors like nitric oxide from the vascular endothelium (without altering the inherent responsiveness of the vascular smooth muscle to such factors) and 2) cause the endothelium to release contracting factors. To our knowledge this is the first demonstration of this phenomenon in an animal model of depression induced solely by social isolation. These findings have implications for understanding mechanisms involved in depression and cardiovascular disease. PMID:22469565

  16. G Protein-Coupled Estrogen Receptor-1 Is Involved in the Protective Effect of Protocatechuic Aldehyde against Endothelial Dysfunction

    PubMed Central

    Kong, Byung Soo; Cho, Yoon Hee; Lee, Eun Jig

    2014-01-01

    Protocatechuic aldehyde (PCA), a phenolic aldehyde, has therapeutic potency against atherosclerosis. Although PCA is known to inhibit the migration and proliferation of vascular smooth muscle cells and intravascular thrombosis, the underlying mechanism remains unclear. In this study, we investigated the protective effect of PCA on endothelial cells and injured vessels in vivo in association with G protein-coupled estrogen receptor-1 (GPER-1). With PCA treatment, cAMP production was increased in HUVECs, while GPER-1 expression was increased in both HUVECs and a rat aortic explant. PCA and G1, a GPER-1 agonist, reduced H2O2 stimulated ROS production in HUVECs, whereas, G15, a GPER-1 antagonist, increased ROS production further. These elevations were inhibited by co-treatment with PCA or G1. TNFα stimulated the expression of inflammatory markers (VCAM-1, ICAM-1 and CD40), phospho-NF-κB, phospho-p38 and HIF-1α; however, co-treatment with PCA or G1 down-regulated this expression significantly. Likewise, increased expression of inflammatory markers by treatment with G15 was inhibited by co-treatment with PCA. In re-endothelization, aortic ring sprouting and neointima formation assay, rat aortas treated with PCA or G1 showed accelerated re-endothelization of the endothelium and reduced sprouting and neointima formation. However, aortas from G15-treated rats showed decelerated re-endothelization and increased sprouting and neointima formation. The effects of G15 were restored by co-treatment with PCA or G1. Also, in the endothelia of these aortas, PCA and G1 increased CD31 and GPER-1 and decreased VCAM-1 and CD40 expression. In contrast, the opposite effect was observed in G15-treated endothelium. These results suggest that GPER-1 might mediate the protective effect of PCA on the endothelium. PMID:25411835

  17. G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction.

    PubMed

    Kong, Byung Soo; Cho, Yoon Hee; Lee, Eun Jig

    2014-01-01

    Protocatechuic aldehyde (PCA), a phenolic aldehyde, has therapeutic potency against atherosclerosis. Although PCA is known to inhibit the migration and proliferation of vascular smooth muscle cells and intravascular thrombosis, the underlying mechanism remains unclear. In this study, we investigated the protective effect of PCA on endothelial cells and injured vessels in vivo in association with G protein-coupled estrogen receptor-1 (GPER-1). With PCA treatment, cAMP production was increased in HUVECs, while GPER-1 expression was increased in both HUVECs and a rat aortic explant. PCA and G1, a GPER-1 agonist, reduced H2O2 stimulated ROS production in HUVECs, whereas, G15, a GPER-1 antagonist, increased ROS production further. These elevations were inhibited by co-treatment with PCA or G1. TNFα stimulated the expression of inflammatory markers (VCAM-1, ICAM-1 and CD40), phospho-NF-κB, phospho-p38 and HIF-1α; however, co-treatment with PCA or G1 down-regulated this expression significantly. Likewise, increased expression of inflammatory markers by treatment with G15 was inhibited by co-treatment with PCA. In re-endothelization, aortic ring sprouting and neointima formation assay, rat aortas treated with PCA or G1 showed accelerated re-endothelization of the endothelium and reduced sprouting and neointima formation. However, aortas from G15-treated rats showed decelerated re-endothelization and increased sprouting and neointima formation. The effects of G15 were restored by co-treatment with PCA or G1. Also, in the endothelia of these aortas, PCA and G1 increased CD31 and GPER-1 and decreased VCAM-1 and CD40 expression. In contrast, the opposite effect was observed in G15-treated endothelium. These results suggest that GPER-1 might mediate the protective effect of PCA on the endothelium.

  18. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.

    PubMed

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume

    2017-06-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, P <0.05), which was prevented when sitting was preceded by a bout of cycling exercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P >0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P >0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  19. Decreased production of neuronal NOS-derived hydrogen peroxide contributes to endothelial dysfunction in atherosclerosis

    PubMed Central

    Capettini, LSA; Cortes, SF; Silva, JF; Alvarez-Leite, JI; Lemos, VS

    2011-01-01

    BACKGROUND AND PURPOSE Reduced NO availability has been described as a key mechanism responsible for endothelial dysfunction in atherosclerosis. We previously reported that neuronal NOS (nNOS)-derived H2O2 is an important endothelium-derived relaxant factor in the mouse aorta. The role of H2O2 and nNOS in endothelial dysfunction in atherosclerosis remains undetermined. We hypothesized that a decrease in nNOS-derived H2O2 contributes to the impaired vasodilatation in apolipoprotein E-deficient mice (ApoE−/−). EXPERIMENTAL APPROACH Changes in isometric tension were recorded on a myograph; simultaneously, NO and H2O2 were measured using carbon microsensors. Antisense oligodeoxynucleotides were used to knockdown eNOS and nNOS in vivo. Western blot and confocal microscopy were used to analyse the expression and localization of NOS isoforms. KEY RESULTS Aortas from ApoE−/− mice showed impaired vasodilatation paralleled by decreased NO and H2O2 production. Inhibition of nNOS with L-ArgNO2-L-Dbu, knockdown of nNOS and catalase, which decomposes H2O2 into oxygen and water, decreased ACh-induced relaxation by half, produced a small diminution of NO production and abolished H2O2 in wild-type animals, but had no effect in ApoE−/− mice. Confocal microscopy showed increased nNOS immunostaining in endothelial cells of ApoE−/− mice. However, ACh stimulation of vessels resulted in less phosphorylation on Ser852 in ApoE−/− mice. CONCLUSIONS AND IMPLICATIONS Our data show that endothelial nNOS-derived H2O2 production is impaired and contributes to endothelial dysfunction in ApoE−/− aorta. The present study provides a new mechanism for endothelial dysfunction in atherosclerosis and may represent a novel target to elaborate the therapeutic strategy for vascular atherosclerosis. PMID:21615722

  20. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats.

    PubMed

    Shirakura, Takashi; Nomura, Johji; Matsui, Chieko; Kobayashi, Tsunefumi; Tamura, Mizuho; Masuzaki, Hiroaki

    2016-08-01

    Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.

  1. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction.

    PubMed

    Catry, Emilie; Bindels, Laure B; Tailleux, Anne; Lestavel, Sophie; Neyrinck, Audrey M; Goossens, Jean-François; Lobysheva, Irina; Plovier, Hubert; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Bouzin, Caroline; Pachikian, Barbara D; Cani, Patrice D; Staels, Bart; Dessy, Chantal; Delzenne, Nathalie M

    2018-02-01

    To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe -/- ) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe -/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Role of oxidative stress in multiparity-induced endothelial dysfunction.

    PubMed

    Tawfik, Huda E; Cena, Jonathan; Schulz, Richard; Kaufman, Susan

    2008-10-01

    Multiparity is associated with increased risk of cardiovascular disease. We tested whether multiparity induces oxidative stress in rat vascular tissue. Coronary arteries and thoracic aorta were isolated from multiparous and age-matched virgin rats. Relaxation to ACh and sodium nitroprusside (SNP) was measured by wire myography. We also tested the effect of the superoxide dismutase mimetic MnTE2PyP (30 microM), the NADPH oxidase inhibitor apocynin (10 microM), and the peroxynitrite scavenger FeTPPs (10 microM) on ACh-mediated relaxation in coronary arteries. Vascular superoxide anion was measured using the luminol derivative L-012 and nitric oxide (NO) generation by the Griess reaction. Multiparity reduced maximal response and sensitivity to ACh in coronary arteries [maximal relaxation (E(max)): multiparous 49+/-3% vs. virgins 95%+/-3%; EC(50): multiparous 135+/-1 nM vs. virgins 60+/-1 nM], and in aortic rings (E(max): multiparous 38+/-3% vs. virgins 79+/-4%; EC(50): multiparous 160+/-2 nM vs. virgins 90+/-3 nM). Coronary arteries from the two groups relaxed similarly to SNP. Superoxide anions formation was significantly higher in both coronary arteries (2.8-fold increase) and aorta (4.1-fold increase) from multiparous rats compared with virgins. In multiparous rats, incubation with MnTE2PyP, apocynin, and FeTPPs improved maximal relaxation to ACh (MnTE2PyP: 74+/-5%; vehicle: 41+/-5%; apocynin: 73+/-3% vs. vehicle: 41+/-3%; FeTPPs: 72+/-3% vs. vehicle: 46+/-3%) and increased sensitivity (EC(50): MnTE2PyP: 61+/-0.5 nM vs. vehicle: 91+/-1 nM; apocynin: 45+/-3 nM vs. vehicle: 91+/-6 nM; FeTPP: 131 +/- 2 nM vs. vehicle: 185+/-1 nM). Multiparity also reduced total nitrate/nitrite levels (multiparous: 2.5+/-2 micromol/mg protein vs. virgins: 7+/-1 micromol/mg protein) and endothelial nitric oxide synthase protein levels (multiparous: 0.53+/-0.1 protein/actin vs. virgins: 1.0+/-0.14 protein/actin). These data suggest that multiparity induces endothelial dysfunction through decreased NO bioavailability and increased reactive oxygen species formation.

  3. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  4. Diseases of the Aorta in Elite Athletes.

    PubMed

    Iskandar, Aline; Thompson, Paul D

    2015-07-01

    Sudden cardiovascular deaths in athletes are rare and only a fraction are due to aortic events. There has been concern that the hemodynamic load during exercise may lead to aortic dilation, but aortic dimensions in endurance and strength-trained athletes are only slightly larger than those in sedentary comparison subjects. The presence of a bicuspid aortic valve without significant valvular dysfunction and normal aortic dimensions should not influence eligibility to practice sport. Patients with genetic syndromes associated with aortopathy generally should be restricted from vigorous sports participation. This article reviews the diagnosis and management of diseases of the aorta in athletes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a Solar Activity

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.

    The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.

  6. Hyperglycemia-induced PATZ1 negatively modulates endothelial vasculogenesis via repression of FABP4 signaling.

    PubMed

    Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min

    2016-09-02

    Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.

  7. The management of patients with aortic regurgitation and severe left ventricular dysfunction: a systematic review.

    PubMed

    Badar, Athar A; Brunton, Alan P T; Mahmood, Ammad H; Dobbin, Stephen; Pozzi, Andrea; McMinn, Jenna F; Sinclair, Andrew J E; Gardner, Roy S; Petrie, Mark C; Curry, Phil A; Al-Attar, Nawwar H K; Pettit, Stephen J

    2015-01-01

    A systematic search of Medline, EMBASE and CINAHL electronic databases was performed. Original research articles reporting all-cause mortality following surgery in patients with aortic regurgitation and severe left ventricular systolic dysfunction (LVSD) were identified. Nine of the 10 eligible studies were observational, single-center, retrospective analyses. Survival ranged from 86 to 100% at 30 days; 81 to 100% at 1 year and 68 to 84% at 5 years. Three studies described an improvement in mean left ventricular ejection fraction (LVEF) following aortic valve replacement (AVR) of 5-14%; a fourth study reported an increase in mean left ventricular ejection fraction (LVEF) of 9% in patients undergoing isolated AVR but not when AVR was combined with coronary artery bypass graft and/or mitral valve surgery. Three studies demonstrated improvements in functional New York Heart Association (NYHA) class following AVR. Additional studies are needed to clarify the benefits of AVR in patients with more extreme degrees of left ventricular systolic dysfunction (LVSD) and the potential roles of cardiac transplantation and transaortic valve implantation.

  8. [Obstructive sleep apnea syndrome, hypertension and artery].

    PubMed

    Baguet, Jean-Philippe; Barone-Rochette, Gilles; Pépin, Jean-Louis

    2009-04-01

    Obstructive sleep apnea syndrome (OSAS), due to upper airway collapse, is frequent but still underestimated. The dose-response relation between OSAS and hypertension (HTN) is now well established. Logically, therefore, blood pressure must be tested in every apneic patient, if necessary by ambulatory blood pressure monitoring. Multiple mechanisms explain this relation, most importantly the increase in sympathetic activity during apnea episodes. OSAS-related hypertension has several characteristics: it is highly prevalent, predominantly diastolic and nocturnal, and frequently affects non-dippers; and the HTN tends to be resistant to treatment. OSAS promotes the formation of arterial lesions (parietal thickening of the carotid artery, increased aortic stiffness, and endothelial dysfunction); the more severe the OSAS, the more severe the lesions. The beneficial effects on blood pressure of continuous positive airway pressure (CPAP), the benchmark treatment for OSAS, are still debated but appear to be significant for untreated or refractory hypertension, for severe OSAS, and when CPAP compliance is good. It also seems promising for the reduction of arterial lesions linked to OSAS.

  9. Anti-fatigue and vasoprotective effects of quercetin-3-O-gentiobiose on oxidative stress and vascular endothelial dysfunction induced by endurance swimming in rats.

    PubMed

    Lin, Yin; Liu, Hua-Liang; Fang, Jie; Yu, Chen-Huan; Xiong, Yao-Kang; Yuan, Ke

    2014-06-01

    Chronic fatigue accumulation increases the incidence of cardiovascular disease while the treatment of antioxidants could prevent this development. We have previously shown that quercetin-3-O-gentiobiose (QG), a flavonoid isolated from tonic herb Okra, possesses anti-oxidative properties. In the present study, the protective effects of QG were evaluated in a rat model of load-induced endurance swimming. Oral administration of QG at the doses of 25-75mg/kg could significantly improve the endurance capability of rats to fatigue along with decrease serum lactic acid and blood urea nitrogen levels were decreased. Moreover, QG could alleviate vascular impairments, enhance the activities of antioxidant enzymes and attenuate the levels of inflammatory cytokines (MCP-1, IL-6 and TNF-α). The results indicated that QG had anti-fatigue and vasoprotective effects and represented a potential agent for the treatment of aortic pathology involved with fatigue- and related syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway

    PubMed Central

    Elmasri, Harun; Ghelfi, Elisa; Yu, Chen-wei; Traphagen, Samantha; Cernadas, Manuela; Cao, Haiming; Shi, Guo-Ping; Plutzky, Jorge; Sahin, Mustafa; Hotamisligil, Gokhan; Cataltepe, Sule

    2013-01-01

    Fatty acid binding protein 4 (FABP4) plays an important role in regulation of glucose and lipid homeostasis as well as inflammation through its actions in adipocytes and macrophages. FABP4 is also expressed in a subset of endothelial cells, but its role in this cell type is not known. We found that FABP4-deficient human umbilical vein endothelial cells (HUVECs) demonstrate a markedly increased susceptibility to apoptosis as well as decreased migration and capillary network formation. Aortic rings from FABP4−/− mice demonstrated decreased angiogenic sprouting, which was recovered by reconstitution of FABP4. FABP4 was strongly regulated by mTORC1 and inhibited by Rapamycin. FABP4 modulated activation of several important signaling pathways in HUVECs, including downregulation of P38, eNOS, and stem cell factor (SCF)/c-kit signaling. Of these, the SCF/c-kit pathway was found to have a major role in attenuated angiogenic activity of FABP4-deficient ECs as provision of exogenous SCF resulted in a significant recovery in cell proliferation, survival, morphogenesis, and aortic ring sprouting. These data unravel a novel pro-angiogenic role for endothelial cell-FABP4 and suggest that it could be exploited as a potential target for diseases associated with pathological angiogenesis. PMID:22562362

  11. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein

    PubMed Central

    d'Uscio, Livius V.; Das, Pritam; Santhanam, Anantha V.R.; He, Tongrong; Younkin, Steven G.; Katusic, Zvonimir S.

    2012-01-01

    Aims Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Methods and results Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser1177 in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH4) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH4 and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH4 bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91phox and SODs, thereby reducing production of superoxide anion in the aortas. Conclusion Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production. PMID:22886847

  12. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein.

    PubMed

    d'Uscio, Livius V; Das, Pritam; Santhanam, Anantha V R; He, Tongrong; Younkin, Steven G; Katusic, Zvonimir S

    2012-12-01

    Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.

  13. Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients.

    PubMed

    Liu, Yuhong; Xie, An; Singh, Arun K; Ehsan, Afshin; Choudhary, Gaurav; Dudley, Samuel; Sellke, Frank W; Feng, Jun

    2015-08-24

    Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SK(Ca)/IK(Ca) activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SK(Ca)/IK(Ca) in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SK(Ca)/IK(Ca) activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SK(Ca)/IK(Ca) currents and hyperpolarization induced by the SK(Ca)/IK(Ca) activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SK(Ca)/IK(Ca) proteins in the coronary microvessels. Diabetes is associated with inactivation of endothelial SK(Ca)/IK(Ca) channels, which may contribute to endothelial dysfunction in diabetic patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    PubMed Central

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486

  15. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.

    PubMed

    Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan

    2013-05-01

    Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta.

    PubMed

    Wynne, Brandi M; Labazi, Hicham; Carneiro, Zidonia N; Tostes, Rita C; Webb, R Clinton

    2017-11-05

    Nitroglycerin (Gtn) is a treatment for cardiovascular patients due to its vasodilatory actions, but induces tolerance when given chronically. A proposed mechanism is the superoxide (O 2 - )-oxidative stress hypothesis, which suggests that Gtn increases O 2 - production. Nitric oxide (NO) exists in three different redox states; the protonated, reduced state, nitroxyl anion (HNO) is an emerging candidate in vascular regulation. HNO is resistant to scavenging and of particular interest in conditions where high levels of reactive oxygen species (ROS) exist. We hypothesize that treatment with Gtn will exacerbate endothelin 1 (ET-1) induced vascular dysfunction via an increase in ROS, while treatment with Angeli's Salt (AS), an HNO donor, will not. Aorta from mice were isolated and divided into four groups: vehicle, ET-1 [0.1μM, 1μM], ET-1+Gtn [Gtn 1μM] and ET-1+AS [AS 1μM]. Concentration response curves (CRCs) to acetylcholine (ACh) and phenylephrine (Phe) were performed. Aorta incubated with ET-1 (for 20-22h) exhibited a decreased relaxation response to ACh and an increase in Phe-mediated contraction. Aorta incubated with AS exhibited a reversal in ET-1 induced vascular and endothelial dysfunction. ET-1 increased ROS in aortic vascular smooth muscle cells (VSMCs), visualized by dihydroethidium (DHE) staining. AS incubated reduced this ROS generation, yet maintained with Gtn treatment. These data suggest that aorta incubated with the HNO donor, AS, can reverse ET-1 mediated vascular dysfunction, which may be through a decrease or prevention of ROS generation. We propose that HNO may be vasoprotective and that HNO donors studied as a therapeutic option where other organic nitrates are contraindicative. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Endovascular treatment of chronic cerebro spinal venous insufficiency in patients with multiple sclerosis modifies circulating markers of endothelial dysfunction and coagulation activation: a prospective study.

    PubMed

    Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico

    2014-10-01

    We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.

  18. Endothelial effects of emission source particles: acute toxic response gene expression profiles.

    PubMed

    Nadadur, Srikanth S; Haykal-Coates, Najwa; Mudipalli, Anuradha; Costa, Daniel L

    2009-02-01

    Air pollution epidemiology has established a strong association between exposure to ambient particulate matter (PM) and cardiovascular outcomes. Experimental studies in both humans and laboratory animals support varied biological mechanisms including endothelial dysfunction as potentially a central step to the elicitation of cardiovascular events. We therefore hypothesized that relevant early molecular alterations on endothelial cells should be assessable in vitro upon acute exposure to PM components previously shown to be involved in health outcomes. Using a model emission PM, residual oil fly ash and one of its predominant constituents (vanadium-V), we focused on the development of gene expression profiles to fingerprint that particle and its constituents to explore potential biomarkers for PM-induced endothelial dysfunction. Here we present differential gene expression and transcription factor activation profiles in human vascular endothelial cells exposed to a non-cytotoxic dose of fly ash or V following semi-global gene expression profiling of approximately 8000 genes. Both fly ash and it's prime constituent, V, induced alterations in genes involved in passive and active transport of solutes across the membrane; voltage-dependent ion pumps; induction of extracellular matrix proteins and adhesion molecules; and activation of numerous kinases involved in signal transduction pathways. These preliminary data suggest that cardiovascular effects associated with exposure to PM may be mediated by perturbations in endothelial cell permeability, membrane integrity; and ultimately endothelial dysfunction.

  19. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility.

    PubMed

    Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse

    2017-03-01

    The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.

  20. Re-operation for aortic and mitral prosthetic dysfunctions.

    PubMed

    Kaul, T K; Sastry, M R; Mercer, J L; Meade, J B

    1985-01-01

    The overall incidence of re-operation and prosthetic valve endocarditis was low in the present series as mechanical prostheses were used predominantly. The prosthetic dysfunctions were less frequent following the primary implantation with Bjork Shiley prostheses, but high operative risk was associated with the clotted Bjork Shiley prostheses. We also had unusual experience of strut fracture and sticking of Bjork Shiley discs in the closed position in both aortic and mitral positions. The early deaths were nil since the use of cardioplegic protection. Intra-operative bleeding due to adhesions can be minimised by using synthetic or heterologous pericardium during the primary operation.

  1. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    PubMed

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.

  2. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Chung; Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Chen, Chia-Ling

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-likemore » cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase in peritoneal vascular permeability.« less

  3. Protein kinase C-α and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability.

    PubMed

    Lucas, Rudolf; Yang, Guang; Gorshkov, Boris A; Zemskov, Evgeny A; Sridhar, Supriya; Umapathy, Nagavedi S; Jezierska-Drutel, Agnieszka; Alieva, Irina B; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D; Verin, Alexander D; Pittet, Jean-François; Caldwell, Ruth B; Mitchell, Timothy J; Cederbaum, Stephen D; Fulton, David J; Matthay, Michael A; Caldwell, Robert W; Romero, Maritza J; Chakraborty, Trinad

    2012-10-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)(+/-)/arginase II (AII)(-/-) C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI(+/+)/AII(-/-) counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction.

  4. Protein Kinase C-α and Arginase I Mediate Pneumolysin-Induced Pulmonary Endothelial Hyperpermeability

    PubMed Central

    Yang, Guang; Gorshkov, Boris A.; Zemskov, Evgeny A.; Sridhar, Supriya; Umapathy, Nagavedi S.; Jezierska-Drutel, Agnieszka; Alieva, Irina B.; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D.; Verin, Alexander D.; Pittet, Jean-François; Caldwell, Ruth B.; Mitchell, Timothy J.; Cederbaum, Stephen D.; Fulton, David J.; Matthay, Michael A.; Caldwell, Robert W.; Romero, Maritza J.; Chakraborty, Trinad

    2012-01-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)+/−/arginase II (AII)−/− C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI+/+/AII−/− counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction. PMID:22582175

  5. Normal Pregnancy Is Associated with Changes in Central Hemodynamics and Enhanced Recruitable, but Not Resting, Endothelial Function

    PubMed Central

    Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Scasso, Santiago; Bia, Daniel

    2015-01-01

    Introduction. Flow-mediated dilation (FMD), low flow-mediated constriction (L-FMC), and reactive hyperemia-related changes in carotid-to-radial pulse wave velocity (ΔPWVcr%) could offer complementary information about both “recruitability” and “resting” endothelial function (EF). Carotid-to-femoral pulse wave velocity (PWVcf) and pulse wave analysis-derived parameters (i.e., AIx@75) are the gold standard methods for noninvasive evaluation of aortic stiffness and central hemodynamics. If healthy pregnancy is associated with both changes in resting and recruitable EF, as well as in several arterial parameters, it remains unknown and/or controversial. Objectives. To simultaneously and noninvasively assess in healthy pregnant (HP) and nonpregnant (NP) women central parameters in conjunction with “basal and recruitable” EF, employing new complementary approaches. Methods. HP (n = 11, 34.2 ± 3.3 weeks of gestation) and age- and cardiovascular risk factors-matched NP (n = 22) were included. Aortic blood pressure (BP), AIx@75, PWVcf, common carotid stiffness, and intima-media thickness, as well as FMD, L-FMC, and ΔPWVcr %, were measured. Results. Aortic BP, stiffness, and AIx@75 were reduced in HP. ΔPWVcr% and FMD were enhanced in HP in comparison to NP. No differences were found in L-FMC between groups. Conclusion. HP is associated with reduced aortic stiffness, central BP, wave reflections, and enhanced recruitable, but not resting, EF. PMID:26421317

  6. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis.

    PubMed

    Seinost, Gerald; Wimmer, Gernot; Skerget, Martina; Thaller, Erik; Brodmann, Marianne; Gasser, Robert; Bratschko, Rudolf O; Pilger, Ernst

    2005-06-01

    Because epidemiological studies provide evidence that periodontal infections are associated with an increased risk of progression of cardiovascular and cerebrovascular disease, we postulated that endothelial dysfunction, a critical element in the pathogenesis of atherosclerosis, would be present in patients with periodontal disease. We tested endothelial function in 30 patients with severe periodontitis and 31 control subjects using flow-mediated dilation (FMD) of the brachial artery. The groups were matched for age, sex, and cardiovascular risk factors. Three months after periodontal treatment, including both mechanical and pharmacological therapy, endothelial function was reassessed by brachial artery FMD. Markers of systemic inflammation were measured at baseline and at follow up. Flow-mediated dilation was significantly lower in patients with periodontitis than in control subjects (6.1% +/- 4.4% vs 8.5% +/- 3.4%, P = .002). Successful periodontal treatment resulted in a significant improvement in FMD (9.8% +/- 5.7%; P = .003 compared to baseline) accompanied by a significant decrease in C-reactive protein concentrations (1.1 +/- 1.9 vs 0.8 +/- 0.8 at baseline, P = .026). Endothelium-independent nitro-induced vasodilation did not differ between the study groups at baseline or after periodontal therapy. These results indicate that treatment of severe periodontitis reverses endothelial dysfunction. Whether improved endothelial function will translate into a beneficial effect on atherogenesis and cardiovascular events needs further investigation.

  7. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis

    PubMed Central

    Daehn, Ilse; Casalena, Gabriella; Zhang, Taoran; Shi, Shaolin; Fenninger, Franz; Barasch, Nicholas; Yu, Liping; D’Agati, Vivette; Schlondorff, Detlef; Kriz, Wilhelm; Haraldsson, Borje; Bottinger, Erwin P.

    2014-01-01

    Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS. PMID:24590287

  8. Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction.

    PubMed

    de Haan, Judy B; Cooper, Mark E

    2011-01-01

    Although intensive glycaemic and blood pressure control have reduced the risks of micro- and macrovascular complications, diabetes remains a major cause of cardiovascular events, end-stage renal failure, blindness and neuropathy. It is therefore imperative to understand the underlying mechanisms and to establish effective treatments to prevent, retard or reverse diabetic complications. One area of increased focus is the diabetic vascular endothelium. Hyperglycaemia triggers a cascade of events, not least an increase in reactive oxygen species (ROS) leading to enhanced oxidative stress, with its negative impact on endothelial function. In this review, we explore a unifying hypothesis that increased glucose-mediated ROS leads to endothelial dysfunction as the underpinning causative event triggering accelerated micro- and macrovascular complications. In particular, the consequences of deficiencies in the antioxidant enzyme, glutathione peroxidase, on endothelial dysfunction as a trigger of diabetic micro- and macrovascular complications, will be reviewed. Furthermore, novel antioxidant therapies will be highlighted. Specifically, use of Gpx1-mimetics holds promise as a targeted antioxidant approach and an alternative adjunct therapy to reduce diabetic complications.

  9. In vitro and ex vivo angiogenic effects of roxarsone on rat endothelial cells.

    PubMed

    Zhu, Jiaqiao; Cui, Weibo; Liu, Xue; Ying, Jun; Hu, Chengyun; Zhang, Yumei

    2013-11-25

    Roxarsone, a feed additive, is being used worldwide to promote animal growth. However, the potential effect of roxarsone on angiogenesis has not been extensively characterized. We examined the ability of roxarsone to promote angiogenesis of rat endothelial cells in vitro and from rat aorta rings ex vivo. Endothelial cells from rats were exposed to 0.01-10.00μM roxarsone, 5ng/mL vascular endothelial growth factor (VEGF) as a positive control or phosphate buffer saline (PBS) as a negative control. Cell proliferation was measured by MTT assay, and the content of VEGF in supernatants was measured by enzyme-linked immunosorbent assay and Western blotting. A Matrigel-induced tube formation assay was used to evaluate the effects of roxarsone on endothelial cells. Additionally, the total number and length of microvessels sprouted from rat aortic rings were measured for ex vivo investigation of angiogenesis. Results showed that the cell viability and total number and length of capillary-like tube formations after roxarsone treatment was significantly higher than that of negative (P<0.05), with a maximum effect at 1.00μM exposure. Furthermore, the number of microvessels sprouted from aortic rings treated for 4h with 0.1-10.0μM roxarsone was significantly higher than that of PBS treatment, with a peak value of 1.0μM. These results further demonstrate the potential of roxarsone to promote angiogenesis in vitro and ex vivo. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes

    PubMed Central

    Ng, Hooi Hooi; Leo, Chen Huei; Prakoso, Darnel; Qin, Chengxue; Ritchie, Rebecca H.; Parry, Laura J.

    2017-01-01

    Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis. PMID:28067255

  11. [How does chocolate impact vascular function?].

    PubMed

    Flammer, Andreas J; Sudano, Isabella

    2014-11-12

    For thousands of years, cocoa have been a very popular food and has been linked to various beneficial health effects. Observational and epidemiological studies point towards a beneficial effect of dark chocolate on cardiovascular morbidity. Several small, albeit controlled studies indeed demonstrate an amelioration of endothelial dysfunction - the dysfunction of the inner layer of the vessels - after intake of dark, flavanol-rich chocolate. This is important, as endothelial dysfunction is an important marker of the development of atherosclerosis and an important prognosticator of future cardiovascular events. This article summarizes the actual literature in this respect.

  12. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  13. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria

    PubMed Central

    de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.

    2017-01-01

    Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519

  14. Evaluating the effectiveness of rosuvastatin in preventing the progression of diastolic dysfunction in aortic stenosis: A substudy of the aortic stenosis progression observation measuring effects of rosuvastatin (ASTRONOMER) study

    PubMed Central

    2011-01-01

    Background Tissue Doppler imaging (TDI) is a noninvasive echocardiographic method for the diagnosis of diastolic dysfunction in patients with varying degrees of aortic stenosis (AS). Little is known however, on the utility of TDI in the serial assessment of diastolic abnormalities in AS. Objective The aim of the current proposal was to examine whether treatment with rosuvastatin was successful in improving diastolic abnormalities in patients enrolled in the Aortic Stenosis Progression Observation Measuring Effects of Rosuvastatin (ASTRONOMER) study. Methods Conventional Doppler indices including peak early (E) and late (A) transmitral velocities, and E/A ratio were measured from spectral Doppler. Tissue Doppler measurements including early (E') and late (A') velocities of the lateral annulus were determined, and E/E' was calculated. Results The study population included 168 patients (56 ± 13 years), whose AS severity was categorized based on peak velocity at baseline (Group I: 2.5-3.0 m/s; Group II: 3.1-3.5 m/s; Group III: 3.6-4.0 m/s). Baseline and follow-up hemodynamics, LV dimensions and diastolic functional parameters were evaluated in all three groups. There was increased diastolic dysfunction from baseline to follow-up in each of the placebo and rosuvastatin groups. In patients with increasing severity of AS in Groups I and II, the lateral E' was lower and the E/E' (as an estimate of increased left ventricular end-diastolic pressure) was higher at baseline (p < 0.05). However, treatment with rosuvastatin did not affect the progression of diastolic dysfunction from baseline to 3.5 year follow-up between patients in any of the three predefined groups. Conclusion In patients with mild to moderate asymptomatic AS, rosuvastatin did not attenuate the progression of diastolic dysfunction. PMID:21299902

  15. Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus.

    PubMed

    Shan, Kun; Liu, Chang; Liu, Bai-Hui; Chen, Xue; Dong, Rui; Liu, Xin; Zhang, Yang-Yang; Liu, Ban; Zhang, Shu-Jie; Wang, Jia-Jian; Zhang, Sheng-Hai; Wu, Ji-Hong; Zhao, Chen; Yan, Biao

    2017-10-24

    The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circular RNA in retinal vascular dysfunction induced by diabetes mellitus. Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circular HIPK3 (circHIPK3) expression pattern on diabetes mellitus-related stresses. MTT (3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assays, EdU (5-ethynyl-2'-deoxyuridine) incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. circHIPK3 expression was significantly upregulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes mellitus. circHIPK3 silencing or overexpressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased vascular endothelial growth factor-C, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction. These data suggest that circular RNA is a potential target to control diabetic proliferative retinopathy. © 2017 American Heart Association, Inc.

  16. Distinct Longitudinal Associations of MBL, MASP-1, MASP-2, MASP-3, and MAp44 With Endothelial Dysfunction and Intima-Media Thickness: The Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) Study.

    PubMed

    Hertle, Elisabeth; Arts, Ilja C W; van der Kallen, Carla J H; Feskens, Edith J M; Schalkwijk, Casper G; Hoffmann-Petersen, Ingeborg T; Thiel, Steffen; Stehouwer, Coen D A; van Greevenbroek, Marleen M J

    2016-06-01

    Previous studies suggested that the lectin-complement pathway plays a complex role in cardiovascular disease (CVD). To date, no prospective human studies have investigated the relationship between the initiating factor of the lectin pathway, that is, mannose-binding lectin (MBL), and low-grade inflammation, endothelial dysfunction, or carotid intima-media thickness (cIMT). Moreover, MBL-associated proteases (MASPs) and MBL-associated proteins (MAps), which mediate downstream complement activation, have not been studied in the development of CVD. In a prospective cohort (n=574; age 60±7 years; 7-year follow-up), we investigated longitudinal associations of plasma MBL, MASP-1, MASP-2, MASP-3, and MAp44 with biomarker scores that reflect low-grade inflammation and endothelial dysfunction, respectively, and with cIMT. We also investigated their associations with incident CVD (n=73). In adjusted analyses, low-grade inflammation was lowest in the middle tertile (TMiddle) of MBL, that is, TMiddle was 0.19 SD (0.03 to 0.34) lower than TLow, and 0.15 SD (-0.02 to 0.31) lower than THigh. cIMT was 28 μm (-50 to -5) lower in the highest MBL tertile (THigh) than in TMiddle and did not differ between TLow and TMiddle. MBL was not associated with endothelial dysfunction or CVD. MASP-1 and MASP-2 were not associated with any cardiovascular outcomes. MASP-3 and MAp44 were, independently of MBL levels, associated with endothelial dysfunction (per 1 SD higher MASP-3: β=0.10 SD [0.02 to 0.18]; per 1 SD higher MAp44 β=0.12 SD [0.04 to 0.20]) but not with low-grade inflammation, cIMT, or CVD. High MBL may contribute to low cIMT, whereas the association of MBL with low-grade inflammation was nonlinear. MASP-1 and MASP-2 were not associated with adverse cardiovascular outcomes. MASP-3 and MAp44 may play a role in endothelial dysfunction, potentially independent of lectin-pathway activation. © 2016 American Heart Association, Inc.

  17. Poor oral health, that is, decreased frequency of tooth brushing, is associated with endothelial dysfunction.

    PubMed

    Kajikawa, Masato; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Matsumoto, Takeshi; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Taguchi, Akira; Noma, Kensuke; Higashi, Yukihito

    2014-01-01

     Poor oral health is an independent predictor of cardiovascular outcome. Endothelial dysfunction is the initial step of atherosclerosis, resulting in cardiovascular outcomes; but there is no information on the association between oral health and endothelial function. The purpose of this study was to determine the relationships between oral health and endothelial function.  A total of 190 subjects who underwent health examinations (mean age, 57±18 years), including patients with cardiovascular disease, completed a questionnaire on oral health and frequency of tooth brushing, and underwent measurement of vascular function, flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation. The subjects were divided into 2 groups according to frequency of tooth brushing (≥twice/day and

  18. Corneal endothelial dysfunction in Pearson syndrome.

    PubMed

    Kasbekar, Shivani A; Gonzalez-Martin, Jose A; Shafiq, Ayad E; Chandna, Arvind; Willoughby, Colin E

    2013-01-01

    Mitochondrial disorders are associated with well recognized ocular manifestations. Pearson syndrome is an often fatal, multisystem, mitochondrial disorder that causes variable bone marrow, hepatic, renal and pancreatic exocrine dysfunction. Phenotypic progression of ocular disease in a 12-year-old male with Pearson syndrome is described. This case illustrates phenotypic drift from Pearson syndrome to Kearns-Sayre syndrome given the patient's longevity. Persistent corneal endothelial failure was noted in addition to ptosis, chronic external ophthalmoplegia and mid-peripheral pigmentary retinopathy. We propose that corneal edema resulting from corneal endothelial metabolic pump failure occurs within a spectrum of mitochondrial disorders.

  19. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  20. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading.

    PubMed

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu 2+ -oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu 2+ -oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu 2+ -oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27 kip1 ). Both Cu 2+ -oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu 2+ - and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27 kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  1. Exercise facilitates early recognition of cardiac and vascular remodeling in chronic thromboembolic pulmonary hypertension in swine.

    PubMed

    Stam, Kelly; van Duin, Richard W B; Uitterdijk, André; Cai, Zongye; Duncker, Dirk J; Merkus, Daphne

    2018-03-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po 2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor N ω -nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P < 0.001), 22.7 ± 2.0 mmHg (L-NAME, P < 0.001), and 20.1 ± 1.5 mmHg (sham, P < 0.001), and a decrease in arterial Po 2 that was exacerbated during exercise, indicating V/Q mismatch. RV dysfunction was present after 5 wk of embolization, both at rest (trend toward increased RV end-systolic lumen area, P = 0.085, and decreased stroke volume index, P = 0.042) and during exercise (decreased stroke volume index vs. control, P = 0.040). With sustained pulmonary hypertension, RV hypertrophy (Fulton index P = 0.022) improved RV function at rest and during exercise, but this improvement was insufficient in CTEPH swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first double-hit chronic thromboembolic pulmonary hypertension swine model. We show that embolization as well as endothelial dysfunction is required to induce sustained pulmonary hypertension, which is accompanied by altered exercise hemodynamics and an exacerbated ventilation/perfusion mismatch during exercise.

  2. Durability of Aortic Valve Cusp Repair With and Without Annular Support.

    PubMed

    Zeeshan, Ahmad; Idrees, Jay J; Johnston, Douglas R; Rajeswaran, Jeevanantham; Roselli, Eric E; Soltesz, Edward G; Gillinov, A Marc; Griffin, Brian; Grimm, Richard; Hammer, Donald F; Pettersson, Gösta B; Blackstone, Eugene H; Sabik, Joseph F; Svensson, Lars G

    2018-03-01

    To determine the value of aortic valve repair rather than replacement for valve dysfunction, we assessed late outcomes of various repair techniques in the contemporary era. From January 2001 to January 2011, aortic valve repair was planned in 1,124 patients. Techniques involved commissural figure-of-8 suspension sutures (n = 63 [6.2%]), cusp repair with commissuroplasty (n = 481 [48%]), debridement (n = 174 [17%]), free-margin plication (n = 271 [27%]) or resection (n = 75) or both, or annulus repair with resuspension (n = 230 [23%]), root reimplantation (n = 252 [25%]), or remodeling (n = 35 [3.5%]). Planned repair was aborted for replacement in 115 patients (10%); risk factors included greater severity of aortic regurgitation (AR; p = 0.0002) and valve calcification (p < 0.0001). In-hospital outcomes for the remaining 1,009 patients included death (12 [1.2%]), stroke (13 [1.3%]), and reoperation for valve dysfunction (14 [1.4%]). Freedom from aortic valve reoperation at 1, 5, and 10 years was 97%, 93%, and 90%, respectively. Figure-of-8 suspension sutures, valve resuspension, and root repair and replacement were least likely to require reoperation; cusp repair with commissural sutures, plication, and commissuroplasty was most likely (p < 0.05). Survival at 1, 5, and 10 years was 96%, 92%, and 83%. Immediate postoperative AR grade was none-mild (94%), moderate (5%), and severe (1%). At 10 years after repair, AR grade was none (20%), mild (33%), moderate (26%), and severe (21%). Patients undergoing root procedures were less likely to have higher-grade postoperative AR (p < 0.0001). Valve repair is effective and durable for treating aortic valve dysfunction. Greater severity of AR preoperatively is associated with higher likelihood of repair failure. Commissural figure-of-8 suspension sutures and repair with annular support have the best long-term durability. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Prevalence of arterial stiffness and the risk of myocardial diastolic dysfunction in women.

    PubMed

    Seeland, Ute; Brecht, Anna; Nauman, Ahmad T; Oertelt-Prigione, Sabine; Ruecke, Mirjam; Knebel, Fabian; Stangl, Verena; Regitz-Zagrosek, Vera

    2016-10-01

    The present study determines the prevalence of vascular dysfunction and arterial stiffness (ASt) in a female urban population by measuring the brachial augmentation index (AIx) and aortic pulse wave velocity (PWV). The study tests the hypothesis that the measurement of AIx and PWV is useful in addition to that of traditional cardiovascular risk factors when assessing the risk for left ventricular diastolic dysfunction (LVDD). This cross-sectional study recruited 965 women aged 25-75 years from 12 districts of Berlin. The ASt indices, brachial AIx, aortic PWV and the central blood pressure were measured by an oscillometric method. A randomly selected subgroup (n=343) was examined by echocardiography. Trans-mitral inflow E/A ratio and diastolic mitral annulus velocity (é) were assessed. Questionnaires, medical history and blood sampling were used for the evaluation of individual risk factors. Normal vascular function was found in 55% of the women included. The prevalence of women with pathological AIx only (AIx ⩾ -10%, PWV normal) was 21.5%, whereas 17.9% were affected by increased AIx and PWV (AIx ⩾ -10%, PWV ⩾9.7 m/s), and 6% with only pathological PWV values. The prevalence of LVDD was 31.7%. LVDD was significantly associated with pathological PWV ⩾ 9.7 m/s [OR: 1.27, 95%CI: 1.02-1.57], age [OR: 4.17, 95%CI: 2.87-6.07] and a waist circumference >80 cm [OR: 3.61, 95%CI: 1.85-7.04] in multiple regression analysis. The high prevalence of markers for vascular dysfunction and ASt in a general female population and their importance as a mediator of diastolic dysfunction should encourage implementation of aortic PWV measurement to improve cardiovascular-risk assessment in particular to identify subclinical myocardial diastolic dysfunction. © 2016 The Author(s).

  4. Relation of Biochemical Parameters with Flow-mediated Dilatation in Patients with Metabolic Syndrome

    PubMed Central

    Sipahioglu, Nurver Turfaner; Ilerigelen, Barıs; Gungor, Zeynep B.; Ayaz, Gulsel; Ekmekci, Hakan; Gurel, Cigdem Bayram; Can, Gunay; Sonmez, Huseyin; Ulutin, Turgut; Sipahioglu, Fikret

    2017-01-01

    Background: Metabolic syndrome (MetS) is one of the high cardiovascular (CV) situations. Endothelial dysfunction, which is a common finding in patients with MetS, is related with increased CV risk. In patients with MetS, the effect of the major CV risk factors, not included in the MetS definition, on endothelial dysfunction is not well known. The aim of this study was to determine the effect of major CV risk factors such as gender, smoking, family history, and biochemical parameters on endothelial dysfunction in patients with MetS. Methods: The study was performed between December 2010 and August 2014. A total of 55 patients (15 females and 40 males) with MetS and 81 healthy controls (37 females and 44 males) with a body mass index <25 kg/m2 were enrolled in the study. Endothelial dysfunction was measured by flow-mediated dilatation (FMD), oxidative stress parameters; high-sensitivity C-reactive protein (hs-CRP), oxidized low-density lipoprotein (ox-LDL), endothelial nitric oxide synthase (e-NOS), nitric oxide, and cell adhesion markers; von Willebrand factor, and e-selectin. Platelet aggregation (endothelial adenosine diphosphate), total platelet count, and mean platelet volume were additionally analyzed and demographic parameters were explored. Student's t-test, Mann-Whitney U-test, and Chi-square test were used to analyze the results. Results: The fasting blood glucose (z = 3.52, P = 0.001), hs-CRP (z = 3.23, P = 0.004), ox-LDL (z = 2.62, P = 0.013), and e-NOS (z = 2.22, P = 0.026) levels and cardiac risk score (z = 5.23, P < 0.001) were significantly higher in patients with MetS compared with the control group. Smoking was correlated with decreased FMD (χ2 = 9.26, P = 0.002) in MetS patients but not in the control group. Conclusions: Increased ox-LDL, hs-CRP, and e-NOS are likely to be a result of oxidative stress, a condition in which an imbalance occurs between the production and inactivation of reactive nitrogen and oxygen species. In addition, in patients with MetS, smoking is independently related to endothelial dysfunction. PMID:28639572

  5. Effect of Febuxostat on the Endothelial Dysfunction in Hemodialysis Patients: A Randomized, Placebo-Controlled, Double-Blinded Study.

    PubMed

    Alshahawey, Mona; Shahin, Sara Mahmoud; Elsaid, Tamer Wahid; Sabri, Nagwa Ali

    2017-01-01

    Endothelial dysfunction is an important risk factor for cardiovascular diseases to occur in end-stage renal disease patients. Febuxostat, being a novel xanthine oxidase inhibitor, is apparently having a beneficial role in improving the endothelial dysfunction; however, data among hemodialysis patients are still limited. A prospective, placebo-controlled, block-randomized, double-blinded study was carried out to evaluate the effect of oral febuxostat on the endothelial dysfunction in hemodialysis patients. Fifty-seven eligible hemodialysis patients were randomly assigned to either the drug group (40 mg thrice weekly) or the placebo group. Serum Asymmetric dimethylarginine (ADMA), Serum uric acid (UA), and serum high sensitivity C-reactive protein (hsCRP) were measured at baseline and at the end of a 2-month study. Serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), and the occurrence of pancytopenia were tested as safety parameters at baseline and at the end of study. Serum UA significantly decreased from 7.5 ± 0.8 to 5.1 ± 1.2 mg/dL in the febuxostat group, while it did not change significantly in the placebo group. Treatment with febuxostat resulted in a significant decrease in the serum ADMA level from 1.027 ± 0.116 to 0.944 ± 0.104 µmol/L and the serum hsCRP level from 12.5 ± 1.65 to 12.1 ± 1.70 mg/L. Testing of serum ALT, serum AST, and pancytopenia revealed no significant difference in both groups. Febuxostat appears to improve hyperuricemia and endothelial dysfunction and ameliorate inflammation in hemodialysis patients with no safety concerns. © 2017 S. Karger AG, Basel.

  6. Vitamin D deficiency, coronary artery disease, and endothelial dysfunction: observations from a coronary angiographic study in Indian patients.

    PubMed

    Syal, Sanjeev Kumar; Kapoor, Aditya; Bhatia, Eesh; Sinha, Archana; Kumar, Sudeep; Tewari, Satyendra; Garg, Naveen; Goel, Pravin K

    2012-08-01

    Vitamin D deficiency has been linked to an increased risk of coronary artery disease (CAD) and cardiovascular (CV) death. Endothelial dysfunction plays an important role in pathogenesis of CAD and vitamin D deficiency is postulated to promote endothelial dysfunction. Despite rising trends of CAD in Asians, only limited data are available on the relationship between vitamin D, CAD, and endothelial dysfunction. In a study of 100 patients undergoing coronary angiography, mean 25(OH)D level was 14.8 ± 9.1 ng/mL; vitamin D deficiency was present in 80% and only 7% had optimal 25(OH)D levels. Nearly one-third (36%) were severely deficient, with 25(OH)D levels <10 ng/mL. Those with vitamin D deficiency had significantly higher prevalence of double- or triple-vessel CAD (53% vs 38%), diffuse CAD (56% vs 34%), and higher number of coronary vessels involved as compared to those with higher 25(OH)D levels. Those with lower 25(OH)D levels had significantly lower brachial artery flow-mediated dilation (FMD; 4.57% vs 10.68%: P<.001) and significantly higher prevalence of impaired FMD (values <4.5%; 50.6% vs 7%; P<.002). A graded relationship between 25(OH)D levels and FMD was observed; impaired FMD was noted in 62.2%, 38.6%, and 13.3% in those with 25(OH)D levels <10 ng/mL, 10-20 ng/mL, and >20 ng/mL, respectively. Indian patients with angiographically documented CAD frequently have vitamin D deficiency. Patients with lower 25(OH)D levels had higher prevalence of double- or triple-vessel CAD and diffuse CAD. Endothelial dysfunction as assessed by brachial artery FMD was also more frequently observed in those with low 25(OH)D levels.

  7. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    PubMed

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  8. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent

    PubMed Central

    Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon

    2014-01-01

    Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736

  9. Salt Inactivates Endothelial Nitric Oxide Synthase in Endothelial Cells12

    PubMed Central

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J.; Li, Xiang-An

    2009-01-01

    There is a 1–4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension. PMID:19176751

  10. Salt inactivates endothelial nitric oxide synthase in endothelial cells.

    PubMed

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An

    2009-03-01

    There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.

  11. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  12. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase.

    PubMed

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.

  13. Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types.

    PubMed

    Hosoyama, Katsuhiro; Wakao, Shohei; Kushida, Yoshihiro; Ogura, Fumitaka; Maeda, Kay; Adachi, Osamu; Kawamoto, Shunsuke; Dezawa, Mari; Saiki, Yoshikatsu

    2018-06-01

    Aortic aneurysms result from the degradation of multiple components represented by endothelial cells, vascular smooth muscle cells, and elastic fibers. Cells that can replenish these components are desirable for cell-based therapy. Intravenously injected multilineage-differentiating stress-enduring (Muse) cells, endogenous nontumorigenic pluripotent-like stem cells, reportedly integrate into the damaged site and repair the tissue through spontaneous differentiation into tissue-compatible cells. We evaluated the therapeutic efficacy of Muse cells in a murine aortic aneurysm model. Human bone marrow Muse cells, isolated as stage-specific embryonic antigen-3 + from bone marrow mesenchymal stem cells, or non-Muse cells (stage-specific embryonic antigen-3 - cells in mesenchymal stem cells), bone marrow mesenchymal stem cells, or vehicle was intravenously injected at day 0, day 7, and 2 weeks (20,000 cells/injection) after inducing aortic aneurysms by periaortic incubation of CaCl 2 and elastase in severe combined immunodeficient mice. At 8 weeks, infusion of human Muse cells attenuated aneurysm dilation, and the aneurysmal size in the Muse group corresponded to approximately 62.5%, 55.6%, and 45.6% in the non-Muse, mesenchymal stem cell, and vehicle groups, respectively. Multiphoton laser confocal microscopy revealed that infused Muse cells migrated into aneurysmal tissue from the adventitial side and penetrated toward the luminal side. Histologic analysis demonstrated robust preservation of elastic fibers and spontaneous differentiation into endothelial cells and vascular smooth muscle cells. After intravenous injection, Muse cells homed and expanded to the aneurysm from the adventitial side. Subsequently, Muse cells differentiated spontaneously into vascular smooth muscle cells and endothelial cells, and elastic fibers were preserved. These Muse cell features together led to substantial attenuation of aneurysmal dilation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice

    PubMed Central

    Münzel, Thomas; Daiber, Andreas; Steven, Sebastian; Tran, Lan P.; Ullmann, Elisabeth; Kossmann, Sabine; Schmidt, Frank P.; Oelze, Matthias; Xia, Ning; Li, Huige; Pinto, Antonio; Wild, Philipp; Pies, Kai; Schmidt, Erwin R.; Rapp, Steffen; Kröller-Schön, Swenja

    2017-01-01

    Abstract Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II levels and induced endothelial dysfunction. Noise increased eNOS expression but reduced vascular NO levels because of eNOS uncoupling. Noise increased circulating levels of nitrotyrosine, interleukine-6 and vascular expression of the NADPH oxidase subunit Nox2, nitrotyrosine-positive proteins and of endothelin-1. FACS analysis demonstrated an increase in infiltrated natural killer-cells and neutrophils into the vasculature. Equal mean sound pressure levels of white noise for 4 days did not induce these changes. Comparative Illumina sequencing of transcriptomes of aortic tissues from aircraft noise-treated animals displayed significant changes of genes in part responsible for the regulation of vascular function, vascular remodelling, and cell death. Conclusion We established a novel and unique aircraft noise stress model with increased blood pressure and vascular dysfunction associated with oxidative stress. This animal model enables future studies of molecular mechanisms, mitigation strategies, and pharmacological interventions to protect from noise-induced vascular damage. PMID:28329261

  15. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    PubMed

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.

  16. Inhibition of soluble epoxide hydrolase lowers portal hypertension in cirrhotic rats by ameliorating endothelial dysfunction and liver fibrosis.

    PubMed

    Deng, Wensheng; Zhu, Yiming; Lin, Jiayun; Zheng, Lei; Zhang, Chihao; Luo, Meng

    2017-07-01

    Epoxyeicostrienoic acids (EETs) are arachidonic acid derived meditators which are catalyzed by soluble epoxide hydrolase (sEH) to less active dihydroeicostrienoics acids (DHETS). The aim of our study is to investigate the effects of sEH inhibition on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl4 cirrhotic rats. The sEH inhibitor,trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB) was administered to stabilize hepatic EETs by gavage at a dose of 1mg/kg/d. Our results showed that hepatic sEH expression was markedly increased in portal hypertension, and led to a lower ratio of EETs/DHETs which was effectively reversed by t-TUCB administration. t-TUCB significantly decreased portal pressure without significant changes in systemic hemodynamics, which was associated with the attenuation of intrahepatic vascular resistance (IHVR) and liver fibrosis. t-TUCB ameliorated endothelial dysfunction, increased hepatic endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. In addition, t-TUCB significantly reduced alpha-Smooth Muscle Actin (α-SMA) expression and liver fibrosis, which was associated with a decrease in NF-κB signaling. Taken together, inhibition of sEH reduces portal pressure, liver fibrosis and attenuates hepatic endothelial dysfunction in cirrhotic rats. Our results indicate that sEH inhbitors may be useful in the treatment of portal hypertension in patients with cirrhosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin.

    PubMed

    Mason, R Preston; Dawoud, Hazem; Jacob, Robert F; Sherratt, Samuel C R; Malinski, Tadeusz

    2018-07-01

    The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO - ) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  18. Transcatheter JenaValve Implantation in a Stentless Prosthesis: A Challenging Case After 4 Previous Aortic Procedures.

    PubMed

    Sponga, Sandro; Mazzaro, Enzo; Bagur, Rodrigo; Livi, Ugolino

    2017-04-01

    A 40-year-old man underwent 4 aortic surgeries because of endocarditis and subsequent prosthesis dehiscence. At the last recurrence he presented with acute severe aortic regurgitation of a Pericarbon Freedom (LivaNova plc, London, UK) stentless bioprosthesis and a morphologically disarranged aortic root. He also presented with left ventricular dysfunction and a very low origin of the left coronary artery. Therefore, a fifth redo aortic valve replacement was considered at high surgical risk. Accordingly, before listing the patient for a heart transplantation, a transcatheter valve-in-valve implantation with the JenaValve (JenaValve Technology, GmbH, Munich, Germany) prosthesis was performed. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  19. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    PubMed

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair endothelial function via COX-2 and ROS-dependent mechanisms. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. Endothelial dysfunction, vascular disease and stroke: the ARTICO study.

    PubMed

    Roquer, J; Segura, T; Serena, J; Castillo, J

    2009-01-01

    Endothelial dysfunction is a fundamental step in the atherosclerotic disease process. Its presence is a risk factor for the development of clinical events, and may represent a marker of atherothrombotic burden. Also, endothelial dysfunction contributes to enhanced plaque vulnerability, may trigger plaque rupture, and favors thrombus formation. The assessment of endothelial vasomotion is a useful marker of atherosclerotic vascular disease. There are different methods to assess endothelial function: endothelium-dependent vasodilatation brachial flow-mediated dilation, cerebrovascular reactivity to L-arginine, and the determination of some biomarkers such as microalbuminuria, platelet function, and C-reactive protein. Endothelial dysfunction has been observed in stroke patients and has been related to stroke physiopathology, stroke subtypes, clinical severity and outcome. Resting ankle-brachial index (ABI) is also considered an indicator of generalized atherosclerosis, and a low ABI is associated with an increase in stroke incidence in the elderly. Despite all these data, there are no studies analyzing the predictive value of ABI for new cardiovascular events in patients after suffering an acute ischemic stroke. ARTICO is an ongoing prospective, observational, multicenter study being performed in 50 Spanish hospitals. The aim of the ARTICO study is to evaluate the prognostic value of a pathological ABI (

  1. False Positive Stress Testing: Does Endothelial Vascular Dysfunction Contribute to ST-Segment Depression in Women? A Pilot Study.

    PubMed

    Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel

    2018-06-19

    The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    PubMed Central

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  3. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction.

    PubMed

    Liu, Chang; Yao, Mu-Di; Li, Chao-Peng; Shan, Kun; Yang, Hong; Wang, Jia-Jian; Liu, Ban; Li, Xiu-Miao; Yao, Jin; Jiang, Qin; Yan, Biao

    2017-01-01

    Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro . cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo . cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro . By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.

  4. Combination therapy for treatment or prevention of atherosclerosis: Focus on the lipid-RAAS interaction☆

    PubMed Central

    Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.

    2010-01-01

    Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624

  5. The Association Between Inflammatory Markers and Hypertension. A Call for Anti-Inflammatory Strategies?

    PubMed Central

    García, Néstor H.; Juncos, Luis I.

    2006-01-01

    The most important goal of antihypertensive therapy is to prevent the complications associated with hypertension (stroke, myocardial infarction, end-stage renal disease, etc). For this, secondary targets such as left ventricular hypertrophy, proteinuria, dementia, and other signs of hypertension-induced organ damage help the physician to assess risks and monitor treatment efficacy. New treatment targets may be arising, however. One such target may be endothelial dysfunction. In effect, endothelial dysfunction not only may precede the elevation of blood pressure, but may also pave the way to conditions often associated with hypertension, such as diabetes, arteriosclerosis, microalbuminuria, congestive heart failure, and tissue hypertrophy. Because inflammation often accompanies endothelial dysfunction, approaches to counteract inflammation are now being evaluated. For this, antagonists of the renin-angiotensin-aldosterone system, statins, and beta blockers are all being tested. All of these agents seem to prevent or delay the induction of proinflammatory molecules aside from, and in addition to, their specific effects on blood pressure. The focus of this review is to update some of the animal and human research showing that hypertension sets off an inflammatory state and also to consider some of the anti-inflammatory approaches that may prevent the development of endothelial dysfunction, and the subsequent renal and cardiovascular damage.

  6. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    PubMed Central

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  7. Association Between Inflammatory Markers and Progression to Kidney Dysfunction: Examining Different Assessment Windows in Patients With Type 1 Diabetes.

    PubMed

    Baker, Nathaniel L; Hunt, Kelly J; Stevens, Danielle R; Jarai, Gabor; Rosen, Glenn D; Klein, Richard L; Virella, Gabriel; Lopes-Virella, Maria F

    2018-01-01

    To determine whether biomarkers of inflammation and endothelial dysfunction are associated with the development of kidney dysfunction and the time frame of their association. Biomarkers were measured at four time points during 28 years of treatment and follow-up in patients with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. In addition to traditional biomarkers of inflammation (C-reactive protein and fibrinogen), we measured interleukin-6 (IL-6) and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1/2), markers of endothelial dysfunction (soluble intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin [sE-selectin]), and fibrinolysis (total and active plasminogen activator inhibitor-1 [PAI-1]). Renal outcomes were defined as progression to incident chronic kidney disease (stage 3 or more severe) or macroalbuminuria (albumin excretion rate ≥300 mg/24 h). Prospective multivariate event-time analyses were used to determine the association of each biomarker with each subsequent event within prespecified intervals (3-year and 10-year windows). Multivariate event-time models indicated that several markers of inflammation (sTNFR-1/2), endothelial dysfunction (sE-selectin), and clotting/fibrinolysis (fibrinogen and PAI-1) are significantly associated with subsequent development of kidney dysfunction. Although some markers showed variations in the associations between the follow-up windows examined, the results indicate that biomarkers (sTNFR-1/2, sE-selectin, PAI-1, and fibrinogen) are associated with progression to chronic kidney disease in both the 3-year and the 10-year windows. Plasma markers of inflammation, endothelial dysfunction, and clotting/fibrinolysis are associated with progression to kidney dysfunction in type 1 diabetes during both short-term and long-term follow-up. © 2017 by the American Diabetes Association.

  8. Evaluation of the effects of glimepiride (Amaryl) and repaglinide (novoNorm) on atherosclerosis progression in high cholesterol-fed male rabbits

    PubMed Central

    Hadi, Najah R.; Al-Amran, Fadhil; Hussein, Mohammad A. A.; Rezeg, Fadhil A.

    2012-01-01

    Background: Atherosclerosis is an inflammatory disease of the blood vessel wall, characterized in early stages by endothelial dysfunction, recruitment and activation of monocyte/macrophages. Glimepiride is one of the third generation sulphonylurea drugs, useful for control of diabetes mellitus type two and it may exert anti inflammatory activity, by induction of nitric oxide production or through selective suppression of the cyclooxygenase pathway. Repaglinide is a new hypoglycemic agent, and a member of the carbamoylmethyl benzoic acid family. Some results from the literature demonstrate that repaglinide has favorable effects on the parameters of antioxidative balance. Objectives: The objective of the present study was to assess the effect of glimepiride and repaglinide on atherosclerosis via interfering with the inflammatory and oxidative pathways. Materials and Methods: Twenty four local domestic male rabbits were involved in this study. The animals were randomly divided into four groups; Group I rabbits fed normal chow (oxiod) diet for 10 weeks. Group II rabbits were fed with 1% cholesterol enriched diet. Group III rabbits were fed with 1% cholesterol enriched diet together with Glimepiride (0.1 mg/kg once daily before morning feed). Group IV rabbits were fed with 1% cholesterol enriched diet together with Repaglinide (0.3 mg/kg once daily before morning feed). Blood samples were collected before (0 time) and every two weeks of experimental diets for measurement of serum triglycerides (TG), total cholesterol (TC), High-density lipoprotein cholesterol (HDL-C), high sensitive C - reactive protein (hsCRP), Interleukin – 6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α) levels. At the end of 10 weeks, the aorta was removed for measurement of aortic Malondialdehyde (MDA), reduced glutathione (GSH) and aortic intimal thickness. Results: Glimepiride and repaglinide treatment did show significant effect on lipid parameters compared with induced untreated group (P < 0.05). Also, they significantly reduced the elevation in hsCRP, IL-6, TNF-α, aortic MDA and aortic intimal thickness compared with induced untreated group (P < 0.05), and they helped to restore the aortic GSH levels (P < 0.05). Conclusions: Glimepiride and repaglinide may reduce atherosclerosis progression in hypercholesterolemic rabbits by interfering with the inflammatory and oxidative pathways without affecting lipid parameters. PMID:22346138

  9. Blood cardioplegia with N-acetylcysteine may reduce coronary endothelial activation and myocardial oxidative stress.

    PubMed

    Rodrigues, Alfredo J; Evora, Paulo R B; Bassetto, Solange; Alves, Lafaiete; Scorzoni Filho, Adilson; Origuela, Eliana A; Vicente, Walter V A

    2009-01-01

    The aim of this prospective study was to compare the efficacy of intermittent antegrade blood cardioplegia with or without n-acetylcysteine (NAC) in reducing myocardial oxidative stress and coronary endothelial activation. Twenty patients undergoing elective isolated coronary artery bypass graft surgery were randomly assigned to receive intermittent antegrade blood cardioplegia (32 degrees C-34 degrees C) with (NAC group) or without (control group) 300 mg of NAC. For these 2 groups we compared clinical outcome, hemodynamic evolution, systemic plasmatic levels of troponin I, and plasma concentrations of malondialdehyde (MDA) and soluble vascular adhesion molecule 1 (sVCAM-1) from coronary sinus blood samples. Patient demographic characteristics and operative and postoperative data findings in both groups were similar. There was no hospital mortality. Comparing the plasma levels of MDA 10 min after the aortic cross-clamping and of sVCAM-1 30 min after the aortic cross-clamping period with the levels obtained before the aortic clamping period, we observed increases of both markers, but the increase was significant only in the control group (P= .039 and P= .064 for MDA; P= .004 and P= .064 for sVCAM-1). In both groups there was a significant increase of the systemic serum levels of troponin I compared with the levels observed before cardiopulmonary bypass (P< .001), but the differences between the groups were not significant (P= .570). Our investigation showed that NAC as an additive to blood cardioplegia in patients undergoing on-pump coronary artery bypass graft surgery may reduce oxidative stress and the resultant coronary endothelial activation.

  10. Aortic valve replacement for stenosis with or without coronary artery bypass grafting after 2 previous isolated coronary artery bypass grafting operations

    PubMed Central

    Lee Henry, Christopher; Ko, Jong Mi; Henry, Albert Carl; Matter, Gregory John

    2011-01-01

    Aortic valve replacement following an earlier coronary artery bypass grafting (CABG) procedure is fairly common. When this situation occurs, the type of valve dysfunction is usually stenosis (with or without regurgitation), and whether it was missed at the time of the earlier CABG or developed subsequently is usually unclear. We attempted to determine the survival in patients who had had aortic valve replacement after 2 previous CABG procedures. We describe 12 patients who had aortic valve replacement for aortic stenosis; rather than one previous CABG operation, all had had 2 previous CABG procedures. Only one patient died in the early postoperative period after aortic valve replacement, and the remaining 11 were improved substantially: all have lived at least 11 months, and one is still alive at over 101 months after aortic valve replacement. Aortic valve replacement remains beneficial for most patients even after 2 previous CABG procedures. PMID:21307968

  11. Development of decellularized aortic valvular conduit coated by heparin-SDF-1α multilayer.

    PubMed

    Zhou, Jingxin; Ye, Xiaofeng; Wang, Zhe; Liu, Jun; Zhang, Busheng; Qiu, Jiapei; Sun, Yanjun; Li, Haiqing; Zhao, Qiang

    2015-02-01

    Decellularization can reduce the immune response to aortic valve allograft tissue, but the thrombogenicity and in vivo remolding of these grafts remain controversial. The aim of the present study was to modify the surface of decellularized valvular conduits with heparin-stromal cell-derived factor-1α (SDF-1α) polyelectrolyte multilayer film and to test the thrombogenicity and biocompatibility in vitro and recellularization in vivo. The donor aortic valvular conduits were decellularized with a combination of different detergents and were coated with heparin and SDF-1α alternately to form a polyelectrolyte multilayer. Platelet adhesion and lactate dehydrogenase assay were used to evaluate the antiplatelet property. The adhesion, growth, and migration of bone marrow stem cells (BMSCs) to the scaffolds were assessed. For in vivo studies, the grafts were anastomosed to the infrarenal aorta, without or with heparin and SDF-1α multilayer. Functional assessment was performed by Doppler echography and micro-computed tomography at 2-week and 4-week time points after implantation. Explanted grafts were examined histologically and by immunohistochemistry. In vitro studies demonstrated that the heparin-SDF-1α multilayer film improved hemocompatibility with respect to a substantial reduction of platelet adhesion. BMSCs also achieved better adhesion, proliferation, and migration on the modified graft. For in vivo studies, the grafts in both groups remained patent after 4 weeks, but it was demonstrated that the modified decellularized grafts had better self-endothelialization and recruitment of endothelial progenitor cells. These results indicate that heparin-SDF-1α multilayer film can be used to cover the decellularized aortic valvular graft to decrease platelet adhesion while precipitating regeneration of the decellularized aortic valve allograft in vivo. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia.

    PubMed

    Kim, Joohwan; Lee, Kyu-Sun; Kim, Ji-Hee; Lee, Dong-Keon; Park, Minsik; Choi, Seunghwan; Park, Wonjin; Kim, Suji; Choi, Yoon Kyung; Hwang, Jong Yun; Choe, Jongseon; Won, Moo-Ho; Jeoung, Dooil; Lee, Hansoo; Ryoo, Sungwoo; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2017-03-01

    Preeclampsia is an inflammatory disease with endothelial cell dysfunction that occurs via decreased endothelial nitric oxide synthase/nitric oxide (eNOS/NO) activity. Aspirin reduces the incidence of hypertensive pregnancy complications. However, the underlying mechanism has not been clearly explained. Here, we found that tumor necrosis factor (TNF)-α, microRNA (miR)-155, and eNOS levels as well as endothelial redox phenotype were differentially regulated in preeclamptic patients, implying the involvement of TNF-α- and redox signal-mediated miR-155 biogenesis and eNOS downregulation in the pathogenesis of preeclampsia. Aspirin prevented the TNF-α-mediated increase in miR-155 biogenesis and decreases in eNOS expression and NO/cGMP production in cultured human umbilical vein endothelial cells (HUVECs). Similar effects of aspirin were also observed in HUVECs treated with H 2 O 2 . The preventive effects of aspirin was associated with the inhibition of nuclear factor-κB (NF-κB)-dependent MIR155HG (miR-155 host gene) expression. Aspirin recovered the TNF-α-mediated decrease in wild-type, but not mutant, eNOS 3'-untranslated region reporter activity, whose effect was blocked by miR-155 mimic. Moreover, aspirin prevented TNF-α-mediated endothelial cell dysfunction associated with impaired vasorelaxation, angiogenesis, and trophoblast invasion, and the preventive effects were blocked by miR-155 mimic or an eNOS inhibitor. Aspirin rescued TNF-α-mediated eNOS downregulation coupled with endothelial dysfunction by inhibiting NF-κB-dependent transcriptional miR-155 biogenesis. Thus, the redox-sensitive NF-κB/miR-155/eNOS axis may be crucial in the pathogenesis of vascular disorders including preeclampsia. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Nebivolol: impact on cardiac and endothelial function and clinical utility.

    PubMed

    Toblli, Jorge Eduardo; DiGennaro, Federico; Giani, Jorge Fernando; Dominici, Fernando Pablo

    2012-01-01

    Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/ nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with heart failure compared with standard care. Thus, nebivolol is an effective and well tolerated agent with benefits above those of traditional β-blockers due to its influence on nitric oxide release, which give it singular hemodynamic effects, cardioprotective activity, and a good tolerability profile. This paper reviews the pharmacology structure and properties of nebivolol, focusing on endothelial dysfunction, clinical utility, comparative efficacy, side effects, and quality of life in general with respect to the other antihypertensive agents.

  14. [Endothelial dysfunction in diabetes mellitus and possible ways of pharmacological correction].

    PubMed

    Chernov, Iu N; Krasiukova, V A; Batishcheva, G A; Mubarakshina, O A

    2010-02-01

    Insulinoresistance (IR) and endothelial dysfunction (ED) take part in forming cardiovascular complications. Hyperglycemia, dyslipidemia, and compensatory hyperinsulinemia are triggering factors in the development of ED in diabetes mellitus. Hyperactivation of the renin--angiotensin--aldosterone system and increasing influence of the sympathoadrenal system play an important role in the appearance of ED, which is characterized by a decrease in the synthesis of nitric oxide and an increase in the production of vasoconstrictors. At present, drugs used for ED correction only indirectly influence the functioning of endothelial cells. Eight pharmacological groups including more than 30 drugs are reviewed, which are capable of improving the endothelial function. Progress in the pharmacotherapy of ED stimulates the development of approaches to the individual choice of drugs and the directed correction of the functional state of vascular endothelium.

  15. Endothelial microparticles and vascular parameters in subjects with and without arterial hypertension and coronary artery disease.

    PubMed

    Sansone, Roberto; Baaken, Maximilian; Horn, Patrick; Schuler, Dominik; Westenfeld, Ralf; Amabile, Nicolas; Kelm, Malte; Heiss, Christian

    2018-08-01

    Endothelial microparticles (EMPs) are markers of endothelial injury and activation. The role of EMPs in arterial hypertension is not well understood and EMPs are increased both in arterial hypertension and coronary artery disease (CAD). The data presented here show EMPs as defined by CD31 + /41 - , CD62e + , and CD144 + surface markers and vascular hemodynamic parameters including office and central blood pressure, heart rate, aortic augmentation index, pulse wave velocity, flow-mediated dilation, nitroglycerin-mediated dilation, brachial artery diameter, hyperemic wall shear stress, and laser Doppler perfusion of the cutaneous microcirculation of normotensives and hypertensives with and without CAD.

  16. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.

    1988-11-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and anmore » increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous (3H)thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro.« less

  17. Grape seed proanthocyanidin extract protects human umbilical vein endothelial cells from indoxyl sulfate-induced injury via ameliorating mitochondrial dysfunction.

    PubMed

    Lu, Zhaoyu; Lu, Fuhua; Zheng, Yanqun; Zeng, Yuqun; Zou, Chuan; Liu, Xusheng

    2016-01-01

    To investigate the effects of grape seed proanthocyanidin extract (GSPE) on indoxyl sulfate-induced Human Umbilical Vein Endothelial Cells (HUVECs) injury in vitro and study its mechanism. HUVECs were incubated with indoxyl sulfate at concentrations in the range found in uremic patients. Then we determined the effect of indoxyl sulfate on endothelial phenotype, endothelial function, ROS (reactive oxygen species), cell apoptosis and mitochondrial function. In addition, we detected whether GSPE can suppress the injury of HUVECs induced by indoxyl sulfate and probe the mechanism underlying the protective effects of GSPE by analyzing mitochondrial dysfunction. GSPE treatment significantly attenuated indoxyl sulfate-induced HVUECs injury in a dose- and time-dependent manner. GSPE-enhanced eNOS and VE-cadherin expression, inhibited intracellular ROS level and cell apoptosis, adjust mitochondrial membrane potential and reduced 8-hydroxy-desoxyguanosine (8-OHdG) level induced by indoxyl sulfate. These results suggest that GSPE prevents HUVECs from indoxyl sulfate-induced injury by ameliorating mitochondrial dysfunction and may be a promising agent for treating uremia toxin-induced injury.

  18. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less

  19. Biosynthesis of fibronectin by rabbit aorta.

    PubMed

    Takasaki, I; Chobanian, A V; Brecher, P

    1991-09-15

    The in vitro interactions between vascular cells and fibronectin have been shown to influence phenotypic expression of both cultured endothelial and smooth muscle cells. To more effectively assess the potential functional role of fibronectin in vivo in modulating vascular phenotypes, we have established methodology for studying fibronectin biosynthesis in the rabbit aorta using aortic rings that are morphologically and functionally intact and metabolically active. Aortic rings were incubated with 35S-labeled methionine in a supplemented physiological salt solution. The tissue was fractionated, and quantitative immunoprecipitation was performed using a polyclonal antibody directed against human plasma fibronectin. Newly synthesized fibronectin was most abundant in the fraction solubilized using 4% sodium dodecyl sulfate and in the incubation medium. In all fractions studied, fibronectin was present predominantly as a dimer with no detectable aggregates of fibronectin. Pulse-chase experiments showed that a substantial amount of newly synthesized fibronectin was found in the 4% sodium dodecyl sulfate extract after only 1 h, suggesting that fibronectin was rapidly incorporated into the extracellular matrix. The more soluble forms of newly synthesized fibronectin appeared to be the precursors for secreted fibronectin, and no precursor-product relationship between soluble and insoluble fibronectin was found. Dissection of aortic rings following incubation with labeled methionine showed that newly synthesized fibronectin was uniformally distributed in both intima-media and media-adventitia segments. Endothelial cell denudation caused only a 20% decrease of fibronectin biosynthesis concomitant with similar changes in total protein biosynthesis, consistent with the medial smooth muscle cell as the major source of newly synthesized fibronectin. Biosynthesis of fibronectin was increased following a 24-h preincubation of the aortic rings, and concomitant increases in steady state mRNA for fibronectin were found. These in vitro studies documented the utility of aortic rings for the general purpose of studying protein synthesis in vascular cells and provide new information on the characteristics of fibronectin biosynthesis by aortic tissue.

  20. A healthy diet is associated with less endothelial dysfunction and less low-grade inflammation over a 7-year period in adults at risk of cardiovascular disease.

    PubMed

    van Bussel, Bas C T; Henry, Ronald M A; Ferreira, Isabel; van Greevenbroek, Marleen M J; van der Kallen, Carla J H; Twisk, Jos W R; Feskens, Edith J M; Schalkwijk, Casper G; Stehouwer, Coen D A

    2015-03-01

    A healthy diet rich in fish, fruit, and vegetables, but moderate in alcohol and low in dairy products and meat, has been associated with a lower rate of incident cardiovascular disease (CVD). The underlying mechanisms, however, remain unclear. Endothelial dysfunction and low-grade inflammation play important roles in CVD. A healthy diet might modify these phenomena. We investigated the associations between the above food groups and overall biomarker scores of endothelial dysfunction and low-grade inflammation in a 7-y longitudinal study. Using longitudinal data from 557 participants at increased CVD risk from the CODAM (Cohort on Diabetes and Atherosclerosis Maastricht) Study, we assessed diet intake by food-frequency questionnaire and measured plasma biomarkers of endothelial dysfunction [von Willebrand factor, soluble vascular cell adhesion molecule 1, soluble endothelial selectin, soluble thrombomodulin, soluble intercellular adhesion molecule 1 (sICAM-1)] and low-grade inflammation [C-reactive protein, serum amyloid A, interleukin (IL)-6, IL-8, tumor necrosis factor α, and sICAM-1]. At baseline, participants were aged 59.6 ± 6.9 y. Measurements were performed then and after 7 y. Biomarkers were combined into overall scores (sum of z scores; higher scores indicating worse function). Longitudinal data were analyzed with generalized estimating equations and adjusted for sex, age, glucose metabolism, energy intake, body mass index, physical activity, alcohol consumption, and smoking. Higher consumption of fish (per 100 g/wk), but not total consumption of vegetables, fruit, alcohol-containing beverages, dairy products, or meat, was associated with a lower overall endothelial dysfunction score over 7 y (β: -0.027; 95% CI: -0.051, -0.004). No associations were observed with the overall low-grade inflammation score. Further food component analyses indicated that consumption of more lean fish (per 100 g/wk) and raw vegetables (per 100 g/d), and fewer high-fat dairy products (per 100 g/d) was associated with less endothelial dysfunction [(β: -0.038; 95% CI: -0.072, -0.005), (β: -0.095; 95% CI: -0.191, 0.000), and (β: -0.070; 95% CI: -0.131, -0.009), respectively]. Consumption of more fresh fruit (per 100 g/d), wine (per 100 mL/wk), and poultry (per 100 g/d), and fewer high-fat dairy products (per 100 g/d) was associated with less low-grade inflammation [(β: -0.074; 95% CI: -0.133, -0.015), (β:-0.006; 95% CI: -0.013, 0.001), (β:-0.247; 95% CI: -0.479, -0.014), and (β:-0.100; 95% CI: -0.182, -0.019), respectively]. These data suggest that the dietary modification of endothelial dysfunction and low-grade inflammation, processes that are important in atherothrombosis, is possible. © 2015 American Society for Nutrition.

Top